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Chapter 1

Foundations and
mathematical tools

1.1 General considerations on physics

Before starting the course let us make some general comments on physics 1.

1.1.1 Definition of physics

1.1.1.1 Why to study physics?

The best motivation to study physics is certainly the desire to unravel the mysteries
of the universe. The desire may be driven by curiosity (where are we coming from
and where are we going) or by necessity, to improve our living conditions or to survive
critical situations (”we’ve gonna have to science the shit out of this [Matt Damon]”).

Even if, during the studies or practicing research, curiosity is not always satisfied
and many questions remain open, physicists are often confronted with fundamental
questions.

1.1.1.2 What is the purpose of physics?

• Technology

• Understanding the world, curiosity leading to sometimes unexpected applica-
tions

• The reward of the study is a better appreciation of the simplicity, beauty, and
harmony of the laws of nature.

1.1.1.3 Theory and reality

Since ancient Greece philosophers and scientists have been wondering about what is
out there and how much of it the human mind can grasp. How does our image of the
universe connect to reality? How much of reality can we learn through observation?

”Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory
[Asher Peres]”

1See [961], Cap. 1.
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”It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong” [Richard P. Feynman].

1.1.1.4 The scientific method, physics and mathematics

Observation and experimentation as well as abstraction and induction.

• Abstraction of inessential effects

• Physical laws and theories (reduction of a large number of phenomena to a few
laws, predictive power)

• Domains of restricted validity (new theories contain the old ones in some limit,
even if the basic concepts may differ radically)

• Ancient theories have their right to be (e.g. because of their simplicity, they can
be derived from a more general theory following well-defined procedures).

1.1.1.5 Relationship between physics and mathematics

Although mathematics is the most important tool in physics, these two sciences are
fundamentally different. According to Carl Friedrich von Weizsäcker mathematics is
a structural science while physics is a natural science [1345, 1346]. The mathemat-
ical method is deductive. A mathematical theory is good when it is complete and
intrinsically without controversy, it cannot be correct. It is not more than a tool
and does not contain reality. For instance, axiomatic geometry remains valid, when
the words ’point, straight, plane’ are replaced by ’table, cup, chair’. The method of
mathematics is deductive.

In contrast, physics is a natural science. A physical theory is good when it is true,
which means that it describes the universe as correctly as possible. The central activ-
ity of a physicist is to measure 2. The physicist makes hypotheses that he formulates
as theories, but he must verify their correctness experimentally, otherwise the theory
is of no use. The physicist already has in his mind an image of how the universe
works (which may or may not be correct), and this image guides his intuition in the
formulation of new better theories or improved measurement techniques. According
to Karl Popper, in contrast to pseudo-science and religious beliefs, a physical theory
or model must be falsifiable, i.e. its correctness must be verifiable through experimen-
tation. It is good practice to incorporate into a scientific model conjectures about
its range of validity (e.g. sufficiently low velocities, small masses, or high energies).
Within its range of validity the model should be universal, i.e. always and everywhere
make correct predictions in the outcome of experiments. A single negative experiment
is sufficient to falsify the model. A scientific model must provide recipes allowing for
its falsification by experiment or at least allow for them to be formulated. An good
example is Einstein’s hidden variables assumption. At the beginning the debate ap-
peared as purely metaphysical. Only Bell’s proposal how to test the assumption by
measurement turned it into a scientific theory, which finally was falsified experimen-
tally. This shows that the whole art of a physicist consists in constructing meaningful

2’Quantum phenomena do not occur in Hilbert space, they occur in laboratory’ [A. Peres].
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experiments. The biggest task of theory is to allow questions to be asked. Measuring
means: asking the right question. A right question is a question with possible answers,
called observables.

1.1.1.6 Relationship between physics and other sciences

• Chemistry and molecular biology

1.1.1.7 Plato, Newton, Leibniz, Kant, Einstein and Bohr

What is first ideas or phenomena? Plato, Newton, Kant and Einstein would perhaps
say: ideas. Leibniz and Bohr: phenomena.

However, Plato has a lot say about quantum mechanics, dialectic approach, the
part and the whole. Also the cave parabola seems to indicate that Plato would support
the relativity of perceptions.

1.1.1.8 Space and time

The discussion of the role of space and time in physics is best started with the contro-
verse between Newton and Leibniz. Newton imagined space and time as a Cartesian
space. Space and time are basically different from all other quantities: They are di-
mensions, they are the recipient in which all processes occur, To say it with Kant, ’die
Gefäße unserer Erkenntnis, unseres Denkens’. Leibniz had another vision. He asked
what a space with nothing in it might look like, what a time with nothing happening
might look like. Space and time are no observables, but rather distance between ob-
jects or duration between events. They have no physical reality by themselves. They
are nothing more than mathematical concepts, dimensions in which things may be
displaced and evolve.

Time may be defined through processes which are, to the best of our knowledge,
periodic, i.e. repetitive, like the oscillations of a pendulum. But we might also un-
derstand time as a measure for the frequency of any events, e.g. collisions between
any two atoms in a gas. Then time runs fast if a lot happens, but slowly if nothing
happens. Time then goes with the inverse of temperature.

1.1.1.9 Before the big bang

The basic process in modern physics is a collision. Every interaction force is medi-
ated by particles. These particles collide with other particles and exchange energy,
momentum and other features. The fundamental nature of the collision process leads
us to define time as the inverse of the collision rate.

In this light, the question about the beginning of the universe or what was before
the big bang might be a silly one, like to ask about the start point of a sphere. If with
the density in the early universe the temperature diverges, so does the time. Time
steps have to be chosen shorter and shorter as one approaches the big bang, without
ever reaching the limit.

This implies that causality is interrupted, there is no point in asking about the
before of the universe, may not even its origin.
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1.1.1.10 The arrow of time

Aging seems to be a macroscopic phenomenon. It comes into play at the interface
between the microscopic and macroscopic world. Classically at the boundary of kinetic
theory and thermodynamics, i.e. via the second law of thermodynamics [951]. Modern
theories pin it down to decoherence phenomena [1004].

Causality in chaos science: weak causality: Same causes have same effects.
strong causality: Similar causes have similar effects.
Not the physical laws are subject to indeterminism, but the quantum states cannot

be characterized better than permitted by the uncertainty relation.

1.1.2 Structure of physics

1.1.2.1 Orders of magnitude, significant number of digits

The objects of physical science are measurable quantities or observables, which (at
least in classical physics) correspond to real numbers. Even though complex numbers
are sometimes used to represent physical quantities, only their real parts are associated
with physical reality.

Many physical quantities have wide ranges of possible values (time, distances, ..),
and many values are little known (for example, the number of stars in the universe. No
physical quantity can be measured with absolute certainty. That is, when presenting
the result of measurements, we always need to specify the estimated uncertainty
or error. For example, a measurement of a mathematical constant may yield π =
3.14159 ± 0.00002. Obviously, it is meaningless to specify a value with a higher
precision as the uncertainty or to specify the uncertainty itself by more than 1 (or
at most 2) digits. Hence, we always use the same number of significant digits for
the value and its uncertainty, that is, the same number of digits behind the decimal
point. If the quantity depends on several quantities, the significant digit is given by
the quantity with the smallest precision.

The uncertainty of a measurement of a quantity m is a complicated issue because,
in order to quantify it, in principle we would need a more precise measurement to
compare with. However, what we always can do is repeat the measurement N times
(if possible varying the conditions) and to calculate the mean value,

m̄ = 1
N

∑

k

mk (1.1)

of the individual measurement outcomes mk, as well as the standard deviation,

∆m =

√
1

N − 1

∑

k

(mk − m̄)2 . (1.2)

The physical quantity is then specified as,

m = m̄±∆m . (1.3)

This uncertainty grasps stochastic (or random) errors due to an imperfect realization
of the measurement limiting the precision. On the other hand, a conceptual flaw
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of the design of the measurement apparatus can lead to deviations, which often are
unknown. These are called systematic errors and limit the accuracy of the apparatus,
as illustrated in Fig. 1.1.

Figure 1.1: Illustration of stochastic and systematic errors in a measurement of a quantity
m.

1.1.2.2 Units

Physical quantities always consist of a number and a unit forming an inseparable
entity. For example, a mass can be specified by the assertion,

m = 2kg , (1.4)

stating that a particular object I have in mind and that I will call henceforward by
the name m has a mass of 2 kg. Note that every equation represents an assertion,
that is either a definition or a verifiable statement, which we assume to be true if not
otherwise stated. For example, the sentence

2 kg ·2m/s
2
= 4N (1.5)

is a verifiable statement that we find to be correct 3. In contrast, the statement

2 · 2 = 4N (1.6)

is false and the statement
2 · 2 = 4 (1.7)

is physically meaningless.
Measuring means determining the numerical value of a physical quantity, but this

is only possible with respect to a reference value. For example, distances are compared
to the circumference of the Earth, times with the duration of the day. In practice, it
is more convenient to choose as reference value the unitary value. For example, we
will consider the distance

d = 1m , (1.8)

as our reference distance, which in turn is related to a (previously determined) Earth
circumference by a fixed numerical factor of 1:40 000 000. In this sense, measurement
always means comparison with a reference that we will call standard.

3A practical issue of consequently using units is that they allow us to quickly check whether a
formula is false. If a formula represented by an equation exhibits different units on both sides, it
must obviously be wrong.
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1.1.2.3 Linearization of functions, graphical representation

The linearization of exponential, logarithmic and polynomial functions facilitates their
graphical representation and the determination of constants,

y = ax+ b

lg y = ax+ b =⇒ y = 10ax+b = BAx

y = a lg x+ b

lg y = a lg x+ b =⇒ y = 10a lg x+b = Bxa

(1.9)

where we defined B ≡ 10b and A ≡ 10a. See Fig. 1.2.
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y
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10−1 100 101
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100

101

y

lg y = a lg x+ b

Figure 1.2: Original and linearized curved.

1.1.2.4 Length measurements

• Historical standards 1m = 1 650 763.73λKr86 and c = 299 792 458m/s.

• Measurement of Eratosthenes 300 AC.

1.1.2.5 Coordinate systems

• Cartesian or polar coordinates for two or three dimensions.

• The latitude is easy to measure (λ = 90◦−∠(norte− zenit)), but the longitude
is difficult (needs very precise clocks).

1.1.2.6 Time measurements

Absolute space and time do not exist. According to the restricted and the general
theory of relativity they are interconnected by velocity and they depend on the pres-
ence of mass. But even in a more metaphysical sense one may wonder with Gottfried
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Leibniz about the meaning of space with nothing inside and of time with nothing
happening. Indeed, our practical approach to the measurement of time is based on
the observation of recurrent phenomena that we think of being periodic, such as a
day on Earth, the dripping of a water pipe, or the oscillation of a pendulum or of an
atomic excitation. Assuming the time intervals separating the recurrent phenomena
as being all the same, we build a ruler for time which we call clock (see Sec. 36.5).

Historically, the development of ever precise clocks has been motivated by naviga-
tion. Indeed, 1 minute of inaccuracy in the clock generates an uncertainty of 28 km in
global positioning. And this motivation still prevails nowadays although, meanwhile,
atomic clocks have uncertainties of below 10−16.

Apart from periodic processes, time measurement can also be done by exponential
processes, such as radioactive decay. This method is commonly used in radioactive
dating. Do the Excs. 1.1.3.1 to 1.1.3.5.

1.1.2.7 The international system of units

Not every physical quantity needs to have its own standard. Often it is easier to
quantify this quantity by measuring other physical quantities to which it is related in
a simple way. For example, instead of measuring a distance by comparing it to the
Earth circumference it may be easier to measure the time needed by a beam of light
to cover this distance. In this sense, all physical quantities have been traced back by
simple relationships to a small number of so-called basic units. Today, seven basic
units are officially recognized as such by the international Conférence Générale des
Poids et mesures (CGPM): the second (unit symbol ’s’) as a measure of time, the
meter (unit symbol ’m’) as a measure of distance, the kilogram (unit symbol ’kg’) as
a measure of mass, the Ampère (unit symbol ’A’) as a measure of electrical current,
the Kelvin (unit symbol ’K’) as a measure of temperature, the mol (unit symbol
’mol’) as a measure of molar mass, and the candela (unit symbol ’cd’) as a measure
of luminosity 4.

By decision of the 26e CPGM in 2018 5, all basic units are related to the most
fundamental unit, the second, for which the most precise measurement tools are
available. Measurements of all other units are traced back to time measurements
using simple relationships and natural constants 6:

4Note that, the molar mass and the luminosity are not fundamental in a strict sense, and only
appear in the SI-system, because they are convenient for the communities of chemistry and illu-
mination industry. After all, industrial and practical life applications are a main motivation for
standardization (see Quantum Science Seminar talk by William Phillips).

5SI-Brochure.
6So, in a sense, ’time’ is the only remaining fundamental quantity.

https://www.youtube.com/watch?v=_bHBQgdcjSY
https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf
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Figure 1.3: SI unit system.

base unit relationship definition

time t 1 s = 9 192 631 770
∆νCs

distance d = ct 1m = c
299 792 458 1 s

mass m = hν
c2 1 kg = (299 792 458)2

c2
h

6.626 070 15×10−34
1
1 s

electric current I = Q̇ 1A = e
1.602 176 634×10−19

1
1 s

temperature T = hν
kB

1K = c2

(299 792 458)2
1.308 649×10−23

kB
1 kg

molar mass T = mc2

kB
1mol = 6.022 140 76×1023

NA

luminosity 1 cd

These natural constants are the transition frequency of cesium atoms ∆Cs, the
velocity of light c, Planck’s constant h, the elementary charge e, Boltzmann’s constant
kB , and Avogadro’s constant NA. The natural constants are considered as fixed and
exact. Hence, any improved measurement of the velocity of light will not result in a
more precise value of c, but in an improved definition of the meter.

1.1.3 Exercises

1.1.3.1 Ex: Mean value and standard deviation

The surface area of a house plant is measured by 10 people finding different values.
Determine the mean and standard deviation of the measurement. How many mea-
surements are in the confidence interval, that is, within the standard deviation?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcGeneral01.pdf
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person measured value
[m2]

1 99.9

2 76

3 96.0

4 100

5 101.2

6 99.9

7 110

8 96.0

9 100.4

10 101.6

Solution: The average value of the measurements is,

Ā =
1

10

10∑

i=1

Ai = 98.1 .

The standard deviation is,

σ̄ =

√√√√ 1

10

10∑

i=1

(Ai − Ā) ≃ 8.22 .

Therefore, all measurements between 98.10 + 8.22 = 106.32 and 98.1 − 8.22 = 89.88
fall within the confidence interval.

1.1.3.2 Ex: Circumference of the Earth

In the 3rd century BC, the Greek Eratosthenes measured the circumference of the
Earth by comparing the angles between the sun’s rays and the vertical at noon in two
different places. In Siena he measured 0◦ and in Alexandria, which is 785 km north
of Siena, he measured 7.2◦. What is the circumference he found?

Solution: With s = 785 km and θ = 7.2◦ we find,

s

2πR
=

θ

360◦
.

Hence, 2πR = 39250 km.

1.1.3.3 Ex: Radioactive dating with 40K

A chemical analysis of a 1 g rock sample reveals the presence of mK = 4.21 · 10−2 g
potassium (39K+40K) and mA = 9.02 · 10−7 g argon (40A). How old is the rock?
Help: The current relative abundance is 1 atom of 40K for every 8400 atoms of 39K.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcGeneral02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcGeneral03.pdf
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Only 12% of 40K desintegrate into 40A, the rest into 40Ca. The decay time of 40K is
t1/2 = 1.3 · 109 a.

Solution: The amounts of potassium and argon correspond to,

NK =
mK

uK
=

4.21 · 10−2 g
39.1u

= 6.48 · 1020

NA =
mA

uA
=

9.02 · 10−7
39.95u

= 1.36 · 1016 .

Given the relative abundance, the current number of atoms of 40K in the sample is,

Nactual
K40 =

NK
8400

.

The number of 40K that disintegrated is,

Ndesint
K40 =

100NA
12

,

and the initial number of 40K number was,

N initial
K40 = NK40 +Ndesint

K40 .

So the rock age is,

t = t1/2 log2
N initial
K40

Nactual
K40

= 3.5 · 109 a .

1.1.3.4 Ex: Paramecia

A biologist analyzes the behavior of a paramecium. Make a position versus time dia-
gram and determine the average speed.

tempo [s] posição [cm]

0 2

10.5 2.1

12 96.0

23 100

40 101.6

Solution: The animal covers a distance of 101.6 cm in 40 seconds. With that we
get the average speed,

v̄ =
101.6m

40 s
= 2.54 cm/s .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcGeneral04.pdf
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1.1.3.5 Ex: Spirograph

Find the parametrization of the curves produced by a spirograph.

Solution:

1.2 Basics mathematical notions, vector analysis

We will not spend time on mathematical fundamentals, such as notions of vectors and
matrices, one-dimensional derivatives and integers, complex numbers, and differential
equations. Students who have doubts should try to solve the exercises of Chapter 1
of the Handbook by Zilio and Bagnato.

1.2.1 Scalars, vectors and matrices

1.2.2 Exercises

1.2.2.1 Ex: Vectors

A room has the dimensions 3×4×5m3. A fly departs from one of its corners and flies
to the diametrically opposite corner. What is the absolute value of the displacement?
Could its trajectory be less than this displacement? Choose a convenient coordinate
system and express the displacement in vector form.

Solution: see Zilio & Bagnato, Apostila: F́ısica I: Mecânica, calor e ondas

1.2.2.2 Ex: Vectors

Consider the vectors x = x1ê1 + x2ê2 + x3ê3 and y = y1ê1 + y2ê2 + y3ê3. Calculate
|x|, x · y and x× y.

Solution:

1.2.2.3 Ex: Vectors

Can we combine two vectors with different absolute values and have a resulting vector
with zero length? How about 3 vectors?

Solution: see Zilio & Bagnato, Apostila: F́ısica I: Mecânica, calor e ondas

1.2.2.4 Ex: Vectors

Consider a moving body whose position vector is given (in cm) by r = 3êx cosωt +
4êy sinωt.
a. Display in a scaled graph r at a given time t;

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcGeneral05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors04.pdf
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b. after a small time interval ∆t show the new vector r on the same graph;
c. calculate the displacement ∆s = r(t+∆t)− r(t) suffered by the body during the
interval ∆t;
d. calculate v = ∆s/∆t and check its orientation for ωt = 0, π/2, π, 3π/2;
e. calculate r · v and discuss the result;
f. calculate r× v and discuss the result.

Solution: see Zilio & Bagnato, Apostila: F́ısica I: Mecânica, calor e ondas

1.2.2.5 Ex: Vectors

Show that the magnitude of the sum of two vectors a and b is always within the
limits,

||a| − |b|| ≤ |a+ b| ≤ |a|+ |b| .

Solution: Calculating the square of the terms,

(|a| − |b|)2 ≤ (a+ b)2 ≤ (|a|+ |b|)2 ,
we get,

−|a||b| ≤ |a||b| cos θ ≤ |a||b| .

1.2.2.6 Ex: Vector product

Invent a method based on the cross product to calculate the area enclosed by a path
delimited by the points A→ B → C....

Solution: The area is given by,

F = 1
2 (
−−→
AB ×−→AC +

−→
AC ×−−→AD +

−−→
AB ×−→AC + ...) .

For convex paths, all components are positive. For partially concave paths, some
components can be negative.

1.2.2.7 Ex: Matrix multiplication

Determine the products of the following matrices,

(
1 a

0 1

)(
1 0

b 1

)
,

(
1 0

b 1

)(
1 a

0 1

)
,



4 3

2 2

7 −5



(
1 2 3 4

5 6 7 8

)
.

Solution: trivial

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors07.pdf
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1.2.2.8 Ex: Matrix multiplication

Consider the matrices A and B and the column vector x given by,

A =



0 1 0

1 1 0

0 1 1


 , B =



−1 −5 8

2 1 0

1 4 6


 , x⃗ =



1

0

0


 .

a. Calculate the vector y = A(Bx).
b. Show that for arbitrary matrices A and B and vectors x holds A(Bx) = (AB)x.
c. Let A be an arbitrary matrix with Aij elements. The conjugate matrix of At is
defined by (At)ij = Aji; that is, the column indexes i and those of the row j are
exchanged. Show,

(AB)t = BtAt .

Solution: a. We calculate,


0 1 0

1 1 0

0 1 1





−1 −5 8

2 1 0

1 4 6





1

0

0


 =



2

1

3


 .

b. We calculate,

(AB)x =




a11 a12 a13
a21 a22 a23
a31 a32 a33






b11 b12 b13
b21 b22 b23
b31 b32 b33






x1
x2
x3




=




a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33






x1
x2
x3




=




(a11b11 + a12b21 + a13b31) x1 + (a11b12 + a12b22 + a13b32) x2 + (a11b13 + a12b23 + a13b33) x3
(a21b11 + a22b21 + a23b31) x1 + (a21b12 + a22b22 + a23b32) x2 + (a21b13 + a22b23 + a23b33) x3
(a31b11 + a32b21 + a33b31) x1 + (a31b12 + a32b22 + a33b32) x2 + (a31b13 + a32b23 + a33b33) x3




=




a11 a12 a13
a21 a22 a23
a31 a32 a33






b11x1 + b12x2 + b13x3
b21x1 + b22x2 + b23x3
b31x1 + b32x2 + b33x3


 = A(Bx)

c. We calculate,

(AB)
t

=






a11 a12 a13
a21 a22 a23
a31 a32 a33






b11 b12 b13
b21 b22 b23
b31 b32 b33





t

=




a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33




t

=




a11b11 + a12b21 + a13b31 a21b11 + a22b21 + a23b31 a31b11 + a32b21 + a33b31
a11b12 + a12b22 + a13b32 a21b12 + a22b22 + a23b32 a31b12 + a32b22 + a33b32
a11b13 + a12b23 + a13b33 a21b13 + a22b23 + a23b33 a31b13 + a32b23 + a33b33




=




b11 b21 b31
b12 b22 b32
b13 b23 b33






a11 a21 a31
a12 a22 a32
a13 a23 a33




=




b11 b12 b13
b21 b22 b23
b31 b32 b33




t 


a11 a12 a13
a21 a22 a23
a31 a32 a33




t

= B
t
A

t
.

1.3 Infinitesimal calculus

Several physical quantities are related by derivatives or integrals.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_CalcVectors08.pdf
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1.3.1 Derivation

1.3.2 Integration

1.3.3 Exercises

1.3.3.1 Ex: Derivatives

We know that (sinx)′ = cosx and (cosx)′ = − sinx. Use this notion to calculate:

a. (arccosx)′ ,

b. (arctanx)′ .

Derive by x:

c. y = (x3 + 2) cosx2 ,

d. y =
x2 + 1

sin lnx
.

Calculate the derivatives of,

e. f(x) = 5 x eax sinx ,

f. f(t) =
at

sin t
,

g. f(z) = ln
1− z2
1 + z2

.

Solution: Deriving by x

c. y′ = 3x2 cosx2 − 2x
(
x3 + 2

)
sinx2

d. y′ =
2x

sin (lnx)
− x2 + 1

sin2 lnx

cos lnx

x
.

The derivatives are

e. f(x) = 5eax sinx+ 5xeax (sinx) a+ 5xeax cosx

f. f(t) = −at ln a sin t− cos t

−1 + cos2 t

h. f(z) =
4z

z4 − 1
.

1.3.3.2 Ex: Curves discussion

Consider the parable y = 2x2 + x− 3.
a. Using the concept of the derivative, find the position x0 that corresponds to the
extreme (maximum or minimum);

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_.pdf
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b. Substitute the value of x0 in the parabola equation to find the value of y0;
c. Calculate the squares to find the vertex points x0 and y0;
d. Find the points at which the parable crosses the axis x;
e. Sketch the parable (graphic with few details);
f. Using integration, find the area under the parable between the points 1 and 2.

Solution: see Zilio & Bagnato, Apostila: F́ısica I: Mecânica, calor e ondas

1.3.3.3 Ex: Integrals

Calculate the following indefinite integrals,

a.

∫
3x dx ,

b.

∫
(7x2 + 4x3 − 2) dx ,

and the definite integrals,

c.

∫ π

0

(3 sinx+ cosx) dx ,

d.

∫ 1

−1
(5 + 2x2) dx ,

e.

∫ 1

0

e2x dx ,

f.

∫ π/4

0

sinx cosx dx .

Solution: see Zilio & Bagnato, Apostila: F́ısica I: Mecânica, calor e ondas

1.3.3.4 Ex: Integrals

Find a suitable substitution to solve the following integrals,

a.
∫
dt sin(ωt+ α) b.

∫
dx 2x√

1+x2

c.
∫
dx x2 lnx d.

∫ π/3
0

dϕ sinϕ√
1+cosϕ

Calculate by partial integration,

e.
∫
dx (x+ 2)2 lnx f.

∫
dx xe−x

g.
∫
dx x2 lnx h.

∫ 1

0
dx x
√
1 + x

Calculate,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_.pdf
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i.
∫

dx
x(ln x)3 j.

∫
dx sin 2x

1−cos 2x

Find a serial expansion around the position x = 0 for,

k.
∫ 1

0
dx e−x

2

l.
∫ π
0
dx sin x

x

Solution:

a.

∫
sin(ωt+ α)dt = −cos(ωt+ α)

ω

b.

∫
2x√
1 + x2

dx = 2
√
(1 + x2)

c.

∫
x2 lnxdx =

1

3
x3 lnx− 1

9
x3

d.

∫ π/3

0

sinϕ√
1 + cosϕ

dϕ = −2
√

(1 + cosϕ)
∣∣∣
π/3

0
=
(
2−
√
3
)√

2

e.

∫
(x+ 2)2 lnxdx =

(
1

3
x2 + 2x+ 4

)
x lnx−

(
1

9
x2 + x+ 4

)
x

f.

∫
xe−xdx = −(x+ 1)e−x

g.

∫
x2 lnxdx =

1

3
x3 lnx− 1

9
x3

h.

∫ 1

0

x
√
1 + xdx = −2

3

(√
(1 + x)

)3
+

2

5

(√
(1 + x)

)5∣∣∣∣
1

0

=
4

15
(
√
2 + 1)

i.

∫
dx

x(lnx)3
= − 1

2 ln2 x

j.

∫
sin 2x

1− cos 2x
dx =

1

2
ln(1− cos 2x)

k.

∫
x

ex
dx = −(x+ 1)e−x

l.

∫ 1

0

e−x
2

dx =

∫ 1

0

∞∑

n=0

(−1)nx2n
n!

dx =

∞∑

n=0

(−1)n
n!

x2n+1

2n+ 1

∣∣∣∣∣

1

0

=

∞∑

n=0

(−1)n
n!

1

2n+ 1

m.

∫ π

0

sinϕ

ϕ
dϕ =

∫ π

0

∞∑

n=0

(−1)nϕ2n
(2n+ 1)!

dϕ =

∞∑

n=0

(−1)nϕ2n+1

(2n+ 1)!(2n+ 1)

∣∣∣∣∣

π

0

=

∞∑

n=0

(−1)nπ2n+1

(2n+ 1)!(2n+ 1)
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1.3.3.5 Ex: Numerical integration for pedestrians

Consider the differential equation for the mass-spring system ẍ = −ω2x with ω =
2π · 1 s−1.
a. Determine the equivalent system of coupled first-order differential equations.
b. Calculate using the Euler procedure the numerical solution of this system for the
initial conditions, x(t = 0) = 1 m and v(t = 0) = 0 for the two time intervals of
∆t = 0.1 s. Compare the result with the exact solution.
c. Repeat the calculation of (b) with four time intervals of ∆t = 0.05 s.
d. Use the second-order Runge-Kutta procedure with two time intervals of ∆t = 0.1 s.

Figure 1.4: Runge-Kutta procedure.

Solution: a. y1(t) = x(t), y2(t) = ẋ(t) = v(t) ⇒ ẏ2(t) = −ω2x(t), ẏ1(t) = y2(t)
f1(t) = y2(t), f2 = −ω2y1(t)

b. Euler, ∆t = 0.1

t (s) 0 0.1 0.2

x (m) 1.0 1.0 0.605

v (m/s) 0.0 -3.948 -7.896

c. Euler, ∆t = 0.05

t (s) 0 0.05 0.1 0.15 0.2

x (m) 1.0 1.0 0.901 0.704 0.418

v (m/s) 0.0 -1.974 -3.948 -5.727 -7.116

d. Runge-Kutta of second-order

t (s) 0 0.1 0.2

x (m) 1.0 0.803 0.249

v (m/s) 0.0 -3.948 -6.337

y1(t+ h) = y1(t) + ∆t · y2(t)− (∆t)2

2 ω2y1(t)

y2(t+ h) = y2(t)−∆tω2 · y1(t)− (∆t)2

2 ω2y2(t)

1.3.3.6 Ex: Taylor series

Expand the function

f(x) =
1√
1 + x
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Figure 1.5: Runge-Kutta procedure.

in a Taylor series around the position x = 0. To do this, calculate the derivatives at
least until third order and try to find the general law indicating how to find the series
coefficients. Draw the function and the Taylor approximations.

Solution:

1.3.3.7 Ex: Partial derivatives

Be r(x1, x2, x3) =
√
x21 + x22 + x23. Find the first two partial derivatives and show by

explicit calculation, that

a.
∂2r

∂xi∂xj
=

∂2r

∂xj∂xi
and b.

3∑

i=1

∂2

∂x2i

(
1

r

)
= 0 .

Solution: a. The first derivative is,

∂

∂xi
r(x1, x2, x3) =

xi
r
,

and the second,

∂2

∂xi∂xj
r(x1, x2, x3) = −

xixj
r3

+ δij
1

r
.
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With that, (a) it is already proven.
b. Now,

3∑

i=1

∂2

∂x2i

(
1

r

)
=

3∑

i=1

∂

∂xi

(−1
r2

∂r

∂xi

)
= −

3∑

i=1

(
∂2

∂x2i

1

r2
− 2

r3

(
∂r

∂xi

)2
)

= −
3∑

i=1

(
−x

2
i

r5
+

1

r3
− 2

r3

(xi
r

)2)

= −
3∑

i=1

(
−3x

2
i

r5
+

1

r3

)
= − 3

r3
+

3

r5

3∑

i=1

(x2i ) = 0 .

1.4 Complex numbers

The imaginary unit is defined as,

ı ≡
√
−1 . (1.10)

From this follows a number of arithmetic rules that are studied in the following
exercises.

1.4.1 Basic rules

real part, imaginary part, absolute value

1.4.2 The complex plane

the Euler formulae

1.4.3 Complex numbers in physics

1.4.4 Exercises

1.4.4.1 Ex: Complex numbers

Solve the following equations,

z

1 + ı
− z

1− ı = 1 + (z − z̄) sin(π + ı ln 3) , − 2ız =
1 + z̄

1 + ı
.

Calculate the absolute value, the real part and the imaginary part of,

2ı− 1

ı− 2
, (1 + 2ı)3 ,

3ı

ı−
√
3
.
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Solution: a. We have,

sin(π + ı ln 3) = sinπ cosh ln 3 + ı cosπ sinh ln 3 = −ı sinh ln 3

= −ı e
ln 3 − e− ln 3

2
= −ı3− 1/3

2
= −ı4

3
.

On the other side we have,

z

1 + ı
− z

1− ı =
z(1− ı)− z(1 + ı)

(1− ı)(1 + ı)
= −ız .

With that and after having entered z = a+ ib the equation to solve simplifies to,

−ıa+ b = −ız = z

1 + ı
− z

1− ı
= 1 + (z − z̄) sin (π + ı ln 3) = 1 + 2ıb

(
−ı4

3

)
= 1 + b

8

3
.

The comparison of real and imaginary parts gives,

a = 0 and b = −3

5
.

b. Multiplying the equation to solve with 1 + ı gives,

−2ız + 2z = 1 + z̄ .

Inserting z = a+ ıb gives,

2ı(b− a) + 2(a+ b) = 1 + a− ıb .
The comparison of real and imaginary parts gives,

2(a+ b) = 1 + a and 2(b− a) = −b .
Solving the system of equations finally gives a = 3 and b = 2.
c. We have,

∣∣∣∣
2ı− 1

ı− 2

∣∣∣∣ =
2ı− 1

ı− 2

−2ı− 1

−ı− 2
= 1

Re
2ı− 1

ı− 2
=

1

2

(
2ı− 1

ı− 2
+
−2ı− 1

−ı− 2

)
=

4

5

Im
2ı− 1

ı− 2
=

1

2ı

(
2ı− 1

ı− 2
− −2ı− 1

−ı− 2

)
= −3

5
.

Also, we get for the absolute value, |(1+2i)3| = 5
√
5, for the real part, Re [(1+2ı)3] =

−11, and for the imaginary part, Im [(1 + 2ı)3] = −2. Also,
∣∣∣∣

3ı

ı−
√
3

∣∣∣∣ =
3

2
, Re

[
3ı

ı−
√
3

]
=

3

4
, Im

[
3ı

ı−
√
3

]
= −3

4

√
3 .
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1.4.4.2 Ex: Complex numbers

Let z = a+ ıb be a complex number. Calculate the real part and the imaginary part
of the following expressions: sin z, z2 − z̄2, z+ız̄−ı .

Solution: a.

sin z =
1

2ı
(eız − e−ız) = 1

2ı

(
eı(a+ıb) − e−ı(a+ıb)

)
=

1

2ı

(
eıae−b − e−ıaeb

)

=
1

2ı

(
[cos a+ ı sin a] e−b − [cos a− ı sin a] eb

)

=
1

2
sin a(eb + e−b) +

ı

2
cos a(eb − e−b) = sin a cosh b+ ı cos a sinh b

b.

z2 − z̄2 = (a+ ıb)2 − (a− ıb)2 = a2 + 2ıab− b2 − (a2 − 2ıab− b2) = 4ıab

c.

z + ı

z̄ − ı =
a+ ı(b+ 1)

a− ı(b+ 1)
=
a+ ı(b+ 1)

a− ı(b+ 1)

a+ ı(b+ 1)

a+ ı(b+ 1)
=
a2 − (b+ 1)2

a2 + (b+ 1)2
+ ı

2a(b+ 1)

a2 + (b+ 1)2

1.4.4.3 Ex: Complex numbers

Solves the following equation by z ∈ C:

−z̄ = 1− z
ı− 1

+ ln(43) · sin
(

π

ı+ 1
+

π

ı− 1

)
− e−ı

5
4π√
2

.

Solution: Complex equation

−z̄ = 1− z
ı− 1

+ ln(43) · sin
(

π

ı+ 1
+

π

ı− 1

)

︸ ︷︷ ︸
= 2πı

−2

−e
−ı 54π√
2

⇔ −z̄ = 1− z
ı− 1

+ 0− ı

ı− 1

⇔ −z̄(ı− 1) = 1− z − ı
⇒ −(a− ıb)(ı− 1) = 1− (a+ ıb)− ı
⇔ −aı− b+ a− ıb = 1− a− ıb− ı
⇔ −aı− b+ 2a = 1− ı

⇒
(−b+ 2a

−a

)
=

(
1

−1

)

⇒ a = 1, b = 1⇒ z = ı+ 1 .
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1.4.4.4 Ex: Complex numbers

Be z1 = 4 + 7ı, z2 = 3− 9ı. Calculate

a. z1 + z2 e z1 − z2
b. z1 · z2
c. z21 e z32

d. |z1| e |z2|
e. z1/z2 .

Now be z = x+ ıy. Calculate the real and imaginary part of the expression,

z

1 + 2z
.

Finally, we consider two complex numbers z1 and z2. Show that (z1z2)
∗ = z∗1z

∗
2 ,

where z∗ is the conjugate complex number of z.

Solution:

1.4.4.5 Ex: Complex numbers

Be

z1 = 1− ı
√
3 , z2 =

1

2
√
2
+ ı

√
2

4
, z3 = −ı ,

a. Represent z1,2,3 in a polar form z1,2,3 = r1,2,3e
ıϕ1,2,3 .

b. Are the angles ϕ1,2,3 determined unambiguous? What values are possible?
c. Now, calculate, √

z1 , 3
√
z2 , 4

√
z3 .

Show how the different possible values of ϕ lead to an ambiguity of the roots.

Solution:

1.5 Differential equations

1.5.1 First order differential equations

The solution is usually an exponential function.

1.5.2 Second order differential equations

Oscillations are processes described by second-order differential equations. We now
consider the second-order linear differential equation with constant coefficients:

z′′(x) + αz′(x) + βz(x) = f(x) , (1.11)
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where z, f : R → C, com α, β ∈ C.
The homogeneous equation f ≡ 0 is always solved by a linear combination of two

solutions of the form z1,2(x) = eλ1,2x or z1(x) = eλ1x, z2(x) = xeλ1x. To show this,
we consider two solutions z1 and z2 of the homogeneous differential equation, i.e. for
f = 0, then z′′1,2(x) + αz′1,2(x) + βz1,2(x) = 0. Now we insert the linear combination
Az1 +Bz2 into the differential equation:

(Az1 +Bz2)
′′ + α(Az1 +Bz2)

′ + β(Az1 +Bz2) = 0 . (1.12)

Arranging,
(Az′′1 + αAz′1 + βAz1) + (Bz′′2 + αBz′2 + βBz2) = 0 . (1.13)

The two parentheses must disappear separately. By inserting the ansatz eλx into the
homogeneous differential equation, we get,

(eλx)′′ + α(eλx)′ + β(eλx) = 0

λ2eλx
′′
+ λαeλx + βeλx = 0

λ2 + λα+ β = 0 .

The characteristic polynomial has two solutions,

λ1,2 = −α
2
±
√
α2

4
− β .

Depending on the values of the coefficients α and β the root can be real, zero, or
imaginary. For real λ1,2, the solutions eλx describe an exponential increase or a
decay. For zero roots we obtain the aperiodic limit case. For imaginary λ1,2 we get a
vibration.

The inhomogeneous equation, f ̸= 0, can always be solved by the solutions men-
tioned above plus a particular solution zf (x).

1.5.3 Exercises

1.5.3.1 Ex: Exponential law

The value of a coin is divided by two each day. Derive the exponential law allowing
to predict the value of the currency at any future date.

Solution: The value of the currency decreases regularly, which means,

dV = −αdtV (t) .

This gives,
dV

V
= −αdt ,

or
V = V0e

−αdt ,

with α = 2d−1 and ∆t = 1d.
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1.5.3.2 Ex: First order differential equation

A differential equation of order n is usually an equation between the first n deriva-
tives from a function, the function itself, and its independent variables with the form

F (x, y(x), y′(x), ..., y(n)(x)) = 0. The initial conditions (y(n−1)(x0) = y
(n−1)
0 , ..., y(x0) =

y0) must be specified to obtain an unambiguous solution. A particular case are first-
order equations of the form y′(x) + f(x)g(y(x)) = 0 with y(x0) = y0.
a. Show that the general solution of this equation is given by

∫ y
y0

dỹ
g(ỹ) = −

∫ x
x0
f(x̃)dx̃.

b. Solve the following equations:

y′(x) + cos 2y cosx = 0 with y(0) = π/4

log y′(x)x+ y + x2 = 0 with y(∞) = 0 .

Does each initial condition make sense?
c. Show that homogeneous linear first-order differential equations y′(x)+f(x)y(x) = 0
(with y(x0) = y0) belong to the class specified above. Find the general solution.(
y(x) = y0e

−
∫ x
x0
f(x)dx

)
.

Solution: a. Rephrasing the equation y′(x) + f(x)g(y(x)) = 0

y′

g(y)
= −f(x)

∫ y

y0

dỹ

g(ỹ)
= −

∫ x

x0

f(x̃)dx̃ .

b. Rephrasing the equation y′ + cos2 y cosx = 0

y′

cos2 y
= − cosx

∫ y

y0

dy

cos2 y
= −

∫ x

x0

cosxdx

∫ y

y0

dy

cos2 y
= − sinx+ sinx0 .

Rephrasing the equation ln y′

x + y + x2 = 0

y′

x
= e−y−x

2

∫ y

y0

ỹeỹdỹ =

∫ x

x0

x̃e−x̃
2

dx̃

yey|yy0 −
∫ y

y0

eydy =
1

2

∫ x2

x2
0

e−ξdξ

(1− y)ey = (1− y0)ey0 +
1

2
(e−x

2 − e−x2
0) .

Inserting the initial conditions y(∞) = 0,

y0 = −1

2
e−x

2
0−y0 − e−y0 + 1 ,
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gives the solution,

(1− y)ey = 1 +
1

2
e−x

2

.

The right side is always positive. Therefore, only initial conditions y > 0 are relevant.
c.

y′(x) + f(x)y(x) = 0
∫
dy(x)

y(x)
= −

∫
f(x)dx

y = y0e
−
∫
f(x)dx .

1.5.3.3 Ex: Bernoulli’s differential equation

Consider the equation,
y′ = ay + byα ,

with a, b ∈ R, α ̸= 0, 1 and the initial conditions x0 = 0 and y0 =
(
1−b
a

)1/(1−α)
. Find

the solution y(x).
Help: Transform the nonlinear differential equation into a first order linear differen-
tial equation by the substitution y = z1/(1−α).

Solution: With the given substitution we obtain,

1

1− αz
α/(1−α)z′ = az1/(1−α) + bzα/(1−α) .

With that follows,

z′

1− α = az + b ⇒ z′ = (az + b)(1− α) .

Separation of variables,

dz

az + b
= (1− α)dx ⇒

∫ z

z0

dz̃

az̃ + b
= (1− α)

∫ x

x0

dx̃

⇒ 1

a
ln(az̃ + b)

∣∣∣∣
z

z0

= (1− α)(x− x0)

⇒ ln(az + b) = ln(az0 + b) + a(1− α)(x− x0) .
Inserting the initial conditions,

ln(az + b) = a(1− α)x⇒ z(x) =
1

a

[
ea(1−α)x − b

]
.

Finally,

y(x) =

{
1

a

[
ea(1−α)x − b

]}1/(1−α)
.
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1.5.3.4 Ex: Ellipse

An ellipse is the set of all points C satisfying the condition AC + BC = 2a, where
the two focal points A and B are at a given distance 2e.
a. Show that this definition is equivalent to the ellipse equation of the form,

x2

a2
+
y2

b2
= 1 ,

where a and b are the large and small half-axes. How does e depend on a de b?
b. Show that the ellipse equation is given in plane polar coordinates by,

b

a

y

x
eA

B

C

�
�

br =0
r

Figure 1.6: Ellipse.

r =
P

1− ϵ cosϕ .

Determine the eccentricity ϵ and the parameter P as a function of a and b.

Solution: a. We have the conditions AC + BC = 2a, AB = 2e and AC = r.
By the Pythagorean theorem we have therefore,

y2 = AC
2 −

(
1
2AB + x

)2
= BC

2 −
(
1
2AB − x

)2
, (1.14)

resp.

y2 = r2 − (e+ x)2 = (2a− r)2 − (e− x)2 . (1.15)

Solving the second equation (1.15) by r we obtain,

r = a+ e
x

a
. (1.16)

Substituting into the first equation (1.15) we obtain,

y2 =
(
a+ e

x

a

)2
− (e+ x)2 (1.17)

= a2 − e2 − x2 + e2
x2

a2
.

For x = 0 holds y = b, hence,

e2 = a2 − b2 . (1.18)
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Inserting in Eq. (1.17) we finally get the ellipse equation,

x2

a2
+
y2

b2
= 1 . (1.19)

b. According to the drawing,

r sinϕ = y (1.20)

r cosϕ = x+ e .

Inserting into the ellipse equation (1.19) yields,

(r cosϕ− e)2
a2

+
r2 sin2 ϕ

b2
= 1 (1.21)

b2r2 cos2 ϕ− b22er cosϕ+ b2e2 + a2r2 sin2 ϕ = a2b2

a2r2 − 2b2er cosϕ− e2r2 cos2 ϕ = b4 .

Introducing the parameter P ≡ b2/a and the eccentricity ϵ ≡
√
a2 − b2/a,

r2 = P 2 + 2Pεr cosϕ+ ε2r2 cos2 ϕ = (P + εr cosϕ)2 . (1.22)

Finally,

r =
P

1− ε cosϕ . (1.23)

1.5.3.5 Ex: Binomial- and Poisson distribution

Show that from the binomial distribution,

P (n) =
N !

n! (N − n)! p
n (1− p)N−n .

follows the Poisson distribution,

P (n) =
αn

n!
e−α with α ≡ n̄ ≡ N p ,

in the limit p≪ 1 and n≪ N . Use the approximation formulas log (1− p) ≃ −p and
N !

(N−n)! ≃ Nn. Can you justify the approximation formulas?

Solution: The first approximation formula follows the Taylor expansion, the sec-
ond follows from,

N !

(N − n)! ≡
n−1∏

j=0

(N − j) ≃n≪N
n−1∏

j=0

N ≡ Nn .

Hence, (1 − p)N−n = exp (log(1− p)N−n) = exp (N − n) log (1− p) ≃ exp (−N p) =
exp (−α). For this, N !

(N−n)! p
n ≃ Nn pn = αn.
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1.5.3.6 Ex: Second order differential equations

Find the general solutions z(x) of the following equations:
a. 7z′′ − 2ı

√
3z′ − 3z = 6

b. z′′ − 10z′ + 9z = 9x .

Solution: a. Inserting the ansatz z(x) = eλx in the homogeneous differential equa-
tion, 7z′′ − 2ı

√
3z′ − 3z = 0, we obtain,

7λ2eλx − 2ı
√
3λeλx − 3eλx = 0

7λ2 − 2ı
√
3λ− 3 = 0 ,

and therefore the characteristic polynomial,

λ1,2 =
ı
√
3

7
±
√
−3
49

+
3

7
.

It is appropriate to search as a particular inhomogeneous solution zinh(x) of the dif-
ferential equation 7z′′− 2ı

√
3z′− 3z = 6 a function whose first and second derivatives

disappear (z′′ = 0 = z′), that is, a solution of the equation,

−3zinh = 6 .

We can easily see that

z(x) = zhmg(x) + zinh(x) = Aeλ1x +Beλ2x − 2

solves the inhomogeneous equation.
b. Inserting the ansatz z(x) = eλx in the homogeneous differential equation, z′′ −
10z′ + 9z = 0, we obtain,

λ2eλx − 10λeλx + 9eλx = 0

λ2 − 10λ+ 9 = 0 .

and therefore the characteristic polynomial,

λ1,2 = 5±
√
25− 9 = 1ou 9 .

As a particular inhomogeneous solution of the differential equation z′′−10z′+9z = 9x
we insert a first order polynomial, whose second derivative disappears, zinh(x) ≡ x+a.
Inserting in the differential equation,

z′′inh − 10z′inh + 9zinh = 9x

−10 + 9(x+ a) = 9x

a =
10

9
.

We can easily see that,

z(x) = zhmg(x) + zinh(x) = Aex +Be9x + x+
10

9

solves the inhomogeneous equation.
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1.5.3.7 Ex: Second order differential equations

Given is a second order linear differential equation with constant coefficients: z′′(x)+
αz′(x) + βz(x) = f(x), where z, f : R→ C, α, β ∈ C. Show that
a. for the case f(x) = γxn an ansatz zf (x) =

∑n
k=0 akx

k solves the inhomogeneous
equation, where γ, ak ∈ C;
b. for the case, that f(x) can be expanded in a Taylor series around the point x0, the
ansatz zf (x) =

∑∞
k=0 ak(x−x0)k, γ, ak ∈ C, solves the inhomogeneous equation. Use

linearity and the result of (a).
c. for the case f(x) = γxneδx an ansatz zf (x) = eδx

∑n
k=0 akx

k solves the inhomoge-
neous equation, where γ , δ , ak ∈ C.

Solution: a. Inserting the ansatz in the differential equation we obtain,

n∑

k=2

akk(k − 1)xk−2 + α

n∑

k=1

akkx
k−1 + β

n∑

k=0

akx
k = γxn .

The terms proportional to xk must disappear separately, such that the coefficients can
be determined iteratively,

βan = γ

βan−1 = −nαan
βak = −(k + 1)αak+1 − (k + 2)(k + 1)ak+2 ,

for k = n− 2, .., 0.
b. For each term of the Taylor expansion ∝ xn we can find a solution as done in item
(a). Using the linearity it is clear that for the expansion we have as a solution the
linear combination of these partial solutions.
c.

1.5.3.8 Ex: Population explosion

Develop a model for population explosion.

Solution: Discretize,

a60k = a40k−1 − a60k−1
a40k = a20k−1 − a40k−1
a20k = a0k−1 − a20k−1
a0k = ηa20k .

Total population,

∑

j

ajk = ηa20k + a0k−1 − a20k−1 + a20k−1 − a40k−1 + a40k−1 − a60k−1

= ηa20k + a0k−1 − a60k−1 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_.pdf


32 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL TOOLS

Solve numerically



a0k
a20k
a40k
a60k


 =




η 0 0 0

1 −1 0 0

0 1 −1 0

0 0 1 −1







a0k−1
a20k−1
a40k−1
a60k−1


 .

1.5.3.9 Ex: Population explosion

Develop a model for the Wuhan virus pandemia.

Solution:

1.6 Vector analysis

1.6.1 Vector algebra

Let us start with a little revision of vector algebra. A vector is a physical quantity
composed of a value, a direction and a unit. For example, v could be the velocity of a
body measured in meters per second traveling in northbound direction. Mathemati-
cally, vectors form a vector space, that is, an algebraic construct characterized by the
existence of several operations defined by the following laws.

The addition of vectors is a commutative and associative operation, that is,

a+ b = b+ a and (a+ b) + c = a+ (b+ c) . (1.24)

The multiplication with a scalar is commutative and distributive,

λa = aλ and λ(a+ b) = λa+ λb . (1.25)

The scalar product of two vectors defined by,

a · b ≡ ab cos θ , (1.26)

where θ is the angle between the two vectors, is commutative and distributive, but
not associative,

a · b = b · a and a · (b+ c) = a · b+ a · c and (a · b)b ̸= a(b · c) . (1.27)
Finally, the vector product defined by,

a× b ≡ abên sin θ , (1.28)

where θ is the angle between the two vectors and ên a unit vector pointing in the
direction perpendicular to a and b, is distributive, but neither commutative nor as-
sociative,

a× b = −b× a ̸= b× a and a× (b+ c) = a× b+ a× c (1.29)

and (a× b)× c ̸= a× (b× c) .
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Once we have chosen a basis, that is, a set of three linearly independent vectors,
we can also express the vectors in terms of their components in this basis. The most
common basis is the Cartesian coordinate system characterized by three fixed and
orthogonal vectors, êx, êy, and êz, such that each vector can be decomposed as,

a = axêx + ayêy + azêz . (1.30)

In this representation the operations on the vector space defined above read,

a+ b = (ax + bx)êx + (ay + by)êy + (az + bz)êz (1.31)

λa = λaxêx + λayêy + λazêz

a · b = axbx + ayby + azbz

a× b =



aybz − azby
azbx − axbz
axby − aybz


 .

Combinations of scalar and vector products can be used to calculate other geo-
metric quantities. An example is the scalar triple product defined by a · (b × c) and
satisfying the following permutation rules,

a · (b× c) = c · (a× b) = −c · (b× a) = (a× b) · c . (1.32)

Its absolute value |a · (b × c)| has the meaning of the volume of the parallelepiped
spanned by the three vectors. The vector triple product defined by a× (b× c) can be
simplified,

a× (b× c) = b(a · c)− c(a · b) . (1.33)

We verify the commutativity and the distributivity of the scalar and vector triple
products in Exc. 1.6.3.1, and we train them more in Excs. 1.6.3.2 to 1.6.3.4.

1.6.2 Transformation of vectors

Of course, the definition of the vector as quantity characterized by a magnitude and a
direction is unequivocal, for example, the speed v of a car on a road. Nevertheless, the
representation of the vector depends on the orientation of the Cartesian coordinate
system, which is totally arbitrary. For example, a vector given by r = xêx+yêr+zêz
in one system will be described by r = x′ê′x + y′ê′y + z′ê′z in another system.

The behavior of vectors under transformations of coordinate systems is a very im-
portant characteristic of physical quantities and of theories governing their dynamics.
For example, while classical mechanics is defined by the Galilei transform, relativistic
mechanics is defined by the Lorentz transform, and we will see later that electrody-
namics is incompatible with the Galilei transform. In Excs. 1.6.3.5 to 1.6.3.12 we
practice the calculus with rotation matrices 7.

There are basically two things that can be done with vectors in space: translations
and rotations. Both will be discussed in the following.

7Note that the procedure is different from the one used in quantum mechanics, where any trans-
formation needs to be described by unitary operations.
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1.6.2.1 Translations

Translations are simply performed by adding a vector to all position vectors,

r′ = Ttrr = r+ a . (1.34)

1.6.2.2 Rotations

If the two systems are simply rotated with respect to each other, we have 8,

r′ =



x′

y′

z′


 = Trtr =



Rxx Rxy Rxz
Ryx Ryy Ryz
Rzx Rzy Rzz





x

y

z


 = Rr , (1.35)

or 9,

r′k =
∑

l

Rklrl . (1.36)

Example 1 (Rotation about the z-axis): For example, for a rotation around
the z-axis by an angle of ϕ we get,x′y′

z′

 =

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


xy
z

 .

Rotation matrices R must satisfy the following requirements:

• The transformation preserves the lengths and orientations of vectors and the
angles between vectors. That is, the scalar product satisfies Rr2 · Rr2 = r1 · r2.

• The transformation is orthogonal, R−1 = R†, and unitary, detR = 1.

1.6.3 Exercises

1.6.3.1 Ex: Vector algebra

a. Show that scalar and vector products are distributive.
b. Find out whether the vector product is associative.

Solution: a. Distributivity of the scalar product,

a · (b+ c) = ... = a · b+ a · c

Distributivity of the vector product,

a× (b+ c) = ... = a× b+ a× c

8By T we denote operations or prescriptions, while R is a rotation matrix.
9We note here that a tensor of two dimensions transforms like,

T ′kl =
∑
l,k

RkmRlnTmn .
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b. Associativity of the vector product,

a× (b× c) = ... = (a× b)× c .

1.6.3.2 Ex: Vector algebra

a. Consider a unit cube with one corner fixed at the origin and generated by the
vectors, a = (1, 0, 0), b = (0, 1, 0) and c = (0, 0, 1). Determine the angle between the
diagonals passing through the center of the cube.
b. Consider the plane containing the points a, b, and c giving in (a). Use the vector
product to calculate the normal vector of this plane.

Solution: a. We choose the diagonals d1 = (1, 1, 1) − (0, 0, 0) and d2 = (1, 0, 0) −
(0, 1, 1) and we get the scalar product,

d1 · d2 = −1 = d1d2 cos θ .

With d1 = d2 =
√
3, we find θ = 109.47◦.

b. We choose two vectors of the plane, d1 = a − b and d2 = a − c and we calculate
the vector product,

d1 × d2 = (a− b)× (a− c) =




1

−1
0


×




1

0

−1


 =



1

1

1


 .

1.6.3.3 Ex: Vector algebra

a. Prove the rule a × (b × c) = b(a · c) − c(a · b) writing both sides in component
form.
b. Prove a × (b × c) + b × (c × a) + c × (a × b). Under what conditions holds
a× (b× c) = (a× b)× c?

Solution: a.
b. Obviously when a = c, since,

a× (b× a) = −(b× a)× a = (a× b)× a .

1.6.3.4 Ex: Vector algebra

a. Two vectors point from the origin to points r = (2, 8, 7) and r′ = (4, 6, 8). Deter-
mine the distance between the points.

Solution: The distance is, |r− r′| =
√

(2− 4)2 + (8− 6)2 + (7− 8)2 = 3.
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1.6.3.5 Ex: Rotation of the coordinate system

a. Show that the two-dimensional rotation matrix
(

cosϕ sinϕ

− sinϕ cosϕ

)

preserves the scalar product, that is, a′xb
′
x + a′yb

′
y = axbx + ayby.

b. What are the constraints for the elements Rij of the three-dimensional rotation
matrix to preserve the length of an arbitrary vector under transformation?

Solution: a. We have

a′ · b′ =
(

cos sin

− sin cos

)(
ax
ay

)(
cos sin

− sin cos

)(
bx
by

)

=

(
ax cos+ay sin

−ax sin+ay cos

)(
bx cos+by sin

−bx sin+by cos

)
= ... = axbx + ayby .

b. First we consider a two-dimensional matrix. As the condition,

a′2x + a′2y = (Rxxax +Rxyay)
2 + (Ryxax +Ryyay)

2 = a2x + a2y

needs to be satisfied for all ax and ay, the terms proportional to a2x, a
2
y and axay must

zero separately:

a2x 7−→ R2
xx +R2

yx = 1

a2y 7−→ R2
xy +R2

yy = 1

axay 7−→ RxxRxy +RyxRyy = 0 ,

what is satisfied by Rxx = Ryy = cosϕ and Rxy = −Ryx = sinϕ. In three dimensions,

(Rxxax +Rxyay +Rxzaz)
2 + (Ryxax +Ryyay +Ryzaz)

2 + (Rzxax +Rzyay +Rzzaz)
2

= a2x + a2y + a2z

gives,

a2x 7−→ R2
xx +R2

yx +R2
zx = 1 =

∑

k

Rkx

a2y 7−→ R2
xy +R2

yy +R2
zy = 1 =

∑

k

Rky

a2z 7−→ R2
xz +R2

yz +R2
zz = 1 =

∑

k

Rkz

axay 7−→ RxxRxy +RyxRyy +RzxRzy = 0 =
∑

k

RkxRky

axaz 7−→ RxxRxz +RyxRyz +RzxRzz = 0 =
∑

k

RkxRkz

ayaz 7−→ RxyRxz +RyyRyz +RzyRzz = 0 =
∑

k

RkyRkz .
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1.6.3.6 Ex: Rotation of the coordinate system

Find the matrix describing a rotation of 120◦ around the axis ω⃗ = (1, 1, 1).

Solution: Two procedures are possible. The first is to satisfy the conditions for
R to be a rotation matrix, as shown in Exc. 1.6.3.5, and impose the additional con-
ditions that ω = (1, 1, 1) stays still and that any vector orthogonal to ω, for exemple,
a = (1,−1, 0) makes a rotation of 120◦,



Rxx Rxy Rxz
Ryx Ryy Ryz
Rzx Rzy Rzz





1

1

1


 =



Rxx +Rxy +Rxz
Ryx +Ryy +Ryz
Rzx +Rzy +Rzz


 =



1

1

1


 .

The second procedure is to rotate the axis ω = (1, 1, 1) towards êz using rotations
around the êz and then êy-axes, to apply the desired rotation of 120◦, and finally
come back. With MAPLE it is easy to verify that the matrix,

M =




cos(−ϕ) sin(−ϕ) 0

− sin(−ϕ) cos(−ϕ) 0

0 0 1






cos(−α) 0 sin(−α)

0 1 0

− sin(−α) 0 cos(−α)






cos β sin β 0

− sin β cos β 0

0 1






cosα 0 sinα

0 1 0

− sinα 0 cosα






cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1




with ϕ = π
4 and α = arctan 1√

2
meets the requirement,



1

1

1


 =M



1

1

1


 .

Calculating the sinus and cosinus of the angles, including the angle β = 2π
3 ,

cosϕ = cos π4 =
√

1
2 = sinϕ

cosα = cos arctan
√

1
2 = cos arcsin

√
1
3 =

√
1
3 , sinα =

√
2
3

cosβ = cos 2π
3 = − 1

2 , sinβ =
√
3
2 .

With these angles we find the rotation matrix about an axis ω,

M =

 1
3
+ 2

3
cosβ 1

3
+ 1

3

√
3 sinβ − 1

3
cosβ 1

3
− 1

3

√
3 sinβ − 1

3
cosβ

1
3
− 1

3

√
3 sinβ − 1

3
cosβ 1

3
+ 2

3
cosβ 1

3
+ 1

3

√
3 sinβ − 1

3
cosβ

1
3
+ 1

3

√
3 sinβ − 1

3
cosβ 1

3
− 1

3

√
3 sinβ − 1

3
cosβ 1

3
+ 2

3
cosβ

 =

0 1 0

0 0 1

1 0 0

 .

A third procedure is to define a coordinate system with z as the axis of rotation, for
example,

a = 1
2 (1,−1, 0) , b = 1

6 (1, 1,−2) , ω = 1
3 (1, 1, 1) ,

checking that a×b = ω⃗. The transformation matrix between these coordinate systems
is,

Rt =



êx · a êx · b êx · ω⃗
êy · a êy · b êy · ω⃗
êz · a êz · b êz · ω⃗


 .

Now just concatenate these arrays.
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1.6.3.7 Ex: Rotation of the coordinate system

Consider the transformation that corresponds to an inversion of the components of
the vector r −→ −r and find out, how the vector product and the triple scalar product
transform under inversion.

Solution: The vector product transform as,

(−r1)× (−r2) = r1 × r2 .

That is, the resulting vector is not inverted. Therefore, it is also called pseudo-vector.
Examples are torque r × P and the Lorentz force ev × B. The triple scalar product
becomes,

(−r1) · [(−r2)× (−r3)] = −r1 · (r2 × r3) .

That is, the resulting scalar is inverted. This is why it is also called pseudo-scalar.

1.6.3.8 Ex: Rotation matrices

Show that the scalar product a · b and the angle α between the two vectors are pre-
served when we rotate the two vectors by an angle θ around any axis.

Solution: Treating the two vectors as matrices, a = A and b = B, we write the scalar
product as, a · b = A†B. Now, since the rotation matrix must satisfy, R† = R−1,

A† ·B = A†R†RB = (RA)†RB .

Alternative solution: We chose the orthonormal base in such a way that an arbi-
trary rotation be described as a rotation around the axis. z:

R =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 .

Thereby,

Ra · Rb =






cos θ sin θ 0

− sin θ cos θ 0

0 0 1





a1
a2
a3





t


cos θ sin θ 0

− sin θ cos θ 0

0 0 1





b1
b2
b3




= (a1 cos θ + a2 sin θ)(b1 cos θ + b2 sin θ)

+ (−a1 sin θ + a2 cos θ)(−b1 sin θ + b2 cos θ) + a3b3

= a1b1 + a2b2 + a3b3 = a · b .

The absolute value is,

|Ra| =

∥∥∥∥∥∥




cos θ sin θ 0

− sin θ cos θ 0

0 0 1





a1
a2
a3



∥∥∥∥∥∥

=
√
|a1 cos θ + a2 sin θ|2 + | − a1 sin θ + a2 cos θ|2 + |a3|2 =

√
(a22 + a21 + a23) = |a| .
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The angle should be maintained as,

|Ra|2 cosα = Ra · Ra = a · a = |a|2 cosα .

1.6.3.9 Ex: Rotation matrices

Consider the matrix,

R =
1

2



√
2
√
2 0

−1 1
√
2

1 −1
√
2


 .

a. Show that R is a rotation matrix.
b. Determine the axis of rotation.
Help: The rotation axis a stays invariant under rotation: Ra = a. Use this condi-
tion.
c. Determine the rotation angle.
Help: Consider for this a vector that is perpendicular to a.

Solution: a. Rotation matrices are unitary operations maintaining orientation, i.e.,
detR = +1 and RTR = 1,

detR =
1

23
det



√
2
√
2 0

−1 1
√
2

1 −1
√
2


 = 1

RTR =
1

22



√
2 −1 1√
2 1 −1
0
√
2
√
2





√
2
√
2 0

−1 1
√
2

1 −1
√
2


 = 1 .

b. We have,

Ra =
1

2



√
2
√
2 0

−1 1
√
2

1 −1
√
2





x

y

z


 =




1
2

√
2x+ 1

2

√
2y

− 1
2x+ 1

2y +
1
2

√
2z

1
2x− 1

2y +
1
2

√
2z


 =



x

y

z


 = a .

The resolution of the system of linear equations gives y = (
√
2− 1)x and z = x. The

axis of rotation, i.e. the eigenvector of the rotation is a = 1√
5−2
√
2




1√
2− 1

1


.

c. We choose a test vector b perpendicular to a. E.g. b =




2

0

−2


. The rotation R
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applied to b gives, c = Rb




√
2

−1−
√
2

1−
√
2


,

|c| = |b| =
√
8

bc = 4
√
2− 2 = |b||c| cosα = 8 cosα .

with that, follow, cosα = 1√
2
− 1

4 ≃ 0.4571. Therefore, the rotation angle is α ≃ 62.8◦.

1.6.3.10 Ex: Rotation matrices

A rotation by an angle ϕ around the z-axis is described by the rotation matrix Rz(ϕ)
with,

Rz(ϕ) =




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 .

a. Show by an explicit calculation that inverse matrix satisfies, R−1z (ϕ) = Rz(−ϕ) =
Rtz(ϕ).
b. Show, Rz(ϕ1)Rz(ϕ2) = Rz(ϕ1 + ϕ2) = Rz(ϕ2)Rz(ϕ1).
c. Show, [Rz(ϕ1)Rz(ϕ2)]t = Rtz(ϕ2)Rtz(ϕ1).

Solution: a. Rotation matrices are unitary. Therefore, the inverse matrix is equal
to the transposed matrix. The transposed matrix is easily obtained by inversion of the
sign of the angle ϕ.
b. This can be done with MAPLE. We find that,

Rz(ϕ1)Rz(ϕ2) =




cosϕ1 sinϕ1 0

− sinϕ1 cosϕ1 0

0 0 1






cosϕ2 sinϕ2 0

− sinϕ2 cosϕ2 0

0 0 1




=




cosϕ1 cosϕ2 − sinϕ1 sinϕ2 cosϕ1 sinϕ2 + sinϕ1 cosϕ2 0

− sinϕ1 cosϕ2 − cosϕ1 sinϕ2 cosϕ1 cosϕ2 − sinϕ1 sinϕ2 0

0 0 1




=




cos(ϕ1 + ϕ2) sin(ϕ1 + ϕ2) 0

− sin(ϕ1 + ϕ2) cos(ϕ1 + ϕ2) 0

0 0 1


 = Rz(ϕ1 + ϕ2) = Rz(ϕ2)Rz(ϕ1) .

1.6.3.11 Ex: Rotation matrices

a. Be given the basis (êx, êy, êz) in Cartesian coordinates. Determine the transfor-
mation matrices for cylindrical basis (êρ, êφ, êz) and the spherical basis (êr, êθ, êφ)
and their inverse matrices.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_AlgebraVetorial10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_AlgebraVetorial11.pdf


1.6. VECTOR ANALYSIS 41

b. For both cases transform the force fields,

F1 = −κ



x

y

z


 F2 = γ



y

−x
0


 F3 = δ




− xz√
x2+y2

− y z√
x2+y2√

x2 + y2


 .

c. Show generally that for rotation matrices, the vectors that correspond to the
columns of the matrices are mutually orthogonal. The same holds for rows of the
matrices. Use the relationship, AtA = AAt = 1.

Solution: a. The matrices consisting of the basis vectors are in Cartesian coordi-
nates,

Rka =
(
êx, êy, êz

)
=



1 0 0

0 1 0

0 0 1


 ,

in cylindrical coordinates,

rzy =
(
êρ, êϕ, êz

)

=
(
êx cosϕ+ êy sinϕ, −êx sinϕ+ êy cosϕ, êz

)
=



cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 ,

and in spherical coordinates,

Rku =
(
êr, êθ, êϕ

)

=



êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ

êx cos θ cosϕ+ êy cos θ sinϕ− êz sin θ

−êx sin θ + êy cos θ



T

=



sin θ cosϕ cos θ cosϕ − sin θ

sin θ sinϕ cos θ sinϕ cos θ

cos θ − sin θ 0




they are precisely the transformation matrices. Inverse transformations simply follow
as transpositions of unitary matrices, R−1 = RT .
b. Transforming force fields is easy with MAPLE.
c. The condition for a rotation matrix is,

1 = RTR =



a b c

d f g

h k l



T 

a b c

d f g

h k l


 =



a2 + d2 + h2 ab+ df + hk ac+ dg + hl

ab+ df + hk b2 + f2 + k2 bc+ fg + kl

ac+ dg + hl bc+ fg + kl c2 + g2 + l2


 .

That is, equivalent to the requirement, that the column vectors are mutually orthogo-
nal, 


a

d

h





b

f

k


 =



a

d

h





c

g

l


 =



b

f

k





c

g

l


 = 0 .
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1.6.3.12 Ex: Rotation of the coordinate system

Here, we want to rotate a rod around several axes and determine, whether its final
orientation depends on the rotation path. We know that the matrix

Rz(α) =




cosα sinα 0

− sinα cosα 0

0 0 1




describes the transformation of a vector under rotation of the coordinate system by
an angle α around the axis z.
a. Show that corresponding rotations around the x-axis, respectively, the y-axis are
given by,

Rx(α) =



1 0 0

0 cosα sinα

0 − sinα cosα


 , Ry(α) =



cosα 0 − sinα

0 1 0

sinα 0 cosα


 .

b. Show that a rotation of the coordinate system around the y-axis by an angle
α = π/2 leads to the same result as a rotation around the z-axis by the angle π/2
followed by a rotation around x by the angle π/2 followed by a rotation around z by
the angle 3π/2.

Solution: a. All rotation matrices are unitary, detR(α) = 1, R−1(α) = Rt(α).
The matrix Rx(α) leaves the x-component of the vector unchanged, the matrix Ry(α)
leaves the y-component unchanged,

Rx(α) =



1 0 0

0 cosα sinα

0 − sinα cosα





a

b

c


 =




a

b cosα+ c sinα

−b sinα+ c cosα




Ry(α) =



cosα 0 − sinα

0 1 0

sinα 0 cosα





a

b

c


 =



a cosα− c sinα

b

a sinα+ c cosα


 .

b. We have,

Rz(3π/2)Rx(π/2)Rz(π/2) =



0 −1 0

1 0 0

0 0 1





1 0 0

0 0 1

0 −1 0






0 1 0

−1 0 0

0 0 1




=



0 0 −1
0 1 0

1 0 0


 = Ry(π/2) .

1.7 Further reading

H.M. Nussenzveig, Edgar Blucher (2013), Curso de F́ısica Básica: Mecânica - vol 1
[961]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Fundaments_AlgebraVetorial14.pdf
http://isbnsearch.org/isbn/978-8-521-20801-1
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C.F. von Weizsäcker, München (1971), Einheit der Natur [1345]ISBN

C.F. von Weizsäcker, München (2006), Aufbau der Physik [1346]ISBN

http://isbnsearch.org/isbn/978-3-00-062340-0
http://isbnsearch.org/isbn/978-1-4020-5234-7
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Chapter 2

Dynamics of point masses

2.1 Motion of point masses

2.1.1 One-dimensional motion

Among the various movements that we will study, the one-dimensional motion is the
simplest, because all vector quantities that describe the motion are parallel. Since
the motion occurs in only one dimension, only one coordinate is required to specify
the position of a body at each instant of time 1.

2.1.1.1 Velocity

The rate of change of the spatial coordinates of a body is called velocity. It can
be characterized by specifying the body’s position in a time table, as shown below
(stroboscopic measurement) or by a graph, as shown in Fig. 2.1.

t [s] x [m] v [m/s]

0 0 -

1 0.4 0.4

2 0.6 0.1

3 0.7 0.06

4 0.8 0.07

The velocity averaged over a time interval [t1, t2],

v̄ =
x(t2)− x(t1)

t2 − t1
, (2.1)

is the angular coefficient of the slope connecting the points (x(t1), t1) and (x(t2), t2)
of the curve (see Fig. 2.1).

A motion is called uniform when the velocity is constant,

x(t) = x0 + v(t− t0) . (2.2)

For non-uniform (e.g. accelerated) motion the instantaneous velocity is calculated via,

v(t) = lim
∆t→0

x(t+∆t)− x(t)
∆t

≡ dx(t)

dt
≡ ẋ(t) . (2.3)

1See [Cap. 2, Moyses] [Cap. 2, Zilio & Bagnato].

45
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For example, the function y(t) = −10m/s2 ·t2 + 5m/s ·t + 2m parametrizes a
trajectory taken by a uniform motion 2.

0 5

t (s)

0

0.2

0.4

0.6

0.8

x
(m

)

(a)

0 5

t (s)

-0.1

0

0.1

0.2

0.3

0.4

v
(m

/s
)

(b)

0 5

t (s)

-0.2

-0.1

0

0.1

0.2

a
(m

/
s2
)

(c)

Figure 2.1: Graphical representation of the motion specified in the table. (a) Instantaneous
position, (b) velocity, and (c) acceleration.

Inverse problem: Draw a graph t 7→ v and measure the area underneath:

x(t2)− x(t1) =
∫ t2

t1

v(t)dt . (2.4)

2.1.1.2 Acceleration

The rate of change of the instantaneous velocity of a body is called acceleration.
Analogous to the velocity it can be characterized by specifying the body’s velocity in
a time table or a graph.

Acceleration can be progressive or backward, leading to deceleration. The instan-
taneous acceleration is calculated via,

a(t) = lim
∆t→0

v(t+∆t)− v(t)
∆t

≡ dv(t)

dt
≡ v̇(t) . (2.5)

Inverse problem: Draw a graph t 7→ a and measure the area underneath:

v(t2)− v(t1) =
∫ t2

t1

a(t)dt , (2.6)

yielding 3,

x(t) = x(t0) +

∫ t

t0

v(t′)dt′ = x(t0) +

∫ t

t0

[
v(t0) +

∫ t′

t0

a(t′′)dt′′
]
dt′ (2.7)

= x(t0) + v(t0)(t− t0) +
∫ t

t0

∫ t′

t0

a(t′′)dt′′dt′ . (2.8)

One-dimensional motion will be studied in Excs. 2.1.4.1 to 2.1.4.11.
2Why do we have to write the units?
3Galileo.
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2.1.2 Motion in two and three dimensions

2.1.2.1 Description in terms of coordinates

Under normal circumstances, space is three-dimensional, and so is the motion of a
body through it. Hence, we need three coordinates to specify the position of a body
at a given time, and knowing the time-dependence of the three coordinates we can
parametrized the body’s motion through space. Luckily, specifying a coordinate sys-
tem we can reduce a bi- or (tri-)dimensional motion into two (three) one-dimensional
motions.

That is to say, the physical quantities position, velocity, and force are vector
quantities consistent, in fact, of three values. In this sense, they are fundamentally
different from scalar quantities, such as time, temperature, or volume 4. Using the
basis,

êx ≡
(
1

0

)
and êy ≡

(
0

1

)
, (2.9)

called Cartesian basis, we write the vector velocity,

v(t) =
dr(t)

dt
= ẋ(t)êx + ẏ(t)êy =

(
vx(t)

vy(t)

)
, (2.10)

and the vector acceleration,

a(t) =
dv(t)

dt
= v̇x(t)êx + v̇y(t)êy =

(
ax(t)

ay(t)

)
. (2.11)

2.1.2.2 Uniformly accelerated movement by gravitation

The differential equations (2.3) or (2.5) are insufficient to determine the trajectory
of a body. We additionally need to specify initial conditions. For a n-dimensional
motion, we need 2n initial conditions.

Example 2 (Motion due to terrestrial gravitation): The acceleration of a
body in the Earth’s gravitational field is,

a(t) = const =
(
0,−g

)
. (2.12)

With arbitrary initial conditions, r(t0) = r0 and v(t0) = v0 we find,

v(t) = v0 + a(t− t0) (2.13)

and,

v(t) = v0 + a(t− t0) and r(t) = r0 + v0(t− t0) + 1
2
a(t− t0)2 . (2.14)

Elimination time in these two equations,

y − y0 =
v0y
v0x

(x− x0) + a

2
(x− x0)2 . (2.15)

4Rules of how to use vectors (length, scalar product, and vector product.
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Example 3 (Motion of a projectile subject to gravity): We identify the
motion as being two-dimensional. Hence, an appropriate choice of the coordinate
system allows us to eliminate one coordinate and to restrict to two coordinates
that we will call êx and ey. We choose the initial conditions as r(t0) = (0, 0)

and v(t0) = v0

(
cos θ

sin θ

)
. The equations of motion are then,

r(t) =

(
v0t cos θ

v0t sin θ − 1
2
gt2

)
. (2.16)

Elimination time in the two equations (2.16),

y = x tan θ − gx2

2v20 cos
2 θ

. (2.17)

We my now use this equation to calculate the maximum height and the maxi-

mum range of the throw.

Figure 2.2: (a) Ballistic trajectory in the field of gravity. (b) Circular motion in Cartesian
and polar coordinates.

Note that two movements x(t) and y(t) can be coupled by other physical effect,
such as via the friction exerted by air.

2.1.2.3 Circular motion and polar coordinates

When we called a movement one, two, or three-dimensional, what we really meant is
the number of scalar differential equations needed to describe it. Strictly speaking,
however, any movement of a point mass is described by a curve in space, which is
a one-dimensional object. Consequently, in the examples 4 and 3 we were able to
replace the two differential equations parametrized in time {x(t), y(t)} by a single one
for y(x) by eliminating time 5.

Sometimes the number of differential equations needed to describe a motion can
be reduced without having to eliminate time by a proper choice of the coordinate
system, which is better adapted to the symmetry of the motion. Until now we only
used Cartesian coordinates (2.9). A nice example for this is the circular motion

5Note that time is automatically reintroduced in the equations once we calculate velocities by
derivating coordinates.
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defined by |r| = r = const. Let us define two new coordinates oriented along the
instantaneous position and the instantaneous velocity of the body,

êr(t) ≡
r(t)

r
and êθ(t) ≡

v(t)

v(t)
. (2.18)

We note that (for a circular motion) the new coordinates, called polar coordinates,
are orthogonal but not fixed in space: they rotate along the circle together with the
body.

The constancy of the radius r2 = x(t)2 + y(t)2, however, implies that we may,
choosing the Cartesian coordinate system such as to satisfy the initial condition x(0) =
r, define two new variables {r, θ(t)} one of which is constant and the other time-
dependent, such that,

r(t) =

(
x(t)

y(t)

)
= r

(
cos θ(t)

sin θ(t)

)
= rêr(t) , (2.19)

for the velocity,

v(t) =
dr(t)

dt
=

(
vx(t)

vy(t)

)
= r

(−θ̇(t) sin θ(t)
θ̇(t) cos θ(t)

)
= θ̇(t)

(−y(t)
x(t)

)
= v(t)êθ(t) , (2.20)

and for the acceleration,

a(t) =
dv(t)

dt
= r

(−θ̈(t) sin θ(t)− θ̇(t)2 cos θ(t)
θ̈(t) cos θ(t)− θ̇(t)2 sin θ(t)

)
= −rθ̇(t)2êr + rθ̈(t)êθ(t) . (2.21)

That is, the acceleration is composed of a tangential and a normal component,

a(t) · êθ(t) = rθ̈(t) and a(t) · êr = −rθ̇(t)2 . (2.22)

The circular motion is called uniform when |v| = v = const. Then, θ̈ = 0 and
θ̇ ≡ ω = const, and the above formulas simplify accordingly. Then θ = θ0 + ω(t− t0)
and, using ω ≡ v/r, we get for the arc traveled by the body,

s(t) = rθ(t) = s0 + v(t− t0) . (2.23)

Motion in one and two dimensions will be studied in Excs. 2.1.4.12 to 2.1.4.12.

2.1.3 Newton’s laws

Newton formulated the following fundamental laws of classical mechanics:

i. Principle of inertia (without forces objects move with uniform velocity)

ii. F = ma

iii. Reaction principle (actio = reaction)

iv. Forces can be added (corollary)
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Their interpretation is that: (i) In the absence of forces linear momentum is con-
served; systems not subject to external forces (called inertial systems) are equivalent,
e.g. there no way to decide an absolute speed from with in a system. (ii) Forces
generate a change of linear momentum leading to an acceleration

∑
k Fk = mv̇.

Newton’s laws have a wide range of applications. Formulated for fixed masses,
they can nevertheless be generalized to variable masses,

F = ṗ = mv̇ + vṁ . (2.24)

2.1.4 Exercises

2.1.4.1 Ex: Overtaking

A car travels at a constant safety distance of 40m behind a truck (length: 25m )

at 80 km/h . To overtake, he accelerates with a = 1.3m/s
2
to v = 100 km/h. How

long is the overtaking time and the path length if the safety distance at the time of
reentering the drive lane is 40m?

Solution: Be x the location of the car and z(t) = 80 km/h ·t the location of the
truck. Before the overtaking manoeuvre, at the time t0,

x(t0)− z(t0) = −40m
ẋ(t0)− ż(t0) = 0 .

From then until the time t1 of reaching the maximum speed x(t) = 100 km/h we have,

ẍ(t)− z̈(t) = 1.3m/s
2

ẋ(t)− ż(t) = 1.3m/s
2 ·(t− t0)

x(t)− z(t) = 1.3m/s
2 · (t− t0)

2

2
− 40m .

The maximum speed is reached after the time

t1 − t0 =
ẋ(t1)− ẋ(t0)

a
= 4.3 s

At this time, the distance from the truck is,

x(t1)− z(t1) = 1.3m/s
2 · (t1 − t0)

2

2
− 40m = −28m .

Now the car is traveling at a constant speed up to the time t2. It must hold,

x(t2)− z(t2) = [ẋ(t1)− ż(t1)] · (t2 − t1)− 28m = 40m+25m .

From this we calculate the time t2 − t1 = 16.7 s, hence, in total,

t2 − t0 = 21 s

The distance covered is the distance covered by the truck plus the acquired lead,

x(t) = 40m+40m+25m+80 km/h ·21 s = 572m .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D01.pdf
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2.1.4.2 Ex: Skater

A roller skater who moves at a constant speed of 10m/s overtakes a jogger. After
5minutes she passes a snack bar, where she takes a break for 2minutes. Then she
drives back at the same speed and meets the jogger after another 3minutes. How fast
does the jogger run?

Solution: First, we calculate the distance traveled by the roller skater to the snack bar:
s = vt = 10m/s×5min. She meets the jogger after 5 + 2+ 3 = 10min, when the jog-
ger has traveled 10m/s×5min−10m/s×3min = 1200m. The jogger therefore needs
10min for 1200m, from this follows for his speed v = s/t = 1200m /600 s = 2m/s.

2.1.4.3 Ex: Thieves

Two bank robbers on the run have to walk s = 10 km to the rescue border, but only
have one bike without luggage rack. They therefore decide to proceed as follows:
Robber A drives 500m ahead, leaves the bike and continues. Robber B goes up to
the bike, sits on, drives past Robber A and continues 500m. Then he in turn leaves
the bike. In this way the robbers take turns up to the border. Assume the robbers
are 6 km/h on foot and 20 km/h on bike.
a. Is this a good idea? Are the robbers really faster? If so, calculate the time saved.
b. How often do they have to change?

Solution: a. Robber B overtakes robber A for the first time after 1 km. This is
clear for reasons of symmetry (time inversion invariance), but can also be calculated
in detail. In order to overcome the 10 km they have to make 10 partial trips.

b. For a partial trip the robbers need the time t = 500m
(

1
vrad

+ 1
vfus

)
= 0.1083 h .

Hence, for the entire route 1.083 h. This is faster than on foot (1.666 h), but slower
than by bike (0.5 h). All in all, these robbers seem to be smart and should rather earn
their living as an mathematician rather than robbing banks.

2.1.4.4 Ex: One-dimensional movement

A large jet plane must reach a speed of 500 km/h in order to take off, and has an
acceleration of 4m/s2. How long does it take for the plane to take off and how far
does it have to run on the runway?

Solution: The speed is given by v = at. Therefore,

t =
v

a
=

500

3.6 · 4 s = 33.7m .

The distance is,

x =
a

2
t2 =

4

2
· 33.72 m = 2270m .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D04.pdf
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2.1.4.5 Ex: One-dimensional movement

A particle, initially at rest at the origin, moves for 10 s on a straight line, with in-
creasing acceleration according to the law, a = bt, where t is time and b = 0.5m/s3.
Plot the velocity v and the position x of the particle as a function of time. What is
the analytical expression for v(t)?

Solution: With the initial condition x0 = 0 e v0 = 0, the expressions are,

v(t) = v0 +

∫ t

0

a(t1)dt1 =
b

2
t2

x(t) = x0 +

∫ t

0

v(t1)dt1 =
b

6
t3 .

2.1.4.6 Ex: One-dimensional movement

A projectile of mass m is ejected at the initial velocity v0 vertically from a catapult.
a. Calculate the maximum height that the projectile reaches without considering the
air resistance.
b. Now, we consider air resistance given by Stokes’ friction law. Write down the
equation of motion for this case.

c. Show that the equation of motion is solved by v = e−γt/m
(
mg
γ + v0

)
− mg

γ .

d. Determine the time tm when the projectile is at its maximum point from v(tm) = 0.
e. What is the maximum height s(tm)?

Solution: a. The equation of motion, ma = −mg, has the solution, v = v0 − gt.
The maximum point, v = 0, is reached when tm = v0

g . So the maximum height is,

s = v0tm −
g

2
t2m = v0

v0
g
− g

2

(
v0
g

)2

=
v20
2g

.

b. With friction we have, ma = −mg − γv.
c. To solve this we separate the variables,

dt =
−mdv
mg + γv

⇔ t = −m
∫ v

v0

dv

mg + γv
= −m

γ

∫ mg+γv

mg+γv0

dζ

ζ
= −m

γ
ln

(
mg + γv

mg + γv0

)
.

Hence,

v = e−γt/m
(
mg

γ
+ v0

)
− mg

γ
≃
(
1− γt

m

)(
mg

γ
+ v0

)
− mg

γ
= v0 − gt−

γv0t

m
.

d. Now v(tm) = 0 leads to,

tm = −m
γ

ln
1

1 + γv0/mg
≃ −m

γ

(
−γv0
mg

+
γ2v20
2m2g2

)
=
v0
g

(
1− γv0

mg

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D06.pdf
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e. Finally,

s(tm) =

∫ tm

0

vdt = −e−γtm/mm
γ

(
mg

γ
+ v0

)
− mg

γ
tm +

m

γ

(
mg

γ
+ v0

)

= − 1

1 + γv0/mg

m

γ

(
mg

γ
+ v0

)
− mg

γ

(
−m
γ

ln
1

1 + γv0/mg

)
+
m

γ

(
mg

γ
+ v0

)

=
mv0
γ

+
m2g

γ2
ln

1

1 + γv0/mg

≃ mv0
γ

+
m2g

γ2

(
−γv0
mg

+
γ2v20
2m2g2

− γ3v30
3m3g3

)
=
v20
2g

(
1− γv0

3mg

)
.

2.1.4.7 Ex: Acceleration

A possible method to measure the acceleration of gravity g is to launch a ball upwards
in an evacuated tube and accurately measure the instants t1 and t2 of its passage (on
its way up and down) across a given height z. Show that:

g =
2z

t1t2
.

Solution: The motion equation is,

s(t) =
g

2
t2 + v0t .

We know two points of the trajectory:

g

2
t21 + v0t1 = z =

g

2
t22 + v0t2 .

Hence,

g =
2z

t21
− 2v0

t1
and v0 =

z

t2
− g

2
t2

g =
2z

t21
− 2

t1

(
z

t2
− g

2
t2

)

g =
−2z
t1t2

.

2.1.4.8 Ex: Acceleration

You want to train to be a juggler, keeping two balls in the air throwing them to a
maximum height of 2m. How often and how fast and how fast do you have to throw

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D08.pdf
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the balls up?

Solution: The equation of motion is,

s(t) =
g

2
t2 + v0t .

We know two points of the trajectory,

0 = −g
2
t2 + v0t and ym = −g

2

(
t

2

)2

+ v0
t

2
.

Hence,

v0 =
g

2
t and ym = −g

2

(
t

2

)2

+
g

2
t
t

2
=
g

8
t2

t =

√
8ym
g
≃ 1.3 s and v0 =

g

2

√
8ym
g

=
√

2gym ≃ 6.3m/s .

With two balls this time has to be divided by 2.

2.1.4.9 Ex: Acceleration

A racing car can be accelerated from 0 to 100 km/h in 4 s. Compare the correspond-
ing mean acceleration with the acceleration of gravity. If the acceleration is constant,
how far does the car travel until it reaches 100 km/h?

Solution: The average acceleration is,

a =
100 km/h−0 km/h

4 s−0 s ≃ 7m/s2 ≃ 0.7g .

The distance traveled is,

s =
a

2
t2 ≃ 55.5m .

2.1.4.10 Ex: Optical cooling

Atoms of a gas (rubidium-87) are irradiated by a laser beam. Each photon trans-
fers the moment ∆p = h/λ, where λ = 780 nm is the wavelength of the light and
h = 6.626 · 10−34 Js. The mass of a rubidium atom is m = 87 · 1.66 · 10−27 kg. The
scattering rate is Γ = 3.8 · 107 s-1. What is the acceleration? Compare with the
Earth’s gravitational acceleration.

Solution: a = F
m = 1

m
d
dtp =

1
mΓ∆p ≃ 220000m/s2 ≃ 22600 g.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D10.pdf
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2.1.4.11 Ex: Free fall

A stone falls from a balloon vertically ascending at a speed of v0 = 20m/s.
a. Calculate the speed of the stone after 10 s.
b. Calculate the distance covered by the stone in 10 s.
c. Solve the same problem with a balloon descending at the same speed.

Solution: Upper signs refer to the ascending balloon and lower signs for the de-
scending.
a. The speed after 10 s follows from,

v(t) = −gt± v(0)

with v(10 s) = −98.1m/s±20m/s = −78.1m/s, resp. −118.1m/s.
b. The distance traveled after the position where it left the balloon is,

s(t) = −g
2
t2 ± v(0)t ,

hence s(10 s) = −9.81 · 50m±200m = −290.5m resp. −690.5m.

2.1.4.12 Ex: Two-dimensional movement

A hose, with the nozzle 1.5m above ground, is pointed upwards at an angle of 30◦

with the floor. The water jet hits a flower bed 15m away.
a. At what velocity does the jet come out of the hose?
b. What is its maximum height.

Solution: The equations of motion are,

x = v0t cosα (and y = −g
2
t2 + v0t sinα+ y0 .

with α = 30◦, (t0, x0, y0) = (0, 0, 1.5m) and (t1, x1, y1) = (t1, 15m, 0). Substituting t,

x1 = v0t1 cosα

0 = −g
2

(
x1

v0 cosα

)2

+ x1 tanα+ y0

v0 =
x1

cosα

√
g

2

1

x1 tanα+ y0
≃ 12m/s .

To find the maximum height, we seek the minimum speed,

0 = ẏ = −gt2 + v0 sinα

t2 =
v0
g

sinα

y2 = −g
2
t22 + v0t2 sinα+ y0 =

v20
2g

sin2 α+ y0 ≃ 3.3m .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion1D11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_Pointmotion3D01.pdf
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2.1.4.13 Ex: Potential

The following force field is given: F(r) =



−2axyz2 + by2

−ax2z2 + 2bxy

−2ax2yz


. Determine the corre-

sponding potential V (r). Determine the work required to bring a point mass from

−1
−1
−1


 to



1

1

1


.

Solution: The potential follows from integrating F = −∇ϕ in the individual compo-
nents,

−ϕ = −ax2yz2 + bxy2 +Ax(y, z)

= −ax2yz2 + bxy2 +Ay(x, z)

= −ax2yz2 +Az(x, y) .

Hence, Ax(y, z) = Ay(x, z) = Az(x, y)− bxy2 ≡ B, such that ϕ = ax2yz2− bxy2−B.
The work is,

ϕ(r2)− ϕ(r1) =
(
ax22y2z

2
2 − bx2y22 −B

)
−
(
ax21y1z

2
1 − bx1y21 −B

)
= 2a− 2b .

2.1.4.14 Ex: Shot put

A shot put is able to throw a 7.257 kg ball at an initial speed of v0 = 15m/s. What
is the maximum range w he can achieve with such a throw? How much further could
he throw the ball (at the same initial speed) if it were half as heavy? How much
further could he throw the ball if he were on the moon? Note: The lunar attraction
is gM = 1.62m/s2.

Solution: The ballistic parabola is described by,

r(t) =

(
v0t cosα

v0t sinα− g
2 t

2

)
≡
(
w

0

)
.

The throw range is maximum if dw
dα =

2v20
g

(
cos2 α− sinα2

)
≡ 0, hence, when sinα =

cosα, or when α = π/4. So the throw range is w = v0tm cosα = v0
2v0 sinα

g cosα =
v20
g = 22.9m. The throw distance does not depend on the mass of the ball. On the
moon the range would be w = 138.9m.

2.1.4.15 Ex: Shot put

In a shot put, a ball with the initial speed v0 = 10m/s is thrown at a height of h = 2m
above ground at an angle of 35◦.
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a. Calculate the throw distance of the ball.
b. At what speed and at what angle does the ball hit the ground?
c. Calculate the maximum throw height and the time when it is reached?
d. What condition must the throw angle fulfill for maximum throw range? At what
angle is the maximum throw range reached in the special case h = 0m?

Solution: a. Equation of motion

x = v0t cosα

y = v0t sinα−
g

2
t2 + y0 ≡ 0 .

Boundary condition

0 ≡ t21 −
2v0t1
g

sinα+

(
v0
g

sinα

)2

−
√(

v0
g

sinα

)2

+
2

g
y0

2

t1 =
v0
g

sinα±
√(

v0
g

sinα

)2

+
2

g
y0 = 1.45 s

x1 = v0t1 cosα = 11.9m .

b. Impact,

v(t1) =
√
ẋ(t1)2 + ẏ(t1)2 =

√
v20 cos

2 α+ (v0 sinα− gt1)2 = 11.8m/s ,

and

α = arctan
ẏ(t1)

ẋ(t1)
= 56◦ .

c. Maximum height

0 ≡ ẏ = v0 sinα− gt2

t2 =
v0 sinα

g
= 0.6 s

y(t2) = v0t2 sinα−
g

2
t22 + y0 = 3.7m .

d. Starting altitude y0 = h, altitude of impact y. v⊥ = v0 sinα, v∥ = v0 cosα.

Total time of flight: t =
v⊥ +

√
v2⊥ + 2g(y0 − y)

g

Throw range: x = v∥ · t.

Maximum: 0 ≡ ∂αx =
v20
g
∂α

(
cosα sinα+ cosα

√
sin2 α+

2g

v20
(y0 − y)

)
.

Hence,

cos2 α


1 +

sinα√
sin2 α+ 2g(y0−y)

v20


 = sin2 α

(
1 +

√
sin2 α+

2g(y0 − y)
v20

)
.
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A special case is obtained for y0 − y = 0:

0 =
4v20
g

(cos2 α− 1

2
)⇒ α = π/4 .

2.1.4.16 Ex: Rocket in the homogeneous field of gravitation

A rocket moves in the homogeneous field of gravity vertically upwards. Reactor gas
is ejected at a constant rate γ =

∣∣dm
dt

∣∣ = const and with the velocity vg. Describe the

recoil of the rocket exerted by the ejected gas using F = dm
dt vg or exploiting the mo-

mentum conservation law for infinitesimal changes of m (occurring with the velocity
vg) and of vrocket.

Solution: The mass and speed of the rocket depend on time. At each instant, the
force

F =
d

dt
(mv) =

dm

dt
vg +m

dv

dt
= −mg

acts on the rocket. By separating the variables

vg

∫
dm

m
+ v = −

∫
gdt ,

and finally

v(t)− v0 = vg ln
m0

m(t)
− gt .

2.2 Kinetic and potential energy

2.2.1 Conservative potentials

Newton’s axioms tell us that the reason for acceleration are forces, but they do not
explain the origin of the forces. In our daily experience the forces seem to arise either
from contact between bodies, i.e. collisions, or from action at a distance, as in the
case of gravity or electromagnetism. In the latter case, the force exerted on a body
may or may not depend on its position.

Newton realized the existence of a vertical force field called gravity, which ap-
pears to be homogeneous, that is, F (y) = F = mgy, where g = 9.81m/s2 is called
gravitational acceleration.

Example 4 (Ball rolling on a slope): Throwing a mass into a rising slope,
we experimentally notice that the height over ground ∆y the mass reaches when
coming to rest only depends on its initial velocity but not on the path. We also
notice that this height satisfies,

∆y ∝ v2 . (2.25)

Furthermore, we measure the proportionality factor to be 1/2g.
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Hence, in the homogeneous field of gravity,

F∆y = mg∆y =
m

2
v2 . (2.26)

We call the quantity on the right-hand side the kinetic energy of the mass while
moving at a velocity v at ground height. The left-hand side quantity, attributed to
the mass having climbed the slope to height ∆y and been stopped to zero velocity,
is termed potential energy of gravitation. Repeating the experiment for various types
of slopes with various inclinations which may even vary along the slope, we verify
that the final height does not depend on the trajectory of the mass, that we may
parametrize as t→ s(t). That is,

∫ final

init

F · ds = const = V (yfinal)− V (yinit) , (2.27)

or for a closed path, ∮
F · ds = 0 . (2.28)

Only this fact allows us to attribute the potential energy solely to the mass and not
to the force field. We will see later that this is only true for particular force fields
(e.g. homogeneous or radial fields) and in the absence of friction. We will call force
fields having this property conservative. The above integral equation can be cast into
a differential version,

∇× F(r) = 0 such that F(r) = −∇V (r) , (2.29)

provided, of course, that such a unique conservative potential exists.

2.2.2 Conservation of energy

2.2.3 Translations and rotations of point masses, Galilei boost

The Galilei transform to an inertial system moving with velocity u is defined by,

t→ t′ = t (2.30)

x→ x′ = x+ ut .

2.2.3.1 Galilei invariance

Consider a set of interacting particles, mv̇i = −∇xi

∑
jVij(|xi − xj |). This equation

has obviously a Galilei-invariant form. In contrast, the wave equation ∇2
rψ− 1

c2
∂2ψ
∂t2 =

0 has not, because,

∂

∂t′

∣∣∣∣
r′=const

=
∂

∂t

∣∣∣∣
r=const

− u · ∇r . (2.31)

Do the Exc. 2.2.4.1.
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2.2.4 Exercises

2.2.4.1 Ex: Galilei transform

A train runs at a constant speed v0. Inside the train, from a height h0 a ball of mass
m is released.
a. Calculate the ball’s trajectory as seen by an observer traveling on the train.
b. Calculate the ball’s trajectory as seen by an observer outside the train.
c. Now, the train is uniformly decelerated from the moment on when the ball is re-
leased. Calculate the trajectory of the ball as seen by an observer i. traveling on the
train and ii. outside the train.

Solution: a. The observer on the train finds,

r1(t) = (h0 − g
2 t

2)êy .

b. The outside observer finds,

r2(t) = (h0 − g
2 t

2)êy + v0têx .

c. The deceleration be a0 < 0. The observer on the train finds a horizontal accelerating
force,

r1(t) = (h0 − g
2 t

2)êy +
a0
2 t

2êx .

d. The outside observer finds the same trajectory as before,

r2(t) = (h0 − g
2 t

2)êy + v0têx .

2.2.4.2 Ex: Energy conservation in free fall

Consider the free fall of a mass m from the height h.
a. Write down the kinetic energy and the potential energy of the mass as functions of
z(t) respectively ż(t).
b. Calculate z(t) by integrating the energy conservation law for the initial conditions
ż(t = 0) = 0. To do this, derive from ż(t) an equation of the form ż = f(z) and
integrate this equation after separating the variables.

Solution: a. The potential energy is Epot(z, ż) = mgz, the kinetic energy is Ekin(z, ż) =
1
2mż

2.
b. The energy is conserved, E(z, ż) = 1

2mż
2+mgz = const. If z(0) = 0 and ż(0) = 0,

we can let E = 0. The equation of motion is ż =
√−2gz, where z < 0. Now,

dz√−2gz = dt

∫ z(t)

z(0)

dz′√−2gz′ =
∫ t

0

dt′

1√
2g

[
−2
√
−z(t) + 2

√
−z(0)

]
= t .
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Finally, we get z(t) = − 1
2gt

2.

2.2.4.3 Ex: Ski jumping with salto

Two skiers go down a slope on different routes. Calculate the final speed and the
arrival time for the two trajectories sketched on the graph by solid and dashed lines.

Figure 2.3: Scheme of the ramp.

Solution: a. We parametrize the trajectory of a body descending a slope of height
h inclined by an angle θ = π/4 as,

r(ξ) = h

(
1− ξ
1− ξ

)
such that v = −hξ̇

(
1

1

)
,

where ξ ∈ [0, 1]and choosing the origin of the coordinates at the basis of the slope.
Energy is conserved, m

2 v
2
x +

m
2 v

2
y +mgy = mgh, with the initial energy Epot = mgh.

We derive,

v2 = v2x + v2y = 2h2ξ̇2 = 2g(h− y) = 2ghξ

That is, we know the speed at each point,

v =
√
2ghξ .

The speed does not depend on the trajectory, but only on the height of the slope. But
to find ξ(t), we must solve the differential equation,

ξ̇2 =
g

h
ξ

or the integral ∫ ξ

0

dξ√
ξ
= 2
√
ξ =

√
g

h
t .

That is, ξ = g
4R t

2 b. We parametrize the trajectory of a body descending a circle
segment of R as,

r(ξ) = h

(
cos ξ

1− sin ξ

)
such that v⃗ = −hξ̇

(
sin ξ

cos ξ

)
,
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where ξ ∈ [0, π/2] and choosing the origin of the coordinates at the basis of the circle
segment. Energy is conserved, m

2 v
2
x + m

2 v
2
y + mgy = mgh, with the initial energy

Epot = mgh. We derive,

v2 = v2x + v2y = h2ξ̇2 = 2g(h− y) = 2gh sin ξ .

That is, we know the speed at each point,

v =
√
2gh sin ξ .

The speed does not depend on the trajectory, but only on the height of the slope. But
to find α(t), we must solve the differential equation,

ξ̇ =

√
2g

h
sin ξ

or the elliptic integral,
∫ ξ

0

dξ√
sin ξ

=

√
2g

h
t .

c. We parametrize the trajectory of a body descending a parabola defined by,

r(ξ) = h

(
1− ξ

(1− ξ)2
)

such that v⃗ = −hξ̇
(

1

2(1− ξ)

)
,

where ξ ∈ [0, 1] and choosing the origin of the coordinates at the basis of the circle
segment. Energy is conserved, m

2 v
2
x + m

2 v
2
y + mgy = mgh, with the initial energy

Epot = mgh. We derive,

v2 = v2x + v2y = h2ξ̇2[1 + 4(1− ξ)2] = 2g(h− y) = 2gh[1− (1− ξ)2] .

That is, we know the speed at each point,

v = ξ
√
2gh .

The speed does not depend on the trajectory, but only on the height of the slope. But
to find ξ(t), we must solve the differential equation,

ξ̇ =

√
2g

h

√
1− (1− ξ)2
1 + 4(1− ξ)2

or the elliptic integral,

∫ ξ

0

√
1 + 4(1− ξ)2
1− (1− ξ)2 dξ =

√
2g

h
dt .
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R

L

m

���

D

Figure 2.4: Scheme of the ramp.

2.2.4.4 Ex: Ski jumping with salto

A skier with a body weight of 75 kg descends an L = 50m high ski jump with a
−100% gradient. At the lower end the ski jump merges into a trough, the curvature
of which is described by a circle with radius R = 10m. At an inclination of 100%,
the trough suddenly merges into a horizontal plane. Friction is neglected. What is
the minimum weight the skis must bear before they break? How far does the skier
fly over the plane D?

Solution: On the descent, the skier converts the potential energy Epot = mgh =
mgL sin 45◦ into kinetic energy Ekin = Epot =

m
2 v

2. The initial speed when jumping
off the trough is thus,

v(0) =

√
Ekin
m

(
1

1

)
.

The ballistic parabola is given by,

x(t) =

(
vx0t

vy0t− g
2 t

2

)
≡
(
vx0t

0

)
.

Hence,

t =
2vy0
g

,

so the range of the jump is D =
2vx0vy0

g = 2Ekin

mg = 2h ≈ 70.7m. The height difference
between the position of the take-off and the lowest point of the trough is R−R cos 45◦ ≈
2.9m. That is why the maximum speed of the skier is,

vm =

√
2Ekin
m

=

√
2mgh′

m
=
√
2g (L sin 45◦ +R−R cos 45◦) .

Inside the circular trough at the lowest point of the ski jump the centrifugal force is,

Fz = mω2R = m
v2m
R

.
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Together with the skier’s weight, the skis have to withstand a load of up to,

m′ = m+
Fz
g

= m+
mv2m
gR

= m

(
2 +

2L

R
sin 45◦ − cos 45◦

)
= 8.36m ≈ 630 kg .

2.2.4.5 Ex: Ski jumping with salto

A skier goes down a slide. The work exerted by the gravitational field on the skier is,

W =

∫ s1

s0

F · ds⃗ =
∫ x

0

Fs
√

1 + y′′dx .

Now we consider three different slides:
a. The slide is described by the function y(x) =

√
h2 − x2 with dy/dx = −x/

√
h2 − x2 =

−x/y. We also know,

Fs(x) = (−mgêy) · (−êθ) = mg cos θ .

Therefore, we can simplify the integral with x = h cos θ and y = h sin θ,

W = mg cos θ

∫ x

0

xdx√
h2 − x2

= mg

∫ x

0

xdx

y
= −mg

∫ √h2−x2

h

dy

= mg(h−
√
h2 − x2) = mg(h− y) = m

2
v2 .

b. The slide is described by the function y(x) = (h − x)2 with dy/dx = −2(h − x).
We also know,

Fs(x) = −mg sin θ = −mg
tan θ√

1 + tan2 θ
= −mg y′√

1 + y′2
.

So we can simplify the integral,

W = −mg
∫ x

0

y′√
1 + y′2

√
1 + y′2dx = −mg

∫ x

0

y′dx = −mg
∫ y

h

dy = mg(h−y) = m

2
v2 .

c. The slide is described by the function y(x) = h−
√
h2 − (x− h)2. With dy/dx =

−(x−h)√
h2−(x−h)2

. We also know,

Fs(x) = −mg sin θ = −mg
tan θ√

1 + tan2 θ
= −mg y′√

1 + y′′
.

So we can simplify the integral,

W = −mg
∫ x

0

y′√
1 + y′′

√
1 + y′2dx = −mg

∫ x

0

y′dx = −mg
∫ y

h

dy = mg(h−y) = m

2
v2 .

Solution:
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2.2.4.6 Ex: Looping

A body starts at speed v0 = 0 from point A and slides without friction on a slope
(see figure). At point B the slope becomes a circle of radius R.
a. What is the speed at points B and C of the circle?
b. What is the maximum fraction R/h to prevent the body from falling at point B?
c. What is the minimum speed at point B to prevent the body from falling?

x

y

h
R

A B

C

Figure 2.5: Looping.

Solution: a. Energy conservation m
2 v

2
C = mgh yields,

vC =
√
2gh .

Energy conservation m
2 v

2
B + 2mgR = mgh yields,

vB =
√
2gh− 4gR .

b. The centrifugal force must be greater than the gravitation force, that is, m
v2B
R > mg.

Substitution of vB leads to,
R

h
>

2

5
.

c. Energy conservation m
2 v

2
B + 2mgR = m

2 v
2
C yields, after resolution by vB and sub-

stitution in the condition m
v2B
R > mg,

vC >
√
5gR .

2.2.4.7 Ex: Forces

A body of mass m moves under the influence of three forces:

F1(r) = (α cosω(x+ y),−β(y + y0)
2, γ(z + z0)

2)

F2(r) = (α sinωx sinωy, β(y − y0)2,−γ(z − z0)2)
F3(r) = (α cos(ωx+ π) cosωy, 3βyy0, γz0(z0 − 4z)) .

The body is at t = 0 at the point r(0) with velocity v(0). What is the absolute value
of the body’s velocity |v(t)| after a time t when it is at the point r(t)?
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Solution: The force

F =



α cosω(x+ y)

−β(y + y0)
2

γ(z + z0)
2


+



α sinωx sinωy

β(y − y0)2
−γ(z − z0)2


+



α cos(ωx+ π) cosωy

3βyy0
γz0(z0 − 4z)




can be simplified to, 

mẍ

mÿ

mz̈


 =




0

−βyy0
γz20


 .

Then the velocities in x and z-direction are, respectively, ẋ = vx0 and ż =
γz20
m t+ vz0.

For the y-direction we get a vibration,

y =
vy0
ω

sinωt+ y0 cosωt with ω =

√
βy0
m

,

satisfying the boundary conditions y(0) = y0 and ẏ(0) = vy0. Finally, the absolute
value of the speed is,

|v| =
√
v2x + v2y + v2z =

√
v2x0 + (vy0 cosωt− y0ω sinωt)2 +

(
γz20
m

t+ vz0

)2

.

2.2.4.8 Ex: Pushed inclined plane

A 45◦ wedge is pushed over a table with constant acceleration a. A cuboid of mass
m slides on the wedge without friction. At the time t = 0 the cuboid is at a height h
and, like the cuboid, at rest.
a. Give the acceleration a(t) and speed v(t) as a function of time.
b. Give kinetic and potential energy of the cuboid as a function of time. Does energy
conservation hold?

m
g

α

h
a

Figure 2.6: Pushed inclined plane.

Solution: a. The weight Fg = −mgêy and the force due to the acceleration of the
wedge Fa = maêx act on the cuboid. Let êf = êx cosα− êy sinα be the unit vector of
the surface of the wedge and ên = êx = sinα+ êy cosα the normal of the surface. As
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long as the cuboid adheres to the surface of the wedge, we only need to consider the
projection of gravity on the surface and the projection of the acceleration of the wedge
on the normal,

m
d2

dt2
r = (Fg · êf )êf + (Fa · ên)ên
= [−mgêy · (êx cosα− êy sinα)] (êx cosα− êy sinα) + [maêx · (êx cosα+ êy sinα)] (êx cosα+ êy sinα)

= m

(
g sinα cosα+ a cosα cosα

−g sinα sinα+ a cosα sinα

)
α=45◦−→ m

2

(
g + a

−g + a

)

m
d

dt
r =

m

2

(
g + a

−g + a

)
t

mr =
m

4

(
g + a

−g + a

)
t2 +

(
0

h

)
.

b. The energy,

E = T + V =
m

2
v2 +mgy(t) =

m

2
(ẋ(t)2 + ẏ(t)2) +mgẏ(t)

=
m

2

1

2
(a2 + g2) +mg

1

2

1

2
(a− g)t2 +mgh =

m

4
(a2 + ag)t2 +mgh

is not conserved,
dE

dt
=
m

2
(a2 + ag)t ̸= 0

for a ̸= 0.

2.2.4.9 Ex: Bungee jump

An organizer is offering bungee jumps from a bridge of height H. First of all, a stu-
dent (body length h, mass m) wants to jump upside down from a standing position.
The rope (spring constant C) is tied to him exactly in the middle of the body. Help
the operator with his calculations.
a. By what length a0 is the rope stretched when the student is hanging on the rope
at rest?
b. How long is the rope to be dimensioned so that the student can just touch the
surface of the water flowing under the bridge with his head? Take into account (a)
calculated pre-stretch of the rope. (Numerical values: H = 100m, h = 1.90m,
m = 50 kg, C = 50N/m)

Solution: Let l0 be the length of the unstretched rope and S the total stretch.
a. The rope elongation at rest results from |F| = Cx that is mg = Ca0 yielding,

a0 =
mg

C
= 9.81m .

b. The following applies to the lengths H − h
2 = l0 + a0 + x. We seek for l0 =

H− h
2 − (a0+x) = H− h

2 − s. s results from the equilibrium between potential energy
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and elongation energy of the elastic rope mgH = 1
2Cs

2. Hence,

s =

√
2mgH

C
= 44.29m .

Therefore l0 = 54.76m and x = s− a0 = 34.48m.

h

H

l
a

x s

Brücke

Fluss

0

0

Figure 2.7: Scheme of the arrangement.

2.2.4.10 Ex: Body sliding from a cylinder with friction

A body bound to move with friction on a cylinder of radius R is released at an angle
θ0 with zero velocity.
a. What is the maximum coefficient of static friction µe allowed for the body to slide?
b. Once the body starts to slide, the friction is dominated by the dynamic friction
coefficient µd. What is the work done until the body reaches the horizontal position
(θ = 0◦)?
c. What is the final velocity?
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problema, a coordenada natural é o ângulo θ. Vemos que: FS = mg cosθ   e   ds 

= - Rdθ, já que s e θ aumentam em sentidos opostos. Assim, 

 

 

 

 

 

 

 

Fig. 5.4 - Corpo vinculado a mover-se sobre um cilindro sem atrito. 
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5.2 Potência 

  Quando um agente externo realiza trabalho sobre um corpo, podemos 

definir potência como sendo a taxa temporal de energia que ele é capaz de 

fornecer ao corpo. Assim, no caso de uma força constante,  sd.FdW
rr

=  e 

v.F
dt
sd.Fdt/dWP 

rr
rr
=== . A unidade de potência é energia/tempo: 

[ ] ( )WWatts/JP ≈= .    

5.3 Energia potencial 

 Nem sempre o trabalho realizado sobre um corpo por um agente 

externo é convertido totalmente em energia cinética. Muitas vezes o trabalho 

dá origem a um outro tipo de energia, chamada energia potencial. 

Analogamente à energia cinética, um corpo com energia potencial tem a 

θ 
S 

R x 

y M 

Mg cosθ  

Figure 2.8: Body sliding from a cylinder with friction.

Solution: a. The tension due to the pressure of the body on the cylinder depends
on its position,

N = mg sin θ .
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So the friction force is,

Fat = −µeN = −µemg sin θ .

To allow the body to slide, we need at least,

0 < Fgr + Fat = mg cos θ0 − µemg sin θ0 .

That is, µe < cot θ0.
b. In the case of sliding, the work performed is,

W =

∫ s1

s0

(Fgr + Fat)ds⃗ = −
∫ 0

θ0

(mg cos θFgr − µdmg sin θ)Rdθ .

with ds = −Rdθ. Hence,

W = −Rmg(− sin θ0 + µd − µd cos θ0) =
m

2
v2 .

c. And from this we get the velocity,

v =
√
2Rg(sin θ0 − µd + µd cos θ0) .

2.2.4.11 Ex: Bodies sliding down a slope

Two children are descending with an interval of 2 s a 4m high frictionless slide ending
in a horizontal plane. What is the final distance between them?

Solution: The final velocity of children is,

v =
√

2gh .

Therefore, the distance is d = vt = t
√
2gh = 17.7m.

2.2.4.12 Ex: Energy conservation in the harmonic oscillator

Consider a mass of m = 0.1 kg that vibrates on a spring with the spring constant
C = 10N/m. The maximum deflection A around the rest position of the spring is
10 cm.
a. At what frequency does the mass vibrate?
b. Give the potential and the kinetic energy of the mass as a function of the displace-
ment x(t) resp. ẋ(t).
c. Derive the equation of motion for the deflection from the energy theorem. The ini-
tial condition is chosen so that at time t = 0 the mass is at the zero crossing (x(0) = 0)
and has maximum speed. First help: Integrate using the variable separation method.
Second help:

∫
dx√
a2−x2

= arcsin x
a .
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Solution: a. The force equation is mẍ = −Cx. Hence, the mass vibrates with the
frequency ω/2π = 1

2π

√
C/m ≈ 0.16 s−1.

b. The potential energy is Epot(x) =
C
2 x

2, the kinetic energy is Ekin(ẋ) =
1
2mẋ

2.

c. The energy remains constant, E = 1
2mẋ

2 + C
2 x

2 = C
2 A

2. Hence,

dx√
C/m

√
A2 − x2

= dt

∫ x(t)

x(0)

dx′√
C/m

√
A2 − x′2

=

∫ t

0

dt′

1√
C/m

arcsin
x′

A

∣∣∣∣∣

x(t)

0

= t .

Finally we get x = A sin
√
C/mt.

2.2.4.13 Ex: Anharmonic potential

A mass m moves in a potential V (x), which has a minimum at V (0) = 0 for x = 0 and
a first maximum at xM . At time t = 0 the mass is at point x = 0. The initial speed
is chosen so that, when it reaches the maximum of the potential at xM its velocity is
zero. Calculate for the two cases V (x) = αx2 − βx4 and V (x) = λ(1− cos2 κx):
a. the coordinates of the maximum xM and V (xM );
b. with the help of the energy conservation law the total energy E;
c. the implicit equation of motion t = g(x) or, if possible, the explicit one x = f(t);
How long does the mass take to reach the point xM . Justify the result by physical
arguments.

Solution: a. For the first potential there are extrema when d
dxV (x) = 2αx−4βx3 = 0,

that is, x = 0 as well as x = ±
√

α
2β . Because of d2

dx2V (x) = 2α − 12βx2 there is a

minimum at x = 0 if α > 0. There are maxima at x = ±
√

α
2β if α > 0. For the

second potential d
dxV (x) = 2λ cosκx sinκx = 0, that is, there is a minimum at x = 0.

There are maxima at x = ± π
2κ .

b. The energy is for both potentials,

E =
m

2
v2 + αx2 − βx4 = α

α

2β
− β α

2

4β2
=
α2

4β

E =
m

2
v2 + λ(1− cos2 κx) = λ(1− cos2 κxM ) = λ .
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c. The equation of motion results from the energy theorem. For the first potential,

ẋ =

√
2α2

4mβ
− 2α

m
x2 +

2β

m
x4

dt =

√
4mβ

2

dx√
α2 − 4αβx2 + 4β2x4

=

√
2mβdx

α− 2βx2

t =
√
2mβ

∫
dx

α− 2βx2
=

1√
2αβ

arctanh x

√
2β

α

x =

√
α

2β
tanh t

√
2αβ .

Hence, t = 1√
2αβ

arctanh x
√

2β
α

x→xM−→ ∞. For the second potential,

ẋ =

√
2λ

m
cosκx

dt =

√
m

2λ

dx

cosκx

t =

√
m

2λ

∫
dx

cosκx
=

√
m

2λ

ln (1 + sinκx)− ln (cosκx)

κ

e
√

2λ
m κt =

1 + sinκx

cosκx

x =
1

κ
arcsin tanh

√
2λκ2

m
t .

Hence, t =
√

m
2λ

ln 2−ln 0
κ

x→xM−→ ∞. In both cases, the mass takes an infinitely long
time to reach the maximum. This is because the maximum is an unstable point. If
the mass sits up there and v = 0, it is not accelerated.

2.2.4.14 Ex: Anharmonic potential

A particle with the mass m = 1.4 × 10−25 kg moves along the positive x-axis. A
constant force directed towards the origin of the coordinate system of B = 10−23 N
and a repulsive force of A/x2 act on the particle, whereby A = 10−35 Nm2.
a. Calculate the potential energy function V (x).
b. Sketch the energy as a function of the location x when the maximum kinetic energy
is T0 = 10−28 J.
c. Determine the equilibrium position x0 (force F (x0) = 0) and the turning points
(velocity ẋ = 0).
d. How large is the frequency of small vibrations around x0?

Solution: The force is,

F =
A

x2
−B .
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The equilibrium position is at F (x0) = 0, also x0 =
√
A/B ≈ 1µm. The potential is,

V =
A

x
+Bx .

The Taylor expansion around the equilibrium position is,

V = V (x0) + V ′(x0)(x− x0) + V ′′(x0)
(x− x0)2

2!
+ ...

≃ A

x0
+Bx0 +

(
− A
x20

+B

)
(x− x0) +

A

x30
(x− x0)2

= const+
A

x30
x̃2 .

The frequency of small vibrations is therefore,

ω =

√
2

m

A

x30
≈ 2π × 2 kHz .

0 5 10

x (μm)

0

0.5

1

V
(J
)

×10−28

Figure 2.9: Anharmonic potential.

2.2.4.15 Ex: Free flight with friction

A body of mass m starts to fall at time t = 0 and point z = 0 with the initial ve-
locity v = v0êz in the homogeneous terrestrial field of gravity (the z-axis is directed
downwards). Its movement in the atmosphere is subject to Newton’s friction force,
FR = −αvv. We are considering only the movement along the z-axis.
a. What is the equation of motion for the body?
b. How should v0 be chosen to obtain a movement with constant speed? v
c. Now, let the initial velocity v0 be zero. Calculate the relationship between the falling
distance z and the maximum reached velocity. Help: Use the method of separating
the variables and, for that, write the equation of motion in the form dz = f(v)dv.
Use the following result:

∫
x

a2−x2 dx = −0.5 ln(a2 − x2).)
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d. After which falling distance does the body reach 50 % of the maximum speed?

Solution: a. The equation of motion is mz̈ + αv2 = mg.
b. For acceleration to end, we need z̈ = 0. From this follows v0 =

√
mg
α .

c. The equation of motion can be written in the form,

dt =
mdv

mg − αv2

The differential dt can be replaced by v = dz
dt , giving,

dz =
mvdv

mg − αv2 .

Hence,

z =
m

α

∫ v

0

vdv

mg/α− v2 = −m
2α

ln
(mg
α
− v2

)∣∣∣
v

0
= −m

2α
ln

(
1− α

mg
v2
)
.

We can also integrate the differential, dt,

t =
m

α

∫ v

0

dv

mg/α− v2 =
m

2α
ln±mg/α+ v

mg/α− v

∣∣∣∣
v

0

=
m

2α
ln
mg/α+ v

mg/α− v .

d. The maximum speed is reached for z →∞. The logarithm

z =∞ = −m
2α

ln

(
1− α

mg
v2m

)
.

diverges, when vm =
√

mg
α . The body reaches 50 % of its maximum speed at the

position,

z = −m
2α

ln

(
1− α

mg

(vm
2

)2)
= −m

2α
ln

(
1− 1

4

)
=

m

2α
0.2877 .

2.2.4.16 Ex: Free flight with friction numerically

Here, we want to solve Exc. 2.2.4.15 numerically. A body of mass m = 1kg begins
to fall at time t = 0 at point z = 0 with the initial velocity v = v0êz in the homo-
geneous gravitational field of the Earth (the z-axis is directed downwards). When
moving in the atmosphere, it is subject to Newton’s friction force FR = −αvv with
α = 0.01 kg/m. We are considering only the movement along the z-axis.
a. What is the equation of motion for the body?
b. Calculate the trajectory of the body by numerically integrating the equation of
motion with the Euler method. Use different starting velocities v0. Choose v0 such
that, at the beginning, the movement has constant v?
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Solution: a. The equation of motion is mz̈+αv2 = mg. It can be rewritten into the
following system of equations:

v̇ = − α
m
v2 + g

ż = v .

b. Speed and location are after a small time interval dt,

v(t+ dt) = v(t) + dt
(
g − α

m
v(t)2

)

z(t+ dt) = z(t) + dt v .

One can now discretize by tk ≡ t + kdt, zk ≡ z(t + tk) and vk ≡ v(tk) and solve the
system of equations iteratively.

vk+1 = vk + dt
(
g − α

m
v2k

)

zk+1 = zk + dt vk .

The movement is constant from the beginning if v0 =
√
mg/α ≈ 31.3209.
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Figure 2.10: Trajectory and speed for a free fall with friction for different initial velocities
v0 = 0, 1, 10, 31.3209, 100. Here dt = 0.02 s.

2.2.4.17 Ex: Parachutist with resistance (Möllemanns Rechenaufgabe)

A skydiver exits his plane in 2000m. Unfortunately, he forgot to put on his parachute.
Suppose that air resistance can be described by Stokes friction with the friction coef-
ficient k = 0.05 s-1.
a. Calculate the parachutist’s maximum speed.
b. What would be the total time T of the skydiver’s flight if the friction was negligi-
ble?
c. What is the distance between the skydiver and the ground at time T in case the
friction is not negligible.
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Figure 2.11: Parachutist with resistance.

Solution: Gravity acts along êz. The equation of motion is now,

mz̈ +mkż −mg = 0 .

After separating the variables,

dt =
dv

g − kv .

The solution is,

t =

∫ t

0

tdt =

∫ v

0

dv

g − kv = −1

k
[ln(g − kv)]v0 = −1

k
ln

(
g − kv
g

)

v =
g

k
(1− e−kt) .

The maximum speed is v∞ = g
k ≈

9.81m/s2

0.05Ns/m = 196m/s. The flight time without

friction follows from h = g
2 t

2 para t =
√

2h
g = 20.2 s. The falling distance with

friction is,

z(T ) =

∫ T

0

vdt =
g

k

∫ T

0

(1− e−kT )dt = g

k

[
T +

1

k
e−kT

]T

0

=
g

k

[
T − 1

k
(1− e−kT )

]
.

Hence, the rest of the way is h − z(T ) ≈ 533m. An estimate with Taylor expansion
gives,

h− z(T ) = g

2
t2 − g

k

[
t− 1

k

(
1− 1 + kt− 1

2
k2t2 +

1

6
k3t3

)]
≃ g

6
kt3 ≈ 674m/s .
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Figure 2.12: Oblique throw with friction.

2.2.4.18 Ex: Oblique throw with friction

You built a ski jumping tower, and now you have to create the associated slope. It
consists of an inclined plane and a circular arc with radius R = 10m connected to it.
The point of take-off is at ground level, and the tangent to the arc and the surface of
the ground enclose an angle of α = 30◦. The ski ramp is frictionless and there is no
friction by air resistance during the flight. Now, the braking area behind the desired
flight path LF , that causes a friction force FR = −k · v, needs to be engineered. The
jumper has a mass of m = 80 kg.
a. At what distance LF must the braking area begin so that the jumper arrives di-
rectly at the braking area for a height of the tower of H = 25m?
b. What acceleration does the ski jumper experience in the lowest point of the tower
(inside the circular path) in addition to the normal gravitational acceleration?
c. As soon as he arrives at the braking area, the frictional force acts and slows down
the jumper. How large must the friction coefficient be chosen so that the ski jumper
comes to a standstill in less than 6 s? A residual speed of less than 1 cm/s is defined
as a standstill. To do this, set up the differential equation and solve it.

Solution: a. Starting speed at the time of take-off: Ekin = Epot :

1

2
mv2 = mgH ⇒ v =

√
2gH

vx = v cosα =
√

2gH cosα

vx = v cosα =
√

2gH sinα .

Flight time tF until touch-down:

0 = vytF −
1

2
gt2F ⇒ tF =

2vy
g

=
2
√
2gH sinα

g
.

Flight distance,

LF = vx · tF =
√
2gH cosα · 2

√
2gH sinα

g
= 4H sinα · cosα ≃ 43.3m .

b. The lowest point is lower than 0m:

H ′ = H + h′ with h′ = R · (1− cos(30◦)) ≃ 1.34m⇒ v =
√
2gH ′ ≃ 25.6m/s .
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The centrifugal force at this speed is:

m · a =
mv2

R
⇒ a =

2gH ′

R
= 2g(H/R+ cosα) ≃ 66m/s2 ≃ 6.7g .

c. Only vx(t = 0) ≃ 22.15m/s need to be decelerated.

v̇x = −FR
m

= − k
m
vx ⇔

dvx
dt

= − k
m
vx

such that,

dvx
vx

= − k
m
dt⇒

∫ vx

vx0

dv′x
v′x

= − k
m

∫ t

0

dt′ ⇒ k =
m

t
ln

(
vx0
vx

)
.

With t = 6 s, vx = 0.01m/s and vx0 = vx(t = 0) = 22.15m/s we obtain k =
102.7 kg/s2.

2.2.4.19 Ex: Oblique throw with friction

A soccer ball with a mass of 1 kg is shot at an initial speed v0. In addition to the
force of gravity, the Stokes force acts on the ball FR = −kmv.
a. Set up the equations of motion.
b. Solve the equations of motion for x(t) and y(t).
c. Show by a Taylor expansion of the solutions x(t) and y(t) that for β → 0 follows
the solution of the frictionless oblique throw.
d. Give an equation for the flight time Tmax and determine the range xmax.
Note: Note that the general solution of the inhomogeneous differential equation
consists of the general solution of the homogeneous and a particular solution of the
inhomogeneous differential equation. Determine the constants from the boundary
conditions.

Solution: a. The equation of motion is mr̈ + βṙ − mg = 0. In component nota-
tion,

mẍ+ βẋ = 0 and mÿ + βẏ +mg = 0 .

b. The equation for vertical movement can be solved by separating the variables,

dt =
dẏ

−βẏ/m− g

t =
m

−β

∫ ẏ

ẏ0

dẏ

ẏ +mg/β
= −m

β
ln (ẏ +mg/β) +

m

β
ln (ẏ0 +mg/β) = −m

β
ln

ẏ +mg/β

ẏ0 +mg/β

ẏ = (ẏ0 +mg/β) e−βt/m −mg/β

y = (ẏ0 +mg/β)

∫ t

0

e−βt/mdt−
∫ t

0

mg/βdt =

(
ẏ0 +

mg

β

)
m

β

(
1− e−βt/m

)
− mgt

β
.

The solution for horizontal movement is analog for g = 0,

x =
mẋ0
β

(1− e−βt/m) .
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c. Taylor expansion of y(t) yields,

y =

(
ẏ0 +

mg

β

)
m

β

(
1− 1 +

β

m
t− β2

2m2
t2 +

β3

6m3
t3 − ...

)
− mgt

β

β→0−→ ẏ0t−
g

2
t2 ,

and analogously for x.
d. The flight time follows from,

y = 0 =

(
ẏ0 +

mg

β

)
m

β

(
1− e−βtm/m

)
− mgtm

β
.

The equation cannot be explicitly resolved by t. We can solve it numerically or graph-
ically, or we can develop the exponential function into a Taylor series,

(
ẏ0 +

mg

β

)
m

β

(
1−

[
1− βt

m
+

1

2

(
βtm
m

)2

− ...
])

=
mgtm
β

tm ≃
2

1 + gm/βẏ0
.

The reach is then xm = x(tm).

2.2.4.20 Ex: Oscillations and static friction

A wooden block vibrates smoothly on a horizontal spring with an oscillation period
of T = 1.2 s. A second block of wood lies on top of the first, the coefficient of static
friction between the two blocks being µH = 0.25. The static friction is caused by the

D��

Figure 2.13: Oscillations and static friction.

surface roughness of the two blocks and depends on the mass m of the upper block
like FH = µHmg.
a. Will the wooden block slip, if the amplitude of the vibration is 1 cm?
b. Determine the largest allowable vibration amplitude for the wooden block not to
slip.

Solution: The following applies to the period and angular frequency of the harmonic
oscillation T = 2π

√
m/D and ω0 =

√
D/m,

x(t) = x0 cosω0t , ẋ(t) = −x0ω0 sinω0t , ẍ(t) = −x0ω2
0 cosω0t .

Hence,

ẍmax = −x0
D

m
= x0(2π/T )

2 .

a. With x0 = 1 cm we find ẍmax = 0.274m/s2. The static friction is FH = µHmg.
In the event of slipping, must apply,

F = mẍ > FH ⇒ ẍ > 0.25 · g ≃ 2.45m/s2 ≡ acrit .
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Hence, the block does not slip.
b. xmax = acrit(T/(2π))

2 = 8.95 cm. For x > 8.95 cm the block will slip.

2.2.4.21 Ex: Stokes’ friction

In viscous media (fluids, gases) a velocity-dependent force FR acts opposite to the
movement of a body. For laminar flows, FR = Cv with a constant C, which in the
case of a sphere of radius r has the value C = 6πηr, where η is the viscosity of the
medium.
a. Emperor Charlemagne (year 742-814) is upset, because the Saxon Duke Widukind
does let himself be subdued. Out of frustration, he threw his golden sphere, symbol
of his kingdom (radius r = 8 cm, density ρ = 3.19 g/cm3) into the Rhine. Establish
the equation of motion for the sphere in the water and solve it with the initial values
x(t = 0) = 0m, v(t = 0) = 0m/s. How fast does the golden sphere descend to the
bottom? Despise buoyancy. The viscosity of water is ηH2O = 1.7 · 10−3 Ns/m2.
b. If Charlemagne had launched the sphere from the Lorelei rock (height 125m above
the Rhine), how big would the difference in velocity be due to Stokes friction at the
moment of impact on the Rhine’s surface compared to the frictionless case? Solve the
equation of motion of the sphere with the viscosity of the air ηar = 1.7 · 10−5 Ns/m2.

Solution: a. The equation of motion is,

ma = −Cagv −mg .
Separating the variables,

dt = − mdv

Cagv +mg
.

Integrating,

t = − m

Cag
ln

Cagv +mg

Cagv0 +mg
,

or
v =

mg

Cag
e−Cagt/m − mg

Cag
.

With the initial speed v0 = 0 and the mass m = 4π
3 r

3ρ ≃ 6.8 kg we get the maximum
speed vmax = −mg/Cag ≃ 26 kg/s.
b. Without friction the speed of the sphere after a drop of 125m would be,

v =
√
2gh ≃ 50m/s .

With friction we need to calculate the fall time,

0 =
mg

Car

∫ tq

0

(e−Cartq/m − 1)dt = −m
2g

C2
ar

(
e−Cartq/m − Cartq

m

)
.

giving tq ≃ .... Now, we can calculate the final speed by,

v =
mg

Car
e−Cartq/m − mg

Car
≃ ... .
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2.2.4.22 Ex: Newton’s friction

A sports car feels air resistance of the form FR = −b · v2 as well as a rolling frictional
force independent on the velocity Frol. Derive an equation for the power needed to
maintain a high velocity v. Assume realistic values for the constants and the sports
car’s power, and calculate the maximum possible resulting speed. Justify your choice
of values!

Solution: The car’s engine must exert an accelerating force Fmot to keep the car
moving,

ma = Fmot − bv2 − Frol = 0 .

Let’s assume that the car has the power P = 100 kW. We get,

P = Fmotv = (bv2 + Frol)v .

We also assume that air resistance limits the speed to vmax = 300 km/h disregarding
rolling friction. Hence,

P ≃ bv3max ,
giving b ≃ 0.17 kg s/m. On the other hand, we can assume that the rolling friction
also limits the speed to vmax = 300 km/h neglecting air resistance. So,

P ≃ Frolvmax ,

giving Frol ≃ 1200N. We must now solve the second cubic equation.

2.2.4.23 Ex: Mass sliding with friction

What is the energy expenditure for a body of mass m sliding over and decelerated by
a horizontal plane with the dynamic friction coefficient µd.

Solution: The friction force is,

Fat = −µdN = −µdmg .

The work is,

W =

∫ sf

si

Fatds = Ekin,f − Ekin,i

−µdmg∆s =
m

2
v2 − m

2
v20 .

2.2.4.24 Ex: One-dimensional movement

The driver of a train moving with speed v1, sees, at a distance d ahead of him, a freight
train moving in the same direction with speed v2. He applies the brakes, transmitting
the acceleration −a to the train. Show that if: d > (v1 − v2)2/2a, there will be no

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_ZilioExc2_01.pdf


2.2. KINETIC AND POTENTIAL ENERGY 81

collision and if d < (v1 − v2)2/2a there will be a collision.

Solution: The trajectories of the two trains are described by,

x1 = v1t and x2 = d+ v2t− a
2 t

2 .

The condition for collision, x1 = x2, requires,

a
2 t

2 + (v1 − v2)t− d = 0 .

That is, the collision occurs at time,

t = − (v1 − v2)
a

±
√

(v1 − v2)2
a2

− 2d

a
.

There will be no collision when the root becomes imaginary, that is when d > (v1 −
v2)

2/2a.

2.2.4.25 Ex: One-dimensional movement

Drops of water fall from a shower onto the floor 2m below. The drops fall at reg-
ular intervals and when the first one hits the ground, the fourth is starting to fall.
Determine the position of all the drops at the instant when one of them hits the floor.

Solution: The time for a drop to fall to the ground is given by,

h =
g

2
∆t24 .

For 4 drops, time is divided by 3. So,

y1 = h− g

2

(
3∆t4
3

)2

= h− 9h

9
= 0m , y2 = h− g

2

(
2∆t4
3

)2

= h− 4h

9
= 10

9 m ,

y3 = h− g

2

(
1∆t4
3

)2

= h− h

9
= 16

9 m , y4 = h− g

2

(
0∆t4
3

)2

= h = 2m .

2.2.4.26 Ex: One-dimensional movement

The position of a particle that moves along the x-axis depends on time according to
the equation: x = at2 − bt3, x in cm, t in s.
a. At what point is x maximum?
b. What is the speed and at what moment is it zero?
c. What is the acceleration and at what time is it zero?

Solution: See [1435].
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2.2.4.27 Ex: One-dimensional movement

A plane with speed v0 lands on an aircraft carrier with negative acceleration a =
−A
√
t. What is the minimum required length of the runway?

Solution: The plane’s speed at the end of the runway is given by,

v = v0 +

∫ tf

0

a dt = v0 −A
∫ tf

0

t1/2 dt = v0 −A
2

3
t
3/2
f = 0 .

The position is, inserting tf =
(
3v0
2A

)2/3
,

x =

∫ tf

0

v dt =

∫ tf

0

(
v0 −A

2

3
t3/2

)
dt = v0tf −A

2

3

2

5
t
5/2
f =

3v0
5

(
3v0
2A

)2/3

.

2.2.4.28 Ex: One-dimensional movement

Two bodies are located at the origin of the x-axis when t = 0 s. Body A has a constant
speed of 2m/s. Body B is initially at rest but subject to a constant acceleration of
1m/s2.
a. Represent schematically, in the same graph, the positions of bodies A and B as a
function of time.
b. What is the time of collision?
c. What is the position x when the collision will occur?
d. What is the speed of body B at the time of collision?
e. At what time will the velocities of the two bodies be equal?

Solution: a. The trajectories of the bodies are given by,

xa = vat

xb =
a

2
t2 .

b. They meet when xa = xb, that is, at time te =
2va
a = 4 s.

c. The position of the bodies at this time is xa(te) = vate = 8m.
d. The speed of body B is vb = ate = 4m/s.
e. From the condition va = vb = atv we obtain tv =

va
a = 2 s.

2.2.4.29 Ex: Cylinder rolling without sliding

Consider a cylinder of radius R rolling without sliding on a horizontal plane. The
center of mass of the cylinder is accelerated.
a. What is the angular acceleration of the cylinder?
b. What is the rotation angle β of the cylinder as a function of time?

Solution:
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2.2.4.30 Ex: Relative velocity of rotating bodies

Two bodies A and B are in uniform circular movements of concentric trajectories
with radii ra and rb and angular velocities ωa and ωb. Determine the relative speed
between the two bodies.

Solution:

2.2.4.31 Ex: Acceleration of a sliding body

Determine the acceleration of a body that slides along the thread of a screw with step
h and radius R. Disregard friction and consider the body to have started from rest.

Solution:

2.2.4.32 Ex: Ballistics

To launch a ball from ground over a wall of height H located at a distance S (see
figure), what is the lowest initial speed with which the ball has to be launched?

Solution:

2.2.4.33 Ex: Ballistics

A bullet is fired from a cannon with speed v0. Determine the geometric region where
the bullet will certainly not hit the ground.

Solution:

2.2.4.34 Ex: Ballistics

An inclined plane forms an angle α with the xy-plane, as shown in the figure. A body
is launched with speed v0, forming an angle with the y-axis. Disregarding friction
calculate: xmax, zmax and the time it takes for the projectile to return to the y-axis.

Solution:

2.2.4.35 Ex: Ballistics

A stone is launched at an initial speed of 20m/s. Knowing that it stayed for 2 s in
the air, calculate:
a. the launch angle (with respect to the horizontal), b. the maximum height reached,
c. the reach,
d. another launch angle for which the stone will have the same range. (In this case
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the time will be different from 2 s).

Solution:

2.2.4.36 Ex: Translation with / without friction

A body is moved with speed v = 5m/s over a horizontal plane without friction. Sud-
denly he encounters another plane (also without friction) inclined by an angle θ = 30◦

and having a height of H = 0.8m, as shown in the figure.
a. At what distance d from the end of the inclined plane will the body fall?
b. What is the maximum height that the body will reach

Solution:

2.2.4.37 Ex: Collision

A small body is launched from the origin with speed v0 = 100/
√
3m/s under an angle

θ = 60◦ with the horizontal. Another body is launched 1 second later, at the same
speed v0, but horizontally and from a height H, as shown in the figure. Suppose there
is a collision between the two bodies and that g = 10m/s2. a. At what time does the
collision occur?
b. How high should H be for the collision to occur?
c. What are the x and y coordinates of the collision?

Solution:

2.2.4.38 Ex: Ballistics

A small body is launched from the origin with speed v0 under an angle θ with the
horizontal. Another body is launched with the same speed v0, but horizontally and
from a height H, as shown in the figure. What should be the value of H such that
they reach the same point on the x-axis?

Solution:

2.2.4.39 Ex: Ballistics

a. Show that the movement of a projectile launched with v0 and θ is described by the

parabola: y(x) =
v20y
2g −

g
2

(
x
v0x
− v0y

g

)2
, with v0x = v0 cos θ and v0y = v0 sin θ.

b. Find the angle α that the trajectory forms with the horizontal for any x (tanα =
dy/dx),
c. Find xmax corresponding to the top of the trajectory (tanα = 0).
d. Find the reach R by letting α = π − θ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_ZilioExc3_08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_ZilioExc3_09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_ZilioExc4_10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_ZilioExc4_11.pdf


2.2. KINETIC AND POTENTIAL ENERGY 85

Solution:

2.2.4.40 Ex: Coupled masses

a. Find the angle θ for the left figure so that the system remains at rest. Disregard
friction.
b. Find the ratio between the masses M1 and M2 such that the system remains at
rest in the right figure. Disregard friction.
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π=ω  e h = 100 m obtemos   x ≈ 2 cm.  

Exercícios 

1 - Encontre o ângulo θ  da Fig. 4.33 tal que o sistema permaneça em repouso. 

Despreze o atrito. 

2 - Encontre a razão entre as massas M1 e M2 tal que o sistema permaneça em 

repouso na Fig. 4.34. Despreze o atrito. 

 

 

 

 

 

 

Fig. 4.33                                                              Fig. 4.34 

3 - Encontre a aceleração do corpo de 2 Kg da Fig. 4.35. 

4 - Encontre a massa do corpo A tal que a aceleração do corpo B da Fig. 4.36 

é nula.  

 

 

 

 

 

  

Fig. 4.35                                                           Fig. 4.36 

θ 

2 Kg 

1 Kg 

30o 

M1 
M2 

1 Kg 
2 Kg 

5 Kg 

A 2 Kg B 

16 Kg 

fixo 

60o 

Figure 2.14: Coupled masses.

Solution: a. Equilibrium,

a1 = −m1g ≡ a2 = −m2g sin θ .

Hence,

θ = arcsin
m1

m2
= arcsin

1

2
= 30◦ .

b. Equilibrium
a1 = −m1g sin θ1 ≡ a2 = −m2g sin θ2 .

Hence,
m2

m1
=

sin θ1
sin θ2

=
1√
3
.

2.2.4.41 Ex: Coupled masses

a. Find the acceleration of the 2 kg body shown in the left figure.
b. Find the mass of body A such that the acceleration of body B in the right figure
is zero.

Solution: a. We know that the acceleration of the pulley, a12 = −a5, is given by,

a5 = −gm5 − (m1 +m2)

m5 + (m1 +m2)
= −g

4
.

Also,

a2 = (−g + a5)
m2 −m1

m1 +m2
− a5 = −g

6
.
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3 - Encontre a aceleração do corpo de 2 Kg da Fig. 4.35. 

4 - Encontre a massa do corpo A tal que a aceleração do corpo B da Fig. 4.36 

é nula.  
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A 2 Kg B 

16 Kg 

fixo 

60o 

Figure 2.15: Coupled masses.

This does not agree with the template [1435]: a2 = 2
15g.

b. We know that the acceleration of the pulley, aAB = −a16, is given by,

(mA +mB +m16)a16 = (mA +mB)g .

Hence,

a16 =
mA +mB

mA +mB +m16
g .

Also,

0 = aB = (−g + a16)
mB −mA

mB +mA
− a16

or equivalently,

−2a16 = aA = (−g + a16)
mA −mB

mB +mA
− a16 .

Inserting in the equation for aB the expression for a16, we get

0 = −g−m16mA +m16mB +m2
A + 2mAmB +m2

B

(mA +mB +m16)(mA +mB)

which is only satisfied when the numerator is zero:

mA =
m16

2
−mB ±

√
m16

(m16

4
− 2mB

)
= 6kg .

This does not agree with the template [1435]: mA = 4kg.

2.2.4.42 Ex: Frictionless pulley

A string of length L and linear mass density λ passes through a pulley without fric-
tion. It is released from rest, with a length x pending on one side and L − x on the
other.
a. determine the acceleration as a function of x;
b. for which situation is the acceleration zero?

Solution: a. We have,

a =

∫ x
0
λds−

∫ L−x
0

λds
∫ L
0
λds

g =

(
2x

L
− 1

)
g .
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b. x = L
2 .

2.2.4.43 Ex: Coupled bodies

In the system shown in the figure, find:
a. the acceleration of the total system and
b. the force on the rope at point A.

Solution:

2.2.4.44 Ex: Coupled bodies

N bodies connected to each other by massless strings are pulled on a ramp by means
of a force F . Calculate the tension in the rope connected to the i-th body.

Solution:

2.2.4.45 Ex: Coupled bodies

Consider the conical pendulum shown in the figure, where the string connecting the
mass M to point O has no mass.
a. find the angle θ as a function of the velocity of mass M ,
b. find the tension in the string at point O.

Solution:

2.2.4.46 Ex: Coupled bodies without friction

A body of mass M is hung by an ideal string over a triangular block of angle θ, as
shown in the figure. In the absence of friction between the blocks, we ask what is
the maximum acceleration that can be given to the system such that the body M
remains in contact with the triangular block. In this case, what is the tension in the
rope? If the system is moving at a constant speed, what is the value of the tension
in the rope and of the normal?

Solution:

2.3 Friction

Stokes friction Ffrc ∝ −v and Newton friction Ffrc ∝ −v2.
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2.3.0.1 Ex: Coupled masses with friction

In the system exhibited in the figure body A slides on a surface with a friction coef-
ficient µ. The ropes and pulleys have no mass.
a. find the accelerations of blocks A and B;
b. find the tension in the rope connected to body A.
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5 - No sistema da Fig. 4.37 o corpo A desliza sobre uma superfície com 

coeficiente de atrito µ. As cordas e polias não têm massa. 

a) encontre as acelerações dos blocos A e B; 

b) encontre a tensão na corda ligada ao corpo A. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.37 

6 - Dado o ângulo θ de um plano inclinado sem atrito, qual deve ser a 

aceleração aR tal que o bloco de massa m mostrado na Fig. 4.38 não 

deslize?  

 

 

 

 

 

Fig. 4.38 

7 - Se o plano inclinado do problema anterior tiver um coeficiente de atrito µ, 

qual são as acelerações máxima e mínima tal que o bloco não deslize? 

8 - Uma corda de comprimento L e densidade linear de massa λ passa por uma 

polia sem atrito. Ela é solta do repouso, estando um comprimento x 

pendente de um lado e L-x do outro. 

A 

B 

M1 

M2 

µ 

θ 

m 

Ra
r

Figure 2.16: Coupled masses with friction.

Solution: a. We use the energy conservation law:

M1

2
v21 +

M2

2
v22 +M2gx2 = −µM1gx1 ,

with the derivative,

M1

2
2v1v̇1 +

M2

2
2v2v̇2 +M2gẋ2 = −µM1gẋ1 .

The geometry of the problem shows, that x1 = −2x2. Therefore,

M1

2
2v1v̇1 +

M2

4
v1v̇1 −

M2

2
gẋ1 = −µM1gẋ1

M1a1 +
M2

4
a1 −

M2

2
g = −µM1g .

Hence,

a1 = 2a2 = 2g
M2 − 2µM1

M2 + 4M1
.

b. The stresses are,

T2 =
1

2
M2(g − a2) =

1

2
M2

(
g − gM2 − 2µM1

M2 + 4M1

)
= gM1M2

2 + µ

M2 + 4M1

T1 = T3 = 1
2T2 .
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where T3 is the tension in the rope between the pulleys.
Alternatively, we can establish the equations of motion,

M1a1 = −Fat + T1

M2a2 =M2g − T2
Fat = µMg

a1 = 2a+ 2 ,

This system of equations can be solved by giving the same results.

2.3.0.2 Ex: Inclined plane with and without friction

a. Given the angle θ of an inclined plane without friction, what is the acceleration aR
such that the block of mass m shown in the figure does not slide?
b. If the inclined plane had a friction coefficient µ, what would be the maximum and
minimum accelerations such that the block does not slide?

 
 

 

 

 

 

 

As leis de Newwton 

 

 
S. C. Zilio e V. S. Bagnato                                                         Mecânica, calor e ondas 
 
 

80

5 - No sistema da Fig. 4.37 o corpo A desliza sobre uma superfície com 

coeficiente de atrito µ. As cordas e polias não têm massa. 

a) encontre as acelerações dos blocos A e B; 

b) encontre a tensão na corda ligada ao corpo A. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.37 

6 - Dado o ângulo θ de um plano inclinado sem atrito, qual deve ser a 

aceleração aR tal que o bloco de massa m mostrado na Fig. 4.38 não 

deslize?  

 

 

 

 

 

Fig. 4.38 

7 - Se o plano inclinado do problema anterior tiver um coeficiente de atrito µ, 

qual são as acelerações máxima e mínima tal que o bloco não deslize? 

8 - Uma corda de comprimento L e densidade linear de massa λ passa por uma 

polia sem atrito. Ela é solta do repouso, estando um comprimento x 

pendente de um lado e L-x do outro. 

A 

B 

M1 

M2 

µ 

θ 

m 

Ra
r

Figure 2.17: Inclined plane.

Solution: a. Without friction, the projections of the forces on the inclined axis must
cancel:

aR cos θ = g sin θ .

In this case, N = mg cos θ.
b. Along the inclined axis the balance of forces demands,

mg sin θ −maR cos θ ∓ µeN = 0 ,

where the upper sign indicates an upward frictional force (case of sliding downward)
and the lower sign indicates a downward frictional force (case of sliding upward). In
the normal direction to the inclined axis we have,

−mg cos θ +maR sin θ +N = 0 .

Hence,
mg sin θ −maR cos θ ∓ µemg cos θ ± µemaR sin θ = 0 ,

which gives,

aR = g
sin θ ∓ µe cos θ
cos θ ∓ µe sin θ

.
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2.3.0.3 Ex: Static friction

a. The system shown in the figure is friction-free. Determine the value of the force F
such that body A does not descend or rise.
b. If there were a static friction µ between the surfaces of the blocks, what would be
the maximum and minimum values of forces such that body A does not fall or rise?

Solution:

2.3.0.4 Ex: Viscous medium

A body with initial velocity v0 penetrates a medium that produces a viscous force
given by (a) F = −b√v and (b) F = −cv2. Determine the maximum distance that
the body penetrates into this medium for both cases.

Solution: a. The equation of motion,

ma = m
dv

dt
= −b√v ,

can be written,

v−1/2dv = − b

m
dt .

Integration, ∫ v

v0

v−1/2dv = − b

m

∫ t

0

dt ,

gives the velocity,

v =

(
v
1/2
0 − b

2m
t

)2

.

The body stops, whenv = 0, isto é t0 = 2m
b v

1/2
0 . At this moment, the path taken is,

s0 =

∫ t0

0

vdt = v0t0 − v1/20

b

2m
t20 +

b2

12m2
t30 =

2

3
v

3
2
0

m

b
.

b. The equation of motion,

ma = m
dv

dt
= −bv2

can be written,

v−2dv = − b

m
dt .

Integration, ∫ v

v0

v−2dv = − b

m

∫ t

0

dt

gives the velocity,

v =
1

v−10 + b
m t

.
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Using the substitution,

u = v−10 +
b

m
t with

du

dt
=

b

m
.

The path taken is,

s =

∫ t

0

1

v−10 + b
m t

dt =
m

b

∫ v−1
0 + b

m t

v−1
0

du

u
=
m

b
ln

(
1 + v0

b

m
t

)
.

That is, the body penetrates the medium without limitation.

2.3.0.5 Ex: Inclined plane with friction

The system shown in the figure employs pulleys without mass. Find the acceleration
of each block and the tension in the string.

Solution:

2.3.0.6 Ex: Coupled bodies subject to friction

In the system shown in the figure, the block is in contact with the horizontal surface
without friction and subject to a force F . There is a static friction µ between this
block and block A in such a way that there is no relative movement between the three
blocks forming the system. Calculate: (a) The angle, (b) The tension in the string,
and (c) the minimum µ.

Solution:

2.3.0.7 Ex: Body subject to friction

A block of mass M rests on a table with a static friction coefficient µe. A force F
is applied to the block so as to form an angle θ with the horizontal, as shown in the
figure. Assuming that the block is always on the verge of sliding,
a. what is the angle θ that allows the applied force to be minimal, and
b. in this case, what will be the value of the force Fmin?

Solution:

2.3.0.8 Ex: Coupled bodies with friction

A block of mass M1 is on top of another block of mass M2, which slides over the
floor, as shown in the figure. The static friction between the two blocks is µe and
the kinetic friction between block 2 and the ground is µc. a. Determine the maximum
force F that can be applied to block 2 without block 1 sliding over it.
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b. If the force is increased such that M1 starts to slide, and the kinetic friction be-
tween the blocks is also µc, what will be the acceleration of each mass?

Solution:

2.3.0.9 Ex: Coupled bodies with friction

A block of mass M is located on top of another block of the same mass, on a flat
plane inclined by an angle θ, as shown in the figure. The static friction between the
two blocks is µ, and between the lower block and the plane it is zero.
a. Determine the maximum force F that can be applied to the upper block without
sliding over the lower block.
b. In this case, what will be the acceleration of the total system?

Solution:

2.3.0.10 Ex: Inclined plane with friction

A body of mass m is located on a triangular block of angle θ and mass M , as shown
in the figure. There is no friction between the triangular block and the ground, and
static friction coefficient between the two blocks is µ.
a. What is the maximum horizontal force F that can be applied to the block m such
that it does not slide over the wedge?
b. What is the value of normal in this situation?
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20 - Um corpo de massa m encontra-se sobre um bloco triangular de 
ângulo θ e massa M, conforme mostra a Fig. 4.48. Não existe 
atrito entre o bloco triangular e o chão, e o atrito estático entre os 
dois blocos é µ. Pergunta-se: a) qual a força horizontal máxima F 
que pode ser aplicada ao bloco m tal que ele não deslize sobre a 
cunha? b) qual é o valor da normal nesta situação?  

 

 

 

 

 

 

                             Fig. 4.48 
 

 

 

 

 

 

M 

F 

θ 

m 

Figure 2.18: Inclined plane.

Solution: a. We have the following equations. The acceleration of the system is
(M +m)a = F , the friction in the static limit is Fat = µeN , and the mass weight m
produces a normal tension N and a friction force Fat, such that,

N cos θ − Fat sin θ −mg = 0 .

The tangential force is
Ft = F cos θ −mg sin θ − Fat ,

and the normal force is,

Fn = −F sin θ −mg cos θ +N .

Thus, the horizontal acceleration of the mass m is,

ma = Ft cos θ−Fn sin θ = (F cos θ−mg sin θ−Fa) cos θ−(−F sin θ−mg cos θ+N) sin θ ,
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which gives,

F =
M +m

M
(µe + tan θ)N cos θ .

Solving the equation of balance between weight and friction for N and inserting into
the equation above, we finally find,

F = mg
M +m

M

tan θ + µe
1− µe tan θ

.

b. Solving the first equation for N , we obtain,

N =
mg

cos θ − µe sin θ
.

2.3.0.11 Ex: Potential energy

A body is accelerated uniformly from rest until it reaches the speed vf in time tf .
Show that the instantaneous power delivered to the body is:

P (t) = mv2f
t

t2f
.

Solution: The final speed is,
vf = atf .

With that, we can calculate the instantaneous power:

Ẇ =
d

dt

∫ s

0

Fds = F
d

dt
s = F

d

dt

a

2
t2 = Fat =

mv2f
t2f

t .

2.3.0.12 Ex: Body subject to friction

Consider the system sketched in the figure, where the force F is constant and the
planes have a dynamic friction coefficient µ. Calculate the total work performed by
the forces acting on the system when it moves an infinitesimal distance ∆x.

Solution:

2.3.0.13 Ex: Lennard-Jones potential

Consider the Lennard-Jones potential commonly used as the interaction energy be-
tween two atoms forming a molecule:

U(r) = C

[(r0
r

)12
− 2

(r0
r

)6]
.
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a. Draw U(r) as a function of r.
b. Show that the minimum energy (equilibrium position) is at r0.
c. Find the force between atoms as a function of r.
d. What is the energy required to separate the atoms that form the molecule?

Solution: b. The derivative of the potential must zero:

0 =
dU(r)

dr
= C

d

dr

[(r0
r

)12
− 2

(r0
r

)6]
= C

[−12
r

(r0
r

)12
− 2
−6
r

(r0
r

)6]
.

c. The force is,

F = −dU(r)

dr
= 12C

[−1
r

(r0
r

)12
+

1

r

(r0
r

)6]
.

d. The energy is,

Eion =

∫ ∞

r0

Fdr = U(r0)− U∞ = C .

2.3.0.14 Ex: Pendulum

A pendulum of mass m and length l is released from the point θ = 60◦ from rest, as
shown in the figure. Upon reaching the vertical position θ = 0◦, the pendulum string
encounters a nail fixed at a distance d from the ceiling. Find the minimum distance
d for the mass m to rotate around the nail.

Solution:

2.3.0.15 Ex: Body in a circular truss

A body of mass m moves within a vertical circular rail of radius R (see figure). When
m is at the lowest position its speed is v0.
a. What is the minimum value of v0 such that the body goes through the entire track?
b. If v0 were 78% of the value determined in (a), the body would go up the rail up the
point P, where it will lose contact with the rail. Find the coordinate θ of this point.

Solution:

2.3.0.16 Ex: Body in a potential

A body of mass M , subject to a potential U(x) = − cosπx, is released at the origin
(x = 0) with speed v0.
a. Sketch the potential in the region −1 ≤ x ≤ 1.
b. Find the force F (x) acting on the body.
c. What is the maximum speed v0 that can be imparted to the body in such a way
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that it is confined to the region −1 ≤ x ≤ 1?

Solution:

2.3.0.17 Ex: Roller coaster with looping

A mass m slides without friction along the roller coaster shown in the figure. The
circular part has radius R and the mass departs from rest at point B, at the height h
measured with respect to relation to the base of the tracks.
a. What is the kinetic energy of m at the point P?
b. What is the acceleration of m at point P assuming that the mass remains on the
track?
c. What is the lowest value of h for m to perform the circular motion?
d. For a value of h greater than this minimum, write down the expression for the
normal force exerted by the track on the mass.

Solution:

2.3.0.18 Ex: Body on an inclined plane

A 2 kg body is released on an inclined plane from a point where it elongates by 4m
a spring having the constant spring constant of k = 100N/m. The spring is fixed
parallel to the plane, inclined by θ = 30◦ (see figure).
a. Calculate the maximum compression of the spring assuming that its mass be neg-
ligible;
b. Calculate the maximum compression of the spring when the inclined plane exerts
friction, the friction coefficient between it and the body being equal to 0.2);
c. In the case (b), what is the height that the body reaches on its way back upward?

Solution:

2.3.0.19 Ex: Bodies climbing a slope

Two bodies propagating at the same speed v on a horizontal plane have a distance of
d. After having climbed a high slope h, what will be the distance between them?
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10 - Um bloco desliza com velocidade v0 sobre um plano horizontal sem atrito. 

Subitamente ele encontra uma rampa com ângulo de inclinação θ e 

coeficiente de atrito dinâmico µ. Qual altura máxima H o bloco sobe na 

rampa? 

11 - Um corpo de massa M é preso por uma corda de comprimento L e pode 

rodar em torno do ponto O, como indicado na Fig. 5.19. Qual é a mínima 

velocidade que o corpo pode ter ao passar pelo plano horizontal de forma 

que ele fique em movimento circular? 

 

 

 

 

          Fig. 5.18                                                  Fig. 5.19 

12 - Um corpo colocado exatamente na vertical de uma superfície cilíndrica 

sem atrito, começa a deslizar com velocidade v0, conforme mostra a Fig. 

5.20. (a) Encontre sua velocidade em função do ângulo θ. (b) Encontre a 

força normal como função do ângulo θ. (c) Determine o ângulo θ para o 

qual corpo se desprende do cilindro. 

13 - Um corpo de massa m é preso a uma mola vertical, de constante de mola 

k, como mostra a Fig. 5.21. O corpo é solto a partir do repouso, da posição 

y=0, sendo que nesta situação a mola não está distendida. a) Escreva a 

energia potencial como função de y (tome o zero de energia potencial 

B 
m 

h 

R 

P 

30 
o 

4m 

k 

m 

Figure 2.19: Bodies climbing a slope.
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Solution: The velocity of the bodies in the upper plane, vs, is given by,

m

2
v2 − m

2
v2s = mgh .

As the trajectories of the bodies are the same, we have,

ds =
vs
v
d = d

√
1− 2gh

v2
.

2.3.1 Exercises

2.4 Many-body systems

2.4.1 Balance of forces

2.4.2 Center-of-mass

2.4.3 Collisions and conservation of linear momentum

2.4.3.1 Binary elastic collisions and molecule formation

Binary collisions between atoms are always elastic. To see this, we set up the conser-
vation laws for energy and momentum allowing for an inelastic lost of kinetic energy
∆E:

p2i1
2m

+
p2i2
2m

=
p2f1
2m

+
p2f2
2m

+∆E and pi1 + pi2 = pf1 + pf2 . (2.32)

Without loss of generality we may transform in to the center-of-mass system, where
p′i1 + p′i2 = 0 = p′f1 + p′f2. Inserting this into the law of energy conservation,

m∆E = p′2i1 − p′2f1 . (2.33)

So, obviously, if no energy can be dissipated, e.g. into internal atomic excitations, the
kinetic energy must remain unchanged.

Without loss of generality we may transform into the inertial system, where p′′i2 =
0. Inserting this into the conservation laws,

p′′2i1
2m

=
p′′2f1
2m

+
p′′2f2
2m

+∆E and p′′i1 = p′′f1 + p′′f2 . (2.34)

Now substituting pi1 in the energy conservation law,

m∆E = p′′f1 · p′′f2 . (2.35)

So, if no energy can be dissipated, the atoms move in orthogonal directions after the
collision.
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Can two colliding atoms form a molecule? The laws of energy and momentum
conservation require,

p2
1

2m
+

p2
2

2m
=

p2
12

m
+∆E and p1 + p2 = p12 . (2.36)

In the center-of-mass inertial system, we have,

2
p′′1
2m

= ∆E and p′1 + p′2 = 0 = p′12 . (2.37)

That is, a molecule can only be formed if the collision is inelastic (∆E ̸= 0), which is
only possible if there is an excited internal state having exactly the energy ∆E.

2.4.4 Exercises

2.4.4.1 Ex: Mass hanging at a gallow

The mass M is hanging from a string attached to a vertical mast and attached to a
boom, so that the angle becomes α = 90◦, as indicated in the figure. With h = 1m,
l = 1m and m = 1kg, calculate the tension in the wire.

Figure 2.20: (a) Mass hanging at a gallow. (b,c) Alternative force diagrams.

Solution: The balance of forces requires for the tensions acting on the wire (T )
and the boom (N),

0 = T sin θ1 −N sin θ2

mg = T cos θ1 +N cos θ2 .

Multiplying the first equation by cos θ2 and the second by sin θ2 and adding the results,

T =
mg sin θ2

sin θ2 cos θ1 + sin θ1 cos θ2
.

For arbitrary triangles hold the trigonometric relationships,

l2 + h2 − 2hl cos θ1 = d2 and d2 + h2 − 2hd cos θ2 = l2 .

Inserting in the above equation for T we get,

T = mg

√
1−

(
d2+h2−l2

2hd

)
)2

l2+h2−d2
2hl

√
1−

(
d2+h2−l2

2hd

)2
+ d2+h2−l2

2hd

√
1−

(
l2+h2−d2

2hl

)2 = mg
l

h
= 9.81N .
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2.4.4.2 Ex: Three blocks

Determine the equilibrium situation of the system sketched in the figure.

Figure 2.21: Scheme of the system.

Solution: The solution is,

(m1 +m2 +m3)a = m1g ±m2g −m3g .

2.4.4.3 Ex: Balance of forces on the inclined plane

One body with the mass 8 kg and a second body with the mass 10 kg connected by
a wire slide without friction each one on an inclined plane. The wire runs without
friction over a block, as shown in the diagram.
a. In which direction will the bodies move?
b. Calculate the acceleration of the bodies.
c. Now the two bodies are replaced by other bodies with the masses m1 and m2, such
that there is no more acceleration, that is, the bodies are at rest. What should the
ratio of the mass m1 and m2 be?

40° 50°

Figure 2.22: Inclined plane.

Solution: a. The 10 kg body pulls the 8 kg body over the block.
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b. The forces acting on the bodies ml and mr are,

(ml +mr)a = mlg sinαl −mrg sinαr

a = g
ml sinαl −mr sinαr

ml +mr
= g

8 sin
(
π 40

180

)
− 10 sin

(
π 50

180

)

8 + 10
= 1.37m/s

2
.

c. Equilibrium is reached when,

0 = g
ml sinαl −mr sinαr

ml +mr

ml

mr
=

sinαr
sinαl

=
sin
(
π 50

180

)

sin
(
π 40

180

) ≃ 1.15 .

2.4.4.4 Ex: Balance of forces on the arc

Two spheres of mass m1 and m2 = 2m1 connected by a rope of length L are located
on both sides of a wall with a semicircular cross-sectional area (see figure). The di-
ameter of the circular arc is 2R.
a. At what horizontal distance x from the center of the wall must the spheres be in

R

m
m

2

1

x

z

h

d

m
m

1

2

x

z

Figure 2.23: Balance of forces on the arc.

order to avoid acceleration? Assume L = πR/2.
b. Set up the equation of motion.
c. Now assume that the rope is so short that the sine expressions can be replaced by
their first-order Taylor expansion. Solve the equation of motion in this approxima-
tion. Assume that at t = 0 the balls are the same height.

Solution: a. The forces acting on the spheres are due to gravity Fk(x) = mkg sinαk,
where the angles αk are taken with respect to the vertical. With the boundary condition
α1 + α2 = L

R is the balance equation is,

m1g sinα1 = m2g sinα2 ⇒ sinα1 =
m2

m1
sin

(
L

R
− α1

)
⇒ tanα1 = 2 =

1

tanα2
.

The angles between the vertical and the locations of the masses are α1 = 63.4◦ and
α2 = 26.6◦. The distances are x1 = cosα1 = 0.45R resp. x2 = 0.89R.
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b. The acceleration force is (m1 +m2)a(t) = (m1 +m2)Rα̈1(t). Hence, the equation
of motion is,

(m1 +m2)Rα̈1(t) = m1g sinα1(t)−m2g sin

(
L

R
− α1(t)

)

⇒ α̈1(t)−
g

3R
sinα1(t) +

2g

3R
sin

(
L

R
− α1(t)

)
= 0 .

c. From the approximate equation of motion, α̈1(t)− g
Rα1(t) = − 2gL

3R2 one obtains the
characteristic equation with the ansatz, α1 = Aeλt + C,

λ2Aeλt − g

R

(
Aeλt + C

)
= −2gL

3R2
.

It follows C = 2L
3R and λ = ±

√
g
R . The solution is now, α1 = Ae

√
g
R t+Be−

√
g
R t+ 2L

3R .

From the initial condition α1(0) =
2L
3R follows,

α1 = 2 sinh

√
g

R
+

2L

3R
.

2.4.4.5 Ex: Relative and center of mass coordinates

Consider two mass m1 and m2 at the positions r1 and r2.
a. Calculate the vector r of the center of mass and express the vectors r1 and r2 as a
function of the vector r and the relative vector r ≡= r2 − r1.
b. Show that the vector is on the line connecting the masses m1 and m2. (Help:
Parametrize the direct path from r1 to r2 and show, that r is a point on that path.)
c. Suppose that there are no external forces acting on the two masses and that only
the gravitational force between them is present. Also suppose that each mass moves
on a circle around the center of mass. Assume equilibrium between the gravitational
attraction and the centripetal force for the two masses. Compare with the corre-
sponding equation of motion for the relative coordinate (reduced mass).
d. Consider as an example the two-body system composed of the Earth and the Moon
(mE = 5.974× 1024 kg, mM = 7.35× 1022 kg, r = 384000 km). What is the distance
d from the center of mass of this system from the center of the Earth?
e. What is the error in calculating the period T of a revolution of the Moon around
the Earth, when the Earth’s movement is neglected, that is, when the origin of the
coordinates is identified with the center of the Earth?

Solution: a. The total momentum is additive. We define the vector of the center
of mass r, such that P =M ṙ = (m1 +m2)ṙ ≡ m1ṙ1 +m2ṙ2 = p1 + p2. Then,

r =
m1r1 +m2r2

M
.

With r = r2 − r1 the individual coordinates are expressed by,

r1 = r− m2

M
r and r2 = r+

m1

M
r .
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b. The connecting line is given by,

r(s) = r1 + s(r2 − r1) .

For s = m2/M we obtain,

r(s) =
(
1− m2

M

)
r1 +

m2

M
r2 =

m1

M
r1 +

m2

M
r2 = r .

c. The centripetal force on m1 respectively m2 is,

m1ω
2|r1 − r| = Gm1m2

r2
resp. m2ω

2|r2 − r| = Gm1m2

r2
.

After replacing the individual coordinates,

m1m2

M
ω2r =

Gm1m2

r2
.

Follows the equation of motion,

φ̇ = ω2 =
GM

r3
.

The equation of motion of the relative coordinate is, µd
2r
dt2 = −Gm1m2

r3 r, with reduced
mass µ = m1m2/M . The derivatives of the position vector are,

r = rêr(t) = rêx cosφ(t) + rêy sinφ(t)

dr

dt
= −rφ̇êx sinφ+ rφ̇êy cosφ = −rφ̇êφ

d2r

dt2
= −rφ̇2êx cosφ− rφ̇2êy sinφ− rφ̈êx sinφ+ rφ̈êy cosφ = −rφ̇2êr .

So the equation of motion,µrφ̇2 = Gm1m2

r2 is identical with the one derived above.
d. For the Earth-Moon system, the modulus of the center of mass vector is, according
to (a), with m1 = mE and m2 = mM

|r− rE | =
mM

M
r =

7.35× 1022

5.974× 1024 + 7.35× 1022
× 384000 km = 4667 km .

Thus, it stays within the volume of the Earth.

e. The rotation frequency is, following (c) ω =
√

GM
r3 . The approximated rotation

frequency is given by m2Mω
2
nr =

GmEmM

r2 . Hence, ωn =
√

GmE

r3 . That is,

ωn
ω

=

√
mE

M
=

√
5.974× 1024

5.974× 1024 + 7.35× 1022
= 0.9939 .

The error is 0.6%.
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2.4.4.6 Ex: Why Paddy’s Not at Work Today (Pat Cooksey)

Identify the movement described in the following song and calculate the total time
of the event assuming that each floor is 3m high, Paddy weighs 70 kg and the pile of
bricks 100 kg.
Dear Sir I write this note to inform you of my plight
And at the time of writing I am not a pretty sight
My body is all black and blue, my face a deathly gray
I write this note to tell why Paddy’s not at work today

While working on the fourteenth floor, some bricks I had to clear
And to throw them down from off the top seemed quite a good idea
But the gaffer wasn’t very pleased, he was an awful sod
He said I had to cart them down the ladder in me hod.

Well clearing all those bricks by hand, it seemed so very slow
So I hoisted up a barrel and secured the rope below
But in my haste to do the job, I was too blind to see
That a barrel full of building bricks is heavier than me.

So when I had untied the rope, the barrel fell like lead
And clinging tightly to the rope I started up instead
I took off like a rocket and to my dismay I found
That half way up I met the bloody barrel coming down.

Well the barrel broke my shoulder as on to the ground it sped
And when I reached the top I banged the pulley with me head
I held on tight, though numb with shock from this almighty blow
And the barrel spilled out half its load fourteen floors below

Now when those building bricks fell from the barrel to the floor
I then outweighed the barrel so I started down once more
I held on tightly to the rope as I flew to the ground
And I landed on those building bricks that were scattered all around.

Now as I lay there on the deck I thought I’d passed the worst
But when the barrel reached the top, that’s when the bottom burst
A shower of bricks came down on me, I knew I had no hope
In all of this confusion, I let go the bloody rope.

The barrel being heavier, it started down once more
And landed right on top of me as I lay on the floor
It broke three ribs and my left arm, and I can only say
That I hope you’ll understand why Paddy’s not at work today.

Solution:
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2.4.4.7 Ex: Superposition of forces

A climber wants to climb a mountain. He weighs with all its equipment 90 kg. He
has a cable with a tensile strength of 100 kg. For safety reasons, he uses two ropes
fixed at a distance of 10m at the same height of the wall. He pulls upwards in a way
to be always at an equal distance from the two fixing points. Will the ropes hold or
will he fall? If so, at what point?

Solution: Be d = 10m the distance from the fixing points and −h the height dif-
ference between the fixing point and the climber. The force due to the climber’s weight
is,

G = −mgêy = F+ + F− .

On both cables the acting forces are F± = x



∓d/2
−h
0


. From this follows x = mg

2h .

The value of the stresses acting on the cables must be less than Fmx = 100 kg, so
F± = mg

2h

√
d2/4 + h2 < Fmx. From this follows,

h >
d/2√(

2Fmx

mg

)2
− 1

=
10m /2√(
2·100
90

)2 − 1
≃ 2.5m .

2.4.4.8 Ex: Mobile sports field

Two athletes play with a heavy medicine ball (m = 4kg) on a moving platform with-
out friction. They are at a distance of L = 10m. In the middle between them there
is an elastic net with spring constant D = 800N/m. The left athlete throws the ball
at a speed of vB = 8m/s parallel to the Earth’s surface.
a. What is the velocity of the platform together with the athletes (total mass

Figure 2.24: Scheme of the system.
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M = 1000 kg), after the moment when the ball leaves the athlete’s hand? Sup-
pose the athletes to be firmly connected to the ground.
b. The ball reaches the athlete to the right who catches it. What is the distance
covered by the platform?
c. Now, suppose that the ball is blocked by the net. What is the maximum deflection
of the net? How is the speed profile of the platform from the moment on when the
ball is released?

Solution: a. Momentum conservation requests,

m · vB =M · vW ⇔ vW =
m

M
vB = 3.2 cm/s

b. Total flight duration tw = L/vR = 1.245 s. Traveled distance LW = vW · tW ≃ cm.
c. Relative velocity ball-net vR = vB + vW = 8.032m/s. Energy conservation:

1

2
mv2R =

1

2
Dx2max ⇔ xmax =

√
mv2R
D
≃ 56.8 cm .

Velocity profile for the platform: Oscillation during half a period T/2 = π
√
m/D:

vW (t) =





m
M vB t < L/2

vR
≃ 0.62 s

m
M vB · (1− sin(

√
m/Dt)) L/2

vR
≃ 0.62 s < t < L/2

vR
+ π

√
m
D ≃ 0.94 s

−m
M vB t > L/2

vR
+ π

√
m
D ≃ 0.94 s

2.4.4.9 Ex: Firework ratchet

A firework ratchet is launched vertically up to a height of 50m (along the z-axis). At
the apex of the parabolic trajectory, the ratchet explodes in three parts with masses
m1 = 200 g, m2 = 300 g and m3 = 400 g. The energy liberated by the explosion
(200 J) is converted into kinetic energy for the three fragments. Assume that the re-
sulting momenta are on a single horizontal line (along the x-axis). How long after the
explosion and at what positions do the fragments hit the ground in the case that the
larger fragment receives the same energy than the sum of the energy of the smaller
fragments?
How will the results change when the masses m1 and m2 stay the same, but the larger
fragment has the mass m3 = 500 g?

Solution: Total fall time: t =
√
2s/g =

√
100/9.81 s ≃ 3.2 s.

momentum conservation: p1 + p2 + p3 = 0 ,

energy conservation:
p21
2m1

+
p22
2m2

+
p23
2m3

= E0 .

With
p23
2m3

= E0/2⇒ p3 =
√
E0m3 follows,

p1 + p2 +
√
E0m3 = 0⇒ p1 = −(p2 +

√
E0m3) .
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Now,

⇒ (−√E0m3 − p2)2
2m1

+
p22
2m2

= E0/2⇒ p2± = ±
√
E0m2(

√
m1
√
m1 +m2 −m3 ∓

√
m2m3)

m1 +m2
.

Because of the two possibilities for the sign of p2 there are two configurations:

p1 (kg·m/s) p2 p3 v1 (m/s) v2 v3 x1 (m) x2 x3
p2+ -5.77 -3.17 8.94 -28.8 -10.6 22.4 -92.1 -33.8 71.4

p2− -1.39 -7.56 8.94 -6.9 -25.2 22.4 -22.1 -80.4 71.4

When the largest mass is m3 = 500 g, it is equal to the sum of the others. In this
case, v3 = vcm,1+2.

2.4.4.10 Ex: Ballistic pendulum

We measure the speed of a bullet by a ballistic pendulum. The pendulum, suspended
on a wire (length L = 2m, mass M = 4kg) is moved due to the collision. Determine
from the maximum horizontal displacement (y = 10 cm) the velocity of the pendulum
after the collision and the velocity of the bullet (mass m = 0.1 kg).

Figure 2.25: Ballistic pendulum.

Solution: Momentum conservation requires equal linear momenta of the bullet pbal
before and of the pendulum ppen after the collision. Therefore,

mvbal = (M +m)vpen .

On the other hand, kinetic energy is not conserved,

Tbal =
m

2
v2bal ̸=

m2

2(M +m)
v2bal =

M +m

2

m2

(M +m)2
v2bal =

M +m

2
v2pen = Tpen .

The energy ∆E = Tbal − Tpen = mM
2(M+m)v

2
bal must therefore be dissipated. Energy

conservation after the collision requires,

(M +m)gh =
M +m

2
v2pen .
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Therefore, the velocity of the bullet is,

vbal =
M +m

m
vpen =

M +m

m

√
2gh .

For the pendulum holds, y = L sin θ e h+ L cos θ = L. Solving by h, we find,

h = L− L
√

1− y2

L2
≃ 1

2L
y2

for small oscillations. Finally,

vbal =
M +m

m
y

√
g

L
≈ 9m/s .

2.4.4.11 Ex: Central collision in a train station

A wagon of mass m1 collides elastically with another wagon at rest of mass m2. What
is the relation between the masses m1 and m2, if after the collision
a. the wagons have the same velocity in opposite directions,
b. m2 is three times the velocity of m1 in the same direction,
c. m1 is repelled with a third of the initial velocity?

Solution: a. The condition is,

v′1 =
m1 −m2

m1 +m2
v1 +

2m2

m1 +m2
· 0 !

= −v′2 = −m2 −m1

m1 +m2
· 0− 2m1

m1 +m2
v1

hence,

⇒ m1 −m2 = −2m1 ⇔ m2 = 3m1

b. The condition is,

3 · v′1 = 3
m1 −m2

m1 +m2
v1 +

3 · 2m2

m1 +m2
· 0 !

= v′2 =
m2 −m1

m1 +m2
· 0− 2m1

m1 +m2
v1

hence,

⇒ 3(m1 −m2) = 2m1 ⇔ m1 = 3m2

c. The condition is,

v′1 =
m1 −m2

m1 +m2
v1 +

2m2

m1 +m2
· 0 !

= −1

3
v′1

hence,

⇒ m1 −m2 = −1

3
(m1 +m2)⇔

4

3
m1 =

2

3
m2 ⇔ 2m1 = m2
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2.4.4.12 Ex: (In-) elastic collision

A billiard ball with the speed v1i = v0êx hits a second one initially at rest. Due to
the collision the first ball changes the speed to v1f = 2v0

3 (êx cos θ + êy sin θ), where
θ = 45◦.
a. Determine the speed of the second ball, v2f , after the collision.
b. Calculate the dissipated energy and determine if shock whether elastic or inelastic.

Solution: a. With the conservation of linear momentum,

mv1i = mv1f +mv2f

⇔
(
v0
0

)
=

(
2v0
3 cos θ + v2fx
2v0
3 sin θ + v2fy

)

⇔ v2f =

(
v2fx
v2fy

)
= v0

(
1− 2

3 cos θ
2
3 sin θ

)
= v0

(
1−

√
2
3√

2
3

)
.

b. The difference between the kinetic energies before and after shock is,

Ediss = Ei − Ef =
m

2
v21i −

m

2
v21f −

m

2
v22f =

m

2
v20

(
1− 22

32 − (1−
√
2
3 )2 − (

√
2
3 )2

)

=
6
√
2− 8

9
Ei ≃ 0.054Ei > 0 .

The shock is partially inelastic.

2.4.4.13 Ex: Variable mass

A wagon of mass M initially at rest is filled with fuel representing half of its mass.
The fuel is now horizontally ejected at a constant rate γ and a constant speed vc, thus
propelling the car in the opposite direction. What is the final speed of the wagon when
the fuel is completely consumed?

Solution: The equation of motion is,

F =
d

dt
(mv) = m

dv

dt
+ vc

dm

dt
= 0 .

Separating the variables
∫ vf

0

dv = −vc
∫ M/2

M

dm

m
,

giving

vf = −vc ln 1
2 ≃ 0.7vc .
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2.4.4.14 Ex: Mass sliding down a movable wedge

A block of mass m rests on a wedge of mass M and angle θ, which is placed on
a horizontal surface. Releasing the system from rest, with the body at a height h,
determine the speed of the wedge when the block touches the ground. All surfaces
are free from friction.

Solution: We use the principle of energy and momentum conservation,

mgh =
m

2
v2 +

M

2
V 2 and 0 = mvx +MVx and

−vy
vx − Vx

= tan θ .

We insert the second and third equation into the first,

mgh =
m

2
v2x+

m

2
v2y+

M

2
V 2
x =

m

2
v2x+

m

2
(vx−Vx)2 tan2 θ+

M

2
V 2
x =

M2

2m
V 2
x+

m

2
(−M

m
Vx−Vx)2 tan2 θ+

M

2
V 2
x .

This gives,

Vx =

√
2gh(

1 + M
m

)
M
m + (1 + M

m )2 tan2 θ
=

√
2gh cos2 θ(

1 + M
m

) (
M
m + sin2 θ

) .

2.4.4.15 Ex: Vertical collision

A body of mass M = 400 g is released from rest from a height of h = 10m with
respect to the Earth’s surface. Simultaneously, a bullet of mass m = 100 g is fired
vertically from the surface with the speed v0 = 10m/s. Knowing that somewhere in
the trajectory the masses collide and merge, we ask how long it takes for the masses
to fall from the moment when M is released.

Solution: The masses meet at the height

Y1 = Y0 −
g

2
t21 ≡ y1 = v0t1 −

g

2
t21

and time
t1 =

y0
v0

= 1 s ,

yielding

y1 = y0 −
gy20
2v20

= 5.1m

V1 = Ẏ1 = −gt1 = −g y0
v0

= −9.8m/s

v1 = ẏ1 = v0 − gt1 = v0 − g
y0
v0

= 0.2m/s .

Momentum conservation requires,

MV1 +mv1 = (M +m)v2 .
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So the speed of the combined masses is,

v2 =
MV1 +mv1
M +m

= −7.8m/s ,

at the height

y2 = y1 + v2t2 −
g

2
t22 ≡ 0 ,

and time

t2 =
v2
g
±
√
v22
g2

+
2

g
y1 = 0.49m/s .

The total time is,
ttot = t+ t2 = 1.49m/s .

2.4.4.16 Ex: Variable mass

An open freight car weighs 10 tons and is sliding on a frictionless track with a speed
of 60 cm/s. Heavy rain suddenly starts and the drops fall vertically with a velocity
v0 with respect to the ground. How fast is the wagon after collecting 500 kg of water?

Solution: The equation of motion is,

ma = m
dv

dt
= −dm

dt
v .

Hence,

∫ vf

v0

dv

v
= −

∫ mf

m0

dm

m

ln
vf
v0

= ln
m0

mf
.

Finally,

vf = v0
m0

mf
= 57.14 cm/s .

2.4.4.17 Ex: Variable mass

An hourglass is placed on a scale plate. Initially (t = 0), all the sand is at rest in the
upper container of the hourglass. The sand falls into the lower container at a rate
λ = −dm/dt. Prepare a graph of the reading on the scale for t ≥ 0.

Solution: The weight of the hourglass only varies when it starts to pour sand and
when it ends doing it. In the interval between these moments, the part of the sand
that is in free flight does not contribute to the weight, such that the weight is less.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_FExc1_6_3.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_FExc1_6_4.pdf


110 CHAPTER 2. DYNAMICS OF POINT MASSES

The graph shows a rapid and linear initial decrease from the initial weight to a lower
weight. Then the weight remains constant for a long time until it comes to the point
where it increases again linearly to the initial value.
To calculate the stationary reading, that is, ẋscale = 0, we write,

0 = mascale = −mg − ṁutop + ṁubottom − kx ,

where the coordinate x represents the reading of the scale. The velocity of sand leaving
the upper container is ẋtop = 0 and the velocity of sand entering the lower container
is ẋbottom = gt =

√
2sg, where s is the vertical distance between the containers. With

this,

x = −m
k
g − λ

√
2sg .

2.4.4.18 Ex: Variable mass

A raindrop of initial mass M0 starts to fall from rest. Assuming that the drop gains
mass as it passes through the clouds at a rate proportional to the product of mass by
velocity (dm/dt = Kmv), calculate the velocity v(t). Neglect air resistance.

Solution: The equation of motion is,

ma = mv̇ = −mg + ṁv = mg + (Kmv)v ,

or
dv

dt
= −g +Kv2 .

Hence,

−
∫ t

0

dt =
1

g

∫ v

0

dv

1− K
g v

2
,

with the solution,

−t = 1

g

√
g

K
artanh

(√
K

g
v

)
.

Finally,

v =

√
g

K
tanh(

√
Kgt) .

2.4.4.19 Ex: Variable mass

A toy rocket has a carcass that weighs 100 g and an initial amount of fuel of 400 g.
The velocity relative to the rocket with which the fuel comes out is 100m/s and the
rate at which it is burned is 100m/s. Assuming it takes off from the Earth’s sur-
face (g = 10m/s2 constant) with zero initial velocity, what maximum velocity will it
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reach?

Solution: We have the relative velocity of the fuel of the rocket u = 100m/s and
the fuel expense rate of ṁ = −100 g/s, the initial weight m = 500 g and the final
weight mf = 100 g. The equation of motion is,

ma = m
dv

dt
= −mg + ṁu .

The mass varies as m(t) = mi − ṁt until it reaches the point m(t) = mf , which
happens at time t = (mi −mf )/ṁ. Thereby,

∫ v

0

dv =

∫ (mi−mf )/ṁ

0

(
−g + ṁu

mi − ṁt

)
dt .

The speed is,

v = −gmi −mf

ṁ
+ uṁ

∫ (mi−mf )/ṁ

0

dt

mi − ṁt
= −gmi −mf

ṁ
− u

∫ mf

mi

dz

z

= −gmi −mf

ṁ
− u ln mf

mi
= (−40 + 100)m/s ln 5 = 120m/s .

This is different from the template: 61.6m/s, which is false!

2.4.4.20 Ex: Variable mass

Calculate the power required to lift a rope vertically, initially completely wound on
the ground, at a constant speed v0. The linear mass density of the rope is λ.

Solution: The length of the raised part of the string grows as y = v0t until the
time tf = L/v0. The power required,

P = F · v0 = m(t)gv0 = λL(t)gv0 = λv0tgv0 ,

grows linearly until it’s maximum at time tf ,

P = λLgv0 =Mgv0 .

2.4.4.21 Ex: Collision of two masses

Two trolleys with masses m1 and m2 and speeds v1 and v2 collide elastically (energy
is conserved). Knowing that the momentum of the system is preserved during the
collision, calculate the speeds of the cars after the crash.

Solution: Conservation of energy and momentum,

m1

2
v21i +

m2

2
v22i =

m1

2
v21f +

m2

2
v22f

m1v1i +m2v2i = m1v1f +m2v2f .
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Inserting the second in the first equation, thus eliminating v2f , we get,

m1v
2
1i +m2v

2
2i = m1v

2
1f +

1
m2

(m1v1i +m2v2i −m1v1f )
2
,

and

0 = m1

m2
(m1+m2)v

2
1f−2m1

m2
(m1v1i+m2v2i)v1f−m1v

2
1i−m2v

2
2i+

1
m2

(m1v1i+m2v2i)
2 ,

and

0 = v21f − 2
m1v1i +m2v2i
m1 +m2

v1f − m2(m1v
2
1i +m2v

2
2i)

m1(m1 +m2)
+

(m1v1i +m2v2i)
2

m1(m1 +m2)

=

(
v1f − m1v1i +m2v2i

m1 +m2

)2

−
√(

m1v1i +m2v2i
m1 +m2

)2

+
m2(m1v21i +m2v22i)

m1(m1 +m2)
− (m1v1i +m2v2i)2

m1(m1 +m2)

2

=

(
v1f − m1v1i +m2v2i

m1 +m2

)2

−
(
m2

v1i − v2i
m1 +m2

)2

.

Finally,

v1f =
m1v1i +m2v2i ±m2v1i ∓m2v2i

m1 +m2

= v1i,
(m1 −m2) v1i + 2m2v2i

m1 +m2
,

and for symmetry reasons,

v2f = v2i,
(m2 −m1)v2i + 2m1v1i

m1 +m2
.

2.4.4.22 Ex: Collision of two masses

Two balls A and B of different masses collide. A is initially at rest and B has the
velocity v. After the shock, B has a speed of v/2 and moves perpendicular to the
direction of the initial movement. Determine the direction of A’s movement after the
collision. What is the change in energy due to the collision?

Solution: Momentum conservation requires,

(
mBv

0

)
=

(
mAvAx

mAvAy +mB
v
2

)
.

Therefore, the direction is given by,

tan θA =
vAx
vAy

=
1

2
.

Energy conservation requires,

mB

2
v2 =

mA

2
v2A +

mB

2

(v
2

)2
.
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Therefore, energy expenditure is,

∆Ekin =
mA

2
(v2Ax + v2Ay) +

mB

2

(v
2

)2
− mB

2
v2

=
mA

2

(
m2
B

m2
A

v2 +
m2
B

4m2
A

v2
)
+
mB

2

(v
2

)2
− mB

2
v2 = −mB

2
v2

3mA − 5mB

4mA
.

2.4.4.23 Ex: Collision of two masses

A bullet of mass m is fired with the velocity v against a ballistic pendulum of mass
M . The bullet passes through the pendulum and emerges with the velocity v/4.
a. calculate the maximum height of the oscillating pendulum,
b. calculate the energy dissipated when the bullet passes through the pendulum.

Solution: a. Momentum conservation during the collision,

mv =MvM +m
v

4
=⇒ vM =

3m

4M
v .

Energy conservation of the accelerated pendulum,

M

2
v2M =Mgh =⇒ h =

v2M
2g

=
1

2g

(
3m

4M
v

)2

=
9m2

32gM2
v2 .

b. Energy conservation during the collision,

m

2
v2 =Mgh+

m

2

(v
4

)2
+ Ediss

=⇒ Ediss =
m

2
v2 −Mgh− m

2

(v
4

)2
=

15m

32
v2 −Mg

9m2

32gM2
v2 =

(
15

16
− 9m

16M

)
m

2
v2 .

2.5 Further reading

H.M. Nussenzveig, Edgar Blucher (2013), Curso de F́ısica Básica: Mecânica - vol 1
[961]ISBN

phet, Interactive Simulations for Science and Math http

sofisica, Material de apoio didático http

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Dynamics_FExc1_7_4.pdf
http://isbnsearch.org/isbn/978-8-521-20801-1
https://phet.colorado.edu/
https://www.sofisica.com.br/conteudos/indice.php
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Chapter 3

Rotations and dynamics of
rigid bodies

So far we have considered the translation dynamics of point masses. Obviously, point
masses, unlike extended rigid bodies, cannot rotate.

3.1 Rotation about a fixed axis

Summary of common transformations,
operation action on position on momentum

translation Ttrr = r+ a Ttrp = p

kick Tkcr = r Tkcp = p+mv

rotation Trtr = eα⃗×r Trtp = eα⃗×p
Galilei boost TGr = r+ vt TGp = p+mv

transform to accelerated frame Tacr = r Tacp = p+mgt

transform to rotating frame Tarr = eω⃗t×r Tarp = eω⃗t×p

Let us have a closer look at the rotation operator defined by,

Trtr = eα⃗×r . (3.1)

It can be expanded as,

Trtr =
∑

n

(α⃗×)n
n!

r = r+ α⃗× r+ 1
2 α⃗× (α⃗× r) + ... (3.2)

= êα(êα · r) + êα × r sinα− êα × (êα × r) cosα .

Choosing the rotation angle along Cartesian coordinates, we find matrix representa-
tions of the rotations transformations. For, α⃗ = αêx,

Trtr = xêx + (yêz − zêy) sinα+ (yêy + zêz) cosα = Rxr (3.3)

with Rx =



1 0 0

0 cosα − sinα

0 sinα cosα


 ,
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for, α⃗ = αêy,

Trtr = yêy + (zêx − xêz) sinα+ (xêx + zêz) cosα = Ryr (3.4)

with Ry =



cosα 0 − sinα

0 1 0

sinα 0 cosα


 ,

and for, α⃗ = αêz,

Trtr = zêz + (xêy − yêx) sinα− êz × (êz × r) cosα = Rzr (3.5)

with Rz =



cosα − sinα 0

sinα cosα 0

0 0 1


 .

Furthermore, since the vectors êα, êα × p, and êα × (êα × p) in Eq. (3.2) obviously
form an orthogonal coordinate system, we find defining γ ≡ ∠(êα,p),

Trt(eα⃗×p)2 = [êα(êα · p) + êα × p sinαêα × (êα × p) cosα]
2

(3.6)

= [êα(êα · p)]2 + [êα × p sinα]2 + [êα × (êα × p) cosα]2

= p2 cos2 γ + p2 sin2 α sin2 γ + p2 cos2 α sin2 γ = p2 ,

that the kinetic energy and the potential energy in radial potentials is invariant to
rotation,

Trt
(

p2

2m
+ V (|r|)

)
=

p2

2m
+ V (|r|) . (3.7)

3.1.1 Transformation into a rotating system

Transformation into a rotating system,

d

dt
Tarr = eω⃗t×

d

dt
r+

(
d

dt
eω⃗t×

)
r =

(
d

dt
+ ω⃗×

)
Tarr , (3.8)

from which we deduce the rule,

{
d

dt

}

lab

=

{
d

dt

}

rot

+ ω⃗× . (3.9)

Use this expression to resolve Exc. 3.1.4.1 to 3.1.4.4.

3.1.2 Inertial forces in the rotating system

Coriolis force, .
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3.1.3 Inertial forces in the linearly accelerated system

3.1.4 Exercises

3.1.4.1 Ex: Rotating coordinate systems

A body of mass m is thrown horizontally at a velocity v0 in the x-direction in the
homogeneous gravitational field of the Earth. (Gravity towards −z). The rotation of
the Earth is not taken into account.
a. Give the solution r(t) of the equation of motion.
b. Transform the solution into a coordinate system that rotates around the z-axis at
the angular velocity ω.
c. Set up the equation of motion in the rotating system and show that the transformed
path from (b) satisfies it.

Solution: a. Path,

r(t) =




v0t

0

− 1
2gt

2 .




b. The rotation is performed by,

Rz =




cosωt sinωt 0

− sinωt cosωt 0

0 0 1


 ,

so that,

r′(t) = Rzr(t) =



v0t cosωt

−v0t sinωt
− 1

2gt
2


 .

c. It must hold,

d2

dt2
r′ = g′ − ω⃗ × (ω⃗ × r′)− 2ω⃗ × d

dt
r′ .
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with g′ = r − (gêz) = −gêz and ω⃗ = ωêz. This is valid because of (calculate with
MAPLE),

d

dt
r′ =



−ωv0t sinωt+ v0 cosωt

−ωv0t cosωt− v0 sinωt
−gt




d2

dt2
r′ =

d

dt



−ω2v0t cosωt− 2ωv0 sinωt

ω2v0t sinωt− 2ωv0 cosωt

−g




ω⃗ × (ω⃗ × r′) =



−ω2v0t cosωt

ω2v0t sinωt

0




ω⃗ × d

dt
r′ =



ω2v0t cosωt+ ωv0 sinωt

−ω2v0t sinωt+ ωv0 cosωt

0


 .

3.1.4.2 Ex: Rotating vulture

Consider two Cartesian coordinate systems that are identical at time t = 0. One ro-
tates around the z-axis at a constant angular velocity ω, while the laboratory system
is at rest. On the x-axis of this rotating system, a vulture moves from the coordinate
origin (at time t = 0) at a constant speed v.
a. Calculate the vectors of the vulture’s position and velocity in the rotating coordi-
nate system.
b. Calculate the Cartesian coordinates of the vulture in the laboratory system and
from this the velocity in the laboratory system.
c. Calculate directly the velocity observed in the laboratory system using the rela-
tionship (3.9).

Solution: a. The location in the rotating coordinate system is r(t) = vtêx,rot. The
velocity vR = vêx,rot.
b. The location in the laboratory system is,

r(t) = vt



cosϕ

sinϕ

0




with ϕ = ωt. The velocity is,

ṙ(t) = v



cosϕ

sinϕ

0


+ vtω



− sinϕ

cosϕ

0
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with |v| =
√
v2 + (ωvt)2.

c. The velocity observed in the laboratory system is,

vlab = vêr + ω⃗ × rêr = vêr + ωvtêϕ

= vêx,rot + ωvtêy,rot = v



cosϕ

sinϕ

0


+ vtω



− sinϕ

cosϕ

0


 .

|vlab| is obviously independent of the chosen basic system.

3.1.4.3 Ex: Rotating system

Consider a rotating coordinate system, which at time t = 0 coincides with the lab
system, but rotates relative to the lab system with angular velocity ω = 2π/T , T =
10 s, around the z-axis. In this coordinate system the rotation of a mass point be
given by the vector,

r′ =



a

a

0


 .

a. Determine the position vector of this point with respect to the laboratory coordi-
nate system.
b. Consider the position vector at time t = 5 s and determine its velocity measured
in the rotating system and in the laboratory system.

Solution: a. We have,

r(t) = Rz(ωt)r′ =




cosωt sinωt 0

− sinωt cosωt 0

0 0 1





a

a

0


 =



a cosωt+ a sinωt

−a sinωt+ a cosωt

0


 .

b. We have,

r(5 s) =



a cos 2π t

T + a sin 2π t
T

−a sin 2π t
T + a cos 2π t

T

0


 =



a cosπ + a sinπ

−a sinπ + a cosπ

0


 =



−a
−a
0


 .

And,

v′(t) =

{
dr

dt

}

rot

=



−aω sinωt+ aω cosωt

−aω cosωt− aω sinωt

0




|v′(t)| = aω
√

(| − sinωt+ cosωt|2 + | − cosωt− sinωt|2) = 2π
T

√
2a = a · 0.89 1/s

v(t) =

{
dr

dt

}

lab

=

{
dr

dt

}

rot

+ ω⃗ × r = aω



− sinωt+ cosωt− (− sinωt+ cosωt)

− cosωt− sinωt+ (cosωt+ sinωt)

0


 =



0

0

0




∥v′(t)∥ = 0 .
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3.1.4.4 Ex: Rotating system

Consider two coordinate systems, both with their origin at the center of the Earth
and their z-axis parallel to the Earth’s rotation axis. The rotating system rotates
with the Earth, while the laboratory system is fixed to the solar system. An airplane
moves at a constant velocity v relative to the Earth’s surface on a direct trajectory
from the north pole to the equator, where it arrives after a time τ = 12h. What is
the velocity of the plane (as a function of time) seen by the lab system?

Solution: The transformation from the laboratory to rotating system is described
by,

Rz(ωt) =




cosωt sinωt 0

− sinωt cosωt 0

0 0 1


 ,

where ω = 2π/48 h. In the rotating system it is parametrized by,

r′(t) =



R sinΩt

0

R cosΩt


 ,

where Ω = 1
2π/12 h= 1

2ω. In the rotating system the speed is,

v′(t) =
d

dt
r′(t) =




ΩR cosΩt

0

−ΩR sinΩt


 ,

with the absolute value |v′(t)| = ΩR. In the laboratory system the trajectory is,

r(t) = Rz(−ωt)r′(t) =



R sinΩt cosωt

R sinΩt sinωt

R cosΩt




and the speed,

v(t) =
d

dt
r(t) =



ΩR cosΩt cosωt− ωR sinΩt sinωt

ΩR cosΩt sinωt+ ωR sinΩt cosωt

−ΩR sinΩt


 .
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Alternatively we can write,

v(t) =
d

dt
r(t)

=
d

dt
[Rz(−ωt)r′(t)]

= Rz(−ωt) d
dt

r′(t) +

[
d

dt
Rz(−ωt)

]
r′(t)

= Rz(−ωt) d
dt

r′(t) +Rz(−ωt) [ω⃗ × r′(t)]

= Rz(−ωt) d
dt

r′(t) + ω⃗ ×Rz(−ωt)r′(t)
= Rz(−ωt)v′(t) + ω⃗ × r(t) .

We easily check,

Rz(−ωt)v′(t) + ω⃗ × r(t) =



cosωt − sinωt 0

sinωt cosωt 0

0 0 1






ΩR cosΩt

0

−ΩR sinΩt


+



0

0

ω


×



R sinΩt cosωt

R sinΩt sinωt

R cosΩt




=



ΩR cosΩt cosωt− ωR sinΩt sinωt

ΩR cosΩt sinωt+ ωR sinΩt cosωt

−ΩR sinΩt


 .

The value after 12 h is |v(t)| =
√
ω2R2 sin2 Ωt+ v20 =

√
ω2R2 sin2 1

2π + (ΩR)2 =

R
√
ω2 +Ω2 = R

√
ω2 + ( 12ω)

2 = 6730 km · 2π24 h

√
5
4 = 547m/s.

3.1.4.5 Ex: Inertial forces

A car travels at a speed v = 100 km/h from São Carlos (latitude θ = −22◦) to Ribeirão
Preto, which is north of São Carlos.
a. Calculate the value of the Coriolis acceleration. In which direction is the car devi-
ated?
b. Calculate the centrifugal force knowing that the radius of the Earth is 6370 km.

Solution: a. The Coriolis force is

a⃗Cor = −2ω⃗ × v = −2êϕ
2π

Tdia
v sin θ = 1.5 · 10−4gêϕ .

Deviation to the left.
b. The centrifugal force is,

a⃗cen = −2ω⃗ × (ω⃗ × r) = −2êρω2R sin(90◦ − θ) = 2êρ

(
2π

Tdia

)2

R cos θ = 6.4 · 10−3 g .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Rigidbody_.pdf


122 CHAPTER 3. ROTATIONS AND DYNAMICS OF RIGID BODIES

3.1.4.6 Ex: Foucault’s pendulum

A pendulum of mass m = 7kg and length L = 6m is deflected by the angle β = 4◦

and then released. The experiment takes place at a latitude of Φ = 51◦ north.
a. How strong is the Coriolis force when passing through the rest position?
b. What is the radius of curvature r of the projection of the pendulum’s path onto
the horizontal base at the rest point?
c. How long is the oscillation period T of a full rotation of the pendulum plane in the
lab frame?

Solution: a. The velocity v0 of the pendulum at zero crossing is, with the help of
the energy conservation law, given by,

m

2
v20 = mgl(1− cosβ)

or
v0 =

√
2gl(1− cosβ) .

Hence,
FC = 2mv0ω

′ = 2m
√
2gl(1− cosβ)ω′ .

The effective component ω′ of the angular velocity at the location of the latitude Φ is,

ω′ =
2π

d∗
sinΦ ,

where d∗ = 86164 s is the duration of a sidereal day, which is slightly different from
d = 24 · 3600 s = 86400 s. Therefore follows for the Coriolis force at zero crossing,

FC =
4πm

d∗
sinΦ

√
2gl(1− cosβ) ≈ 4.25 · 10−4 N .

b. The Coriolis force is equal to the centrifugal force of the horizontal movement, i.e.,

FC = 2mv0ω
′ = FZ =

m

r
v20 .

From this we calculate the radius of curvature to be,

r =
v0
2ω′

=
d∗

4π sinΦ

√
2gl(1− cosβ) ≈ 5 km .

c. One gets a full turn for T = d∗/ sinΦ ≈ 30.8 h.

3.1.4.7 Ex: Earth rotation

a. A car with the mass m = 1000 kg stands on the equator of the Earth. What
is the total force acting on the car, and in which direction does it point? Assume
the Earth to be a sphere with radius Rearth = 6370 km. The angular velocity is
ωearth = 7.27 · 10−5 s-1.
b. Now the car is traveling eastwards at a speed v = 100 km/h along the equator.

What total force is acting on it, and which direction does this force have?
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Figure 3.1: Earth rotation.

c. How fast would the car have to travel eastwards along the equator to lift off the
surface of the Earth?

Solution: a. When the car is stands still, only gravity and centrifugal force act on
it, Fg = −mgêr and

FZ = −mω⃗ × (ω⃗ × r) = −m[ω⃗ · (ω⃗ · r)− r · (ω⃗ · ω⃗)] = mω2rêr .

That is, all in all,
Fges = (−mg +mω2r)êr .

b. Now, three forces act along the equator in an eastward direction Fg = −mgêr, FZ =

+m
(
v2

R + ω2R
)
êr, FC = +2mωvêr. It should be noted here, that the centrifugal

acceleration is increased when traveling in the east direction, since the Earth also
rotates in the east direction. So overall,

Fges = m

(
−g + v2

R
+ ω2R+ 2ωv

)
êr .

c. For the car to take off, the sum of all forces acting on it must disappear, i.e.,

−mg +m

(
ω2R+

v2

R

)
+ 2mωv = 0 .

Resolved by the speed v we get,

v = −Rω ±
√
Rg .

Hence, vWest = −8.37 km/s and vOst = 7.44 km/s.

3.1.4.8 Ex: Spinning top in a horizontal plane

Discuss the spinning top on a horizontal plane. What happens when the plane is
inclined?

Solution:
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Figure 3.2: Spinning top.

3.1.4.9 Ex: Inertial forces

a. Calculate the correction for the weight of a mass m at rest at the equator due to
centrifugal force. Does the centrifugal force modify the falling time for a mass released
at a height above the Earth?
b. What are the value and orientation of the Coriolis acceleration acting on a body
at the north pole moving with the speed v = 100m/s to the south?
c. Calculate the deviation due to the Coriolis force for a body falling at the equator
from a height of h = 100m.

Solution: a. With ω = 2π
1 d we find,

Fcentr = −mω⃗ × (ω⃗ × r) = mω2rêr .

This gives, ∆g = 0.0034 g. However, the force does not act on free masses.
b. With ω = 2π

1 d

FCor = −2mω⃗ × v = −2mωvêϕ .
The force acts towards east and has the value aCor = 0.015m/s.
c. The Coriolis force can be approximated (the deviation from the vertical path is
negligible),

FCor = −2mω⃗ × v⃗ ≃ ma⃗Cor
with aCor = 2ωvgrv. The fall time and the instantaneous speed are,

t1 =

√
2h

g
and vgrv = gt .

So, we get the speed,

vCor =

∫ t

0

aCordt =

∫ t

0

2ωgtdt = 2ωg
t2

2

and the deviation,

sCor =

∫ t1

0

vCordt =
1

3
ωgt31 .
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3.1.4.10 Ex: Carousel

A vertical bar rotates around the z-axis at a constant angular velocity ω. A thread
of length l is attached to the upper end of the rod, while a mass m is attached to the
other end of the thread.
a. Find the tension that acts on the thread.
b. Find the angle between thread and bar in equilibrium.

Solution: Gravity is Fg = −mgêz, the centrifugal force is Fz = −mω⃗ × (ω⃗ × r)
and the tension of the thread is FT = −T sinϕêx + T cosϕêz. With,

r = l[sinϕêx + (1− cosϕ)êz] ,

follows,

Fg = mω2l sinϕêx .

In equilibrium of forces,

0 = −mgêz +mω2l sinϕêx − T sinϕêx + T cosϕêz .

The equations for the components are,

mω2l sinϕ− T sinϕ = 0 and T cosϕ−mg = 0 .

One solution to the first equation is sinϕ = 0, when the centrifugal force vanishes.
Otherwise we find,

T = mω2l and cosϕ =
g

ω2l
.

3.1.4.11 Ex: Yo-yo

A yo-yo with radius R and thickness D is accelerated in the field of terrestrial attrac-
tion.
a. Determine the inertial moments with respect to the yo-yo’s symmetry axis and to
the instantaneous point of suspension on the string.
b. Calculate the torque and write down the equation for the rotational motion.
c. From the equation of motion, calculate the angular and linear accelerations, the
angular and linear velocities, and the angular momentum.

Solution: a. The mass of the yo-yo is,

M =

∫
dm = ρπR2D .

The inertial moment with respect to the axis of symmetry is,

Icm =

∫
r2dm =

M

2
R2 .
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The inertial moment with respect to the suspension point is,

I = Icm +MR2 =
3M

2
R2 .

b. The equation of motion is,

Iα⃗ = τ⃗ = r× F

⇔ 3M

2
R2α = RMg .

c. So we have,

α =
2g

3R
, a = Rα =

2g

3

ω =

∫
αdt =

2g

3R
t , v = Rα =

2g

3
t

L = Iω =
3M

2
R2 2g

3R
t =MgRt = τt .

Alternatively it is possible to use energy conservation,

d
dtMgh = d

dt
1
2Iω

2

⇒Mgv = 1
2I2ωω̇

⇒MgR = Iα

⇒ 2g

3R
= α .

3.1.4.12 Ex: Deviation to the east

An object is thrown up vertically at the initial speed v0. Determine the east deflection
based on the Earth’s rotation as a function of latitude.

Solution: The coordinate system is placed in the starting point of the movement
so that the initial conditions are: r(0) = 0 und v(0) = z0êz. z points up, y to the
east and x to the south. For the eastward movement we have,

ẏ = −2ω(x cosλ+ z sinλ) .

The southward movement of the body is negligible. Likewise the effect of the eastward
deviation on z. We get the movement of free fall,

z =
g

2
t2 + v0t .

Inserting into the eastward deviation,

ẏ = −2ω
(g
2
t2 + v0t

)
sinλ .
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Hence, the eastward deviation points in western direction:

y = 2ω
(g
6
t3 − v0

2

)
sinλ .

3.1.4.13 Ex: Coriolis force

A body falls in free fall at the equator of the Earth from a height of h = 100m. At
the beginning of the movement (t = 0) the body rests at the height h. Air friction is
neglected. The centrifugal acceleration is already taken into account in the value of
the gravitational acceleration g = 9.81m/s

−2
relative to the Earth’s surface.

a. Set up the equations of motion. Show that the path lies in a plane. What is its
spatial location?
b. Solve the differential equations by combining the remaining components of r(t)
into a complex variable u(t). Pay attention to the initial conditions!
c. Give the solution r(t) and then approximate for small ωt (ω being the angular
velocity of the Earth’s rotation). Why is this approximation justified?
d. What is the distance from the real point of impact to the point that would be
reached without the action of the Coriolis force? In which direction is the body devi-
ated?

Solution: a. In the Earth-bound system (x to the east, y to the north, z upwards):

r̈(t) = g − 2ω⃗ × ṙ(t)− ω⃗ × (ω⃗ × r(t)) with g = −gêz with ω⃗ = ωêy .

From the initial condition r(0) = hêz and ṙ(0) = 0 follows êy · r(t) = 0. So the
movement only takes place in the (x, z) plane.
b. In component notation,

ẍ = −2ωż + ω2x and z̈ = −g + 2ωẋ+ ω2z ,

where ω = 2π
24 h = 7.3 · 10−5 s-1. Via u(t) = z(t) + ıx(t) with u(0) = h and u̇(0) = 0

one gets the complex differential equation,

ü+ 2ıωu̇− ω2u = −g ,
with the particular solution upart = g/ω2. The homogeneous ansatz uhom ∼ eλt

provides the characteristic equation λ2 + 2ıωλ − ω2 = 0 with the solution λ = −ıω.
From this follows,

u(t) = g/ω2 + (A+Bt)e−ıωt and u̇(t) = [B − ıω(A+Bt)]e−ıωt

⇒ A = h− g/ω2 and B = ıωA = ıω(h− g/ω2) .

Finally,
u(t) = g/ω2 + (h− g/ω2)(1 + ıωt)e−ıωt .

c. The real components,

z(t) = g/ω2 + (h− g/ω2)[cosωt+ ωt sinωt]

x(t) = (h− g/ω2)[− sinωt+ ωt cosωt]
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with the expansion of ωt≪ 1:

cosωt+ ωt sinωt = 1 +
1

2
ω2t2 +O(ω4t4)

− sinωt+ ωt cosωt = −1

3
ω3t3 +O(ω5t5) ,

become,

z(t) ≈ h− 1

2
gt2 and x(t) ≈ 1

3
gωt3

d. Drop time T and deviation x(T ):

T =

√
2h

g
= 4.5 s and x(T ) =

1

3
gωT 3 = 2.2 cm .

Note: If we omit the terms O(ω2) from the equations of motion, the DEq system can
be solved trivially.

3.1.4.14 Ex: Coriolis force

A penguin with the mass m is located directly at the South Pole and begins to slide
horizontally at the initial velocity v on the ice. The ice slows him down with the force
F = −γv.
a. Write down the equations of motion in a coordinate system originating at the south
pole, which rotates with the Earth.
Note: Place the x-axis in the direction of the penguin’s initial velocity and combine
the variables x and y to a complex variable z = x + ıy. Neglect the curvature of
the Earth. b. Calculate the end position of the penguin on the assumption that the

Figure 3.3: Coriolis force.

rotation speed of the earth ω is small enough to neglect quadratic terms ∝ ω2 in the
equations of motion or in their solution.

Solution: a. In the rotating system ω⃗ = (0, 0, ω) the equation of motion is,

r̈′ = − γ
m
r .
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Hence, in the lab system,

(
d

dt
− ω⃗×

)(
d

dt
− ω⃗×

)
r = − γ

m
r .

From this follows,

r− 2ω⃗ × r+ ω⃗ × (ω⃗ × r) = − γ
m
r .

For the x- resp. y-components the equations of motion are,

ẍ = − γ
m
ẋ+ ω2x− 2ωẏ

ÿ = − γ
m
ẏ + ω2y + 2ωẋ ,

wheres the second and third terms represent centripetal and Coriolis force, z = x+ ıy,
hence,

z̈ = −γ̃ż + ω2z + 2ıωż z = Ceλt

λ2 = −γ̃λ+ ω2 + 2ıωλ z = Aeλ1t +Beλ2t

λ1,2 =
−γ̃ + 2ı ω ±

√
γ̃2 − 4ıγ̃ω

2
,

where γ̃ = γ/m. x = Re z and y = Im z will be damped sine/cosine.
b. The equation resp. solution will be,

z̈ = −γ̃ż + 2ıωż z = Ceλt

λ2 = −γ̃λ+ 2ıωλ z = Aeλ1t +Beλ2t

λ1,2 =
−γ̃ + 2ıω ± (γ̃ − 2ıω)

2
→ λ1 = 0 λ2 = −γ̃ + 2ıω .

The initial conditions z(0) = 0, ż(0) = v lead to,

B = −A =
v

−γ̃ + 2ıω
≃ −v γ̃ + 2ıω

γ̃2
+O(ω2) .

For large t we have e−γ̃t ≪ 1 and z ≃ A = v/γ̃ + 2ıvω/γ̃ such that x(∞) = mv/γ,
y(∞) = 2mv ω/γ.

3.1.4.15 Ex: Center of mass

You have three rectangular blocks of same heights and depths, but with different
lengths and different masses. You want to build an inclined tower with them. De-
termine experimentally or theoretically how to stack the blocks so that the top block
overhangs as much as possible. What is the most favorable order in the case of same
masses but different lengths? What is the most advantageous order in the case of
same lengths but different masses?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Rigidbody_.pdf


130 CHAPTER 3. ROTATIONS AND DYNAMICS OF RIGID BODIES

Solution: Let xsj be the center-of-masses points of the individual blocks. In or-
der for the uppermost block j = 3 to remain on the middle block j = 2, the following
must apply,

m3(xs3 − xs2)
m3

<
1

2
L2 .

The following must apply so that the two upper blocks remain on the lower block j = 1,

m2 (xs2 − xs1) +m3 (xs3 − xs1)
m2 +m3

<
1

2
L1 .

Let the origin be fixed by xs1 = 0. Then by eliminating xs2 we get from (1) and (2),

xs3 <
L1

2
+

m2

m2 +m3

L2

2
.

So the overhang is,

ü = xs3 +
L3

2
<
L1

2
+

m2

m2 +m3

L2

2
+
L3

2
.

In the case of equal lengths,

ü < L

(
1 +

1

2

m2

m2 +m3

)
,

it makes sense to put the light mass on top of the heavy one, m3 < m2. In the case
of equal masses,

ü <
L1

2
+
L2

4
+
L3

2
,

it makes sense to put the longer block on top of the shorter one, L3 > L2.

3.1.4.16 Ex: Inclined pyramid

Five identical point masses m are arranged at the corners of an oblique pyramid with
the height H and a square base area F = a2, i.e. they are located at (x, y, z) =
(±a/2,±a/2, 0) and (b, 0, H). What is the maximum lateral displacement b of the
top of the pyramid so that the pyramid does not tip out of the horizontal xy-plane?

Solution: The mass of the pyramid is M = 5m. The center of gravity vector of
a discrete mass distribution is given by,

S =

∑
mjrj∑
mj

.

For the given pyramid,

S =
1

M

5∑

j=1

mrj =
1

M


m(H êz + bêx) +m

4∑

j=1

rj


 =

1

M
m(H êz+bêx) =

H êz + bêx
5

.
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Now the axis is tilted from the center of the base to the top of the pyramid by an angle
α. It falls over when Sêx >

a
2 , hence,

H êz + bêx
5

êx >
a

2
,

hence b > 2.5a.

3.1.4.17 Ex: Inclined cone

A rigid cone with a homogeneous mass distribution has the height H and a base area
with a radius R. How far can you tilt the cone before it falls over?

H

R

�

Figure 3.4: Inclined cone.

Solution: The mass of the cone is,

m = ρ0

∫

cone

d3r = ρ0

∫ H

0

∫ 2π

0

∫ R−Rz/H

0

ρdρdϕdz = 2πρ0

∫ H

0

∫ R−Rz/H

0

ρdρdz

= 2πρ0

∫ H

0

(R−Rz/H)2

2
dz = 2πρ0R

2

[
z

2
− z2

2H
+

z3

6h2

]H

0

=
π

3
ρ0R

2H .

The center of gravity vector of a continuous mass distribution ρ(r) is given by,

S =

∫
ρ(r)rd3r∫
ρ(r)d3r

.

For a homogeneous cone,

S =
ρ0
m

∫

cone

rd3r =
ρ0
m

∫ H

0

∫ 2π

0

∫ R−Rz/H

0



ρ cosϕ

ρ sinϕ

z


 ρdρdϕdz

= 2π
ρ0
m

∫ H

0



0

0

z



∫ R−Rz/H

0

ρdρdz = 2π
ρ0
m

êz

∫ H

0

z
(R−Rz/H)

2

2
dz

= 2π
ρ0
m
R2êz

[
z2

4
− 2z3

6H
+
R2z4

8H2

]H

0

=
π

12

ρ0
m
R2H2êz =

H

4
êz .

Now the cone is tilted by the angle α. It falls over when S sinα > R cosα, hence,

arctanα >
H

4R
.
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3.1.4.18 Ex: Angular momentum of the Earth

a. Calculate the angular momentum of the Earth’s rotation around its center of mass
(mass M = 5.97× 1024 kg, radius R = 6370 km).
b. Compare this with the angular momentum of the Earth’s rotation around the sun
(distance between Sun and Earth D = 150× 109 km).

Solution: a. The angular momentum is,

L = Iω⃗ .

With the inertial moment I = 2
5MR2 we obtain,

L = Iω =
2

5
MR2 2π

60 · 60 · 24 s = 7.0 · 1033 kg m2 s-1 .

b. The inertial moment is now I =MD2. Hence,

L = Iω =MD2 2π

60 · 60 · 24 · 365 s = 4.8 · 1031 kg m2 s-1 .

3.1.4.19 Ex: Inertial moment

a. Calculate the mass of a cone with homogeneous density (height H and a base radius
R).
b. Calculate the cone’s inertial moment with respect to the symmetry axis.
c. The cone now rotates with the frequency ω around an axis displaced by a distance
R parallel to the symmetry axis. How to calculate the angular momentum?

Solution: a. The cone mass is,

M =

∫
dm = ρ

∫ 2π

0

∫ H

0

∫ R−zR/H

0

rdrdzdϕ = 2πρ

∫ H

0

1
2

(
R− R

H
z

)2

dz

= −2πρH
R

∫ 0

R

1
2ζ

2dζ = πρ
H

R

1

3
R3 =

πρ

3
HR2 .

b. The inertial moment is,

Icm =

∫
dm = ρ

∫ 2π

0

∫ H

0

∫ R−zR/H

0

r2rdrdzdϕ = 2πρ

∫ H

0

1
4

(
R− R

H
z

)4

dz

= −2πρH
R

∫ 0

R

1
4ζ

4dζ =
π

2
ρ
H

R

1

5
R5 =

3

10
MR2 .

c. The angular momentum is,

L = Iω = (Icm +MR2)ω =
13

10
MR2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Rigidbody_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Rigidbody_.pdf


3.1. ROTATION ABOUT A FIXED AXIS 133

3.1.4.20 Ex: Glass of beer

A cylindrical glass of beer (height H = 18 cm, diameter D = 6 cm, mass mG = 0.5 kg,
the bottom is without mass) has, when empty, its center of mass exactly halfway up.
Obviously, it is there too, when the glass is filled with beer (density ρ = 1000 kg/m3)
up to the upper limit. Down to which height h do you have to drink the beer for the
center of mass to be at its lowest height?

Solution: Be h the wanted height of beer. Then the beer mass is,

mB =
πD2

4
hρ .

The center of mass of the beer is at h/2, that of the glass at H/2. The total center of
mass is at,

S =
H
2 mG + h

2mB

mG +mB
=

H
2 mG + h

2
πD2

4 hρ

mG + πD2

4 hρ
=

4HmG + πD2ρh2

8mG + 2πD2ρh
.

With dS/dh = 0 we find,

2πD2ρh
(
8mG + 2πD2ρh

)
−
(
4HmG + πD2ρh2

)
2πD2ρ = 0

2π2D4ρ2h2 + 16πmGρD
2h− 8πmGρD

2H = 0

h2 +
8mG

πD2ρ
h− 4mG

πD2ρ
H = 0

h = − 4mG

πD2ρ
+

4mG

πD2ρ

√
1 +

πD2ρH

4mG
>0 .

Therefore, the height is h = 7.44 cm.

3.1.4.21 Ex: Inertial moment

Consider a flat symmetrical triangle with surface density σ and corner length a. Fix
the coordinate system such that the triangle is given by the corners A = (0, a2 ),

B = (0,−a2 ) e C = (a
√
3

2 , 0).
a. Calculate the mass of the triangle.
b. Calculate the center of mass.
c. Calculate the inertial moment with respect to an axis normal to the surface through
the center of mass of the triangle.

Solution: a. The mass is,

M = 2σ

∫ a/2

0

∫ √3(a/2−y)

0

dxdy = 2σ

∫ a/2

0

√
3
(
a
2 − y

)
dy = 2σ

√
3
[
a
2y − 1

2y
2
]a/2
0

= σ
√
3
a2

4
.
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b. The center of mass is given by,

xcm =

∫ ∫
σxdxdy∫ ∫
σdxdy

=
1

M
2σ

∫ a/2

0

∫ √3(a/2−y)

0

xdxdy =
2σ

M

∫ a/2

0

1
2

√
3
2 (a

2 − y
)2
dy

=
3σ

M

1

24
a3 =

a

2
√
3

ycm = 0 .

c. The inertial moment with respect to an axis crossing the origin is,

I0 =

∫
r2dm = 2σ

∫ a/2

0

∫ √3(a/2−y)

0

(x2 + y2)dxdy = 2σ

∫ a/2

0

[
1
3

√
3
3
(a2 − y)3 +

√
3(a2 − y)y2

]
dy

= 2σ
√
3

∫ a/2

0

[
(a2 − y)3 + (a2 − y)y2

]
dy = 2σ

√
3

48 a4 = M
6 a

2 .

And the inertial moment with respect to an axis crossing the center of mass is,

I = Icm + I0 =M

(
a

2
√
3

)2

+ M
6 a

2 =
M

4
a2 .

3.1.4.22 Ex: Inertial moment

Consider a flat arc segment with surface density σ, radius R, and angle ϕ. Fix the
coordinate system at the center of the arc such that the axis of symmetry is x.
a. Calculate the mass of the segment.
b. Calculate the center of mass.
c. Calculate the inertial moment with respect to a normal axis at the surface through
the center of mass of the segment.

Solution: a. The mass is,

M = σ

∫ ϕ/2

−ϕ/2

∫ R

0

rdrdϕ = σ
R2

2
ϕ .

b. The center of mass is given by,

xcm =

∫ ∫
σxdxdy∫ ∫
σdxdy

=
σ

M

∫ ϕ/2

−ϕ/2

∫ R

0

xrdrdϕ =
σ

M

∫ ϕ/2

−ϕ/2

∫ R

0

r2 cosϕdrdϕ =
σ

M

R3

3

∫ ϕ/2

−ϕ/2
cosϕdϕ

=
2σ

3M
R3 sin

ϕ

2
=

4R

3ϕ
sin

ϕ

2

ycm = 0 .

c. The inertial moment with respect to an axis crossing a corner is,

I0 =

∫
r2dm = σ

∫ ϕ/2

−ϕ/2

∫ R

0

r3drdϕ = σ
R4

4
ϕ =

M

2
R2 .
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And the inertial moment with respect to an axis crossing the center of mass is,

I = Icm+I0 =Mx2cm+
M

2
R2 =M

(
4R

3ϕ
sin

ϕ

2

)2

+
M

2
R2 =

M

2
R2

[
1 +

32

9ϕ2
sin2 ϕ2

]
.

3.1.4.23 Ex: Inertial tensor

Calculate the moment of inertia of a homogeneous hollow cylinder with mass m,
length L, outer radius R, and inner radius r.

Solution: The mass of the hollow cylinder is,

m = πϱ0L(R
2 − r2) .

The inertia tensor is for continuous systems given by,

Iij =

∫

V

ϱ(r)
[
δijr

2 − xixj
]
dV .

So for a hollow cylinder with length L, outer radius R, and inner radius r,

I33 = ϱ0

∫

hollow cylinder

(
x2 + y2

)
dV = ϱ0

∫ 2π

0

∫ L/2

−L/2

∫ R

r

ρ2ρdρdzdϕ

= πϱ0L
R4 − r4

2
=
m

2
(R2 + r2) .

For I11 and I22 one gets,

I11 + I22 = ϱ0

∫

hollow cylinder

(
x2 + y2 + 2z2

)
dV = I33 + 2ϱ0

∫ 2π

0

∫ L/2

−L/2

∫ R

r

z2ρdρdzdϕ

=
m

2
(R2 + r2) +

m

6
L2 = 2I11 = 2I22 .

For the non-diagonal elements one gets,

Ii ̸=j =
∫

V

ρ(r)xixjdV = ρ

∫ d/2

−d/2
xixjdxidxjdxk = 0 .

3.1.4.24 Ex: Inertial tensor

Determine the tensor of inertia for
a. a tetrahedron in which the mass is distributed equally between the corner points in
a coordinate system in which the z-axis passes through the center of opposite edges;
b. of the tetrahedron in a coordinate system in which the z-axis passes through one
of its corners and through its center of gravity.

Solution:
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M

S

a

b

c

e

d

f

Tetraeder. If the tetrahedron has the edge length of a, then
the distance of the center M of a facet from a corner of the

same facet is b = a
2 cos 30◦ = a

√
3
3 . The distance of the center

of a facet to an edge of the same facet is c = a
2 tan 30

◦ =

a
√
3
6 . The distance of the center of gravity of the tetrahedron

from the edges is d = 1
2

√
(b+ c)2 − a2

4 = a
√
2
4 . The distance

of the center of gravity to the center of the facets is e =√
d2 − c2 = a

2
√
6
. The distance of the corners from the center

of gravity is f =
√
d2 + a2

4 = a
2

√
3
2 , such that for every

corner α holds r2α = 3
8a

2.
The inertial tensor is for point-like systems,

Iij =
∑

α

mα

(
δijr

2
α − x(i)α x(j)α

)
=



∑
αmα

(
r2α − x2α

)
−∑αmαxayα −∑αmαxazα

−∑αmαxayα
∑
αmα

(
r2α − y2α

)
−∑αmαyazα

−∑αmαxazα −∑αmαyazα
∑
αmα

(
r2α − z2α

)


 .

a. Placing the coordinate system so that the z-axis cuts two opposite edges in their cen-
ter and the x-axis runs parallel to one of the edges, then the points of the tetrahedron
are at (±a/2, 0, d) and (0,±a/2,−d),

I = m



4 3a2

8 − a2

4 − a2

4 − 0− 0 0 0

0 4 3a2

8 − 0− 0− a2

4 − a2

4 0

0 0 4 3a2

8 − a2

8 − a2

8 − a2

8 − a2

8


 = ma213 .

b. Placing the coordinate system so that the z-axis goes through one corner of the
tetrahedron and through its center of gravity and the x-axis points towards a second
corner, then the points of the tetrahedron at (0, 0, f), (0, b,−e) and (±a/2,−c,−e),

I = m



4 3a2

8 − 0− 0− a2

4 − a2

4 −0− 0 + ac
2 − ac

2 −0− 0 + ae
2 − ae

2

−0− 0 + ac
2 − ac

2 4 3a2

8 − 0− b2 − c2 − c2 −0 + be− ce+ ce

−0− 0 + ae
2 − ae

2 −0 + be− ce+ ce 4 3a2

8 − f2 − e2 − e2 − e2


 = ma213 .

One could have come up with it straight away, since the matrix must emerge from
that of part (b) by rotation, but the unit matrix is equal into itself when it rotates,
DtE3D = E3.

3.1.4.25 Ex: Inertial tensor

Two balls of different radii R1 > R2 and same homogeneous mass density ρ are welded
together at their point of contact. Derive the moment of inertia of each individual
sphere (axis of rotation through the center).
a. Where is the center-of-mass of the total system?
b. Calculate the main moments of inertia of the total system with regard to its center
of gravity. Note: Use Steiner’s theorem.
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Solution: It doesn’t matter about which axis the ball is rotated; we take the z-axis.

I =

∫

ball

ρ(x2 + y2)dV = ρ

∫ R

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ
(
r2 sin2 θ cos2 ϕ+ r2 sin θ2 sin2 ϕ

)

= 2πρ
1

5
R5

∫ θ

0

dθ sin3 θ = 2πρ
1

5
R5 4

3
.

The last integral can be solved by partial integration. So the moment of inertia is,
I = 8

15πρR
5. With ρ =M/V =M/( 43πR

3) one gets I = 2
5MR2.

a. The center of gravity vector of the system is,

S =
M1r1 +M2r2
M1 +M2

.

The center of gravity is on the connecting line between the individual centers of the
spheres. If we now place the coordinate origin in the center of sphere 1 and, for
example, the x-axis along the vector connecting the two centers of the spheres, only
the x-component of S ̸= 0, namely,

Sx =
M2

M1 +M2
(R1 +R2) .

This shows that the center of gravity seen from the center of sphere 1 is at M2

M1+M2
of

the connecting line.
b. Let us rotate the system around an axis ω̂ that goes through the center of sphere
1. Then the moment of inertia about this axis is calculated according to Steiner’s
theorem to Iω = ISPω +Mb2. Note that we are looking for ISPω . On the other hand,
the moment of inertia when rotating around this axis is also equal to the sum of the
moment of inertia of ball 1 when rotating around its center plus the moment of inertia
of ball 2 when rotating around the axis through ball 1. So:

Iω =
2

5
MR2

1 + Iω,K2

We can now calculate again Iω,K2 using the Steiner theorem:

Iω,K2
=

2

5
M2R

2
2 +M2(R1 +R2)

2 .

Inserting we get,

Iω =
2

5
M1R

2
1 + Iω,K2

=
2

5
M1R

2
1 +

2

5
M2R

2
2 +M2(R1 +R2)

2

Iω = ISPω +Mb2 = ISPω + (M1 +M2)

(
M2

M1 +M2
(R1 +R2)

)2

.

This we can now solve by

ISPω = Iω− (M1+M2)b
2 =

2

5
M1R

2
1+

2

5
M2R

2
2+M2(R1+R2)

2− M2

M1 +M2
(R1+R2)

2

The second main moment of inertia is identical to the one just calculated and the
third (axis of rotation through both spherical centers) is additively composed of the
individual moments of inertia of the spheres for rotations around their centers.
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3.1.4.26 Ex: Rolling movement

A cylinder of mass m with radius R rolls over the ski jump shown in the figure, which
has a gradient of −173% (i.e. tanα = −1.73). After having left the ski jump at a
height of h = H/2, he falls in the Earth’s gravity field. Compare the flight distance
with the case in which the cylinder does not roll, but slides smoothly over the hill.

A
B

r

H
h

x

2R

m

a

Figure 3.5: Rolling movement.

Solution: In the event of rolling, the potential energy is converted into kinetic and
rotational energy,

m

2
v2 +

Iz
2
ω2 = mg(H − h) .

With ω = v/R and Iz = mR2/2 one get at the take-off position v0 =
√

4
3g(H − h).

The rotational energy is lost.
When sliding, the kinetic energy is greater at the take-off position,

m

2
v2 = mg(H − h) ,

because no rotational energy is generated, so v0 =
√
2g(H − h).

The slope angle of the ski jump is at the take-off position α+ 90◦ = 30◦, such that,

ẋ0 = v0 cos(α+ 90) =

√
3

2
v0 and ẏ0 = v0 sin(α+ 90) =

1

2
v0 .

The flight time is given by,

y(t) = −g
2
t2 + ẏ0t+ h = 0 respectively t =

1

g

(
ẏ0 +

√
ẏ20 + 2gh

)
.

The flight distance is then x(t) = ẋ0t. With η = 4/3 for the rolling motion and η = 2
for the sliding motion we can write,

x(t) = ẋ0t

=
√
ηg(H − h) cos(α+ 90) 1

g

(√
ηg(H − h) sin(α+ 90◦) +

√
ηg(H − h) sin(α+ 90◦)2 + 2gh

)
=

√
ηg

(
H − H

2

)√
3

2

1

g

(√
ηg

(
H − H

2

)
1

2
+

√
ηg

(
H − H

2

)
1

4
+ 2g

H

2

)

=

√
3H

8

(
η +

√
η2 + 8η

)
.
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The ratio is,

xroll(t)

xslide(t)
=

4
3 +

√(
4
3

)2
+ 8 · 43

2 +
√
22 + 8 · 2

=
2

3

1 +
√
7

1 +
√
5
≃ 0.75 .

3.1.4.27 Ex: Accelerated rotational movement

A mass m = 1kg is hanging on a light cord, which is wound on a d = 2 cm thick
wheel with the radius r = 10 cm. The wheel has a homogeneously distributed mass
of M = 10 kg and rotates without friction.
a. Determine the tensile force in the cord.
b. Determine the acceleration of the mass.

m

r

Figure 3.6: Accelerated rotational movement.

Solution: a. The force of the weight force and the acceleration work to pull the
mass m downwards, ma = mg + Z. The tensile force in the cord is therefore of an
amount Z = mg −ma.
b. The torque is D = d

dtL. Hence, r× Z⃗ = I ddt ω⃗.

Now we have Zr = Iω̇ = I ddt
v
r = I ar . Hence, a = Zr2

I .

Now mg − Z = mZr2

I , also Z = mg
1+mr2/I respectively a = mgr2

I+mr2) .

The following applies to the wheel (solid cylinder): I = 1
2Mr2, thus the acceleration

of the mass is a = mgr2

1
2Mr2+mr2

= 2m
M+2mg.

c. Be H the height of the wheel axle, h the initial height of the mass m, z(t) the
time-dependent height of the mass.
Conservation of energy requires: MgH +mgh =MgH + 1

2Iω(t)
2 +mgz(t)+mv2(t).

thus mg(h− z(t)) = 1
4Mr2ω2(t) + 1

2mv
2(t).

We have ω = dϕ(t)/dt and dz/dt = v(t) = rdϕ/dt = rω(t).

also mg(h− z) = 1
4Mv2 + 1

2mv
2 = M+2m

4

(
dz
dt

)2
.

Separation of the variables:
√

4mg
M+2mdt =

dz√
h−z .

Integration:
√

4mg
M+2m t =

[
−2
√
h− z̃

]h
z

= 2
√
h− z, also z(t) = h − 4mg

M+2m t
2 =

h− t20.8175m/s
2
and a(t) = − 2m

M+2mg.
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3.1.4.28 Ex: Hovering dumbbell

A dumbbell rotates at the angular velocity ω around a rotation axis that passes
through its center of gravity and forms an angle α with the axis connecting the
masses (see figure).
a. Calculate the angular momentum vector of the barbell in the co-rotating coordinate
system.
b. How does the angular momentum behave in a non-rotating coordinate system?
c. Calculate the torque that must act so that the angular velocity remains constant.

y

z

α
a

ω

Figure 3.7: Hovering dumbbell.

Solution: a. The angular momentum vector of the dumbbell in the co-rotating coor-
dinate system is,

L = Iω⃗ = I



0

0

ω




ri =




0

±a sinα
±a cosα




Izx = 0 , Izy = −2ma2 sinα cosα , Izz = 2ma2 sin2 α .

Hence,

L =




0

−2ma2ω sinα cosα

2ma2ω sin2 α


 .

b. The angular momentum in a non-rotating coordinate system is,

Llab =



cosωt − sinωt 0

sinωt cosωt 0

0 0 1


L = 2ma2ω sinα




cosα sinωt

− cosα cosωt

sinα


 .
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c. The torque is,

N =
dL

dt
= ω22ω2ma2 sinα cosα



cosωt

sinωt

0


 .

3.1.4.29 Ex: Hovering cross

Four masses of equal weight m are connected to each other in the manner shown by
a rigid cross. The mass of the connecting rods is negligible. The cross rotates at a
constant angular velocity ω around an axis of rotation that lies in its plane, passes
through its center of gravity and forms an angle α with its long axis.
a. Calculate the inertia tensor I of the body in the co-rotating system. b. First

y

z

αa

ω

b

Figure 3.8: Hovering cross.

calculate the angular momentum L in the co-rotating system using the relationship
L = Iω⃗, where ω⃗ = (0, 0, ω) is invariant under rotation around the z-axis. Then
transform L back into the laboratory system.
c. Calculate the torque that must act so that the angular velocity remains constant.

Solution: a. The angular momentum vector of the dumbbell in the co-rotating coor-
dinate system is, L = Iω⃗ = Iωêz. The masses are at the positions,

r1,2 =




0

±a sinα
±a cosα


 and r3,4 =




0

∓b cosα
±b sinα


 .

Only the last column of the tensor of inertia is interesting. The components are,

Izx = 0

Izy = −2ma2 sinα cosα− 2mb2 sinα cosα

Izz = 2ma2 sin2 α+ 2mb2 cosα .
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b. Hence,

L =




0

−2mω sinα cosα(a2 + b2)

2mω(a2 sin2 α+ b2 cos2 α)


 .

The angular momentum in a non-rotating coordinate system is,

Llab =



cosωt − sinωt 0

sinωt cosωt 0

0 0 1


L = 2mω




sinα cosα sinωt(a2 + b2)

− sinα cosα cosωt
(
a2 + b2

)

a2 sin2 α+ b2 cos2 α


 .

c. The torque is,

N =
dL

dt
= 2mω2 sinα cosα(a2 + b2)



cosωt

sinωt

0


 .

3.1.4.30 Ex: A farmer on a ladder

A farmer of mass M = 90 kg harvests apples climbing a ladder (length L = 10m,
mass m = 30 kg) leaning at an angle ϕ = 60◦ against a branch relative to the Earth’s
surface. While harvesting the highest apples at the top, the branch suddenly breaks
away. In his fear, the farmer clings to the ladder. The system ladder-farmer now
falls down with the ladder base remaining fixed. Neglect the spatial expansion of the
farmer. The ladder can be viewed as a one-dimensional rod.
a. Show that the moment of inertia ILB of the ladder-farmer system for a rotation
around the ladder base point can be given as ILB =

(
m
3 +M

)
L2.

b. At what speed v1 does the farmer reach the surface of the Earth?
c. At the instant when the branches break, in his shock the farmer drops an apple.
At what speed v2 does the apple reach the surface of the Earth?
d. Would the farmer fall more slowly when letting the ladder go at the moment when
the branch breaks?

Solution: a. The moment of inertia of a bar orthogonal to its length is,

IL =

∫
r2dm =

∫
ρ(r)r2d3r = ρ0

∫ L

0

r2dr = ρ0
L3

3
= m

L2

3
.

The farmer is located at a distance L from the pivot. Hence, according to Steiner’s
theorem, IB =ML2. Overall,

ILB = IL + IB =
(m
3

+M
)
L2 .

b. The potential energy of the farmer is Epot,B =MgL sinϕ, the energy of the ladder
Epot,L = m

2 gL sinϕ is converted into rotational energy when falling, Erot = I
2ω

2.
Hence,

I

2
ω2 =

(m
2

+M
)
gL sinϕ .
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Thus,

v1 = ωL = L

√
2 (m/2 +M) gL sinϕ

I
=

√
m/2 +M

m/3 +M
2gL sinϕ =

c. The speed follows from equating Epot =
mA

2 L sinϕ and Ekin = mA

2 v22

mAgL sinϕ =
mA

2
v22 .

Hence,
v2 =

√
2gL sinϕ =

d. Because of

v1 =

√
m/2 +M

m/3 +M
2gL sinϕ >

√
2gL sinϕ = v2

it actually falls more slowly.

3.1.4.31 Ex: Angular momentum

A thin bar of length L and mass M is suspended at one end thus forming a physical
pendulum.
a. I calculate the inertial moment of the bar.
b. Now, the pendulum is tilted a little. Calculate the torque as a function of the angle
of inclination.
c. For very small angles θ holds the approximation sin θ ≃ θ. Use this approach to
establish the equation of motion.

Solution: a. Be λ = M/L the linear mass density of the bar. The inertial moment
is,

I =

∫
r2dm = λ

∫ L

0

z2dz =
λ

3
L3 =

M

3
L2 .

b. The torque is,

I
¨⃗
θ = τ = L×Mg = LMg sin(180◦ − θ) = LMg sin θ .

c. The equation of motion is,

θ̈ ≃ LMg

I
θ =

3g

L
θ .

3.1.4.32 Ex: Accelerated pendulum

A pendulum of length R is suspended in a car which is uniformly accelerated with
the acceleration a.
a. Calculate the angle of the pendulum’s displacement.
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b. Calculate the torque exerted by the accelerating force of the car.
c. What is the torque exerted by the weight in this situation?
d. Calculates the ratio of the torques. Justify the obtained result.

Solution: a. The angle is given by,

tan θ =
a

g
.

b. The torque due to the acceleration of the car is,

|τ⃗a| = |r×F| = Rma sin(90◦−θ) = Rma cos θ = Rma
1√

1 + tan θ2
= Rma

1√
1 + a2

g2

= Rm
1√

1
a2 + 1

g2

.

c. The torque due to the gravitational acceleration is,

|τ⃗g| = |r× F| = Rmg sin θ = Rmg
1√

1 + 1/ tan θ2

= Rmg
1√

1 + g2

a2

= Rm
1√

1
g2 + 1

a2

.

d. The ratio is,
|τ⃗a|
|τ⃗a|

=
Rma cos θ

Rmg sin θ
=

a

g tan θ
= 1.

That’s because the pendulum is in balance.

3.1.4.33 Ex: Rotating disc

A round disk of mass M with radius R is rotatably mounted about a vertical axis
passing through its center. A spring of negligible mass with the spring constant κ
is attached to the disc tangentially to the edge. The spring, which is initially fully
compressed by the length d, represents a launching device for a ball of mass m. The
disk rests until the ball is released being ejected horizontally by the spring. Calculate
the angular velocity of the disk after the ejection.
Help: Use the angular momentum and energy conservation laws.

mM

ω

v

R

Figure 3.9: Rotating disc.
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Solution: The moment of inertia of the disc is Idisc = 1
2MR2. Conservation of

angular momentum requires, 0 = Ldisc + Lsphere, hence,

0 = Iω⃗ + r× psphere ,

resp.

psphere = −
Iω

R sinα
= −Iω

R
.

Conservation of energy requires Espring = Esphere + Edisc, also

κ

2
d2 =

1

2m
p2sphere +

I

2
ω2 .

Substitution of psphere yields,

κ

2
d2 =

1

2m

(
Iω

R

)2

+
I

2
ω2 ,

and resolved after ω

ω =

√
κd2

I2/mR2 + I
=

2d

R

√
κm

M2 + 2mM
.

3.1.4.34 Ex: Billiard

A resting billiard ball with radius r is played with a horizontal queue, which gives it
an impulse ∆p = F∆t. The queue hits the ball at a height h above the table. How
does the initial angular velocity ω of the sphere depend on ∆p and h? Help: The
ball rolls without slipping.

h r

Figure 3.10: Billiard.

Solution: The moment of inertia of the sphere is Iω = 2
5mr

2. The angular mo-
mentum is L = r×∆p = Iωω. Hence,

ω =
r∆p sinϕ

Iω
,

where sinϕ = h−r
r . With v0 = ∆p/m we get,

ω =
rmv0
2
5mr

2

h− r
r

=
5

2
v0
h− r
r2

.
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3.1.4.35 Ex: Rotating and propagating arc

Calculate the angular momentum of an arc (a) rotating around its center of mass,
(b) rotating around a peripheral point, and (c) rolling without friction on a surface.

Solution: a. The inertial moment of the arc is Icm =MR2. The angular momentum
of the mass distribution m in the center of mass system (cm) is,

L(cm)
m =

∑

i

x⃗i ×miui =
∑

i

miRuêaω =MR2ω⃗cm = Iω⃗cm .

Considering the same rotation from the point of view of a point O located away from
the center of mass,

L(O) =
∑

i

ri ×mivi =
∑

i

(rcm + x⃗i)×mi(vcm + ui)

=
∑

i

mircm × vcm +mircm × ui +mix⃗i × vcm +mix⃗i × ui

=Mrcm × vcm +mircm × ui +mix⃗i × vcm +mix⃗i × ui = L
(O)
M + 0 + 0 + L(cm)

m ,

with M =
∑
imi. As the arc does not move its center of mass, L

(O)
M = 0, and

L(O) = L(cm)
m .

b. Now we assume that the arc moves with angular velocity ωcm around a peripheral
point. In the center of mass system the arc still rotates in the same way as in (a)

producing an angular momentum L
(cm)
m . But in addition the center of mass rotates

with the same angular velocity ωcm, producing an angular momentum rcm × pcm,

L(O) = rcm × pcm + L(cm)
m =MRvcmêω + Iω⃗cm = 2MR2ω⃗cm .

We would have reached the same conclusion using Steiner’s theorem, IO = Icm+MR2,

L(O) = I(O)ω⃗cm = (Icm +MR2)ω⃗cm = 2MR2ω⃗cm .

c. Now we assume that the arc’s center of mass moves with velocity vcm = Rωcm on
a straight line, such that the circumference is in phase with a tangential surface,

L(O) = rcm × p⃗cm + L(cm)
m =Mbvcmêω + Iω⃗cm =MR2ω⃗cm + Iω⃗cm = 2MR2ω⃗cm ,

where b = R is the impact parameter. It is interesting that this gives the same result
as in (b). This can be understood, because the propagation on the surface can be seen
in each infinitesimal instant as a rotation around the support point.

3.2 The rigid body

In mechanics a rigid body is defined as a system of masses whose mutual distances
are kept fixed during any motion. The rigid bodies of practical interest are generally
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extended over macroscopic volumes and form a (quasi-)continuous mass distribution.
The motion of large rigid bodies is more complicated than the motion of a point mass,
since in addition to the translational motion, there may be rotations about one or
more axes. The dynamics of both types of motion can clearly be separated in rigid
bodies.

3.2.1 Translations and rotations: linear and angular momen-
tum

The translational motion of a rigid body of massM is fully described by the evolution
of the coordinates and the velocity of its center-of-mass. In fact, one can assimilate
the translation dynamics of the body with the whole mass M being concentrated in
the center-of-mass. The total momentum p of the body is,

p = mv , (3.10)

where v is the velocity of the center-of-mass. The equation that determines the
translational dynamics is Newton’s second law,

Fext =
dp

dt
, (3.11)

where Fext is the vectorial sum of external forces acting on the body. When no
external forces act, the amount of translational motion of the rigid body is conserved.
Similarly, the translational kinetic and the gravitational potential energies of the rigid
body can be evaluated by simply considering, respectively, the velocity and height H
of the center-of-mass with respect to a reference level of potential energy:

Ekin =
M

2
v2 and Egrv =MgH . (3.12)

The (pure) rotation of a rigid body about its center-of-mass also contains kinetic
energy. The quantity representing the amount of rotational motion of a rigid body is
the rotational angular momentum. For simplicity, we will assume that the rotation
occurs about an axis passing through the center-of-mass of the body, and that the
body is symmetric around that axis. In this situation, the angular momentum reads,

L = Iω⃗ , (3.13)

where ω⃗ is the angular velocity and I the moment of inertia of the rigid body with
respect to the rotation axis. The moment of inertia is obtained by summing for
the entire body over the contributions of the products between the elementary mass
fragments δmi and the square of their distances d2i from the rotation axis,

I =
∑

i

d2i δmi . (3.14)

For an extensive body of volume V and density ρ, the sum in this equation is expressed
as an integral along the infinitesimal mass elements dm = ρdV ,

I −
∫

V

d2ρdV . (3.15)
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3.2.2 Rotational energy and moment of inertia

The equation that determines the dynamics of rotation is a consequence of Newton’s
second law, and results in,

τext =
dL

dt
. (3.16)

where τext is the vectorial sum over the torques exerted by each external force acting
on the body,

τext =
∑

i

ri × Fext,i . (3.17)

In this expression, ri is the vector indicating the point of application of the force Fext,i
on the body, measured with respect to the center-of-mass. When the total external
torque is zero, the angular momentum of the rigid body is conserved. The kinetic
energy associated with the rotation of the rigid body is given by the expression,

Erot =
I

2
ω2 . (3.18)

Example 5 (Cylinder on a slope): A cylinder of radius R rolls down a slope
of inclination θ. We have h = z sin θ and v = Rω. Energy conservation means,
mgh = m

2
v2 + I

2
ω2, hence,

v =

√
2gh

1 + I/mR2
. (3.19)

For a plain cylinder we know I = m
2
R2 and for a hollow one we know I =

m
2
(R2+r2). This means, plain cylinders will always reach the same final velocity,

v =

√
4gh

3
, (3.20)

while hollow cylinders will be slower,

v =

√
4gh

3 + r2/R2
. (3.21)

3.2.3 Rotation dynamics about a fixed axis

3.2.4 Static equilibrium of a rigid body

3.2.5 Constant acceleration

3.2.6 Exercises

3.2.6.1 Ex: Inertial momentum

Calculate the moment of inertia of a quadrilateral of point masses in relation to the
axes shown in the figure.

Solution: Regarding axis 1 we have,

I1 = 2a
2

4 m+ 2a
2

4 2m = 3
2a

2m .
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Exercícios  

1 - Calcule o momento de inércia de um quadrilátero de massas pontuais em 

relação aos eixos mostrados na Fig. 8.36. 

2 - Um disco de raio R e densidade superficial de massa σ tem um buraco 

circular de raio r, distando a do centro do disco. Calcule os momentos de 

inércia em relação aos eixos 1, 2 e 3, mostrados na Fig. 8.37. 

 

 

 

 

 

 

 

 

 

 

      Fig. 8.36                     Fig. 8.37 

3 - Calcule o momento de inércia de uma esfera de massa M e raio R em 

relação a um eixo passando pelo centro de massa. 

4 - Uma barra delgada de massa M e comprimento L faz um ângulo θ com 

eixo y, conforme mostra a Fig. 8.38. 

a) Calcule o momento de inércia para rotação em torno do eixo; 

b) Calcule o momento de inércia para rotação em torno de um eixo 

paralelo a y e passando pelo centro de massa. 

5 - Uma escada de M e comprimento L está apoiada numa parede sem atrito e 

no chão, com atrito µ (Fig. 8.39). Sabendo que o ângulo entre a escada e a 

parede é 45
o
, qual deve ser a tensão numa corda amarrada no meio da 

escada para que ela não caia? 

 

I2 
I1 

I3 

I4 

m 

m 2m 

2m 

a 

I2 

I1 

I3 R 

r 
a 

Figure 3.11: Inertial momentum.

Regarding axis 2 we have,

I2 = 2a
2

4 2m = 2a2m .

Regarding axis 3 we have,

I3 = 2a
2

4 m = a2m .

Regarding axis 4 we have,

I4 = 2a
2

2 m+ 2a
2

2 2m = 3a2m .

3.2.6.2 Ex: Inertial momentum

A disc of radius R and surface mass density σ has a circular hole of radius r at a
distance a from the center of the disc. Calculate the moments of inertia with respect
to the axes 1, 2 and 3, as shown in the figure.
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Exercícios  

1 - Calcule o momento de inércia de um quadrilátero de massas pontuais em 

relação aos eixos mostrados na Fig. 8.36. 

2 - Um disco de raio R e densidade superficial de massa σ tem um buraco 

circular de raio r, distando a do centro do disco. Calcule os momentos de 

inércia em relação aos eixos 1, 2 e 3, mostrados na Fig. 8.37. 

 

 

 

 

 

 

 

 

 

 

      Fig. 8.36                     Fig. 8.37 

3 - Calcule o momento de inércia de uma esfera de massa M e raio R em 

relação a um eixo passando pelo centro de massa. 

4 - Uma barra delgada de massa M e comprimento L faz um ângulo θ com 

eixo y, conforme mostra a Fig. 8.38. 

a) Calcule o momento de inércia para rotação em torno do eixo; 

b) Calcule o momento de inércia para rotação em torno de um eixo 

paralelo a y e passando pelo centro de massa. 

5 - Uma escada de M e comprimento L está apoiada numa parede sem atrito e 

no chão, com atrito µ (Fig. 8.39). Sabendo que o ângulo entre a escada e a 

parede é 45
o
, qual deve ser a tensão numa corda amarrada no meio da 

escada para que ela não caia? 

 

I2 
I1 

I3 

I4 

m 

m 2m 

2m 

a 

I2 

I1 

I3 R 

r 
a 

Figure 3.12: Inertial momentum.

Solution: The moment of inertia of a disk of mass M = πR2σ with respect to
an axis within the plane through the center of mass is,

Id =

∫
ρ2dm = σ

∫ R

−R

∫ √R2−z2

−
√
R2−z2

ρ2dρdz = σ

∫ R

−R

ρ3

3

∣∣∣∣

√
R2−z2

−
√
R2−z2

dz

=
2σ

3

∫ R

−R

√
R2 − z2

3
dz = σ

π

4
R4 =M

R2

4
.
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So we have with respect to the axis 1,

I1 =M
R2

4
−
(
m
r2

4
+ma2

)
,

where M is the mass of the disk without a hole and m is the mass that is missing
from the hole. Regarding axis 2 we have,

I2 =M
R2

4
−mr2

4
.

The moment of inertia of the disk with respect to an axis within normal to the plane
crossing the center of mass is,

In =

∫
ρ2dm = σ

∫ 2π

0

∫ R

0

ρ2ρdρdϕ = 2πσ
ρ4

4

∣∣∣∣
R

0

=M
R2

2
.

Hence, we have with respect to the axis 3,

I3 =M
R2

2
−
(
m
r2

2
+ma2

)
.

3.2.6.3 Ex: Inertial momentum

Calculate the moment of inertia of a sphere of mass M and radius R with respect to
an axis passing through the center of mass.

Solution: As the volume of the sphere is V = 4
3πR

3, we get with ρ2 ≡ x2 + y2,

I =

∫
ρ2dm =

M

V

∫

V

ρ2d3r =
M

V

∫ 2π

0

∫ R

0

∫ √R2−z2

0

ρ2ρdρdzdϕ =
M

V

∫ R

0

[
2π

4
ρ4
]√R2−z2

0

dz

=
M

V

2π

4

∫ R

0

(R2 − z2)dz = 3M

4πR3

2π

4

[
R2z − 1

3z
3
]R
0
=

2MR2

5
.

3.2.6.4 Ex: Inertial momentum of a slender bar

A thin bar of mass M and length L makes an angle θ with the y-axis, as shown in
the figure.
a. Calculate the moment of inertia for rotation about the axis;
b. Calculate the moment of inertia for rotation around an axis parallel to y and pass-
ing through the center of mass.

Solution: a. With the mass distribution dm = λdl we have,

Ia =

∫
r2dm = λ

∫ L

0

(l sin θ)2dl =
λL3

3
sin2 θ =

ML2

3
sin2 θ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Rigidbody_.pdf
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Fig. 8.38                                                              Fig. 8.39 

6 - Uma escada de massa M e comprimento L está apoiada numa parede e no 

chão (ambos sem atrito) de maneira a formar um ângulo θ com a parede, 

conforme mostra a Fig. 8.40. Uma corda amarrada a uma altura H 

(paralela ao chão) mantém a escada em repouso. Calcule: 

a) a tensão na corda; 

b) a máxima altura Hmax em que é possível haver equilíbrio; 

c) a aceleração angular no instante em que esta corda for cortada. 

7 - Uma escada de pintor de massa total 2M está aberta de maneira a formar 

um ângulo θ. Qual deve ser o coeficiente de atrito estático com o chão 

para que ela não caia? (Fig. 8.41). 

 

 

 

 

 

 

 

 

           Fig. 8.40    Fig. 8.41 

8 - Um pintor de massa M está no topo de uma escada de peso desprezível 

(comprimento de cada lateral: L) que se apóia sobre um assoalho 

M 

θ L 

y 

L 

T 

45
o
 

M 

L 

M 

θ

H 

L θ

2M 

L 

Figure 3.13: Slender bar.

b. We laso have,

Ib = Ia −M
(
L

2
sin θ

)2

=
ML2

12
sin2 θ ,

or alternatively

Ib =

∫
r2dm = λ

∫ L/2

−L/2
(l sin θ)2dl =

λ

3
2

(
L

2

)3

sin2 θ =
ML2

12
sin2 θ .

3.3 Angular momentum

3.3.1 Torque and angular momentum of a particle system

3.3.1.1 Steiner’s theorem

The angular momentum Iω of a rigid body with respect to a rotation axis êω can be
divided into Iω = ISPω +Mb2. Here, ISPω is the inertial moment of the body with
respect to the rotation axis ê0ω, which is parallel to êω and traverses the center-of-
mass of the body, M is the mass of the body, and b is the distance from the rotation
axis. This is Steiner’s theorem.

To demonstrate Steiner’s theorem, we consider the vector of a mass point α of
the rigid body a first time in the coordinate system, whose origin lies on the axis êω,
and which we call rα. A second time we describe this mass point in the coordinate
system, whose origin lies in the center-of-mass, and which we call r. The vector of
the position of the mass α in the center-of-mass system be described by ρα. With
this nomenclature,

rα = r+ ρ⃗α .
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The moment of inertia with respect to the êω-axis is then,

Iω =
∑

α

mα

(
r2α − (rα · êω)

)

=
∑

α

mα

[
(r+ ρ⃗α)

2 − ((r+ ρ⃗α) · êω)2
]

=
∑

α

mα

[
(r2 + 2rρ⃗α + ρ⃗2α − (r · êω)2 − 2(r · êω)(ρ⃗α · êω)− (ρ⃗α · êω)2

]

=MR2 + 0 +
∑

α

mαρ⃗
2
α −M (r · êω)2 − 0−

∑

α

mα (ρ⃗α · êω)2

= ISPω +Mb2 .

The zeros of the fourth line come from
∑
αmαρ⃗α = 0, because the left side just

corresponds to the center-of-mass vector multiplied with the total mass, but which
has in the center-of-mass system the value r = 0.

3.3.2 Rotational work-energy relation

3.3.3 Conservation of angular momentum

Like the conservation law for linear momentum, the conservation law for angular
momentum is universal. It holds for a rotational collision,

(I1 + I2)ω = I1ω1 + I2ω2 . (3.22)

On the other side, non-rotational energy is not conserved in a rotational collision,
Erot < Erot,1 + Erot,2, because part of the energy can be dissipated:

Erot,1 + Erot,2 − Erot =
I1
2
ω2
1 +

I2
2
ω2
2 −

I1 + I2
2

ω2 =
−I1I2

2(I1 + I2)
(ω1 − ω2)

2 . (3.23)

3.3.4 Combination of translation and rotation

Example 6 (Gyroscope): The angular momentum due to the rotation of a
wheel is,

Lω = I(cm)
ω ω⃗ .

for a disk-shaped wheel the inertial moment I
(cm)
ω about an axis of rotation ω⃗

crossing the center-of-mass is,

I(cm)
ω =

M

2
R2 .

The force of gravitation,
Fg = mg

produces a torque,
τ⃗g = D× Fg = Dmgêϕ sin θ .

Initially, the rotation axis of the disk is horizontal θ = 0. Due to the torque the
shaft tilts downward thus forcing the angular momentum to shift to Lω + dLω
with the velocity,

dLω
dt

= τ⃗g .
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How can the system react to compensate for this change of Lω?
The total angular momentum in the direction g must be conserved, as there is
no external torque in it. Fortunately, there is another possible movement that
can generate an angular momentum: the rotation around the point of support
O with the angular velocity Ω⃗:

const = Ltot = Lω + LΩ or
dLω
dt

= −dLΩ

dt
.

That is, we have a torque τ⃗Ω = dLΩ
dt

. Hence, |τω| = |τΩ|, but since the orientation
of LΩ is vertically fixed, the orientation of τ⃗Ω is also vertical, which corresponds
to an azimuthal force. Thus, instead of an inclination of the rotation axis Lω,
we get an azimuthal shift by an angle,

dϕ⃗ =
dLΩ

Lω sin θ
=

dLω
Lω sin θ

=
τ⃗gdt

I
(cm)
ω ω sin θ

=
Dm(−g) sin θdt
I
(cm)
ω ω sin θ

= −Dmgdt

I
(cm)
ω ω

.

The frequency of this precession movement,

Ω⃗ =
dϕ⃗

dt
,

produces an angular momentum,

LΩ =MD× vΩ =MD2Ω⃗ = I
(O)
Ω Ω⃗ .

Figure 3.14: Rotating wheel supported on one end of its axis.

Now, the precession modifies the direction of the angular momentum in the
plane,

Lω = Lωêϕ ,

with êϕ = êx cosΩt+ êy sinΩt. Hence,

L̇ = LΩ⃗ = τ⃗ω = L
−Dmgdt

I
(cm)
ω ω

= −Dmg = D× F .

Finally, we find a force exactly compensating gravity,

F = −mg .
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3.3.5 Exercises

3.3.5.1 Ex: Statics of a ladder

A ladder of mass M and length L leans on a frictionless wall and and stands on a
floor with friction µ (see figure). Knowing that the angle between the ladder and the
wall is 45◦, what should be the force on a rope tied in the middle of the stairs so that
it does not fall?
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Fig. 8.38                                                              Fig. 8.39 

6 - Uma escada de massa M e comprimento L está apoiada numa parede e no 

chão (ambos sem atrito) de maneira a formar um ângulo θ com a parede, 

conforme mostra a Fig. 8.40. Uma corda amarrada a uma altura H 

(paralela ao chão) mantém a escada em repouso. Calcule: 

a) a tensão na corda; 

b) a máxima altura Hmax em que é possível haver equilíbrio; 

c) a aceleração angular no instante em que esta corda for cortada. 

7 - Uma escada de pintor de massa total 2M está aberta de maneira a formar 

um ângulo θ. Qual deve ser o coeficiente de atrito estático com o chão 

para que ela não caia? (Fig. 8.41). 

 

 

 

 

 

 

 

 

           Fig. 8.40    Fig. 8.41 

8 - Um pintor de massa M está no topo de uma escada de peso desprezível 

(comprimento de cada lateral: L) que se apóia sobre um assoalho 

M 

θ L 

y 

L 

T 

45
o
 

M 

L 

M 

θ

H 

L θ

2M 

L 

Figure 3.15: Statics of a ladder.

Solution: The equations of motion are,

0 =Mg + T cos θ −N2

0 = Fat + T sin θ −N1

0 = τ0 + τT − τ1

where Fat = µN2 and,

τ0 = |r×Mg| = L

2
Mg sin(θ + 90◦)

τT = |r× T⃗ | = L

2
T sinα

τ1 = |r×N1| = LN1 sin(180
◦ − θ) .

For θ = 45◦ we have α = 90◦, and the equations of motion become,

0 =Mg +
T√
2
−N2

0 = Fat +
T√
2
−N1

0 =
L

2

Mg√
2
+
L

2
T − LN1√

2
.
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Eliminating N2 and then N1

0 =Mg +
T√
2
− Fat

µ
=Mg +

T√
2
− 1

µ

(
N1 −

T√
2

)

=Mg +
T√
2
− 1

µ

([
1

2
Mg +

1√
2
T

]
− T√

2

)
=Mg +

T√
2
− 1

2µ
Mg

T =
µ−1 −

√
2√

2
Mg .

3.3.5.2 Ex: Statics of a ladder

A ladder of mass M and length L leans against wall and stands on the floor (both
without friction) such as to form an angle θ with the wall, as shown in the figure. A
rope tied at a height of H (parallel to the floor) keeps the ladder at rest. Calculate:
a. the tension in the rope;
b. the maximum height Hmax at which equilibrium is possible;
c. the angular acceleration at the instant this rope is cut.
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Fig. 8.38                                                              Fig. 8.39 

6 - Uma escada de massa M e comprimento L está apoiada numa parede e no 

chão (ambos sem atrito) de maneira a formar um ângulo θ com a parede, 

conforme mostra a Fig. 8.40. Uma corda amarrada a uma altura H 

(paralela ao chão) mantém a escada em repouso. Calcule: 

a) a tensão na corda; 

b) a máxima altura Hmax em que é possível haver equilíbrio; 

c) a aceleração angular no instante em que esta corda for cortada. 

7 - Uma escada de pintor de massa total 2M está aberta de maneira a formar 

um ângulo θ. Qual deve ser o coeficiente de atrito estático com o chão 

para que ela não caia? (Fig. 8.41). 

 

 

 

 

 

 

 

 

           Fig. 8.40    Fig. 8.41 

8 - Um pintor de massa M está no topo de uma escada de peso desprezível 

(comprimento de cada lateral: L) que se apóia sobre um assoalho 
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L θ
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L 

Figure 3.16: Statics of a ladder.

Solution: a. Since the body is in equilibrium, all forces and all torques must com-
pensate,

∑
F = 0 and

∑
τ⃗ = 0. Let N1 and N2 be the pressures acting in normal

direction on the wall and the floor, respectively. T is the tension in the string. We
place the origin at the support point of the ladder on the wall. We can then express
the distance between this point and the point of attachment of the rope by,

x =
L cos θ −H

cos θ
.

We now have,

N2 −Mg = 0

N1 − T = 0

LN2 sin θ − xT cos θ − L
2Mg sin θ = 0 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Rigidbody_ZilioExc8_6.pdf
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torque around the support point. Replacing the pressures,

LMg sin θ − (L cos θ −H)T − L
2Mg sin θ = 0

⇒ T =
1

2

LMg sin θ

L cos θ −H .

b. This depends on the resistance of the rope, because when H rises, approaching
L cos θ, the tension diverges.
c. The angular acceleration if the string is cut, that is if T = 0, is given by,

Iα⃗ =
∑

τ⃗ = LN2 sin θ − L
2Mg sin θ .

with the moment of inertia being I =ML2/3, we have

α =
1

I

L

2
Mg sin θ =

3

2

g sin θ

L
.

3.3.5.3 Ex: Statics of a ladder

A Λ-shaped ladder of mass 2M mass is opened to form an angle θ. What should be
the coefficient of static friction with the floor so that it doesn’t fall? (see figure).
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Fig. 8.38                                                              Fig. 8.39 

6 - Uma escada de massa M e comprimento L está apoiada numa parede e no 

chão (ambos sem atrito) de maneira a formar um ângulo θ com a parede, 

conforme mostra a Fig. 8.40. Uma corda amarrada a uma altura H 

(paralela ao chão) mantém a escada em repouso. Calcule: 

a) a tensão na corda; 

b) a máxima altura Hmax em que é possível haver equilíbrio; 

c) a aceleração angular no instante em que esta corda for cortada. 

7 - Uma escada de pintor de massa total 2M está aberta de maneira a formar 

um ângulo θ. Qual deve ser o coeficiente de atrito estático com o chão 

para que ela não caia? (Fig. 8.41). 

 

 

 

 

 

 

 

 

           Fig. 8.40    Fig. 8.41 

8 - Um pintor de massa M está no topo de uma escada de peso desprezível 

(comprimento de cada lateral: L) que se apóia sobre um assoalho 
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L θ
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L 

Figure 3.17: Statics of a ladder.

Solution: Since the body is in equilibrium, all forces and all torques must com-
pensate,

∑
F = 0 and

∑
τ⃗ = 0. Instead of considering the ladder as open, since the

problem is symmetrical, we can consider half the ladder leaning against a wall at an
angle θ/2. Let N1 and N2 be the normal pressures on the wall and floor, respectively,
and Fat = µN2 the friction force on the floor. With that we have,

N2 −Mg = 0

N1 − Fat = 0
L
2Mg sin θ

2 − LFat cos θ2 = 0 ,

because the friction force compensates the pressure on the wall, and the torque exerted
by the weight compensates the torque exerted by the friction. Therefore,

µ = 1
2 tan

θ
2 .
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3.3.5.4 Ex: Statics of a ladder

A painter of mass M stands at the top of a Λ-shaped ladder of negligible weight
(length of each side: L) that rests on an extremely smooth floor M . There is a cross-
bar at half height that prevents the ladder from opening. The vertex angle is θ. What
is the force on the crossbar?

Solution: Since the body is in equilibrium, all forces and all torques must com-
pensate,

∑
F = 0 and

∑
τ⃗ = 0. Instead of considering the ladder as open, as the

problem is symmetrical, we can consider half the ladder leaning against a wall at an
angle θ/2. Let N1 and N2 be the normal pressures to the wall and floor, respectively.
For the system to be in balance, we have

N1 − T = 0

N2 − 1
2Mg = 0

LN2 sin
θ
2 − L

2N1 cos
θ
2 = 0 ,

because the pressure on the ’wall’ is compensated by the tension in the rope, the weight
exerts a pressure on the floor, and the torque due to the weight is compensated by the
torque exerted by the rope. So the tension in the crossbar is,

T =Mg tan θ
2 .

3.3.5.5 Ex: Statics of a ladder

A bar of length L and mass M is placed over a hole, as shown in the figure. What
must be the friction coefficient for the bar to stay at rest?
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extremamente liso. Há uma travessa a meia altura que impede a abertura 

da escada. O ângulo do vértice é θ. Qual é a força na travessa? 

9 - Uma barra de comprimento L e massa M é colocada sobre um buraco, 

como mostrado na Fig. 8.42. Qual deve ser o coeficiente de atrito para a 

barra permanecer em repouso? 

10 - Sobre uma superfície lisa desliza um bloco cúbico de lado L e massa M, 

com velocidade v (Fig. 8.43). Num determinado ponto, o cubo bate em 

um pequeno obstáculo. Qual deve ser a velocidade v para que o bloco rode 

em torno deste ponto? 

 

 

 

 

 

 

   Fig. 8.42    Fig. 8.43 

11 - Na extremidade de uma haste de comprimento L a massa desprezível é 

colocada uma massa M. O sistema é solto de vertical sob a ação da 

gravidade. Qual é a equação que descreve o ângulo θ(t)? (Fig. 8.44). 

12 - Um arco de raio R, que gira com velocidade angular ω0, é colocado sobre 

uma superfície horizontal áspera, como mostra a Fig. 8.45, sendo a 

velocidade de seu centro de massa nula. Determinar a velocidade do 

centro de massa depois de cessado o escorregamento.  

13 - A integral do torque com relação ao tempo é chamada impulso angular. 

Partindo da relação dt/Ld
rr

=τ , mostre que o impulso é a variação do 

momentum angular. 

14 - Uma bola de bilhar inicialmente em repouso recebe um impulso 

instantâneo de um taco. Este é mantido horizontal a uma distância h do 

45
o
 l 

v 
M 

M 

Figure 3.18: Statics of a ladder.

Solution: In addition to the weight Mg, the following forces act on the center of
mass: the tension at the right edge of the hole Tx = T sin θ and Ty = T cos θ, the
tension N = −Tx, and the friction Fat = µN at the left edge of the hole. For The
acceleration we write,

0 =Ma =Mg − Ty − Fat =Mg −N cot θ − µN .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Rigidbody_ZilioExc8_8.pdf
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The bar can rotate around the right support point. Two forces act vertically, the weight
acts on the center of mass located at a distance d1 = ℓ

cos θ −L from the rotation axis,

and the friction acts on the left end of the bar at a distance d2 = ℓ
cos θ of the rotation

axis. This produces a torque:

0 = Iα = |d1 ×Mg|+ |d2 × Fat|

=

(
ℓ

cos θ
− L

)
Mg sin θ − ℓ

cos θ
µN sin θ = ℓMg tan θ − LMg sin θ − ℓµN tan θ .

Solving the equation for the acceleration by N ,

N =
Mg

µ+ cot θ
,

and inserting into the equation for the torque we get,

0 = ℓMg tan θ − LMg sin θ − ℓµ tan θ Mg

µ+ cot θ
,

or solving for µ,

µ =

(
1

1− L/ℓ
√
2
− 1

)−1
.

3.3.5.6 Ex: Torque on a block

On a smooth surface, a cubic block of size L and mass M slides with speed v (see fig-
ure). At a certain point, the cube hits a small obstacle. How fast should the velocity
v of the block be in order to rotate around this point?
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extremamente liso. Há uma travessa a meia altura que impede a abertura 

da escada. O ângulo do vértice é θ. Qual é a força na travessa? 

9 - Uma barra de comprimento L e massa M é colocada sobre um buraco, 

como mostrado na Fig. 8.42. Qual deve ser o coeficiente de atrito para a 

barra permanecer em repouso? 

10 - Sobre uma superfície lisa desliza um bloco cúbico de lado L e massa M, 

com velocidade v (Fig. 8.43). Num determinado ponto, o cubo bate em 

um pequeno obstáculo. Qual deve ser a velocidade v para que o bloco rode 

em torno deste ponto? 

 

 

 

 

 

 

   Fig. 8.42    Fig. 8.43 

11 - Na extremidade de uma haste de comprimento L a massa desprezível é 

colocada uma massa M. O sistema é solto de vertical sob a ação da 

gravidade. Qual é a equação que descreve o ângulo θ(t)? (Fig. 8.44). 

12 - Um arco de raio R, que gira com velocidade angular ω0, é colocado sobre 

uma superfície horizontal áspera, como mostra a Fig. 8.45, sendo a 

velocidade de seu centro de massa nula. Determinar a velocidade do 

centro de massa depois de cessado o escorregamento.  

13 - A integral do torque com relação ao tempo é chamada impulso angular. 

Partindo da relação dt/Ld
rr

=τ , mostre que o impulso é a variação do 

momentum angular. 

14 - Uma bola de bilhar inicialmente em repouso recebe um impulso 

instantâneo de um taco. Este é mantido horizontal a uma distância h do 

45
o
 l 

v 
M 

M 

Figure 3.19: Torque on a block.

Solution: The kinetic energy of the block is given by K = 1
2Mv2 before the crash. As

the movement does not dissipate energy, we have energy conservation. At the instant
when the cube is starting to rotate, we have only gravitational potential energy. So
K = U , where U is the gravitational potential energy of the cube when it is going to
fall to its other side. The difference in the height of the center of mass in the stable
and labile position is,

h =

√
2

2
L− L

2
= (
√
2− 1)

L

2
.
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Hence,

1
2Mv20 =Mgh =Mg(

√
2− 1)

L

2

⇒ v0 =

√
Lg(
√
2− 1) .

That is, v0 is the velocity necessary for the rotating cube to stop with the diagonal
being vertical. So any velocity v > v0 makes the cube flip over.

3.3.5.7 Ex: Falling rod

At the end of a rod of length L the negligible mass is placed a massM . The system is
released from vertical under the action of gravity. What is the equation that describes
the angle θ(t) (see the figure)?
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centro. A bola sai com velocidade v0 e a velocidade final é 9/7v0. Mostre 

que h = 4/5R, onde R é o raio da esfera.  

 

 

 

 

 

 

 

         Fig. 8.44               Fig. 8.45 

15 - Niels Bohr postulou que um sistema mecânico em rotação só pode ter 

momentum angular com valores múltiplos de uma constante h, chamada 

constante de Planck h = h/2π = 1.054 x 10-34 J.S), ou seja: L = Iω = nh, 

sendo n um inteiro positivo ou zero. 

a) Mostre que com este postulado, a energia de um rotor só pode adquirir 

valores discretos, isto é, quantizados. 

b) Considere uma massa m obrigada a girar num círculo de raio R 

(átomo de Bohr ou átomo de hidrogênio). Quais são os possíveis 

valores para a velocidade angular levando-se em conta o postulado 

acima? 

c) Quais valores de energia cinética o átomo pode ter? 

16 - Muitos dos grandes rios correm para a região equatorial levando 

sedimentos arenosos. Que efeito isto tem sobre a rotação da Terra? 

17 - Um cilindro de massa M e raio R roda sem deslizar sobre um plano 

horizontal. A velocidade do centro de massa é v. Ele encontra um plano 

com ângulo de inclinação θ à sua frente, como mostra a Fig. 8.46. 

a) Que altura o cilindro sobe no plano inclinado? 

b) Nesta posição, qual foi a variação do momentum angular? 

c) Quais foram os impulsos linear e angular? 

d) Qual é o tempo que o cilindro demora para atingir a altura máxima? 

M 

θ L 

M 

oω

R 

Figure 3.20: Falling rod.

Solution: The inertial moment of the rod is I = ML2. In the case of friction,
the rod falls rotating around the point of the plane, supporting the lower end of the
rod. Hence,

Iα = |L×Mg| = LMg sin θ ,

and finally,

θ̈ =
g

L
sin θ .

Without friction, the rod rotates around its center of mass. Its acceleration is partially
compensated by a stress N =Mg sin θ exerted by the plane:

Ma =Mg −N .

Therefore, the angular acceleration is given by,

Iα = |L×Mg|+ |L
2
×N| = LMg sin θ − L

2
Mg sin2 θ .

Finally,

θ̈ =
g

L
sin θ − g

2L
sin2 θ ,

and the acceleration is,
a = g − g sin θ ,

until the point, wave the bar suddenly encounters the plane.
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3.3.5.8 Ex: Rotating arc

An arc of radius R, which rotates with angular velocity ω0, is placed on a rough
horizontal surface, as shown in the figure, the speed of its center of mass being zero.
Determine the speed of the center of mass after slipping has ceased.
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centro. A bola sai com velocidade v0 e a velocidade final é 9/7v0. Mostre 

que h = 4/5R, onde R é o raio da esfera.  

 

 

 

 

 

 

 

         Fig. 8.44               Fig. 8.45 

15 - Niels Bohr postulou que um sistema mecânico em rotação só pode ter 

momentum angular com valores múltiplos de uma constante h, chamada 

constante de Planck h = h/2π = 1.054 x 10-34 J.S), ou seja: L = Iω = nh, 

sendo n um inteiro positivo ou zero. 

a) Mostre que com este postulado, a energia de um rotor só pode adquirir 

valores discretos, isto é, quantizados. 

b) Considere uma massa m obrigada a girar num círculo de raio R 

(átomo de Bohr ou átomo de hidrogênio). Quais são os possíveis 

valores para a velocidade angular levando-se em conta o postulado 

acima? 

c) Quais valores de energia cinética o átomo pode ter? 

16 - Muitos dos grandes rios correm para a região equatorial levando 

sedimentos arenosos. Que efeito isto tem sobre a rotação da Terra? 

17 - Um cilindro de massa M e raio R roda sem deslizar sobre um plano 

horizontal. A velocidade do centro de massa é v. Ele encontra um plano 

com ângulo de inclinação θ à sua frente, como mostra a Fig. 8.46. 

a) Que altura o cilindro sobe no plano inclinado? 

b) Nesta posição, qual foi a variação do momentum angular? 

c) Quais foram os impulsos linear e angular? 

d) Qual é o tempo que o cilindro demora para atingir a altura máxima? 

M 

θ L 

M 

oω

R 

Figure 3.21: Rotating arc.

Solution: The inertial moment of the arc is I = MR2. The angular momentum
at the center of mass before contact is,

Lcm,i = Iω⃗0 =MR2ω⃗0 .

After contact between the arc and the rough surface, the arc starts to rotate around
the contact point. The angular momentum is,

Lf = Lcm,f + r× p⃗cm
Lf = Ĩω +Rpcm

with Ĩ = I +MR2. As the bow does not slide, Rω = vcm, and

Lf = Ĩ
vcm
R

+MRvcm = 2MR2 vcm
R

+MRvcm .

Since the angular momentum is conserved, Lf = Lcm,i, we obtain,

2MR2 vcm
R

+MRvcm =MR2ω0 ,

and finally,

vcm =
1

3
Rω0 .

3.3.5.9 Ex: Angular momentum

The integral of the torque with respect to time is called the angular momentum.
Starting from the relationship τ⃗ = dL/dt, show that the impulse is the variation of
the angular momentum.
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Solution: We have,

∫ t2

t1

τ⃗ dt =

∫ t2

t1

dL

dt
dt = L(t2)− L(t1) .

3.3.5.10 Ex: Billiard

A billiard ball initially at rest receives an instant boost from a cue. The cue is kept
horizontal at a distance h from the center. The ball leaves with speed v0 and the final
speed is 9v0/7. Show that h = 4R/5, where R is the radius of the sphere.

Solution: We divide the problem into three phases. The first (A) refers to the in-
stant when the ball receives the kick, the second (B) refers to the instant immediately
after the kick, when the ball acquires the speed v0 and slides over the table, and the
third (C) when the ball, after sliding a certain distance on the table, has speed v and
rolls on the table without sliding. The translation movement in (B) is the result of
the momentum transfer (∆P , where P is the linear momentum of the ball) due to the
force F applied in (A),

∆P = PB − PA =Mv0 − 0 = F∆t

F∆t =Mv0 .

The same analysis can be done for the rotation movement of the ball, where L is the
angular movement, I is the moment of inertia, and ω0 is the initial angular velocity
of the ball:

∆L = LB − LA = Iω0 − 0 = τ∆t

2MR2

5
ω0 = −Fh∆t

F∆t = −2MR2

5h
ω0 .

The negative sign that appears in the last equation refers to the direction of the torque
that the force F exerts on the ball. Equating the two equations for F∆t,

Mv0 = −2MR2

5h
ω0

=⇒ ω0 = −5hv0
2R2

.

Now let’s analyze the translation of the ball from state (B) to state (C):

∑
F =Max

ax =
F

M
.
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Movement from (B) to (C):

vx = vx0 + axt .

The vx speed was given in the statement of the problem:

9

7
v0 = v0 +

F

M
t

=⇒ Ft =
2

7
Mv0 .

Now let’s analyze the rotation of the ball from state (B) to state (C):

∑
τz = Iαz

FR =
2MR2

5
α

α =
5F

2MR
.

Rotation from (B) to (C):

ωz = ωz0 + αzt

=⇒ −9v0
7R

= −5hv0
2R2

+
5F

2MR
t

=⇒ Ft =Mv0

(
h

R
− 18

35

)
.

Equating the equations for the quantity Ft we obtain,

2

7
Mv0 =Mv0

(
h

R
− 18

25

)
,

and finally, h = 4
5R.

3.3.5.11 Ex: Bohr’s atom

Niels Bohr postulated that a rotating mechanical system can only have angular mo-
mentum with multiple values of a constant ℏ, called Planck’s constant ℏ = h/2π =
1.054× 10−34 Js, that is: L = Iω = nℏ, being n a positive integer or zero.
a. Show that with this postulate, the energy of a rotor can only acquire discrete, that
is, quantized values.
b. Consider a mass m forced to rotate on a circle of radius R (e.g. hydrogen atom).
What are the possible values for the angular velocity considering Bohr’s postulate?
c. What kinetic energy values can the atom adopt?

Solution: a. The possible energies of the quantized rotor are,

Erot =
I

2
ω2 =

1

2
Lω =

1

2
nℏω .
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b. Inserting the inertial moment of the electron I = mR2 in the rotational energy, we
have,

ω =
nℏ
mR2

.

c. The kinetic energy is,

Ekin =
m

2
R2ω2 =

m

2
R2

(
nℏ
mR2

)2

=
1

2m

n2ℏ2

R2
.

3.3.5.12 Ex: Earth rotation

Many of the great rivers flow into the equatorial region carrying sandy sediments.
What effect does this have on the Earth’s rotation?

Solution: They transfer mass to regions further from the Earth’s rotation axis and
thus increase the moment of inertia. Since rotational energy must be preserved,

I1
2
ω2
1 = Erot =

I2
2
ω2
2 ,

the frequency of the Earth’s rotation decreases.

3.3.5.13 Ex: Cylinder rolling on an inclined plane

A cylinder of mass M and radius R rotates without sliding on a horizontal plane.
The speed of the center of mass is v. It encounters a plane with a tilt angle θ in front
of it, as shown in the figure.
b. What were the linear and angular momenta when the cylinder meets the inclined
plane?
c. How long does the cylinder take to reach the maximum height, and to what height
does it rise on the inclined plane?
d. In this position, what was the change in angular momentum?
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18 - Um disco de massa M e raio R pode mover-se em torno de um eixo 

passando pelo seu centro de massa O, conforme mostra a Fig. 8.47. Uma 

partícula de massa também M segue uma trajetória linear com velocidade 

v e parâmetro de impacto d = R/2 relativo ao ponto 0. Ao chocar-se com 

o disco ela sofre uma deflexão de 90
o
 e tem sua velocidade mudada para 

( )32v . 

a) Qual é a velocidade angular do disco após a colisão? 

b) Qual é a energia dissipada na colisão? 

 

 

 

 

 

 

 

                    Fig. 8.46                   Fig. 8.47 

19 - Um disco de massa 2m e raio R repousa sobre uma mesa horizontal 

extremamente lisa. Uma bala de massa m, velocidade v0 e parâmetro de 

impacto R atinge o disco e engasta nele (Fig. 8.48). Calcule: 

a) A velocidade angular do sistema logo após a colisão; 

b) A velocidade do centro de massa após a colisão; 

c) A energia dissipada na colisão. 

20 - Uma bola de bilhar inicialmente em repouso recebe um impulso 

instantâneo de um taco, que forma um ângulo θ com a horizontal, como 

mostra a Fig. 8.49. A bola sai com velocidade inicial v0 e ao final do 

movimento ela encontra-se em repouso. 

a) Determine o ângulo θ  para que isto aconteça; 

b) Qual é a velocidade angular inicial da bola? 

c) Qual foi a energia dissipada durante o movimento? 

 

 

O 

M 

R 
V 
r 

θ

H

V 
r 

d

M

R

M

Figure 3.22: Cylinder rolling on an inclined plane.

Solution: a. We assume the cylinder to meet the inclination as a fully elastic shock.
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In this case, the momenta due to the shock are,

Ip =

∫ t2

t1

Fdt = p⃗2 − p⃗1 =

(
mv0
0

)
−
(
mv0 cos θ

mv0 sin θ

)

IL =

∫ t2

t1

τ⃗ dt = L2 − L1 = 0 .

b. The only torque is due to friction. So the equations of motion are,

Iα⃗ = τ⃗ = r× Fat

Macm =Mg sin θ − Fat .

Since the cylinder does not slide, α = acm
R , and with the inertial moment, I = M

2 R
2α,

we have,

acm = g sin θ− Fat
M

= g sin θ− Iα

MR
= g sin θ−

M
2 R

2α

MR
= g sin θ− 1

2
R
acm
R

=
2

3
g sin θ .

The body comes to a halt, when 0 = vcm = v0 − acmt = v0 − 2
3gt sin θ, that is, at the

time,

t =
3v0

2g sin θ

at the height,

H = s sin θ =
(
v0t−

acm
2
t2
)
sin θ =

3v20
4g

.

c. The initial angular momentum was,

L = r0 × p⃗0 + Iω⃗0

L =MRv0 +
M

2
R2ω0 =

3M

2
Rv0

and after stopping at the time H is L = 0.
d. The dissipated energy is,

Ediss = Epot − Ekin + Erot =MgH − M

2
v20 −

M

2
ω2
0r

2 = −M
4
v20 .

3.3.5.14 Ex: Disc pushed by a mass

A disk of mass M and radius R can move around an axis passing through its center
of mass, as shown in the figure. A particle of mass M as well follows a linear path
with velocity vi and impact parameter d = R/2 relative to the center-of-mass point.
When it hits the disk it undergoes a deflection of 90◦ and has its velocity changed to
vf = vi/2.
a. What is the angular velocity of the disc after the collision?
b. What is the energy dissipated in the collision?
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18 - Um disco de massa M e raio R pode mover-se em torno de um eixo 

passando pelo seu centro de massa O, conforme mostra a Fig. 8.47. Uma 

partícula de massa também M segue uma trajetória linear com velocidade 

v e parâmetro de impacto d = R/2 relativo ao ponto 0. Ao chocar-se com 

o disco ela sofre uma deflexão de 90
o
 e tem sua velocidade mudada para 

( )32v . 

a) Qual é a velocidade angular do disco após a colisão? 

b) Qual é a energia dissipada na colisão? 

 

 

 

 

 

 

 

                    Fig. 8.46                   Fig. 8.47 

19 - Um disco de massa 2m e raio R repousa sobre uma mesa horizontal 

extremamente lisa. Uma bala de massa m, velocidade v0 e parâmetro de 

impacto R atinge o disco e engasta nele (Fig. 8.48). Calcule: 

a) A velocidade angular do sistema logo após a colisão; 

b) A velocidade do centro de massa após a colisão; 

c) A energia dissipada na colisão. 

20 - Uma bola de bilhar inicialmente em repouso recebe um impulso 

instantâneo de um taco, que forma um ângulo θ com a horizontal, como 

mostra a Fig. 8.49. A bola sai com velocidade inicial v0 e ao final do 

movimento ela encontra-se em repouso. 

a) Determine o ângulo θ  para que isto aconteça; 

b) Qual é a velocidade angular inicial da bola? 

c) Qual foi a energia dissipada durante o movimento? 
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Figure 3.23: Disc pushed by a mass.

Solution: a. Using the impact parameters di = R/2 = df and the inertial moment
of the disk I = M

2 R
2 we have the initial angular momentum,

Li = r×Mvi = rMviêθ sinϕ =Mvidiêθ =Mvi
1
2Rêθ .

In the same way we obtain for the final angular momentum,

Lf =Mvfdf êθ + Iω⃗f =
(
Mvf

1
2R+ M

2 R
2ωf

)
êθ .

The momenta are equal, giving

Mvi
1
2R =M2vi

√
3 1
2R+

M

2
R2ωf ,

and finally,

ωf =
vi
2R

.

b. The dissipated energy is,

Ediss =
M

2
v2f +

I

2
ω2
f −

M

2
v2i =

M

2

(vi
2

)2
+

1

2

M

2
R2 v2i

4R2
− M

2
v2i = −5

8

M

2
v2i .

3.3.5.15 Ex: Disc pushed by a mass

A disc of mass 2m and radius R rests on an extremely smooth horizontal table. A
bullet of mass m, speed v0 and impact parameter R hits the disc and chokes it (see
figure). Calculate:
a. The angular velocity of the system right after the collision;
b. The center-of-mass velocity after the collision;
c. The energy dissipated in the collision.

Solution: a. Using the inertial moment of the disk I = mR2 we have the initial
angular momentum,

Li = r×mv0 = rmv0êθ sinϕ = mv0Rêθ .
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   Fig. 8.48                             Fig. 8.49 

21 - Uma partícula de massa m está presa ao extremo de um fio e percorre 

uma trajetória circular de raio r sobre uma mesa horizontal sem atrito. O 

fio passa por um orifício de mesa e o outro extremo se encontra 

inicialmente fixo. Neste caso, o raio inicial é r0 e a velocidade angular 

inicial é ω0. Começa-se então a puxar lentamente o fio de maneira a 

diminuir o raio da trajetória circular, como mostra a Fig. 8.50. 

a) Como variará a velocidade angular em função de r? 

b) Qual é o trabalho realizado para levar a partícula até o raio 2/r0 ? 

 

 

 

 

 

 

Fig. 8.50 

22 - Considere um cilindro de massa M e raio R descendo um plano inclinado 

de ângulo θ sem deslizar. Calcule a aceleração do centro de massa e a 

força de atrito agindo sobre o cilindro. 

23 - Uma bola de bilhar de massa M e raio R ( )2
5
2MRI = desliza sem rodar 

com velocidade v0 sobre uma mesa sem atrito. Subitamente ela encontra 

uma parte da mesa com atrito e depois de algum tempo está rodando sem 

deslizar. 

a) Calcule a velocidade final da bola; 

b) Qual é a energia dissipada no processo? 

m 

R
m2

R

0v
r

θ

R

taco
M

m 

F 

r 

v 

Figure 3.24: Disc pushed by a mass.

The final angular momentum is,

Lj = Iωêθ .

The moments are equal, giving

ω =
mv0R

I
=
v0
R

.

b. The speed of the center of mass after the collision is given by the conservation of
linear momentum,

p⃗i = mv0êx = p⃗f = (2m+m)vf êx .

Hence,

vf =
v0
3
.

c. The energy dissipated in the collision is,

Ediss =
m

2
v2f +

I

2
ω2
f −

2m+m

2
v20 =

1

9

m

2
v20 +

1

9

mR2

2

(
v20
R2

)
− m

2
v20 =

m

2
v20
−7
9

.

3.3.5.16 Ex: Billiard

A billiard ball initially at rest receives an sudden impulse from a cue, which forms an
angle with the horizontal, as shown in the figure. The ball leaves with initial velocity
v0 and at the end of the movement it is at rest.
a. Determine the angle θ for this to happen.
b. What is the initial angular velocity of the ball?
c. What is the energy dissipated during the movement?

Solution: a. The inertial moment of the ball is Icm = 2
5MR2. After the momentum,

the ball’s center of mass has the linear momentum,

px =Mv0 = p cos θ .

As the cue hits the ball at an angle θ, the other component of the impulse generates
an angular momentum,

L = Icmω0 = Rpy = RMv0 sin θ .
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21 - Uma partícula de massa m está presa ao extremo de um fio e percorre 

uma trajetória circular de raio r sobre uma mesa horizontal sem atrito. O 

fio passa por um orifício de mesa e o outro extremo se encontra 

inicialmente fixo. Neste caso, o raio inicial é r0 e a velocidade angular 

inicial é ω0. Começa-se então a puxar lentamente o fio de maneira a 

diminuir o raio da trajetória circular, como mostra a Fig. 8.50. 

a) Como variará a velocidade angular em função de r? 

b) Qual é o trabalho realizado para levar a partícula até o raio 2/r0 ? 

 

 

 

 

 

 

Fig. 8.50 

22 - Considere um cilindro de massa M e raio R descendo um plano inclinado 

de ângulo θ sem deslizar. Calcule a aceleração do centro de massa e a 

força de atrito agindo sobre o cilindro. 

23 - Uma bola de bilhar de massa M e raio R ( )2
5
2MRI = desliza sem rodar 

com velocidade v0 sobre uma mesa sem atrito. Subitamente ela encontra 

uma parte da mesa com atrito e depois de algum tempo está rodando sem 

deslizar. 

a) Calcule a velocidade final da bola; 

b) Qual é a energia dissipada no processo? 

m 

R
m2

R

0v
r

θ

R

taco
M

m 

F 

r 

v 

Figure 3.25: Billiard.

Therefore, the initial velocity of the ball is,

ω0 =
RMv0 sin θ

Icm
=

5v0 sin θ

2R
.

b. Now, we have a movement combining translation and rotation,

Ma = −Fat
Iα = τ = RFat ,

where the inertial moment needs to be taken with respect to the instantaneous rotation
axis that is in the plane,

I = Icm +MR2 .

Integrating the equations we get,

0 = v = v0 + at = v0 −
Fat
M

t

0 = ω = ω0 + αt = ω0 −
RFat
I

t

eliminating, Fatt,

Mv0 =
Iω0

R
=
Icm +MR2

R

5v0 sin θ

2R
=

2
5MR2 +MR2

R

5v0 sin θ

2R
=

7M

2
v0 sin θ

θ = arcsin 2
7 = 16.6◦ .

c. The energy is totally dissipated,

Ediss = 0− M

2
v20 −

M

2
R2ω2

0 .

3.3.5.17 Ex: Horizontal pendulum with variable length

A particle of mass m is attached to the end of a wire and follows a circular path of
radius r on a horizontal table without friction. The wire passes through a hole in the
table and the other end is initially fixed. In this situation, the initial radius is r0 and
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21 - Uma partícula de massa m está presa ao extremo de um fio e percorre 

uma trajetória circular de raio r sobre uma mesa horizontal sem atrito. O 

fio passa por um orifício de mesa e o outro extremo se encontra 

inicialmente fixo. Neste caso, o raio inicial é r0 e a velocidade angular 

inicial é ω0. Começa-se então a puxar lentamente o fio de maneira a 

diminuir o raio da trajetória circular, como mostra a Fig. 8.50. 

a) Como variará a velocidade angular em função de r? 

b) Qual é o trabalho realizado para levar a partícula até o raio 2/r0 ? 

 

 

 

 

 

 

Fig. 8.50 

22 - Considere um cilindro de massa M e raio R descendo um plano inclinado 

de ângulo θ sem deslizar. Calcule a aceleração do centro de massa e a 

força de atrito agindo sobre o cilindro. 

23 - Uma bola de bilhar de massa M e raio R ( )2
5
2MRI = desliza sem rodar 

com velocidade v0 sobre uma mesa sem atrito. Subitamente ela encontra 

uma parte da mesa com atrito e depois de algum tempo está rodando sem 

deslizar. 

a) Calcule a velocidade final da bola; 

b) Qual é a energia dissipada no processo? 
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Figure 3.26: Horizontal pendulum with variable length.

the initial angular velocity is ω0. The wire is then slowly pulled in order to reduce
the radius of the circular path, as shown in the figure.
a. How will the angular velocity vary as a function of r?
b. What work has to be done to bring the particle to the radius r0/2?

Solution: a. The inertial moment is I = mr20. As the angular momentum is con-
served, we have,

L = Iω = mr2ω = mr20ω0 = I0ω0 = L0 .

Hence,

ω =
r20
r2
ω0 .

b. The work is,

W =

∫
F · dS =

∫ r0/2

r0

mω2rdr =

∫ r0/2

r0

m
r40
r4
ω2
0rdr

= mω2
0r

4
0

( −1
2(r0/2)2

+
1

2r20

)
=
−3m
2

ω2
0

r40
r20

.

3.3.5.18 Ex: Cylinder rolling on an inclined plane

Consider a cylinder of mass M and radius R descending an inclined plane of angle θ
without sliding. Calculate the acceleration of the center of mass and the friction force
acting on the cylinder.

Solution: We have the equations of motion,

Ma =Mg sin θ − Fat
Iα = τat = RFat ,

with I = M
2 R

2. As the cylinder does not slide, we have,

a = Rα .

Inserting the linear and rotational accelerations,

g sin θ − Fat
M

= R
RFat
I

,
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giving the friction,

Fat =
M

3
g sin θ .

Now we can calculate the acceleration of the center of mass,

a =
2

3
g sin θ .

Calculating the total energy,

E =Mgh− M

2
v2 +

M

2
R2ω2 = −Mg sin θ

a

2
t2 +M(at)2 =

1

9
Mg2t2 sin2 θ ,

we find that it increases over time, which is strange.
Alternatively, we can consider the movement as a rotation around the support point.
Regarding this point, the cylinder’s moment of inertia is,

I =
M

2
R2 +MR2 ,

following Steiner’s law. Therefore,

Iα⃗ = τ⃗ = r×Mg .

That is,

a = Rα =
R

I
RMg sin θ =

2

3
g sin θ .

3.3.5.19 Ex: Billiard

A billiard ball of mass M and radius R (I = 2
5MR2 slides without rotating with

speed v0 on a frictionless table. Suddenly it encounters a part of table with friction
and after some time is running without sliding.
a. Calculate the final speed of the ball.
b. What is the energy dissipated in the process?

Solution: a. We have the equations of motion,

Iα = τ = RFat = RµMg

Ma = −Fat = −µMg ,

with I = 2
5MR2. The speed of the ball will decrease while the angular velocity will

increase,

v = v0 + at = v0 − µgt

ω = ω0 + αt =
RµMg

I
t =

5µg

2R
t ,

up to the moment Te, when the ball does not slide any more, that is,

v(te) = Rω(te) .
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In this case, we find,

te =
2v0
7µg

and ve =
5v0
7

.

b. The dissipated energy is,

Ediss =
m

2
v20 −

m

2
v2e −

I

2
ω2 =

M

2
v20

(
1− 25

49
− 2

5

)
≈ 0.09

m

2
v20 .

3.3.5.20 Ex: Shock and conservation laws

1. (3,0) Utilizou-se a Roda de Maxwell para determinar o momento de inércia I de
um corpo de massa m = 1490 g. O eixo do corpo em torno do qual ele gira durante
a queda tem um raio de r = 0, 6 cm (a massa do eixo está inclúıda na massa m
do corpo). Veja figura abaixo. Foram feitas medidas do tempo de queda tb para
várias alturas h, e os dados estão dados na tabela abaixo. Conforme visto em aula,
o momento de inércia I é dado pela expressão

I =

(
g t2b
2h
− 1

)
mr2

que implica a seguinte relação entre h e tb

h = α t2b onde α =
g

2

mr2

(I +mr2)

Escolha o papel mais apropriado (di-log, mono-log ou linear) para obter uma reta
com os dados da tabela abaixo, e determine o valor de I a partir da inclinação da
reta no gráfico. Assuma g = 9, 8 m/s2.

h (cm) tb (s)
10 1,2
20 1,8
30 2,1
40 2,5
50 2,8
60 3,0
70 3,3
80 3,6
90 3,8

2

In an experiment Maxwell’s wheel was used to
determine the moment of inertia I of a body of
mass m = 1490 g. The axis of the body around
which it spins during the fall has a radius of
r = 0.6 cm (the mass of the axis is included
in the mass m of the body). See figure below.
Measurements of the fall time tb were made for
various heights h, and the data are given in the
table below. The moment of inertia I is given
by the expression,

I =

(
gt2b
2h
− 1

)
mr2 ,

which implies the following relationship be-
tween h and tb,

h = αt2b where α =
g

2

mr2

I +mr2
.

a. Using a double logarithmic paper draw the graph log h × log tb. Choose the line
that best approximates the data and determine its angular and linear coefficients.
From them determine (i) The power law of tb in the expression h = αtβb and (ii) The
value of α and from it the value of I.
b. Using a millimetric paper draw the graph h× t2b , and from the slope α determine
the value of I again. Compare the results.

h (cm) tb (s)

10 1.2

20 1.8

30 2.1

40 2.5

50 2.8

60 3.0

70 3.3

80 3.6

90 3.7
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Solution: a. From the graph we obtain the slope,

β =
lg h2 − lg h1
lg tb2 − lg tb1

≈ 2

and the linear coefficient,

α = 10lg h3−β lg tb3 = 6.5 cm/s2 .

With that we calculate,

I = mr2
( g

2α
− 1
)
= 0.004 kg m2 .

1.5 2 2.5 3 3.5

t (μs)

0.2

0.4

0.6

0.8

h
(c
m
)

0 10 20

t (μs)

0

0.5

1

h
(c
m
)

Figure 3.27:

b. From the graph we obtain the slope

α =
h2 − h1
t2b2 − t2b1

≈ 6.5 cm/s2 .

With that we calculate,

I =
g

2

mr2

α
−mr2 = 0.004 kg m2 .

3.4 Further reading

H.M. Nussenzveig, Edgar Blucher (2013), Curso de F́ısica Básica: Mecânica - vol 1
[961]ISBN

http://isbnsearch.org/isbn/978-8-521-20801-1
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Chapter 4

Vibrations

Vibrations are periodic processes, that is, processes that repeat themselves after a
given time interval. After a time called period, the system under consideration re-
turns to the same state in which it was initially. There innumerable examples for
periodic processes, such as the motion of a seesaw, oceanic tides, electronic L − C
circuits, alternating current or rotations like that of the Earth around the Sun. Thus,
vibrations are among the most fundamental processes in all domains of physics. A
lecture version of this chapter can be found at (watch talk).

4.1 Free periodic motion

A movement is considered as free, when apart from a restoring force, that is a force
working to counteract the displacement, there are no other forces accelerating or
slowing down the motion.

4.1.1 Clocks

Periodic motions are used to measure time. Assuming a given process to be truly
periodic, we can inversely postulate that the time interval within which this process
occurs is constant. This interval is used to define a unit of time. For example, the
’day’ is defined as the interval that the Earth needs to complete a rotation about
its axis. The ’second’ is defined as the 86400-th fraction of this period. Taking the
second inversely as the base unit, we can define the day as the time interval needed
for a periodic process taking 1 s to occur 86400 times. That is, we count the number
of times ν that this process occurs within a day and calculate the duration of a day
through,

∆T =
1

ν
. (4.1)

In real life, vibrations are subject to perturbations, just like all physical processes.
These perturbations may afflict the periodicity and falsify the measurement of time.
For example, the oceanic tides, which depend on the rotation of the moon around the
Earth, can influence the Earth’s own rotation. One of the challenges of metrology,
which is the science dealing with issues related to the measurement of time, is to
identify processes in nature that are likely to be insensitive to external perturbations.
Nowadays, the most stable known periodic processes are vibrations of electrons within
atoms. Therefore, the international time is defined by an atomic clock based on
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cesium: The ’official’ second is the time interval in which the state of an electron
oscillates 9192631770 times when the hyperfine structure of a cesium atom is excited
by a microwave.

The unit of time is,
unit(T ) = s . (4.2)

A frequency is defined as the number of processes that occur within one second. We
use the unit,

unit(ν) = Hz . (4.3)

Often, to simplify mathematical formulas, we will use the derived quantity of the
angular frequency also called angular velocity,

ω ≡ 2πν . (4.4)

It has the unit,
unit(ω) = rad/s ̸= Hz . (4.5)

It is important not to use the unit ’Hertz’ for angular frequencies in order to avoid
confusion.

4.1.2 Periodic trajectories

Many periodic processes are based on repetitive trajectories of particles or bodies. As
an example, let us the movement of a body in a box shown in Fig. 4.1. When the
body encounters a wall, it is elastically reflected thereby maintaining its velocity but
reversing the direction of propagation. Clearly, the velocity is the derivative of the
position,

v(t) = ẋ(t) . (4.6)

Figure 4.1: Trajectory of a body in a rectangular box. Upper trace: instantaneous position.
Lower trace: instantaneous velocity.

To fully describe the trajectory of a body and to identify, when the trajectory
repeats, two parameters are needed. Specifying, for example, the time evolution of
position x(t) and velocity v(t), we can search for time intervals T after which,

x(t0 + T ) = x(t0) and v(t0 + T ) = v(t0) . (4.7)

Obviously, as seen in Fig. 4.1, it is not enough just to look for the time when x(t0 +
T ) = x(t0).
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4.1.3 Simple harmonic motion

The simplest motion imaginable is the harmonic oscillation described by,

x(t) = A cos(ω0t− ϕ) , (4.8)

and exhibit in Fig. 4.2. A is the amplitude of the motion, such that 2A is the distance
between the two turning points. T = 2π/ω0 is the oscillation period, since,

cos[ω0(t+ T )− ϕ] = cos[ω0t+ 2π − ϕ] = cos[ω0t− ϕ] . (4.9)

ϕ is a phase shift describing the time delay t = ϕ/ω0 for the oscillation to reach the
turning point.

Figure 4.2: Illustration of the cosenus function with the amplitude A, the period T and the
phase being negative for this graph ϕ < 0.

The velocity and acceleration follow from,

v(t) = ẋ(t) = −ω0A sin(ω0t− ϕ) and a(t) = v̇(t) = −ω2
0A cos(ω0t− ϕ) . (4.10)

with this we can, using Newton’s law, calculate the force necessary to sustain the
oscillation of the body,

F (t) = ma(t) = −mω2
0A cos(ω0t− ϕ) = −mω2

0x(t) ≡ kx(t) . (4.11)

That is, in the presence of a force, which is proportional to the displacement but
with the opposite direction, F ∝ −x, we expect a sinusoidal solution. The propor-
tionality constant k is called spring constant. Obviously the oscillation frequency is
independent of amplitude and phase,

ω0 =
√
k/m . (4.12)

Solve Exc. 4.1.10.1 and 4.1.10.2.

Example 7 (Harmonic vibration):

• Suspended spring-mass system, pendulums with various masses and lengths
of wire, oscilloscope and function generator, water recipient with a floating
body.
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4.1.4 The spring-mass system

Let us now discuss a possible experimental realization of a sinusoidal vibration.
Fig. 4.3 illustrates the spring-mass system consisting of a mass horizontally fixed
to a spring. This system has a resting position, which we can set to the point x = 0,
where no forces act on the mass. When elongated or compressed, the spring exerts a
restoring force on the mass working to bring the mass back into its resting position,

Frestore = −kx . (4.13)

This so-called Hooke’s law holds for reasonably small elongations. The spring coeffi-
cient k is a characteristic of the spring.

Figure 4.3: Illustration of the spring-mass system.

The oscillation frequency of the spring-mass system is determined by the spring
coefficient and the mass, but the phase and the amplitude of the oscillation are pa-
rameters, that depend on the way the spring-mass is excited. Knowing the position
and velocity of the oscillation at a given time, that is, the initial conditions of the mo-
tion, we can determine the amplitude and phase. To see this, we expand the general
formula for a sinusoidal oscillation,

x(t) = A cos(ω0t− ϕ) = A cos(ω0t) cosϕ+A sin(ω0t) sinϕ (4.14)

and calculate the derivative,

v(t) = −Aω0 cosϕ sin(ω0t) +Aω0 sinϕ cos(ω0t) . (4.15)

With the initial conditions x(0) = x0 and v(0) = v0 we get,

A cosϕ = x0 and Aω0 sinϕ = v0 . (4.16)

Hence,

x(t) = x0 cos(ω0t) +
v0
ω0

sin(ω0t) . (4.17)

Solve the Excs. 4.1.10.3, 4.1.10.4, 4.1.10.5, and 4.1.10.6.

4.1.5 Energy conservation

Considerations of energy conservation can often help solving mechanical problems.
The kinetic energy due to the movement of the mass m is,

Ekin = m
2 v

2 , (4.18)

and the potential energy due to the restoring force is,

Epot = −
∫ x

0

Fdx′ = −
∫ x

0

−kx′dx′ = k
2x

2 . (4.19)
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The total energy must be conserved:

E = Ekin + Epot =
m
2 v

2 + k
2x

2 = const , (4.20)

but is continuously transformed between kinetic energy and potential energy. This is
illustrated on the left-hand side of the Fig. 4.4.

Figure 4.4: (Left) Energy conservation in the spring-mass system showing the kinetic energy
K, the potential energy V , and the total energy E. (Right) Probability density of finding
the oscillator in position x.

Example 8 (Probability distribution in the harmonic oscillator): Let
us now use the principle of energy conservation to calculate the probability of
finding the oscillating mass next to a given displacement x. For this, we solve
the last equation by the velocity,

v =
dx

dt
=

√
2

m
E − k

m
x2 = ω0

√
2E

mω2
0

− x2 , (4.21)

or
dx√

2E
mω2

0
− x2

= ω0dt . (4.22)

The probability of finding the mass within a given time interval dt is,

p(t)dt =
dt

T
=
ω0

2π
dt =

dx

2π
√

2E
mω2

0
− x2

= p̃(x)dx . (4.23)

Hence,

p̃(x) =
1

2π
√

2E
mω2

0
− x2

(4.24)

is the probability density of finding in the mass at the position x(t). Using∫
dx√
a2−x2

= arcsin x
a
with x0 =

√
2E
mω2

0
we verify,

2

∫ x0

−x0
p̃(x)dx =

1

π

arcsin x√
2E
mω2

0

x0
−x0

=
2

π
arcsin

x0√
2E
mω2

0

=
2

π
arcsin 1 = 1 .

(4.25)

The probability density is shown on the right side of Fig. 4.4 1.
1To understand the difference between the probability densities p(t) and p̃(x) we imagine the

following experiments: We divide the period T into equal intervals dt and take a series of photos,
all with the same exposure time dt. To understand the meaning of p(t), we throw a random number
to choose one of the photos. Each photo has the same probability dt/T to be chosen and, of course,∫ T
0 p(t)dt = 1. To understand the meaning of p̃(x), we identify the position of the oscillator in each

photo and plot it in a histogram. This histogram is reproduced by p̃(x).
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4.1.6 The spring-mass system with gravity

When a mass is suspended vertically to a spring, as shown on the left-hand side of
Fig. 4.5, the gravitational force acts on the mass in addition to the restoring force.
This can be expressed by the following balance of forces,

ma = −ky −mg , (4.26)

letting the y-axis be positive in the direction opposite to gravitation. Replacing
ỹ′ ≡ y − y0 with y0 ≡ −mgk , we obtain,

mã = −kỹ . (4.27)

Therefore, the movement is the same as in the absence of gravitation, but around an
equilibrium point shifted downward by y0.

Figure 4.5: Left: Vertical spring-mass system. Right: Conservation of energy in the spring-
mass system with gravity.

Energy conservation is now generalized to,

E = Ekin + Emol + Egrv =
m
2 v

2 + k
2y

2 +mgy = const , (4.28)

the potential energy being,

Epot = Emol + Egrv =
k
2y

2 +mgy (4.29)

= k
2 (y − y0)2 + k

22y0y − k
2y

2
0 +mgy = k

2 (y − y0)2 −
m2g2

2k
.

The right-hand side of Fig. 4.5 illustrates the conservation of energy in the spring-mass
system with gravity. See Excs. 4.1.10.7, 4.1.10.8, 4.1.10.9, and 4.1.10.10.

4.1.7 The pendulum

The pendulum is another system which oscillates in the gravitational field. In the
following, we will distinguish three different types of pendulums. In the ideal pendulum
the mass of the oscillating body is all concentrated in one point and the oscillations
have small amplitudes. In the physical pendulum the mass of the body is distributed
over a finite spatial region. And mathematical pendulum is a point mass oscillating
with a large amplitude and therefore subject to a nonlinear restoring force.
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Figure 4.6: Physical pendulum.

4.1.7.1 The ideal pendulum

The ideal pendulum is schematized on the left side of Fig. 4.6. As the centrifugal force
is compensated for by the traction of the wire supporting the mass, the acceleration
force ma is solely due to the perpendicular projection −mg sin θ on the wire. For
small amplitudes, sin θ ≃ θ, such that 2,

ma ≃ −mgθ . (4.30)

The tangential acceleration is now,

a = v̇ = s̈ =
d

dt
θL = Lθ̈ . (4.31)

Thus,

θ̈ +
g

L
θ ≃ 0 . (4.32)

This equation has the same structure as that of the already studied spring-mass
system ẍ + k

mx = 0. Therefore, we can deduce that the ideal pendulum oscillates
with the frequency,

ω0 =

√
g

L
, (4.33)

only that the oscillating degree of freedom is an angle rather than a spatial shift. It
is interesting to note that the oscillation frequency is independent of the mass. See
Exc. 4.1.10.11.

4.1.7.2 The physical pendulum

We consider an irregular body suspended at a point P as schematized on the right-
hand side of Fig. 4.6. The center-of-mass be displaced from the suspension point by
a distance D. This system represents the physical pendulum. Gravitation exerts a
torque τ⃗ on the center-of-mass,

τ⃗ = D×mg with τ = Iθ̈ , (4.34)

where I is the moment of inertia of the body for rotations about the suspension axis.
Like this,

Iθ̈ = −Dmg sin θ . (4.35)

2The equation of motion can be derived from the Hamiltonian H =
L2

θ
2ml2

+ mgl cos θ using

θ̇ = ∂H/∂Lθ and L̇θ = −∂H/∂θ, where Lθ is the angular momentum.
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Considering once more small angles, sin θ ≃ θ, we obtain,

θ̈ + ω2
0θ ≃ 0 with ω0 ≡

√
Dmg

I
. (4.36)

It is worth mentioning that the inertial moment of a body whose mass is concentrated
in a point at a distance D from the suspension point follows Steiner’s law,

I = mD2 . (4.37)

With this we recover the expression of the ideal pendulum,

ω0 =

√
Dmg

mD2
=

√
g

D
. (4.38)

4.1.7.3 The mathematical pendulum

The equation describing the mathematical pendulum (see Fig. 4.6) has already been
derived but, differently from what we did before, here we will not apply the small
angle approximation,

θ̈ = − g
L
sin θ = −ω2

0 sin θ . (4.39)

Energy conservation can be formulated as follows:

0 =
dE

dt
=

d

dt
(Erot + Epot) =

d

dt

I

2
θ̇2 +

d

dt
mgL(1− cos θ) (4.40)

=
I

2
2θ̇θ̈ +mgLθ̇ sin θ ≃ θ̇(Iθ̈ +mgLθ) .

Thus, we obtain the same differential equation,

θ̈ +
mgL

I
θ = 0 . (4.41)

Example 9 (Simulation of an anharmonic pendulum): When the an-
harmonicity is not negligible, it is impossible to solve the differential equation
analytically. We must resort to numerical simulations. The simplest procedure
is an iteration of the type,

θ(t+ dt) = θ(t) + dtθ̇ = θ(t) + dtω

ω(t+ dt) = ω(t) + dtω̇ = ω(t)− dtω0 sin θ .

Fig. 4.7(a) shows the temporal dephasing of the oscillation caused by the anhar-

monicity as compared to the harmonic oscillation. Fig. 4.7(b) shows the orbits

θ(t) 7−→ ω(t) in the phase space.

4.1.8 The spring-cylinder system

Another example of an oscillating system is shown in Fig. 4.8. The inertial moment
of the cylinder is I = M

2 R
2. The spring exerts the force,

Fmol = −kx . (4.42)
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Figure 4.7: (code) Diffusion due to anharmonicities (a) in time and (b) in phase space. The

red curves show the harmonic approximation.

Therefore, we have the equations of motion,

Mẍ = Fmol − Fat (4.43)

Iθ̈ = −RFat .

If the wheel does not slip, we can eliminate the friction using x = Rω, and we obtain,

Iθ̈ = I
ẍ

R
=
M

2
R2 ẍ

R
= −RFat = −R(−kx−Mẍ) . (4.44)

Resolving by ẍ,

ẍ+
2k

3M
x = 0 . (4.45)

The frequency is,

ω0 =

√
2k

3M
. (4.46)

Figure 4.8: The spring-cylinder system.

4.1.9 Two-body oscillation

We now consider the oscillations of two bodies m1 and m2 located at the positions x1
and x2 and interconnected by a spring k, as shown in Fig. 4.9. The free length, that
is, the distance at which the spring exerts no forces on the masses, is ℓ. The forces
grow with the stretch x ≡ x2 − x1 − ℓ of the spring, such that x > 0 when the spring
is stretched and x < 0 when it is compressed. Thereby,

m1ẍ1 = kx and m2ẍ2 = −kx . (4.47)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OscilacaoAnharmonica.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_OscilacaoAnharmonica.m
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Figure 4.9: Two bodies in relative vibration.

Adding these equations,

m1ẍ1 +m2ẍ2 ≡ (m1 +m2)ẍcm = 0 . (4.48)

Dividing the equations by the masses and subtracting them,

ẍ1 − ẍ2 = −k
(

1

m1
+

1

m2

)
x = ẍrel = −

k

µ
x = ω0x , (4.49)

where ω2
0 = k/µ and µ−1 ≡ m−11 +m−12 is called the reduced mass. The introduction

of the reduced mass turns the oscillator consisting of two bodies equivalent to a system
consisting of only one mass and one spring, but with an increased vibration frequency,

ωµ =

√
k

µ
=

√
2
k

m
. (4.50)

This system represents an important model for the description of molecular vibration.
Note that for m1 −→∞ we restore the known situation of a spring-mass system fixed
to a wall.

4.1.10 Exercises

4.1.10.1 Ex: Zenith in São Carlos

Knowing that the latitude of the Sun in the tropics of Capricorn is αtrop = 23◦ cal-
culate at what time of the year the sun is vertical at noon in São Carlos, SP, Brazil.

Solution: The zenith of the sun oscillates sinusoidally with a period of one year
and an amplitude αtrop. Hence,

α(t) = αtrop cos
2πt

365 d
.

The sun is vertical in São Carlos (αsc = 21.92◦) when α(t) = αsc, that is,

αtrop cos
2πt

365 d
= αsc .

or

t =
365 d

2π
arccos

αSC
αWK

= 17.9 d .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ZeniteSaocarlos.pdf
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4.1.10.2 Ex: Length of days on Earth

Calculate the length of a day on Earth as a function of the location’s longitude ϕ and
latitude θ and of the season of the year.

Solution: We set the z-axis to coincide with the axis of Earth, so that a location
on Earth is specified by,

r = r



cos θ cosϕ

cos θ sinϕ

sin θ


 ,

with ϕ = 2πt/24 h, θ, and R = 6370 km. The coordinate of the Sun is parameterized
as,

R = R



cosα

0

sinα


 ,

with R = 1.59 · 109 km and the inclination of the Earth’s axis,

α = α0 sin
2πt
365 d ,

with α0 = 23◦. The condition r ·R = 0 yields,

∆t =
24h

2π
∆ϕ =

24h

π
arccos(−tanθ tanα) .

For example, for Quimper located at θ = 48◦, we get on the 21-th of June ∆t =
15h 45min and on the 21-th of December ∆t = 8h 15min. For Nice located at θ = 43◦,
we get in summer ∆t = 15h 6min and in winter ∆t = 8h 53min.

4.1.10.3 Ex: Swing modes

In the systems shown in the figure there is no friction between the surfaces of the
bodies and floor, and the springs have negligible mass. Find the natural oscillation
frequencies.
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Exercícios  

1 -  Nos sistemas mostrados na Fig. 9.14 não há atrito entre as superfícies do 

corpo e do chão e as molas têm massa desprezíveis. Encontre as 

freqüências naturais de oscilação. 

 

 

 

 

   (a)                    (b)                             (c) 

Fig. 9.14 

2 -  Composição de movimentos (Figuras de Lissajous) -   Consideremos um 

corpo sujeito a dois movimentos harmônicos em direções ortogonais: 

( ) ( )xxx tcosAtx ϕ+ω=  

( ) ( )
yyy tcosAty ϕ+ω=  

a) Quando yx /ωω é um número racional, a curva é fechada e o 

movimento repete-se em tempos iguais. Determine a curva traçada pelo 

corpo para ωx/ωy = 1/2, 1/3 e 2/3, tomando yxyx   e  AA ϕ=ϕ= . 

b) Para ωx/ωy = 1/2, 1/3 e ,AA yx =  desenhe as figuras para yx ϕ−ϕ  = 

0, π/4 e π/2. 

3 -  Considere um cilindro preso por duas molas que roda sem deslizar como 

mostra a Fig. 9.15. Calcule a freqüência para pequenas oscilações do 

sistema. 

4 -  Considere um pêndulo simples de massa m e comprimento L, conectado a 

uma mola de contraste k, conforme mostra a Fig. 9.16. Calcule a 

freqüência do sistema para pequenas oscilações. 

 

 

M 
k1 k2 

M 

k1 

k2 

M 
k1 k2 

Figure 4.10: Swing modes.

Solution: a. Be x1 and x2 the independent rest positions of the two springs, such
that the independent restorative forces are,

F1 = −k1(x− x1) and − F2 = −k2(x2 − x) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_DayLength.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ModosOscilacao.pdf
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The resting position of the springs acting jointly x0 follows from,

0 = F1 + F2 = −k1(x0 − x1)− k2(x0 − x2) ,

giving,

x0 =
k1x1 + k2x2
k1 + k2

.

The equation of motion is now,

Mẍ = F1 + F2 = −k1(x0 − x1)− k2(x0 − x2) = −(k1 + k2)(x− x0) .

Hence,

ω0 =

√
k1 + k2
M

.

b. The same argument can be used to treat springs in parallel. We have k = k1 + k2,
hence,

ω0 =

√
k1 + k2
M

.

c. For springs in series the derivation is more complicated. We call y and y1, respec-
tively, the current position and the resting position of the connection point between
the springs and x and x2, respectively, the current position and the resting position
of the mass. Since the connection point has no mass, we have an equilibrium between
the forces exerted by the two springs,

0 = F1 + F2 = −k1(y − y1) + k2(x− x2 − y + y1) ,

yielding,

y − y1 =
k2

k1 + k2
(x− x2) .

The equation of motion is now,

Mẍ = FM = −F2 = −k2(x− x2 − y + y1) = −
k1k2
k1 + k2

(x− x2) .

Hence, k = (k−11 + k−12 )−1 and,

ω0 =

√
(k−11 + k−12 )−1

M
.

4.1.10.4 Ex: Coupled springs

A mass m is suspended within a horizontal ring of radius R = 1m by three springs
with the constants D1 = 0.1 kg/m, D2 = 0.2N/m, and D3 = 0.3N/m. The suspen-
sion points of the springs on the ring have the same mutual distances. Determine the
equilibrium position of the mass assuming that the springs’ extensions at rest range
is 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MolasAcopladas1.pdf
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Figure 4.11: Coupled springs.

Solution: We choose the origin of the coordinate system at the center of the ring and
the equilibrium position at r. Then the forces are balanced holds F1 + F2 + F3 = 0.
Following the scheme the suspension points are at,

a1 = R

(− 1
2

√
3

1
2

)
, a2 = R

(
1
2

√
3

1
2

)
, a3 = R

(
0

−1

)
,

where a1 = a2 = a3. Hence, −k1(a1 − r) − k2(a2 − r) − k3(a3 − r) = 0. Finally we
get for the components,

x0 =
k1 − k2

k1 + k2 + k3
R
2

√
3 , y0 =

k1 + k2 − 2k3
k1 + k2 + k3

R
2 .

The equations of motion are, letting the springs be equal, k1 = k2 = k3,

mẍ = −k
(
x+ R

2

√
3
)
− k

(
x− R

2

√
3
)
− kx = −3kx

mÿ = −k
(
y − R

2

)
− k

(
y − R

2

)
− k (y +R) = −3ky .

4.1.10.5 Ex: Coupled springs

A mass m is suspended by four springs with the constants kn, as shown in the figure.
Determine the equilibrium position of the mass. Assume the ideal case of ideally
compressible springs.

Figure 4.12: Coupled springs.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MolasAcopladas2.pdf
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Solution: Springs are arbitrarily compressible, i.e., Fn = −knan. Following the
scheme, both the mass m and the connecting plate between the springs are in equilib-
rium, that is, F34 = F2 = F1. Since the springs k3 and k4 are mounted in parallel,
their total spring constant is additive. Hence we have (k3 + k4)a3 = k2a2 = k1a1.
Using the condition that the sum of the individual displacements of the spring is
a1 + a2 + a3 = L, we obtain:

a1 =
L

1 + k1/k2 + k1/(k3 + k4)
.

4.1.10.6 Ex: Coupled springs

Calculate the resulting spring constants for the constructions shown in the scheme.
Individual springs are arbitrarily compressible with spring constants Dk.

Figure 4.13: Coupled springs.

Solution: For a spring assembly in series we have the two equations,

mg −D1x1 = 0 and mg −D2(x2 − x1) = 0 .

Hence,

x2 =
D1 +D2

D2
x1 =

D1 +D2

D1D2
mg ,

or

Dtot =

(
1

D1
+

1

D2

)−1
.

And analogously for a parallel assembly we have the equation

mg −D1x−D2x = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MolasAcopladas3.pdf
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Hence,

Dtot = D1 +D2 .

By applying these rules to the shown assemblies, we get
a. D = D1 +D2

b. D =
(

1
D1+D2

+ 1
D3

)−1
+D4

c. D =
(

1
D1+D2+D3

+ 1
D4

)−1
+
(

1
D5

+ 1
D6+D7+D8+D9

)−1

4.1.10.7 Ex: Spring-mass system

A body of unknown mass hangs at the end of a spring, which is neither stretched
nor compressed, and is released from rest at a certain moment. The body drops a
distance y1 until it rests for the first time after the release. Calculate the period of
oscillatory motion.

Solution: Since the mass is released at rest, it will periodically return to the starting
point. By conservation of energy the falling distance is twice the oscillation amplitude,
which is equal to the resting position in the gravitational field,

y1 = 2y0 = mg
2k .

So the oscillation frequency is,

ω0 =

√
k

m
=

2g

y1
.

4.1.10.8 Ex: Spring-mass system

A body of m = 1.5 kg stretches a spring by y0 = 2.8 cm from its natural length when
being at rest. Now, we let it swing at this spring with an amplitude of ym = 2.2 cm.
a. Calculate total energy of the system.
b. Calculate the gravitational potential energy at the body’s lower turning point.
c. Calculate the potential energy of the spring at the body’s lower turning point.
d. What is the maximum kinetic energy of the body (when U = 0 is the point where
the spring is at equilibrium).

Solution: a. Since the stretch of the spring corresponds to y0 = −mgk , we can calcu-
late the spring constant,

k =
mg

−y0
= 526N/m ,

and the oscillation frequency is,

ω0 =

√
k

m
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MassaMola1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_MassaMola2.pdf
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So we can describe the motion by the function,

y(t) = ym cosω0t+ y0 .

The total energy at the upper turning point is,

E = Emol + Egrv =
k

2
(ym + y0)

2 +mg(ym + y0) = −0.079 J .

b. The gravitational potential energy at the lower turning point is

Egrv = mg(−ym + y0) = −0.74 J .

c. The total potential energy at the lower turning point is equal to the total energy
(a), because the kinetic energy disappears.
d. The instantaneous velocity being,

v(t) = −ymω0 sinω0t ,

the maximum kinetic energy is,

Ekin =
m

2
y2mω

2
0 = 0.13 J .

The figure shows the energy conservation using the expressions of the formula (4.28).
The red line shows the temporal transformation of kinetic energy, the green line of the
spring, the blue of gravitation, the cyan of the potential, and black of the total energy.

0 0.5 1

t (s)

-1

-0.5

0

0.5

1

E
(J
)

Figure 4.14: Spring-mass system.

4.1.10.9 Ex: U-shaped water tube

Consider a U-shaped tube filled with water. The total length of the water column is
L. Exerting pressure on one tube outlet the column is incited to perform oscillations.
Calculate the period of the oscillation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_TuboDobrado.pdf
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Figure 4.15: U-shaped water tube.

Solution: If A is the cross section, the total mass of the water is M = ρV = ρAL,
where ρ is the density of water. When the column moves at velocity v, it has kinetic
energy,

Ekin =
M

2
v2 .

To put the mass Mz = ρVz = ρAz above the resting level of the water, such that the
center of mass is a distance z above the low level, we need to provide the work,

−W = gMzz = gρAz2 = Epot .

Energy conservation requires,

E = Ekin + Epot =
ρAL

2
ż2 + gρAz2 =

M

2
ż2 +

2gM

2L
z2 = const.

Hence, comparing the coefficient of the potential energy with M
2 ω

2
0,

ω0 =

√
2g

L
.

4.1.10.10 Ex: Buoy in the sea

A hollow cylindrical buoy with cross-sectional area A and mass M floats in the sea
so that the axis of symmetry is aligned with gravitation. An albatross of mass m
sitting on the buoy waits until time t = 0 and takes off. With which frequency and
amplitude does the buoy oscillate if friction can be neglected? Derive the equation of
motion and the complete solution.

Solution: The upward buoyant force of the water is,

Fa = σAgz ,

with the water density σ = 1kg/l and the immersion depth of the buoy z. Following
Archimedes’ law the buoy is at balance at the depth z0, when Fa − (M + m)g = 0,
that is, when,

−σAz0g = (M +m)g .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_BoiaMar.pdf
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Figure 4.16: Fluctuating buoy.

From this we derive an immersion depth with albatross of z0 = M+m
σA . When the

albatross takes off, the weight decreases and we get an acceleration, Mz̈ = −σAzg −
Mg com z(0) = z0. That is, the equation of motion is,

z̈ +
σAg

M
z = −g .

Hence, the vibration frequency is ω =
√

σAg
M . To make this inhomogeneous differen-

tial equation a homogeneous one, we make, as in the case of the spring-mass in the
gravitational field, the substitution, z̃ = z + M

σA . With that we get,

¨̃z +
σAg

M
z̃ = 0 .

The general solution of this equation is z̃ = C sinωt+D cosωt, such that,

z = C sinωt+D cosωt− M

σA
.

With the known initial conditions we have,

z(0) = z0 = C sinωt+D cosωt− M

σA
= D − M

σA
ż(0) = 0 = ωC cosωt− ωD sinωt = ωC ,

and we can calculate the vibration amplitude, D = z0 + M
σA = − m

σA . Hence, the
complete solution is,

z = − m

σA
cosωt− M

σA
.

4.1.10.11 Ex: Complicated pendulum oscillation

At a distance of d = 30 cm below the suspension point of a pendulum with the length
l1 = 50 cm there is a fixed pin S on which the wire suspending the pendulum tem-
porarily bends during vibration. How many vibrations does the pendulum perform

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PenduloComplicado.pdf
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Figure 4.17: Mathematical pendulum.

per minute?

Solution: We have half vibrations for two different wire lengths, l1 and l2 = l1 − d.
We know,

ω1,2 =

√
g

l1,2
and T1,2 =

2π

ω1,2
.

Thereby,

f =
1

T
=

1

T1/2 + T2/2
=

√
g

π(
√
l1 +
√
l2)
≈ 51.8min-1 .

4.1.10.12 Ex: Physical pendulum

Calculate the oscillation frequency of a thin bar of mass m and length L suspended
at one end.

Solution: The inertial moment of a thin bar is,

I = 1
3mL

2 .

The center-of-mass is in the middle of the bar, L = 2D. Hence,

ω0 =

√
Dmg

I
=

√
3g

2L
.

4.1.10.13 Ex: Physical pendulum

An irregularly shaped flat body has the mass m = 3.2 kg and is hung on a massless
rod with adjustable length, which is free to swing in the plane of the body itself.
When the rod’s length is L1 = 1.0m, the period of the pendulum is t1 = 2.6 s. When
the rod is shortened to L2 = 0.8m, the period decreases to t2 = 2.5 s. What is the
period of the oscillation when the length is L3 = 0.5m?

Solution: Knowing that the period is proportional to the root of the distance be-
tween the point of suspension and the center of gravity of the body, tk = C

√
Lk with

a constant C, we have

t1 = C
√
∆L+ L1 , t2 = C

√
∆L+ L2 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PhysicalPendulum01.pdf
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where ∆L is the distance between the center of gravity of the body and the attachment
point on the rod. With this,

C =

√
t22 − t21
L2 − L1

, ∆L =
t21
C2
− L1 ,

and

t3 = C
√
∆L+ L3 =

√
t21 + (t22 − t21)

L3 − L1

L2 − L1
= 2.34 s .

4.1.10.14 Ex: Physical pendulum

A physical pendulum of massM consists of a homogeneous cube with the edge length
d. As shown in the figure, the pendulum is hung without friction on a horizontal
rotation axis.
a. Determine the inertial momentum about the rotation axis using Steiner’s theorem.
b. The pendulum now performs small oscillations around its resting position. Deter-
mine the angular momentum.
c. Give the equation of motion for small pendulum amplitudes ϕ around its resting
position and the oscillation period.

Figure 4.18: Physical pendulum.

Solution: a. We calculate the tensor of inertia Iij for a coordinate system in the
center of the cube:

Iij =

∫

V

ρ(r)

[
δij

3∑

α=1

x2α − xixj
]
dV .

Hence,

I11 =

∫

V

ρ(r⃗)
[
x21 + x22 + x23 − x1x1

]
dV = ρ

∫ d/2

−d/2
(x22 + x23)dx1dx2dx3

=
ρd5

6
=
Md2

6
= I22 = I33

Iı ̸=j =
∫

V

ρ(r)xixjdV = ρ

∫ d/2

−d/2
xixjdxidxjdxk = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PhysicalPendulum03.pdf
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Thus, ICM adopts the form:

ICM =



Md2/6 0 0

0 Md2/6 0

0 0 Md2/6


 .

Now we nail the cube to the wall. Here, the vertical distance b from the new axis of
rotation ω⃗ = ωê3 until the center of mass is given by,

b =
√
2

(
d

2
− a
)
êb .

êb shows from the origin of the new coordinate system (around which the rotation
occurs) to the origin of the old coordinate system (the center-of-mass system), êb =
−ê1 sinϕ − ê2 cosϕ. With Steiner’s theorem, Iω = ICMω0

+Mb2, we get the inertial
moment regarding the new rotation axis Iω = 2M

(
1
3d

2 − da+ a2
)
. The torque is,

D =
∂

∂t
L =

∂

∂t
Iω⃗ = Iωϕ̈ê3 .

The force of gravitational attraction Fg = −Mgê2 cause, when displaced from the rest
position, a torque,

D = b× Fg = −bêb ×Mgê2 = bMg sinϕê3 .

Where ϕ is the angle between b⃗ and the axis ê2, that is, the direction of gravitational
attraction. Since the torque has to be conserved ( ∂∂tL = 0), the sum of the torques
must be zero,

0 = Iωϕ̈+ bMg sinϕ .

Solving the differential equation for small ϕ(t) gives the period T as,

T = 2π

√
Iω
bMg

.

4.1.10.15 Ex: Physical pendulum on a spiral spring

Consider a beam of mass m = 1kg with the dimensions (a, b, c) = (3 cm, 3 cm, 8 cm).
The beam is rotatable about an axis through the point A. At point B, at a distance
r from point A, the beam is fixed to a spiral spring exerting the retroactive force
FR = Dϕ⃗ with D = 100N/m. Determine the differential equation of motion and
solve it. Determine the period of the oscillation.

Solution: The retroactive force exerts a torque |M| = |r × FR| = rDϕ. The torque

due to the inertia of the mass is MT = I⃗̇ω. With that the equation of motion gets,

Iϕ̈+ rFRϕ = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_PhysicalPendulum04.pdf
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Figure 4.19: Physical pendulum on a spiral spring.

The inertial moment of the beam is,

Iω =
1

V

∫

viga

ϱ(r)(y2 + z2)d3r =
ϱ0
V

∫ c/2

−c/2

∫ b/2

−b/2

∫ a/2

−a/2
(y2 + z2)dxdydz

=
ϱ0abc

12V
(a2 + c2) =

ϱ0
6
(a2 + c2) ,

The rest is trivial.

4.1.10.16 Ex: Accelerated pendulum

A simple pendulum of length L is attached to a cart that slides without friction down-
ward an plane inclined by an angle α with respect to the horizontal. Determine the
oscillation period of the pendulum on the cart.

Solution: The force accelerating the car is,

Fcar = ma with a = g sinα .

The effective force acting on the pendulum suspended inside the cart is,

Feff = mg −ma with Feff = gm cosα .

where a is the acceleration of the cart along the plane. Hence, the pendulum’s oscil-
lation frequency is,

ω0 =

√
geff
L

=

√
g cosα

L
.

4.1.10.17 Ex: Accelerated pendulum

a. A pendulum of length L and mass M is suspended from the roof of a wagon hori-
zontally accelerated with the acceleration aext. Find the equilibrium position of the
pendulum. Determine the oscillation frequency for small oscillations and derive the
differential equation of motion for an observer sitting in the wagon. (Note that you
cannot assume small displacements, if the acceleration aext is large.)
b. In the same wagon there is a mass m connected to the front wall by a spring k.
Find the equilibrium position of the mass. Determine the oscillation frequency and

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_AcceleratedPendulum01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_AcceleratedPendulum02.pdf
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Figure 4.20: Accelerated pendulum.

Figure 4.21: Accelerated pendulum.

derive the differential motion equation for an observer sitting in the wagon.

Solution: a. Effective acceleration is,

aef =
√
g2 + a2 .

Hence the frequency for small amplitudes is,

ω0 =

√
aef
L

=

√√
g2 + a2

L
.

We derive the equation of motion in the sketched Cartesian system, where x = L sinα
and y = −L cosα. Here, Newton’s equation m¨⃗x = mg⃗ +ma⃗ becomes,

mL

(
α̈ cosα− α̇2 sinα

α̈ sinα+ α̇2 cosα

)
= m

(
ẍ

ÿ

)
= mg sinα

(− cosα

− sinα

)
+

(
ma

0

)
.

Calculating mẍ cosα+mÿ sinα we find,

α̈ = − g
L
sinα+

a

L
cosα .

To find the oscillation frequency, we need to put this equation into a form α̈ =
−A sin(α− ϕ) = A cosϕ sinα−A sinϕ cosα. By comparison,

A cosϕ = − g
L

, A sinϕ = − a
L
,

or

A =

√
g2 + a2

L2
, tanϕ =

a

g
.
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Hence,

α̈ = −
√
g2 + a2

L
sin(α− arctan a

g ) ≃ −
√
g2 + a2

L
(α− arctan a

g ) ,

confirming the effective acceleration. Still, we transform to the variable α̃ ≡ α −
arctan a

g ,

¨̃α = −
√
g2 + a2

L
sin(α̃) .

b. The equation mx = mg +ma becomes,

mẍ = −kx+ma .

Substituting x̃ = x− ma
k ,

mẍ = −k
(
x̃+

ma

k

)
+ma = −kx̃ = m¨̃x .

4.1.10.18 Ex: Oscillation of a rolling cylinder

Consider a cylinder secured by two springs that rotates without sliding, as shown in
the figure. Calculate the frequency for small oscillations of the system.
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Fig. 9.15     Fig. 9.16 

5 -  Dois movimentos harmônicos de mesma amplitude mas freqüências 

ligeiramente diferentes são impostos a um mesmo corpo tal que 

( )[ ]tcosA)t(x  e  tcosA)t(x 21 ω∆+ω=ω= . Calcule o movimento 

vibracional resultante. 

6 -  Considere um pêndulo simples num meio viscoso com constante de força 

viscosa b. Calcule o novo período de oscilação de pêndulo.  

7 -  Considere uma barra delgada de massa M e comprimento 2L apoiada no 

centro de massa como mostra a Fig. 9.17. Ela é presa nas duas 

extremidades por molas de constante k. Calcule a freqüência angular para 

pequenas oscilações do sistema. 

8 -  Considere 2 pêndulos (comprimento L e massa M) acoplados por uma 

mola de constante k, conforme mostra a Fig. 9.18. 

a) Encontre as equações diferenciais para os ângulos θ1 e θ 2. 

b) Defina as coordenadas normais de vibração ℵ = θ 1 - θ 2 e β = θ 1 + θ 2. 

Encontre as equações diferenciais para ℵ e β. Dica: some ou subtraia 

as equações de a) 

c) Quais são as freqüências angulares dos modos normais de vibração? 

 

 

 

 

 

M 

k k 

R 
a 

a 

L 

M 

θ 

Figure 4.22: Rolling cylinder.

Solution: The inertial moment is I = M
2 R

2. The springs exert the forces,

Fmol = −kx+ k(L− x) .

Hence we have the equations of motion,

Mẍ = Fmol − Fat

Iθ̈ = I
ẍ

R
= dFmol −RFat .

Using x = Rω and eliminating the friction, we get,

Iθ̈ = I
ẍ

R
=
M

2
R2 ẍ

R
= dF −RFat = d[−kx+ k(L− x)]−R[−kx+ k(L− x)−Mẍ] .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation01.pdf
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Solving by ẍ,

ẍ+
2k

M

(
1 +

d

R

)
(2x− L) = 0 .

The frequency is,

ω0 =

√
4k

M

(
1− d

R

)
.

4.1.10.19 Ex: Rocking chair

Consider a thin rod of mass M and length 2L leaning on its center-of-mass, as shown
in the figure. It is attached at both ends by springs of constants k. Calculate the
angular frequency for small oscillations of the system.
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Fig. 9.17     Fig. 9.18 

9 -  Considere um disco de massa M e raio R ( )2
2
1 MRI =  que pode rodar em 

torno do eixo polar. Um corpo de massa m está pendurado em uma corda 

ideal, que passa pelo disco (sem deslizar) e é presa a uma parede através 

de uma mola de constante k, como mostra a Fig. 9.19. Calcule a 

freqüência natural do sistema. 

 

 

 

 

 

 

 

 

Fig. 9.19 

 

 

k k 

2L L 

M 

θ1 

L 

M 

θ2 

k 

R 

M 

m 

k 

Figure 4.23: Rocking chair.

Solution: The moment of inertia is I = 1
3ML2. The equation of motion is,

Iα⃗ = τ⃗ = L× Fml + (−L)× Fml = L× (−kx) + (−L)× kx .

Hence,

1

3
MR2θ̈ = −2Lkx = −2Lkℓθ

θ̈ +
6k

M
θ = 0

ω0 =

√
6k

M
.

4.1.10.20 Ex: Rotational oscillation of a disk

Consider a disk of mass M and radius R (I = 1
2MR2) that can rotate around the

polar axis. A body of mass mhangs at an ideal rope that runs through the disk
(without slipping) and is attached to a wall by a spring of constant k, as shown in
the figure. Calculate the natural oscillation frequency of the system.

Solution: The angular acceleration of the disc M the inertial moment of which is
I = M

2 R
2, is given by,

M

2
R2α⃗ = Iα⃗ = τ⃗m + τ⃗k = R×mg −R× kx = (Rmg −Rkx)êθ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation03.pdf
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Fig. 9.17     Fig. 9.18 

9 -  Considere um disco de massa M e raio R ( )2
2
1 MRI =  que pode rodar em 

torno do eixo polar. Um corpo de massa m está pendurado em uma corda 

ideal, que passa pelo disco (sem deslizar) e é presa a uma parede através 

de uma mola de constante k, como mostra a Fig. 9.19. Calcule a 

freqüência natural do sistema. 

 

 

 

 

 

 

 

 

Fig. 9.19 
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2L L 

M 

θ1 
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k 
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m 

k 

Figure 4.24: Rotational oscillation of a disk.

As the body does not slide, the angle of the disc is linked to the mass displacement,
x = Rθ. We get,

α = θ̈ =
2mg − 2kx

MR
=

2mg

MR
+

2k

M
θ .

Substituting θ ≡ θ̃ − mg
kR :

¨̃
θ =

2mg

MR
− 2k

M

(
θ̃ − mg

kR

)
= −2k

M
θ̃ .

That is, we have a harmonic oscillation around the angle θ0 = mg
kR with frequency

ω0 =
√

2k
M .

4.1.10.21 Ex: Oscillation of a half cylinder

Consider a massive, homogeneous half-cylinder of mass M and radius R resting on
a horizontal surface. If one side of this solid is slightly pushed down and released, it
will swing around its equilibrium position. Determine the period of this oscillation.

Figure 4.25: Oscillation of a half cylinder.

Solution: The mass of the half cylinder is,

M =

∫
dm = ρ0

∫ D

0

∫ π

0

∫ R

0

ρ0rdrdθdz = ρ0πD
R2

2 .

The moment of inertia about the symmetry axis of the cylinder, if it were complete,
would be,

I0 =

∫
r2dm = ρ0

∫ D

0

∫ π

0

∫ R

0

r2ρ0rdrdθdz = ρ0πD
R4

4 =MR2/2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation04.pdf
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Following Steiner’s theorem the moment of inertia with respect to support point of the
half-cylinder is,

I = I0 +MR2 = 3
2MR2 .

We calculate the center-of-mass of a half cylinder lying on its flat side. The definition
of the center-of-mass is,

rcm =
1

M

∫
rdm .

For symmetry reasons xcm = 0. Also,

ycm =
ρ0
M

∫ D

0

∫ R

0

∫ √R2−y2

−
√
R2−y2

ydxdydz =
ρ0D

M

∫ R

0

2y
√
R2 − y2dy =

ρ0D

M

∫ R2

0

√
R2 − udu

= −2

3

ρ0D

M
(R2 − u) 3

2

∣∣∣∣
R2

0

=
2

3
R3 ρ0D

M
=

4R

3π
.

Let θ be the angle of oscillation. Seen from the support point the center-of-mass is at,

r =




0

R

0


−



ycm sin θ

ycm cos θ

0


 .

The equation of motion is,

mẍ = −Fat...

Iθ̈ = τ⃗ = r× F⃗ =



−ycm sin θ

R− ycm cos θ

0


×




0

−gM
0


 = −ycmgMêz sin θ

θ̈ = −ycmgM
I

sin θ = −
4R
3π gM
3
2MR2

sin θ = − 8g

9πR
sin θ .

Hence, the period of oscillation is,

T =
2π

ω
=

2π√
8g
9πR

=

√
9π3

2

√
R

g
≈ 7.78

√
R/g .

4.1.10.22 Ex: Pendulum coupled to a spring

Consider a simple pendulum of massm and length L, connected to a spring of constant
k, as shown in the figure. Calculate the frequency of the system for small oscillation
amplitudes.

Solution: The inertial moment is I =ML2. The equation of motion is,

Iα⃗ = τ⃗ = L⃗×Mg⃗ + a⃗× F⃗ml .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_CoupledPendulum01.pdf
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Fig. 9.15     Fig. 9.16 

5 -  Dois movimentos harmônicos de mesma amplitude mas freqüências 

ligeiramente diferentes são impostos a um mesmo corpo tal que 

( )[ ]tcosA)t(x  e  tcosA)t(x 21 ω∆+ω=ω= . Calcule o movimento 

vibracional resultante. 

6 -  Considere um pêndulo simples num meio viscoso com constante de força 

viscosa b. Calcule o novo período de oscilação de pêndulo.  

7 -  Considere uma barra delgada de massa M e comprimento 2L apoiada no 

centro de massa como mostra a Fig. 9.17. Ela é presa nas duas 

extremidades por molas de constante k. Calcule a freqüência angular para 

pequenas oscilações do sistema. 

8 -  Considere 2 pêndulos (comprimento L e massa M) acoplados por uma 

mola de constante k, conforme mostra a Fig. 9.18. 

a) Encontre as equações diferenciais para os ângulos θ1 e θ 2. 

b) Defina as coordenadas normais de vibração ℵ = θ 1 - θ 2 e β = θ 1 + θ 2. 

Encontre as equações diferenciais para ℵ e β. Dica: some ou subtraia 

as equações de a) 

c) Quais são as freqüências angulares dos modos normais de vibração? 

 

 

 

 

 

M 

k k 

R 
a 

a 

L 

M 

θ 

Figure 4.26: Pendulum coupled to a spring.

Hence,

ML2θ̈ = −LMg sin θ − akx = −LMg sin θ − akaθ

0 = θ̈ +
g

L
sin θ +

ka2

ML2
θ ≃ θ̈ +

(
g

L
+

ka2

ML2

)
θ

ω0 =

√
g

L
+

ka2

ML2
.

4.1.10.23 Ex: Pendulum carousel

A mass m is hung by a rope of length l on a carousel with the radius R. The pen-
dulum performs small amplitude oscillations in the direction of the rotation axis of
the carousel. How does the period of oscillation depend on the rotation speed of the
carousel?

Solution: The retroactive force is,

FR = −mg sinϕ+
mv2

R′
cosϕ .

We have v(x) = (R+ x)ω = (R+ l sinϕ)ω and R′ = R+ x. Hece,

Figure 4.27: Pendulum carousel.

FR = −mg sinϕ+mω2(R+ l sinϕ) cosϕ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_RotatoryOscillation05.pdf
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The equation of motion, hence, is,

ms̈ = −mg sinϕ+mω2(R+ l sinϕ) cosϕ .

Since s = lϕ, s̈ = lϕ̈, follows lϕ̈ = −g sinϕ+ ω2(R+ l sinϕ) cosϕ or,

ϕ̈+
g

l
sinϕ− ω2(

R

l
+ sinϕ) cosϕ = 0 .

For small displacements we have, cosϕ ≈ 1 and sinϕ ≈ ϕ, d.h.

ϕ̈+
(g
l
− ω2

)
− ω2R

l
= 0 .

The solution of the homogeneous differential equation is,

ϕh = sin

√
g

l
− ω2t

A particular solution of the inhomogeneous differential equation is,

ϕi =
ω2(R/l)

g/l − ω2

The total solution is ϕ = ϕh + ϕi. The oscillation period is,

T =
2π√

g/l − ω2

For large angular velocities, ω =
√
g/l, the period of oscillation tends to infinity

because the centrifugal force dominates.

4.2 Superposition of periodic movements

Several movements that we already know can be understood as superpositions of pe-
riodic movements in different directions and, possibly, with different phases. Example
are the circular or elliptical motion of a planet around the sun or the Lissajous figures.
In these cases, the motion must be described by vectors, r(t) ≡ (x(t), y(t)). It is also
possible to imagine superpositions of periodic movements in the same degree of free-
dom. The movement of the membrane of a loudspeaker or musical instruments usually
vibrates harmonically, but follows a superposition of harmonic oscillations. According
to the superposition principle, we will take the resultant of several harmonic vibrations
as the sum of the individual vibrations.

4.2.1 Rotations and complex notation

We now consider a uniform circular motion. The radius of the circle being R, the
motion is completely described by the angle θ(t) which grows uniformly,

θ = ωt+ α . (4.51)
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Figure 4.28: Superposition of vibrations in different (left) and equal (right) degrees of free-
dom.

The projections of the movement in x and y are,

x(t) = A cos θ and y(t) = A sin θ . (4.52)

Thus, we can affirm x(t) = y(t + π/2), that is, the projections have a mutual phase
shift of π/2.

The circular motion can be represented in the complex plane using the imaginary
unit i ≡

√
−1 and Euler’s relationship eıθ = cos θ+ı sin θ, as illustrated in Fig. 4.29.3,4

With r = Aeıθ we obtain x = ARe eıθ and ıy = AIm eıθ and r = x+ ıy.

Figure 4.29: Circular motion in the complex plane.

We will use the complex notation extensively, as it greatly facilitates the calcula-
tion.

4.2.2 Lissajous figures

Other periodic movements in the two-dimensional plane are possible, when the move-
ments in x and y have different phases or frequencies. These are called Lissajous
figures.

We consider a body subject to two harmonic movements in orthogonal directions:

x(t) = Ax cos(ωxt+ φx) and y(t) = Ay cos(ωyt+ φy) . (4.53)

When ωx/ωy is a rational number, the curve is closed and the motion repeats after
equal time periods. The upper charts in Fig. 4.30 show trajectories of the body for
ωx/ωy = 1/2, 1/3, and 2/3, letting Ax = Ay and φx = φy. The lower charts in
Fig. 4.30 show trajectories for ωx/ωy = 1/2, 1/3, letting φx−φy = 0, π/4, and π/2.

Example 10 (Lissajous figures):

3The Euler relation can easily be derived by Taylor expansion.
4To check your notions on complex numbers do the exercises in Chp. 1 of the Book of A.P. French.
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Figure 4.30: (code) Trajectories of a body oscillating with different frequencies in two di-

mensions.

• Connect two function generators to the two channels of an oscilloscope in
x-y.

• MATLAB simulation.

.

4.2.3 Vibrations with equal frequencies superposed in one di-
mension

Vibratory movements can overlap. The result can be described as a sum,

x(t) = x1(t) + x2(t) = A1 cos(ωt+ α1) +A2 cos(ωt+ α2) (4.54)

= Re[A1e
ı(ωt+α1) +A2e

ı(ωt+α2)] = Reeıωt[A1e
ıα1 +A2e

ıα2 ] .

That is, the new motion is a cosine vibration, x(t) = A cosωt, with the phase,

tanα =
Im x(0)

Re x(0)
=

Im(A1e
ıα1 +A2e

ıα2)

Re(A1eıα1 +A2eıα2)
=
A1 sinα1 +A2 sinα2

A1 cosα1 +A2 cosα2
, (4.55)

and the amplitude,

A = |A1e
ıα1 +A2e

ıα2 | =
√
A2

1 +A2
2 + 2A1A2 cos(α1 − α2) . (4.56)

We consider the case A1 = A2,

tanα =
sinα1 + sinα2

cosα1 + cosα2
, A = 2A cos

α1 − α2

2
. (4.57)

The cases α1 = α2 or α2 = 0 further simplify the result.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Lissajous.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Lissajous.m
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4.2.4 Frequency beat

Vibratory movements with different frequencies can overlap. The result can be de-
scribed as a sum,

x(t) = x1(t) + x2(t) = A1 cosω1t+A2 cosω2t = Re [A1e
ıω1t +A2e

ıω2t] . (4.58)

Considering the case A1 = A2 we obtain,

x(t) = ARe [eıω1t + eıω2t] (4.59)

= ARe [eı(ω1+ω2)t/2eı(ω1−ω2)t/2 + eı(ω1+ω2)t/2e−ı(ω1−ω2)t/2]

= ARe eı(ω1+ω2)t/22 cos
(ω1 − ω2)t

2

= 2A cos
(ω1 + ω2)t

2
cos

(ω1 − ω2)t

2
.

Example 11 (Amplitude modulation): An important example is the ampli-

tude modulation of radiofrequency signals.

0 2 4 6

t

-2

-1

0

1

2

x

Figure 4.31: (code) Illustration of the beating of two frequencies ν1 = 5.5Hz and ν2 = 5Hz

showing the perceived vibration (red), the vibration with the frequency (ν1 + ν2)/2 (blue),

and the vibration with frequency (ν1 − ν2)/2 (yellow).

Example 12 (Visualization of beat frequencies on an oscilloscope):

• Connect two function generators to the two channels of an oscilloscope and
add the channels.

• MATLAB simulation.

• Modulate one signal by another in a frequency mixer.

.

4.2.5 Amplitude and frequency modulation

Radio frequencies above 300 kHz can easily be emitted and received by antennas,
while audio frequencies are below 20 kHz. However, radio frequencies can be used
as carriers for audio frequencies. This can be done by modulating the audio signal

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Vibrations_Batimento.m
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on the amplitude of the carrier () before sending the carrier frequency. The receiver
retrieves the audio signal by demodulating the carrier. Therefore, audio signals can
be transmitted by electromagnetic waves. Another technique consists in modulating
the frequency of these waves (). We will now calculate the spectrum of these two
modulations using complex notation and show how to demodulate the encoded audio
signals by multiplication with a local oscillator corresponding to the carrier wave.

4.2.5.1 AM

Let ω and Ω be the frequencies of the carrier wave and the modulation, respectively.
We can describe the amplitude modulation by,

U(t) = (1 + S(t)) cosωt . (4.60)

After the receiver has registered this signal, we demodulate it by multiplying it with
cosωt:

U(t) cosωt = (1 + S(t)) cos2 ωt = (1 + S(t))
(
1
2 + 1

2 cos 2ωt
)
. (4.61)

We purify this signal passing it through a low-pass filter eliminating the rapid oscil-
lations:

U(t) cosωt −→ 1
2 (1 + S(t)) . (4.62)

We retrieve the original signal S(t).

-20 -10 0 10 20

frequency (MHz)

-100

-50

0

sp
ec
tr
u
m

(d
B
)

Figure 4.32: (code) Modulation signal.

4.2.5.2 FM

We can describe the frequency modulation by,

U(t) = eı(ωt+N sinΩt) = eıωt
∞∑

k=−∞
Jk(N)eıkΩt . (4.63)

The modulation of the carrier wave generates sidebands. This can be seen by expand-
ing the signal carrying the phase modulation into a Fourier series,

eıωt
∞∑

k=−∞
Jk(β)eıkΩt ≃ eıωt + J1(N)eıωt+ıΩt + J−1(N)eıωt−ıΩt (4.64)
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when the modulation index N is small. Here, J−k(N) = (−1)kJk(N) are the Bessel
functions.

The spectrum of a signal with PM modulation consists of discrete lines, called
sidebands, whose amplitudes are given by Bessel functions,

S(ω) =

∞∑

k=−∞
|Jk(N)|2δ(ω + kΩ) . (4.65)

In real systems, the frequency bands have finite widths β due to frequency noise or
to the finite resolution of the detectors,

S(ω) =

∞∑

k=−∞
|Jk(N)|2 N2

(ω − kΩ)2 +N2
. (4.66)

Example 13 (Frequency spectrum):

• Modulate the frequency of a VCO.

• Show in the spectrum analyzer the transition to sidebands.

.

4.2.6 Exercises

4.2.6.1 Ex: Amplitude modulation

Consider a carrier wave of ω/2π = 1 MHz frequency whose amplitude is modulated
by an acoustic signal of Ω/2π = 1kHz: U(t) = A cosΩt cosωt. To demodulate the
signal, multiply the received wave U(t) by the carrier radiofrequency. Interpret the
result.

Figure 4.33: Illustration of radiofrequency signal transmission.

Solution: The demodulated signal is,

S(t) cosωt = A cosωt cosΩt cosωt = 1
4A cos[(2ω − Ω)t] + 1

4A cos[(2ω +Ω)t] + 1
2A cosΩt .

The first two terms oscillate with high frequency and can be eliminated by a low-pass
filter. The third term oscillates precisely with the frequency of the wanted signal Ω.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_SuperpositionAM01.pdf
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4.3 Damped and forced vibrations

Frequently, vibrations are exposed to external perturbations. For example, damping
forces due to friction exerted by the medium in which vibration takes place work
to waste and dissipate the energy of the oscillation and, therefore, to reduce the
amplitude of the oscillation. In contrast, periodic forces can pump energy into the
oscillator system and excite vibrations.

4.3.1 Damped vibration and friction

Let us first deal with damping by forces named Stokes friction, that is, forces which
are proportional to the velocity of the oscillating mass and contrary to the direction
of motion, Ffrc = −bv, where b is the friction coefficient. With this additional term,
the equation of motion is,

ma = −bv − kx . (4.67)

Figure 4.34: Oscillation damped by a viscous medium.

The calculation of the damped oscillator can be greatly simplified by the use of
complex numbers by making the ansatz,

x(t) = Aeλt , (4.68)

where λ is a complex number. We get,

mλ2 + bλ+ k = 0 , (4.69)

giving the characteristic equation,

λ = −γ ±
√
γ2 − ω2

0 , (4.70)

with

ω0 =

√
k

m
and γ =

b

2m
. (4.71)

The friction determines the damping behavior. We distinguish three cases discussed
in the following sections.
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4.3.1.1 Overdamped case

In the overdamped case, for ω0 < γ, there are two real solutions λ = −γ ± κ with
κ ≡

√
γ2 − ω2

0 for the characteristic equation, giving,

x(t) = e−γt(Ae−κt +Beκt) . (4.72)

Choosing the initial conditions,

x0 = x(0) = e−γt(Ae−κt +Beκt) = A+B (4.73)

0 = v(0) = −A(γ + κ)e−(γ+κ)t −B(γ − κ)e−(γ−κ)t = −A(γ + κ)−B(γ − κ) ,

we determine the amplitudes,

A =
x0
2

(
1− γ

κ

)
and B =

x0
2

(
1 +

γ

κ

)
. (4.74)

Finally, the solution is 5,

x(t) = x0e
−γt

[
coshκt+

γ

κ
sinhκt

]
. (4.75)

4.3.1.2 Underdamped case

In the underdamped case, for ω0 > γ, we have two complex solutions λ = −γ ± ıω
with ω ≡

√
ω2
0 − γ2, giving,

x(t) = e−γt(Aeıωt +Be−ıωt) . (4.76)

Choosing the initial conditions,

x0 = x(0) = e−γt(Aeıωt +Be−ıωt) = A+B (4.77)

0 = v(0) = −A(γ − ıω)e−(γ−ıω)t −B(γ + ıω)e−(γ+ıω)t = −A(γ − ıω)−B(γ + ıω) ,

we determine the amplitudes,

A =
x0
2

(
1 +

γ

ıω

)
and B =

x0
2

(
1− γ

ıω

)
. (4.78)

Finally, the solution is 6,

x(t) = x0e
−γt

[
cosωt+

γ

ω
sinωt

]
. (4.79)

5Note that for super-strong damping, we have κ ≃ γ and therefore,

x(t) = Ae−2γt +B .

, This is nothing more than the solution of the equation of motion without restoring force, ma = −bv.
6Note that, for very weak damping, we have γ ≃ 0 and ω ≃ ω0 and hence,

x(t) = Aeıω0t +Be−ıω0t .

This is nothing more than the solution of the frictionless equation of motion, ma = −kx.
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4.3.1.3 Critically damped case

In the critically damped case, for ω0 = γ, there is only one solution λ = −γ, giving

x(t) = Ae−γt . (4.80)

Since one solution is not sufficient to solve a second order differential equation, we
need to look for another linearly independent solution. We can try another ansatz,

x(t) = Bteλt , (4.81)

resulting in the characteristic equation,

m(λ2teλt + 2λeλt) + b(λteλt + eλt) + kteλt = 0 . (4.82)

The terms in eλt and teλt should disappear separately, giving,

2mλ+b = 0 and mλ2t+bλt+kt = 0 =⇒ λ = − b

2m
= −γ = −ω0 . (4.83)

Finally, the solution is,
x(t) = (A+Bt)e−γt . (4.84)

Choosing the initial conditions,

x0 = x(0) = (A+Bt)e−γt = A (4.85)

0 = v(0) = (−γA− γBt+B)e−γt = −γA+B ,

we determine the amplitudes,

A = x0 and B = γx0 . (4.86)

Finally, the solution is,
x(t) = x0(1 + γt)e−γt . (4.87)

Fig. 4.35 illustrates the damping of the oscillation for various friction rates γ.
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Figure 4.35: (code) Damped oscillation for ω0 = 10 s-1 and γ = 2.5 s-1 (red), 10 s-1 (green),

and 25 s-1 (blue).

The critical friction coefficient generates a damped movement without any ’over-
shoot’, since the velocity ẋ(t) only disappears for t = 0.
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4.3.1.4 Quality factor and energy loss

For a harmonic oscillation we establish the balance of energies,

E =
m

2
v2 +

k

2
x2 (4.88)

=
m

2

(
Aıω0e

ıω0t −Bıω0e
−ıω0t

)2
+
m

2
ω2
0

(
Aeıω0t +Be−ıω0t

)2
= 2mω2

0AB .

Now, for an underdamped oscillation we replace the amplitudes by A → Ae−γt and
B → Be−γt, such that,

E(t) = 2mω2
0ABe

−2γt . (4.89)

Obviously, the energy is decreasing at the rate 2γ.
We define the quality factor as the number of radians that the damped system

oscillates before its energy falls to e−1,

Q =
ω

2γ
=
ωm

b
≃ ω0m

b
. (4.90)

Comparing the initial energy with the energy remaining after one cycle,

E

∆E
=

E(0)

E(0)− E(2π/ω)
=

1

1− e−4πγ/ω ≃
ω

4πγ
, (4.91)

we find that the quantity,
Q

2π
=

E

∆E
(4.92)

represents a measure for the energy dissipation.

4.3.2 Forced vibration and resonance

We have seen that a damped oscillator loses its energy over time. To sustain the
oscillation, it is necessary to provide energy. The simplest way to do this, is to force
the oscillator to oscillate at a frequency ω by applying an external force F0 cosωt.
The question now is, what will be the amplitude of the oscillation and its phase with
respect to the phase of the applied force. We begin by establishing the equation of
motion,

ma+ bv +mω2
0x = F0 cosωt . (4.93)

The calculation can be greatly simplified by the use of complex numbers. We
write the differential equation as,

ma+ bv +mω2
0x = F0e

ıωt , (4.94)

making the ansatz x(t) = Aeıωt−ıδ, yielding

−ω2Aeıωt−ıδm+ ıωbAeıωt−ıδ +mω2
0Ae

ıωt−ıδ = F0e
ıωt . (4.95)

We rewrite this formula,

eıδ = A
m(ω2

0 − ω2) + ıbω

F0
. (4.96)
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Figure 4.36: Forced oscillation damped by a viscous medium.

Immediately we get the solutions,

tan δ =
sin δ

cos δ
=

Im eıδ

Reeıδ
=

bω

m(ω2
0 − ω2)

(4.97)

A =
∣∣Ae−ıδ

∣∣ =
∣∣∣∣

F0

m(ω2
0 − ω2) + ıωb

∣∣∣∣ =
F0√

m2(ω2
0 − ω2)2 + b2ω2

.

The frequency response (spectrum) of the oscillator to the periodic excitation is
illustrated in Fig. 4.37. We see that, when we increase the friction, we decrease
the height and increase the width of the spectrum |A(ω)|. Fig. 4.37(b) shows that,
increasing the excitation frequency, the oscillation undergoes a phase shift of π.
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Figure 4.37: (code) Frequency response of the amplitude and phase of the oscillator for a

force of F0 = 1N, a mass of m = 1kg, a resonance frequency of ω0 = (2π) 5Hz, and a

friction coefficient of b = 0.5 (blue) or b = 1 (red).

We now ask, at what excitation frequency ω the oscillator responds with maximum
amplitude,

0 =
d

dωm
A(ωm) = F0ωm

2m2ω2
0 − 2m2ω2

m − b2
(m2ω4

0 − 2m2ω2
0ω

2
m +m2ω4

m + b2ω2
m)

3
2

. (4.98)

The numerator disappears for,

ωm =

√
ω2
0 −

b2

2m2
, (4.99)
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and the amplitude becomes,

Am =
F0

b
√
ω2
0 − b2

4m2

. (4.100)

4.3.2.1 Quality factor

For weak damping γ ≪ ω0 and small detunings, |ω − ω0| ≪ ω0, we can approximate
the expression for the spectrum by,

A(ω) ≃
∣∣∣∣∣
F0

m

1

2ω0(ω0 − ω) + ıω0
b
m

∣∣∣∣∣ =
∣∣∣∣
F0

2mω0

1

ω − ω0 − ıγ

∣∣∣∣ .

This function corresponds to a Lorentzian profile with the width FWHM ∆ω = 2γ.
The quality factor defined in the section discussing the damped oscillator measures
the quality of the resonance,

Q =
ω

2γ
=

ω

∆ω
. (4.101)

Example 14 (Harmonic vibration):

• Construct a L-C-circuit, excite it by a function generator by making a
frequency ramp, and show the resonance on the oscilloscope. It works
with a coil of N = 12 turns, of length ℓ = 6 cm and of radius r = 1.4 cm,
giving L = 1.4µH. We can also set R = 2.2Ω and C = 100 nF, giving
ω0 = 9.4MHz.

4.3.3 Exercises

4.3.3.1 Ex: Resolution of the damped oscillator equation

Solve the damped oscillator equation for 4km > b2 using the ansatz x(t) = Ae−γt cosωt.

Solution: To determine the frequency of the damped oscillation described by this
equation, we choose the function,

x(t) = Ae−γt cosωt

with the derivatives:

v(t) = −γAe−γt cosωt− ωAe−γt sinωt
a(t) = (γ2 − ω2)Ae−γt cosωt+ 2γωAe−γt sinωt .

Entering the differential equation and collecting the cos and sin terms separately:

(γ2 − ω2)− γ b
m

+
k

m
= 0 and 2γω − ω b

m
= 0

γ =
b

2m
and ω =

√
γ2 − γ b

m
+
k

m
=

√
ω2
0 −

b2

4m2

com ω0 ≡
√
k/m.
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4.3.3.2 Ex: Damped oscillation

In a damped oscillation the oscillation period is T = 1 s. The ratio between two
consecutive amplitudes is 2. Despite the large damping, the deviation of the period
T0 compared to the undamped oscillation is small. Calculate the deviation.

Solution: The oscillation is described by,

x(t) = Ae−γt cosωt ,

with ω = 2π/T . Hence, the condition x(0) = 2x(T ) gives,

A = 2Ae−γT or γ =
ln 2

T
= 0.6931 s−1 .

This gives the frequency of the undamped oscillation,

ω0 =
√
ω2 − γ2 = (2π) 0.9939 s−1 ,

and the deviation,

∆T = T − T0 = 2π

(
1

ω
− 1

ω0

)
= 0.0061 s .

4.3.3.3 Ex: Damped physical pendulum

The physical pendulum shown in the figure consists of a disk of massM and radius R
suspended on an axes parallel to the symmetry axis of the disk and passing the edge
of the disk.
a. Calculate the inertial momentum of the disk, I =

∫
V
r2dm, with respect to the

suspension axes.
b. Derive the equation of motion by considering a weak Stokes damping due to fric-
tion proportional to the angular velocity and by approximating for small amplitude
oscillations.
c. What is the natural oscillation frequency of the pendulum (without friction)? How
to calculate the oscillation frequency considering friction?
d. Write down the solution of the equation of motion for the initial situation ϕ(0) = 0
and ϕ̇(0) = ϕ̇0.

Solution: a. The mass of the cylinder is,

M =

∫

V

ρ0dm = ρ0

∫ L

0

∫ 2π

0

∫ R

0

rdrdϕdz = ρ0πR
2L .

The moment of inertia for a rotation around the center-of-mass is,

Icm =

∫

V

ρ0r
2dm = ρ0

∫ L

0

∫ 2π

0

∫ R

0

r2rdrdϕdz = ρ0πL
R4

2
=
M

2
R2 .
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Figure 4.38: Damped physical pendulum.

The moment of inertia for a rotation about the distant axis is,

I = Icm +MR2 =
3M

2
R2 .

b. The equation of motion is,

Iα = |R⃗× τ⃗ | = −MgR sin θ − bθ̇ ,

or, considering small amplitude oscillations,

θ̈ +
2b

3MR2
θ̇ +

2g

3R
θ = 0 .

c. The frequency without friction is,

ω0 =

√
2g

3R
,

the damping coefficient is,

γ =
b

3MR2
,

and the frequency with friction is,

ω =
√
ω2
0 − γ2 =

√
ω2
0 −

b2

9M2R4
.

d. Making the ansatz ϕ(t) = e−γt(Aeıωt +Be−ıωt), we obtain,

ϕ(0) = 0 = A+B

ϕ̇(0) = ϕ̇0 = (ıω − γ)A+ (−ıω − γ)B .

Hence,

A = −B =
ϕ̇0
2ıω

,

and finally,

ϕ(t) = e−γt
(
ϕ̇0
2ıω

eıωt − ϕ̇0
2ıω

e−ıωt
)

=
ϕ̇0
ω
e−γt sinωt .
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4.3.3.4 Ex: Pendulum with friction

Jane has prepared dinner and Tarzan (80 kg) and Cheeta (40 kg) must return home.
The house is in a tree at a height of 10m, so that both must swing home on a (mass-
less) rope hanging from l = 100m high tree. Tarzan grabs the rope at the height of
its center-of-mass h = 1.2m above ground, Cheeta because of its height is smaller at
0.8m above ground. With what initial speed both need to grab the rope to reach the
platform of the house with their feet. Consider Stokes’ friction force, FR = C · v with
C = 4·10−4 Ns/m (Tarzan) respectively, C = 2·10−4 Ns/m (Cheeta). Why is this force
different for the two? Treat the oscillating motion as small displacement. Determine
whether the vibration is weakly damped. Do you think Jane will have dinner alone?

Figure 4.39: Pendulum with friction.

Solution: The effective length of the rope is l = 100m−h. Hence,

x = lϕ ⇒ ẋ = lϕ̇ and ẍ = lϕ̈ .

Maximum displacement required for feet to reach the house floor,

xgoal =
√

(100m)2 − (95m)2 = 31.2m

⇒ϕgoal = arctan(31.2 m /100m) ≃ 0.3061 .

Since sin(0.3061) ≃ 0.3014, the assumption of weak damping is justified,

ϕ̈+
C

m
ϕ̇+

g

l
sinϕ = 0 .

With the ansatz ϕ(t) = Eλt we get the equation,

λ = − C

2m
±
√(

C

2m

)2

− g

l
.
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Testing the damping force, e.g.,

δ2 ≡ C2

4m2
=

4 · 10−4 Ns/m

4 · 80 kg ≃ 3 · 10−8 1

s2
≪ g

l
≃ 0.1

1

s2

λ1,2 = −δ ± ı
√
g

l
− δ2 = −δ ± ıω1

with ω1 =
√
ω2
0 − δ2 and ω0 =

√
gl. The general solution for the displacement x(t)

with the amplitude A is,

x(t) = A · e−δt · cos(ω1t+ ϕ0) .

With the boundary condition x(t = 0) = 0 we obtain Φ0 = −π/2 and,

x(t) = A · e−δt · sin(ω1t) .

Reaching the required height is conditioned to x(t = 2π
ω1

) = xgoal, Hence,

A = xgoal · e2πδ/ω1 .

The required initial speed follows with

ẋ(t) = −δAe−δt sin(ω1t) + ω1Ae
−δt cos(ω1t) ,

yielding,

ẋ(t = 0) = ω1A = ω1 · xgoal · e2π
δ
ω1 .

Substitution of numerical values for Tarzan and Cheeta gives the following values,

ẋTarzan(t = 0) ≃ 9.84m/s ≃ 35.4 km/h and ẋCheeta(t = 0) ≃ 9.81m/s ≃ 35.3 km/h .

Jane should have dinner alone, if they can’t reach the speed of athletes like Michael
Johnson: 10.35m/s.

4.3.3.5 Ex: Resolution of the forced oscillator equation

Solve the forced oscillator equation using the ansatz x(t) = A cos(ωt− δ).

Solution: Inserting the ansatz x(t) = A cos(ωt − δ) into the differential equation
we get,

−ω2mA cos(ωt− δ)− ωbA sin(ωt− δ) +mω2
0A cos(ωt− δ) = F0 cosωt .

Using the trigonometric rules,

cos(ωt− δ) = cosωt cos δ + sinωt sin δ

sin(ωt− δ) = sinωt cos δ − cosωt sin δ

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator01.pdf
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we obtain,

−ω2mA [cosωt cos δ + sinωt sin δ]− ωbA [sinωt cos δ − cosωt sin δ]

+mω2
0A [cosωt cos δ + sinωt sin δ] = F0 cosωt .

This equation must be valid for t = ωπ/2 and for t = 0. That is, we get two equations,

−ωbA cos δ +m
(
ω2
0 − ω2

)
A sin δ = 0

ωbA sin δ +m
(
ω2
0 − ω2

)
A cos δ = F0

or

tan δ =
bω

m(ω2
0 − ω2)

A =
F0

ωb sin δ +m(ω2
0 − ω2) cos δ

.

To solve the second equation we derive the following trigonometric rules

tan δ =
sin δ

cos δ
=

sin δ√
1− sin2 δ

=
1√
1

sin2 δ
− 1

=⇒ sin δ =

√
1

1 + 1
tan2 δ

tan δ =
sin δ

cos δ
=

√
1− cos2 δ

cos δ
=

√
1

cos2 δ
− 1 =⇒ cos δ =

1√
1 + tan2 δ

.

With this we can calculate:

A =
F0

ωb
√

1
1+ 1

tan2 x

+m(ω2
0 − ω2) 1√

1+tan2 δ

=
F0

ωb
√

1
1+ 1(

bω
m(ω2

0−ω2)

)2
+m(ω2

0 − ω2) 1√
1+

(
bω

m(ω2
0−ω2)

)2

=
F0√

m2(ω2
0 − ω2)2 + b2ω2

.

4.3.3.6 Ex: Oscillation with coercive force

On a body of mass m along the x-axis act a force proportional to the displacement
Fh = −κx and a Stokes friction force FR = −γẋ. A time-dependent force is switched
on at time t = 0, while the body rests at the position x = 0. The force increases
linearly over time until it suddenly disappears at time t = T . Determine the work
that the external force has done up this time. Consider the various solutions of the
equation of motion resulting from the various combinations of κ and γ.

Solution: The particular solution can be found by the ansatz xp(t) = be−t/τ with
b = βτ2/(m − γτ + κτ2). Depending on whether γ2 − 4κm >,=, < 0 we have for
a. γ2 − 4κm ≡ Γ2 > 0

x(t) = e−
γt
2m

(
Ae−

Γt
2m +Be

Γt
2m

)
+

βτ2m e−
t
τ

(m− γτ
2 )2 − Γ2τ2

4

;

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_ForcedOscillator02.pdf
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for b. γ2 − 4κm = 0

x(t) = e−
γt
2m (A+Bt) +

βτ2m e−
t
τ

(m− γτ
2 )2

;

for c. κm− γ2 ≡ Ω2 > 0

x(t) = e−
γt
2m

(
A cos

Ωt

2m
+B sin

Ωt

2m

)
+

βτ2m e−
t
τ

(m− γτ
2 )2 + Ω2τ2

4

.

Through the boundary conditions x(0) = 0, ẋ(0) = 0 we can determine A, B. Fur-
thermore, we immediately see that x(∞) = 0, ẋ(∞) = 0 for all of the above mentioned
solutions. Since the work of the two non-conservative forces equals the difference be-
tween the kinetic energy and the work for conservative forces, that is, A = 0, the
entire work of F (t) has been dissipated by FR.

4.3.3.7 Ex: Oscillation with coercive force

You want to measure the friction coefficient γ of a sphere (mass m = 10 kg, diameter
d = 10 cm) in water. To do this, you let the sphere oscillate on a spring (spring
constant k = 100N/m) in a water bath exciting the oscillation by a periodic force,
F (t) = F0 cosωt. By varying the excitation frequency ω until observing the maximum
oscillation amplitude, you measure the resonance frequency ωw = 2π ·1Hz. Now, you
let the water out of the tub and repeat the measurement finding ω0 = 2π · 2Hz.
a. Determine the resting position of the mass in water and air.
b. Establish the differential equation of motion. Assume that the weight of the sphere
in water is reduced by the buoyancy V ρwatg, where V is the volume of the sphere
and ρwat the density of the water.
c. What is the value of γ?

Figure 4.40: Driven pendulum.

Solution: a. The differential equation is,

mẍ+ γẋ+Dx = mg − V ρwasg + F0 cosωt .
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b. The resting position of the mass in air is xl =
mg
D ≃ 0.98m and in water xw =

z + m−V ρwas

D g ≃ 0.57m. This ansatz leads to the known differential equation,

mz̈ + γż +Dz = F0 cosωt .

c. The resonance frequencies with and without friction are related by,

ωw =

√
ω2
0 −

γ2

2m2
.

Hence, γ = m
√
2ω2

0 − 2ω2
w ≃ 154 kg/s.

4.3.3.8 Ex: Electronic oscillator circuit

The instantaneous current I(t) in an L-R-C-circuit (inductance of a coil, ohmic re-
sistance and capacitance in series) excited by an alternating voltage source U(t) =
U0 cosωt satisfies the following differential equation,

Lİ +RI + C−1
∫ t

0

Idt′ = U0 sinωt .

a. Derive the equation for the moving charge Q̇ = I, compare the obtained equation
with that of the damped and forced spring-mass oscillator and determine the solution
for the current.
b. Determine the resonance frequency ω0 of the circuit.
c. Determine the quality factor Q of the circuit. How you can increase Q without
changing the resonance frequency?

Figure 4.41: Line filter.

Solution: a. The equation of motion of the damped and forced spring mass system
is,

ma+ bv + kx = F0 cosωt .

The solutions are,

tan δ =
sin δ

cos δ
=

Im eıδ

Re eıδ
=

Rω

L(ω2
0 − ω2)

A =
∣∣Ae−ıδ

∣∣ =
∣∣∣∣

U0ω

L(ω2
0 − ω2) + ıωR

∣∣∣∣ =
U0ω√

L2(ω2
0 − ω2)2 +R2ω2

.
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b. The natural frequency is,

ω0 =
1√
LC

.

c. Quality factor can be increased by decreasing strength R,

Q =
1

R

√
L

C
.

4.3.3.9 Ex: Electronic oscillator circuit

A voltage U(t) is known to produce in an coil of inductance L the current IL =

L−1
∫ t′
0
Udt, in an ohmic resistance R the current IR = R−1U , and in a capacitor of

capacitance C the current I = CU̇ . In the parallel L-R-C circuit shown in the figure,
at each instant of time the sum of the currents IL, IR and IC must compensate the
current IF (t) = I0e

iωt supplied by an alternating current source, while the voltage
U(t) is the same across all components.
a. Derive the differential equation for the derivative of the voltage U̇ .
b. What would be the oscillation frequency of the current without source (I0 = 0)
and without resistance (R =∞)?
c. What would be the oscillation frequency of the current without source (I0 = 0) but
with resistance (R ̸=∞)?
d. Doing the ansatz U(t) = U0e

ıωt+ıϕ derive the characteristic equation.
e. Use the characteristic equation to calculate the impedance defined by Z ≡ |U0/I0|
and the phase ϕ of the current oscillation as a function of the frequency ω. Prepare
qualitative sketches of functions Z(ω) and ϕ(ω).

Figure 4.42: Notch filter.

Solution: a. The equation of motion of the damped and forced system is,

IL + IR + IC = L−1
∫ t′

0

Udt+R−1U + CU̇ = I0e
ıωt = IF ,

or
L−1U +R−1U̇ + CÜ = ıωI0e

ıωt .

b. Without source and without resistance the differential equation would be,

Ü + (LC)−1U = 0 .
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Therefore, the natural frequency would be,

ω0 =
1√
LC

.

c. Without source but with resistance the differential equation would be,

Ü + (RC)−1U̇ + (LC)−1U = 0 .

Therefore, the oscillation frequency would be,

ωγ =
√
ω2
0 − γ2 ,

com 2γ ≡ (RC)−1.
d. Inserting the ansatz U = U0e

ıωt+ıϕ,

L−1U0e
ıϕ + ıωR−1U0e

ıϕ − ω2CU0e
ıϕ = ıωI0 ,

or

−ωU0 + 2iγωU0 + ω2
0U0 = ıe−ıϕωI0/C .

e. The solutions are,

Z ≡ U0

I0
eıϕ =

ıω

L−1 + ıωR−1 − ω2C
=

1

R−1 + ı[ωC − 1/(ωL)]
=

ıω/C

ω2
0 − ω2 + 2ıγω

,

|Z| =
∣∣∣∣
U0

I0

∣∣∣∣ =
1√

R−2 + [ωC − 1/(ωL)]2
=

ω2/C√
(ω2 − ω2

0)
2 + 4γ2ω2

tanϕ =
Im Z

Re Z
=
−[ωC − 1/(ωL)]

R−1
= R/(ωL)− ωRC =

ω2
0 − ω2

2γω
.
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Figure 4.43: Bode diagram of the notch filter.
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4.3.3.10 Ex: Lorentz model of light-atom interaction

The Lorentz model describes the interaction of an electron attached to an atom with
an incident light beam as a damped oscillator. The electron’s binding to the nucleus
is taken into account by a restoring force −ω2

0x. The decay of the excited state with
the rate Γ is the reason for the damping force −mΓẋ. And the excitation is produced
by the Lorentz force exerted by the electrical component of the light beam, eE0eıωt,
where e is the charge of the electron. Establish the differential equation and calculate
the amplitude of electron’s oscillation as a function of the excitation frequency.

Solution: The differential equation is,

mẍ+mΓẋ+mω2
0x = eE0eıωt .

The ansatz x ≡ x0eıωt leads to the oscillation amplitude,

x0(ω) =

∣∣∣∣
eE0
m

1

ω2
0 − ω2 − ıΓω

∣∣∣∣ .

For small detunings δ = ω − ω0 ≪ ω vale

x0(ω) ≃
eE0
m

∣∣∣∣
1

2ω0(ω0 − ω) + ıΓω0

∣∣∣∣ =
eE0
mω0

∣∣∣∣∣
1

δ − ıΓ2

∣∣∣∣∣ .

We also have,

ϕ(ω) =
Im α

Re α
=
−γω2

ω2 − ω2
0

ω → ω0−−−−−→
γ

2∆
.

4.3.3.11 Ex: Lorentz model of light-atom interaction

a. Electric fields E exert on electric charges q the Coulomb force F = qE . Write the
differential equation for the undamped motion of an electron (charge −e, mass m)
harmonically bound to its nucleus under the influence of an alternating electric field,
E = E0 sinωt.
b. Show that the general solution can be written as,

x(t) =
−eE0 sinωt
m(ω2

0 − ω2)
+A cosω0t+B sinω0t .

c. Write the solution in terms of the initial conditions x(0) = 0 = ẋ(0).

Solution: a. The differential equation is,

mẍ+mω2
0x = −eE sinωt .

b. Entering the solution into the differential equation makes it easy to verify that the
solution satisfies the differential equation.
c. Entering the initial conditions,

x(0) = A = 0 , ẋ(0) =
−eωE

m(ω2
0 − ω2)

+Bω0 = 0 .
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Hence,

x(t) =
eE

m(ω2
0 − ω2)

(
ω
ω0

sinω0t− sinωt
)
.

4.4 Coupled oscillations and normal modes

So far we have discussed the behavior of isolated oscillators. Energy losses or gains
were described in a bulk way via a coupling to an external reservoir without structure
of its own. However, the reservoir often has vibrational degrees of freedom, as well,
and can dump (or supply) energy. This usually happens when neighboring oscillators
share a rigid, massive, or sturdy medium. The transfer of energy to neighboring
oscillators is the key ingredient for any oscillatory propagation of energy called wave.

4.4.1 Two coupled oscillators

To discuss the coupling between oscillators at the most fundamental level, we consider
two ideal and identical pendulums (length L and mass m) coupled by a spring of
constant k, as shown in Fig. 4.44. The differential equations of motion for the angles

Figure 4.44: Two coupled pendulums.

θ1 and θ2 are,

mLθ̈1 = −mg sin θ1 − k(x1 − x2) (4.102)

mLθ̈2 = −mg sin θ2 − k(x2 − x1) ,

with xj = L sin θj . For small oscillations we have, therefore,

θ̈1 = − g
L sin θ1 − k

m (sin θ1 − sin θ2) ≃ −( gL + k
m )θ1 +

k
mθ2 (4.103)

θ̈2 = − g
L sin θ2 − k

m (sin θ2 − sin θ1) ≃ −( gL + k
m )θ2 +

k
mθ1 .

We define the normal coordinates of the vibration ℵ ≡ 1√
2
(θ1 − θ2) and Ψ ≡

1√
2
(θ1+θ2). We find the differential equations for ℵ and Ψ by adding and subtracting

the equations of motion,

θ̈1 + θ̈2 ≃ − g
L (θ1 + θ2) and θ̈1 − θ̈2 ≃ −( gL + 2k

m )(θ1 − θ2) ,

or,
Ψ̈ + ω2

ΨΨ = 0 and ℵ̈+ ω2
ℵℵ = 0
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using the angular frequencies of the vibrational normal modes,

ωΨ =

√
g

L
and ωℵ =

√
g

L
+

2k

m
.

4.4.2 Normal modes

Thus, the normal coordinates Ψ and ℵ allow a description of the motion by decoupled
linear differential equations. A vibration involving only one normal coordinate is
called normal mode. In this mode all the components participating in the oscillation
oscillate at the same frequency.

The importance of the normal modes is they are totally independent, that is,
they never exchange energy and they can be pumped separately. Therefore, the total
energy of the system can be expressed as the sum of terms containing the squares of
the normal coordinates (potential energy) and their first derivatives (kinetic energy).
Every independent path by which a system can gain energy is called degree of freedom
and has an associated normal coordinate. For example, an isolated harmonic oscillator
has two degrees of freedom, as it can gain potential or kinetic energy and two normal
coordinates, x and v. And the coupled oscillator system,

Eℵ = aℵ̇2 + bℵ2 and EΨ = aΨ̇2 + bΨ2 , (4.104)

has four degrees of freedom.7

Every movement of the system can be represented by a superposition of normal
modes,

ℵ = 1√
2
(θ1 − θ2) = ℵ0 cos(ωℵt+ ϕℵ) and Ψ = 1√

2
(θ1 + θ2) = Ψ0 cos(ωΨt+ ϕΨ) .

(4.105)
Choosing

√
2A = ℵ0 = Ψ0 and ϕℵ = ϕΨ = 0,

θ1 = 1√
2
(Ψ + ℵ) = A cosωℵt+A cosωΨt = 2A cos (ωΨ−ωℵ)t

2 cos (ωΨ+ωℵ)t
2 (4.106)

θ2 = 1√
2
(Ψ− ℵ) = A cosωℵt−A cosωΨt = 2A sin (ωΨ−ωℵ)t

2 sin (ωΨ+ωℵ)t
2 .

The oscillation shows the behavior of a frequency beat 8.

Example 15 (Normal modes):

• Two pendulums suspended on a movable horizontal bar which, in turn, is
suspended by two wires to a rigid ceiling. Show (anti-)symmetric modes
and their different exposure to damping of the motion of the bar.

4.4.3 Normal modes in large systems

There are techniques for solving systems many coupled oscillator. Let us consider,
for example, a chain of n = 1, ..., N oscillators coupled by springs. We have,

7Note that the motion of a single pendulum is a movement in two Cartesian dimensions and
therefore would have four degrees of freedom. However, the joint action of gravity and the tension
of the wire constrains the movement into one dimension thus freezing two degrees of freedom.

8Normal modes are observed in the molecular vibrations of H2O and CO2 (see Pain).
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Figure 4.45: Array of coupled pendulums.

θ̈n = −g
l
θn −

k

m
(θn − θn+1)−

k

m
(θn − θn−1) . (4.107)

Inserting the ansatz θn ≡ Aneiωt, we obtain

ω2An = ω2
0An + β2(An −An+1) + β2(An −An−1) , (4.108)

using the abbreviations ω2
0 = g/l and β2 = k/m. Defining the vector A⃗ ≡ (· · ·An · · · )

and the matrix,

M̂ ≡




ω2
0 + β2 −β2

−β2 . . .
. . .

. . . ω2
0 + 2β2 −β2

−β2 ω2
0 + 2β2 . . .

. . .
. . . −β2

−β2 ω2
0 + β2




, (4.109)

we put the characteristic equation into a form called an eigenvalue equation,

M̂A⃗ = ω2A⃗ . (4.110)

The matrix M̂ is characterized by the fact that it contains on its diagonal the energy
of each individual oscillator (that is, ω2

0 + 2β2 when the oscillator is in the middle of
the chain, and ω2

0 + β2) at the two ends of the chain). On the secondary diagonals
(that is, at the positions Mn,n±1) are the coupling energies between two oscillators n
and n± 1. A normal mode of the system corresponds to an eigenvector of the matrix
M̂ , and the natural frequency of this mode corresponds to the respective eigenvalue.

The equation (4.110) has non-trivial solutions only, when the determinant of the
matrix M̂−ω2 vanishes. The eigenvalues are those ω2 which satisfy this requirement,

det(M̂ − ω21) = 0 . (4.111)

4.4.4 Dissipation in coupled oscillator systems

We now extend the system of two coupled pendulums to include damping. Assuming
that the movement of the pendulum is subject to damping,

θ̈1 = −Γθ̇1 − g
Lθ1 − k

m (θ1 − θ2) (4.112)

θ̈2 = −Γθ̇2 − g
Lθ2 − k

m (θ2 − θ1) ,
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giving the collective modes,

Ψ̈ = θ̈1 + θ̈2 = −ΓΨ̇− g
LΨ (4.113)

ℵ̈ = θ̈1 − θ̈2 = −Γℵ̇ −
(
g
L + 2k

m

)
ℵ .

Assuming that the movement of the spring (not the movement of the pendulums) is
subject to damping,

θ̈1 = − g
Lθ1 − k

m (θ1 − θ2)− Γ(θ̇1 − θ̇2) (4.114)

θ̈2 = − g
Lθ2 − k

m (θ2 − θ1)− Γ(θ̇2 − θ̇1) ,

giving the collective modes

Ψ̈ = θ̈1 + θ̈2 = − g
LΨ (4.115)

ℵ̈ = θ̈1 − θ̈2 = −
(
g
L + 2k

m

)
ℵ − 2Γℵ̇ .

Thus, the anti-symmetric mode Ψ is free from damping, while the symmetric mode
ℵ damps out twice as fast. Therefore, Ψ is called the subradiant mode and ℵ the
superradiant mode.

4.4.5 Exercises

4.4.5.1 Ex: Energy of normal modes

Verify that the total energy of a system of two coupled oscillators is equal to the sum
of the energies of the normal modes.

Solution: We have,

Etot = Ekin,1 + Epot,1 + Ekin,2 + Epot,2 + Ecpl

= m
2 v

2
1 +

mg
2L x

2
1 +

m
2 v

2
2 +

mg
2L x

2
2 +

k
2 (x1 − x2)2

= m
2 (Lθ̇1)

2 + mg
2L (Lθ1)

2 + m
2 (Lθ̇2)

2 + mg
2L (Lθ2)

2 + k
2L

2(θ1 − θ2)2

= m
2 (LΨ̇)2 + m

2 gLΨ
2 + m

2 (Lℵ̇)2 + m
2 gLℵ2 + kL2ℵ2

= m
2 (LΨ̇)2 + m

2 ω
2
Ψ(LΨ)2 + m

2 (Lℵ̇)2 + m
2 ω

2
ℵ(Lℵ)2 = EΨ + Eℵ .

4.4.5.2 Ex: Normal modes of two spring-coupled masses

Consider two different masses m1 and m2 coupled by a spring k.
a. Determine the equation of motion and the characteristic equation for each mass.
b. Write the characteristic equations in matrix form: M̂a⃗ = ω2a⃗, where a⃗ ≡ (a1, a2)
and aj are the amplitude of the oscillations and calculate the two eigenvalues of the
matrix.
c. Calculate the normal modes, that is, the eigenvectors solving the equation M̂a⃗ =
ω2
ka⃗ for each eigenvalue.
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d. Derive the differential equations of the center-of-mass motion and the relative mo-
tion. Compare the result with the normal modes.

Solution: a. For a chain of two masses we have,

m1ẍ1 = −k(x1 − x2) , m2ẍ2 = −k(x2 − x1) .

Doing the ansatz xn = ane
iωt and with the abbreviation ωj ≡ k

mj
we get the charac-

teristic equations,

−ω2a1 = −ω2
1(a1 − a2) , − ω2a2 = −ω2

2(a2 − a1) .

b. The matrix form of the characteristic equations is,

(
ω2
1 −ω2

1

−ω2
2 ω2

2

)(
a1
a2

)
= ω2

(
a1
a2

)
.

Solving,

0 = det(M̂ − ω21) = −ω2
1ω

2 − ω2ω2
2 + ω4 = ω2(ω2 − ω2

1 − ω2
2) ,

we get the eigenvalues ω = 0 and ω =
√
ω2
1 + ω2

2.
c. The first eigenvector is obtained by,

M̂a⃗ =

(
ω2
1a1 − ω2

1a2
−ω2

2a1 + ω2
2a2

)
= 0 ·

(
a1
a2

)
= ω2a⃗ ,

which is only possible when a1 = a2. For the second eigenvalue,

M̂a⃗ =

(
ω2
1a1 − ω2

1a2
−ω2

2a1 + ω2
2a2

)
= (ω2

1 + ω2
2)

(
a1
a2

)
= ω2a⃗ ,

which implies ω2
1a2 = −ω2

2a1. Therefore, the normal modes are,

a⃗ =

(
1

1

)
and a⃗ =

1√
ω4
1 + ω4

2

(
ω2
1

−ω2
2

)
.

d. The center of mass is at the position xcm = m1x1+m2x2

m1+m2
. We call xrl = x1− x2 the

relative coordinate. The equations are,

ẍcm =
m1ẍ1 +m2ẍ2
m1 +m2

=
−k(x1 − x2)− k(x2 − x1)

m1 +m2
= 0

ẍrl = ẍ1 − ẍ2 = − k

m1
(x1 − x2) +

k

m2
(x2 − x1) = −

k

µ
(x1 − x2) = −(ω2

1 + ω2
2)(x1 − x2) ,

with µ−1 ≡ m−11 +m−12 . The first mode corresponds to a translation without vibration,
the second to an anti-symmetrical vibration without translation around the center-of-
mass. This corresponds to the results obtained by the reduced mass method.
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4.4.5.3 Ex: Spring-coupled chain of masses

Consider a chain of spring-coupled masses.
a. Determine the equation of motion and the characteristic equation for each mass.
b. Calculate the normal modes for a chain consisting of three masses.

Solution: a. For each mass we have,

mẍn = −k(xn − xn−1)− k(xn − xn+1) .

Making the ansatz xn = Ane
ıωt we get the characteristic equation,

−ω2An = −ω2
0(An −An−1)− ω2

0(An −An+1) .

In matrix notation, 


ω2
0 −ω2

0 0 0 0

−ω2
0 2ω2

0 −ω2
0 0 0

0 −ω2
0

. . .
. . . 0

0 0
. . . 2ω2

0 −ω2
0

0 0 0 −ω2
0 ω2

0




.

b. For a chain of three masses we have,



ω2
0 −ω2

0 0

−ω2
0 2ω2

0 −ω2
0

0 −ω2
0 ω0


 .

To find the eigenvalues, we solve,

0 = det[M̂ − λ1]] = −3ω4
0λ+ 4ω2

0λ
2 − λ3 = −λ(λ− ω0)(λ− 3ω2

0) ,

giving the eigenvalues, λ = 0, λ = ω2
0, and λ = 3ω2

0. To find the eigenvectors, we do
M̂a⃗ = 0a⃗ with a⃗ ≡ (a1, a2, a3), yielding,

a1 = a2 = a3 ,

and therefore the eigenvector,

a⃗ =
1√
3



1

1

1


 .

For the second eigenvector, we do M̂a⃗ = ω2
0 a⃗ yielding,

a2 = 0 , a3 = −a1 ,

and therefore the eigenvector,

a⃗ =
1√
3




1

0

−1


 .
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For the third eigenvector, we do M̂a⃗ = 3ω2
0 a⃗ yielding,

a1 − a2 = 3a1 , a1 − a2 = 3a1 , − a2 + a3 = 3a3 ,

or
a1 = a3 = − 1

2a2 , a2 = a2 ,

and therefore the eigenvector,

a⃗ =
1√
3



− 1

2a2
a2
− 1

2a2


 /

a2√
2
=

√
2

3



− 1

2

1

− 1
2


 .

4.4.5.4 Ex: Normal modes of CO2

We consider the carbon dioxide molecule CO2, for which we make a spring-mass model
with three masses coupled by k springs in a linear chain. Calculate the frequencies of
the normal modes and the eigenvectors of the vibrations.

Figure 4.46: Normal modes of CO2.

Solution: The differential equations are

mOẍ1 = −k(x1 − x2)
mC ẍ2 = −k(x2 − x1)− k(x2 − x3)
mOẍ3 = −k(x3 − x2) .

With the ansatz xn = Ane
iωt and the abbreviations ωO ≡

√
k
mO

and ωC ≡
√

k
mC

we

get the characteristic equations,

ω2A1 = ω2
O(A1 −A2)

ω2A2 = ω2
C(A2 −A1) + ω2

C(A2 −A3)

ω2A3 = ω2
O(A3 −A2) .

Introducing the matrix and the vector,

M ≡



ω2
O −ω2

O 0

−ω2
C 2ω2

C −ω2
C

0 −ω2
O ω2

O


 and A⃗ ≡



A1

A2

A3


 ,

the equation takes the form of an eigenvalue equation,

MA⃗ = ω2A⃗ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_NormalModes04.pdf
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The frequencies of the normal modes are the eigenvalues of the matrix,

0 = det[M − ω2E3] = −2ω2
Oω

2
Cω

2 − ω4
Oω

2 + 2ω2
Oω

4 + 2ω4ω2
C − ω6

= −ω2(ω2 − ω2
O − 2ω2

C)(ω
2 − ω2

O) .

Entering the eigenvalue ω = 0 in the eigenvalue equation gives,

A1 = A2 = A3 and hence A⃗ =



1

1

1


 .

Entering the eigenvalue ω = ωO in the eigenvalue equation we get,

A2 = 0 , A1 = −A3 and hence A⃗ =




1

0

−1


 .

Entering the eigenvalue ω =
√
ω2
O + 2ω2

C in the eigenvalue equation we get,

2ω2
CA1 = −ω2

OA2 = 2ω2
CA3 and hence A⃗ =




1

−2ω2
C/ω

2
O

1


 .

4.4.5.5 Ex: Three coupled pendulums

Determine the frequencies of the oscillation modes of a chain of three spring-coupled
pendulums.

Solution: In the example of three oscillators we have,



ω2
0 + β2 β2 0

β2 ω2
0 + 2β2 β2

0 β2 ω2
0 + β2





A1

A2

A3


 = 0 .

The matrix eigenvectors and eigenvalues are:

(1, 1, 1) for ω2 = ω2
0

(1, 0,−1) for ω2 = ω2
0 + β2

(1,−2, 1) for ω2 = ω2
0 + 3β2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_NormalModes05.pdf
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Figure 4.47: Super- and subradiant pendulums.

4.4.5.6 Ex: Super- and subradiance

We consider three carts attached by springs (spring constant k), as shown in the fig-
ure. The inner carts have mass m and are subject to damping by friction with the
coefficient γ. The outer cart has mass M and friction Γ.
a. Establish the equations of motion of the three carts.
b. Discuss the case M → 0.

Solution: a. The equations of motion of these three carts are,

mẍ1 = −k(x1 − x2)− γẋ1
Mẍ2 = −k(x2 − x1)− k(x2 − x3)− Γẋ2

mẍ3 = −k(x3 − x2)− γẋ3 .
b. Para M → 0,

mẍ1 = −kx1 + 1
2kx1 +

1
2kx3 − 1

2Γẋ2 − γẋ1
kx2 = 1

2kx1 +
1
2kx3 − 1

2Γẋ2

mẍ3 = −kx3 + 1
2kx1 +

1
2kx3 − 1

2Γẋ2 − γẋ3 .
Substituting,

mẍ1 = − 1
2k(x1 − x3)− 1

2Γẋ2 − γẋ1
mẍ3 = − 1

2k(x3 − x1)− 1
2Γẋ2 − γẋ3 .

Considering the normal modes,

mΨ̈ = −Γẋ2 − γΨ̇ , mℵ̈ = −kℵ − γℵ̇ .
Obviously, in the absence of dissipation γ in the movement of the individual oscil-
lators, we have two modes. One of the modes, called Ψ, is subject to dissipation Γ
linked to the coupling between the oscillators. This mode is called superradiant, as it
delivers its energy quickly to the environment. The other mode, called ℵ, is free of
dissipation and is therefore called subradiant.

4.5 Further reading

H.M. Nussenzveig, Edgar Blucher (2014), Curso de F́ısica Básica: Fluidos, Vibrações
e Ondas, Calor - vol 2 [962]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Vibrations_NormalModes06.pdf
http://isbnsearch.org/isbn/978-8-521-20801-2
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Chapter 5

Waves

While in vibrating bodies the motion and the energy are localized in space, waves
do propagate and carry energy to other places. In fact, waves represent the most
important mechanism for transporting and exchanging energy and information. We
can understand a wave as a perturbation propagating through an elastic material
medium. In some cases, however, e.g. for electromagnetic waves, the propagation of
the wave is due to a self-sustained oscillation between two forms of energy (electric
and magnetic) without the need of a material medium. Here, is a classification of
the most common types of waves: A lecture version of this chapter can be found at

Table 5.1: Types of waves.

wave pulse sound sound surface light de Broglie

medium string air crystal fluid vacuum particle

polarize trans. long. trans./long. long. trans. long.

transform Galilei Galilei Galilei Galilei Lorentz Galilei

wave eq. Helmholtz Helmholtz Helmholtz Helmholtz Helmholtz Schrödinger

(watch talk).

5.1 Propagation of waves

There are several types of wave that we will classify according to the propagation
medium and to the polarization, that is, we will distinguish longitudinal and trans-
verse waves. There are media only supporting transverse waves (strings, water sur-
faces). Others only withstand longitudinal waves (sound in fluid media). Finally,
there are media supporting both (sound in solids, electromagnetic waves).

The simplest example of a pulse is a local deformation of a string, as shown in
Fig. 5.1. The pulse travels to one end of the string by a motion called propagation.
The propagation is not conditioned to any transport of mass, but all the particles of
the system go back to their original positions after the passage of the pulse. However,
there is energy transport along the string, since each of its portions suffers an increase
in kinetic and potential energy during the passage of the pulse.

In general, the pulse broadens during propagation, an effect called dispersion.
To simplify the problem let us, as a first approximation neglect the dispersion and

233
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Figure 5.1: Pulse propagation along a rope.

suppose that the pulse does not change its shape,

Y (x, t) = f(x− vt) , (5.1)

where the propagation velocity is positive when the pulse propagates in the direction
of the positive x-axis.

The behavior of the pulse at the end of the rope depends on its fixation. Attached
to a wall, the reflected pulse has opposite propagation amplitude and direction,

Yrfl(x, t) = −f(x+ vt) . (5.2)

Fixed to another rope, the pulse will be partially reflected and partially transmitted.

5.1.1 Transverse waves, propagation of pulses on a rope

Pulses on a rope are examples for transverse waves. The speed at which the pulse
propagates on a rope depends essentially on the properties of the string, that is, its
mass density µ and the applied tension T , but not on the pulse amplitude. We take
a small length element dx of the string with mass dm = µdx and consider a pulse
traveling with velocity v, as shown in Fig. 5.1.

Figure 5.2: Mass element of a rope upon a passage of a pulse.

The vertical force due to the difference of tensions is,

Fy = T sin θ(x+ dx)− T sin θ(x) . (5.3)

Assuming θ(x) small, such that sin θ(x) ≃ tan θ(x) = dY
dx ,

Fy = T

(
dY

dx

)

x+dx

− T
(
dY

dx

)

x

= T
∂2Y

∂x2
dx . (5.4)
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On the other hand, applying Newton’s second law to this string element, we find,

Fy = dm
∂2Y

∂t2
. (5.5)

Thus,
∂2Y

∂x2
=
µ

T

∂2Y

∂t2
. (5.6)

This equation is called wave equation and fully describes the propagation of the pulse
on the string. Since Y = f(x − vt) depends on both x and t, the derivatives that
appear in the equation are partial, that is, one derives with respect to one variable
keeping the other constant. To find the velocity, we write,

∂2Y

∂t2
=

∂

∂t

(
∂x

∂t

∂Y

∂x

)
= v

∂

∂t

(
∂Y

∂x

)
= v

∂

∂x

(
∂Y

∂t

)
= v

∂

∂x

(
∂x

∂t

∂Y

∂x

)
= v2

∂Y 2

∂x2
,

(5.7)
and compare the second relation with the wave equation, finding,

v =

√
T

µ
. (5.8)

Example 16 (Reflection of pulses on a rope):

• Excite a pulse on a rope fixed to the wall (i) directly or (ii) through a
thinner rope.

5.1.2 Longitudinal waves, propagation of sonar pulses in a
tube

Acoustic pulses are examples for longitudinal waves. They are due to a process of
compression and decompression of a gaseous medium (such as air), liquid or even
solid. Let us consider an oscillating piston inside a tube (cross section A) filled with
air of mass density ρ0, as shown in Fig. 5.3. When the piston moves, it causes a local
pressure increase. We want to find the velocity v at which the compression travels
along the tube.

As shown in Fig. 5.3, the piston causes a negative pressure gradient along the
tube giving rise to an unbalanced force which accelerates mass elements of air to the
right. To simplify the situation let us assume that the piston is moved with velocity
u within a time interval ∆t compressing the volume of the tube by a value

∆V = −Au∆t . (5.9)

During this time, the piston accelerates a mass m = ρ0V of air within a volume V
given by the propagation velocity v of the pulse along the tube,

V = Av∆t . (5.10)

The mass within this volume receives a momentum,

F∆t = mu . (5.11)
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Figure 5.3: Sound waves produced by a swinging piston.

The pressure difference inside and outside the volume V causes a pressure imbalance,

F = A∆P . (5.12)

With these relations we can calculate the compressibility of the gas,

1

κ
≡ − ∆P

∆V/V
=
F/A

u/v
=
mu/A∆t

u/v
=
ρ0V v

A∆t
= ρ0v

2 , (5.13)

we obtain the propagation velocity of the pulse in the gas,

v =

√
1

κρ0
. (5.14)

Thus, the velocity of sound propagation depends critically on the material medium.
We have var = 331m/s, vH2

= 1286m/s, vH2O = 331m/s, vrubber = 54m/s, and
vAl = 5100m/s.

To derive the equation of motion, we consider a thin gas element with thickness
∆x and mass m = ρ0A∆x subject to a difference of pressure on both sides of,

Px − Px+∆x = −∂Px
∂x

∆x = − ∂

∂x
(P0 +∆P )∆x = −∂∆P

∂x
∆x , (5.15)

where we subtracted the background pressure P0 assumed to be constant. This pres-
sure difference creates a force F = A(Px − Px+∆x) accelerating the gas element
following Newton’s law, F = mη̈, where η(x) is the displacement of the element, such
that,

∂η

∂x
=

∆V

V
(5.16)

and the compression (see Fig. 5.3). We therefore obtain,

ρ0∆x
∂2η

∂t2
=
F

A
= −∂∆P

∂x
∆x . (5.17)

Substituting ∆P by the relationship (5.13),

ρ0
∂2η

∂t2
= − ∂

∂x

(
− 1

κ

∂η

∂x

)
=

1

κ

∂2η

∂x2
, (5.18)

which gives the wave equation. Solve Excs. 5.1.7.1, 5.1.7.2, and 5.1.7.3.
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5.1.3 Electromagnetic waves

Electromagnetic waves are in several aspects different from mechanical longitudinal
or transverse waves. For example, they do not need a propagation medium, but
move through the vacuum at an extremely high speed. The speed of light, c =
299792458m/s exactly, is so high, that the laws of classical mechanics are no longer
valid, but must be replaced by relativistic laws. And since there is no propagation
medium, with respect to vacuum all inertial systems are equivalent, which will have
important consequences for the Doppler effect. We will show that the electromagnetic
wave equation almost comes out as a corollary of the theory of special relativity.

Electromagnetic waves always arise when a charge changes position. In this way
the theory of electromagnetic waves is also a consequence of the theory electromag-
netism, which is contained in Maxwell’s equations. We will introduce here, without
derivation, the wave equation for the electric and magnetic fields.

Figure 5.4: The electromagnetic spectrum.

5.1.3.1 Helmholtz equation

We have already seen how the periodic conversion between kinetic and potential
energy in a pendulum can propagate in space when the pendulum is coupled to
other pendulums attached to each other in a chain, and that this model explains the
propagation of a pulse on the string. We also discussed how electrical and magnetic
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energy can be interconverted in an electronic L-C-circuit with a capacitor storing
electrical energy and an inductance (a coil) storing magnetic energy. The law of
electrodynamics describing the transformation of electric field variations into magnetic
energy is Ampère’s law, and the law describing the transformation of magnetic field
variations into electric energy is Faraday’s law,

∂E⃗
∂t

↷ B⃗(t) ,
∂B⃗
∂t

↷ −E⃗(t) . (5.19)

Extending the circuit L-C to a chain, it is possible to show that the electromagnetic
oscillation propagates along the chain. This model describes well the propagation of
electromagnetic energy along a coaxial cable or the propagation of light in free space.

Figure 5.5: Analogy between the propagation of mechanical waves (above) and electromag-
netic waves (below).

The electrical energy stored in the capacitor and the magnetic energy stored in
the coil are given by,

Eele =
ε0
2 |E⃗ |2 , Emag =

1
2µ0
|B⃗|2 , (5.20)

where the constants ε0 = 8.854 · 10−12 As/Vm and µ0 = 4π · 10−7 Vs/Am are called
permittivity and permeability of the vacuum. By analogy with the waves on a string, we
can write the wave equations (called Helmholtz equations) for plane electromagnetic
waves propagating along the x-axis,

∂2Ey
∂t2

=
1

ε0µ0

∂2Ey
∂x2

,
∂2Bz
∂t2

=
1

ε0µ0

∂2Bz
∂x2

. (5.21)

The formal derivation must be made from the Maxwell equations, which are the
fundamental equations of the theory of electrodynamics. Here, we only note that,

• electromagnetic waves (in free space) are transverse;

• the electric field vector, the magnetic field vector, and the direction of propaga-
tion are orthogonal;

• the propagation velocity is the speed of light, because c2 = 1/ε0µ0.

5.1.3.2 Radiation intensity

In electrodynamic theory the energy flux is calculated by the Poynting vector,

S⃗(r, t) = 1
µ0
E⃗(r, t)× B⃗(r, t) . (5.22)



5.1. PROPAGATION OF WAVES 239

The absolute value is the intensity of the light field,

I(r, t) = |S(r, t)| . (5.23)

5.1.4 Harmonic waves

In general, a light field is a superposition of many waves with many different frequen-
cies and polarizations and propagating in many directions. The laser is an exception.
Being monochromatic, polarized, directional, and coherent, it is very close to the ideal
of an harmonic wave, that is, a wave described by the function,

Y (x, t) = Y0 cos(kx− ω0t) , (5.24)

where ω0 = 2πν is the angular frequency of the oscillation and k = 2π/λ the wavevec-
tor. By inserting this function into the wave equation,

∂2Y

∂t2
= c2

∂Y 2

∂x2
, (5.25)

where we now call c the propagation velocity of the harmonic wave, we verify the
dispersion relation,

ω = ck . (5.26)

Figure 5.6: Illustration of a harmonic wave.

Often, the propagation velocity is independent of the wavelength, c(k) = const. In
this case, a wave composed of several waves with different wavevectors k propagates
without dispersing, that is, without changing its shape. In other cases, when c(k) ̸=
const, the wave deforms along its path.

5.1.5 Wave packets

Since the wave equation (5.25) is linear, the superposition principle is valid, that is,
if Y1 and Y2 are solutions, then αY1 + βY2 also is. More generally, we can say that, if
A(k)eı(kx−ωt) is a solution satisfying the wave equation for any k, then obviously,

Y (x, t) =

∫ ∞

−∞
A(k)eı(kx−ωt)dk , (5.27)
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is. This means that the displacement Y (x) and the distribution of amplitudes A(k)
are related by Fourier transform, Y (x, t) = e−iωtFA(k).

Assuming a Gaussian distribution of wavevectors characterized by the width 1 ∆k,
A(k) = e−(k−k0)

2/2∆k2 , we obtain as solution for the wave equation,

Y (x, t) =

∫ ∞

−∞
e−(k−k0)

2/2∆k2eı(kx−ωt)dk (5.28)

= eı(k0x−ωt)
∫ ∞

−∞
e−q

2/2∆k2eıqxdq =
√
2πke−∆k

2x2/2eı(k0x−ωt) .

This solution of the wave equation describes an wave packet with a Gaussian
envelope 2, that is, a localized perturbation, as we discussed at the initial example
of a pulse propagating on a string. Obviously, other distributions of wavevectors are
possible.

Note that the width of the distribution of wavevectors, ∆k, and that of the spatial
distribution, ∆x ≡ 1/∆k satisfy a relation called Fourier’s theorem,

∆x∆k = 1 , (5.29)

which in quantummechanics turns intoHeisenberg’s uncertainty relation: The broader
a wavevector distribution, the narrower the spatial distribution, and vice versa. In
the limit of a sinusoidal wave described by a single wavevector, we expect a infinite
spatial extension of the wave.

5.1.6 Dispersion

We consider a superposition of two waves,

Y1(x, t) + Y2(x, t) = a cos(k1x− ω1t) + a cos(k2x− ω2t) (5.30)

= 2a cos
[
(k1−k2)x

2 − (ω1−ω2)t
2

]
cos
[
(k1+k2)x

2 − (ω1+ω2)t
2

]
.

The resulting wave can be regarded as a wave of frequency 1
2 (ω1+ω2)t and wavelength

1
2 (k1 + k2), whose amplitude is modulated by an envelope of frequency 1

2 (ω1 − ω2)t
and wavelength 1

2 (k1 − k2)x.
In the absence of dispersion the phase velocities of the two waves and the propa-

gation velocity of the envelope, called group velocity, are equal,

c =
ω1

k1
=
ω2

k2
=
ω1 − ω2

k1 − k2
=

∆ω

∆k
= vg . (5.31)

1∆k is half the total Gaussian width at rms (root-mean-square) height, that is, at 1/
√
e of the

maximum.
2The definition of the Fourier transform in one dimension is,

Y (x) = FA(k) ≡ 1√
2π

∫ ∞
−∞

A(k)eıkxdk .

For the Gaussian function we have,

Y (x) = 1√
2π

∫ ∞
−∞

e−ak
2
eıkxdk = 1√

2π
e−x

2/4a

∫ ∞
−∞

e−a(k−ix/2a)
2
dk

= 1√
2π
e−x

2/4a

∫ ∞
−∞

e−aq
2
dq = 1√

2a
e−x

2/4a .
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However, the phase velocities of the two harmonic waves can also be different, such
that the frequency depends on the wavelength, ω = ω(k). In this case, the phase
velocity also varies with the wavelength,

vg =
dω

dk
=

d

dk
(kc) = c+ k

dc

dk
. (5.32)

Often this variation is not very strong, such that it is possible to expand,

ω(k) = ω0+
dω

dk

∣∣∣∣
k0

·(k−k0)+
1

2

d2ω

dk2

∣∣∣∣
k0

·(k−k0)2 ≡ ω0+vg(k−k0)+β(k−k0)2 . (5.33)

In general we have, vg < c, a situation that is called normal dispersion. But there
are examples of abnormal dispersion, where vg > c, e.g. close to resonances or with
matter waves characterized by a quadratic dispersion relation ℏω = (ℏk)2/2m.

-1 0 1 2 3

k/k0

0

0.5

1

A
(q
)

(a)

-10 0 10

(x− x0)/x0

0

0.5

1

Y
(x
)

(b)

-1 0 1 2 3

k/k0

0

0.5

1

A
(q
)

(c)

-100 0 100

(x− x0)/x0

0

0.2

0.4

Y
(x
)

(d)

Figure 5.7: (code) Gaussian (upper graphs) and rectangular (lower graphs) distribution of

amplitudes in momentum space (left) and in position space (right).

5.1.6.1 Rectangular wave packet with linear dispersion

As an example, we determine the shape of the wavepacket for a rectangular amplitude
distribution, A(k) = A0χ[k0−∆k/2,k0+∆k/2], subject to linear dispersion (expansion up

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_TeoremaFourier.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_TeoremaFourier.m
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to the linear term in Eq. (5.33)). By the Fourier theorem,

Y (x, t) =

∫ ∞

−∞
A(k)eı(kx−ωt)dk = A0

∫ k0+∆k/2

k0−∆k/2
e
ı(kx−ω0t+

dω
dk |k0

(k−k0)t)
dk (5.34)

= A0e
ı(k0x−ω0t)

∫ k0+∆k/2

k0−∆k/2
e
ı(k−k0)

(
x− dω

dk |k0
t

)

dk

= A0e
ı(k0x−ω0t)

∫ ∆k/2

−∆k/2
e
ık

(
x− dω

dk |k0
t

)

dk = A0e
ı(k0x−ω0t)

∫ ∆k/2

−∆k/2
eıkudk

= A0e
ı(k0x−ω0t)

eı∆k/2u − e−i∆k/2u
ıu

= 2A0e
ı(k0x−ω0t)

sin u∆k
2

u
≡ A(x, t)eı(k0x−ω0t) .

With the abbreviation u ≡ x − dω
dk

∣∣
k0
t = x − vgt the interpretation of the group

velocity becomes obvious,

vg ≡
dω

dk

∣∣∣∣
k0

t . (5.35)

The envelope has the shape of a ’sinc’ function, such that the intensity of the wave
is,

|Y (x, t)|2 = A0∆k sinc
[
∆k
2 (x− vgt)

]
. (5.36)

Obviously, the wavepacket is localized in space. It moves at group velocity, but does
not diffuse.

5.1.6.2 Dispersion of a Gaussian wave packet subject to quadratic dis-
persion

Quadratic dispersion leads to a spreading of the wavepackets. We show this at the
example of the Gaussian wavepacket A(k) = e−α(k−k0)

2

, expanding the dispersion
relation (5.33) up to the quadratic term. By the Fourier theorem,

Y (x, t) =

∫ ∞

−∞
A(k)eı(kx−ωt)dk = A0e

ı(k0x−ω0t)

∫ ∞

−∞
eı(k−k0)(x−vgt)−(α+iβt)(k−k0)

2

dk

= A0e
ı(k0x−ω0t)

∫ ∞

−∞
eık(x−vgt)−(α+iβt)k

2

dk

≡ A0e
ı(k0x−ω0t)

∫ ∞

−∞
eıku−vk

2

dk = A0

√
π
v e
ı(k0x−ω0t)e−u

2/4v . (5.37)

The absolute square of this solution describes the spatial energy distribution of the
wavepacket,

|Y (x, t)|2 = A2
0

π√
vv∗

e−u
2/4v−u2/4v∗ = A2

0

π

x0
√
α/2

e−(x−vgt)
2/x2

0 , (5.38)

with x0 ≡
√
2α

√
1 + β2

α2 t2. Obviously, for long times the pulse spreads out at constant
speed. Since the constant α gives the initial width of the pulse, we realize that an
initially compressed pulse spreads faster. Therefore, the angular coefficient of the
dispersion relation determines the group velocity, while the curvature determines the
spreading speed (dispersion).
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5.1.7 Exercises

5.1.7.1 Ex: Speed of sound

A person drops a stone from the top of a bridge and hears the sound of the stone
hitting the water after t = 4 s.
a. Estimate the distance between the bridge and the water level, assuming that the
propagation time of sound is negligible.
b. Improve the estimate by taking into account the finite speed of sound.

Solution: a. The height would be h = g
2 t

2 = 78.48m.
b. We know h = g

2 t
2
cai = csom(t− tcai). Hence,

tfall = −
csound
g
± csound

g

√
1 +

2gt

csound
= 3.79 s ,

and h = 70.55m.

5.1.7.2 Ex: Distance of a lightning

An approximate method for estimating the distance of a lightning consists in starting
to count the seconds when the lightning stroke and stop counting when the thunder
arrives. The number of seconds counted divided by 3 gives the distance from the
lightning in kilometers. Estimate accuracy of this procedure.

Solution:

5.1.7.3 Ex: Speed of sound

A student in her room listens to the radio broadcasting a nearby football game. She
is 1.6 km south of the field. On the radio, the student hears the noise generated by an
electromagnetic pulse caused by a lightning strike. Two seconds later she hears the
noise of thunder on the radio which was captured by the microphone of the football
field. Four seconds after hearing the noise on the radio, she hears the noise of the
thunder directly. Where did the lightning strike in relation to the soccer field?

Solution:

5.1.7.4 Ex: Absence of dispersion in sound

Discuss the experimental evidence that leads us to assume that the speed of sound in
the audible range must be the same at all wavelengths.

Solution: If there were dispersion, high and low sounds would be desynchronized
(e.g., at a public concert). The noise of explosions noise would be quickly attenuated.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_DistanciaRelampago.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom3.pdf


244 CHAPTER 5. WAVES

5.1.7.5 Ex: Optical dispersion

a. While vacuum is strictly dispersionless, the refractive index of air depends on the
wavelength of light λ, on temperature T in ◦C and on the atmospheric pressure P in
mbar like,

ns = 1 + 10−8
(
8342.13 +

2406030

130− 1012/λ2
+

15997

38.9− 1012/λ2

)

n = 1 + (ns − 1)
0.00185097P

1 + 0.003661T
.

Calculate the dispersion of air within range λ1 = 400 nm and λ2 = 800 nm.
b. Using Snell’s law,

n1
n2

=
sinα2

α1
,

calculate the angular dispersion dαar/dλ of a beam of light at the interface between
vacuum and atmospheric air for P = 1013mbar and T = 25◦ C around λ = 500 nm.

Solution: We have,
dαar
dλ

=
d

dλ
arcsin

sinαvac
n

= .

5.1.7.6 Ex: Dispersion near an atomic resonance

Near an atomic resonance ω0 the refractive index can be approximated by,

n = 1− α

ω2 − ω2
0

,

where the polarizability of the gas α is a constant. Calculate the group velocity vg(ωl)
of a laser wave packet passing through a gas of these atoms as a function of the laser
frequency ωl. Approximate |ω − ω0| ≪ ω0. Make a qualitative chart of n(ωl), k(ωl),
of the phase velocity vf (ωl), and of the group velocity vg(ωl).

Solution: Expressing k by ω,

k =
ωn(ω)

c
=
ω

c

(
1− α

ω2 − ω2
0

)

we can calculate the phase velocity by,

vf =
c

n
=

c

1− α
ω2−ω2

0

.

we can calculate the group velocity by,

vg =
dω

dk

∣∣∣∣
k=kl

=
1

dk
dω

∣∣
ω=ωl

=
1

d
dω

ωn(k)
c

∣∣∣
ω=ωl

=
1

d
dω

ω
c

(
1− α

ω2−ω2
0

)∣∣∣
ω=ωl

=
c

1 + α
ω2

l +ω
2
0

(ω2
l−ω2

0)
2

=
c

n− (n− 1) 2ω2

ω2−ω2
0

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom4.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom5.pdf
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For ω ≃ ω0 we can approximate,

vg =
c

1 + α
2(ωl−ω0)2

.

Alternatively, approximating ω ≃ ω0 we can calculate,

k ≃ ω

c

(
1− α

2ω0(ω − ω0)

)
,

and express ω by k,

ω = 1
2

(
ω0 +

α
2ω0

+ ck
)
±
√

1
4

(
ω0 +

α
2ω0

+ ck
)2
− ckω0 ,

giving,

vg =
dω

dk

∣∣∣∣
k=kl

= c
2 ± c

2

−ω0 +
α

2ω0
+ ckl√(

ω0 +
α

2ω0
+ ckl

)2
− 4cklω0

.

The graph shows the approximation as points in magenta. Similarly, we can show
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Figure 5.8: Dispersion near an atomic resonance.

that for n(ω) = 1 + α
1+(ω−ω0)2/Γ2 group velocity is,

vg =
c

n− (n− 1) 2ω2(ω−ω0)
Γ2+(ω−ω0)2

,

and for n(ω) = 1 + αe−(ω−ω0)
2/Γ2

the group velocity is,

vg =
c

n− (n− 1) 2ω(ω−ω0)
Γ2

.

5.1.7.7 Ex: Group velocity near a broad transition

The refractive index of a dilute gas (density ρ) of atoms excited by a light beam of fre-
quency ω near a transition (resonant frequency ω0 and width Γ) can be approximated

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom6.pdf
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by,

n =

√
1− 4πρΓ

k30(2∆ + ıΓ)
≃ 1− 2πρΓ

k30(2∆ + ıΓ)
,

where ck0 = ω0 and ∆ ≡ ω − ω0. Calculate the group velocity near resonance.

Solution: The real part is,

nr = Re n = 1− 4πρΓ∆

k30(4∆
2 + Γ2)

.

The group velocity is,

vg =
1

dk
dω

∣∣
ω=ω̄

=
1

d
dω

ωn(k)
c

∣∣∣
ω=ω̄

=
1

d
dω

(
ω
c − ω

c
4πρΓ∆

k30(4∆
2+Γ2)

)∣∣∣
ω=ω̄

=
c

1− 4πρΓ
k30

−4ω0(ω−ω0)2+(2ω−ω0)Γ2

[4(ω−ω0)2+Γ2]2

∣∣∣
ω=ω̄

.

The profile of the group velocity shows two poles.
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Figure 5.9: Group velocity near a broad transition.

5.1.7.8 Ex: Dispersion in a metal

The dispersion ratio in metals can be approximated by,

n2(ω) = 1 + ω2
p


 fe
−ω2 − ıγeω

+
∑

j

fj
ω2
0j − ω2 − ıγjω


 ,

where ωp is called the plasma frequency and fe and fj are constants. Calculate the
group velocity vg(ω).

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_VelocidadeSom7.pdf


5.2. THE DOPPLER EFFECT 247

5.2 The Doppler effect

5.2.1 Sonic Doppler effect

Waves propagate from a source to an listener within an elastic material medium
with the propagation velocity v. So far, we assumed the source, the medium, and
the listener at rest. The question now is, what happens when one of these three
components gets in motion.

5.2.1.1 Source in motion

We imagine a source emitting signals at frequency f0. Within the time of a period
T = 1

f0
these pulses travel a distance,

λ = vT =
v

f0
, (5.39)

within the medium. While the source is at rest, the distance between the pulses is λ.
However, when the source moves in the propagation direction of the pulses, a resting
listener judges that the pulses are emitted within the medium at reduced distances
∆x, as shown in Fig. 5.10,

∆x = λ− usT . (5.40)

A listener now receives the pulses at the increased frequency of,

f =
v

∆x
=

v

λ− usT
=

vf0
v − us

=
f0

1− us/v
. (5.41)

This effect is called sonic Doppler effect. For small velocities we can expand,

f =
f0

1∓ us/v
≃ f0

(
1± us

v

)
, (5.42)

where the upper (lower) signals apply, when the source approaches (moves away from)
the listener.

Figure 5.10: Doppler effect due to a motion of the source. In (a) the source is at rest, in (b)
it moves toward the listener.
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5.2.1.2 Listener in motion

Again, we consider the same source emitting signals at frequency f0. While the
source is at rest, the distance between the pulses is λ. However, when the listener is
approaching the source, as shown in Fig. 5.11, pulses are recorded by the listener in
a shorter time intervals,

T =
λ

v + ur
=

1

f
. (5.43)

That is, the listener measures a larger number of pulses,

f = f0

(
1± ur

v

)
, (5.44)

where the upper (lower) signs apply, when the receiver approaches (moves away from)
the source.

Figure 5.11: Doppler effect due to a motion of the listener. In (a) the listener is at rest, in
(b) it moves toward the source.

5.2.1.3 Moving medium

We can combine the two Doppler effects into a single expression,

f = f0
v2 − v · ur
v2 − v · us

. (5.45)

The cases discussed above refer to the source or the listener being in motion with
respect to the medium carrying the wave considered at rest. If the medium is moving
at a velocity um, e.g. due to a wind moving the air, the velocities of the source and the
listener with respect to the medium are modified, us → us − um and ur → ur − um,
such that,

f = f0
1− (ur − um)/v

1− (us − um)/v
. (5.46)

The same result is obtained by a transformation of the propagation velocity of the
sound, v → v + um .
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5.2.2 Wave equation under Galilei transformation

The Galilei transformation says, that we obtain the function describing the motion
in the system S′ simply by substituting x→ x′ and t→ t′ with 3,

t′ ≡ t and x′ ≡ x− ut or (5.47)

t ≡ t′ and x ≡ x′ + ut ,

which implies,

v′ =
∂x′

∂t′
=
∂x

∂t
− u = v − u . (5.48)

Figure 5.12: Wave in the inertial system S seen by an observer moving at the velocity u in
the system S′.

Newton’s classical mechanics is Galilei invariant, which means that fundamental
equations of the type,

mv̇i = −∇xi

∑

j

Vij(|xi − xj |) , (5.49)

do not change their form under Galilei transform. In contrast, the wave equation is
not Galilei invariant. To see this, we consider a wave in the inertial system S being at
rest with respect to the propagation medium. The wave is described by Y (x, t) and
satisfies the wave equation,

∂2Y (x, t)

∂t2
= c2

∂2Y (x, t)

∂x2
. (5.50)

An observer be in the inertial system S′ moving with respect to S with velocity u,
such that x′ = x − ut. The question now is, what is the equation of motion for this
wave described by Y ′(x′, t′), that is, we want to check the validity of,

∂2Y ′(x′, t′)
∂t′2

?
= c2

∂2Y ′(x′, t′)
∂x′2

. (5.51)

For example, the wave Y (x, t) = sin k(x− ct) traveling to the right is perceived in
the system S′, also traveling to the right, as Y ′(x′, t′) = sin k[x′− (c−u)t′] = Y (x, t).
Hence,

Y ′(x′, t′) = Y (x, t) , (5.52)

3Note that the Galilei transform,(
ct′

x′

)
= G

(
ct

x

)
with G ≡

(
1 0

−β 1

)
is unitary because detG = 1.
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that is, we expect that the laws valid in S are also valid in S′. We calculate the
partial derivatives,

∂Y ′(x′, t′)

∂t′
=
∂Y (x, t)

∂t′
=

∂t

∂t′
∂Y (x, t)

∂t

∣∣∣∣
x=const

+
∂x

∂t′
∂Y (x, t)

∂x

∣∣∣∣
t=const

=
∂Y (x, t)

∂t
+ u

∂Y (x, t)

∂x

∂Y ′(x′, t′)

∂x′
=
∂Y (x, t)

∂x′
=

∂t

∂x′
∂Y (x, t)

∂t

∣∣∣∣
x=const

+
∂x

∂x′
∂Y (x, t)

∂x

∣∣∣∣
t=const

=
∂Y (x, t)

∂x
. (5.53)

Therefore, we come to the conclusion that in the system propagating with the wave,
the wave equation is modified,

∂2Y ′(x′, t′)
∂t′2

=
∂2Y (x, t)

∂t2
+ 2u

∂2Y (x, t)

∂t∂x
+ u2

∂2Y (x, t)

∂x2
(5.54)

= c2
∂2Y (x, t)

∂x2
+ 2u

∂2Y (x, t)

∂t∂x
+ u2

∂2Y (x, t)

∂x2

= (c2 + u2)
∂2Y (x, t)

∂x2
+ 2u

∂2Y (x, t)

∂t∂x
= (c2 − u2)∂

2Y ′(x′, t′)
∂x′2

+ 2u
∂2Y ′(x′, t′)
∂t′∂x′

.

Only in cases, where the wavefunction can be written as Y (x, t) = f(x − ct) =
f(x′ − (c − u)t′) = f ′(x′ − ct′) = Y ′(x′, t′), do we obtain a wave equation similar to
the one of the system S, but with the modified propagation velocity,

∂2f ′(x′ − ct′)
∂t′2

= (c2 − u2)∂
2f ′(x′ − ct′)

∂x′2
+ 2u

∂2f ′(x′ − ct′)
∂x′∂t′

(5.55)

= (c2 − u2)∂
2f ′(x′ − ct′)

∂x′2
+ 2u

∂2f(x′ − (c− u)t′)
∂x′∂t′

= (c2 − u2)∂
2f ′(x′ − ct′)

∂x′2
− 2u(c− u)∂

2f ′(x′ − ct′)
∂x′2

= (c− u)2 ∂
2f ′(x′ − ct′)

∂x′2
.

The observation that the wave equation is not Galilei-invariant expresses the fact
that there is a preferential system for the wave to propagate, which is simply the
system in which the propagation medium is at rest. Only in this inertial system will
a spherical wave propagate isotropically.

Example 17 (Wave equation under Galilei transformation): We now
verify the validity of the wave equation in the propagating system S′ using the
example of a sine wave,

(c2 − u2)
∂2 sin k[x′ − (c− u)t′]

∂x′2
+ 2u

∂2 sin k[x′ − (c− u)t′]
∂x′∂t′

= −k2(c2 − u2) sin k[x′ − (c− u)t′] + 2uk2(c− u) sin k[x′ − (c− u)t′]

= −k2(c− u)2 sin k[x′ − (c− u)t′] = ∂2 sin k[x′ − (c− u)t′]
∂t′2

.

5.2.3 Wave equation under Lorentz transformation

The question now is, how about electromagnetic waves which, as we have already
noted and as has been verified by the famous Michelson experiment, survive with-
out any medium. If there is no propagation medium, all inertial systems should be
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equivalent and the wave equation should be the same in all systems, as well as the
propagation velocity, i.e. the speed of light. These were the consideration of Henry
Poincaré. To resolve the problem we need another transformation than the one of
Galileo Galilei. Who found it first was Hendrik Antoon Lorentz, however the biggest
intellectual challenge was to accept all the consequences that this transformation
bears. It was Albert Einstein who accepted the challenge and created a new mechan-
ics called relativistic mechanics. As the wave equation for electromagnetic waves,
called the Helmholtz equation, is a direct consequence of Maxwell’s theory, it is not
surprising that the relativistic theory is not only compatible with the electrodynamic
theory, but provides a deeper understanding of it.

We begin by making the ansatz of a general transformation interconnecting the
temporal and spatial coordinates by four unknown parameters, γ, γ̃, β, and β̃,

ct = γ(ct′ + βx′) and x = γ̃(x′ + β̃ct′) . (5.56)

The same calculation made for the Galilei transform now gives the first derivatives,

∂Y ′(x′, t′)

c∂t′
=
∂Y (x, t)

c∂t′
=

∂t

∂t′
∂Y (x, t)

c∂t

∣∣∣∣
x=const

+
∂x

c∂t′
∂Y (x, t)

∂x

∣∣∣∣
t=const

= γ
∂Y (x, t)

c∂t
+ γ̃β̃

∂Y (x, t)

∂x

(5.57)

∂Y ′(x′, t′)

∂x′
=
∂Y (x, t)

∂x′
=
∂ct

∂x′
∂Y (x, t)

c∂t

∣∣∣∣
x=const

+
∂x

∂x′
∂Y (x, t)

∂x

∣∣∣∣
t=const

= γβ
∂Y (x, t)

c∂t
+ γ̃

∂Y (x, t)

∂x
.

The second derivatives and the application of the wave equation in the system S
give,

∂2Y ′(x′, t′)
c2∂t′2

= γ2
∂2Y (x, t)

c2∂t2
+ 2γγ̃β̃

∂2Y (x, t)

c∂t∂x
+ (γ̃β̃)2

∂2Y (x, t)

∂x2
(5.58)

= γ2
∂2Y (x, t)

∂x2
+ 2γγ̃β̃

∂2Y (x, t)

c∂t∂x
+ (γ̃β̃)2

∂2Y (x, t)

c2∂t2

= (γβ)2
∂2Y (x, t)

c2∂t2
+ 2γγ̃β

∂2Y (x, t)

c∂t∂x
+ γ̃2

∂2Y (x, t)

∂x2
=
∂2Y (x′, t′)

∂x′2
.

That is, the wave equation in the system S′ has the same form 4. Thus, the require-
ment of invariance of the wave equation allows to affirm,

γ = γ̃ and (γβ)2 = (γ̃β̃)2 and β = β̃ . (5.59)

In addition, the transformation

(
ct′

x′

)
= L

(
ct

x

)
with L ≡

(
γ γβ

γβ γ

)
(5.60)

has to be unitary, that is,

1 = detL = γγ̃ − γγ̃ββ̃ = γ2(1− β2) , (5.61)

4Note that the calculus is dramatically simplified using the covariant formalism of 4-dimensional
space-time vectors introduced by Hermann Minkowski and Gregory Ricci-Curbastro.
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which allows to relate the parameters γ and β by,

γ =
1√

1− β2
. (5.62)

Finally and obviously, we expect to recover the Galilei transform at low velocities,

ct = γ(ct′ + βx′)→ ct and x = γ(x′ + βct′)→ x+ ut . (5.63)

That is, the limit is obtained by γ → 1 and γβc→ u, such that,

β =
u

c
. (5.64)

such that the Lorentz transform from one inertial system S to another system S′ is,

t′ = γ
(
t− u

c2x
)

and x′ = γ(x− ut) or (5.65)

t = γ
(
t′ + u

c2x
′) and x = γ(x′ + ut′) .

5.2.4 Relativistic Doppler effect

We have seen at the example of sonic waves, that the magnitude of the Doppler
effect depends on who moves with respect to the medium, whether it is the source
or the listener. Electromagnetic waves, however, propagate in empty space, hence
there is no material medium or wind. According to Einstein’s theory of relativity,
there is no absolute motion and the propagation velocity of light is the same for all
inertial systems. Therefore, the theory of the sonic Doppler effect can not apply to
electromagnetic waves. To deal with the Doppler effect of light, we need to talk a
little about time dilation.

5.2.4.1 Dilation of time

We consider a clock flying through the lab S with the velocity v. The clock produces
regular time intervals for which we measure in the lab the duration t2 − t1. The
spatio-temporal points are Lorentz-transformed to the system S′ in which the clock
is at rest by, (

ct′j
z′j

)
=

(
γctj − γβzj
−γβctj + γzj

)
. (5.66)

Hence,

t′2 − t′1 = γt2 − γβ
z2
c
− γt1 + γβ

z1
c

(5.67)

= γt2 − β
(
z′

c
+ γβt2

)
− γt1 + β

(
z′

c
+ γβt1

)
= γ−1(t2 − t1) .

Consequently, in the lab the time interval seems longer than in the resting system.

Example 18 (Doppler effect on a moving laser): Coming back to the
Doppler effect we now consider a light source flying through the lab S, for
example, a laser operating at a frequency ω′, which is well defined by an atomic
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transition of the active medium. A spectrometer installed in the same resting
system S′ as the laser will measure just this frequency. Now we ask ourselves,
what frequency would a spectrometer installed in the lab measure. The classical
response has been derived for a moving sound source,

ω = ω′ − ku = ω′ − ω

c
u =

ω′

1 + u
c

, (5.68)

with k = ω/c. But now, because of time dilation, we need to multiply by γ,

ω =
γ−1ω′

1 + u
c

=

√
1− β
1 + β

ω′ ≃ ω′
(
1± u

c
+

u2

2c2

)
. (5.69)

5.2.5 Exercises

5.2.5.1 Ex: Sonic Doppler effect

A speaker hanging from a wire of length L = 1m oscillates with a maximum angle of
θm = 10◦ and emits a sound of ν = 440Hz.
a. What is the frequency of oscillation of the pendulum?
b. What is the energy Ecin + Epot of the oscillation?
c. What is the maximum oscillation speed?
d. What are the minimum and maximum frequencies of the sound perceived by a
stationary receiver.

Solution: a. The pendulum’s oscillation frequency is,

ω =

√
g

L
= 2π · 0.5Hz .

b. The energy of the oscillation is,

Ecin + Epot =
m
2 v

2 +mg(L− L cos θ) = m
2 v

2
m = mg(L− L cos θm) = 0.149 J .

c. Therefore, the maximum speed of the speaker is,

vm =
√
2gL(1− cos θm) = 54.6 cm/s .

d. The speed of sound being vs = 340m/s, the minimum and maximum sound fre-
quencies are,

νr = νf
vs

vs ± vm
= 440Hz

340

340± 0.3
= 439.3 (440.7)m/s .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler01.pdf
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5.2.5.2 Ex: Sonic Doppler effect

Two identical speakers uniformly emit sound waves of f = 680Hz. The audio power
of each speaker is P = 1mW. A point P is r1 = 2.0m away from one device and
r2 = 3.0m from the other.
a. Calculate the intensities I1 and I2 of the sound from each speaker separately at the
P.
b. If the emission of the speakers were coherent and in phase, what would be the
sound intensity in P?
c. If the emission of the speakers were coherent with a phase difference of 180◦, what
would be the sound intensity in P?
d. If the speaker output were incoherent, what would be the sound intensity in P?

Solution: a. First speaker (distance r1):

I1 =
P

4πr21
= 19.9µW/m2 .

Second speaker (distance r2):

I2 =
P

4πr22
= 8.849µW/m2 .

b. Knowing that the frequency is constant, and that the intensity I is proportional to
the square of the amplitude A, it is possible to calculate the intensity when the interfer-
ence is fully constructive (intensity is maximum) by: A = C

√
I. Since the frequency

is constant, C will be the same value at any given point. Adding the amplitudes, we
get,

√
Imax = A/C =

√
I1 +

√
I2

Imax = (
√
I1 +

√
I2)

2 = 55.3µW/m2 .

c. Same as for the previous item, however, knowing that in totally destructive inter-
ference, the intensity is minimal and its amplitudes are subtracted, we get,

√
Imin = A/C =

√
I1 −

√
I2

Imin = (
√
I1 −

√
I2)

2 = 2.21µW/m2 .

d. Knowing that these are incoherent waves, we just add the intensities:

I = I1 + I2 = 19.9µW/m2 +8.849µW/m2 = 28.7µW/m2 .

5.2.5.3 Ex: Sonic Doppler effect

Suppose that a source of sound and a listener are both at rest, but the medium is
moving relative to this frame. Will there be any variation in the frequency heard by

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler02.pdf
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the observer?

Solution: No, because within the inertial system moving together with the medium
the frequency would actually be shifted up (down) when the medium moves in the di-
rection opposite (parallel) to the vector pointing from the source to observer. But this
effect is compensated by the opposite effect upon sound reception by the listener, who
hears the frequency lower (higher) when the medium moves in the opposite (parallel)
direction.

5.2.5.4 Ex: Sonic Doppler effect

Consider a source that emits waves of frequency ffnt moving at velocity vfnt on the
x-axis. Consider an observer moving with velocity vobs also on the x-axis. What will
be the frequency perceived by the observer? Call the wave propagation velocity of c.

Solution: Be xfnt the position of the sound source and vfnt > 0 its speed relative to
the x-axis. The wavelength produced by the source in a medium is given by,

λmed = λfnt

(
1− vfnt

c

)
=

c

ffnt

(
1− vfnt

c

)
,

where c > 0 in the region x > xfnt and c < 0 in the region x < xfnt. Now, an observer
in the region x > xfnt that moves with speed vobs relative to the x-axis probes this
wavelength with frequency,

fobs =
c− vobs
λmed

=
c− vobs

c
ffnt

(
1− vfnt

c

) = ffnt
1− vobs

c

1− vfnt

c

≃ ffnt
(
1− vobs

c

)(
1 +

vfnt
c

)
= ffnt

(
1− vobs − vfnt

c
− vobsvfnt

c

)

≃ ffnt
(
1− vobs − vfnt

c

)
.

5.2.5.5 Ex: Sonic Doppler effect

Two trains travel on rails in opposite directions at velocities of the same magnitude.
One of them is whistling. The whistle frequency perceived by a passenger on the
other train ranges from 348Hz when approaching to 259Hz when moving away.
a. What is the velocity of the trains.
b. What is the frequency of the whistle.

Solution: a. 90 km/h,
b. 300Hz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler04.pdf
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5.2.5.6 Ex: Sonic Doppler effect

On a mountain road, while approaching a vertical wall which the road will surround,
a driver is honking his horn. The echo from the wall interferes with the sound of
the horn, producing 5 beats per second. Knowing that the frequency of the horn is
200Hz, what is the speed of the car?

Solution: 15 km/h.

5.2.5.7 Ex: Sonic Doppler effect

A fixed sound source emits a sound of frequency ν0. The sound is reflected by a
fast approaching object (velocity u). The reflected echo returns to the source, where
it interferes with the emitted waves giving rise to frequent beats ∆ν. Show that it
is possible to determine the amplitude of the velocity of the moving object |u| as a
function of ∆ν, of ν0, and of the speed of sound c.

Solution: |u| = ν∆ν
2ν0+∆ν .

5.2.5.8 Ex: Sonic Doppler effect

Two cars (1 and 2) drive in opposite directions on a road, with velocities of ampli-
tudes v1 and v2. Car 1 travels against the wind, whose velocity is V . At sight of car
2 the driver of car 1 presses his horn, whose frequency is ν0. The speed of sound in
motionless air is c. What is the frequency ν of the horn sound perceived by the driver
of car 2? What is the frequency ν′ heard by the driver of a car 3 traveling in the same
direction as car 1 and at the same speed?

Solution: ν = ν0
c−V+v2
c−V−v1 ; ν

′ = ν0.

5.2.5.9 Ex: Sonic Doppler effect

A physicist is molested by a fly orbiting his head. Since he is also a musician, he
realizes that the sound of the buzz varies by one pitch. Calculate the speed of the fly.

Solution:

5.2.5.10 Ex: Doppler effect

a. In a storm with wind velocity v a speaker well attached to the ground makes a
sound of frequency f0. How do you calculate the frequency recorded by a microphone
taken by the wind and driven away from the speaker at the speed u?
b. Verify your answer in (a) by comparing the three cases (i) u = 0, (ii) u = v, and
(iii) v = 0 with the cases of a moving source or receiver.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler06.pdf
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Solution: a. In the system where the air is at rest the speaker is moving away with
the speed v. Therefore, the frequency that would be perceived by a listener moving
along with the wind is,

fmedium =
f0

1 + v/c
.

In the system where the air is at rest the microphone is moving away in the same
direction as the speaker with the speed u− v < 0. Hence,

fmicro = fmedium

(
1− u− v

c

)
= f0

1− (u− v)/c
1 + v/c

= f0

(
1 +

−u/c
1 + v/c

)
.

Alternatively, we calculate the Doppler shift first disregarding the wind,

frep = f0

(
1− u

c

)
,

and transforming to the wind system by, c→ c+ v, giving the same result,

f = f0

(
1− u

c+ v

)
.

b. (i) With the microphone fixed to the ground u = 0, we observe f = f0.
(ii) In case where the microphone reaches the wind speed, u = v, we observe f =
f0

1
1+v/c , which is the Doppler effect of a moving source.

(iii) Without wind v = 0 but with a microphone velocity u we observe f = f0
(
1− u

c

)
,

which is the Doppler of a moving receiver.

5.2.5.11 Ex: Sonic Doppler effect

A citizen of São Carlos is molested by a Tucano airplane operated by the Academia
das Forças Aéreas de Pirassununga. He notices that while the airplane realizes loop-
ing on top of his head, the emitted sounds varies by up to an octave. Estimate the
airplane’s velocity.

Solution: Assuming for simplicity that the airplane moves with uniform velocity
on a straight line passing near by the citizen, we calculate for the maximum and
minimum velocities ±us with respect to the observer,

f0

(
1 +

us
v

)
= 2f0

(
1− us

v

)
,

from which we obtain us =
v
3 independently of the emitted sound frequency.

5.3 Interference

The superposition of two counterpropagating waves can generate a standing wave. In
these waves the oscillation amplitude depends on the position, but there is no energy
transport.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_SonicDoppler11.pdf
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5.3.1 Standing waves

We consider two waves Y±(x, t) = A cos(kx∓ ωt+ ϕ) propagating in opposite direc-
tions. In the case of a string this situation can be realized, e.g. by exciting a wave
Y−(x, t) propagating in −x direction, reflecting it subsequently at the end of the string
(x = 0), and letting the wave Y+(x, t) propagate back in x direction,

Y (x, t) = Y−(x, t) + Y−(x, t) = A cos(kx+ ωt)±A cos(kx− ωt) . (5.70)

The sign of the reflected wave depends on how the end of the string is attached. If
the end is fixed, the reflected wave inverts its amplitude. If it is free to move, the
amplitude remains unaltered.

Let L be the length of the rope. The boundary conditions can be formulated as
follows: When one end is clamped, the oscillation amplitude must be zero at this end,

Y (0, t) = 0 or Y (L, t) = 0 . (5.71)

When one end is loose, the amplitude of oscillation must be maximum,

Y (0, t) = A or Y (L, t) = A . (5.72)

Figure 5.13: Superposition of a left-bound wave (a) with a wave reflected at a clamped end
(b) or a loose end (c).

5.3.1.1 Rope with two ends fastened

In case that the two ends of the rope are clamped, we can simplify the superposition
(5.70),

Y (x, t) = A cos(kx+ ωt)−A cos(kx− ωt) = 2 sin kx sinωt . (5.73)

The boundary condition, Y (L, t) = 0, requires,

kL =
2πL

λ
= nπ , (5.74)

for a natural number n. This means that for a given length L and a given propagation
velocity v, we can only excite oscillations satisfying,

λ =
2L

n
and ν =

v

λ
= n

v

2L
. (5.75)
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Figure 5.14: Vibration modes of a string fot (left) both ends tight up and (right) for one
loose end.

5.3.1.2 Rope with one free end

In case that the end of the string at x = 0 is loose, we can simplify the superposition
(5.70),

Y (x, t) = A cos(kx+ ωt) +A cos(kx− ωt) = 2 cos kx cosωt . (5.76)

The boundary condition, Y (L, t) = 0, requires,

ϕ = π
2 and kL =

2πL

λ
=
(
n− 1

2

)
π , (5.77)

for a natural number n. This means that for a given length L and a given propagation
velocity v, we can only excite oscillations satisfying,

λ =
2L

n− 1
2

and ν =
v

λ
=
(
n− 1

2

) v

2L
. (5.78)

Example 19 (Stationary sound wave):

• Exciting a stationary sound wave in a bottle.

• Exciting a standing sound wave on a guitar string.

5.3.2 Interferometry

5.3.2.1 Phase matching of two laser beams

When phase-matching two plane waves E1 = Aeıω1t and E2 = Aeıω2t on a photodiode,
such that their wavevectors are parallel, the photodiode generates a beat signal,

I = |E1 + E2|2 = AB[2 + 2 cos(ω1 − iω2)t] . (5.79)

In order to get a high signal contrast, a good phase-matching is important. It is
particularly important to adjust the wavevectors to be absolutely parallel. In practice,
however, this can be tricky, as the laser beams are frequently not plane waves, but
have a finite diameter and radius of curvature.

Example 20 (Laser interferometry):

• Construct Michelson and Mach-Zehnder laser interferometers with one
mirror mounted on a piezo. Show interference rings.
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Figure 5.15: Principle of a beat frequency measurement.

5.3.3 Diffraction

According to the Huygens principle, each point Pz within a slit emits a spherical wave
reaching a given point Pk of the screen with a phase lag corresponding to the distance,
as shown in Fig. 5.16,

r12 = PηPy =
√
(y − η)2 + z2 . (5.80)

Thus, the phase difference between this ray and a ray coming out of the origin (which
we place somewhere on the optical axis) is,

ϕ = k∆r12 = k(
√
(y − η)2 + z2 −

√
y2 + z2) ≃ − kyη√

y2 + z2
≃ −kyη

z
≡ qη , (5.81)

with q = k sinα = ky/z. If A(η) is the amplitude of the excitation at the point η
of the slit, then B(y) = 1

z e
ıϕ is the amplitude at point y of the screen. Adding the

contributions of all points,

B(q) =
∑

z

eıϕ(y,z) →
∫
A(η)eıqηdη . (5.82)

We see that the amplitude distribution on the screen B(y) is nothing more than the
Fourier transform of the amplitude distribution A(η) within the slit, regardless of the
shape of the slit.

Figure 5.16: Fraunhofer diffraction at the slit.

The theory can be extended to 2D and 3D geometries, for example, a distribution
of point-like scatterers within a given volume.
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5.3.3.1 Single slit

As an example, we calculate the interference pattern behind a single slit. The Fourier
transform of A(η) = χ[−d/2,d/2] is,

B(q) =

∫ d/2

−d/2
eıqηdη =

eıqη

ıq

∣∣∣∣
d/2

−d/2
= d

sin 1
2qd

1
2qd

. (5.83)

The intensity is I(q) = cε0|B(q)|2.

5.3.3.2 Diffraction grating

We now calculate the interference pattern behind a diffraction grating with N = 1000
infinitely thin slits aligned within one millimeter. The Fourier transform of A(η) =∑N
n=1 χ[(n−1)d,(n−1)d+∆d] is,

B(q) =

N∑

n=1

∫ (n−1)d+∆d

(n−1)d
eıqηdη =

eıq∆d − 1

ıq

N∑

n=1

eı(n−1)qd (5.84)

≃ ∆d

N∑

n=0

eınqd = ∆d
1− eıNqd
1− eıqd ,

where we approximated for q∆d≪ 1. For N →∞ we can approximate further,

B(q) =
∆d

1− eıqd . (5.85)

This is the Airy function, which is zero everywhere except at points where qd = 2nπ.
The intensity is,

I(q) = cε0|B(q)|2 = cε0
∆d2

2− 2 cos qd
= cε0

(
∆d

2 sin qd
2

)2

. (5.86)

The grating constant is d = 0.001mm. The resulting pattern can be interpreted as
arising from a regular chain of antennas emitting synchronously. With a large number
of point antennas, the chain emits in very well-defined directions. In addition, the
direction can be controlled by arranging for a well-defined phase shift between the
fields driving neighboring antennas.

5.3.4 Plane and spherical waves

In three dimensions the wave equation takes the form,

0 = 2E ≡
(

1

c2
∂

∂t
−∇2

)
E . (5.87)

In Cartesian coordinates, this gives,

0 =

(
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
E . (5.88)
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Figure 5.17: (code) Intensity distribution behind a diffraction grating for a single slit (red),

a double slit (blue), and an infinite diffraction grating (green).

Plane waves, that is, waves described by the function,

Y (r⃗, t) = Y0 sin(k⃗ · r⃗ − ωt) , (5.89)

satisfy the wave equation if,

0 = −ω
2

c2
+ k2x + k2y + k2z = − ω

c2
+ k⃗2 . (5.90)

5.3.4.1 Spherical waves

Spherical waves, that is, waves described by the function,

Y (r, t) = f(r) sin(kr − ωt) , (5.91)

also satisfy the wave equation, provided the function f(r) satisfies certain conditions.
To find these conditions we use the representation of the Laplace operator in spherical
coordinates,

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
, (5.92)

and insert the ansatz for Y (r, t) into the wave equation. We have on one hand,

1

c2
d2

dt2
(f sin) = −ω

2

c2
f sin . (5.93)

On the other hand,

1

r

d2

dr2
(rf sin) =

1

r

d

dr
[f sin+rf ′ sin+krf cos] (5.94)

= f ′′ sin+
2f ′

r
sin−k2f sin+2k

r
f cos+2kf ′ cos ,

such that,

0 = 2f sin = −
(
f ′′ +

2f ′

r

)
sin−2k

(
f ′ +

f

r

)
cos . (5.95)
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Thus the function f must satisfy the radial differential equation,

rf ′ + f = 0 . (5.96)

This equation can be easily solved with the result f(r) = r−1.

5.3.5 Formation of light beams

We consider monochromatic waves with frequency ω. Other waveforms can be syn-
thesized by superpositions of waves with different frequencies. We also restrict to
scalar waves. In fact, electromagnetic light fields are vectorial, however, close to the
axis of an optical beam the fields are practically uniformly polarized, and representing
the amplitude of the field by a scalar wave is an excellent approximation. The field
amplitude ψ(r, t) is governed by the following scalar wave equation,

∇2ψ =
1

c2
∂2ψ

∂t2
. (5.97)

We let ψ be of the form,
ψ(r, t) = A(r)eı[ϕ(r)−ωt] , (5.98)

where A and ϕ are real functions of space. A is the amplitude, and the exponent
is called the phase of the wave. In this form, it is implied that abrupt spatial or
temporal variations are contained in the phase. The surface obtained by fixing the
phase equal to a constant,

ϕ(r)− ωt = const (5.99)

is called wave front or phase front. The fast motion associated with a wave can be
followed through the propagation of a particular wavefront. The interference between
two waves is formed by the fronts of the two waves. The speed at which a particular
wavefront is moving is called phase velocity. Suppose we follow a particular wavefront
at the moment t: At time t + ∆t, the phase front will have moved to another sur-
face. A point r on the original surface will have moved to another point r+∆r [see
Fig. 5.18(a)]:

ϕ(r+∆r)− ω(t+∆t) = ϕ(r)− ωt = const (5.100)

Expanding ϕ(r+∆r) ≃ ϕ(r) +∇ϕ(r)∆r, we obtain,

∇ϕ(r)∆r = −ωt . (5.101)

∇ϕ(r) is orthogonal to the phase front and is called the wavevector. ∆r is smallest in
the direction ∇ϕ, and the wavefront propagates with the velocity,

|∆r|
∆t

=
ω

|∇ϕ(r)| . (5.102)

which is the phase velocity. The phase velocity can vary from point to point in space.

Example 21 (Phase velocity of a superposition of two plane waves): The
superposition of two plane waves with wavevectors k1,2 = kêz cos θ ± kêx sin θ
is described by,

ψ(r, t) = A0e
ı(k1·r−ωt) +A0e

ı(k2·r−ωt) = 2A0 cos(kx sin θ)e
ı(kz cos θ−ωt) .

(5.103)
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The phase front of this wave is a plane with normal vectors pointing along the

z-axis, as illustrated in Fig. 5.18(b), and the phase velocity is now ω/k cos θ =

c/ cos θ > c.

5.3.5.1 Beam formation by superposition of plane waves

Plane waves extend throughout the space and are uniform in transverse direction,
whereas an optical beam is confined in transverse direction. However, as we saw in
the last example, by superposing two plane waves, a resulting wave can be obtained
which varies sinusoidally in transverse direction. By extrapolating this concept to su-
perpositions of many plane waves, it is possible to construct by interference arbitrary
transverse amplitude distributions. The propagation of a confined wave is the essence
of diffraction theory. A particular case is the Gaussian beam. For mathematical sim-
plicity and ease of visualization let us restrict ourselves to waves in two dimensions
in the x-z plane. Only in the final phase will we present the complete results for
three-dimensional Gaussian beams.

Figure 5.18: Superposition of two plane waves. The phase velocity along the direction z is
higher than c, the speed of light, because in one period, the wavefront of each partial wave
propagates over a distance λ, but along the z axis over a distance of λ/ cos θ.

Before going into detailed calculations, we consider the last example again. The
transverse standing wave resulting from the superposition of two plane waves, each
one propagating at an angle θ with respect to the z-axis has a spatial frequency
k sin θ ≃ kθ for small θ. We now come to a very important property of wave diffraction.
Suppose that, in order to confine the wave in transverse direction, we continue adding
plane waves, each one propagating at a different small angle θ, so that the amplitude
adds constructively within the range |x| < ∆x and destructively out of it. By the
uncertainty principle that results from the Fourier analysis and applies to this case,

∆(kθ)∆x ≳ 1 . (5.104)

That is, to confine a beam inside a width of ∆x, it requires a distribution of plane
waves in an angular spreading of at least λ/2π∆x. The angular spreading means that
the beam will eventually diverge with an angle ∆θ.

5.3.5.2 Fresnel integrals and beam propagation

Let us now superpose plane waves in a way to form a beam. Each partial wave
propagates under some angle θ with respect to the z-axis and has an amplitude
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A(θ)dθ, so that the resulting wave (omitting the harmonic temporal variation) is,

ψ(x, z) =

∫
dθA(θ)eıkx sin θ+ıkz cos θ . (5.105)

In the so-called paraxial approximation, A(θ) is significant only within a small angular
interval close to zero. This means that, according to Eq. (5.104), the transverse
dimension of the beam is large in comparison to the wavelength. Expanding the
trigonometric functions up the order θ2,

ψ(x, z) ≃
∫
dθA(θ)eıkxθ+ıkz(1−θ

2/2) = eıkz
∫
dθA(θ)eıkxθ−ikzθ

2/2 . (5.106)

This wave can be considered as a plane wave, eıkz, modulated by the integral of
(5.106). The expression (5.106) completely describes the propagation of the wave,
provided that the wave is known at some point, say z = 0. In fact, at z = 0, the
expression (5.106) for ψ0(x) ≡ ψ(x, 0) is a Fourier transform, whose inverse yields the
angular distribution,

A(θ) =
k

2π

∫
dξψ0(ξ)e

−ıkξθ . (5.107)

Substitution of A(θ) back into Eq. (5.106) gives,

ψz(x) ≡ ψ(x, z) =
k

2π
eıkz

∫
dθ

∫
dξψ0(ξ)e

ı(kθx−kθξ−kzθ2/2) . (5.108)

From here on, in order to emphasize the different roles played by the transverse
coordinates x and y, we will label the axial position z as an index to the wave function.

We can first integrate over θ via a quadratic extension of the exponent. The result,

k

2π
eıkz

∫
dθeı(kθx−kθξ−kzθ

2/2) =

√
k

2πız
eık(z+(x−ξ)2/2z ≡ hz(x− ξ) , (5.109)

gives us the field at the position z as an integral over ξ of the field in z = 0, ψ0(ξ). The
expression (5.109) is called impulse response, kernel, propagator, or Green’s function,
depending on the context. Carry out the integral (5.109) in Exc. 5.3.6.17.

The kernel has very simple physical interpretations: It is the field at point (x, z)
generated by a point source with unitary amplitude located in (ξ, 0). In the same time,
it is a (two-dimensional) spherical wave in a paraxial form. To see this, we write the
field of a two-dimensional spherical wave (i.e. a circular wave) with its center in (ξ, 0)
as, √

1

r
eıkr , (5.110)

where r =
√

(x− ξ)2 + z2. (Instead of 1/r as in three dimensions, the amplitude

decreases as
√

1/r in two dimensions.) Near the z-axis, we approximate r ≃ z+(x−
ξ)2/2z, and the spherical wave becomes,

√
1

z
eık[z+(x−ξ)2/2z] , (5.111)
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which is the same expression as hz(x−ξ) in Eq. (5.109). Note that the quadratic term
in x−ξ can become considerable in comparison with the wavelength. Eq. (5.106) now
becomes,

ψz(x) =

∫
hz(x− ξ)ψ0(ξ)dξ =

√
k

2πız
eıkz

∫
eık(x−ξ)

2/2zψ0(ξ)dξ . (5.112)

We will call this integral the Fresnel integral. It is the mathematical expression of the
Huygens principle: The field in (x, z) is the sum of all spherical waves centered on all
previous points (ξ, 0) weighed with the respective field amplitude ψ0(ξ) [1204].

The expressions (5.106) and (5.112) represent two equivalent ways to calculate
wave propagation. Eq. (5.106) calculates the wave from the angular distribution of
its plane wave components. When the angular distribution is of Hermite-Gaussian
type, a Gaussian beam results. In contrast, Eq. (5.112) computes the wave at a point
z from the field at an initial point z = 0. This is the traditional theory of Fresnel
diffraction. Here, also a Gaussian beam results when ψ0 is Hermite-Gaussian.

To deepen our understanding of beam propagation let us introduce the important
concept of near field and far field. By ’near field’ we mean a distance z sufficiently
small to be allowed to neglect the quadratic term in the exponent of Eq. (5.106),

kθ2z ≪ 1 . (5.113)

Then the near field, in zero-order approximation, is precisely the field at z = 0
multiplied with propagation phase factor eıkz,

ψz(x) ≃ eıkz
∫
dθA(θ)eıkzθ = eıkzψ0(x) , (5.114)

where the second equation follows from Eq. (5.107). Let us now examine the first-
order correction and define ’near’ more precisely.

The question is, what is the maximum angle of θ allowed in (5.113)? It is not π/2,
but rather, it is the range of angles over which A(θ) is significantly different from
zero. This angular range ∆θ is related to the range of transverse distance ∆x via the
Fourier transform (5.104), so that,

π∆x2

λ
≫ z/2 . (5.115)

The quantity on the left side, called the Rayleigh range, is the demarcation between
the near and far field regimes. A simple physical interpretation for this quantity will
be given below.

Let us now investigate the ’far field’ regime of large z having a closer look at
Eq. (5.112). When ψ0 is confined to ∆x, and if z is sufficiently large for the quadratic
factor to be,

kξ2/2z ≪ 1 , (5.116)

or
π∆x2

λ
≪ z , (5.117)
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then it can be ignored, and the integral becomes,

ψ(x, z) ≃
√

k

ı2πz
eık(z+x

2/2z)

∫
e−ıkxξ/zψ0(ξ)dξ . (5.118)

We see that the amplitude of the far field is given by the amplitude of the Fourier
transform of the field at z = 0 except for a quadratic phase factor kx2/(2z) 5

Let us go back to the near field and calculate the first-order correction. For small
z = ∆z, we can expand the exponent in equation (5.106),

ψz(x) ≃ eık∆z
∫
dθA(θ)

(
1− ık θ

2

2
∆z

)
eıkθx (5.119)

= eık∆zψ0(x)− eık∆z
ık∆z

2

∫
dθA(θ)θ2eıkθx .

The last integral is,
∫
dθA(θ)θ2eıkθx = − 1

k2
∂2

∂x2

∫
dθA(θ)eıkθx = − 1

k2
∂2ψ0(x)

∂x2
, (5.120)

Such that close to z = 0, we get,

ψz(x) ≃ eık∆z
[
ψ(x, 0) +

ı∆z

2k

∂2ψ(x, 0)

∂x2

]
. (5.121)

Note that the first-order correction is in quadrature with the zero-order term (5.114)
(if ψ0 is real), which means that the correction is in the phase, not in the amplitude.
The second derivative can be seen as a diffusion operator 6, and it is this phase
diffusion, which is the cause of phenomenon of diffraction.

Figure 5.19: Illustration of the Rayleigh range: The distance from (0, 0) to (0, z) is z. The
distance from (0,∆x) to (0, z) is approximately z +∆x2/(2z). The difference is ∆x2/(2z).
Thus, a wave coming from (0, 0) and a wave coming from (0,∆x) will acquire a phase
difference of k∆x2/(2z) when they reach (0, z). The phase difference is equal to 1 when z
equals the Rayleigh range. The phase difference is insignificant in the far field, but significant
in the near field.

We can generalize a little more: Suppose we write ψ as a plane wave eıkz modulated
by a function with slow variation u(x, z),

ψz(x) ≡ uz(x)eıkz , (5.122)

5In fact, the phase factor can be circumvented by choosing z equal to a focal length f of a lens.
6This is because the second derivative of a Gaussian function is negative in the center and positive

in the wings, so that when added to the original function, the distribution is reduced in the center
and increased in the wings.
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then

u∆z(x)− u0(x) =
ı∆z

2k

∂2u0(x)

∂x2
. (5.123)

We derived this relation for a particular point on the z-axis, z = 0. However, there is
no particular need to choose this point, and the relationship applies to any z. Thus,
letting ∆z → 0, we get,

2ik
∂u

∂z
+
∂2u

∂x2
= 0 . (5.124)

This equation is called paraxial wave equation. It is an approximate form of the scalar
wave equation and has the same form as the Schrödinger equation for a free particle.
The equation can be generalized to three dimensions by a similar derivation:

2ık
∂u

∂z
+
∂2u

∂x2
+
∂2u

∂y2
= 0 . (5.125)

The Fresnel integral is the solution of the paraxial wave equation with a boundary
condition for ψ at z = 0. We will show in Sec. 18.4.3 that a three-dimensional wave
can be constructed from two-dimensional waves [1364]. The resulting Fresnel integral
in three dimensions is,

ψz(x, y) =
eıkz

ıλz

∫
eık(x−ξ)

2/2zeık(y−η)
2/2zψ0(ξ, η)dξdη , (5.126)

where ψ0(x, y) is the distribution of the field amplitude at z = 0. Note that, as
required by energy conservation, in three dimensions the field decays like 1/z and not
like

√
1/z, as it does in two dimensions. Note also that the pulse response in three

dimensions is essentially the product of two two-dimensional pulse responses.

5.3.5.3 Application of Fresnel diffraction theory

The Fresnel diffraction integral, Eq. (5.112), can be applied in various situations illus-
trating its use and the difference between wave optics and geometric optics. Examples
are the diffraction through a slit, the pin-hole camera, the focusing of a thin lens, etc.
[1364].

Near-field diffraction (also called Fresnel diffraction) and far-field diffraction (also
called Fraunhofer diffraction) are often distinguished by a quantity called the Fresnel
number,

F ≡ a2

zλ
, (5.127)

where a is the size of the beam (or aperture). The near field zone is defined by F ≳ 1,
whereas in the far field zone, F ≪ 1. For a Gaussian beam, letting a =

√
πw0,

we recover the Rayleigh length condition for Fresnel diffraction z ≲ zR, respectively
Fraunhofer diffraction, z ≫ zR.
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5.3.6 Exercises

5.3.6.1 Ex: Waves on a rope

A string with linear mass density µ is attached at two points distant by L = 1m.
A mass of m = 1kg is attached to one end of the string that goes over a pulley, as
shown in the figure. Excited by a vibrating pin with frequency f = 1kHz the string
performs transverse vibrations with the wavelength λ = 2L.
a. Calculate the sound velocity.
b. Now the mass is replaced by a mass m′ = 4m. Calculate the new sound velocity.
c. Assuming the sound velocity, how often should the pin excite the string to observe
the third oscillation mode (three anti-nodes)?

Figure 5.20: Waves on a rope.

Solution: a. We have,

v = λnfn =
2L

n
fn .

Hence, v1 = 2Lf1 = 2km/s.
b. We have,

v′ =

√
m′g
µ

= 2v .

Hence, v′1 = 4km/s.
c. To calculate the new frequency,

v′ = λ3f3 =
2L

3
f3 .

Hence, f3 =
3v′1
2L = 6kHz.

5.3.6.2 Ex: Optical cavity

Optical cavities consist of two light reflecting mirrors. Standing light waves must
satisfy the condition that the electric and magnetic fields vanish on the mirror sur-
faces. What is the frequency difference between two consecutive modes of a of length
L = 10 cm?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave02.pdf
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Solution: The free spectral range is,

δfsr =
c

2L
= 1.5GHz .

5.3.6.3 Ex: Waves on a rope

A string vibrates according to the equation y(x, t) = 15 sin πx
4 cm cos(30 s−1 πt).

a. What is the velocity of a string element at the position x = 2 cm at the instant of
time t = 2 s?
b. What is the propagation speed of this wave?

Solution: a. In this position there is a node. Therefore,

ẏ(x, t) = (−30π)15 sin πx
4

sin(30πt) = 0 .

b. Since it is a standing wave, it does not propagate.

5.3.6.4 Ex: Violin

The length of a violin string is L = 50 cm, and its mass is m = 2.0 g. When it is
attached at the ends, the string can emit the a’-pitch (’la’) corresponding to 440Hz.
Where should a finger be placed so that the emitted sound is the c”-pitch (’do’) at
528Hz?

Solution: The mass density is,

µ =
m

L
= 4g/m .

For a given string, the fundamental frequency only depends on its length. Hence, the
frequencies 440Hz and 528Hz,

f1 =
1

2L1

√
T

µ
, f2 =

1

2L2

√
T

µ
,

are related by,

L2 = L1
f1
f2

= 20 cm
440

528
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave04.pdf
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5.3.6.5 Ex: Sound waves

The air column inside a closed tube, filled with a gas whose characteristic sound ve-
locity is vs, is excited by a speaker vibrating at the frequency f . Gradually increasing
the frequency of the speaker one observes that the tube emits a sound at f = 440Hz
and the next time at 660Hz.
a. What is the length of the tube?
b. What is the speed of sound?

Solution: a. We have,

vs = λnfn =
2L

n
fn =

2L

n+ 1
fn+1 ,

with fn = 440Hz and fn+1 = 610Hz. Hence,

∆f = fn+1 − fn =
n+ 1

2L
vs −

n

2L
vs =

vs
2L

.

Finally, L = vs
2∆f = 1m.

b. We also know,

n =
fn

fn+1 − fn
= 2 .

Hence, vs = λnfn = 2L
n fn = 440m/s.

5.3.6.6 Ex: Sound in a bottle

An experimenter blows into a bottle partially filled with water producing a sound of
1000Hz. After drinking some of the water until the level decreased by 5 cm he is able
to produce a sound at 630Hz. Determine the possible values for the speed of sound
knowing that the vibration of the air column inside the bottle should have a node at
the end which is in contact with water and an anti-node at the mouth of the bottle.
Comparing the result to the known value for the speed of sound in air, what is the
excited vibration mode?

Solution: We know c = λnνn and,

( 14 + n
2 )λn = Ln ,

for n = 0, 1, 2, .., where Ln is the height of the air column. Therefore,

c =
2∆L

(n+ 1
2 )(

1
ν1
− 1

ν2
)
.

With n = 0 we have c = 340Hz, what is the known sound velocity. Hence, the
fundamental mode is excited.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave06.pdf
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5.3.6.7 Ex: Sonic waves in a tube

The figure shows a rod fixed at its center to a vibrator. A disc attached to the end
of the rod penetrates a glass tube filled with a gas and where cork dust had been
deposited. At the other end of the tube there is a movable piston. When producing
longitudinal vibrations at the rod, we note that for certain positions of the movable
piston, the cork dust forms a pattern of node and anti-nodes. Knowing for one of
the positions of the piston the distance d between the anti-nodes and the frequency
f of the vibration, show that the speed of sound in the gas is v = 2fd. This is called
Kundt’s method for determining the speed of sound in a gas.
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Exercícios 

1 - Uma corda vibra de acordo com a equação y(x,t) = 15sen ( ) ( ),t30cos.4
x ππ  

sendo x e y medidos em cm e t em segundos.  

a) Qual é a velocidade de um elemento da corda na posição x = 2 cm no 

instante t = 2 s?  

b) Qual é a velocidade de propagação desta onda? 

2 - Discuta as evidências experimentais (que você observa) que nos leva a 

admitir que a velocidade do som na faixa audível deve ser a mesma para 

todos os comprimentos de onda. 

3 - Suponha que no efeito Doppler com o som, a fonte e o observador estejam 

ambos em repouso, mas o meio está se movendo com relação a este 

referencial. Haverá alguma variação na freqüência recebida pelo 

observador? 

4 - Na Fig. 10.13, uma haste está fixa pelo centro a um vibrador. Um disco 

preso à extremidade da haste penetra num tubo de vidro onde foi 

espalhado pó de cortiça. Na outra extremidade do tubo existe um pistão 

móvel. Produzindo-se vibrações longitudinais na haste, observar que para 

determinadas posições do pistão móvel, o pó de cortiça forma um 

conjunto de nós e anti-nós. Se para uma destas posições do pistão, 

conhecermos a distância d entre os anti-nós e a freqüência f de vibração, 

mostre que a velocidade do som no gás é v = 2fd. Este é o método de 

Kundt para determinar a velocidade do som. 

 

 

 

Fig. 10.13 

 

d anti-nós 

Figure 5.21: Sonic waves in a tube.

Solution:

5.3.6.8 Ex: Sound filter

A tube can act as an acoustic filter discriminating various sound frequencies crossing
it from its own frequencies. A car muffler is an application example.
a. Explain how this filter works.
b. Determine the ’cut-off’ frequency below which sound is not transmitted.

Solution:

5.3.6.9 Ex: Snell’s law

Derive Snell’s law from Huygens principle.

Solution:

5.3.6.10 Ex: Surface gravitational waves, capillary waves

Dependence of the propagation velocity on the height of the water column.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_.pdf
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5.3.6.11 Ex: Propagating standing wave

Consider two propagating waves E±(x, t) with equal amplitudes and slightly different
frequencies ω± propagating in opposite directions along the x-axis.
a. Show that, approximating k+ ≃ k−, at each instant of time the interference pattern
along the x-axis forms a standing wave.
b. Determine the group velocity of this wave.

Solution: a. We have,

|eı(k+x−ω+t) + eı(−k−x−ω−t)| = |eıω+(x/c−t) + eıω−(−x/c−t)|
=
√
2 + 2 cos[ω+(x/c− t)− ω−(−x/c− t)]

= 2 cos
[
ω++ω−

2c x− ω+−ω−
2 t

]
≃ 2 cos

[
kx− ω+−ω−

2 t
]
.

In real notation 7 defining

a+ b = k+x− ω+t , a− b = −k−x− ω−t ,

or
a = k+−k−

2 x− ω++ω−
2 t , b = k++k−

2 x− ω+−ω−
2 t

we can write,

cos(k+x− ω+t) + cos(−k−x− ω−t) = cos(a+ b) + cos(a− b) = 2 cos a cos b

= 2 cos
(
k+−k−

2 x− ω++ω−
2 t

)
cos
(
k++k−

2 x− ω+−ω−
2 t

)

≃ 2 cos
(
k+−k−

2 x− ωt
)
cos
(
kx− ω+−ω−

2 t
)
.

b. Interference produces a standing wave that moves slowly with the group velocity,
vg =

ω1−ω2

k .

5.3.6.12 Ex: Mach-Zehnder and Michelson-interferometer

Interferometers are devices that allow the comparison of distances via the propa-
gation time of waves taking different paths. The interferometers outlined in the
figures are based on beam splitters that divide and recombine a wave described by
In(x, t) = An cos(kx− ωt). Determine the amplitude of the signal at the position of
the beam splitter recombining the waves as a function of a variation ∆x = 4π/k of
the length of the second interferometer arm.

Solution: Be I0(0, t) = eı(kx−ωt) = e−ıωt the signal immediately in front of the first
beam splitter. Immediately behind it we have two waves I1,2(0, t) = 2−1/2eı(kx−ωt) =

7We note,

|z1 + z2|2 = |z1|2 + |z2|2 + z1z
∗
2 + z∗1z2 = x21 + y21 + x22 + y22 + 2x1x2 + 2y1y2 = (x1 + x2)

2 + (y1 + y2)
2

= |Rez1 +Rez2|2 + |Imz1 + Imz2|2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave11.pdf
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Figure 5.22: Mach-Zehnder and Michelson-interferometer.

2−1/2e−ıωt. With the interferometer arm lengths d1,2 we have, just in front of the
second separator, the signals I1,2(d1,2, t) = 2−1/2eı(kd1,2−ωt). Immediately behind it
we have the recombined wave,

Is(t) = 2−1/2eı(kd1−ωt) + 2−1/2eı(kd2−ωt) = 21/2 cos k(d1 + d2)e
−ıωt .

That is, after the second beam splitter the signal oscillates with an amplitude that
depends on the length difference of the interferometer arms like cos k(d1 + d2).

5.3.6.13 Ex: Multiple interference in optical cavities

An optical beam splitter is a mirror with partial transmission and partial reflection,

Er(x, t) = ±rE0(x, t) , Et(x, t) = tE0(x, t) .

The reflection signal depends on the direction of incidence, because reflection at a
denser medium introduces a phase shift of π. Using this rules derive for a set of two
mirrors r1 and r2 separated by a distance L the field Ecav between the mirrors as a
function of the wave vector of the incident field Ein. Also calculate the amplitudes of
the transmitted and reflected light. Calculate the phase shifts between the transmit-
ted (reflected) light and the incident light. Interpret the results.

Figure 5.23: Optical cavity.

Solution: The wave is reflected several times. For the field within the cavity we
find, using rj = 1− tj,

Ecav(x) = Eint1
∑

n

[
(r1r2)

neık[2nL+x] − r2(r1r2)neık[(2n+2)L−x]
]
= Eint1

eıkx − r2eık(2L−x)
1− r1r2eık2L

,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave12.pdf
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using the Fourier expansion of (1 − s)−1 =
∑
n s

n. The reflected and transmitted
fields are,

Erfl = r1Ein + Ein
∞∑

n=0

t1(−r2)(r1r2)nt1eık2(n+1)L = Ein
(
r1 −

eık2Lt21r2
1− r1r2e2ıkL

)

Etrns = Ein
∞∑

n=0

t1(r1r2)
nt2e

ık(2n+1)L = Ein
t1t2e

ıkL

1− r1r2e2ıkL
.

The phase shift is calculated by,

ϕ = arctan
Im E
Re E .
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Figure 5.24: Optical cavity.

5.3.6.14 Ex: Double slit

Calculate the interference pattern behind a double slit.

Solution: The Fourier transform of A(z) = χ[−d/2−∆d,−d/2] + χ[d/2,d/2+∆d] is,

B(q) =

∫ −d/2

−d/2−∆d
eıqzdz +

∫ d/2+∆d

d/2

eıqzdz

=
e−iqd/2

ıq
(1− e−iq∆d) + eıqd/2

ıq
(eıq∆d − 1) ≃ 2∆d cos 1

2qd .

The intensity is I(q) = cε0|B(q)|2.

5.3.6.15 Ex: Spherical waves

Show that spherical waves given by Y (r, t) = Y0

kr sin(kr − ωt) satisfy the 3D wave
equation. Use Cartesian coordinates.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave13.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave14.pdf
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Solution: We proceed in Cartesian coordinates. On one hand, we have,

1

c2
d2

dt2
sin(kr − ωt)

kr
= −ω

2

c2
sin

kr
.

On the othe hand,

d2

dx2
sin(kr − ωt)

kr
=

d2

dx2
sin(k

√
x2 + y2 + z2 − ωt)

k
√
x2 + y2 + z2

=
k2r2x2 sin−3x2 sin+r2 sin−3kx2r cos+kr3 cos

kr5
,

such that,

∇2 sin(kr − ωt)
kr

=
k2r4 sin−3r2 sin+3r2 sin−3kr3 cos+3kr3 cos

kr5
=
k2 sin

kr
.

In spherical coordinates the task is trivial.

5.3.6.16 Ex: Interference in spherical waves

Two spherical waves are generated at positions r± = ±Rêz. Determine surfaces of
destructive interference for these waves.

Solution: Destructive interference occurs when

cos[k|r− r+| − ωt] + cos[k|r− r−| − ωt]

= 2 cos
k|r− r+|+ k|r− r−| − 2ωt

2
cos

k|r− r+| − k|r− r−|
2

= 0

at all times. This requires,

|r− r+| − |r− r−| =
(
n+ 1

2

)
λ ,

for integer n. This means that for a distant observation point, r ≫ R,

(
n+ 1

2

)
λ =

√
r2 +R2 − 2Rrêz −

√
r2 +R2 + 2Rrêz

= r

√
1 +

R2

r2
− 2Rz

r2
− r
√
1 +

R2

r2
+

2Rz

r2
≃ −2R cos θ .

Constructive interference lines are obtained similarly.

5.3.6.17 Ex: Green’s function

Calculate the integral Eq. (5.109).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_RopeWave15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FuncaoGreenBeam.pdf
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Solution: We have,

∫
dθeı(kxθ−kx

′θ−kzθ2/2) =
∫
dθeık[(x−x

′)θ−zθ2/2] =
∫
dθe

ık

[
(x−x′)2

2z − z
2

(
θ− x−x′

z

)2
]

= eık
(x−x′)2

2z

∫
dθ′e−

ıkz
2 θ′2 = eık

(x−x′)2
2z

√
2

ıkz

∫
dθ̃e−θ̃

2

= eık
(x−x′)2

2z

√
2π

ıkz
.

5.4 Fourier analysis

Every periodic function f(ξ) = f(ξ+2π) can be decomposed into a series of harmonic
vibrations. This is the Fourier theorem,

f(ξ) =
a0
2

+

∞∑

n=1

(an cosnξ + bn sinnξ) . (5.128)

To determine the coefficients, we calculate,

∫ 2π

0

f(ξ)dξ =

∫ 2π

0

[
a0
2

+

∞∑

m=1

am cosmξ + bm sinmξ

]
dξ = πa0 (5.129)

∫ 2π

0

f(ξ) cos kξdξ =

∫ 2π

0

[
a0
2

+

∞∑

m=1

am cosmξ + bm sinmξ

]
cosnξdξ = πan

∫ 2π

0

f(ξ) sin kξdξ =

∫ 2π

0

[
a0
2

+

∞∑

m=1

am cosmξ + bm sinmξ

]
sinnξdξ = πbn ,

using the rules,

∫ 2π

0

cosnξ cosmξdξ =

∫ 2π

0

sinnξ sinmξdξ = πδn,m and

∫ 2π

0

cosnξ sinmξdx = 0 .

(5.130)
We can use these equations to calculate the Fourier expansion. To simplify the cal-
culations, it is useful to consider the symmetry of the periodic function, since if
f(ξ) = f(−ξ), we can neglect all the coefficients bn, and if f(ξ) = −f(−ξ), we can
neglect the coefficients bn

8

8Alternatively we can write the theorem as,

f(ξ) =
∞∑

n=−∞
dne

ınξ ,

determining the coefficients as,∫ π

−π
f(ξ)e−ıkξdξ =

∫ π

−π
f(ξ)e−ıkξdξ

∞∑
n=−∞

dne
ınξdξ = 2πdn ,

with,
2dn = an − ıbn for n ≥ 0 and 2dn = a−n + ıb−n for n < 0 .
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Example 22 (Frequency spectrum and low-pass filter):

• Show the spectrum of a rectangular signal on an oscilloscope and on an
spectrum analyzer.

• Show the same spectrum filtered by a low pass filter.

.

5.4.1 Expansion of vibrations

Interpreting ξ ≡ ωt as time, we can apply the Fourier theorem (5.128) on temporal
signals, S(t) = f(ωt), where ω is the angular frequency,

S(t) = f(ωt) =
a0
2

+

∞∑

n=1

(an cosnωt+ bn sinnωt) , (5.131)

with,

a0 =
ω

π

∫ 2π/ω

0

S(t)dt and an =
ω

π

∫ 2π/ω

0

S(t) cosnωtdt (5.132)

and bn =
ω

π

∫ 2π/ω

0

S(t) sinnωtdt .

The representation of the coefficients an and bn as functions of the number n is
called harmonic spectrum. As we mentioned earlier, the spectrum of a sound is what
determines the timbre. The total harmonic distortion is defined by,

k ≡
∑∞
n=2(an + bn)∑∞
n=1(an + bn)

. (5.133)

Radiofrequency circuits such as HiFi amplifiers are characterized by their transmis-
sion fidelity, that is, the absence of harmonic distortion in the amplification of each
harmonic coefficient.

5.4.1.1 Expansion of a triangular signal

We consider a triangular signal given by 9,

S(t) =

{
ωt

π − ωt for
0 < ωt < π

2
π
2 < ωt < π

. (5.134)

We calculate the coefficients, a0 = 0, because the signal is symmetric about the t-axis
(it has no offset), and an = 0, because the signal has the symmetry S(t) = −S(−t).
Also,

bn =
2ω

π

∫ π/2ω

0

ωt sinnωtdt+
2ω

π

∫ π/ω

π/2ω

(π − ωt) sinnωtdt = 4

π

sin 1
2πn

n2
, (5.135)

9Note that the function S(t) = π
2
−
(
π
2
− ωt

)
cosωt
| cosωt| , which describes the same triangular signal,

it is easier to program in numerical softwares.
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with the consequence,

S(t) =
4

π

∑

n=1,3,...

(−1)(n−1)/2
n2

sinnωt . (5.136)

5.4.2 Theory of harmony

Non-linearities in oscillating systems can excite harmonic frequencies fn, that is,
multiples of the fundamental frequency fn = (n+ 1)f . These are the components of
the Fourier series.

All musical instruments produce harmonics. This is what makes the timbre of the
instrument. When we play several notes together, we perceive the octave interval as
pleasant. This is, because all the harmonics of a pitch and of its octave coincide.

• harmonic pitch, well-tempered chromatic scale, flat ♭, sharp ♯, ♮, musical clef,
tuning fork fa′ = 440Hz

1

Cello

Violin

I
G

4
4

4
4

C
ˇ ˇ ˇ ˇ ˇ

A

ˇ ˇ >
c

ˇ ˇ ˇ ˇ ˇ
a

ˇ ˇˇ
ˇ ˇ >

c’

ˇ ˇ ˇ ˇ
ˇ ˇ ˇ ˇ ˇ

a’

ˇ ˇ >
c”

ˇ ˇ ˇ ˇ ˇ

a”

ˇ ˇ
>

Figure 5.25: (code) Ladder of pitches over 3 octaves. Pitches can be generated in MATLAB.

A sample program can be downloaded by clicking on the link.

In the well-tempered tonality the interval of a octave is divided into 12 intervals,

n ∈ [a, a#, h, c, c#, d, d#, e, f, f#, g, g#] . (5.137)

Defining normal tuning as,

fa = 440Hz , (5.138)

the pitches correspond to the frequencies,

fn = 2n/12fa . (5.139)

For example, we calculate the frequency of the ’d’,

fd = 2−7/12fa = 391.9954Hz . (5.140)

Thus, all notes are logarithmically equidistant:

lb fn+1 − lb fn = lb (2(n+1)/12fla)− lb (2n/12fla) = 1 (5.141)

fn+1

fn
=

2(n+1)/12fla
2n/12fla

= 21/12 . (5.142)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_Musik.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_Musik.m
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Why are there just 12 pitches? Several instruments have more than one resonator
emitting sound, e.g. the violoncello has 4 strings, c, g, d’, and a’. Each string is
detuned by a quint from the next string, that is,

3fc = 2fg and 3fg = 2fd′ and 3fd′ = 2fa′ . (5.143)

Each string has its own series of harmonics. The timbre of the instrument appears
more pleasant, when the harmonics of the various strings coincide. Let us now check,
whether our definition of logarithmically equidistant pitches satisfies this condition,

3fd = 3 · 2−7/12fa = 2.0023fa ̸= 2fa . (5.144)

Thus, harmonic tuning is not perfect, but quite close to the well-tempered tuning. In
Exc. 5.4.6.5 we show that, nevertheless, the discrepancy is able to produce nasty beat
notes.

The guitar, which is tuned in quarts,

4fc = 3ffa , (5.145)

has the same problem 10,

4fc = 4 · 2−5/12ff = 2.9966ff ̸= 3ff . (5.146)

Resolve the Excs. 5.4.6.6, 5.4.6.7 and 5.4.6.8.

5.4.3 Expansion of waves

Interpreting ξ ≡ kx as position, we can apply the Fourier theorem (5.128) to standing
waves, Y (x) = f(kx), where k = 2π/k is the wavevector.

5.4.4 Normal modes in continuous systems at the example of
a string

We will now apply the Fourier expansion to calculate the normal modes of a vibrating
string. Depending on which mode of oscillation is excited, the displacement of the
string is given by,

Yn(x, t) = (An cosωnt+Bn sinωnt) sin
ωnx
c , (5.147)

where ωn = nπc/l is the frequency of the normal mode. An arbitrary vibration can
be decomposed as superpositions of these modes,

Y (x, t) =
∑

n

Yn(x, t) . (5.148)

As an initial condition we assume that the string is at a position Y (x, 0) = Y0(x) with
the velocity V (x, 0) = V0(x) at all points. Then,

Y0(x) =
∑

n

Yn(x, 0) =
∑

n

An sin
ωnx
c (5.149)

and V0(x) =
∑

n

d

dt
Yn(x, 0) =

∑

n

ωnBn sin
ωnx
c .

10Include Matlab sound examples here!
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We find the amplitudes by calculating the integrals,

2

l

∫ l

0

Y0(x) sin
ωnx
c dx =

2

l

∑

m

Am

∫ l

0

sin mπx
l sin nπx

l dx = An (5.150)

2

l

∫ l

0

V0(x) sin
ωnx
c dx =

2

l

∫ l

0

∑

m

ωnBm sin mπx
l sin nπx

l dx = ωnBn .

We now assume that the rope is initially excited by a triangular deformation, that
is, we pull the rope in its middle up to a distance d and let go. That is, the initial
conditions are given by,

V0(x) = 0 and
π

2d
Y0(x) =

{
πx
l

π(l−x)
l

for
0 < πx

l < π
2

π
2 <

πx
l < π

. (5.151)

We can compare this function with the triangle function Eq. (5.134) and make the
same Fourier expansion as in (5.136),

π

2d
Y0(x) =

4

π

∑

n=1,3,...

(−1)(n−1)/2
n2

sin nπx
l . (5.152)

Comparing this expansion with (5.149), we find Bn = 0 and,

∑

m

Am sin ωmx
c = Y0(x) =

2d

π

4

π

∑

n=1,3,...

(−1)(n−1)/2
n2

sin nπx
l . (5.153)

yielding for odd coefficients m = 1, 3, ..,

An =
8d

n2π2
(−1)(n−1)/2 . (5.154)

Thus, the vibration of the string is completely described by,

Y (x, t) =
8d

π2

∑

n=1,3,...

(−1)(n−1)/2
n2

cosωnt sin
ωnx
c . (5.155)

The energy is the sum of the energies of all normal modes,

E =
∑

n=1,3,...

m

4
ω2
nA

2
n =

∑

n=1,3,...

m
4

(nπc
l

)2( 8d

n2π2

)2

=
∑

n=1,3,...

m
16d2c2

n2π2l2
=

2md2c2

l2
,

(5.156)

knowing
∑
n=1,3,...

1
n2 = π2

8 .

5.4.5 Waves in crystalline lattices

The sound may propagate in a crystalline lattice, for example a metal or a crystal,
by means of longitudinal or transverse vibrations. To understand the propagation of
longitudinal vibrations in a monoatomic lattice, we consider the model of a chain of
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N masses coupled by springs. The treatment for transverse vibrations is analogous.
As we have shown in previous sections, the movement of each mass is described by
the differential equation,

ẍn = ω2
0(xn − xn−1) + ω2

0(xn − xn+1) , (5.157)

with n = 1, .., N . Making the ansatz xn = Ane
−ıωt, we obtain the characteristic

equation,

ω2An = ω2
0(An −An−1) + ω2

0(An −An+1) . (5.158)

When we hit one of the oscillators of a linear chain, we excite a wave that prop-
agates along the chain. Therefore, it is reasonable to guess An = Aeınka for the
displacements of the oscillators, where a ≡ xn+1 − xn is the lattice constant. We
obtain,

ω2 = ω2
0(1− e−ika) + ω2

0(1− eıka) = 2ω2
0(1− cos ka) = 4ω2

0 sin
2 ka

2
. (5.159)

The dispersion relation is shown in Fig. 5.26. Obviously, in the limit of long waves,
ka≪ 1, the relation can be approximated by,

ω = 2ω0

∣∣∣∣sin
ka

2

∣∣∣∣ ≃ ω0ka ≡ ck , (5.160)

where c is the propagation velocity of the wave. This relation is linear, thus repro-
ducing the situation of acoustic waves.

-2 0 2

ka/π

0

0.5

1

1.5

2

ω
(k
)

2 4 6 8 10

n

-1

-0.5

0

0.5

1

x
n

Figure 5.26: (code) Dispersion relation of a one-dimensional crystalline lattice consisting of

20 atoms.

The displacements of individual oscillators are now,

xn(t) = na+Aeınka−ıωt . (5.161)

We need now to discuss, what are the possible values for k. First, since by adding 2π to
the value ka we get the same result, we may concentrate on the region −π < ka < π,
called the first Brillouin zone. And since the crystal is symmetric (we can reverse the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoCristal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoCristal.m
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order of all oscillators), we can assume cyclic boundary conditions, eınka = eı(N−n)ka,
such that (N−2n)ka/2π is an arbitrary integer number for any n, for example n = 0,

k =
2π

Na
· ℓ , (5.162)

for ℓ ∈ N. To stay within the Brillouin zone, we set ℓ = −N2 , .., N2 . That is, we have
N possible values, which corresponds to just half the number of degrees of freedom.

Let us consider particular solutions. In the center of the Brillouin zone, k = 0 we
have,

xn(t) = na+Aeıωt , (5.163)

which corresponds to an in-phase oscillation of all oscillators. On the edge of the
Brillouin zone, k = ±π/a,

xn(t) = na+A(−1)neıωt , (5.164)

which corresponds to a movement, where consecutive oscillators oscillate in anti-
phase.

5.4.5.1 Waves in diatomic crystalline lattices

Many lattices are diatomic, that is, made of two species of atoms with different
masses. For example, the NaCl salt crystal is a lattice alternating Na+ and Cl− ions.
In analogy with the monoatomic lattice we establish the equations of motion,

ẍn = −ω2
x(xn − yn−1)− ω2

x(xn − yn) (5.165)

ÿn = −ω2
y(yn − xn+1)− ω2

y(yn − xn) ,

with ωx,y ≡
√
k/mx,y. Inserting the ansätze xn = Aeı(nka−ωt) and yn = Beı(nka−ωt),

we find the equations,

−ω2A = −ω2
x(2A−Be−ıka −B) (5.166)

−ω2B = −ω2
y(2B −Aeıka −A) ,

or, (
2ω2

x − ω2 −ω2
x(1 + e−ika)

−ω2
y(1 + eıka) 2ω2

y − ω2

)(
A

B

)
= 0 . (5.167)

The characteristic equation is,

0 = det M̂ = (2ω2
x − ω2)(2ω2

y − ω2)− ω2
x(1− e−ıka)ω2

y(1− eıka) , (5.168)

with the solution,

ω2 = ω2
x + ω2

y ±
√
ω4
x + ω4

y + 2ω2
xω

2
y cos ka . (5.169)

For ka≪ 1 we can approximate,

ω2 ≃ ω2
x + ω2

y ±
√

(ω2
x + ω2

y)
2 − ω2

xω
2
yk

2a2 (5.170)

≃ 2(ω2
x + ω2

y) , ω2
xω

2
yk

2a2 .
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The first eigenvalue is called the optical branch and the second the acoustic branch.
The optical branch corresponds to an anti-phase motion of the atoms of the species
x and y. This motion can be excited by light fields. The acoustic branch corresponds
to an in-phase motion of the atoms.

In contrast, for ka ≃ ±π/a we obtain,

ω2 = ω2
x , ω2

y . (5.171)

In these solutions either atom x oscillates while y stays at rest, or the opposite.

-1 -0.5 0 0.5 1

ka/π

0

0.5

1

1.5

2

2.5

ω
(k
)

Figure 5.27: (code) Dispersion relation in a one-dimensional lattice showing in blue the

optical branch and in green the acoustic branch.

5.4.6 Exercises

5.4.6.1 Ex: Fourier expansion

Expand the function f(ξ) = sin3 ξ in a Fourier series.

Solution: Trigonometric rules allow us to calculate,

f(ξ) = sin3 ξ = 3
4 sin ξ − 1

4 sin 3ξ .

But the same result can be obtained by Fourier expansion. For symmetry reasons it
is clear that a0 = 0 = an. The coefficients,

bn =
1√
π

∫ π

−π
sin3 ξ sinnξdξ =

12 sinnπ

n4 − 10n2 + 9

only do not disappear for n = 1 and n = 3. The graph on the left of the figure shows
the two expansion terms separately, while the graph on the right shows the sum f(α).

5.4.6.2 Ex: Fourier expansion of sea waves

Surface waves on the sea are often better described by the function f(x, t) = (kx −
2nπ)2 inside the intervals x ∈ [(2n − 1)π/k, (2n + 1)π/k] com n ∈ N. Expands the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoRamos.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_DispersaoRamos.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion02.pdf
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Figure 5.28: (code)

Figure 5.29: (code)

wave in a spatial Fourier series. Use the formula
∫
z2 cos(bz)dz = 1

b3 [(b
2z2−2) sin bz+

2bz cos bz].

Solution: The coefficients of expansion are,

a0 = 1
π

∫ π

−π
f(x)d(kx) = 1

π

∫ π

−π
(kx)2d(kx) =

u3

3π

∣∣∣∣
π

−π
=

2π2

3

an = 1
π

∫ π

−π
f(x) cosnkxd(kx) = 1

π

∫ π

−π
(kx)2 cosnkxd(kx)

= 1
n3 [(n

2z2 − 2) sinnz + 2nz cosnz]
∣∣π
−π = 4 cosnπ

n2

bn = 1
π

∫ π

−π
f(x) sinnkxd(kx) = 0

f(x) = a0
2 +

∞∑

n=1

(an cosnkx+ bn sinnkx) =
π2

3 + 4

∞∑

n=1

(−1)n
n2 cosnkx .

Note that the function can be parametrized as f(x) = (mod(kx − π, 2π) − π)2 for
numerical treatment.

5.4.6.3 Ex: Fourier expansion of a rectified signal

An alternating electric current can be turned into a signal of half-cycles, f(t) =
| cos ωt2 |, by a diode rectifier bridge. Expand this signal into a temporal Fourier series.

Use the formula
∫
cos(az) cos(bz)dz = sin[(a−b)z]

2(a−b) + sin[(a+b)z]
2(a+b) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_FourierAnalise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_FourierQuadrado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion03.pdf
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Figure 5.30: (code)

Figure 5.31: Fourier expansion of a rectified signal.

Solution: The expansion coefficients are,

a0 = 1
π

∫ π

−π
f(t)d(ωt) = 1

π

∫ π

−π
cos ωt2 d(ωt) =

2
π

∫ π/2

−π/2
cosudu = 2

π sinu
∣∣π/2
−π/2 = 4

π

an = 1
π

∫ π

−π
f(t) cosωtd(ωt) = 1

π

∫ π

−π
cos ωt2 cosnktd(ωt) = 1

π

∫ π

−π
cos z2 cosnzdz = − 4

π
cosπn
4n2−1

bn = 1
π

∫ π

−π
f(t) sinnωtd(ωt) = 0

f(x) = a0
2 +

∞∑

n=1

(an cosnωt+ bn sinnωt) =
2
π + 4

π

∞∑

n=1

(−1)n
4n2−1 cosnωt .

The graph on the left of the figure shows Fourier components, while the graph on the
right shows the original function f(t) as well as the expanded function up to third
order.

5.4.6.4 Ex: Action of a low pass filter on a spectrum

One method of creating a sinusoidal signal in electronics consist in first creating a
rectangular signal via a switching circuit and then pass this signal through a low-
pass filter by cutting off the harmonics. Simulate this procedure using the Fourier
transform method starting from the rectangular signal S(t) = sinωt/| sinωt| with

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_FourierHarmonico.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion04.pdf
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Figure 5.32: (code)

ω/2π = 1kHz and using a low pass filter, such as F (ω) = 1/
(
1 + (ω/ωg)

2
)
, where

the cut-off frequency is, ωg/2π = 1kHz. Evaluate the harmonic distortion of the
rectangular signal and the filtered signal.

Solution: For the function S(t) we calculate the coefficients,

a0 =
ω

π

∫ 2π/ω

0

sinωt

| sinωt|dt = 0 , an =
ω

π

∫ 2π/ω

0

sinωt

| sinωt| cosnωtdt = 0 ,

bn =
ω

π

∫ 2π/ω

0

sinωt

| sinωt| sinnωtdt =
2

π

∫ π

0

sinnαdα = − 2

π

cosπn− 1

n
=

2

nπ
[1− (−1)n] ,

with the consequence,

S(t) =
2

π

∑

n=1,3,...

sinnωt

n
.

Graph (a) shows the amplitudes bn and graph (b) the approximation by the Fourier
series to orders 1, 2, and 20 (red). Attenuating the amplitudes as,

b̃n =
bn

1 + (nω/ωg)2
,

we have,

S(t) =
2

π

∑

n=1,3,...

1

n

sinnωt

1 + (nω/ωg)2
.

Graph (c) shows the amplitudes attenuated by the filter b̃n and graph (d) the Fourier
series approximation to orders 1, 2 and 20 (red). Obviously, the filtered signal is
almost sinusoidal. A higher order filter can improve the result. Calculating the har-
monic distortion of the numerically filtered rectangular signal gives k ≈ 0.1466. For
a second order filter of type 1/

(
1 + (ω/ωg)

4
)
, we obtain k ≈ 0.0018.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_FourierRetificacao.m
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Figure 5.33: (code)

5.4.6.5 Ex: Tuning a violin

What would be the beat frequency between the pitches 3fc′ and 2fg′ if the strings
were tuned logarithmically equidistant.

Solution: It would be,

∆f ≡ 3fc − 2fg = 3 · 2−9/12fa − 2 · 2−2/12fa
= (3 · 2−9/12 − 2 · 2−2/12)fa = 0.002 fa = 0.8858Hz ,

which is enough to be nasty.

5.4.6.6 Ex: String instruments

Imagine a string instrument with 12 strings tuned in quints. How far would be the
highest string from a harmonic of the lowest one.

Solution: We find 27 − (3/2)12 ≃ 1.7Hz.

5.4.6.7 Ex: String instruments

Prepare a list comparing the harmonics up to ninth order in the harmonic and in the
tempered scale.

Solution: The comparison is listed in the following table:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Waves_FiltroPassaBaixa.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion05b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion05c.pdf
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harmonic scale fn tempered scale f̃n (fn − f̃n)/fn
1f = 20 · f 0

2f = 21 · 2f 0

3f = 21 · 32f ≃ 21 · 27/12 · f = 2.9966f 0.11%

4f = 22 · f 0

5f = 22 · 54f ≃ 22 · 24/12 · f = 5.0397f −0.79%
6f = 22 · 32f ≃ 22 · 27/12 · f = 5.9932f 0.11%

7f = 22 · 74f ≃ 22 · 210/12 · f = 7.1272f −1.82%
8f = 23 · f 0

9f = 23 · 98f ≃ 23 · 22/12 · f = 8.9797f 0.23%

5.4.6.8 Ex: Frequency beating of sound waves

To tune a violin a musician first tunes the a-string (’la’) at fa = 440Hz and then plays
two neighboring strings, paying attention to the frequency beats. When playing the
a- and the e-string (’mi’), the violinist hears a beat frequency of 3Hz, and he notes
that this frequency increases as the tension of the e-string increases. (The e-string is
tuned to fe = 660Hz.)
a. Why is there a beat when the two strings are played simultaneously?
b. What is the vibration frequency of the e-string when the beat frequency it gener-
ates together with the a-string is 3Hz?
c. If the tension on the e-string is 80N for a beat frequency of 3Hz, what tension
corresponds to a perfect tuning of the string?

Solution:

Figure 5.34: Circulo de quintas.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion06.pdf
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5.4.6.9 Ex: Frequency beating of sound waves

A violinist tries to tune the strings of his instrument.
a. Comparing the a-string (’la’) to a tuning fork (νdia = 440Hz), he hears a beat
with the frequency 1Hz. By increasing the tension on the rope, the beat frequency
increases. What was the frequency of the ’a’-string before the tension increased?
b. After having adjusted the a-string the violinist wants to tune the d-string (’re’). He
realizes that the second harmonic 3νd produces with the first harmonic of the a-string
(2νa) a beat of 1Hz. Decreasing the tension of the d-string the beat disappears. What
was the initial frequency of the d-string and by what percentage does the violinist
need to decrease the tension of the string?

Solution: a. The beat frequency is,

1
2 (νfrk − νa) = ±1Hz .

Since νa ∝
√
FT and noting that, by increasing the voltage, an increase in the beat

frequency is observed, we conclude νa > νfrk. Hence, νa = 402Hz.
b. We know

1
2 (3νd − 2νa) = ±1Hz .

Since by decreasing the tension (and therefore the frequency) of the d-string the har-
monic frequencies coincide, we deduce,

νd =
2
3νa +

2
3 Hz = 294Hz .

After tuning we have ν′d =
2
3νa = 293.3Hz. Hence,

FT /µ

F ′T /µ
=

(
νd
ν′d

)2

=

(
293.3

294

)2

= 99.6% .

5.4.6.10 Ex: Normal modes on a string

A stretched wire of mass m, length L, and tension T is triggered by two sources, one
at each end. Both sources have the same frequency ν and amplitude A, but are out of
phase by exactly 180◦ with respect to each other. (At each end there is an anti-node.)
What is the lowest possible value of ω consistent with the stationary vibrations of the
wire?

Solution: It is λ = 2L and hence,

ω = 2π
c

λ
= 2π

√
T/µ

2L
= 2π

√
TL/m

2L
= π

√
T

Lm
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion08.pdf
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5.4.6.11 Ex: Normal modes on a string

a. Find the total vibration energy of a wire of length L fixed at both ends and
oscillating in its n-th characteristic mode with amplitude A. The tension on the wire
is T , and its total mass is M . (Suggestion: Consider the integrated kinetic energy
at the instant when the wire is straight.)
b. Calculate the total vibration energy of the same wire vibrating in the following
superposition of normal modes:

Y (x, t) = A1 sin
πx
L cosω1t+A3 sin

3πx
L cos(ω3t− π

4 ) .

You should be able to verify that it is the sum of the energies of the two modes taken
separately.

Solution: a. The function describing the n-th mode can be written as,

Y (x, t) = sin
nπx

L
cosωnt .

The kinetic energy of each mass element of the wire is,

d

dt
Y (x, t) = −A1ωn sin

nπx

L
sinωnt .

At the moments when the rope is stretched, ωnt = π/2 +Nπ, the energy is,

d

dt
Y (x, t) = −A1ωn sin

nπx

L
.

The spatial integral gives the total energy,

E =

∫ L

0

m/L

2

(
d

dt
Y (x, t)

)2

dx = A2
1ω

2
1

m

2L

L

nπ

∫ nπ

0

sin2 ξdξ = A2
1ω

2
1

m

2L

nπ

2
= A2

1

mω2
n

4
.

With

ωn = 2π
c

λn
= 2π

√
T/(m/L)

2L/n
= π

√
Tn2

mL
,

we have,

E =
A2

1n
2π2T

4L
.

b. We consider the stationary wave at time, t = 0. At this instant, ...

5.4.6.12 Ex: Normal modes on a string

A wire of length L is attached at both ends under a tension T . The wire is pulled
sideways by a distance h from its center, such that the rope adopts a triangular shape,
and the it is released.
a. What is the energy of the subsequent oscillations. Suggestion: Consider the work
that needs to be done against the tension to give the wire its initial deformation,
and suppose that the tension remains unchanged upon a slight increase of its length

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion10.pdf
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caused by transverse the displacements.
b. How many times will the triangular shape reappear?

Solution: a. The work is,

W =

∫ h

0

Fdh′ = 2

∫ h

0

T sinαdh′ = 2T

∫ h

0

h′dh′√
h′2+(L/2)2

= LT

∫ 2h/L

0

zdz√
z2+1

= LT

(√
1 +

(
2h
L

)2 − 1

)
≃ 2h2T

L .

b. Periodicity is given by the fundamental vibration.

5.4.6.13 Ex: Waves on a rope

A string with linear mass density µ is attached at two points distant from each other
by L = 1m. A mass m = 1kg is now attached to one end of the rope that goes
through a pulley, as shown in the figure. Excited by a vibrating pin with frequency
f = 1kHz the string performs transverse vibrations with wavelength λ = 2L.
a. Calculate the propagation velocity of the wave.
b. At what frequency should the pin excite the rope to observe the third oscillation
mode (three anti-nodes)?
c. Now the mass is doubled. Calculate the new speed of sound.
d. How should the mass be chosen to obtain a fundamental mode frequency equal to
the frequency of the third mode calculated in (b)?

1. (3,0) Uma corda com densidade linear de massa µ é presa em dois pontos distantes
de L = 1 m. Uma massa m = 1 kg é fixada à uma das extremidades da corda
que passa por uma roldana, como mostra a figura abaixo. Excitada por um pino
vibrante com a frequência f = 1 kHz a corda executa vibrações transversais com o
comprimento de onda λ = 2L.

(a) Calcule a velocidade do som.

(b) Agora, a massa é substitúıda por uma massa m′ = 4m. Calcule a nova veloci-
dade do som.

(c) Assumindo esta nova velocidade do som, com qual frequência o pino deve
excitar a corda para observar o terceiro modo (três anti-nós) de oscilação?

2

Figure 5.35: Waves on a rope.

Solution: a. We have,

v = λnfn =
2L

n
fn .

Hence, v1 = 2Lf1 = 2km/s.
b. To calculate the frequency, we let,

v′ = λ3f3 =
2L

3
f3 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_FourierExpansion11.pdf
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Hence, f3 =
3v′1
2L = 3kHz.

c. We have,

v′ =

√
m′g
µ

=
√
2

√
mg

µ
=
√
2v .

Hence, v′1 = 2.82 km/s.
d. We have,

3 =
v′

v
=

√
m′g
µ

µ

mg
=

√
m′

m
.

Hence, m′ = 9m ≈ 9 kg.

5.5 Matter waves

Quantum mechanics tells us that light sometimes behaves like particles and matter
like waves. Letting us guide by this analogy we will, in the following, guess the fun-
damental equations of motion for the propagation of matter waves from a comparison
of the respective dispersion relations of light and massive particles.

5.5.1 Dispersion relation and Schrödinger’s equation

On one hand, the propagation light is (in the vacuum) is described by the dispersion
relation ω = ck or,

ω2 − c2k2 = 0 . (5.172)

Since light is a wave it can, in the most general form, be described by a wavepacket,A(r, t) =∫
eı(k·r−ωt)a(k)d3k. It is easy to verify that the wave equation,

∂2

∂t2
A− c2∇2A = 0 , (5.173)

reproduces the dispersion relation.
On the other hand, slow massive particles possess the kinetic energy,

E =
p2

2m
. (5.174)

With de Broglie’s hypothesis that even a massive particle has wavelength, we can
try an ansatz 11 for a wave equation satisfying the dispersion relation (5.174). From
Planck’s formula, E = ℏω, and the formula of Louis de Broglie, p = ℏk, describ-
ing the particle by a wavepacket not being subject to external forces ψ(r, t) =∫
eı(k·r−ωt)ϕ(k)d3k, it is easy to verify that the differential equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∇2

)
ψ , (5.175)

11Kick, work hypothesis, guess.
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reproduces the dispersion relation. If the particle is subject to a potential, its total
energy is E = p2/2m + V (r, t). This dispersion relation corresponds to the famous
Schrödinger equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∆+ V (r, t)

)
ψ . (5.176)

Since we accept that light particles and lenses behave like a wave, to calculate their
trajectories, we must determine the potential landscape V (r) in which this particle
moves before solving the Schrödinger equation. This is the role of wave mechanics,
which is one of the formulations of quantum mechanics.

5.5.1.1 Scalar waves and vectorial waves

The electromagnetic field is a vector field, since E⃗(r, t) and B⃗(r, t) are vectors. There-
fore, it has a polarization. In contrast, the field of matter ψ(r, t) is a scalar field
and therefore does not have the degree of freedom of polarization, in analogy with
sound. This has important consequences, for example, the fact that two collinear light
fields with orthogonal polarizations do not interfere has no analogue with matter wave
fields.

5.5.2 Matter waves

Broglie’s formula assigns a wave to each body, The wavelength decreases as the veloc-
ity of the particle grows. The necessity to describe a massive particle as a matter wave
depends on the relationship between its Broglie wavelength and other characteristic
quantities of the system under consideration. If the wavelength is large, we expect
typical interference phenomena for waves; if the wavelength is small, the particle will
behave like a mass, which is perfectly localized in space and incapable of interfering.

Characteristic features of the system may be, for example, the presence of a narrow
slit diffracting the Broglie wave of an atom or an electron passing through it. Another
characteristic feature is the average distance between several atoms. In fact, when an
atomic gas is so cold, that is, composed of atoms so slow, that the Broglie wavelength
of the atoms is longer than the average distance, then the atoms interfere with each
other. In the case of bosonic atoms, the interference will be constructive, resulting
in a matter wave of gigantic amplitude. This phenomenon is called Bose-Einstein
condensation 12.

Before calculating the temperature required for this phenomenon to happen, we
need to inform the reader, that the interatomic distance can not be compressed arbi-
trarily, because below distances of typically d̄ = 1 µm, the gas tends to form molecules.
For the Broglie waves of different atoms to interfere, the wavelength must be longer.
The average velocity of the atoms in a gas of temperature T is given by,

m

2
v̄2 =

kB
2
T .

Therefore, the temperature of the gas must be,

T =
mv̄2

kB
=

p̄2

kBm
=

ℏ2k̄2

kBm
=

4π2ℏ2

kBmλ2dB
<

h2

kBmd2
.

12See script on Quantum mechanics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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For rubidium atoms of mass m = 87u we calculate T < 200 nm.
The development of powerful experimental techniques allowed in 1995 the cooling

of rubidium gases down to such low temperatures and the experimental realization
of Bose-Einstein condensates, that is, matter waves made up of 106 atoms. See
Exc. 5.5.3.1.

5.5.3 Exercises

5.5.3.1 Ex: Interference in Bose-Einstein condensates

Calculate the periodicity of the interference pattern of two Bose-Einstein condensates
supposed to have intrinsic temperatures T = 0 interpenetrating at a relative velocity
v = 1mm/s.

Solution: The periodicity is d = λdB

2 = 2π
2k = 2πℏ

2mv = 2.3µm.

5.6 Further reading

H.M. Nussenzveig, Edgar Blucher (2014), Curso de F́ısica Básica: Fluidos, Vibrações
e Ondas, Calor - vol 2 [962]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Waves_CondensadosBoseeinstein.pdf
http://isbnsearch.org/isbn/978-8-521-20801-2
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Chapter 6

Gravitation

6.1 Planetary orbits

6.1.1 Kopernicus’ laws

Nicolaus Copernicus published in 1543 his book De revolutionibus orbium coelestium
in which he states:

1. The planetary orbit is a circle with epicycles.

2. The Sun is approximately at the center of the orbit.

3. The speed of the planet in the main orbit is constant.

Despite being correct in saying that the planets revolved around the Sun, Coper-
nicus was incorrect in defining their orbits. It was Kepler who correctly defined the
orbit of planets as follows:

1. The planetary orbit is not a circle with epicycles, but an ellipse.

2. The Sun is not at the center but at a focal point of the elliptical orbit.

3. Neither the linear speed nor the angular speed of the planet in the orbit is
constant, but the area speed is constant.

6.1.2 Kepler’s laws

Kepler’s laws of planetary motion, published by Johannes Kepler between 1609 and
1619, describe the orbits of planets around the Sun:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

3. The square of a planet’s orbital period is proportional to the cube of the length
of the semi-major axis of its orbit.

The elliptical orbits of planets were indicated by calculations of the orbit of Mars.
From this, Kepler inferred that other bodies in the Solar System, including those
farther away from the Sun, also have elliptical orbits. The second law helps to establish

297
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that when a planet is closer to the Sun, it travels faster. The third law expresses
that the farther a planet is from the Sun, the slower its orbital speed, and vice versa.
Isaac Newton showed in 1687 that relationships like Kepler’s would apply in the Solar
System as a consequence of his own laws of motion and law of universal gravitation.
Do the Excs. 6.1.3.1, 6.1.3.2, and 6.1.3.3.

The eccentricity of the orbit of the Earth makes the time from the March equinox
to the September equinox, around 186 days, unequal to the time from the September
equinox to the March equinox, around 179 days. A diameter would cut the orbit into
equal parts, but the plane through the Sun parallel to the equator of the Earth cuts
the orbit into two parts with areas in a 186 to 179 ratio, so the eccentricity of the
orbit of the Earth is approximately,

e ≈ π

4

186− 179

186 + 179
≈ 0.015 , (6.1)

which is close to the correct value (0.016710218). The accuracy of this calculation
requires that the two dates chosen be along the elliptical orbit’s minor axis and that
the midpoints of each half be along the major axis. As the two dates chosen here are
equinoxes, this will be correct when perihelion, the date the Earth is closest to the
Sun, falls on a solstice. The current perihelion, near January 4, is fairly close to the
solstice of December 21 or 22.

6.1.3 Exercises

6.1.3.1 Ex: Kepler orbits

The moon moves in a good approximation on a circular path with radius R =
384000 km around the Earth. Assume that the Earth’s mass would suddenly de-
crease.
a. How much would the mass have to decrease so that the moon could escape the
Earth?
b. How would the moon’s orbit change if the mass decreased by a factor of 3, 2 or 1.5?

Solution: a. The total energy of the moon rotation is negative,

E = Ekin + Epot =
m$
2
v20 −

γNM&m$
r0

= −m$
2
v20 = −γNM&m$

2r0
.

After the loss of mass, the Earth has the mass M̃& and the moon has the energy,

Ẽ =
m$
2
v20 −

γNM̃&m$
r0

=
γN (M&/2− M̃&)m$

r0
.

In order to escape from Earth, the total energy must be positive. I.e. the mass of the
Earth must be reduced to less than half, M& > 2M̃&.
b. The path of the moon is described by a conic section,

r =
P

1− ε cosϕ and P =
L2

αm$
and ε =

C

αm
=

√
1 +

2L2

α2m
(Ekin + Epot) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_KeplerOrbit01.pdf
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where α = γNM&m$ and the angular momentum of the moon is L = m$ωr
2
0. The

half parameter and the eccentricity are,

P =
ω2r40
γNM&

= r0

ε =

√
1 +

2L2

α2m$
(Ekin + Epot) =

√
1 +

2r0
γNM&m$

(
−γNM&m$

2r0

)
= 0 .

I.e. the moon initially describes a circular orbit. After the mass reduction, the total
energy changes,

ε =

√√√√1 +
2r0

γNM&m$

(
γN (M&/2− M̃&)m$

r0

)
=

√
2− 2M̃&

M&
.

The eccentricity becomes ε = 1 if the reduced mass is M̃& = M&/2. The lunar orbit
then becomes a parabola. The eccentricity becomes ε > 1 if the mass reduction is
larger. The lunar orbit then becomes the hyperbola.

6.1.3.2 Ex: Kepler orbits of missiles

Consider an object of mass m ≪ M& which is launched at an initial velocity v0 (at
an angle θ relative to the Earth’s surface). We neglects any friction.
a. What possible trajectories can the object move on? How does the type of trajectory
depend on the conservation parameters?
b. Calculate the maximum speed that the object may have to move on a closed tra-
jectory. Does this speed depend on θ? Does the projectile always fall back to Earth
when the path is closed?
c. Neglecting the Earth’s rotation calculate the flight distance of the projectile above
the Earth’s surface for velocities below the above-mentioned limit velocity.
Help: Set the center of the Earth in the focal point of the Kepler orbit.

Solution: a. The projectile can move on ellipses, parabolas or hyperbolas, depending
on the initial velocity. The equation of motion is that of a conic section,

r =
P

1− ϵ cosϕ ,

where ϵ =
√
1 + 2l2

α2mE. The conservation parameters are the total energy E = m
2 v

2−
α
r and the angular momentum l. For the projectile to move on a closed path, the
eccentricity must be ϵ < 1, i.e. mv2/2 < α/r. Otherwise it moves on hyperbolas or a
parabola.
b. The escape speed is when R& = 6370 km is the Earth’s radius and M& = 6×1024 kg
its mass,

vf =

√
2α

mR&
=

√
2γNM&
R&

≈ 11.2 km/s .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_KeplerOrbit02.pdf
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It does not depend on the launch angle θ.
c. According to the sketch, θ = 90◦ − ϕ. Hence, the length of the geodesic L =
ϕ
2π2πR& = (90◦ − θ)R&.

6.1.3.3 Ex: Halley’s Comet

The comet Haley moves like a planet on an elliptical orbit around the sun. Its orbital
period is 75 years and the closest distance to the sun is 0.5AE. (One astronomical
unit is the distance from the Earth to the sun, assuming that the orbit of the Earth
around the sun is a circular orbit.)
a. Use this information to calculate the value for the major semi-axis a and the mi-
nor semi-axis b of the comet’s orbit in astronomical units. Use this to determine the
eccentricity ε of the orbit.
b. What is the maximum distance of the comet from the sun?
c. Calculate the minimum and maximum speed of the comet on its orbit.

Solution:

E

a

H
b

S

d

d

E

X
Y

We have T = 75 a, T& = 1a, d = 0.5AE
and dE = 1AE = aE.
a. According to Kepler’s 3rd law,

T 2

a3
=
T 2
&

a3E
=

(1 a)2

(1AE)3
= const .

From this follows

a = 3

√
(1AE)3

(1 a)2
(75 a)2 ≃ 17.78AE .

From the ellipse construction follows,

¯SX + X̄Y = 2 ¯SX = 2a

⇒ ¯SX = a =
√
b2 + (a− d)2

⇒ b =
√
a2 − (a− d)2 =

√
2ad− d2 ≃ 4.19AE .

b. The maximum distance is at the far end of the major semi-axis,

rmax = 2a− d = 35.06AE .

c. The change in the swept area is,

dA

dt
=

1

2

∣∣∣∣r×
dr

dt

∣∣∣∣ =
1

2
|r× r| = |l|

2m
=
Ages
T

=
πab

T
= const .

Since we have at the locations of maximum and minimum distance, or minimum and
maximum speed r ⊥ v,

dA

dt
=

1

2
rv =

πab

T
= const .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_KeplerOrbit03.pdf
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From which follows,

vmin =
2πab

Trmax
≃ 0.178 AE/a and vmax =

2πab

Trmin
≃ 12.48 AE/a .

6.2 Newton’s law

Newton’s law of gravity about the force between two massive bodies,

F = −∇V (r) . (6.2)

can be deduced from a conservative central potential,

V (r) =
γNMm

r
. (6.3)

IfM =M& is the mass of the Earth, a test massm close to the surface (r& ≈ 6378 km)
will be accelerated by,

g =
F

m
= − ∂

∂r

γNM&

r

∣∣∣∣
r=R

&

=
γNM&

R2
&

= 9.81m/s2 . (6.4)

with Newton’s constant,

γN = 6.67 · 10−11 m3/kg s2 . (6.5)

6.2.1 Cosmic velocities

6.2.1.1 First cosmic velocity

The first cosmic velocity is defined as the velocity that a body must have in order to
circle the center of the Earth on an orbit with the Earth’s radius. We calculate this
velocity from the condition that the centripetal force be equal to the centrifugal force,

mv21
r&

= γN
mM&

r2
&

⇒ v1 =

√
γNM&

r&
, (6.6)

yielding v1 ≈ 7.91 km/s = 2.84 · 104 km/h. In Exc. 6.2.3.1 we estimate the mass of
the milky way galaxy from the velocity of the sun and its distance from the galaxy’s
center. In Exc. 6.2.3.2 we compare the heights of stationary orbits around the Earth
and the moon.

Example 23 (Angular velocity of a satellite): Here, we calculate the ve-
locity of a satellite on a circular orbit at a height of 400 km above the Earth’s
surface,

v1 =

√
γNM&
r& + h

,

yielding v1 ≈ 7.66 km/s = 2.76 · 104 km/h.
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6.2.1.2 Escape velocity

The escape velocity or second cosmic velocity is the velocity that a body must have to
be able to leave the Earth’s gravity field completely. We calculate the second cosmic
speed for the Earth from,

Ekin =
m

2
v22 = final− initial energy in the limit final energy → 0 . (6.7)

Hence,

Ekin = 0−
(
−γN

mM&

r&

)
⇒ v2 =

√
2γNM&

r&
= v1
√
2 , (6.8)

yielding v2 ≈ 11.2 km/s = 4.03 ·104 km/h. Apparently, the cosmic velocities v1 and v2
are related. In Exc. 6.2.3.3 and 6.2.3.4 we calculate cosmic velocities for, respectively,
Earth and the comet Tschurjumow-Gerasimenko.

Example 24 (Escape velocity for a satellite): The escape velocity for a satel-

lite that is in a 400 km high orbit above the Earth’s surface is v2 ≈ 10.83 km/s =

3.90 · 104 km/h.

6.2.2 Deriving Kepler’s laws from Newton’s laws

6.2.2.1 Kepler’s first law

The orbits are ellipses, with focal points F1 and F2 for the first planet and F1 and F3
for the second planet. The Sun is placed at focal point F1. The two shaded sectors
A1 and A2 have the same surface area and the time for planet 1 to cover segment
A1 is equal to the time to cover segment A2. The total orbit times for planet 1 and
planet 2 have a ratio (a1/a2)

3/2.

Figure 6.1: Illustration of Kepler’s three laws with two planetary orbits.

6.2.2.2 Kepler’s second law

The area swept by the planet’s trajectory in infinitesimal time steps is,

A(t, t+ dt) = 1
2 |r(t)× ṙ(t)|dt = L

2mdt .

Since central potentials preserve angular momentum,

L̇ =
d

dt
mr× p = m(ṙ× ṙ+ r× r̈) = mr× r̈ = −r×∇V (r) = −r× ∂V (r)

∂r
êr = 0 ,
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for a given time difference dt = t1−t0 the swept area is the same. Angular momentum
is a constant of motion, L̇ = 0, for central potentials.

6.2.2.3 Kepler’s third law

6.2.3 Exercises

6.2.3.1 Ex: Mass of the Milky Way

Estimate the total mass of our galaxy (the milky way) using the parameters of the
orbits of the sun (and the solar system) around the center of the galaxy. Assume that
the major part of the mass of our galaxy is in the form of a uniform sphere (bulge).
The speed of the sun on its way around the center of the galaxy is approximately
v = 250 km/h, the distance of the sun from the center of the galaxy is approximately
r = 28000 ly (light years). To how many stars like our sun does this correspond to?

Solution: We use Newton’s second law, F = ma, with a as centripetal accelera-
tion, a = v2/r , and F as the general law of gravity:

γN
Mm

r2
= m

v2

r
,

where M is the mass of the galaxy and m is the mass of our sun or the solar system.
As a solution we get,

M =
rv2

γN
≈ 3 · 1041 kg .

In terms of number of stars like our sun (M. = 2.0 ·1030 kg) we get about 1011 stars.

6.2.3.2 Ex: Gravitation on Earth and Moon

How high are the orbits of ’geo-stationary’ and ’lunar-stationary’ satellites?

Solution: The equilibrium position r of ’planeto-stationary’ orbits results from,

mv21
r

= γN
mM

r2
with v1 =

2πr

T
,

with T the period for a revolution of the planet around itself. Form this,

r =
3

√
γN

M

4π2
T 2 .

For the Earth with M = M& = 5.97 · 1024 kg and T = 1d we get r = 42200 km. For
the Moon with M$ = 7.35 · 1022 kg and T = 27.3 d we get r = 88400 km.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary02.pdf
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6.2.3.3 Ex: Cosmic velocities

a. How long is the orbital period T of a 1 t satellite on a circular orbit at a height of
20 km around the Earth? How long is the orbital period T of the Earth around the
sun (the mass of the sun is 3.334×105 times larger than that of the Earth)? At what
distance from Earth is the orbit of a satellite geostationary?
b. Calculate the escape velocity from Earth (or cosmic speed) for a person weighing
75 kg.

Solution: a. The satellite is on a stable orbit when the centrifugal force is com-
pensated by gravity,

mω2r =
γNMm

r2

T =
2π

ω
= 2π

√
r3

γNM
.

With r = 6370 km+20 km, M = 5.97× 1024 kg we get T = 1.4128 h. The calculation
bill with r = 1.496 × 108 km and M = 1.99 × 1030 kg yields the sidereal year T =
365.2364 d. A geostationary orbit is obtained for T = d, hence,

r = (γNM)
1/3

(
T

2π

)2/3

≈ 42270 km .

b. The initial kinetic energy compensates for the potential difference, if

m

2
v2 =

γNMm

r
− γNMm

∞ ,

where r is the earth’s radius. So v =
√

2γNM/r ≈ 11.2 km/s.

6.2.3.4 Ex: Tschurjumow-Gerasimenko

The satellite Rosetta of the ESA (msat = 3000 kg) was placed on an orbit of the comet
Tschurjumow-Gerasimenko (mass mTG = 3.14 · 1012 kg, diameter dTG = 4km).
a. For the satellite to orbit the comet once a terrestrial day, what is the required
height of the orbit?
b. What is the escape velocity from the comet’s surface?

Solution: a. Equilibrium between the gravitational force and the centrifugal force
requires,

F = γN
mTGmsat

h2
= msatω

2h .

Hence,

h =
(
γN

mTG

ω2

)1/3
=
(
γN

mTG

4π2
T 2
)1/3

= 3.4 km .

Thus, the satellite should fly 1.4 km above the comet’s surface.
b. The escape velocity is given by,

γN
mTGm

dTG/2
=
m

2
v2esc .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GeoStationary04.pdf


6.3. GRAVITATIONAL POTENTIAL 305

Hence,

vesc =

√
4γNmTG

dTG
= 45 cm/s .

6.3 Gravitational potential

For an arbitrary mass distribution ρ(r) the gravitational potential acting on a test
mass m can be calculated from,

V (r) = −γNm
∫

R3

ρ(r′)
|r− r′|d

3r′ . (6.9)

For a point-mass with mass M located at the origin, r′ = 0, we parametrize ρ(r′) =
Mδ3(r′), and recover Newton’s law,

V (r) = −γN
Mm

r
. (6.10)

The gravitational potential being conservative, trajectories of test masses can sim-
ply be derived by solving the equation of motion,

mr̈ = −∇V (r) = γNm

∫

R3

ρ(r′)
r− r′

|r− r′|3 d
3r′ . (6.11)

If in practice analytic solution are beyond reach, numerical procedure are always
possible.

Example 25 (Gravitational potential in- and outside a homogeneous
sphere): In this example we will calculate the gravitational force that a particle
of mass m is subjected to when placed inside a homogeneous sphere of radius
R at a distance r from its center.
The potential exerted by a mass distribution with the density ρ(r′) on a particle
of mass m located at the position r is,

V (r) = −
∫
ρ(r′)

γNm

|r− r′|d
3r′ = −

∫
sphere

ρ0
γNm

|r− r′|r
′2 sin θ′dr′dθ′dϕ′ . (6.12)

Substituting,

ξ ≡ |r− r′| =
√
r2 + r′2 − 2rr′ cos θ′ (6.13)

dξ

dθ′
=
rr′ sin θ′

ξ
,

we obtain,

V (r) = −
∫
sphere

ρ0
γNmr

′

r
dξdr′dϕ′ =

2πρ0γNm

r

∫ R

0

∫ ξmax

ξmin

r′dξdr′ . (6.14)
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The integration limits follow from the values adopted by ξ for θ = 0 resp. θ = π.
For r ≤ R we have that r′ is always greater than r. Hence, ξ = r′ − r, .., r′ + r.
For R ≤ r we have that r′ is always smaller than r. Hence, ξ = r − r′, .., r′ + r.

V (r) = −2πρ0γNm

r

{∫ R
r

2rr′dr′ +
∫ r
0
2r′2dr′∫ R

0
2r′2dr′

for

{
r ≤ R
R ≤ r . (6.15)

With the sphere’s mass,

M =
4πρ0R

3

3
, (6.16)

the potential becomes,

V (r) = −2πρ0γNm
(
R2 − 1

3
r2
)
θ(R− r)− 2πρ0γNm

2R3

3r
θ(r −R) (6.17)

= −γNMm

(
3

2R
− r2

2R3

)
θ(R− r)− γNMm

1

r
θ(r −R) .

The force can be calculated using the gradient in spherical coordinates,

F = −∇V (r) = −êr ∂
∂r
V (r) (6.18)

= −êrγNMm
r

R3
θ(R− r)− êrγNMm

1

r2
θ(r −R) .

The gravitational acceleration is often specified in units of Gal after Galilei, where
1Gal ≡ 1 cm/s2.

0 1 2

r/R

-10

-5

0

V
(r
)/
m

×107
(a)

0 1 2

r/R
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-5

0

F
(r
)/
m

(b)

0 1 2

r/R

-2

0

2

4

G
(r
)/
m

×10−6

(c)

Figure 6.2: (code) Gravity in- and outside of Earth. (a) Gravitational potential, (b) gravi-

tational force, and (c) radial (blue) and transverse (red) gravity gradient.

The above example shows that

1. outside a spherical mass distribution the gravitational potential can simply be
replaced by that of a point mass sitting at the center of the mass distribution;

2. the superposition principle,

Vρ1+ρ2(r) = Vρ1(r) + Vρ2(r) , (6.19)

allows us to described the impact of mass cavities via simple subtraction

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_EarthGravity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_EarthGravity.m
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In classical mechanics we often describe gravity as a homogenous force field, which
can be derived from a potential scaling linearly with the height above normal ground,

V (h) = mgh . (6.20)

Obviously, this is approximation obtained by linearizing the gravitational potential
on the Earth’s surface. From Newton’s law,

V (r) = −γNMm

r
, (6.21)

using the Taylor expansion:

V (r+h) = eh·∇rV (r) =

∞∑

ν=0

(h · ∇r)
ν

ν!
V (r) = V (r)+(h·∇r)V (r)+

1

2
(h·∇r)(h·∇r)V (r) ,

(6.22)
we get,

V (r+ h) ≃ V (r) + h
γNMm

r2
= V (r) + hgm . (6.23)

In Exc. 6.3.5.1 we derive an expression generalizing Eq. (6.17) to arbitrary isotropic
gravitational potentials. In Excs. 6.3.5.2, 6.3.5.3, 6.3.5.4, and 6.3.5.5 we calculate the
potentials for other isotropic mass distributions. In Exc. 6.3.5.6 we use the super-
position principle to calculate the potential generated by a spherical cavity inside a
homogeneous sphere. In Excs. 6.3.5.7, 6.3.5.8, and 6.3.5.9 we calculate potentials gen-
erated by non-spherical density distributions. In Excs. 6.3.5.10, 6.3.5.11, and 6.3.5.12
we apply the results derived for the Earth’s inner gravitational potential to derive
possible trajectories through boreholes traversing the Earth.

6.3.1 Rotation and divergence of gravitational force fields

The rotation and divergence of gravitational force fields are,

∇2V (r) = ∇ · F(r) = −4πγNmρ(r) (6.24)

∇× F(r) = 0 .

The integral formulation of Eq. (6.24) reads,

∮

∂V

F · dS = −4πγNMm , (6.25)

with M =
∮
∂V

ρ(r)d3r.
The interpretation of these expressions are:

• The Poisson equation relates the divergence of the force field directly to the
density distribution.

• The divergence is nothing else than the diagonal of gravity gradient defined in
Sec. 6.3.2.

• For being conservative, gravitational potentials are rotation-free.
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• The integral over a closed surface is proportional to the enclosed mass.

The Lagrangian density for Newtonian gravity is,

L(r, t) = −ρ(r, t)− 1
8πγN

[∇V (r, t)]2 . (6.26)

Applying the Hamitonian principle to this Lagrangian one recovers the Poisson equa-
tion for gravity.

6.3.2 Gravity gradients

The gravity gradient is a tensor defined as the second derivative of the potential,

Gkl(r) = Glk(r) =
∂gl(r)

∂xk
=

1

m

∂Fl(r)

∂xk
= − 1

m

∂

∂xk

∂V (r)

∂xl
. (6.27)

Inserting the potential (6.9) we obtain,

Gkl(r) = − 1

m

∂

∂xk

∂V (r)

∂xl
= γN

∫
R3

ρ(r′)
∂

∂xk

∂

∂xl

1

|r− r′|d
3r′ (6.28)

= γN

∫
R3

ρ(r′)

|r− r′|5

3(x− x′)2 − (r− r′)2 3(x− x′)(y − y′) 3(x− x′)(z − z′)
3(x− x′)(y − y′) 3(y − y′)2 − (r− r′)2 3(y − y′)(z − z′)
3(x− x′)(z − z′) 3(y − y′)(z − z′) 3(z − z′)2 − (r− r′)2

 d3r′

= γN

∫
R3

ρ(r′)

|r− r′|3Kkl(r− r′)d3r′ ,

defining the kernel,

Kkl(r− r′) ≡ 3(xk − x′k)(xl − x′l)− δkl(r− r′)2

|r− r′|2 . (6.29)

For example, for the gravitational potential generated by a point mass,

V (r) = γN
Mm

r
= γN

Mm√
x2 + y2 + z2

, (6.30)

we find,

Gkl(r) = −
1

m

∂

∂xk

∂V (r)

∂xl
=
γNM

r5



3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz

3xz 3yz 3z2 − r2


 (6.31)

=
γNM

r5
(3xkxl − r2δkl) .

Gravity gradients are often given in units of Eotvos after Eötvös, where 1Eotvos =
10−9 s-2. In Exc. 6.3.5.13 we calculate the gravity gradient tensor of Earth (modeled
as an idealized sphere) at the north-pole.
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Example 26 (Gravitational curvature in- and outside a homogeneous
sphere): The gravitational potential an force in- and outside a homogeneous
sphere have been calculated in the example 25. Using the result we derive the
gravity gradient,

Gkl(r) = − 1

m

∂

∂xk

∂

∂xl
V (r) (6.32)

= −γNM
R3

1 0 0

0 1 0

0 0 1

 θ(R− r) + γNM

r5

3x2 − r2 3xy 3xz

3xy 3y2 − r2 3yz

3xz 3yz 3z2 − r2

 θ(r −R)

= −γNM
R3

δklθ(R− r)− γNM

r3

(
δkl − 3xkxl

r2

)
θ(r −R) .

The example 25 revealed that neither the potential nor the force are discontin-
uous at the sphere’s surface. In contrast, the radial component of the curvature
Gk=l(r = R) is discontinuous at the north pole, while the transverse components
Gk ̸=l(r = R) stay continuous, which is obviously due to the isotropic symmetry
of the potential. To see this better, let us move along the symmetry axis setting
r = rêz,

Gkl(rêz) = −γNM
R3

1 0 0

0 1 0

0 0 1

 θ(R− r)− γNM

r3

1 0 0

0 1 0

0 0 −2

 θ(r −R) .

(6.33)

Applying this results to Earth, be find inside Earth a constant gravity gradient

of −γNM&/R
3

&
= 1.54 · 10−6 s-2.

6.3.2.1 Gravimetry and gravity gradiometry

Gravity-gradiometers measure spatial variations of the gravitational acceleration. Be-
ing obtained as second derivatives of the gravitational potential, they are more sensi-
tive to local mass variations, as nearly homogeneous large scale contributions to the
acceleration are removed. For this reason, gravity-gradiometers need to be less accu-
rate, provided they are sensitive enough. In Exc. 6.3.5.14 we estimate the sensitivity
of modern gravimeters.

Example 27 (Gravitation in- and outside a massive shell): The calcula-
tions of examples 25 and 26 can be generalized for a homogenous massive shell
with density ρ1, inner radius Ri, and outer radius R0. In Exc. 6.3.5.2 we show
that the gravitational potential is,

V (r) = −2πρ1γNm
[
(R2

o −R2
i )θ(Ri − r) (6.34)

+

(
R2
o −

r2

3
− 2R3

o

3r

)
θ(r −Ri)θ(Ro − r) + 2(R3

o −R3
i )

3r
θ(r −Ro)

]
,

the gravitational force,

F(r = −∇V (r) = −êr ∂
∂r
V (r) (6.35)

= êr
4πρ1γNm

3

[(
−r + R3

o

r2

)
θ(r −Ri)θ(Ro − r)− R3

o −R3
i

r2
θ(r −Ro)

]
,
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and the gravity gradient,

Gkl(r) = − 1

m

∂

∂xk

∂

∂xl
V (r) (6.36)

= −4πρ1γN
3

[(
δkl − R3

i

r3

(
δkl − 3xkxl

r2

))
θ(r −Ri)θ(Ro − r)

+
R3
o −R3

i

r3

(
δkl − 3xkxl

r2

)
θ(r −Ro)

]
.

For Ri → 0 we recover the results of example 26. Particularly along the sym-
metry axis,

Gzz(r) = −4πρ1γN
3

[(
1 +

2R3
i

r3

)
θ(r −Ri)θ(Ro − r)− 2

R3
o −R3

i

r3
θ(r −Ro)

]
.

(6.37)

6.3.3 Constants of motion

Trajectories can also be derive exploiting constants of motion. In Excs. 6.3.5.18 to
6.3.5.23 we calculate trajectories of bodies under the influence of gravity.

6.3.4 The virial law

The virial law states,

T = − 1
2

∑

i

Firi . (6.38)

For potentials of the form V (r) = αrk we have,

F = −∇V = −kαrk−1êr . (6.39)

Thus T and V related via,

T = − 1
2

∑

i

Firi =
k
2

∑

i

αrk−1i êri · ri = k
2

∑

i

αrki = k
2V . (6.40)

In Exc. 6.3.5.24 we apply the virial law to a spring pendulum.

Example 28 (The virial law for the harmonic potential and for 1/r-
potentials): The special case k = 2 yields,

V (r) = αr2 ⇒ T = V , (6.41)

and corresponds to a harmonic oscillator with α = 1
2
mω2

0 .
The special case k = −1 yields,

V (r) =
α

r
⇒ T = −1

2
V , (6.42)

and corresponds to a Coulomb potential with α = q1q2
4πϵ0

, respectively a gravita-
tional potential with α = −γNMm.
In the case of the gravitational potential, for positive total energy, we get,

E = T + V > 0 T = − 1
2
V ⇒ E = 1

2
V > 0⇒Mm < 0 . (6.43)
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Thus,

T =
1

2
mv2 = −1

2
V < 0⇒ m < 0 (6.44)

This leads to the demand for negative masses, which is not sensible. The virial

theorem can only apply to bound systems with E < 0.

6.3.5 Exercises

6.3.5.1 Ex: Arbitrary isotropic mass density distributions

a. Generalize the calculation of gravitational potentials and forces exhibited in exam-
ple 24 to arbitrary, but isotropic mass density distributions ρ(r′) = ρ(r′).
b. Study the case of a sharp edge, ρ(r′) ≡ ρ(r′)θ(R− r′).
c. Study the case of a homogeneous distribution, ρ(r′) ≡ ρ0θ(R − r′), for a sphere
with total mass M .
d. Study the case of a parabolic distribution, ρ(r′) ≡ ρ0

(
1− r′2

R2

)
θ(R − r′), for a

sphere with total mass M .

Solution: a. The potential is,

V (r) = −
∫

R3

ρ(r′)
γNm

|r− r′|d
3r′ = −

∫

R3

ρ(r′)
γNm

|r− r′|r
′2 sin θ′dr′dθ′dϕ′

= −2πγNm
∫ ∞

0

ρ(r′)r′2
∫ π

0

sin θ′√
r2 + r′2 − 2rr′ cos θ′

dθ′dr′ .

The solution of the angular integral is,

∫ π

0

sin θ′√
r2 + r′2 − 2rr′ cos θ′

dθ′ =
r [1 + sign(r′ − r)] + r′ [1− sign(r′ − r)]

rr′

=

{
2
r
2
r′

for

{
r′ < r

r′ > r
.

With this,

V (r) = −4πγNm
(∫ r

0

ρ(r′)
r′2

r
dr′ +

∫ ∞

r

ρ(r′)r′dr′
)
,

or,

V (r) = −4πγNm
(∫ r

0

ρ(r′)

(
r′2

r
− r′

)
dr′ +

∫ ∞

0

ρ(r′)r′dr′
)

. (6.45)

The force follows from, F(r) = −∇V (r) = −êr∂rV (r), yielding,

F (r) = −∂V (r)

∂r
= 4πγNm

∂

∂r

∫ r

0

ρ(r′)

(
r′2

r
− r′

)
dr′ . (6.46)

b. Assuming a sharp edge, ρ(r′) ≡ ρ(r′)θ(R− r′), such that,

M = 4π

∫ R

0

ρ(r′)r′2dr′ ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential01.pdf
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Figure 6.3: (code) (a) Radial density distributions, (b) potentials, (c) forces, and (d) gravity

gradients for (blue) a homogeneous sphere, (red) a parabolic density distribution, (green)

a Gaussian density distribution, and (cyan) a homogeneous density distribution with a su-

perposed radial density modulation. The mass and the radius of the sphere are taken from

Earth.

we get,

V (r) = −4πγNm
(∫ r

0

ρ(r′)θ(R− r′)r
′2

r
dr′ +

∫ ∞

r

ρ(r′)θ(R− r′)r′dr′
)

= −4πγNm
{∫ r

0
ρ(r′) r

′2

r dr
′ +
∫ R
r
ρ(r′)r′dr′∫ R

0
ρ(r′) r

′2

r dr
′ for

{
r < R

r > R
.

The force is now,

F (r) = −∂V (r)

∂r

= −4πγNm
{∫ r

0
ρ(r′)r′2dr′ ∂∂r

1
r +

1
r
∂
∂r

∫ r
0
ρ(r′)r′2dr′ − ρ(r)r∫ R

0
ρ(r′)r′2dr′ ∂∂r

1
r

for

{
r < R

r > R

= −4πγNm
{
− 1
r2

∫ r
0
ρ(r′)r′2dr′

− 1
r2

∫ R
0
ρ(r′)r′2dr′

for

{
r < R

r > R
.

c. Assuming a homogeneous density distribution, ρ(r′) ≡ ρ0θ(R− r′), such that,

M = 4πρ0

∫ R

0

r′2dr′ =
4π

3
R3ρ0 ,

we get,

V (r) = −γNMm

{
3
2R − r2

2R3

1
r

for

{
r < R

r > R
.

The force is now,

F (r) = γNMm

{
r
R3

1
r2

for

{
r < R

r > R
.
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d. Assuming a parabolic density distribution, ρ(r′) ≡ 15M
8πR3

(
1− r′2

R2

)
θ(R − r′), such

that,

M = 4π

∫ ∞

0

ρ(r′)r′2dr′ = 4πρ0

∫ R

0

(
1− r′2

R2

)
r′2dr′ =

8πR3ρ0
15

,

we get,

V (r) = −4πγNm
15M

8πR3





∫ r
0

(
1− r′2

R2

)
r′2

r dr
′ +
∫ R
r

(
1− r′2

R2

)
r′dr′

∫ R
0

(
1− r′2

R2

)
r′2

r dr
′ for

{
r < R

r > R

= −15γNMm

2R3





∫ r
0

(
1− r′2

R2

)
r′2

r dr
′ +
∫ R
r

(
1− r′2

R2

)
r′dr′

∫ R
0

(
1− r′2

R2

)
r′2

r dr
′ for

{
r < R

r > R
.

6.3.5.2 Ex: Gravitational potential of a spherical shell

Consider a spherical shell with an inner radius a and an outer radius b.
a. Calculate the gravitational potential inside the sphere, inside the shell material and
outside the sphere. (Help: Substitute the distance between the test particle m and
a point of the mass distribution and make a case distinction for the integration limits
for this distance variable.)
b. Calculate the force on a test particle.
c. Specify now for a massive sphere.
d. Specify for a very thin spherical shell.

Solution: a. The potential exerted by a mass distribution with density ρ(r′) on a
particle of mass m located at the position r is,

V (r) = −
∫
ρ(r′)

γNm

|r− r′|d
3r′ = −

∫

shell

ρ0
γNm

|r− r′|r
′2 sin θ′dr′dθ′dϕ′ .

Substituting,

R ≡ |r− r′| =
√
r2 + r′2 − 2rr′ cos θ′

dR

dθ′
=
rr′ sin θ′

R
,

we obtain

V (r) = −
∫

shell

ρ0
γNmr

′

r
dRdr′dϕ′ =

2πρ0γNm

r

∫ b

a

∫ Rmax

Rmin

r′dRdr′ .

The integration limits follow from the values adopted by R for θ = 0 respectively θ = π.
For r ≤ a we have that r′ is always larger than r. Therefore, R = r′− r, .., r′+ r. For
b ≤ r we have that r′ is always less than r. Hence, R = r − r′, .., r′ + r.

V (r) = −2πρ0γNm

r





∫ b
a
2rr′dr′∫ b

r
2rr′dr′ +

∫ r
a
2r′2dr′∫ b

a
2r′2dr′

for





r ≤ a
a ≤ r ≤ b
b ≤ r

.
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The result is,

V (r) = −2πρ0γNm





b2 − a2
b2 − 1

3r
2 − 2

3
a3

r
2
3
b3−a3
r

for





r ≤ a
a ≤ r ≤ b
b ≤ r

.

b. The force follows from,

F = −∇V (r) = êr
∂

∂r
V (r) = êr2πρ0γNm





0
2
3
a3

r2 − 2
3r

− 2
3
b3−a3
r2

for





r ≤ a
a ≤ r ≤ b
b ≤ r

.

c. Applying the result for the potential to a massive sphere (a = 0 and M = ρ0V =

ρ0
4πb3

3 ) we have,

V (r) = −γNMm

r

{
3r
2b − r3

2b3

1
for

{
r ≤ b
b ≤ r .

Applying the result for the force to a massive sphere,

F = −êr
γNMm

r2

{
Mr

M

1
for

{
r ≤ b
b ≤ r ,

where Mr ≡ 4πρ0r
3/3.

d. We now calculate the potential for a thin shell, ρ(r′) = ρ0 = σ0δ(r
′ − b) and

M = σ04πb
2. We have,

V (r) = −2πρ0γNm

r

{∫ b
0
2rr′dr′∫ b

0
2r′2dr′

for

{
r ≤ b
b ≤ r

= −2πσ0b
2γNm

r

{
2br

2b2
for

{
r ≤ b
b ≤ r

= −γNMm

r

{
r
b

1
for

{
r ≤ b
b ≤ r .

Applying the result of force to a thin shell,

F = −êr
γNMm

r2

{
0

1
for

{
r ≤ b
b ≤ r .

6.3.5.3 Ex: Two concentric shells

Let us consider two concentric spherical shells of uniform density with masses M1

and M2. Calculate the force on a particle of mass m placed (a) inside the inner shell,
(b) outside the inner but inside the outer shell, and (c) outside the outer sphere.

Solution:
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Exercícios 

1- Calcule a força gravitacional que uma partícula de massa m fica sujeita 

quando colocada no interior da Terra, a uma distância r de seu centro.  

2- Consideremos duas cascas esféricas concêntricas de densidades uniformes 

de massa M1 e M2 como mostra a Fig. 11.3. Calcule a força sobre uma 

partícula de massa m colocada em a, b ou c. 

 

 

 

 

 

Fig. 11.3 

3- “Faz-se uma cavidade esférica numa esfera de chumbo de raio R tal que 

sua superfície toque a superfície externa da esfera maciça e passe pelo 

centro dessa. A massa primitiva da esfera de chumbo é M. Qual será a 

força que a esfera com a cavidade atrairá uma massa m a uma distância d 

do centro da esfera externa, de modo que a massa e o centro da esfera e da 

cavidade estejam alinhados?” (Questão retirada do exame “olímpico” da 

Universidade Estatal de Moscow (1946)). 

4- Mostrar que num túnel cavado através da Terra, ao longo de uma corda e 

não ao longo de um diâmetro, o movimento de um objeto será harmônico 

simples. 

5- Mostrar através de argumentos geométricos que uma partícula de massa m 

colocada no interior de uma casca esférica de densidade uniforme de 

massa fica sujeira a uma força nula, qualquer que seja a posição da 

partícula. O que aconteceria se a densidade superficial de massa não fosse 

constante?  

c 

M2 

M1 

a b 

Figure 6.4:

6.3.5.4 Ex: Gravity influenced by a thin surface layer

Model the Earth as a homogeneous sphere of mass density ρ0 isotropically covered
by a ∆R = 1m thick homogeneous layer with different density ρ1. How does the
gravitational potential depend on the ratio ρ1/ρ0?

Solution: Understanding Earth as a homogeneous sphere, the gravitational poten-
tial, force, and curvature are known. Hence, we may restrict to calculating these
fields for a shell of positive or negative mass, whose fields will add to that of the ho-
mogeneous Earth. Also, as shown in the example 3, only the radial component of the
gravity gradient is discontinuous at density boundaries such as the sphere’s surface.
Hence, we may concentrate our analysis on this component. The mass of the Earth
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G
(r
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(c)

Figure 6.5: (code) Gravity gradient within a thin surface layer.

M without the layer is,

M =
4πρ0R

3

3
.

The potentials generated by the Earth and the outer shell are, respectively, at a location
r outside Earth are,

V&(r) = −2πρ0γNm
2

3

R3

r
êr

V#(r) = −2πρ1γNm
2

3

(R+∆R)3 −R3

r
êr .
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Adding both,

V&(r) + V#(r) = −
4πγNm

3
êr

(
ρ0
R3

r
+ ρ1

(R+∆R)3 −R3

r

)

≃ −γNMm
êr
r

(
1 +

ρ1
ρ0

3∆R

R

)
.

Setting r ≡ R+∆R,

V&(r) + V#(r) ≃ −γNMm
êr

R+∆R

(
1 +

ρ1
ρ0

3∆R

R

)
.

The dependency on the surface density is,

∂[V&(r) + V#(r)]

V&(r)∂ρ1
∆ρ1 = −3∆R

R

∆ρ1
ρ0
≈ 3 · 1m

6378 km

∆ρ1
ρ0
≈ −4.7× 10−7

∆ρ1
ρ0

.

The mean density and gravity gradient of Earth are,

ρ& =
3M&
4πR3

&

≈ 5450 kg/m3 and
4πρ&γN

3
=
γNM&
R3
&

≈ 1.54 · 10−6 s-2 .

Hence, it seems that, if local gravity is uncertain, this will cause an offset, but the
depth-dependence of the gravity gradient should still depend on ρ1.

6.3.5.5 Ex: Gravitational force inside a shell

Show through geometric arguments that a particle of mass m placed inside a spherical
shell of uniform mass density is subject to zero force, regardless of the position of the
particle. What would happen if the surface mass density was not constant?

Solution: Using spherical coordinates, we can divide the spherical shell into mass
elements dm = σR2 sin θdθdϕ, such that,

∫
dm =

∫ 2π

0

∫ π

0

σR2 sin θ′dθ′dϕ′ = 4πR2σ =M .

Each mass element generates a gravitational field at the position r within the shell of

g(r) = −γNM
r2

êr .

Therefore, for each mass element centered at the position θ′, ϕ′ there is an element
centered at the opposite position π−θ′, π+ϕ′ having the same solid angle and exerting
a force of equal intensity but opposite direction.
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6.3.5.6 Ex: Gravitational potential of a massive sphere with spherical
cavity

A spherical cavity is machined into in a lead sphere of radius R such that its surface
touches the outer surface of the massive sphere and passes through the its center.
The primitive mass of the lead sphere is M . What will be the force that the sphere
with the cavity will exert on a mass m at a distance z from the center of the outer
sphere, when the mass and the centers of the sphere and the cavity are aligned?

Figure 6.6: Scheme of the problem.

Solution: The gravitational potential is given by,

V (r) = −γNρ0m
∫

constr

dV ′

|r− r′| = Vouter−sphere(r)− Vinner−cavity(r) .

Defining the mass of the outer sphere and the mass missing in the inner sphere,

Mo =
4π

3
ρ0R

3 , Mi =
4π

3
ρ0

(
R

2

)3

=
Mo

8
,

we get, using the results (6.16),

Vouter−sphere(r) =

{
−γN Mom

R

(
3
2 − r2

2R2

)
êr for r ≤ R

−γN Mom
r êr for r ≥ R

Vinner−cavity(r) =




−γN Mim

R/2

(
3
2 −

|r−R
2 êz|2

2(R/2)2

)
êr for |r− R

2 êz| ≤ R
2

−γN Mim
|r−R

2 êz| êr for |r− R
2 êz| ≥ R

2

.

Along the z-axis, r = zêz, the formulas simplify to,

Vouter−sphere(0, 0, z) =

{
−γN Mom

2R

(
3− z2

R2

)
êz for |z| ≤ R

−γN Mom
|z| êz for |z| ≥ R

Vinner−cavity(0, 0, z) =




−γN Mom

8R

(
3− |z−

R
2 |2

(R/2)2

)
êz for |z − R

2 | ≤ R
2

−γN Mom
8|z−R

2 |
êz for |z − R

2 | ≥ R
2

.

Particular solutions are found for z = 0,

V (0, 0, z = 0) = −γN
5Mom

4R
êz .
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For z = +R we have,

V (0, 0, z = +R) = −γN
3Mom

4R
êz .

For z = −R we have,

V (0, 0, z = −R) = −γN
11Mom

12R
êz ,

and finally for z → ±∞,

V (0, 0, z → ±∞) = −γNMomêz

(
1

|z| −
1

8|z − R
2 |

)
≃ −γN

7Mom

8z
êz .

6.3.5.7 Ex: Gravitational potential of a disk

Calculate the potential of a homogeneous thin disc with the surface density σ =
M/πR2 = ρdz along the axis of symmetry and the gravitational force it exerts on a
mass m.
Help: When integrating over the thickness a of the disk, use the relation:

∫ d
0
zf(z′)dz′ =

f(0)dz.

Solution: The potential of a mass distribution ρ(r′) acting on a test mass m lo-
cated at the position r is,

V (r) = −
∫

disk

ρ(r′)
γNm

|r− r′|d
3r′

= −γNm
∫ a

0

∫ R

0

∫ 2π

0

ρ0
1√

(r − r′)2 + (z − z′)2
r′dr′dz′dϕ′ .

Now be r = zêz.

V (z) = −2πγNmρ0
∫ a

0

∫ R

0

1√
r′′ + (z − z′)2

r′dr′dz′

= −2πγNmρ0
∫ a

0

(√
R2 + (z − z′)2 − (z − z′)

)
dz′ .

For a thin disk ρ(z) ≃ ρ0aδ(z),

V (z) = −2πγNmρ0a(
√
R2 + z2 − z) .

The force is,

F = − d

dz
V (z) = 2πγNmρ0a

(
z√

R2 + z2
− 1

)
.
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6.3.5.8 Ex: Gravitational force of a ring

Calculate the gravitational force of a ring of linear mass density λ =M/2πR = ρdRdz
on the symmetry axis.

Help: When integrating on the thickness of the ring, use the relations:
∫ dz
0
f(z′)dz′ =

f(0)dz and
∫ R+dR

R
f(r′)dr′ = f(R)dR.

Solution: The gravitational potential of a ring around the axis of symmetry êz is,

V (r) = −
∫

ring

γNm

|r− r′|ρ(r
′)dV ′ = −γNM

∫

ring

1

|r− r′|ρ(r
′)r′dr′dz′dϕ′

= −γNmρRdRdz
∫ 2π

0

1∣∣∣∣∣∣



x

y

z


−



R cosϕ′

R sinϕ′

0



∣∣∣∣∣∣

dϕ′ .

For a test mass m located on the symmetry axis, r = zêz,

V (r) = −γNmλR
∫ 2π

0

1∣∣∣∣∣∣



0

0

z


−



R cosϕ′

R sinϕ′

0



∣∣∣∣∣∣

dϕ′

= −γNmλR
∫ 2π

0

1√
R2 cos2 ϕ′ +R2 sin2 ϕ′ + z2

dϕ′

= −γNmλR
∫ 2π

0

1√
R2 + z2

dϕ′ = −2πγNmλR
1√

R2 + z2
= − γNMm√

R2 + z2
.

The gradient gives the force, F(r) = −∇V (r), or,

Fz = −
∂V

∂z
= − d

dz

γNMm√
R2 + z2

= −γNMm

s3
z = −γNMm

s2
cosα .

6.3.5.9 Ex: Gravitational oscillation through a ring

Consider a heavy ring of mass M and radius R and a particle of mass m placed in
its center. What is the frequency for small amplitude oscillations in the direction
perpendicular to the plane of the ring?
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Solution: The gravitational potential of a ring around the symmetry axis êz is,

V (r) =

∫

ring

γNm

|r− r′|ρ(r
′)dV ′ = γNm

∫

ring

λδ(z′)δ(r′ −R′)∣∣∣∣∣∣



x

y

z


−



r′ cosϕ′

r′ sinϕ′

z′



∣∣∣∣∣∣

r′dr′dϕ′dz′

= γNmR

∫

ring

λ∣∣∣∣∣∣



x

y

z


−



R cosϕ′

R sinϕ′

0



∣∣∣∣∣∣

dϕ′ .

For a test mass m located on the symmetry axis, r = zêz,

V (r) = γNmR

∫

ring

λ∣∣∣∣∣∣



0

0

z


−



R cosϕ′

R sinϕ′

0



∣∣∣∣∣∣

dϕ′ = γNmR

∫

ring

λ√
R2 cos2 ϕ′ +R2 sin2 ϕ′ + z2

dϕ′

= γNmR

∫

ring

λ√
R2 + z2

dϕ′ = 2πγNmR
λ√

R2 + z2
=

γNMm√
R2 + z2

.

The gradient gives force,

F(r) = −∇V (r)

Fz = −
∂V

∂z
= − d

dz

γNMm√
R2 + z2

= −γNMm

s3
z = mz̈ .

Therefore, the frequency of small oscillations will be,

ω =

√
γNM

s3
.

6.3.5.10 Ex: Intraplanetary oscillation

A body of mass m is placed at a distance r0 from the center of a planet of mass M
and radius R.
a. Calculate the potential energy for 0 ≤ r ≤ ∞. Suppose that the mass density
of the planet is uniform and that the mass m can move within it through a tunnel.
Consider V (∞) = 0. Calculate the velocity as a function of r for r < R knowing that
V (r0) = 0.

Solution: Within the planet the gravitational force is

F =
γNMmr

R3
= mr̈ .

Following Hooke’s law the proportionality F ∝ r produces a harmonic movement,

r = r0 sinωt , v = ωv0 cosωt ,
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with

ω =

√
γNM

s3
.

6.3.5.11 Ex: Shortcut avoiding the Earth’s center

Show that in a tunnel dug through the Earth (not necessarily along a diameter) the
movement of an object will be harmonic.

Solution: Within a massive sphere the gravitational force is,

F =
γNMmr

b3
êr .

Following Hooke’s law the proportionality F ∝ r produces a harmonic movement.

6.3.5.12 Ex: Shortcut through the Earth

a. Two innovative companies make suggestions on how to get mail to New Zealand
as quickly as possible. One company suggests drilling a hole through the Earth, plac-
ing the mail in a fireproof box and allowing it to swing through the hole (smoothly)
through the center of the Earth so that it can be easily received by the recipient in
New Zealand. The other company wants to shoot the mail in a very low orbit of
only 1m above the surface of the Earth at the first cosmic speed (smoothly) to New
Zealand, where it should then be caught by a correspondingly soft pillow. Which of
these two suggestions (if they were feasible) would get the mail faster to destination?
b. Assume that the well was planned incorrectly and that the hole missed the center
of the earth by 100 km. What does the equation of motion look like?
Help: The mass distribution of the earth can be assumed to be homogeneous. Earth
rotation and friction effects are neglected.

m

Figure 6.7:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviPotential12.pdf
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Solution: a. Let m be the mass of mail. For the first company,

mv21
r&

= γN
mM&
r2
&

⇒ v1 =

√
γNM&
r&

⇒ t1 =
1
2U&
v1

=
πr&√
γNM&
r
&

.

Inserting numbers, v1 ≈ 7.91 km/s. Now,

t1 =
1
2 · U&
v1

=
πr&√
γNM&
r
&

,

yielding, t1 ≈ 42.3min.
For the second company: For r < r& the force law applies,

F (r) = −γN
Mm

r&
r ,

thus the force is analogous to that of a spring,

F (r) = −Dr with D = g
M&m

r3
&

.

The movement is a harmonic vibration of the frequency,

ω =
√
D/m =

√
γNM&
R3
&

.

Postal delivery corresponds to half an oscillation period,

t2 =
T

2
=
π

ω
= πrEarth

√
r&/(γN ·M&) ,

and is just as long as the way taking the orbit.
b. .

6.3.5.13 Ex: Gravity gradient caused by underground cavities

In this exercise we discuss whether gravity gradiometry can identify the presence of
underground cavities. We proceed in steps:
a. Assuming a homogeneous density distribution for Earth, calculate the gravity gra-
dient tensor at the north-pole.
b. How does the tensor change in the presence of a point-like mass M1 = 10 tons
located at a distance d = 1m in southern direction.
c. Describe the underground cavity by a spherical void centered at 1m below the
north-pole’s surface at having a radius such that the missing mass corresponds to
10 tons of Earth material.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient01.pdf
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Solution: a. We assume an isotropic mass density distribution for Earth and set
the origin in the north-pole. The potential then reads,

V (r) = γNMm

(
3

2R
− |r+Rêz|2

2R3

)
θ(−r) + γNMm

1

|r+Rêz|
θ(r) .

Since r = 0 at the north-pole, the gravity gradient is,

G(r) =
γNM

R3

−1 0 0

0 −1 0

0 0 1

 θ(−r)

+
γNM

|r+Rêz|5

2x2 − y2 − (z +R)2 3xy 3x(z +R)

3xy 2y2 − (z +R)2 − x2 3y(z +R)

3x(z +R) 3y(z +R) 2(z +R)2 − x2 − y2

 θ(r)

−→ γNM

R3

−1 0 0

0 −1 0

0 0 2

 θ(r) +
γNM

R3

−1 0 0

0 −1 0

0 0 2

 θ(−r) ,

or,

Gkl(0) =
γNM

R3
(1− 3θ(r)δkz)δkl ,

with R = 6378 km.
b. For the additional potential we perform an analogous calculation,

G1(r) =
γNM1

|r+ dêx|5



2(x+ d)2 − y2 − z2 3(x+ d)y 3(x+ d)z

3(x+ d)y 2y2 − z2 − (x+ d)2 3yz

3(x+ d)z 3yz 2z2 − (x+ d)2 − y2




−→ γNM1

d3



2 0 0

0 −1 0

0 0 −1


 ,

with d = 1m. A direct comparison shows,

γNM

R3
≈ 1.5 · 10−6 s-2 and

γNM1

d3
≈ 6.7× 10−7 s-2 .

That is, a gravity gradiometer which is capable of measuring the inhomogeneity of a
’perfect’ Earth is not far from being able to detect inhomogeneities caused by heavy
local masses.
c. The absence of mass can be treated in the same way as the presence. That is, we
can apply the results of (a) and (b) for a ’negative’ mass M1 distributed over spherical
cavity of radius,

R1 =

(
3M1

4πρ&

)1/3

= R&

(
M1

M&

)1/3

≈ 0.76m .
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6.3.5.14 Ex: Gravity gradient upon horizontal density modulation

A gravimeter and a gravity gradiometer are hovering at a distance z over a flat surface
infinitely extended in x and y. The surface has a thickness b and a horizontal density
modulation in x-direction: ρ1(r

′) = ρ1(x
′)θ(b+z′)θ(−z′). Calculate the gravitational

potential, force, and gradients. Consider the particular case of a localized density
modulation: ρ1(x

′) = ρ1θ(x
′)θ(a− x′).

Solution: As the mass distribution is infinite, the potential will naturally diverge.
On the other hand, the force is finite,

F(r) = −γN
∫ ∞

−∞
ρ1(x

′)
∫ 0

−b

∫ ∞

−∞

r− r′
√

(x− x′)2 + y′2 + (z − z′)23
dy′dz′dx′

= −γN
∫ ∞

−∞
ρ1(x

′)



2 arctan b+z

x−x′ − 2 arctan z
x−x′

0

ln (x−x′)2+(z+b)2

(x−x′)2+z2


 dx′ .

The gravity gradient is,

Gkl(r) =
1

m

∂Fl(r)

∂xk

= γN

∫
ρ1(x

′)

∫ 0

−b

∫ ∞
−∞

1√
(x− x′)2 + y′2 + (z − z′)25

×

×

2(x− x′)2 − y′2 − (z − z′)2 0 3(x− x′)(z − z′)
0 0 0

3(x− x′)(z − z′) 0 2(z − z′)2 − (x− x′)2 − y′2

 dy′dz′dx′

= γN

∫
2bρ1(x

′)

[(x− x′)2 + z2][(x− x′)2 + (z + b)2]

(x− x′)2 − z(z + b) 0 (x− x′)(2z + b)

0 0 0

(x− x′)(2z + b) 0 −(x− x′)2 + z(z + b)2

 dx′ .

If the gravimeter or the gravity gradiometer are hovering at a small distance z ≪ b
close to the surface, the force becomes,

F(x, 0, 0)
z≪b−→ −γN

∫ ∞

−∞
ρ1(x

′)




2 arctan b
x−x′

0

ln

(
1 +

(
b

x−x′

)2)


 dx′ ,

and the gradients,

Gkl(x, 0, 0)
z≪b−→ 2γNb

∫ ∞

−∞

ρ1(x
′)

(x− x′)2 + b2
dx′




1 0 b
x−x′

0 0 0
b

x−x′ 0 −1


 .

Assuming a limited density fluctuation ρ1(x
′) = ρ1θ(x

′)θ(a− x′), the force reads,

F(x, 0, 0) = −γNρ1




2a arctan b
x−a − 2x arctan ab

x(x−a)+b2 + b ln x2+b2

(x−a)2+b2
0

x ln (x2+b2)(x−a)2
x2[(x−a)2+b2] + a ln

(
1 + b2

(x−a)2
)
+ 2b arctan ab

x(x−a)+b2


 ,
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and the gradients (using arctanx± arctan y = arctan x±y
1∓xy ),

Gkl(x, 0, 0) = 2γNρ1




arctan ab
x(x−a)+b2 0 1

2 ln
(x−a)2+b2
x2+b2 − ln x−a

x

0 0 0
1
2 ln

(x−a)2+b2
x2+b2 − ln x−a

x 0 − arctan ab
x(x−a)+b2


 .

-2 0 2 4

r (m)

-1

-0.5

0

0.5

1

G
(r
)/
m

×10−6

Figure 6.8: (code) Gravity gradients due to a 1 m deep and 1 m large mass of density

ρ1 = 1300 kg/cm3: (black) horizontal gradient upon horizontal displacement Gxx, (red)

vertical gradient upon vertical displacementGzz, and (blue) horizontal gradient upon vertical

displacement Gxz, and vice versa.

6.3.5.15 Ex: Gravity gradients

a. Modern commercial gravity gradiometers can measure acceleration gradients on the
order of |∇a| ≈ 10−5 s-2. Compare with the gravity gradient on the Earth’s surface.
What is the smallest height difference detectable by a state of the art gradiometer?
b. Calculate the gravity gradient caused by a massive sphere of mass msphere = 10 t
at d = 1m distance?
c. The French company µQuans offers atomic quantum gravimeters with guaranteed
sensitivities of 50µGal /

√
Hz at a cycling frequency of 2 Hz. Assuming the Earth

as a homogeneous sphere, for how long must the signal be integrated to be able to
measure a 1 cm height variation over the Earth’s surface.
d. For how long must the signal be integrated to be able to measure a gravity variation
caused by a 10 t mass at 1m distance.

Solution: a. From Newton’s law,

g =
F

m
=
γNM&
r2

,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_HorizontalGradiometry.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_HorizontalGradiometry.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_HorizontalGradiometry.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ClassicalMechanics/CM_Gravitation_HorizontalGradiometry.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient03.pdf
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where M& is the mass of the Earth and r the distance from the center of the Earth.
We calculate,

∇g
g

=
∂g

g∂r
∇r = −2γNM&

gr3
êr =

−2
r
êr .

This yields at the surface of the Earth (r = R&),

∂g

g∂R
=
−2
R&
≈ −3 · 10−7 m−1 ,

or,
∂g

∂R
=
−2g
R&
≈ −3 · 10−6 s-2 .

So, with state-of-the-art gravity gradiometers we can measure the variation of g due
to height changes of about 3m.
b. The same calculation as in (a) yields,

ad =
γNmsphere

d2
,

and,
∂a

∂d
=
−2γNmsphere

d3
≈ −1.33 · 10−6 s-2 .

c. As we have seen, the gravitational acceleration on Earth is,

∂g

∂R
≈ −3 · 10−6 s-2 = −3µGal/cm .

with the gravimeter’s sensitivity of,

s ≡ ∆g
√
τ =

50µGal√
Hz

,

it should be possible to detect a ∆R = 1 cm elevation in

τ =

(
s
∆R

∆g

1

∆R

)2

=

(
50µGal√

Hz

cm

3.1µGal

1

1 cm

)2

≈ 260 s = 4.3min .

d. The same calculations as in (c) yields,

τ =

(
s
∆R

∆g

1

∆R

)2

=

(
50µGal√

Hz

cm

1.3µGal

1

1 cm

)2

≈
(
50

1.3

)2

= 24.6min .

6.3.5.16 Ex: Acceleration of a mass subject to a circular motion in an
inhomogeneous force field

CommercialGravity Gradient Instruments (GGI) are based on accelerometers mounted
on the border of a disk of radius R rotating at a frequency ω. Let us suppose that the
disk’s rotation axis is the z-axis and that is located inside an inhomogeneous force

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviGradient04.pdf
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field (e.g. gravity) characterized by its gradient tensor (assumed to be constant over
time and over the length scale of R).
a. Calculate the time-dependent acceleration recorded by the accelerometer in radial
direction.
b. The voltage signal delivered by the accelerometer is now added to one delivered by
a second accelerometer sitting on the opposite side of the disk.
c. Finally, the signals are demodulated at 2ω and time-averaged over a period 2π/ω.

Solution: The Taylor expansion of gravitational potential can be written,

V (r+R) = exp(R · ∇r)V (R) = V (r) + (R · ∇r)V (r) + 1
2 (R · ∇r)(R · ∇r)V (r) + ...

= V (r) + 1
2

∑

k=1

Rk
∂V (r)

∂xk
+ 1

2

∑

k,l=1

RkRl
∂2V (r)

∂xk∂xl
+ ...

≡ V (r)− m
2

∑

k=1

Rkak(r)− m
2

∑

k,l=1

RkRlGkl(r) + ... .

a. Describing the trajectory of an accelerometer by,

r+R(t) = r+



R cosωt

R sinωt

0


 ,

the acceleration sensed by the rotating mass is just given by the centripetal force,

arot(t) = −ω2R(t) ,

exerted by the coercive force imposed by the disk, plus possible stationary external force
gradients,

agrd(t) = agrd(r+R(t)) =



ax,grd(x+X(t), y + Y (t), z + Z(t))

ay,grd(x+X(t), y + Y (t), z + Z(t))

az,grd(x+X(t), y + Y (t), z + Z(t))




=




ax,grd(r) +X
∂ax,grd

∂x

∣∣∣
X=0

+ Y
∂ax,grd

∂y

∣∣∣
Y=0

+ Z
∂ax,grd

∂z

∣∣∣
Z=0

ay,grd(r) +X
∂ay,grd

∂x

∣∣∣
X=0

+ Y
∂ay,grd

∂y

∣∣∣
Y=0

+ Z
∂ay,grd

∂z

∣∣∣
Z=0

az,grd(r) +X
∂az,grd
∂x

∣∣∣
X=0

+ Y
∂az,grd
∂y

∣∣∣
Y=0

+ Z
∂az,grd
∂z

∣∣∣
Z=0


 with Gkl ≡

∂ak,grd
∂xl

∣∣∣∣
Xl=0

=



ax,grd(r) +XGxx(r) + Y Gxy(r) + ZGxz(r)

ay,grd(r) +XGyx(r) + Y Gyy(r) + ZGyz(r)

az,grd(r) +XGzx(r) + Y Gzy(r) + ZGzz(r)




=



ax,grd(r) +RGxx(r) cosωt+RGxy(r) sinωt

ay,grd(r) +RGyx(r) cosωt+RGyy(r) sinωt

az,grd(r) +RGzx(r) cosωt+RGzy(r) sinωt


 .

Now, we assume that the mass be in fact an accelerometer oriented such that it mea-
sures only the radial component of the acceleration (simplifying the notation by drop-
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ping the (r)-dependence),

ar(t) = [arot(t) + agrd(t)] ·R(t)

= −ω2R2 +



ax,grd +RGxx cosωt+RGxy sinωt

ay,grd +RGyx cosωt+RGyy sinωt

az,grd +RGzx cosωt+RGzy sinωt


 ·



R cosωt

R sinωt

0




= −ω2R2 + ax,grdR cosωt+ ay,grdR sinωt+

+ 1
2R

2 [Gxx +Gyy + (Gxx −Gyy) cos 2ωt+ (Gxy +Gyx) sin 2ωt] .

b. Now, we assume that on the opposite side of the disk there is a second accelerometer
delivering a signal shifted by ωt −→ ωt + π. The sum of both cancels the terms
oscillating at ω,

a′r(t) = −2ω2R2 +R2 [Gxx +Gyy + (Gxx −Gyy) cos 2ωt+ (Gxy +Gyx) sin 2ωt] .

c. The signals are demodulated at 2ω and time-averaged over a period 2π/ω,

a′r(t) sin 2ωt

=
ω

2π

∫ 2π/ω

0

R2 [Gxx +Gyy + (Gxx −Gyy) cos 2ωt+ (Gxy +Gyx) sin 2ωt] sin 2ωtdt

= R2Gxy

a′r(t) cos 2ωt

=
ω

2π

∫ 2π/ω

0

R2 [Gxx +Gyy + (Gxx −Gyy) cos 2ωt+ (Gxy +Gyx) sin 2ωt] cos 2ωtdt

= 1
2R

2(Gxx −Gyy) .

The GGI thus delivers the components Gxy(r) and Gxx(r) − Gyy(r) of the gravity
gradient tensor as it is moved through space r.

6.3.5.17 Ex: Angular momentum in spherical coordinates

a. Calculate the acceleration, the angular momentum, and its derivative in spherical
coordinates using the result of Exc. 12.3.8.6.
b. Set θ = π

2 in all expressions.
c. Derive the equation of motion for a central potential.

Solution: a. The expressions for position, velocity, and acceleration found in Exc. 12.3.8.6
are,

r = rêr

v = ṙ = ṙêr + rθ̇êθ + ϕ̇r sin θêϕ

a = r̈ = (r̈ − rθ̇2 − ϕ̇2r sin2 θ)êr
+ (2ṙθ̇ + rθ̈ − ϕ̇2r sin θ cos θ)êθ
+ (2ϕ̇ṙ sin θ + 2ϕ̇rθ̇ cos θ + ϕ̈r sin θ)êϕ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory00.pdf


6.3. GRAVITATIONAL POTENTIAL 329

The angular momentum and its derivative follow immediately,

L = r× p = mr(−rθ̇êϕ + ϕ̇r sin θêθ)

L̇ = r× ṗ

= −mr(2ṙθ̇ + rθ̈ − ϕ̇2r sin θ cos θ)êϕ + (2ϕ̇ṙ sin θ + 2ϕ̇rθ̇ cos θ + ϕ̈r sin θ)êθ .

b. With θ = π
2 the expressions simplify to,

r = rêr

v = ṙêr + ϕ̇rêϕ

a = (r̈ − ϕ̇2r)êr + (2ϕ̇ṙ + ϕ̈r)êϕ

L = mωr2êθ

L̇ = r× ṗ = (2ϕ̇ṙ + ϕ̈r)êθ = (êϕ · a)êθ .

c. In a central potential V (r), Newton’s law reads,

ma = −∇V (r)

= −
(
êr

∂

∂r
+ êθ

1

r

∂

∂θ
+ êϕ

1

r sin θ

∂

∂ϕ

)
V (r) = −êr

∂V

∂r
.

Hence for θ = π
2 ,

ar = r̈ = − ∂V

m∂r
+ ϕ̇2r = −∂Veff

m∂r
with Veff (r) = V (r) +

m

2
ω2r2

aϕ = ϕ̈ = −2ϕ̇ṙ

r
= −2ωṙ

r

aθ = θ̈ = 0 .

We finally find L = mωr2êθ and L̇ = 0.

6.3.5.18 Ex: Scattering at a central force, angular momentum

Consider the scattering of a particle of mass M at an attractive central force field
F(r) = − α

r2 êr with α > 0. Far from the force center the velocity of the particle is
given by v∞. The asymptotic distance perpendicular to the velocity for very large
distances from the force center is called the impact parameter b.
a. Determine the relationship between the impact parameter b and the angular mo-
mentum L of the particle.
b. The path of the particle has the shape of a conic section, which in plane polar
coordinates can be parametrized by r = P/(1− ϵ cosϕ). Find ϵ and P as a function
of b, v∞, M and α. c. Find an expression for sin(θ/2). Here, θ is the scattering
angle between the asymptotic orbits of the particle, i.e. the paths of the incoming and
outgoing particles for large distances from the force center.
d. How does θ for constant v∞ depend on the impact parameter b? Discuss the special
cases b = 0 and b→∞.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_GraviTrajectory01.pdf
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Figure 6.9:

Solution: a. The angular momentum is in a central potential L = r×p = rpêz sinβ
s a constant of motion. For t→ −∞ we have β = ϕ and r sinϕ = b. So,

L = mv∞bêz .

b. The force field is,

F = ṗ = −∇V = ∇α
r
= − α

r3
r .

We can now show,

d

dt
(p× L) = ṗ× L = − α

r3
r× (r× p)

= − α
r3

[r(r · p)− p(r · r)] = mα

[
v

r
− r(r · v)

r3

]
=

d

dt
mα

r

r
.

Integration provides a constant of motion, the Lenz vector C = mα r
r − p× L,

r · (p× L) = α
r

r
− r ·C

L2 = mαr − rC cosϕ

L2

mα− C cosϕ
= r =

P

1− ε cosϕ .

So by comparison with the ellipse equation,

P =
L2

αm
=
b2v2∞m

2

αm
and ε =

C

αm
.

For the absolute value of Lenz’s vector C one gets,

C2 = m2α2 + p2L2 − 2mα · r
r
(p× L) = m2α2 + p2L2 − 2mαL2 1

r

= m2α2 + 2mL2

(
p2

2m
− α

r

)
= m2α2 + 2mL2(Ekin + Epot)

= m2α2 +m2L2v2∞ = m2α2 +m4v4∞b
2 ,
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since E = Ekin + Epot =
m
2 v

2
∞ is another constant of motion. In the end,

ε2 = 1 +
m2v4∞b

2

α2
.

c. Consider the ellipse equation r(ϕ) = P
1−ε cosϕ for r → ±∞,

1− ε cosϕ∞ = 0 .

It follows,

θ = ϕ−∞ + ϕ∞ = 2arccos
1

ε

sin θ/2 = sin arccos
1

ε
=
√
1− 1/ε2 =

√√√√
m2v4∞b2

α2

1 +
m2v4∞b2

α2

=

√
κ2

1 + κ2
.

with the abbreviation κ ≡ mv2∞b
α .

d. Given v∞ we have that κ ∝ b. For the case Fall b→ 0 we have that θ = 0, i.e. the
particle is reflected. In the case of b→∞, θ = π, i.e. there is no deviation.

6.3.5.19 Ex: Gravitational force, trajectory

The trajectory of the Kepler problem can be derived from the integral expression:

φ(r) = φ0 +

∫ r

r0

l dr

r2
√

2m(E + α
r )− l2

r2

.

Here E is the total energy, α = γNmM and l = mr2φ̇. We also introduce the
quantities:

p =
l2

mα
and ε =

√
1 +

2El2

mα2
.

a. Convince yourself that, with the substitution ξ = (p/r− 1)/ε, the integral expres-
sion can be written in the form:

φ(r) = φ0 −
∫ 1

ε (
p
r−1)

1
ε (

p
r0
−1)

dξ√
1− ξ2

.

b. Show with the help of energy conservation that the minimum distance from the
force center is determined by rmin = p

1+ε for all values of E.
c. Show that the trajectories for φ0 = π and r = rmin are r(φ) = p

1−ε cosφ , where∫
dx/
√
1− x2 = arcsinx.

d. Confirm that for elliptical trajectories (0 ≤ ε < 1 and p = b2/a2 where a(b), the
major semi-axis follows Kepler’s 3rd law. Use the area theorem.
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Solution: a. The integral can be rewritten with the following substitutions: With
u = 1/v that is dr

r2 = −du, we get,

−l
∫ 1/r

1/r0

du√
2mE + 2mαu− l2u2

.

With x = Pu and P = l2/mα we get,

−
∫

dx√
2El2/mα2 + 2x− x2

.

With y = x− 1 we get,

−
∫

dy√
2El2/mα2 + 1− y2

.

With ξ = y/ϵ and ϵ =
√
1 + 2El2

mα2 we get,

−
∫

dξ√
1− ξ2

.

This results in,

ϕ = −
∫ ξ=(P/r−1)/ϵ

ξ0=(P/r0−1)/ϵ

dξ√
1− ξ2

+ ϕ0 .

b.Energy conservation with ṙ = 0 (turning points):

E =
l2

2mr2
− α

r
,

with u = 1/r and P = l2/mα follows Pu2 − 2u = 2E/α. The solution to this is,

u1,2 =
2±

√
4 + 4 2PE

α

2P
=

1± ε
P

.

The minimum value for r corresponds to a maximum value of u:

for ε < 1 , umax =
1 + ε

P
follows rmin =

P

1 + ε

for ε ≥ 1 , umax =
1 + ε

P
> 0 follows rmin =

P

1 + ε
.

c. For the integral expression we get ϕ = arccos ξ + ϕ0 − arccos ξ0. Insert for ϕ0 = π

the value r0 = rmin and hence ξ0 = P/r0−1
ε = 1:

ϕ = arccos ξ + π − arccos 1 .

Follows ξ = P/r−1
ε = cos(ϕ− π) = − cosϕ and hence r = P

1−ε cosϕ .
d. With the area theorem,

l

2m
=

total area

T
=
πab

T
,
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T 2

a3
=

4m2π2b2

l2a
,

with P = b2

a = l2

mα

T 2

a3
=

4m2π2P

e2
=

4mπ2

α
=

4π2

γNM
= const .

6.3.5.20 Ex: Central force, trajectory

Consider two masses m1 and m2 located at r1 and r2. There is an attractive force
between them of the amount F (r1, r2) = 2λ/|r1 − r2|3 (λ > 0).
a. Specify the angular momentum of the relative motion l and the energy conservation
as a function of r, p and the reduced mass µ, whereby we may designate by E > 0
the total energy of the system.
b. At the time t = 0 we let the relative distance of both particles be rmin, the relative
velocity in the direction of r be zero and φ(rmin) = 0. Determine the relationship
between rmin, E, l, λ and µ. Is it possible to eliminate l and λ from the energy
conservation law? Calculate the function r(t).
c. Express d

dφr(φ) = ṙ/φ̇ as a function of E, l, r and rmin and calculate the trajectory

r(φ).

Solution: a. We have,

E =
1

2
µṙ2 +

l2

2µr2
+
λ

r2
.

b. From (a) follows with ṙ(rmin) = 0,

µ

2
ṙ2 +

l2

2µr2
+
λ

r2
= E =

l2

2µr2min

+
λ

r2min

⇒ l2

2µ
+ λ = Er2min

⇒ E =
µ

2
ṙ2 + E

r2min

r2
.

Separation of variables and integration provides,

dr

dt
=

√
2E

µ

1

r

√
r2 − r2min

⇒
∫

rdr√
r2 − r2min

=

∫ √
2E

µ
dt

⇒ r(t) =

√
r2min +

2E

µ
t2 .
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c. We have,

dr(φ)

dφ
=
ṙ

φ̇
=
r2

l

√
2µE

(
1− r2min

r2

)
.

Separation of variables and integration provides,

∫
dr(φ)

r
√
r2 − r2min

=

∫ √
2µE

l
dφ

⇒ − 1

rmin
arctan

rmin√
r2 − r2min

=

√
2µE

l
φ

⇒ r =

√√√√r2min +
r2min

tan2
(
−√2µE

l rminφ
) =

rmin

sin
(
−√2µE

l rminφ
) =

−rmin

sin

(
φ
√

1 + 2µλ
l2

) .

Hence,

r(φ) =
rmin

cosΩφ
.

6.3.5.21 Ex: Ballistic movement

Consider the movement of an intercontinental missile launched at an inclination of θ0,
as shown in the figure, with speed v0, in the indicated position. Calculate the body’s
trajectory.
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6- Considere o movimento de um míssel intercontinental, lançado segundo 

inclinação θ0 como mostrado na Fig. 11.4, com velocidade v0, na posição 

indicada. Calcule a trajetória do corpo.  

 

 

 

 

 

 

Fig. 11.4  

7- Três corpos idênticos de massa M estão localizados nos vértices de um 

triângulo eqüilátero de lado L. A que velocidade eles devem mover-se se 

todos giram sob a influência da gravidade mútua, em uma órbita circular 

que circunscreve o triângulo, mantido sempre eqüilátero?  

8- Considere um anel maciço de raio R e massa M. Colocamos uma partícula 

de massa m a uma distância d do plano do anel de modo que quando solto 

o corpo tem trajetória sobre a reta perpendicular ao plano do anel 

passando pelo centro do mesmo. Calcule o movimento do corpo de massa 

m (<<M). 

9- Um corpo de massa m é colocado a uma distância r0 do centro de um 

planeta de massa M e raio R. Calcule a velocidade como função de r. 

10- Considere duas massas m e 2m com atração gravitacional. Com que 

velocidade angular elas devem rodar tal que a distância d entre elas fique 

constante? 

11- Um corpo de massa m é colocado a uma distância r0 do centro de um 

planeta de massa M e raio R. Calcule a energia potencial para 0 ≤ r ≤ ∞. 

Suponha que a densidade de massa do planeta seja uniforme e que a massa 

R 
α0 

x 

θ0 
y v0 

Figure 6.10:

Solution:

6.3.5.22 Ex: Rotation of three bodies

Three identical bodies of mass M are located at the vertices of an equilateral triangle
with border length L. How fast should they move, if they all rotate under the influ-
ence of mutual gravity, on a circular orbit that circumscribes the triangle always kept
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equilateral?

Solution: With the distance r of each body from the center of origin, the distance
between the bodies is L = 2r cos 60◦

2 = r
√
3. The centripetal force that must act on

one of the three masses is,

F1 = −Mv2

r
êr .

The gravitational force between two bodies is

F12 = −γNMM

L2
ê12 .

Equilibrium demands F1 = F12 + F13. Hence,

−Mv2

r
= −2γNMM

L2
cos 60◦

2 ,

Which gives,

v =

√
γNM

L
.

6.3.5.23 Ex: Rotation of two bodies

Consider two masses m and 2m with gravitational attraction. At what angular ve-
locity should they rotate so that the distance d between them is constant?

Solution: Both masses revolve around the center of mass located at the point,

0 = rcm =
mrm + 2mr2m

m+ 2m
=

1

3
(rm + 2r2m) .

Hence, rm = −2r2m, or with d = rm + r2m we have d = 3r2m = 3
2rm. Force

equilibrium requests,

mv2m
rm

=
γNm2m

d2
=

2mv22m
r2m

,

which gives,

3v2m
2d

=
γN2m

d2
=

6v22m
d

,

and finally,

vm = 2v2m =

√
4γNm

3d
.
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6.3.5.24 Ex: The virial law

Consider a mathematical spring pendulum with D = 100N/m and an attached mass
of m = 100 g. The average kinetic energy of the pendulum be T = 0.5 J. What is the
mean deflection x and the mean quadratic deflection x2?

Solution: For x, integration over a period of oscillation T = (2πω0)
−1 yields,

x =
1

T

∫ T

0

A · sin (2πω0t+ ϕ) = 0 .

For x2, with E = T + V , we deduce,

T = V = E/2 ⇒ 1

2
mω2

0x
2 = E/2 ⇒ x2 =

E

mω2
0

=
E

D
,

with ω0 =
√
D/m. With E = 2T = 1J we get x2 = 0.01m2 resp.

√
x2 = 10 cm.

Specifying the mass is not required.

6.4 Outlook on general relativity

The fundamental idea of general relativity is the equivalence of inert and heavy mass.
While special relativity follows from Lorentz invariance, general relativity follows from
Lorentz boost invariance, see also Secs. 12.4.3 and 20.5.

Example 29 (Relativistic correction to Newton’s law): .

6.4.1 Gravitational red-shift

The gravitational red-shift ∆ω suffered by a clock of mass m can be estimated from
(see Sec.36.5.2),

ℏ∆ω = m∆V (r)
m , (6.47)

where ∆V (r) is the gravitational potential difference with and without a nearby
heavy mass. The mass of the clock is a measure of its pace: m = E/c2 = ℏω/c2. For
instance, on the surface of Earth we get,

ℏ∆ω = mg∆z =
E

c2
g∆z =

ℏω
c2
g∆z . (6.48)

Hence,
∆ω

ω
=

g

c2
∆z ≃ ∆z · 10−16 m-1 . (6.49)

6.4.2 Exercises

6.5 Further reading

H.M. Nussenzveig, Edgar Blucher (2013), Curso de F́ısica Básica: Mecânica - vol 1
[961]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Gravitation_VirialGravi01.pdf
http://isbnsearch.org/isbn/978-8-521-20801-1


Chapter 7

Classical mechanics

7.1 The Lagrange formalism

Lagrange function L = T − V with holonomic constraints, Fi(r1, r2, r3) = A = const
with i ∈ [1, .., e],

δL

δrj
+

e∑

i=1

λi
∂Fi
∂rj

= 0 . (7.1)

with
δL

δrj
≡ ∂L

∂rj
− d

dt

∂L

∂ṙj
. (7.2)

7.1.1 Exercises

7.1.1.1 Ex: Rigid bodies

Two point masses m and M (m ̸=M) are connected to the ends of a massless wire of
length l, which passes through a hole in a horizontal table; m moves without friction
on the table while M does it vertically under the joint action of gravity and tension
of the wire (disregard also the friction between the wire and the hole).
a. What initial speed must be given to m in order for M to remain at rest below the
table surface?
b. Knowing that the system’s Lagrangian is L = 1

2 (m+M)ṙ2+ 1
2mr

2θ̇2−Mg(r− l) ,
get the equations of motion.
c. Get the conserved quantities and explain the physical meaning of each one.
d. If M were slightly displaced from its vertical position, small oscillations would
occur in the system. Calculate the period of these oscillations.

Solution: a. The balance between centrifugal and gravitational forces requires,

mv2

r
= Fcp = T = Fg =Mg .

Hence,

v =

√
Mgr

m
.

b. Lagrange equations:
∂L
∂q

=
d

dt

L
∂q̇

.
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(a) Que velocidade inicial deve ser conferida a m para queM permaneça
em repouso abaixo da superfície da mesa?

(b) Sabendo que a lagrangiana do sistema é:

L =
1

2
(m+M)ṙ2 +

1

2
mr2�̇2 �Mg(r � l).

obtenha as equações do movimento.

(c) Obtenha as grandezas conservadas e dê o significado físico de cada
uma delas.

(d) Se M for ligeiramente deslocada da sua posição vertical, ocorrerão
pequenas oscilações no sistema. Obtenha o período dessas oscilações.

2. Uma partícula de massa m está sujeita a um potencial unidimensional

V (x) =
1

2
kx2 �

k

4a2
x4,

onde k e a são constantes positivas e �4 < x <4.

2

Figure 7.1:

For q ≡ r:
∂L
∂r

= −Mg +mrθ̇2 = −Mg +
L2

mr2
=

d

dt

L
∂ṙ

= (m+M)r̈ .

where L = mr2θ̇ is the angular momentum. For q ≡ θ:
∂L
∂θ

= 0 =
d

dt

L
∂θ̇

=
d

dt
(mr2θ̇) .

In summary, the equations of the movement are:

(m+M)r̈ = −Mg +mrθ̇2 = −Mg +
L2

mr2

d

dt
(mr2θ̇) =

d

dt
L = 0 .

c. Energy,

E = T+V = 1
2 (m+M)ṙ2+ 1

2mr
2θ̇2+Mg(r−l) = 1

2 (m+M)ṙ2+
L2

2mr2
θ̇2+Mg(r−l) .

Angular momentum,
L = mr2θ̇ .

E and L have no explicit dependence on time and are constant.
d. The effective potential is:

Vef =Mg(r − l) + L2

2mr2
,

the spring constant is k =
d2Vef

dr2

∣∣∣
req

. Calculating the first and second derivatives:

dVef
dr

∣∣∣∣
req

= Mg − L2

mr3

∣∣∣∣
req

= 0 =⇒ L2 =Mmgr3eq

d2Vef
dr2

∣∣∣∣
req

=
3L2

mr4

∣∣∣∣
req

=
3r3eqMmg

mr4eq
=

3Mg

req
,



7.1. THE LAGRANGE FORMALISM 339

we get,

T = 2π
1√
h

M+m

= 2π

√
(M +m)req

3Mg
.

7.1.1.2 Ex: Trapped particle

A particle of mass m is subject to a one-dimensional potential V (x) = 1
2kx

2− k
4a2x

4,
where k and a are positive constants and −∞ < x <∞.
a. Determine the force F (x), obtain the equilibrium points, and determine their na-
ture.
b. Calculate the period of the movement for small oscillations around the stable equi-
librium point.
c. Assume that the particle is at rest at the point x = 0, and that it receives an
impulse that instantly gives it a velocity v oriented in positive x-direction. Discuss
what happens in the following cases:
i. 0 < v ≤ a

√
k/2m ,

ii. v > a
√
k/2m .

d. Sketch the system’s phase diagram (i.e. p = mẋ vs. x, for E(x, p) = cte) for the
various types of movement. Indicate clearly the curve that corresponds to the transi-
tion between periodic and non-periodic motion, as well as the corresponding energy
value.

(a) Determine a força F (x) e obtenha os pontos de equilíbrio, determi-
nando sua natureza

(b) Calcule o período do movimento para pequenas oscilações em torno
do ponto de equílibrio estável.

(c) Assuma que a partícula esteja em repouso no ponto x = 0 e que
receba um impulso que lhe confere, instantaneamente, uma veloci-
dade de módulo v na direção de x positivo. Discuta o que ocorre nos
seguintes casos:

i. 0 < v �
k

m
a

ii. v >
k

m
a.

(d) Esboce o diagrama de fase do sistema (isto é: p = mẋ vs. x, para
E(x, p) = cte) para os diversos tipos de movimento. Indique clara-
mente a curva que corresponde à transição periódico$ não periódico,
bem como o valor da energia correspondente.

3. Um satélite artificial de massa m1 em órbita elíptica em torno da Terra,
tem suas distâncias de máxima e mínima aproximação da superfície do
planeta dadas por h e H, respectivamente. Sabe-se, adicionalmente, que a
máxima aproximação ocorre sobre o Polo Norte. Uma partícula de massa
m2 = m1/10 choca-se centralmente e de forma completamente inelástica
com o satélite, exatamente quando ele está passando sobre o Polo Norte.
No instante da colisão, o módulo da velocidade do satélite era v1 e a

3

Figure 7.2:

Solution: a. The force is,

F = −dV (x)

dx
= −kx+

k

a2
x3 .

The equilibrium points are, where the force goes to zero, that is, we have x = 0 and
x = ±a. As the derivative D(x) ≡ dF/dx = −k + k

a2x
2 is,

D(0) < 0 and D(±a) = 0 ,
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the position x = 0 is stable and the points x = ∓a are labile.
b. For small oscillations we can neglect the fourth order of the potential,

V (x) ≃ k

2
x2 .

Hence,

ω =

√
k

m
.

c. The height of the potential at the points ±α is,

V (±a) = k

4
a2 .

The kinetic energy corresponding to the initial velocity v0 = a
√
k/2m is,

Ekin =
m

2
v2 =

m

2

ka2

2m
=
k

4
a2 .

Therefore, the particle is trapped when v0 = a
√
k/2m.

d. Phase diagram:

-2 -1 0 1 2

x

0

0.5

1

1.5

2

2.5

p

Figure 7.3:

7.1.1.3 Ex: Satellite

An artificial satellite of mass m1 on an elliptical orbit around the Earth has its
maximum and minimum distances from the surface of the Earth given by h and H,
respectively. It is also known that the maximum approximation occurs over the North
Pole. A particle of mass m2 = m1/10 collides centrally and completely inelastically
with the satellite, exactly when it is passing over the North Pole. At the time of the
collision, the absolute value of the satellite’s speed was v1 and the particle had the
same speed, but in the opposite direction to the satellite. Assume that the Earth is
a sphere of uniform density with radius R and mass M ; despise air resistance.
a. Obtain the speed vS of the ’satellite+mass’ system after the collision in terms of
v1?
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b. Obtain the speed v1 of the satellite before the collision.
c. Obtain the energy and the angular momentum of the ’satellite+mass’ system in
terms of quantities that characterize the satellite’s movement before the collision (i.e.,
mass, speed, and position).
d. Obtain the equation for the orbit of the ’satellite+mass’ system.

Solution: a. Moment conservation during the inelastic collision with v2 = −v1
and m2 = m1/10

(m1 +m2)vS = m1v1 +m2v2

=⇒ vS =
m1 −m2

m1 +m2
v1 =

0.9

1.1
v1 .

b. Conservation of energy and angular momentum with rh = RT+h and rH = RT+H,

E ≡ m1

2
v2H −

GMTm1

rH
=
m1

2
v2h −

GMTm1

rh
L ≡ m1rHvH = m1rhvh .

Solving the second equation by vH and replacing in the first,

(
rh
rH

vh

)2

− 2GMT

rH
= v2h −

2GMT

rh

=⇒ vh =

√
2GMT rH
rh(rh + rH)

.

c. Energy at the instant after the collision,

ES =
m1 +m2

2
v2S −

GMT (m1 +m2)

rh
=

(m1 −m2)
2

2(m1 +m2)
v21 −

GMT (m1 +m2)

rh
.

Angular momentum,

L⃗S = (m1 +m2)r⃗h × v⃗S = (m1 +m2)rh
m1 −m2

m1 +m2
v1êL = (m1 −m2)rhv1êL = 9

10 L⃗ ,

d. The equation for the orbit is, according to the problem,

r(ϕ) =
p

1 + ϵ cosϕ
where p =

L2

GMTm
and ϵ =

√
1 +

2EL2

(GMT )2m
.

Substituting ES, LS, and mS we obtain the orbit equation after the collision. The
orbit remains bound (ES < 0), i.e. like an ellipse with the center of the Earth in one
of the foci.

7.1.1.4 Ex: Rigid bodies

A simple pendulum consists of a particle of mass m suspended by an inextensible wire
of length a and with negligible mass. Its suspension point is connected to a support
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that moves horizontally without friction, as shown in the figure. Suppose that the
support is small enough and that the pendulum moves only in the vertical plane.
Using as generalized coordinates x and θ, where x is the horizontal position of the
support and θ the angular displacement of the pendulum, as shown in the figure. The
movement of the system is described by the Lagrangian:

L =
m

2
ẋ2 +

m

2

(
a2θ̇2 + 2aẋθ̇ cos θ

)
+mga cos θ .

a. Get the equation of motion for the coordinate θ.
b. Assuming that the angular displacements are small and that the movement of the
support is harmonic and described by x(t) = x0 cosωt, obtain the general solution
θ(t) of the equation of motion for the coordinate θ.
c. In the case of the previous item, obtain the resonance frequency ωR.
d. Write down the general solution for θ(t), when the initial conditions are θ(0) = 0
and θ̇(0) = 0 and the support moves with the frequency ω < ωR.

Questões de Mecânica Clássica

February 24, 2014

1. Um pêndulo simples é constituido por uma massam pontual suspensa por
um fio inextensível e sem massa de comprimento l. Seu ponto de suspen-
são é conectado a um suporte que é movimentado horizontalmente sem
atrito como mostrado na figura. Assuma que o suporte seja suficiente-
mente pequeno de modo a poder ser considerado pontual e que o pêndulo
possa movimentar-se apenas no plano vertical. Usando como coordenadas
generalizadas x e �, onde x é a posição horizontal do suporte do pêndulo e
� é o deslocamento angular do pêndulo a partir do equilíbrio, o movimento
do sistema é descrito pela lagrangeana abaixo:

L =
m

2
ẋ2 +

m

2

�
l2�̇2 + 2lẋ�̇ cos �

�
+mgl cos �.

(a) Obtenha a equação de movimento para a coordenada �.

d

dt

�
CL
C�̇

�
�

CL
C�

= 0

d

dt

�
ml2�̇ +mlẋ cos �

�
�
�
�mlẋ�̇ sin � �mgl sin �

�
= 0

ml2�̈ +mlẍ cos � �mlẋ�̇ sin � +
�
mlẋ�̇ sin � +mgl sin �

�
= 0

ml2�̈ +mlẍ cos � +mgl sin � = 0

1

Figure 7.4:

Solution: a. Inserting L into the Lagrange equation,

d

dt

∂L
∂θ̇
− ∂L
∂θ

= 0

gives

d

dt

(
ml2θ̇ +mlẋ cos θ

)
−
(
−mlẋθ̇ sin θ −mgl sin θ

)

= ml2θ̈ +mlẍ cos θ −mlẋθ̇ sin θ +mlẋθ̇ sin θ +mgl sin θ

= ml2θ̈ +mlẍ cos θ +mgl sin θ = 0 ,

or

θ̈ +
ẍ

l
cos θ +

g

l
sin θ = 0 .

b. In the limit of small oscillations, cos→ 1 and sin→ θ. This simplifies the equation
of motion to,

θ̈ +
g

l
θ = − ẍ

l
.

Inserting ẍ(t) = −x0ω2 cosωt and defining ω0 =
√
g/l, we obtain the equation of

motion for this particular movement of the support in the limit of small oscillations,

θ̈ + ω2
0θ =

1

l
x0ω

2 cosωt ,
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whose solution is a superposition of the general homogeneous solution (1) with a par-
ticular inhomogeneous solution (2):

θg(t) = a cosω0t+ b sinω0t ,

θp(t) = A cos(ωt+ δ) .

Inserting the particular solution into a differential equation,

A =
x0ω

2

l|ω2
0 − ω2| ,

with the sign + for ω < ω0, i.e. δ = 0 and the sign − for ω > ω0, i.e. δ = −π. (The
sign ± refers to the phase δ, which in this frictionless case is simply ’+’ when ω0 > ω
and ’-’ when ω0 < ω. Finally,

θ(t) = a cosω0t+ b sinω0t±
x0ω

2

l|ω2
0 − ω2| cos(ωt) .

c. We have,
ωR = ω0 =

√
g/l .

d. With the initial condition θ(0) = 0 we have,

α+
x0ω

2

l(ω2
0 − ω2)

= 0 ,

that is, α = − x0ω
2

l(ω2
0−ω2)

. Also,

θ̇(t) = −x0ω
3 sinωt

l(ω2
0 − ω2)

− αω0 sinω0t+ bω0 cosω0t .

that is b = 0. Finally,

θ(t) = − x0ω
2

l(ω2
0 − ω2)

(cosω0t− cosωt) .

7.1.1.5 Ex: Tritium atom

A tritium atom can be classically described as a nucleus with an electric charge +e,
composed of a proton and two neutrons, orbited by an electron of charge −e on a
circular orbit of radius r0. In a process known as β-decay, the nucleus of the tritium
atom turns into an ionized helium atom, whose nucleus is composed of two protons
and one neutron, emitting a pair of particles that quickly escape from the atomic sys-
tem. As a consequence the electron suddenly perceives a new situation now orbiting
a nucleus of charge +2e. The nucleus has a mass large enough to be considered at
rest.
a. Obtain the energy Ea of the electron orbital before β-decay.
b. Calculate the energy Ed of the electron after the β- decay and get the ratio
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ρ = Ea/Ed.
c. Determine the total angular momentum of the electron only as a function of r0 and
the electron mass me.
d. Calculate the largest and smallest distances between the electron and the nucleus
in the new orbit in terms of r0.

Solution: a. The orbit is circular:

mv20
r0

= Felectrostatic =
e2

4πϵ0r20
.

Introducing C = mv20 = e2

4πϵ0r0
and writing the energy Ea of the orbit before the decay:

Ea =
mv20
2
− e2

4πϵ0r0
= − 1

2C .

b. In the instant the decay occurs, the orbital electron has the velocity v0, but its

potential energy has suddenly changed to −2e2
4πϵ0r0

. Hence.

Eb =
mv20
2
− 2e2

4πϵ0r0
= −3

2

e2

4πϵ0r0
= − 3

2C .

So the ratio is,

ρ = Ea/Ed =
1

3
.

c. The electron orbital angular momentum is also constant: it has the same value as
in the instant when the β-decay occurred. Writing down the energy conservation:

Ed = −
3

2

e2

4πϵ0r0
= − 2e2

4πϵ0r0
+
mṙ2

2
+
mr2θ̇2

2
= −2 e2

4πϵ0r0

r0
r

+
mṙ2

2
+
L2θ̇2

2mr2
.

Calculating the angular momentum at the instant of the decay in terms of r0 and m:

L = mr0v0 = mr0

√
1

r

e2

4πϵ0r0
=

√
me2r0
4πϵ0

,

or also
L2

2mr2
=

1

2mr2
me2

4πϵ0r0
r20 =

1

2

e2

4πϵ0r0

r20
r2

=
1

2
C
r20
r2

.

d. For the points of maximum and minimum approximation, ṙ = 0, we get,

−3

2
C = −2C r0

r
+

1

2

r20
r2

.

Hence,
1

2

(r0
r

)2
− 2

r0
r

+
3

2
= 0 ,

with the roots:
r0
r

= 3 and
r0
r

= 1 ,

and hence,

rmax = r0 and rmin =
1

3
r0 .
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7.1.1.6 Ex: Pendulum in a wagon

Consider a mathematical pendulum of mass m and length L suspended in a wagon
of mass M initially at rest, as shown in the figure. Derive the equations of motion
for the pendulum and the wagon including a friction for the movement of the wagon.
Approximate for small oscillation amplitudes.

Figure 7.5: Pendulum in a wagon.

Solution: If X is the position of the wagon, the pendulum position is,

x = L sin θ +X , y = −L cos θ .

So we have four generalized coordinates, θ, θ̇, X, and Ẋ. The kinetic energy of the
system is,

T = M
2 Ẋ

2 + m
2 ẋ

2 + m
2 ẏ

2

= M
2 Ẋ

2 + m
2 (ℓθ̇ cos θ + Ẋ)2 + ℓ2m2 θ̇

2 sin2 θ

= M
2 Ẋ

2 + m
2 ℓ

2θ̇2 +mℓẊθ̇ cos θ + m
2 Ẋ

2 ,

and the potential energy,
V = mgy = −mgℓ cos θ

and the Lagrangian L = T − V . We calculate,

d

dt

∂L
∂θ̇

=
d

dt
(mℓ2θ̇ +mℓẊ cos θ) = mℓ2θ̈ +mℓẌ cos θ −mℓẊθ̇ sin θ

∂L
∂θ

= −mℓẊθ̇ sin θ −mgℓ sin θ
d

dt

∂L
∂Ẋ

=
d

dt
(MẊ +mℓθ̇ cos θ +mẊ) =MẌ +mℓθ̈ cos θ −mℓθ̇2 sin θ +mẌ

∂L
∂X

= 0 .

The Lagrange equations are,

0 =
d

dt

∂L
∂θ̇
− ∂L
∂θ

= mℓ2θ̈ +mℓẌ cos θ +mgℓ sin θ

0 =
d

dt

∂L
∂Ẋ
− ∂L
∂X

=MẌ +mℓθ̈ cos θ −mℓθ̇2 sin θ +mẌ − 0 .
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For small angles,

0 = mℓθ̈ +mẌ +mgθ

0 = (M +m)Ẍ +mℓθ̈ −mℓθ̇2θ ,

or,

ℓθ̈ = −gθ − Ẍ
MẌ = mgθ +mℓθ̇2θ .

The last term corresponds to the centrifugal force and is small for small angles,

θ̈ ≃ −g
ℓ

(
1 +

m

M

)
θ .

7.1.1.7 Ex: Two pendulums in a wagon

Consider two pendulums of mass m and length L suspended inside a wagon of mass
M initially at rest, as shown in the figure.
a. Making the approximation for small oscillation amplitudes, derive the equations of
motion for each pendulum and for the wagon including a damping due to friction of
the moving wagon.
b. Calculate the oscillation frequencies of the collective modes. Which mode is most
subject to friction?

Figure 7.6: Two pendulums in a wagon.

Solution: a. If X is the position of the wagon, the pendulum positions are,

x1 = L sin θ1+X , x2 = L sin θ2+X , y1 = −L cos θ1 , y2 = −L cos θ2 .

So we have six generalized coordinates, θ1, θ̇1, θ2, θ̇2, X and Ẋ. In analogy with the
single-pendulum system we calculate,

T = M
2 Ẋ

2 + m
2 ẋ

2
1 +

m
2 ẋ

2
2 +

m
2 ẏ

2
1 +

m
2 ẏ

2
2

= M
2 Ẋ

2 + m
2 ℓ

2θ̇21 +mℓẊθ̇1 cos θ +
m
2 ℓ

2θ̇22 +mℓẊθ̇2 cos θ2 +mẊ2 ,
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and the potential energy,

V = mgy1 +mgy2 = −mgℓ cos θ1 −mgℓ cos θ2

and the Lagrangian L = T − V . We calculate,

d

dt

∂L
∂θ̇1

= mℓ2θ̈1 +mℓẌ cos θ1 −mℓẊθ̇1 sin θ1
∂L
∂θ1

= −mℓẊθ̇ sin θ1 −mgℓ sin θ1
d

dt

∂L
∂θ̇2

= mℓ2θ̈2 +mℓẌ cos θ2 −mℓẊθ̇2 sin θ2
∂L
∂θ2

= −mℓẊθ̇ sin θ2 −mgℓ sin θ2
d

dt

∂L
∂Ẋ

=MẌ +mℓθ̈1 cos θ1 −mℓθ̇21 sin θ1 +mℓθ̈2 cos θ2 −mℓθ̇22 sin θ2 + 2mẌ

∂L
∂X

= 0 .

Lagrange’s equations become for small angles,

0 = mℓθ̈1 +mẌ +mgθ1

0 = mℓθ̈2 +mẌ +mgθ2

0 =MẌ +mℓ(̈θ1 + θ2)−mℓ(θ̇21θ1 + θ̇22θ2) + 2mẌ .

or neglecting non-linear terms,

Ψ̈ = −g
ℓ
Ψ− 2

ℓ
Ẍ , ℵ̈ = −g

ℓ
ℵ , (M + 2m)Ẍ ≃ −mℓΨ̈ .

or,

Ψ̈ = −g
ℓ

(
1 +

2m

M

)
Ψ , ℵ̈ = −g

ℓ
ℵ , Ẍ =

mg

M
Ψ .

b. The frequencies of the normal modes are ω = 0 for the uniform movement of
the entire system, ω =

√
g/ℓ for the oscillation with opposite phases, and ω =√

g
ℓ (1 + 2m/M) for the in-phase oscillation.

7.1.1.8 Ex: Two pendulums in a wagon attached by a spring

Repeat the previous exercise, but now the car is attached to a wall by a spring k.

Solution: The generalized coordinates and the kinetic energy remain the same, but
the potential energy changes to,

V = −mgℓ cos θ1 −mgℓ cos θ2 +
k

2
X2 .
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Figure 7.7: Two pendulums in a wagon.

Recalculating the Lagrangian L = T − V of the car movement,

d

dt

∂L
∂Ẋ

=MẌ +mℓθ̈1 cos θ1 −mℓθ̇21 sin θ1 +mℓθ̈2 cos θ2 −mℓθ̇22 sin θ2 + 2mẌ

∂L
∂X

= kX .

Lagrange’s equations become for small angles,

0 = mℓθ̈1 +mẌ +mgθ1

0 = mℓθ̈2 +mẌ +mgθ2

0 =MẌ +mℓ(̈θ1 + θ2)−mℓ(θ̇21θ1 + θ̇22θ2) + 2mẌ − kX .

or neglecting non-linear terms,

Ψ̈ = −g
ℓ
Ψ− 2

ℓ
Ẍ , ℵ̈ = −g

ℓ
ℵ , (M + 2m)Ẍ ≃ −kX −mℓΨ̈ .

or,

Ψ̈ = −g
ℓ

(
1 +

2m

M

)
Ψ+

2k

Mℓ
X , ℵ̈ = −g

ℓ
ℵ , Ẍ =

−k
M

X +
mg

M
Ψ .

7.1.1.9 Ex: Super- and subradiance

We consider two pendulums of mass m and length ℓ suspended on a rod of mass M
that itself is suspended to an immobile ceiling by wires of length L, as shown in the
figure. Derive the equations for collective modes including damping for small ampli-
tudes.

Solution: The position of the rod is,

X = L sinΘ , Y = −L cosΘ .

The pendulum positions are,

x1 = ℓ sin θ1 + L sinΘ , y1 = −ℓ cos θ1 − L cosΘ

x2 = ℓ sin θ2 + L sinΘ , y2 = −ℓ cos θ2 − L cosΘ .
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Figure 7.8: Super- and subradiance.

So we have six generalized coordinates, θ1, θ̇1, θ2, θ̇2, Θ e Θ̇. In analogy with the
single-pendulum system we calculate,

T = M
2 Ẋ

2 + M
2 Ẏ

2 + m
2 ẋ

2
1 +

m
2 ẏ

2
1 +

m
2 ẋ

2
2 +

m
2 ẏ

2
2

= 3M
2 L2Θ̇2 + m

2 ℓ
2θ̇21 +mLℓθ̇1 cos θ1Θ̇ cosΘ +mLℓθ̇1 sin θ1Θ̇ sinΘ

+ m
2 ℓ

2θ̇22 +mLℓθ̇2 cos θ2Θ̇ cosΘ +mLℓθ̇2 sin θ2Θ̇ sinΘ

= 3M
2 L2Θ̇2 + m

2 ℓ
2θ̇21 +mLℓθ̇1Θ̇ cos(θ1 −Θ) + m

2 ℓ
2θ̇22 +mLℓθ̇2Θ̇ cos(θ2 −Θ) ,

and the potential energy,

V = mgY +mgy1 +mgy2 = −MgL cosΘ−mgℓ cos θ1 −mgℓ cos θ2 .

The Lagrangian L = T − V is,

d

dt

∂L
∂Θ̇

= 3ML2Θ̈ +mLℓθ̈1 cos(θ1 −Θ)−mLℓθ̇1(θ̇1 − Θ̇) sin(θ1 −Θ)

+mLℓθ̈2 cos(θ2 −Θ)−mLℓθ̇2(θ̇2 − Θ̇) sin(θ2 −Θ)

∂L
∂Θ

= mLℓθ̇1Θ̇ sin(θ1 −Θ) +mLℓθ̇2Θ̇ sin(θ2 −Θ)−MgL sinΘ

d

dt

∂L
∂θ̇1

= mℓ2θ̈1 +mLℓΘ̈ cos(θ1 −Θ)−mLℓΘ̇(θ̇1 − Θ̇) sin(θ1 −Θ)

∂L
∂θ1

= −mLℓθ̇1Θ̇ sin(θ1 −Θ)−mgℓ sin θ1
d

dt

∂L
∂θ̇2

= mℓ2θ̈2 +mLℓΘ̈ cos(θ2 −Θ)−mLℓΘ̇(θ̇2 − Θ̇) sin(θ2 −Θ)

∂L
∂θ2

= −mLℓθ̇2Θ̇ sin(θ2 −Θ)−mgℓ sin θ2 .

The Lagrange equations are,

0 = 3MLΘ̈ +mℓθ̈1 cos(θ1 −Θ)−mℓθ̇21 sin(θ1 −Θ)

+mℓθ̈2 cos(θ2 −Θ)−mℓθ̇22 sin(θ2 −Θ) +Mg sinΘ

0 = ℓθ̈1 + LΘ̈ cos(θ1 −Θ) + LΘ̇2 sin(θ1 −Θ) + g sin θ1

0 = ℓθ̈2 + LΘ̈ cos(θ2 −Θ) + LΘ̇2 sin(θ2 −Θ) + g sin θ2 .
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For small angles and neglecting nonlinear terms,

Θ̈ = − g

3L
Θ− mℓ

3ML
(θ̈1 + θ̈2) , θ̈1 = −g

ℓ
θ1 −

L

ℓ
Θ̈ , θ̈2 = −g

ℓ
θ2 −

L

ℓ
Θ̈ .

or,

Θ̈ = − g

3L
Θ− mℓ

3ML
Ψ̈ , Ψ̈ = −g

ℓ
Ψ− 2L

ℓ
Θ̈ , ℵ̈ = −g

ℓ
ℵ ,

or,

Θ̈ = − 1

1− 2m
3M

g

3L
Θ− 1

1− 3M
2m

ℓg

2L2
ψ , Ψ̈ = − 1

1− 2m
3M

g

L
ψ+

1

1− 2m
3M

2g

3ℓ
Θ , ℵ̈ = −g

ℓ
ℵ .

7.2 The Euler-Lagrange formalism

7.3 The Hamilton formalism

7.4 The Hamilton-Jacobi formalism

7.5 Further reading

H. Goldstein and C.P. Poole and J.L. Safko, Classical mechanics [520]ISBN

http://isbnsearch.org/isbn/978-0-201-65702-9


Chapter 8

Hydrodynamics

8.1 Foundations

8.1.1 Archimedes’ principle, buoyancy

The density of a substance is the quotient between its mass and its volume,

ρ ≡ m

V
. (8.1)

Archimedes’ principle says that

A body immersed in a liquid undergoes the action of an upward force,
whose absolute value is equal to the weight of the volume of liquid dis-
placed by the body.

Let us consider a liquid, with density ρ, in hydrostatic equilibrium inside a container
and highlight a portion of it, with volume V , as shown in Fig. 8.1(a). In order to
have hydrostatic equilibrium, it is necessary that the sum over all forces acting on the
highlighted volume of liquid be zero. One of these forces is the weight,

P = mg = ρV g , (8.2)

of the volume V . The other force is the sum E over all pressure forces that the
remaining liquid exerts on the surface of the volume V , Fig. 8.1(b). That is,

P+E = 0 . (8.3)

Thus, the force E which ’pushes’ the highlighted portion of liquid, has a magnitude
equal to its weight, E = P = ρV g, and is called buoyancy.

In case that the highlighted volume V is filled with another body with density
ρ′ different from that of the liquid ρ, the buoyancy will not change. That is, the
buoyancy E will always be the weight of the liquid of density ρ displaced by the body
of density ρ′ that has been introduced in its interior.

On the other hand, the new weight of the volume is P ′ = ρ′mV . In the case
ρ > ρ′, the body submerged in the liquid will rise to the surface, since the buoyancy
exerted by the liquid will be greater than the weight of the body. Otherwise, when
ρ < ρ′, the submerged body will sink to the bottom of the container. In both cases,
the submerged body will not stay in hydrostatic equilibrium. Resolve the Exc. 8.1.2.1.
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 42

forças que atuam, no volume de líquido destacado, seja nula. Uma 

delas é o peso, gVgmP


 , do volume V. A outra força é a 

resultante, E


, das forças de pressão que o resto do líquido exerce 

na superfície do volume V, figura 2.1b. Ou seja, 0 EP


. Deste 

modo, a força E


 que “empurra” a porção de líquido destacada, 

possui magnitude igual ao peso da mesma, VgPE  , e é 

denominada empuxo. 

Figura 2.1 - Representação das forças que atuam sobre um corpo 
submerso no interior de um líquido. 

 
Fonte: Elaborada pelos compiladores 

 

No caso de aquele volume, V, estar preenchido por outro corpo 

com densidade,   , diferente daquela do líquido,  , o empuxo não 

será alterado. Isto é o empuxo, E, será sempre o peso do líquido de 

densidade   deslocado pelo corpo de densidade    que foi 

introduzido em seu interior. 

No caso em que    , o corpo submerso no líquido deverá 

subir à superfície do mesmo, já que o empuxo exercido pelo líquido 

será maior que o peso do corpo. Caso contrário,    , o corpo 

submerso deverá descer ao fundo do recipiente que contém o 

Figure 8.1: Representation of the forces acting on a body submerged in a liquid.

8.1.2 Exercises

8.1.2.1 Ex: Critical buoyancy and Cartesian diver

A balloon is filled at atmospheric pressure with 1 liter of air. An aluminum weight
of 1 kg is attached to it. The whole setup is now immersed into water. Calculate the
total force acting on the setup as function of the depth of immersion.

Solution: The buoyancy of the balloon is given by,

Bbal = gρwatVbal ,

where the volume of the balloon adjusts to the water pressure at a given depth,

pVbal = NkBT .

Assuming a constant water temperature, we find,

Vbal(z) =
p(0)

p(z)
Vbal(0) ,

where the underwater pressure is,

p(z) = gρwatz + p(0) .

The buoyancy of the aluminum weight is given by,

Bwei = gρwatVAl = mweig
ρwat
ρAl

.

It is independent on the depth, because aluminium is incompressible. The total force
is now,

F = Bbal +Bwei −mweig =
gρwat

gρwatz + p(0)
p(0)Vbal(0) +mweig

ρwat
ρAl

−mweig

≃ p(0)Vbal(0)

z
−mweig

(
1− ρwat

ρAl

)
,
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neglecting the atmospheric pressure p(0). The force balances at F = 0 that is

z0 ≃
p(0)Vbal(0)

mweig
(
1− ρwat

ρAl

) ≃ p(0)Vbal(0)

mweig
,

neglecting the buoyancy of the weight. Hence,

F ≃ p(0)Vbal(0)
(
1

z
− 1

z0

)
.

That for z above the critical depth z0 ≈ 10 m, the force is directed upward. Else
downward.

8.1.2.2 Ex: Buoyancy of a a wooden ball in a liquid

A wooden ball of density m is trapped at depth h in a liquid of density density ρ.
Releasing the ball from its position, determine how high above the surface it will float.

Solution:

8.1.2.3 Ex: Buoyancy of oil

Three containers with false bottoms (see figure) were placed in water at the same
depth. Filling into the three bottles the same amount of oil, which one of the three
bottoms will fall first? Justify!
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(ρHg = 13.6g/cm
3) tal que 1/4 de seu volume fica submerso. 

Acrescentando-se ao sistema água suficiente para cobrir o cubo (ρágua = 

lg/cm3), que fração de seu volume ainda permanecerá imersa no mercúrio? 

 

 

 

 

                     Fig. 12.18                                                                 Fig. 12.19 

5- Uma tábua de comprimento L está apoiada numa pedra e parcialmente 

imersa na água. Conforme mostra a Fig. 12.20, uma porção de 

comprimento a encontra-se acima do ponto de apoio. Sendo d a densidade 

da madeira, que parte da tábua encontra-se submersa? 

 

 

 

 

 

Fig. 12.20                                                       Fig. 12.21 

6- Dentro de um recipiente cônico coloca-se leite. Com o passar do tempo 

ocorre formação de nata, que sendo menos densa fica no topo. Durante 

este processo não há variação de volume, ist é, h permanece constante 

(Fig. 12.21). O que acontece com a pressão no fundo do recipiente? 

Justifique sua resposta. 

7- Numa lata cilíndrica de área A coloca-se água até uma altura h. Determine 

a velocidade v com que a água sai por um orifício de área a localizado no 

fundo. Que quantidade de água deve ser adicionada à lata por unidade de 

nata 

h 

a 

H 
h 

a 

L 

Figure 8.2: Buoyancy of oil.

Solution:

8.1.2.4 Ex: A tank

A lidless rectangular tank, with the dimensions given in the figure, moves with an
acceleration a and contains water up to a height of h (when a = 0). At what value of
the acceleration will the water begin to flow out?

Solution:
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_3.pdf
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(ρHg = 13.6g/cm
3) tal que 1/4 de seu volume fica submerso. 

Acrescentando-se ao sistema água suficiente para cobrir o cubo (ρágua = 

lg/cm3), que fração de seu volume ainda permanecerá imersa no mercúrio? 

 

 

 

 

                     Fig. 12.18                                                                 Fig. 12.19 

5- Uma tábua de comprimento L está apoiada numa pedra e parcialmente 

imersa na água. Conforme mostra a Fig. 12.20, uma porção de 

comprimento a encontra-se acima do ponto de apoio. Sendo d a densidade 

da madeira, que parte da tábua encontra-se submersa? 

 

 

 

 

 

Fig. 12.20                                                       Fig. 12.21 

6- Dentro de um recipiente cônico coloca-se leite. Com o passar do tempo 

ocorre formação de nata, que sendo menos densa fica no topo. Durante 

este processo não há variação de volume, ist é, h permanece constante 

(Fig. 12.21). O que acontece com a pressão no fundo do recipiente? 

Justifique sua resposta. 

7- Numa lata cilíndrica de área A coloca-se água até uma altura h. Determine 

a velocidade v com que a água sai por um orifício de área a localizado no 

fundo. Que quantidade de água deve ser adicionada à lata por unidade de 

nata 

h 

a 

H 
h 

a 

L 

Figure 8.3: Scheme of the tank.

8.1.2.5 Ex: Buoyancy in mercury and water

A cube of a certain material floats in a container containing mercury (ρHg = 13.6 g/cm3)
such that 1/4 of its volume is submerged. Adding enough water to the system to cover
the cube (ρwater = l g/cm3), what fraction of its volume will still remain immersed in
mercury?

Solution:

8.1.2.6 Ex: Immersion

A board of length L leans on a stone and is partially immersed in water. As the figure
shows, a portion of length a is above the support point. Being d is the density of the
wood, what portion of the board is submerged?
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(ρHg = 13.6g/cm
3) tal que 1/4 de seu volume fica submerso. 

Acrescentando-se ao sistema água suficiente para cobrir o cubo (ρágua = 

lg/cm3), que fração de seu volume ainda permanecerá imersa no mercúrio? 

 

 

 

 

                     Fig. 12.18                                                                 Fig. 12.19 

5- Uma tábua de comprimento L está apoiada numa pedra e parcialmente 

imersa na água. Conforme mostra a Fig. 12.20, uma porção de 

comprimento a encontra-se acima do ponto de apoio. Sendo d a densidade 

da madeira, que parte da tábua encontra-se submersa? 

 

 

 

 

 

Fig. 12.20                                                       Fig. 12.21 

6- Dentro de um recipiente cônico coloca-se leite. Com o passar do tempo 

ocorre formação de nata, que sendo menos densa fica no topo. Durante 

este processo não há variação de volume, ist é, h permanece constante 

(Fig. 12.21). O que acontece com a pressão no fundo do recipiente? 

Justifique sua resposta. 

7- Numa lata cilíndrica de área A coloca-se água até uma altura h. Determine 

a velocidade v com que a água sai por um orifício de área a localizado no 

fundo. Que quantidade de água deve ser adicionada à lata por unidade de 

nata 

h 

a 

H 
h 

a 

L 

Figure 8.4: Immersion of a stone.

Solution:

8.1.2.7 Ex: Conical container

Milk is placed in a conical container. Over time, occurs at the top the formation of
cream, which is less dense. During this process there is no change in volume, that is,
h remains constant (see figure). What happens to the pressure at the bottom of the
container? Justify your answer.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_4.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_5.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_6.pdf
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(ρHg = 13.6g/cm
3) tal que 1/4 de seu volume fica submerso. 

Acrescentando-se ao sistema água suficiente para cobrir o cubo (ρágua = 

lg/cm3), que fração de seu volume ainda permanecerá imersa no mercúrio? 

 

 

 

 

                     Fig. 12.18                                                                 Fig. 12.19 

5- Uma tábua de comprimento L está apoiada numa pedra e parcialmente 

imersa na água. Conforme mostra a Fig. 12.20, uma porção de 

comprimento a encontra-se acima do ponto de apoio. Sendo d a densidade 

da madeira, que parte da tábua encontra-se submersa? 

 

 

 

 

 

Fig. 12.20                                                       Fig. 12.21 

6- Dentro de um recipiente cônico coloca-se leite. Com o passar do tempo 

ocorre formação de nata, que sendo menos densa fica no topo. Durante 

este processo não há variação de volume, ist é, h permanece constante 

(Fig. 12.21). O que acontece com a pressão no fundo do recipiente? 

Justifique sua resposta. 

7- Numa lata cilíndrica de área A coloca-se água até uma altura h. Determine 

a velocidade v com que a água sai por um orifício de área a localizado no 

fundo. Que quantidade de água deve ser adicionada à lata por unidade de 

nata 

h 

a 

H 
h 

a 

L 

Figure 8.5: Conical container.

8.1.2.8 Ex: Cylindrical can

a. Into a cylindrical can of area A water is poured up to a height of h. Determine the
velocity v at which water flows out of a hole of area A located at the bottom. How
much water should be added to the can per unit of time such that v is constant?
b. In case that no water is added to the can and the height varies, calculate the flow
rate θ as a function of time.

Solution:

8.1.2.9 Ex: Siphon

Via a siphon, water is removed from a container, as shown in the figure. The area of
the pipe is constant along its length and the velocity of the surface of the liquid is
neglected.
a. What is the water speed at the outlet of the pipe?
b. What is the pressure at the highest point of the siphon?
c. What is the maximum height h at which it is still possible to siphon water?
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tempo tal que v seja constante? 

8- Caso não se adicione água na lata do problema anterior e a altura variar, 

calcule a vazão Θ como função do tempo. 

9- Com um sifão retira-se água de um recipiente como indicado na Fig. 

12.22. A área do cano é constante ao longo de seu comprimento e a 

velocidade da superfície do líquido é desprezada. a) Qual é a velocidade 

da água na saída do cano? b) Qual é a pressão no ponto mais alto do sifão? 

c) Qual é a máxima altura h para a qual ainda é possível sifonar a água? 

 

 

 

 

Fig. 12.22 

10- Monta-se uma caixa d’água sobre um vagão que pode se mover no plano 

horizontal sem atrito (Fig. 12.23). Na parede da caixa existe um orifício de 

área A a uma profundidade H, pelo qual sai água paralelamente ao plano 

horizontal. A massa total inicial do sistema (caixa, água e vagão) é M0 e a 

velocidade da superfície da água é desprezada. Se o vagão está 

inicialmente em repouso quando o orifício é aberto, qual será a aceleração 

inicial do sistema? 

 

 

 

Fig. 12.23 
 

11- Um tubo de água roda com velocidade ω em torno de um eixo vertical 

conforme mostra a Fig. 12.24. Calcule a pressão como função de r, usando 

H 

H 

h 

Figure 8.6: Siphon.

Solution:

8.1.2.10 Ex: Water tank

A water tank is mounted on a wagon that can move horizontally without friction (see
figure). In the wall of the box there is a hole of area A at a depth H, through which
water flows parallel to the horizontal plane. The initial total mass of the system (box,
water and wagon) is M0 and the speed of the water surface is neglected. If the wagon
is initially at rest when the hole is opened, what will be the initial acceleration of the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_7_8.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_9.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_10.pdf
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tempo tal que v seja constante? 

8- Caso não se adicione água na lata do problema anterior e a altura variar, 

calcule a vazão Θ como função do tempo. 

9- Com um sifão retira-se água de um recipiente como indicado na Fig. 

12.22. A área do cano é constante ao longo de seu comprimento e a 

velocidade da superfície do líquido é desprezada. a) Qual é a velocidade 

da água na saída do cano? b) Qual é a pressão no ponto mais alto do sifão? 

c) Qual é a máxima altura h para a qual ainda é possível sifonar a água? 

 

 

 

 

Fig. 12.22 

10- Monta-se uma caixa d’água sobre um vagão que pode se mover no plano 

horizontal sem atrito (Fig. 12.23). Na parede da caixa existe um orifício de 

área A a uma profundidade H, pelo qual sai água paralelamente ao plano 

horizontal. A massa total inicial do sistema (caixa, água e vagão) é M0 e a 

velocidade da superfície da água é desprezada. Se o vagão está 

inicialmente em repouso quando o orifício é aberto, qual será a aceleração 

inicial do sistema? 

 

 

 

Fig. 12.23 
 

11- Um tubo de água roda com velocidade ω em torno de um eixo vertical 

conforme mostra a Fig. 12.24. Calcule a pressão como função de r, usando 

H 

H 

h 

Figure 8.7: Water tank.

system?

Solution:

8.1.2.11 Ex: Water pipe

A water pipe rotates at a speed ω around a vertical axis, as shown in the figure.
Calculate the pressure as a function of r, using P (r = 0) = P0.
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P(r = 0) = P0. 

 

 

 

 

Fig. 12.24 

12- Um rotâmetro (medidor de vazão) consiste num tubo de vidro cônico e 

vertical com uma esfera metálica de massa m e raio r no seu interior como 

mostra a Fig. 12.25. Calcule o fluxo de um gás de viscosidade η como 

função da altura h. Considere α bem pequeno. Nota: Fstokes = 6πηrv.  

 

 

 

 

 

 

 

 

 

Fig. 12.25 

 

r 

ω 

h 

α 

Figure 8.8: Water pipe.

Solution:

8.1.2.12 Ex: Flow meter

A flow meter consists of a conical, vertical glass tube with a metallic sphere of mass m
and radius r inside it, as shown in the figure. Calculate the flow of a gas with a given
viscosity as a function of the height h. Consider, very small. Note: FStokes = 6πηrv.

Solution:

8.2 Continuity and Navier-Stokes equations

8.3 Further reading

J. Pedlosky (1992), Geophysical Fluid Dynamics [1006]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Hydrodynamics_ZilioExc12_12.pdf
http://isbnsearch.org/isbn/978-8-521-20801-2
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P(r = 0) = P0. 

 

 

 

 

Fig. 12.24 

12- Um rotâmetro (medidor de vazão) consiste num tubo de vidro cônico e 

vertical com uma esfera metálica de massa m e raio r no seu interior como 

mostra a Fig. 12.25. Calcule o fluxo de um gás de viscosidade η como 

função da altura h. Considere α bem pequeno. Nota: Fstokes = 6πηrv.  

 

 

 

 

 

 

 

 

 

Fig. 12.25 

 

r 

ω 

h 

α 

Figure 8.9: Flow meter.
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Chapter 9

Thermodynamics and kinetic
gas theory

Thermodynamics is a central branch of modern science, and its general laws govern
the physical and chemical processes which occur in our world. An important early
application of thermodynamics dealt with steam engines (heat engines) in which heat
is converted to mechanical energy. Classical thermodynamics was developed in the
nineteenth and in the beginning of the twentieth century by Watt, Carnot, Clausius,
Joule, von Helmholtz, Lord Kelvin, Nernst, Boltzmann and Gibbs. The so-called
First, Second and Third Laws of Thermodynamics were discovered during this pe-
riod. They set general limits for the conversion of one form of energy, for example
heat or chemical energy, to another one, for example mechanical work. One phase in
the development of thermodynamics ended with the formulation of statistical thermo-
dynamics by Boltzmann and Gibbs. Statistical thermodynamics is based on the fact
that what we experience as heat is actually an outward manifestation of molecular
and atomic motion.

Classical thermodynamics has played a dominant role in the development of mod-
ern science and technology. In suffers, however, from certain limitations, as it cannot
be used for the study of irreversible processes but only for reversible processes and
transitions between different states of equilibrium. Many of the most important and
interesting processes in nature are irreversible. A good example is provided by living
organisms which consume chemical energy in the form of nutrients, perform work and
excrete waste as well as give off heat to the surroundings without themselves under-
going changes; they represent what is called a stationary or steady state. The boiling
of an egg provides another example, and still another one is, a thermocouple with a
cold and a hot junction connected to an electrical measuring instrument.

The first investigator who developed a method for the exact treatment of such
problems, for example of the thermocouple, was Onsager. His approach was, however
based on assumptions which in principle make it applicable only to systems close to
equilibrium. The contribution of Prigogine to thermodynamic theory is his successful
extension of it to systems which are far from thermodynamic equilibrium. This is
extremely interesting as large differences compared to conditions close to equilibrium
had to be expected. Prigogine has demonstrated that a new form of ordered structures
can exist under such conditions, and he has given them the name dissipative structures
to stress that they only exist in conjunction with their environment.

In the present chapter we will first deal with equilibrium thermodynamics, as well
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in the classical as in the quantum regime.

9.1 Equilibrium thermodynamics

9.1.1 Probabilities

Excs. 9.1.5.1 to 9.1.5.8.

9.1.2 Thermal motion

9.1.3 Temperature and Maxwell-Boltzmann distribution

9.1.3.1 Temperature and heat

9.1.3.2 Temperature measurement

Scales of Celsius, Fahrenheit, and Kelvin.

9.1.4 Heat capacity

Heat capacity

9.1.5 Exercises

9.1.5.1 Ex: Probabilities

In a game, 5 ideal dice are rolled.
a. What is the probability that exactly two of these dice show the number one?
b. What is the probability that at least one die shows the number one?

Solution: a. The probability that exactly two of these dice show the number one
is,

P =

(
5

2

)
1

6

2(
1− 1

6

)5−2
=

625

3888
≈ 16% .

b. The probability that at least one die shows the number one is,

P = 1−
(
5

0

)
1

6

0(
1− 1

6

)5−0
=

4651

7776
≈ 60% .

9.1.5.2 Ex: Probabilities

With what probability have out of
a. 1000 random numbers between 1 and 100 exactly five the value 50;
b. 100 two people on birthday January 1st.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs02.pdf
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Solution: a. From the Poisson distribution:

P =
10n

n!
e−α =

105

5!
e−1000/100 ≃ 0.0378 .

b. Similarly,

P =
10n

n!
e−α =

102

2!
e−100/365 ≃ 0.0285 .

9.1.5.3 Ex: Probabilities

What is the probability that you inhale at least one molecule that Julius Caesar ex-
haled during his last breath (Tu quoque, Brute, fili mi!)? Assume a breathing volume
of 3 liters and an atmosphere height of approximately 10 km. Assume the density of
the atmosphere is approximately homogeneous.

Solution: The number of molecules per liter is approximately,

NL =
pV

kBT
≃ 1013 hPa ·10−3 m3

kB · 300K
= 2.44 · 1022 .

The number of molecules in the atmosphere is about N = NL · VA/(1 liter), where
VA ≃ 4πR2

Eh ≃ 1.4 · 1044 m3. The number of molecules per breath is A ≃ 8 · 1022.
The probability that no molecule can be found is,

P ≃ (1− p)A = e(A log (1−p)) ≃ e(−Ap) = 1.4 · 10−22 ,

where p = A/N is the probability to find one of Caesar’s molecules. Alternatively,
the Poisson distribution with α = A2/N and n = 0, P = e−A p gives the same result.
That means we share each of our breaths with Caesar!

9.1.5.4 Ex: Idiots roulette

A Bavarian, a Swabian and an East Frisian play Russian roulette together, each ac-
cording to their own rules. The Bavarian inserts two cartridges into the drum of a
six-shot revolver, sets the drum in a rapid rotation, aims at his own head and pulls
the trigger once. The Swabian puts a cartridge in the revolver and pulls the trigger
twice, the East Frisian puts a cartridge in the revolver, pulls the trigger once, turns
the drum a second time and pulls the trigger again. What is the chance of survival
of the three crazy people?

Solution: The chance of survival for the Bavarian is P = 2
3 = 66%, for the Swabian

P = 1
6 · 16 , and for the East Frisian P = 5

6 · 56 = 69%.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs04.pdf
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9.1.5.5 Ex: Idiots roulette

A student writes a multiple choice test in physics. It consists of 18 tasks. For each
task, only one of the four proposed solutions is correct. Since he does not understand
much about the topic, he trusts his luck and checks the possible solutions by chance.
What is the probability that the student meets the minimum requirement of 8 correct
answers?

Solution: The probability is,

P = 1−
7∑

k=0

(
18

k

)(
1

4

)k (
3

4

)18−k
= 0.057 .

9.1.5.6 Ex: Probabilities

A slot machine consists of three concentric rings. Each ring is evenly divided into
10 sections and the sections in each ring are continuously labeled with ”a” to ”j”.
By pressing the start button, the three rings start to rotate independently. If the
luck button is pressed, the rings brake independently of one another and three letters
appear side by side in the viewing window. With three ones you win, with two ones
there is a free spin.
a. Calculate the probability for one free spin per game.
b. What is the probability of getting exactly 3 free spins in 10 games?
c. What is the probability of winning at least once in 10 games?

Solution: a. The probability for one ”a” is p1 = 0.1. The probability to make exactly
m ”a” per game W3,m =

(
3
m

)
pk1(1− p1)N−k. So the probability for a free spin is,

P3,2 =

(
3

2

)
· 0.12 · 0.91 = 2.7% .

b. The probability to find in N games k times exactly two ”a” is PN,k =
(
N
k

)
W k

3,2(1−
W3,2)

N−k. The probability of getting exactly three free spins in 10 games is thus,

PN,k =

(
10

3

)
0.0273 · 0.9737 = 0.2% .

c. The probability for three ”a” is p3 = 0.13 = 0.001. So the probability to get in N
games exactly k times this result is PN,k =

(
N
k

)
pk3(1 − p3)N−k. So the probability in

10 tries to get 0 times this result is,

P10,0 =

(
10

0

)
0.0010 · 0.99910 = 0.99910 = 99% .

The probability of winning at least once is finally Pgewinn = 1− P10,0 = 1%.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs06.pdf


9.1. EQUILIBRIUM THERMODYNAMICS 363

9.1.5.7 Ex: Binomial distribution

Two drunks stagger on the x-axis. Starting from the origin, they take a step to the
right or to the left with the same probability. The steps take place synchronously,
and the steps of both people are the same and constant. Determine the probability
that they will meet again after N steps.

Solution: Let us first consider one drunk. The probability for a step to the left
is pl = 0.5. If he walks exactly N/2 steps to the left, it means that he also has
to walk N/2 steps to the right in order to come back. The probability of this is

PN (N/2) =
(
N
N/2

)
p
N/2
l (1− pl)N−N/2.

For two drunks, we can sit in the inertial system of one of them. Then the distance
between them either increases by two steps or stays unchanged, both with a probability
of 50%. We can therefore take the above solution and replace N with N/2. So the
solution is,

PN (N/2) =

(
2N

N

)
pNl (1− pl)2N−N =

(2N)!

(N !)2
1

22N
.

The task can also be solved in the following way. The probability that the drunks
change their distance is p2 = 0.5. The probability that they change their distance
k times in N steps P2 =

(
N
k

)
pk2(1 − p2)

N−k. For each of the routes contained in
P2 there are again as many routes back to the original distance of the drunk. The
overall probability is P2 ·P2. Now, we just have to add up all k and get the alternative
solution,

P =
1

22N

N∑

k=0

(
N

k

)2

.

It turns out that this is identical to the above one, but what remains to be shown!

p=0.25N=1 p=0.5

N=2

N=3

N=4

Figure 9.1: Generation of a binomial distribution.

9.1.5.8 Ex: Quantum statistics

n particles are distributed to N > n different cells with the same probability. Calcu-
late the probability:
a. that there is exactly one particle in the first n cells;
b. that there is no cell with more than one particle.
Use the three different assumptions that:
i. the particles are identifiable and arbitrarily many particles can be assigned to each

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_ProbabilityCalcs08.pdf
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cell;
ii. the particles are NOT identifiable and arbitrarily many particles can be assigned
to each cell;
iii. the particles are NOT identifiable and only a single particle may be assigned to
each cell.

Solution: Be C(N,n) = N !/(n!(N − n)!) the number of different combinations to
choose n elements from N , regardless of the order. There are Nn possible cases:

i. pb =
n!

Nn
, pa = C(N,n)pb =

N !

(Nn(N − n)!)

ii. pb =
n!(N − 1)!

(N + n− 1)!
, pa = C(N,n)pb =

N !(N − 1)!

((N − n)!(N + n− 1)!)

iii. pa = 1 , pb =
pa

C(N,n)
=
n!(N − n)!

N !
.

9.1.5.9 Ex: Velocity distribution

The Maxwellian velocity distribution or Boltzmann distribution of a one-dimensional
ideal gas of identical particles of mass m at temperature T is,

f(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv .

This gives the average kinetic energy for each molecule of ⟨Ekin⟩ = 1
2kBT . According

to the equipartition theorem, Maxwell’s velocity distribution of a three-dimensional
gas is given by f(vx)dvx f(vy)dvy f(vz)dvz.
a. Write down the velocity distribution explicitly and determine the average kinetic
energy of a molecule in the three-dimensional gas at temperature T .
Determine the average absolute velocity ⟨v⟩ = ⟨|v|⟩ and compare ⟨v⟩2 with ⟨v2⟩ for
the three-dimensional case.
c. What is the number of particles F (v)dv with an absolute velocity v = |v| in the
range v and v + dv.
d. Consider a gas made of rubidium atoms (m = 87 · 1.67 · 10−27 kg) and sketch F (v)
for temperatures between 100K and 300K.
e. Consider the rubidium gas at room temperature (T = 300K). What is the propor-
tion of molecules whose average velocity ⟨v⟩ is greater than 1000m/s?

Solution: a. The explicit form of the velocity distribution is,

f(vx)dvx f(vy)dvy f(vz)dvz =

√
m

2πkBT

3

e−mv2/2kBT d3v .
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The mean kinetic energy is,

⟨E3⟩(|v|) =
m

2

〈
v2
〉
=

∫ ∞

−∞

m

2
v2f3(v)d

3v

=

∫ ∫ ∫ ∞

−∞

m

2

(
v2x + v2y + v2z

)( m

2πkBT

)3/2

exp

(
−mv2x + v2y + v2z

2kBT

)
dvxdvydvz

=

∫ 2π

0

∫ π

0

∫ ∞

0

m

2
v2r

(
m

2πkBT

)3/2

exp

(
− mv2r
2kBT

)
v2r sin θdvrdvθdvϕ

= 4π
m

2

(
m

2πkBT

)3/2 ∫ ∞

0

v4r exp

(
− mv2r
2kBT

)
v2rdvr

= ...(part. integration, surface terms drop out)

= 4π
m

2

(
m

2πkBT

)3/2
3

8

√
π

(
m

2kBT

)−5/2
=

3

2
kBT .

Here, one uses,
∫ ∞

−∞
xne−x

2

dx = Γ
(
n+1
2

)
=
n− 1

2
Γ
(
n−1
2

)
and Γ

(
1
2

)
=
√
π .

b. The average absolute velocity is,

⟨|v|⟩ =
∫ ∞

−∞
vf3(v)d

3v

= 4π

(
m

2πkBT

)3/2 ∫ ∞

0

vr exp

(
− mv2r
2kBT

)
v2rdvr

= ...(part. integration, surface terms drop out)

= 4π

(
m

2πkBT

)3/2
1

2

(
m

2kBT

)−2
=

√
8kBT

πm
.

Hence,
m

2
⟨v⟩2 =

4

π
kBT ̸=

3

2
kBT =

m

2

〈
v⃗2
〉
.

c. The number of particles with absolute velocity in the interval v and v + dv is,

F (v)dv = 4πv2f3(v)dv ,

where

f3(v) =

(
m

2πkBT

)3/2

e−mv
2/2kBT .

It’s easy to verify,

∫ ∞

0

F (v)dv = 4π

(
m

2πkBT

)3/2 ∫ ∞

0

v2e−mv
2/2kBT dv

= 4π

(
m

2πkBT

)3/2(
2kBT

m

)3/2 ∫ ∞

0

y2e−y
2

dy = 1 .
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Figure 9.2: Maxwell distribution.

d. Sketch of the distribution function 4πv2f3(v) for rubidium atoms:
e. The definite integral can be traced back by partial integration to,

∫ ∞

v0

F (v)dv =
4√
π

∫ ∞

y0

y2e−y
2

dy =
4√
π

[
−1

2
ye−y

2

+
1

4

√
πerf (y)

]∞

y0

= 1− erf (y0) +
2√
π
y0e
−y20 .

y0 = v0
√
m/2kBT ≈ 4.18 and hence

∫∞
v0
F (v)dv = 1.251 5× 10−7.

9.1.5.10 Ex: Maxwell-Boltzmann distribution

Calculate the number of particles in an ideal homogeneous gas having velocities slower
than 2vrms.

Solution: With the particle distribution given by,

f(v⃗) =

√
m

2πkBT

3

e−mv⃗
2/2kBT ,

we can calculate the number of particles,

N = 4π

∫ 2vrms

0

f(v)v2dv =
4π
√
π
3

∫ 2vrms

0

√
m

2kBT

3

e−mv
2/2kBT v2dv =

4√
π

∫ 2ζrms

0

e−ζ
2

ζ2dζ ,

using the substitution ζ ≡ v
√
m/2kBT . Since vrms =

√
3kBT/m, we have 2ζrms =√

6. Using the partial integration rule,
∫
u′v = uv −

∫
uv′, we know,

∫ √6

0

1 · e−ζ2dζ = ζ · e−ζ2
∣∣∣
√
6

0
−
∫ √6

0

ζ · (−2ζ)e−ζ2dζ .

With this,

N =
4√
π

1

2

[∫ √6

0

1 · e−ζ2dζ − ζ · e−ζ2
∣∣∣
√
6

0

]
=

4√
π

1

2

[∫ √6

0

e−ζ
2

dζ −
√
6e−6

]
= 99.2% .
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9.1.5.11 Ex: Maxwell-Boltzmann distribution

Using the Maxwell-Boltzmann distribution f(v) and the following formulas, calculate

the velocities v̄ ≡
∫∞
0
vf(v)v2dv and vrms ≡

√
v2:

∫ ∞

0

xne−x
2

dx = 1
2Γ(

n+1
2 ) =

{
(2k−1)!!√π

2k+1 for n = 2k
k!
2 for n = 2k + 1

.

Solution:

9.1.5.12 Ex: Mean velocity in a gas

The average velocity of the molecule in an ideal gas is 500m/s. If the gas maintains
the same temperature and the molecular masses are doubled, what will be the new
average velocity?

Solution:

9.1.5.13 Ex: Evaporation

a. A three-dimensional homogeneous gas consisting of N = 108 rubidium atoms (mass
m = 87 · u) has the temperature T = 100µK. How many atoms are faster on average
than v1 = 10 cm/s?
b. Now suppose that all atoms with a velocity v > v1 were suddenly removed. After
some time, a new thermal equilibrium is established due to collisions. What is the
temperature of the gas now?

Help: Formula for partial integration:
∫
yne−y

2

dy = −yn−1

2 e−y
2

+ n−1
2

∫
yn−2e−y

2

dy

You can take the value of the error function given by erf (y1) ≡ 1√
π

∫∞
y1
e−y

2

dy from

the sketched curve.

Solution: A factor 4 is wrong here, which stems from an originally in-
correct normalization of the error function.
a. The number of particles with absolute velocity v > v1 = 10 cm/s is,

N1 = N

∫

v>v1

f3(v)d
3v⃗ = N

∫ 2π

0

∫ π

0

∫ ∞

v1

(
m

2πkBT

)3/2

e−mv
2/2kBT v2 sin θdvdvθdvϕ

= N4π

(
m

2πkBT

)3/2(
2kBT

m

)3/2 ∫ ∞

y1

y2e−y
2

dy ,

with y1 ≡ v1
√
m/2kBT = 0.10

√
87·1.67·10−27

2·1.38·10−23·100·10−6 ≃ 0.72. The definite integral can

be traced back by partial integration with the definition of the error function (surface
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Figure 9.3:

terms are eliminated) to,

N1 =
4N√
π

∫ ∞

y1

y2e−y
2

dy =
4N√
π

[
−y
2
e−y

2

+

√
π

4
erf (y)

]∞

y1

= N

[
1− erf(y1) +

2√
π
y1e
−y21
]
= N

[
1− erf(0.72) +

2√
π
0.72e−0.72

2

]
≃ 0.79N .

b. The total energy is, immediately after removing the fast particles,

E = N1

∫ ∞

v<v1

m

2
v⃗2f3(v⃗)d

3v⃗ = N1

∫ 2π

0

∫ π

0

∫ ∞

0

m

2
v2
(

m

2πkBT

)3/2

e−mv
2/2kBT v2 sin θdvrdvθdvϕ

= N14π
m

2

(
m

2πkBT

)3/2(
2kBT

m

)5/2 ∫ ∞

y1

y4e−y
2

dy .

The definite integral can be traced back by partial integration (surface terms are elim-
inated) to,

E =
4N1kBT√

π

∫ ∞

y1

y4e−y
2

dy =
4N1kBT√

π

[
− y3

2
e−y

2

∣∣∣∣
∞

y1

+
3

2

∫ ∞

y1

y2e−y
2

dy

]

=
4N1kBT√

π

[
y31
2
e−y

2
1 +

3

2

√
πN1

4N

]
=

4N1kBT√
π

y31
2
e−y

2
1 +

3N2
1 kBT

2N
.

After thermalization the kinetic energy is E1 = 3N1

2 kBT1 ≡ E = 4N1kBT√
π

y31
2 e
−y21 +

3N2
1kBT
2N . From this follows,

T1 = T

[
4√
π

y31
3
e−y

2
1 +

N1

N

]
= T

[
4√
π

0.723

3
e−0.72

2

+ 0.79

]
≃ 0.96T .
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9.1.5.14 Ex: Trapped gases

The density distribution of a rubidium gas in a three-dimensional harmonic potential
can be expressed by,

n(r)d3r = n0e
−U(r)/kBT d3r ,

where U(r) = m
2 ω

2r2. Numerical values: m = 87 · 1.67 · 10−27 kg and ω = 2π · 50 Hz.
a. Determine the expansion of the gas (1/e width of the distribution) at a given tem-
perature T = 100 µK.
b. Determine the maximum density n0 of the gas when N =

∫
n(r)d3r = 108 is the

total number of atoms.
c. The effective volume is defined by Veff = N/n0. How many atoms are in the
effective volume?

Solution: a. The expansion r̄ follows with,

1

e
=
n(r̄)

n0
= e−mω

2r̄2/2kBT .

With the numerical values r̄ =
√

2kBT
mω2 = 440 µm.

b. The maximum density n0 results from,

N = n0

∫
e−r

2/r̄2d3r = n0

(
r̄

∫
e−x

2

dx

)3

= n0π
3/2r̄3 .

With the numerical values follows n0 = N
π3/2r̄3

= 2.1× 1011 cm−3.
c. The effective volume is,

Veff =
N

n0
= π3/2r̄3 ≡ 4π

3
r̃3

r̃ = r̄
√
π

(
3

4π

)1/3

.

So the number of particles is,

Neff =

∫

Veff

n(r)d3r = 4π

∫

r̃

n(r)r2dr = 4πn0

∫

r̃

r2e−r
2/r̄2dr

= 4πn0

(
−1

2
r̄2r̃e−

r̃2

r̄2 +
1

4
r̄2r̄
√
π erf

(
r̃

r̄

))

= N

(
erf

(
√
π

(
3

4π

)1/3
)
−
(
2

π

)1/3

e−π(
3
4π )

2/3

)
.

With the numerical values follows N = 6.2× 107.

9.1.5.15 Ex: Trapped gases

Calculate the internal energy and heat capacity of an ideal gas stored in a harmonic
trap and compare the result with a free gas.
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Solution: The normalization condition requires,

1 =

∫ ∫
e−βε−βUd3kd3r

=
( m

2πℏ

)3 ∫ ∫
e−β

m
2 v

2−βm
2 ω

2r2d3vd3r

=
( m

2πℏ

)3(∫
e−β

m
2 v

2

dv

∫
e−β

m
2 ω

2r2dr

)3

=
( m

2πℏ

)3( 2π

βm

)3/2(
2π

βmω2

)3/2

=

(
kBT

ℏω

)3

.

The energy is,

E(T ) = N

∫ ∫
εe−βε−βUd3kd3r

= N
( m

2πℏ

)3 ∫ ∫ m

2
v2e−β

m
2 v

2−βm
2 ω

2r2d3vd3r

= N
( m

2πℏ

)3 ∫ m

2
v2e−β

m
2 v

2

4πv2dv ×
(∫

e−β
m
2 ω

2r2dr

)3

= N
( m

2πℏ

)3
4π
m

2

(
2

βm

)5/2 ∫
u4e−u

2

du×
(

2

βmω2

)3/2(∫
e−x

2

dx

)3

= N
( m

2πℏ

)3
4π
m

2

(
2

βm

)5/2
3

8

√
π ×

(
2

βmω2

)3/2√
π
3

=
3

2
NkBT

(
kBT

ℏω

)3

=
3

2
NkBT .

9.1.5.16 Ex: Trapped gases

An ultracold gas made of 108 rubidium atoms (mass number 87) is trapped in a
three-dimensional potential of the form U(r) = m

2 ω
2r2 with the oscillation frequen-

cies ω/2π = 100 Hz.
a. Assume the spatial distribution function for the atoms to be n(r) = n0e

−U(r)/kBT .
What is its width at 1/

√
e of the maximum height? How does the width of the dis-

tribution function change when the number of atoms is doubled?
b. The trap potential is suddenly switched off. The atoms are robbed of their poten-
tial energy, while their kinetic energy leads to the ballistic expansion of the cloud.
20 ms after switching off the trapping potential, a 1/

√
e width of r̄a = 0.2 mm is

experimentally measured for the distribution of the expanded atomic cloud. What
was the temperature of the atomic cloud in the trap?
Help: Assume that the final size of the atomic cloud is much larger than the size of
the trap. Neglect collisions between the atoms.
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Solution: a. The distribution of the atoms in the potential U(r) = m
2 ω

2r2 is,

n(r)d3r = n0e
−U(r)/kBT d3r .

Normalization requires N =
∫
n0e
−U(r)/kBT d3r. Hence,

n0 =
N∫

e−U(r)/kBT d3r
=

(
mω2

2kBT

)3/2

.

The 1/
√
e width of the distribution follows from n0/

√
e = n0e

−U(r̄)/kBT and reads,

r̄ =

√
kBT

mω2
.

Obviously, the latitude is independent of the number of atoms.
b. The total energy of the atoms is,

E = Ekin + Epot =
m

2
⟨v2⟩+ m

2
ω2⟨r2⟩ .

After switching off the trap,

E =
m

2
⟨v2⟩ = 3m

2
⟨v2x⟩ =

3kBT

2
.

After t = 20 ms time-of-flight,

v̄x =
√
⟨v2x⟩ =

√
kBT

m
=
r̄a
t
.

Hence,

T =
mr̄2a
kBT 2

≈ 1.05 µK .

9.1.5.17 Ex: Heat capacities

The specific heat capacity of air is cV = 715 J kg-1 K-1. What is the molar heat
capacity? (Air has the relative molecular mass µ ≈ 29 and the mass of the H atom is
mH = 1.67 · 10−27 kg. How many air molecules are there in one kilogram of air?

Solution: We calculate,

CV =
µcV
1000

= 20.735 ,

and

N = NA
1000

29
= 6 · 1023 · 1000

29
,

or

N =
1

µmH
= 2.06 · 1025 .
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9.2 The ideal gas

9.2.1 Equation of state for an ideal gas

The most famous equation of state is based on observations of Boyle, Mariotte and
Gay-Lussac:

pV = NkBT . (9.1)

9.2.2 Applications of the ideal gas law

The gas thermometer and the barometric formula are examples of the numerous
applications of the ideal gas law (see Excs. 9.2.5.1 and 9.2.5.2).

9.2.2.1 The barometric formula

Excs. 9.2.5.3 and 9.2.5.4.

9.2.3 The vacuum

Vacuum pumps

9.2.4 Pressure measurement

9.2.5 Exercises

9.2.5.1 Ex: Gas thermometer

A gas thermometer filled with an ideal gas and working at a constant volume is cali-
brated on the one hand in dry ice (carbon dioxide in its solid state at a temperature
of −80.0◦ C) and on the other hand in boiling alcohol (78.0◦ C). At these respective
temperatures, the pressure in the gas thermometer is 0.900 bar or 1.635 bar. At ab-
solute zero, the gas in the thermometer is still gaseous, but the pressure has dropped
to 0.000 bar.
a. At what ◦C is the absolute zero?
b. What is the pressure at the freezing point of water and what is it at the boiling
point?

Solution: a. From the ideal gas formula we have,

V

V0
=

T

T0

p0
p

⇒ p0
T0

=
∆p

∆T
=

1.635 bar−0.9 bar
78◦ C−(−80◦ C) ≈ 4.652 · 10−3 bar◦ C .

In order to lower the pressure by another 0.9 bar at T = −80C, the temperature has
to be reduced further by ∆T = 0.9 bar

4.652·10−3 bar
C

= 193.47 C. The absolute zero point is

therefore at T = −80◦C− 193.47◦C = −273.47◦C ≡ 0K.
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b. We have,

p(0◦ C) = p(273.47K) = 4.652 · 10−3 bar
K
· 273.47K = 1.272 bar

p(100◦ C) = p(373.47K) = 4.652 · 10−3 bar
K
· 373.47K = 1.737 bar .

9.2.5.2 Ex: Gas thermometer

A gas thermometer ”a” is connected to a second gas thermometer ”b”, which is kept in
a water bath at a constant temperature. The connecting capillary has a cross-sectional
area A and is filled with mercury (ρ = 13.5 g/cm3). At the same temperature T0 in
the two thermometers, the mercury level in both capillaries is the same. Now the gas
in thermometer ”a” is heated by ∆T . This increases the pressure pa and thus the
volume Va → Va +∆V . The mercury column is displaced accordingly.
a. What is the relationship between the volume increase ∆V and the temperature
increase ∆T in this setup?
b. To simplify, assume that the volumes Va = Vb = V0 and thus the particle numbers
Na = Nb = N0 are the same. How much has the temperature of the gas in ther-
mometer ”a” increased if the following conditions exist in the coupled thermometer:
N0 = 1022, h = 5 mm, T0 = 300 K, V0 = 1000 cm3, A = 1 cm2?

Va Vb

T + T0 �

Na Nb

T0

h

�

�V }

T0

Gasthermometer a Gasthermometer b

Figure 9.4: Gas thermometer.

Solution: a. First we consider both thermometers at the same temperature and
without displacement of the mercury column: pa = pb, the following also applies
paVa = T0NakB and pbVb = T0NbkB ⇒ Va = Vb

Na

Nb
.

Now with increasing temperature in thermometer ”a”: Ta → Ta + ∆T = T ′a ⇒
p′aT

′
a = T ′aNakB ⇔ p′a(Va +∆V ) = (T0 +∆T )NakB ⇒ p′a = (T0+∆T )NakB

Va+∆V .

The following applies to thermometer ”b”: p′b(Vb −∆V ) = T0NbkB ⇒ p′b =
T0NbkB
Vb−∆V .

In equilibrium, we have, p′a = 2ρgh+ p′b (double height h of the mercury column rel-

ative to zero displacement): T+∆T
Va+∆V NakB = 2ρgh+ T0NbkB

Vb−∆V .

The temperature increase will then be ∆T =
(
2ρgh+ T0NbkB

Vb−∆V

)
Va+∆V
NakB

− T0.
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b. For Na = Nb = N0 and Va = Vb = V0 the equation simplifies to ∆T = 2ρhg V0+∆V
N0kB

+(
V0+∆V
V0−∆V − 1

)
T0. For the given values we get ∆T ≈ 9.9 K.

9.2.5.3 Ex: Barometric formula

The barometric height formula is usually derived assuming constant temperature.
Now suppose that the temperature depends on the height h above the surface of the
Earth according to the relationship T = T0/(1 + αh).
a. Show that the pressure p then must satisfy the following differential equation,

dp

dh
= − mg

kBT0
(1 + αh)p .

b. Find the solution to this differential equation. What is the sign of the constant α?
Is the pressure at a fixed height larger or smaller than the value resulting from the
height formula at a fixed temperature?

Solution: a. The additional pressure exerted by the part of the air column within
the height difference ∆h onto the surface F is,

∆p = −mgN∆h

F
= −mgρ∆V

∆V/∆h
= −mgN

V
∆h .

For an ideal gas applies pV = NkBT . Hence,

∆p = −mg p

κBT
∆h = −mg p

κBT0
(1 + αh)∆h .

b. By separating the variables,

dp

p
= − mg

kBT0
(1 + αh) dh

ln p− ln p0 = − mg

kBT0

(
h+

α

2
h2
)

p = p0e
− mg

kBT0
(h+α

2 h
2) .

For the temperature to decrease we must have α > 0. But then the pressure is lower
than estimated with the corresponding barometric height formula at constant temper-
ature.

9.2.5.4 Ex: Barometric formula

The air pressure p at a height h is equal to the weight m · g of the air column, which
at this height rests on an (imaginary) horizontal base divided by the base area A of
the column (m = m(h): mass of the air column, neglect the curvature of the Earth
and the height dependence of the temperature). Therefore, we have for the change
dp of the pressure upon a small change of height dh, with the local density ρ = ρ(h):

dp =
g dm

A
=
gρdV

A
= −gρdh . (9.2)
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Here dV = −A dh is the change in volume of the air column (located above the base).
The air should be treated approximately as a substance with a uniform molar mass
M .
a. Show with the help of the ideal gas equation that Eq. (9.2) can be cast into the
form dp = −k ρ dh under the given conditions with the constant k. Which is the
expression for k?
b. So what is the integral relationship p = p(h)? At what height h is the air pressure
at T = 273K and M = 29 g/mol only half the size of p(0)?
c. To what fraction is the air pressure on the Mont Blanc (4794m) and the Mount
Everest (8848m) at T = 273K reduced compared to p(0) at sea level? How big is
the pressure difference ∆p compared to normal zero on the Tübingen market place
(h = 341m)?

Solution: a. We have dp = −g ρ dh. To link the density ρ with the pressure p,
we use the relationship valid for the one-component system: ρ = mass

volume = mass
molar mass ·

molar mass
volume = M · c. In addition, the ideal gas equation provides a link between c and

p: p = RTc or c = p/(RT ). Using these two relationships,

dp =
gM

RT
p dh = −k p dh ⇔ dp

dh
= −k p , (9.3)

where k = gM
RT . Since the temperature should be constant, k is constant.

b. According to Eq. (9.3) the change in pressure with the height is proportional to the
pressure. So we obtain as an integral solution,

p = p(0) exp(−k h) = p(0) exp

(
−Mg

RT
h

)
. (9.4)

h = 0 denotes the height of the sea level. At the half-value h1/2, the pressure is

only half the size of p(0). According to Eq. (9.3)(a): 1
2 = exp(−k · h1/2). Then

h1/2 = ln 2
k = ln 2RTMg . Inserting the specified values we find h ≈ 5500m. c. From

Eq. (9.4),
p

p(0)
= exp

(
− ln 2

h1/2
h

)
.

lt
Mont Blanc 4794m 0.55

Mount Everest 8848m 0.33

market place Tü 341m 0.96

9.3 Entropy and the second law of thermodynamics

9.3.1 Kinetic theory

Following Maxwell (1859) we will now develop a microscopic theory. Let us consider
a cubic box with volume V and surface A with N particles inside. The particles
undergo elastic collisions, but they will not interact, as we suppose the gas to be ideal.
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We also disregard external forces. However, we only consider the x-direction. We
divide the particles into i classes of velocities vi. The momentum transferred when a
particle encounters the wall of the box is ∆pxi = 2mvxi. The number of encounters
of this wall in a time interval ∆t is,

1

2

Ni
V

Avxi∆t . (9.5)

The total change of momentum is,

I = 2mvxi ×
1

2

Ni
V

Avxi∆t =
Nimv

2
xiA∆t

V
. (9.6)

The pressure is,

Pi =
I

A∆t
=
Nimv

2
xi

V
. (9.7)

Hence,

P =
∑

i

Pi =
m

V

∑

i

Nimv
2
xi ≡

m

V
v̄2x =

N

3V
mv̄2 =

2

3
N ¯Ekin . (9.8)

With the ideal gas law P = NkBT . (Compare Tipler Cap. 8-1 and see Exc. 9.3.5.1).

a

Figure 9.5: Box with N molecules.

9.3.2 Thermal expansion

9.3.3 Heat and work

9.3.4 Heat transport

9.3.5 Exercises

9.3.5.1 Ex: Kinetic pressure

A closed box with end face A and side length L is divided into two equal halves by a
movable plate (see figure). Both halves contain one mole of helium under a pressure
of p0. The movable plate is now shifted to the right by the distance x. The shift takes
place at constant temperature T = 20◦C.
a. Give the volume of the right or left sub-box as a function of x. Give the pressure
in the right or left sub-box as a function of x.
b. Calculate the work W that needs to be done to move the plate from x = 0 to
x = L/4. Specify W in joules.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_KineticPressure01.pdf
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A

L/2
L

x

L/2

Figure 9.6: Ideal gas in a box.

Solution: a. For the volumes holds,

Vl = A

(
L

2
+ x

)
and Vr = A

(
L

2
− x
)
.

For the pressure we know, pV = NkBT , where N and T are constant. So

pl = p0
V0
Vl

= p0
AL/2

A (L/2 + x)
= p0

L

L+ 2x
and Vr = p0

L

L− 2x
.

b. The gas on the left exerts the force Fl = plA on the plate in positive x direction.
The gas on the right Fr = −prA. So the work that has to be done is,

W = −
∫ L/4

0

(Fl + Fr)dx = −A
∫ L/4

0

(
p0

L

L+ 2x
− p0

L

L− 2x

)
dx

=
LAp0
2

ln
4

3
.

Now, we get,W = p0V0 ln
4
3 = NkBT ln 4

3 = 1mol·6.022·1023 mol−1·1.38·10−23 J/K·293 K· ln 4
3 =

700 J.

9.3.5.2 Ex: Bi-metal

Two bars of different materials, with lengths, Young’s modules and thermal expansion
coefficients given respectively by L1, L2, Y1, Y2, α1, and α2, are pinched between two
walls, as shown in the figure. Calculate the distance travelled by the junction point
of the bars when the system is heated by an amount ∆T . What is the tension on the
bars?
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10- Encontre o gradiente de temperatura e a corrente térmica numa barra de 

condutividade K, comprimento L e secção transversal irregular, como 

mostra a Fig. 13.16. 

 

 

 

 

 

 

Fig. 13.16 

12- Duas barras de materiais diferentes, com comprimentos, módulos de 

Young e coeficientes de dilatação térmica dados respectivamente por L1, 

L2, Y1, Y2, α1 e α2, estão presas entre duas paredes como mostra a Fig. 

13.14. Calcule a distância percorrida pelo ponto de junção das barras 

quando o sistema é aquecido de ∆T. Qual é a tensão nas barras? 

 

 

 

 

 

 

Fig. 13.17 
 

L 

L/2 

A 2A T2 T1>T2 

L1 L2 

α1 , Y1 α2 , Y2 

Figure 9.7:
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Solution:

9.3.5.3 Ex: Bi-metal

In the sketched construction two thin metal strips with different linear expansion co-
efficients (aluminium and copper) αAl = 24 · 10−6 K−1 and αCu = 17 · 10−6 K−1 are
connected to each other by bars so that they have a fixed distance d = 1 mm. When
the temperature increases, the two strips expand so that they form circular segments
with different radii, as shown in the figure. An angle of the circle segment of ϕ = 1◦

is measured. How big is the temperature increase?

L
dT :

T+ T :∆

Cu Al

φ

Figure 9.8: Bimetal.

Solution: For the individual strips holds,

(L+ αAl∆TL) = ϕ(r + d)

(L+ αCu∆TL) = ϕr .

Therefore,

(αAl − αCu)∆TL) = ϕd .

The temperature change is therefore ∆T = ϕd
L(αAl−αCu)

≈ 25 K.

9.3.5.4 Ex: Linear expansion

The length of a 10 cm long spacer made of quartz glass with linear expansion coeffi-
cient α1 = −1 cm/m/◦C is to be kept constant by using a spacer made of Invar steel
with a linear expansion coefficient α1 = 10 cm/m/◦C. How long must the spacer be?

Solution: Banane.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_.pdf
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9.4 Ideal gas thermodynamics

9.4.1 Heat capacity

9.4.2 Types of expansions

9.4.3 Adiabaticity coefficient

An adiabatic process in thermodynamics is a process, in which the system does not
exchange heat with the environment. To verify how the pressure and volume of an
ideal gas vary during an adiabatic process we need two ingredients. First, the equation
of state of an ideal gas, that is,

pV = nRT = NkBT , (9.9)

where n is the number of moles of gas, N is the number of molecules of gas, R is the
gas constant, and kB the Boltzmann constant, that is, NkB = nR or R = NAk, where
NA is Avogadro’s number. The other ingredient is the equipartition theorem, which
says that in an ideal gas in equilibrium at temperature T (in Kelvin), the average
energy of each molecule per degree of freedom is,

1
2kBT . (9.10)

That is, the total energy of the gas is,

U = f
2NkBT = f

2nRT , (9.11)

where f is the number of degrees of freedom of the gas molecule (accessible at that
temperature). In an adiabatic process there is no heat exchange, and therefore energy
conservation claims, that the energy variation dU must be equal to the (negative) work
dW realized by the gas, that is,

dU + dW = 0 . (9.12)

From (9.11) we have:
dU = f

2nRdT = −dW = −pdV . (9.13)

From (9.9) we have:
V dp+ pdV = nRdT . (9.14)

Hence,
f
2 (V dp+ pdV ) = −pdV , (9.15)

yielding,
f
2V dp =

(
1 + f

2

)
pdV . (9.16)

Defining,

γ ≡ f + 2

f
, (9.17)

we get,
V dp = −γpdV , (9.18)
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yielding,

dp

p
= −γ dV

V
, (9.19)

yielding,

d lnP = −d lnV γ . (9.20)

That is,

d[ln(pV γ)] = 0 . (9.21)

Hence,

pV γ = const. (9.22)

The heat capacity is defined as the ratio between the absorbed heat and the rise in
temperature, i.e.,

∆Q = C∆T . (9.23)

For a process where the volume is maintained constant the gas does not perform work,
and the heat is only used to increase the energy. From (3) we have:

∆Q = f
2 . (9.24)

Therefore, the heat capacity, at constant volume, is,

CV = f
2nR . (9.25)

If the process is done at constant pressure, then the heat is used to change the energy
and also to perform work, that is:

∆Q = ∆U +∆W . (9.26)

From (1) we have that at constant pressure,

p∆V = nRT∆T . (9.27)

Hence,

∆Q = f
2nR∆T + nR∆T =

(
1 + f

2

)
. (9.28)

and

Cp =
(
1 + f

2

)
nR . (9.29)

We conclude, then,
Cp
CV

= γ and Cp − CV = nR . (9.30)

Since the specific heat can be obtained from the heat capacity simply by dividing by
the mass, the ratio of the specific heat at constant pressure and to the specific heat
at constant volume is also equal to the constant γ, that is, γ = cp/cV .
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9.4.3.1 The Cléments-Desormes method

The specific heat of solids and liquids is usually measured with samples under at-
mospheric conditions and without control of the volume of the material. For this
reason, these are specific heats measured at constant pressure: cP . To measure the
heat capacity of gases, it is much simpler to work with the gas contained in a rigid
recipient, such as a glass bulb with little thermal expansion within the temperature
range of the experiment. Then, the measured value is the specific heat at constant
volume cV . The value cP of a gas is larger than cV , because in the experiment, at
constant pressure, the heat delivered to the material also causes an expansion of the
gas, which means that part of that energy has been converted into work and not into
an increase the body’s thermal energy. The ratio between specific heats at constant
pressure and volume, γ = cp/cv, is a value that often appears in the description of
thermodynamic processes in gases. This ratio can be measured by isobaric and iso-
choric processes, respectively measuring cp and cv. The first experiment to measure
the factor γ in gases was performed in 1819 by Desormes and Clément. The method
consists of applying to a (ideal) gas, a sequence of two processes illustrated in Fig. 9.9:
an adiabatic expansion from state (1) to (2), and isochoric heating from (2) to (3). In
the initial equilibrium state (1), a certain amount of moles of gas n are at a pressure
P1 above atmospheric pressure with the volume V1, and a temperature T1 equal to
room temperature. An adiabatic expansion is performed to state (2) with pressure
P2 equal to atmospheric pressure, volume V2, and temperature T2 lower than room
temperature. Immediately an isochoric heating is carried out toward the state (3), at
room temperature, for T1, and pressure P3.

To calculate the factor γ of the gas, we consider the relation between P and V in
the course of an adiabatic process: pV γ = const.. Thus, we can write,

p1V
γ
1 = p2V

γ
2 . (9.31)

From this relation, it is possible to write the factor γ as in Fig. 9.9 for the gas process
realized by the Cléments-Desormes experiment: between the initial state (1) and (2)
the process is adiabatic. Between (2) and (3) it is isochoric. In order to obtain
the result only in terms of pressures and not volumes which, in practice, are more
difficult to measure accurately, we can now consider the isochoric process (2) to (3)
imposing the condition that states (1) and (3) lie on the same isothermal curve with
temperature T1 (see Exc. 9.4.5.30).

9.4.3.2 Rüchardt’s method

Rüchardt’s method is discussed in Exc. 9.4.5.20.

9.4.4 Cyclic processes and thermal machines

Thermal machines are based on cyclic processes. Examples are the Carnot cycle, the
Otto cycle, or the Diesel cycle.

9.4.4.1 Carnot cycle

A Carnot cycle is an ideal thermodynamic cycle providing, by Carnot’s theorem,
an upper limit on the efficiency of any classical thermodynamic engine during the
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Figure 9.9: Clément-Desormes cyclic process.

conversion of heat into work, or conversely, the efficiency of a refrigeration system in
creating a temperature difference through the application of work to the system.

In a Carnot cycle, an engine transfers energy in the form of heat between two
thermal reservoirs at temperatures Thot and Tcold, and a part of this transferred
energy is converted to the work done by the system. The cycle is reversible and hence
isentropic. In other words, entropy is conserved; it is only transferred between the
thermal reservoirs. When work is applied to the system, heat moves from the cold
to hot reservoir, which is exploited in heat pumps and refrigerators, depending on
whether the heat increase of the hot reservoir is exploited or the heat decrease of
the cold reservoir. When heat moves from the hot to the cold reservoir, the system
applies work to the environment, which can be exploited in heat engines.

The work W done by the system or engine to the environment per Carnot cycle
depends on the temperatures of the thermal reservoirs and the entropy transferred
from the hot reservoir to the system ∆S per cycle such as,

W = (Thot − Tcold)∆S = (Thot − Tcold)
Qhot
Thot

, (9.32)

where Qhot is heat transferred from the hot reservoir to the system per cycle.
To calculate the yield of the Carnot cycle (see Fig. 9.10) we ...
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Figure 9.10:
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9.4.5 Exercises

9.4.5.1 Ex: Depth gauge

You want to build a depth gauge for diving operations and take advantage of the
compressibility of air. To do this, you take a glass cylinder with a movable flask
(volume V = A · x, footprint A) and a millimeter scale located in the flask. To what
water depth h can the device deliver the targeted measuring accuracy of ±1 m, if the
piston position x can be read with an accuracy of ±1 mm and x(p0) = 0.2 m at the
water surface?

Solution: For h = 0 m the pressure is p = p0 = 105 Pa and x = x0 = 0.2 m.
According to Boyle-Mariotte: (p0 + ρgh) · A · x = p0 · A · x0. ⇒ h = a · x0−x

x with

a = p0
ρg = 10.2 m. ⇒ ∆h

∆x ≈ ∂h
∂x = −ax0

x2 < 0. ⇒ x ≈
√
ax0

∣∣∆x
∆h

∣∣.
With ∆x = 1 mm and ∆h = 1 m we get x = 4.52 cm and accordingly h = 35 m. The
device is accurate to a depth of h = 35 m to 1 m.

9.4.5.2 Ex: Tramway

A tram with mass mB = 12500 kg brakes from a speed v = 57.6 km/h to stand-
still. What is the temperature of the eight cast iron brake blocks when the mass of
each block is 9.0 kg and 60% of the kinetic energy flows into the heating of the blocks?

Solution: The amount of heat flowing into the brake padsis Q = 0.6 · 0.5 ·mBv
2 =

960 kJ. The mass of an Fe atom is 56 u and with the rule of Dulong-Petit follows
cFe =

24.9
56

J
g·K ≈ 0.445 J

g·K . The mass of all brake blocks is M = 8 · 9 kg= 72 kg, such

that we expect a temperature increase of ∆T = Q
M ·cFe

= 960 kJ
72 kg·0.445 J

g·K
≈ 30 K.

9.4.5.3 Ex: Heat capacities

a. Two gas containers are brought into thermal contact. They contain gases with
the temperatures T1 and T2, as well as the heat capacities C1 and C2. The thermal
capacity of the containers is negligible. What is the temperature of the gases after an
equilibrium has been reached?
b. Now consider the temperature equilibrium of three containers, each with 100 g of
the gas H2 at the temperature TH2

= 10 C, 50 g of the gas He at the temperature
THe = 15 C, and 200 g of the gas N2 at temperature TN2 = 20 C. What is the final
temperature?

Solution: a. The temperature is,

Tm =
C1T1 + C2T2
C1 + C2

,

because the heat delivered by gas 1 ∆Q = C1(T1 − tm) = −C2(T2 − Tm) must be
absorbed by gas 2.
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b. The molar heat capacities are C̃ = NA
f̄
2kB, hence,

C̃H2 = C̃N2 = NA
5

2
kB = 20.8 J/K mol and C̃He = NA

3

2
kB = 12.5 J/K mol .

The specific heat capacities are c = C̃/(m NA), hence,

cH2 =
5

2

kB
2u
≃ 10393 J/K kg and cHe =

3

2

kB
2u
≃ 3118 J/K kg

and cN2
=

5

2

kB
14u
≃ 742 J/K kg .

If M is the total mass of the gases, then the actual heat capacities are C = cM , hence,

CH2
= 0.1·10393 J/K and CHe = 0.05·3118 J/K and CN2

= 0.2·742 J/K .

The temperature is finally,

Tm =
CH2

TH2
+ CHeTHe + CN2

TN2

CH2
+ CHe + CN2

= 11.7C .

9.4.5.4 Ex: Calorimetry

a. A calorimeter initially contains a volume of V1 = 100 ml of water in thermal
equilibrium with the calorimeter at temperature T1 = 15◦C. Now we add a volume
V2 = 100 ml of water at temperature T2 = 40◦C. After reaching thermal equilibrium
again, the temperature becomes Tf = 25◦C. What is the thermal capacity of the
calorimeter?
b. Starting from the final condition of the previous item, we add to the calorimeter
a metallic body with mass m3 = 80 kg and temperature T3 = 90◦C. After reaching
thermal equilibrium again, the temperature becomes Tff = 35◦C. What is the specific
heat of the body?

Solution: a. The thermal capacity of the calorimeter is,

C = m2ca
T2 − Tf
Tf − T1

−m1ca = 100 g·1 cal/g °C· 40− 25

25− 15
−100 g·1 cal/g °C = 50 cal/°C .

b. The specific heat of the body is,

c3 =
(m1 +m2)ca + C

m3

Tff − Tf
T3 − Tff

=
200 g · 1 cal/g °C+ 50 cal/°C

80 g

35− 25

90− 35
= 0.5682 cal/g °C .
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9.4.5.5 Ex: Calorimeter for mixtures

The specific heat capacity of platinum cPt is to be measured with a mixing calorime-
ter. For this purpose, a platinum body is heated to 100 ◦C and then thrown into water
of 20 ◦C. To simplify the evaluation, the mass of the water is chosen to be that of
the platinum body. The heat absorption of the calorimeter body should be neglected.
The specific heat capacity of water is cH2O = 4.19 J/(g K), the relative atomic mass
of platinum is mPt = 195 u, the linear expansion coefficient α = 9.0 · 10−6 K−1.
a. The mixing temperature is 22.41 ◦C. What value follows for cPt?
b. What is the value for cPt when applying the Dulong-Petit rule?
c. The platinum body and the water have the same mass. What is the ratio of the
number of platinum atoms to the number of water molecules?
d. How many degrees does the platinum body have to be heated to increase its volume
by 1 %?

Solution: a. We have,

∆Q = mH2OcH2O∆TH2O +mPtcPt∆TPt = 0 .

The following also applies mH2O = mPt. Then follows,

⇒ cPt = −cH2O

∆TH2O

∆TPt
.

With TH2O = 2.41 K, TPt = −77.59 K and cH2O = 4.19 J/(g·K) we get cPt =
0.130 J/(g·K).
b. Dulong-Petit: Cmol = 24.9 J/mol·K ⇒ cPt =

24.9
195

J
g·K ≈ 0.128 J

g·K
c. Mass of a H2O-molecule: mH2O = 18 u, mass of a platinum atom: mPt = 195 u,
NH2O ·mH2O =MH2O =MPt = NPt ·mPt ⇒ NPt

NH2O
= 18

195 ≈ 0.092
1

d. L′ = (1 + α ·∆T )L ⇒ V ′ = L′3 = (1 + α ·∆T )3L3 = (1 + α ·∆T )3V = 1, 01 · V
⇒ ∆T =

3√1.01−1
α ≈ 370 K.

9.4.5.6 Ex: Calorimeter for mixtures

The equation of state of an ideal gas pV = NkBT applies and the energy is given as
E = CV T .
a. Show that for the entropy change of an ideal gas from state A with tempera-
ture TA and volume VA to state B with temperature TB and volume VB holds:
∆S = CV log (TB/TA) +NkB log (VB/VA).
b. Two insulated containers with the same volume V = 10 cm3, the same pressure
p = 1 bar and the same temperature T = 100◦ C are filled with nitrogen and oxygen,
respectively. Determine the change in entropy when connecting the containers so that
the gases can mix.

Solution: a. The 1st law of thermodynamics states δQ = dE − δW = CV dT + pdV .
With that and with the ideal gas equation p = NkB

T
V on gets,

dS =
δQ

T
=
CV dT + pdV

T
= CV

dT

T
+NkB

dV

V
.
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Hence, we get the entropy change

∆S = SB−SA =

∫ SB

SA

dS = CV

∫ TB

TA

dT

T
+NkB

∫ VB

VA

dV

V
= CV ln

TB
TA

+NkB ln
VB
VA

.

b. The ideal gas equation pV
T = NkB tells us that with identical pressure, volume and

temperature the particle numbers must also be identical, i.e. N = NO2 = NN2 . Since
both gases are diatomic, EO2 = EN2 = f

2NkBT = CV T with 5 = f = fO2 = fN2

degrees of freedom, i.e. the internal energies are identical as are the specific heats.
Now if the gases mix, we have,

∆Q = 0 = ∆W ⇒ ∆E = 0 ,

since the thermal insulation of the containers impedes any exchange of thermal energy
with the surroundings. Likewise, no work is done by simply bringing the containers
together and removing the partition. The internal energies of the two gases are also the
same, so that the two gas components also do not exchange energy. On the other hand,
∆E = 0 means that the temperature does not change, T = constant = TA = TB. Each
of the two gas components O2 and N2 sees its volume doubled, VA ≡ V → 2V ≡ VB.
So with equation (3)

∆SO2 = ∆SN2 = CV ln
TB
TA

+NkB ln
VB
VA

= NkB ln 2 .

Finally, ∆S = ∆SO2
+∆SN2

= NkB2 ln 2.
Note: The formula (3) respectively (4) apply provided that the particle number N of
the ideal gas under consideration is maintained constant. If N were also to change,
the formula receives an additional term that takes this change in particle number into
account. Assuming that in subtask (b) the two gases are identical, then the simple
addition of the individual entropy change leads to a wrong result. Because of the
indistinguishability, ∆S = 0, since the probability to find a particle before and after
does not change. One could consider the entropy change if the gas is first in V with
particle number N and then in 2V with particle number 2N . But that would require
the extended formula.

9.4.5.7 Ex: Partial pressures

A closed cylindrical reservoir with the base area S = 10 cm2 is kept at a constant
temperature T = 27◦C. It is divided in two volumes by an airtight mobile disk with
the mass m = 10 kg. The upper volume VO2

contains ηO2
= 1 mol of oxygen, the

lower volume VN2
contains the same amount of nitrogen. Due to its weight the disc

finds an equilibrium position when the lower volume is VN2 = 10 l.
a. What are the masses mO2 and mN2 of the gases?
b. What are the pressures PO2

and PN2
?

c. What is the upper volume VO2
?

d. What are the densities nO2
and nN2

?
e. Now the disc has a hole, so that the gases can mix and the disc falls to the bottom
of the reservoir. What is the final pressure of the mixture?
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Solution: a. The numbers of particles in the gases are equal,

NO2
= ηO2

NA = ηN2
NA = NN2

= N .

Therefore, the masses are,

mO2
= N · 16u = 16 g and mN2

= N · 14u = 14 g .

b. The disc presses on the lower volume with the pressure mg/S. The pressures on the
volumes are therefore related by pO2

+ mg
S = pN2

. The pressure in the lower volume
is,

PN2 =
NkBT

VN2

= 2.5 bar .

The pressure in the upper volume is,

PO2 = PN2 −
mg

S
= 1.5 bar .

c. Now we can calculate the upper volume

VO2 =
NkBT

PO2

= 16.5 l .

d. The densities are

nO2
=

N

VO2

=
PO2

kBT
= 6.0 · 1025 m−3 and nN2

=
N

VN2

=
PN2

kBT
= 3.6 · 1025 m−3 .

e. The total pressure is the sum of the partial pressures, P = PO2
+ PN2

. Knowing
the total volume of the reservoir, Ṽ = VO2 + VN2 and the ideal gas law we have,

P̃ = P̃O2 + P̃N2 =
NkBT

Ṽ
+
NkBT

Ṽ
=

2NkBT

VO2 + VN2

= 1.9 bar .

9.4.5.8 Ex: Ideal gas

A diver is at a water depth of h0 and breathes air from a compressed air bottle. When
exhaling, he creates (spherical) air bubbles with the volume V0. Assume that the sur-
face water temperature is T1 and decreases evenly to a depth of h0 by an amount of
temperature α per meter.
a. Assume a constant water density ρ and calculate the pressure p depending on the
water depth at an atmospheric pressure p1. b. Calculate the volume of the bubbles
as a function of water depth. How big is the volume just below the water surface?
Why is it important for the diver to exhale continuously as he ascends?
Numerical values: Water depth h0 = 40 m, V0 = 1 cm3, T1 = 20◦C, α = 0.2◦C/m,
ρ = 1 kg/l, and p1 = 1013 hPa.
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Figure 9.11: Ideal gas in a box.

Solution: a. The pressure in a water column of depth is h,

p = p0 +
mg

A
= p0 +

ρV g

A
= p0 +

ρAhg

A
= p0 + ρhg .

b. The temperature is,
T = T0 − αh .

According to the ideal gas law, pV = NkBT , we get,

V (h) =
p40V40
NkBT40

NkBT (h)

p(h)
= V40

p40
p

T

T40
= V40

p0 + ρh40g

p0 + ρhg

T0 − αh
T0 − αh40

≈ V40
h40
h

T0 − αh
T0 − αh40

.

The result is V1/V0 ≃ 5. The air in the lungs expands. If the diver does not exhale,
the alveoli may burst.

9.4.5.9 Ex: Simple model for a solid

Consider a system of N atomic particles at a temperature T . The individual atoms
can only be in one of two states. Either in state ”0” at the energy ϵ0 = 0 or in state
”1” at energy ϵ1 = ϵ. Apart from this energy ϵi, the atoms have no kinetic or other
energies.
a. Determine the probability wi that a certain atom is in state i. Note: The distri-
bution is a Boltzmann distribution. How should the normalization be chosen?
b. Determine the statistical mean ϵ̄ for the energy of an atom. What is the expression
for the total energy E of N atoms? Which values result for kBT = ϵ?
c. Calculate the population probability wj to find a certain atom at the energy ϵ if
for temperatures satisfy: kBTj = 0.1 · j · ϵ für j = 1, 2, 3, 4. Also calculate the energy
Ej of the entire system at these temperatures.
d. Find an expression for the heat capacity c of this N atom system. Note: For this
system, the total energy is identical to the thermal energy.
e. Calculate the heat capacities cj especially for the temperatures Tj from subtask
(a). What does this result have to do with ’freezing degrees of freedom’?
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Solution: a. The probability of finding a certain atom in state i is

w0 =
1

1 + e−ϵ/kBT
and w0 =

e−ϵ/kBT

1 + e−ϵ/kBT
.

b. The statistical mean is,

ϵ̄ = 0w0 + ϵw1 = ϵ
e−ϵ/kBT

1 + e−ϵ/kBT
= ϵ

e−1

1 + e−1
= 027ϵ .

The total energy is,

E = Nϵ̄ .

c. The occupation probabilities for the different temperatures are w1 = 0.000045, w2 =
0.0067, w3 = 0.03445, and w4 = 0.0758.
d. The heat capacity is,

C =
dE

dT
= Nϵ

dw1

dT
= Nϵ

de−ϵ/kBT

dT

d

dx

x

1 + x
= NkB

ϵ2

(kBT )2
e−ϵ/kBT

(1 + e−ϵ/kBT )2
.

e. The associated heat capacities are C/NKB = 0.0045,

E = Nϵ̄ .

Beware: The model is nonsensical for kBT > ϵ/2. Then several levels are required.

9.4.5.10 Ex: 1. law of thermodynamics

In a thermally insulated container there is one mole of air at the temperature T =
400 K. Now, it is reversibly compressed, doing the work W = 1.987 cal. Calculate
the ratio Vf/Vi between the final and initial volume. Assume that the air behaves
like an ideal gas and that the container itself does not absorb heat from the air.

Solution: Conversion to Joule: 1 cal = 4.187 J. The differential work is for adi-
abatic processes dW = −pdV . With the ideal gas equation, pV = νRT , we can
substitute the pressure, dW = −νRTV dV , or,

W = −νRT
∫
dV

V
= −νRT (lnVf − lnVi) = −νRT ln

Vf
Vi

.

So We get,
Vf
Vi

= e−W/νNAkBT ≃ 0.9977 .
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9.4.5.11 Ex: Energy of air

Calculate the kinetic energy as well as the average molecular velocity in 1 kg of air
(main components N2, O2) at T = 300 K. Help: Ekin = Q = m · c · T ; specific heat
c = f/2 ·R.

Solution: Q = 2.13 · 105 J and v = 505.6 m/s

9.4.5.12 Ex: Gas compression

Calculate the temperature change resulting from adiabatic compression of an ideal
gas of volume V (T1) to V (T2) = V (T1)/10.
Compare this with the temperature change through an analog isobaric compression
of an equally ideal gas. Note: κ = cp/cv = 1.4 (for air), T1 = 293 K.

Solution: The following applies to adiabatic compression, p1V
κ
1 = p2V

κ
2 . Hence,

∆T = T2−T1 =
p2V2
NkB

−T1 =
p1V1
NkB

V κ−11

V κ−12

−T1 = T110
κ−1−T1 =

(
101.4−1 − 1

)
·293 K ≃ 442.98 K .

Mistake!!!??? The expected result is ∆Tadiabatisch = +460 K.
The following applies to isobaric compression V1

T1
= V2

T2
. Hence,

∆T = T2 − T1 =
V2
V1
T1 − T1 =

(
V2
V1
− 1

)
T1 =

(
1

10
− 1

)
· 293 K ≃ −263.7 K .

9.4.5.13 Ex: Gas compression

An oxygen bottle with the volume V2 = 40 l contains a filling ex works that would
have the volume V1 = 6 m3 at atmospheric pressure p1 = 101 kPa. The bottle,
which has been emptied to atmospheric pressure, is refilled at a constant temperature
of T1 = 18◦C. What mechanical work W must be added to the gas to compress it
isothermally from p1 to the filling pressure?

Solution: The particle number N = pV
kBT

is constant, because pV is constant. The
work follows from δW = pdV ,

W =

∫ V2

V1

pdV =

∫ V2

V1

NkBT · dV
V

= p1V1

∫ V2

V1

dV

V
= p1V1 (lnV2 − lnV1)

= 101000 · 6 · ln 0.04

6
J = −3.036 MJ .
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9.4.5.14 Ex: Gas expansion

1 kmol of nitrogen under normal conditions (p0 = 1.01 · 105 Pa, T = 0◦C) adiabati-
cally expands from V1 to V2 = 5 · V1. Calculate the change in the internal energy of
the gas and the amount of work the gas does as it expands.

Solution: The adiabatic coefficient is,

κ =
cp
cV

=
f̃ + 1

f̃
=

3.5

2.5
= 1.4 .

Adiabatic expansion means,

pV κ =
NkBTV

κ

V
= const .

So because of dU = pdV = −δW the work is,

∆W =

∫ V2

V1

NkBT

V

V κ

V κ
dV =

NkBT

V
V κ
∫ V2

V1

dV

V κ

= NkBTV
κ−1

( −1
(κ− 1)V κ−12

− −1
(κ− 1)V κ−11

)

=
NkBT1
κ− 1

(
1− 1

5κ−1

)
=

1 kmol ·NAkB · 273.15 K

κ− 1

(
1− 1

5κ−1

)

=
1000 · 8.31 · 273.15

0.4

(
1− 1

50.4

)
J = 2.7MJ .

The change in internal energy is therefore dU = −2.7MJ.

9.4.5.15 Ex: 1. law of thermodynamics

In a thermally insulated container B there are n mol of an ideal gas and a body K
with the heat capacity C. Specify the relationship between pressure p and volume V ,
whereby the change in V is carried out so slowly that the following always applies to
body and gas: TK = TG.
Note: Body and gas exchange heat. Assume that the container itself does not take
heat from the gas or the body.

Solution: Because the gas only gives away heat to the body, the 1st law gives for
an infinitesimal variation of the state of the gas:

dU = nCV dT = δQ|G − pdV δQ|G = −δQ|K = −CdT .

It follows,

dT = − p

C + nCV
(p dV ) .

In addition, by differentiating the equation of state,

dT =
1

nR
(p dV + V dp) .
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dV

KB

Figure 9.12: Potato.

Equating the results gives,

(κ+ 1)pdV + κV dp = 0 , κ =
CV + C/n

R
.

Now we integrate

p V γ̃ = const. γ̃ = 1 +
1

κ
=
Cp + C/n

CV + C/n
.

9.4.5.16 Ex: 1. law of thermodynamics

In a thermally insulated container there is one mole of air at temperature T = 400 K.
It is compressed very slowly (reversibly) while doing the work W = 1.987 cal on it.
Calculate the behavior of the ratio Vf/Vi between the end and start volume. Assume
that the air behaves like an ideal gas and that the container itself does not absorb
heat from the air.

Solution: Conversion to Joule: 1 cal=4.187 J. The differential work for adiabatic
processes is dW = −pdV . With the ideal gas equation, pV = νRT , we can substitute
the pressure, dW = −νRTV dV . Or

W = −νRT
∫
dV

V
= −νRT (lnVf − lnVi) = −νRT ln

Vf
Vi

.

So we get,
Vf
Vi

= e−W/νNAkBT ≈ 0.9977 .

9.4.5.17 Ex: 1. law of thermodynamics

A container with 1 mol helium and a container of the same size with 1 mol nitrogen
are both heated with the same heating power W = 10 W.
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a. Calculate how long it takes to warm up the containers from T1 = 20◦C to T2 =
100◦C, if the thermal capacity of the container is 10 J/K.
b. How long does it take to warm up to 1000◦C assuming that the vibrational degrees
freedom of N2 molecules can be excited above 500◦C? Neglect heat loss.

Solution: The thermal energy of a mole is Q = f
2RT .

a. For helium, f = 3 ⇒ Q = 3
3RT . The heating energy is then W = 10 · t J=

3
2R(100 − 20) K + 10 J/K · 80 K, where the last term takes into account the heating
of the container. With R = 8.3 J(K·mol) follows,

t =
120 · 8.31 + 800

10
s = 180 s = 3 min .

For N2 molecules above T = 300 K holds, f = 5: t = 200·8.31+800
10 s = 246 s = 4.1 min.

b. The heating to 1000◦C lasts for helium,

t =
980 · 3R/2 + 9800

10
s ≈ 2200 s ≈ 37 min .

For N2 between 20-500◦ we got f = 5, for T > 500◦ we got f = 7.
Hence,

t =
480 · 8.31 · 5/2 + 500R · 7/2 + 9800

10
s = 3431 s = 57.2 min .

9.4.5.18 Ex: 2. law of thermodynamics

A thermally insulated container with a total volume of 10 l is separated into two equal
parts by a disc. In each part there are 10 mol of an ideal atomic gas. In one part
the gas has the temperature T1 = 300 K, in the other the temperature T2 = 400 K.
Calculate the change in the total entropy of the system ∆S in the event that:
a. the disc does not insulate heat;
b. a small hole opens in the disc through which the gases can mix slowly and which
at the end closes again;
c. the disc is suddenly removed and then put back in after some time without any
work being done.
In all three cases there we wait for equilibrium to establish.

Solution: In general, we have,

dS =
δQ

T
= Cp

dT

T
.

Hence, for finite processes i→ f we get,

∆S =

∫
Cp
dT

T
= Cp ln

Tf
Ti

.
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For the given example the initial and final states are the same in all three cases. The
entropy change in the overall system is the sum of the changes for the two subsystems,
the volumes of which do not change. The final temperature (T1 + T2)/2 is:

∆ST = ∆S1 +∆S2 =
3

2
NkB

(
log

T1 + T2
2T1

+ log
T1 + T2
2T2

)
= 0.06 cal/K .

9.4.5.19 Ex: 2. law of thermodynamics

A heat engine works between two heat sources with temperatures T2 > T1. If we take
away the heat Q from the second heat source, what is the maximum and minimum
work LM and L⇕ that the heating machine can do? What could the corresponding
processes look like?

Solution:

9.4.5.20 Ex: Rüchardt’s calorimetric method

A mono-atomic ideal gas with the adiabatic coefficient κ = 1.4 is in a thermally
insulated bottle with a long neck. The total volume of the bottle and the neck is
V0 = 10 l. At the beginning there is atmospheric pressure. A thermally insulating
ball with mass m = 20 g is now inserted into the neck (precision tube with a diameter
of d = 16 mm), which hermetically seals the bottle to the outside. The ball can move
smoothly.
a. Determine the equilibrium position of the ball. What is the pressure and volume
in the part of the bottle sealed by the ball?
b. The ball is now pushed down slightly from the equilibrium position and then re-
leased. With what period τ does the ball vibrate.
Help: Relate the instantaneous pressure p in the bottle to small volume changes ∆V
and linearize the expression using a Taylor expansion.

Stahlkugel

Gasflasche

Schwingungsrohr

Figure 9.13:

Solution: a. In equilibrium Fatmos + mg = Fpressure applies. With the pipe cross
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section A = 1
4πd

2 = 201 mm3, the pressure exerted on the air volume under the sphere
is p1 = p0 +

mg
A = 1023 hPa. The volume results from the adiabatic equation,

p1V
κ
1 = p0V

κ
0 ,

giving V1 = V0

(
p0
p1

)1/κ
= 9.93 l. Hence, the equilibrium position ∆x = V0−V1

A =

0.35 m below the top of the tube.
b. In Rüchardt’s experimental set-up, adiabatic changes in the state of a given gas
volume are caused by rapid alternation of compression and expansion by dropping
a steel ball into a precision tube above the gas volume, so that it then carries out
harmonic vibrations on the gas cushion. Again, the weight and buoyancy act on the
ball,

F = ma(t) = Fatmos +mg − Fdruck = p0A+mg − (p1 −∆p)A = A∆p .

Again, we get for the adiabatic compression, pV κ = p1V
κ
1 . Hence, the instantaneous

pressure is,

p =
p1V

κ
1

(V1 +∆V )κ
≃ p1V κ1

(
1

V κ1
− κ

V κ+1
1

∆V

)
= p1 −

κp1
V1

∆V = p1 +∆p .

By inserting ∆V = A∆x we get from the force equation,

ma = A∆p = −Aκp1
V1

∆V = −Aκp1
V1

A∆x

the vibration equation,

∆ẍ+ κ
p1A

2

mV1
·∆x = 0 .

The period of the oscillation is τ = 2π/ω with ω =
√

A2κp1
mV1

= 2π · 0.86 Hz.

9.4.5.21 Ex: Specific heat

The specific heat for an isobaric transformation is defined as Cp = R + CV . A mass
of m = 10 g of nitrogen is heated at constant pressure p = 2 atm and an initial
temperature of Ta = 20◦ C until its volume increases by 20%. Calculate the initial
volume V , the final temperature Te, and the heat supplied Q.

Solution: mN2
= 10 g then NN2

= mN2
/28u and Ta = 20◦C and p = 2 atm=

2 · 0.981 bar
a. We get,

Va =
NN2kBTa

p
=
mN2

kBTa
p28u

= 0.0044 m3 = 4.4 l .

b. The ideal gas law holds at the beginning and at the end,

pVa = NN2kBTa

pVe = NN2kBTe .
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We know, Ve = 1.2Va, so the end temperature is Te = 1.2Ta = 1.2·293.15◦C= 78.63◦C.
c. The heat supplied is,

δQ = CV dT + pdV

= CpdT = NN2
kB

(
f̃

2
+ 1

)
dT .

With 3 translational and 2 rotational degrees of freedom f̃ = 5, so δQ = 3.5NN2
kBdT =

208 J.

9.4.5.22 Ex: Specific heat

Calculate the specific heat per mol of an ideal gas for a reversible process according
to the law pV k = constant with k ∈ R. Can such specific heat be negative? Justify
the result.

Solution: It is not necessary to consider exactly one mole of an ideal gas. We
may simply replace the particle number N with the particle number NA in a mol. We
consider an ideal gas with N particles. From the ideal gas equation pV

T = NkB and
the process with pV k = const follows,

NkB =
pV

T
= pV k

V 1−k

T
= const

V 1−k

T
.

Hence, V
1−k

T = const.
For the case k = 1 this results in T = const, i.e. the process is carried out isothermally.
Here, the definition of the specific heat C ≡ δQ

dT = ∆Q
∆T is meaningless.

Let us now consider the case k ̸= 1. From V 1−k

T = const we get,

V

T 1/(1−k) ≡ c0 = const .

Hence, V = c0T
1/(1−k), which leads us to the following derivation,

dV

dT
= c0

1

1− kT
1/(1−k)−1 .

The 1st law of thermodynamics δQ = dE−δW = CV dT +pdV leads us to the specific
heat using equation (2),

C =
δQ

dT
= CV+p

dV

dT
= CV+pc0

1

1− kT
1/(1−k)−1 = CV+

1

1− k
pV

T
= CV+

1

1− kNkB .

At the penultimate equal sign, we replaced the constant c0 with equation (1), and we
used the ideal gas equation for the last equal sign. For processes according to the law
pV k = const, the specific heat C ≡ C(k) is given by,

C ≡ C(k) = CV +
1

1− kNkB = NkB

(
f

2
+

1

1− k

)
,
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as a function of the real number k ̸= 1 of the process, whereby we used CV = f
2NkB

(with f = 3, 5, ...). We saw above that the specific heat cannot be defined for the
isothermal process (with k = 1). In fact, it is not even a sensible quantity in the
borderline process k → 1, because

lim
k↘1

1

1− k = −∞ , lim
k↗1

1

1− k = +∞ .

The specific heat can also become negative: We find exactly,

C ≡ C(k) < 0 for 1 < k < 2/f + 1 ,

C ≡ C(k) = 0 for k = 2/f + 1 ,

C ≡ C(k) > 0 for k > 2/f + 1 or k < 1 .

9.4.5.23 Ex: Expansion of a gas

One mole of a simple ideal gas, defined by u = cRT , pv = RT , is contained in a
container of initial volume v0 and pressure p0. The gas expands from that initial state
to the state corresponding to a final volume 2v0, through several different processes.
Determine the work W done by the gas and the heat Q received by the gas for each
of these processes. Final answers should be given only in terms of (v0, p0) and the
constant c.
a. Free expansion: also determine the temperature variation ∆T .
b. Isentropic expansion: also obtain the final pressure pf , using the fact that in this
process for an ideal gas pvγ = constant, where γ = (c+ 1)/c.
c. Isobaric quasi-static expansion.
d. Isothermal quasi-static expansion.
Formulas of thermodynamics:

∆u = Q−W

W =

∫
pdV

dU = TdS − pdV + µdN

β ≡ 1

kBT

Z ≡ e−βF =
∑

n

e−βEn

Pn = e−βEn/Z

U ≡ ⟨En⟩ =
∑

n

EnPn

f = u− TS .
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Solution: a. For free expansion, we know Q =W = 0. Therefore,

∆u = cR∆T = 0 ,

with the result, ∆T = 0.
b. This process being isentropic, we have pfv

γ
f = piv

γ
i . Hence,

pf = pi(vi/vf )
1+1/c = p0(1/2)

1+1/c .

Since an isentropic process is also quasi-static adiabatic, Q = 0, and

W = −∆u = −(uf − ui) = −cR(Tf − Ti) = −(cpfvf − cpivi) = −cp0v0[( 12 )1/c − 1] .

Alternative solution: Starting from p(v) = p0(v0/v)
1+1/c, we obtain,

W =

∫ vf=v0

vi=v0

p(v)dv = −[cp0v0 v0v
1/c]2v0v0 = −cp0v0[

(
1
2

)1/c − 1] .

c. We know W =
∫ vf=2v0
vi=v0

p0dv = p0v0. With that, we derive,

Q = ∆u+W = ∆u+ p0∆v = uf − ui + p0(vf − vi) = cR(Tf − Ti) + p0(vf − vi)
= cp0(vf − vi) + p0(vf − vi) = (c+ 1)p0(vf − vi) = (c+ 1)p0v0 .

d. We have RT0 = p0v0 = const throughout the isothermal process. Now,

p(v) = RT0/v = p0v0/v

W =

∫ vf=2v0

vi=v0

p(v)dv = p0v0[ln v]
2v0
v0 = p0v0 ln 2 .

With ∆u = cR∆T = Q−W = 0 we obtain Q =W = p0v0 ln 2.

9.4.5.24 Ex: Calorimeter

a. A calorimeter initially contains 100 ml of water in thermal equilibrium with the
calorimeter at a temperature of T1 = 20◦. Now, an amount of 150 ml of water with
the temperature T2 = 70◦ is added. After reaching thermal equilibrium again, the
temperature becomes Tf = 45◦. Knowing the specific heat of water, ca = 4.186 J/gK,
calculate the thermal capacity of the calorimeter.
b. Now we put into the same calorimeter (filled with 250 ml of water at temperature
Tf = 45◦) additionally a metallic body with the mass m3 = 200 g and tempera-
ture T3 = 50◦. After reaching thermal equilibrium again, the temperature becomes
Tff = 41◦. Calculate specific heat of the body.

Solution: a. The thermal capacity of the calorimeter is,

C = m2ca
T2 − Tf
Tf − T1

−m1ca =

(
150 · 4.186 · 70− 40

40− 20
− 100 · 4.186

)
J/K = 209 J/K .

b. The specific heat of the body is,

c3 =
[(m1 +m2)ca + C](Tff − Tf )

m3(T3 − Tff )
=

[250 · 4.186 + 209](41− 40)

200 · (50− 41)
= 0.698 J/gK .
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9.4.5.25 Ex: Measurement of latent heat upon water condensation

A calorimeter with thermal capacity C = 209 J/K initially contains 250 ml of water
in thermal equilibrium at a temperature of T1 = 20◦. Now, an amount of 40 ml of
water vapor is added. After reaching thermal equilibrium again, the temperature is
Tf = 92◦. Calculate the latent heat of water condensation.

Solution: The latent heat of water condensation isfound to be,

Lc =
(m1ca + C)(T1 − Tf )

m2
+ ca(Tc − Tf ) =

(250 · 4.186 + 209)(20− 92)

40
+ 4.186 · (100− 92)

= −2226 J/g .

9.4.5.26 Ex: Latent heat in a sauna

A Finnish sauna is heated to 90◦C. To increase the thermal conductivity of the air,
you put 1 liter of water at a temperature of 20◦C in the oven container, where the
water is evaporated. How does the temperature of the sauna evolve?

Solution:

9.4.5.27 Ex: Adiabatic expansion

a. During the adiabatic expansion of a gas the pressure P and the volume V of the
gas satisfy the relationship PV γ = α, where α is a constant, and γ is the factor
of the gas that gives the ratio between the specific heats at constant pressure and
volume, i.e. γ = cP /cV . A gas was placed in a cylinder with a movable (frictionless)
plunger completely insulated from the external environment. The assembly makes it
possible to measure the volume and pressure of the gas during its expansion and the
experimental values obtained are given in the table below.
a. From the values in the table below, and using the least squares method, deter-
mine the gas factor and the constant α. (Hint: to obtain a linear relationship, take
x = log V and y = logP .).
b. Determine, through the method of least squares, the uncertainties in the values
obtained for γ and α.
c. Using a log×log paper, prepare a graph P×V and determine the values of γ and
α. Compare with the results obtained by the least squares method.
Notes: When displaying the values of γ and α, be sure to indicate the units in which
they are expressed.
Display the values of Sx, Sy, Sx2 and Sxy used in the least squares method calcula-
tions.
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V (litros) P (atm)

40 1.20

41 1.16

43 1.10

44 1.05

46 0.98

47 0.96

49 0.90

50 0.87

Solution: a. We initially calculate,

V (litros) P (atm) lg V (ltr) lgP (atm)

40 1.20 1.6021 0.0792

41 1.16 1.6128 0.0645

43 1.10 1.6335 0.0414

44 1.05 1.6435 0.0212

46 0.98 1.6628 -0.0088

47 0.96 1.6721 -0.0177

49 0.90 1.6902 -0.0458

50 0.87 1.6990 -0.0605
With x ≡ lg V e y ≡ lgP , we get,

y = ax+ b = −γx+ lgα .

We calculate N = 8 and,

Sx =

N∑

i=1

xi = 13.2158 , Sy =

N∑

i=1

yi = 0.0735

Sx2 =

N∑

i=1

x2i = 21.8408 , Sxy =

N∑

i=1

xiyi = 0.1089

D = NSx2 − S2
x = 0.0691

a =
NSxy − SxSy

D
= −1.4441 , b =

SySx2 − SxySx
D

= 2.3949

∆y =

√∑N
i=1(axi + b− yi)2)

N − 2
= 0.0955

∆a = ∆y

√
N

D
= 1.0281 , ∆b = ∆y

√
Sx2

D
= 1.6987 .

With that we find,

γ = −a = 1.44 , α = 10b = 248

∆γ = ∆a = 1.03 , ∆α = 10b ln 10∆b = 971 .

Consider a set of N pairs of experimental data (xi, yi), where the values xi are
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Figure 9.14: Adiabatic expansion.

assigned to the independent variable and yi to the dependent variable. Assuming that
the relationship y(x) is considered as linear, i.e.,

y = ax+ b .

the least squares method provides the values for the slope a and the linear term b for
the line that best approximates the experimental data. The expressions of the line
coefficients and their respective uncertainties are:

a =
NSxy − SxSy

D
, ∆a = ∆y

√
N

D

b =
SySx2 − SxySx

D
, ∆b = ∆y

√
Sx2

D
,

where,

Sx =

N∑

i=1

xi , Sy =

N∑

i=1

yi

Sx2 =

N∑

i=1

x2i , Sxy =

N∑

i=1

xiyi

and

∆y =

√∑N
i=1(axi + b− yi)2)

N − 2
, D = NSx2 − S2

x .

9.4.5.28 Ex: Adiabatic expansion

A diatomic gas is initially maintained at a pressure of Pi = 4000 hPa in a piston of
volume Vi = 1 l at temperature Ti = 100◦C. Now the gas pressure forces the piston
to move until it reaches half the pressure. Considering the expansion as an adiabatic
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process
a. calculate the number of moles η inside the piston;
b. calculate the thermal capacity at constant volume CV of the gas;
c. calculate thermal capacity at constant pressure CP ;
d. calculate the adiabatic coefficient γ;
e. calculate the final volume of the piston;
f. calculate the final temperature of the gas;
g. calculate the work done by the gas on the piston.
h. Now, the gas cools down gradually while the piston is held fix. Calculate the pres-
sure Pr when the temperature reached Tr = 20◦C.

Solution: a. We have η = PiVi

RTi
= 4·105·10−3

8.31·293.15 mol = 0.16 mol;

b. As the gas is diatomic, CV = 5
2ηR = 3.4 J/K.

c. Similarly, CP = 7
2ηR = 4.8 J/K.

d. The adiabatic coefficient is, γ = 7
5 = 1.4.

e. For adiabatic expansion, PV γ = const. Hence,

Vf = Vi

(
Pi

Pf

)γ
= 10−3 m3 · 21.4 = 2.6 l.

f. The final temperature is,

Tf =
PfVf

ηR = 2·105·2.6·10−3

8.31·0.16 = 117.8◦C .

g. The work is,

δW = dEint = CV dT = 5
2ηR(Tf − Ti) = 5

2 · 0.16 · 8.31 · (117.8− 20) = 325 J .

h. The pressure is,

Pr =
ηRTr

Vf
= 0.16·8.31·293.15

2.6·10−3 = 1500 hPa .

9.4.5.29 Ex: Cyclic process

A and B be two states of an ideal gas with the same temperature T , but different
pressures and volumes. Show explicitly that ∆Q/T remains the same, regardless of
whether we go from A to B via a reversible isothermal process or first with a reversible
isobaric process and then with a reversible isochoric process.

Solution: We denote by PA and VA the pressure and volume of state A, analogously
pB and VB of state B. Since both states have the same temperature TA = TB = T0, it
follows from the ideal gas equation that,

pAVA = NkBT0 = pBVB ⇒
pB
pA

=
VA
VB

.

Isothermal process: Since T = T0 = const, we get ∆E = 0. With the 1st law of
thermodynamics δQ = −δW = pdV . Use the ideal gas equation, p = NkB

T
V brings
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us to,,

dS =
δQ

T
=
pdV

T
= NkB

dV

V
,

Hence,

∆Sit =

∫ SB

SA

dS = NkB

∫ VB

VA

dV

V
= NkB ln

VB
VA

.

The index ”it” at the entropy change ∆Sit means ”isothermal”. Analogously below,
the index ”ib” means ”isobar” and ”ic” means ”isochor”.
Isobaric + isochoric process: (pA, VA)

isobar−→ (pA, VB)
isochor−→ (pB , VB). Here, the

temperature changes in each of the two processes T .

First the isobaric process (pA, VA)
isobar−→ (pA, VB). The ideal gas equation provides,

T =
pA
NkB

V ⇒ dT =
pA
NkB

dV .

Replacing dT in the 1st law, δQ = dE − δW = CV dT + pAdV , and T in dS = ∆Q
T ,

we get the relation,

dS =
δQ

T
=

1

T
(CV dT + pAdV ) = (CV +NkB)

dV

V
.

Hence,

∆Sib = (CV +NkB)

∫ VB

VA

dV

V
= (CV +NkB) ln

VB
VA

.

Now the following isochore process control: (pA, VB)
isochor−→ (pB , VB). The ideal gas

equation provides,

T =
VB
NkB

p⇒ dT =
VB
NkB

dp .

Because of ∆V = 0 the 1st law is reduced to δQ = dE = CV dT . Hence,

dS =
δQ

T
= CV

dT

T
= CV

dp

p
.

This leads to,

∆Sic = CV

∫ pA

pB

dp

p
= CV ln

pB
pA

= −CV ln
VB
VA

,

where we used equation (3) for the last equal sign. Overall, we get the entropy change,

∆Sib+ic = ∆Sib +∆Sic = NkB ln
VB
VA

= ∆Sit ,

which corresponds to the change in entropy deduced for the isothermal process ∆Sit
[see equation (4)].
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9.4.5.30 Ex: Clément-Desormes cyclic process

An ideal gas with N atoms and the heat capacities CV = 3
2NkB and Cp = 5

2NkB
goes through the cycle shown in the figure: First an isotherm from ”1” to ”2”, then
an isobar from ”2” to ”3” and finally an isochore from ”3” to ”1”. For the starting
point ”1”, the temperature T1 and the volume V1 are known, for ”2” V2 is given.
a. Calculate the work done and the heat input for all three steps of the cycle.
b. Calculate the efficiency η of the process as a function of V1 and V2 respectively T1
and T3. Calculate the total changes of internal energy and entropy (see Fig. 9.9).

Solution: a. For the different ways we get,

1→ 2 : ∆Q = ∆A =

∫ V2

V1

p dV = NkBT1 log
V2
V1

2→ 3 : ∆Q =
5

2
N kB∆T = −5

2
NkBT1

(
1− V1

V2

)
,

∆A = p2∆V = −NkBT1
(
1− V1

V2

)

3→ 1 : ∆Q =
3

2
N kB∆T =

3

2
NkBT1

(
1− V1

V2

)
,

∆A = 0 .

b. We get,

η =
A1→2 +A2→3

Q1→2 +Q3→1
=
Q1→2 +Q2→3 +Q3→1

Q1→2 +Q3→1
= 1 +

Q2→3

Q1→2 +Q3→1

= 1− 5(V2 − V1)
2V2 log

V2

V1
+ 3(V2 − V1)

=
2V2 log

V2

V1
− 2(V2 − V1)

2V2 log
V2

V1
+ 3(V2 − V1)

= 1− 5(T1 − T3)
2T1 log

T1

T3
+ 3(T1 − T3)

=
2T1 log

T1

T3
− 2(T1 − T3)

2T1 log
T1

T3
+ 3(T1 − T3)

∆S = ∆E = 0 .

9.4.5.31 Ex: Cyclic process

An ideal gas with N atoms and the heat capacities CV = 3
2NkB and Cp = 5

2NkB
goes through the cycle shown in the figure. For the starting point 1 its pressure p1,
volume V1, and thus also the temperature T1 are known.
a. Calculate p2, T2, p3 and T3, if V2 = V3 = 3V1.
b. For all 3 steps of the cycle, calculate the work done on the gas ∆W , the heat
supplied ∆Q, and the internal energy ∆E, as well as the change in entropy ∆S.

Solution: a. For the isothermal process 1 → 2 we know p1V1 = p2V2 = 3p2V1.
Hence,

p2 = p1/3 and T2 = T1 .
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Figure 9.15:

For the adiabatic process 3 → 1 we know p1V
κ
1 = p3V

κ
3 = p3V

κ
1 · 35/3 with κ ≡

Cp/CV = 5/3. Hence,

p3 = p1/3
5/3 .

Furthermore, p3V3/p1V1 = T3/T1. Hence,

T3 =
p13V1

35/3p1V1
T1 =

3

35/3
T1 .

b. For the isothermal process 1→ 2 we know ∆E = ∆Q+∆W = 0. Hence,

∆W = −
∫
pdV = −

∫ V2

V1

NkBT1
dV

V
= −NkBT1 ln

V2
V1

= −NkBT1 ln 3 .

Thus, the heat is ∆Q = −∆W and the entropy ∆S = 1
T1
∆Q = NkB ln 3.

For the isochoric process 2→ 3 we know ∆W = 0 and hence ∆Q = ∆E = CV∆T =
3
2NkB(T3 − T1) = − 3

2NkBT1(1− 3−2/3). Hence,

∆S =

∫
δQ

T
= CV

∫ T3

T1

dT

T
=

3

2
NkB ln

T3
T1

=
3

2
NkB ln

1

32/3
= −NkN ln 3 = ∆S1−2 .

For the adiabatic process 3 → 1 we know ∆Q = 0 = ∆S. Hence ∆E = ∆W =
CV (T1 − T3) = 3

2NkBT (1− 3−2/3).

9.4.5.32 Ex: Cyclic process

In a heat power machine (illustrated in Fig. 9.16), the working gas (helium) is sealed
off in a cylinder by a movable piston. The gas is alternately heated and cooled from
the outside. The piston moves back and forth periodically and drives a shaft. The
initial state is: p = 0.2 · 106 Pa, V = 150 cm3, T = 300K.
a. Calculate the mass of the enclosed helium and the adiabaticity coefficient.
b. During a complete work cycle, the gas undergoes the following changes in its state:
1→ 2 isochoric heating to 600K,
2→ 3 isothermal expansion to twice the volume,
3→ 4 isochoric cooling to the initial temperature,
4→ 1 isothermal compression to initial volume.
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Calculate the respective pressures and illustrate the cyclic process in a p−V diagram.
c. Calculate the total mechanical work.
d. Calculate the efficiency η of the engine as a ratio of the amount of useful work to
the total amount of work.

Figure 9.16: Heat power engine

Solution: a. The mass of helium is mHe = 4u. Hence, the enclosed mass is,

m = NmHe =
pV

kBT
mHe = x kg .

The adiabaticity coefficient for the one-atomic gas is,

γ =
f + 1

f
= 4/3 .

b. The pressures are... Fig. 9.17 shows the cyclic process.
c. ∆W = 20.8 J.
d. η = 24%.

p

p+dp
p

1 2

34

T+dT

T

V V
V

fl gas

Figure 9.17: Cyclic process of a heat power engine.

9.4.5.33 Ex: Cyclic process

An engine, whose four work steps consist of two isothermal and two isochoric pro-
cesses, runs at a speed of N = 500 min−1. There is ν = 0.5 mol of an ideal, mono-
atomic gas in the volume of the engine. The parameters for the individually labeled
working steps are T1 = 50◦C, p1 = 2.0 bar, and p2 = 5.0 bar.
a. Determine the volumes V1 = V2 and V3 = V4, the pressure p4, and the temperature
T2.
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b. What efficiency η does the cycle have?
c. How high is the net power P of the engine?

Figure 9.18:

Solution: a. V1 = 6.7 dm3, V3 = 16.75 dm3, T2 = 807 K, p4 = 0.8 bar.
b. The efficiency is, η = 0.6 = 60 %.
c. To calculate the engine power P =

∆Wges

t we need the work done in the compression

and the decompression phase respectively W2 = νRT2 ln
V1

V3
= −3074 J respectively

W1 = νRT1 ln
V3

V1
= 1230 J. Wges =W1 +W2 = 1817 J ⇒ P = 1843 J

0.12 s = 15.4 kJ.

9.4.5.34 Ex: Particle collisions with a container

How many particle collisions Z does a wall surface A = 1 dm2 experience in ∆t = 1 s
at T = 298 K and p = 1 bar through the particles of an ideal gas, if ⟨|vx|⟩, the mean
value of the particle velocity in the x direction, has the value 330 m/s?
Hint: Imagine a cuboid box in an xyz coordinate system and assume the wall surface
of interest as one of the cuboid surfaces perpendicular to the x-axis. The width of
the box is ∆x, so its volume is V = A · ∆x. There is a simple relationship for the
mean number ⟨νx⟩ of impacts that a single particle does exert on the wall within a
time ∆t depending on ∆x, ∆t and ⟨|vx|⟩. To get Z you have to consider that the gas
contains N particles.

Solution: Between the impacts on the right wall, the particle has to cross the box
once in both directions. The distance covered is 2∆x. The average number ⟨νx⟩ of
the impacts that a single particle exerts on the wall results from the average distance
⟨|vx| > ·∆t covered within the time interval ∆t divided by this distance 2∆x:

⟨νx⟩ =
∆t · ⟨|vx| >

2∆x
.
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The average number Z of impacts on the wall caused by N particles is therefore,

Z = N · ⟨νx⟩ =
N ∆t · ⟨|vx|⟩

2∆x
.

With ∆x = V/A and V = N kB T
p follows,

Z =
∆t· < |vx| > ·A · p

2kBT
=

105 Nm−2 · 1 s · 330 ms−1 · 0.01 m2

2 · 1.38 · 10−23Nm ·K−1 · 298 K
≈ 4 · 1025 .

Figure 9.19:

9.4.5.35 Ex: Entropy changes

a. What entropy increase results when 200 g of (liquid) water at 0◦C and 200 g water
at 90◦C are mixed at constant pressure in a heat-insulated recipient? The molar heat
cp of the water should be 75.5 J/(mol K) regardless of the temperature.
b. 1 dm3 helium at p0 = 1 bar and T0 = 0◦C are heated to the temperature T = 500 K.
How big is the change in entropy upon isochoric and isobaric heating?

Solution: a. Since S is a state variable, it does not matter which way the tem-
perature equilibration takes place. Because of the path-independence of the entropy
one can imagine the mixing process such that the two water portions are brought from
their respective initial temperatures to the end temperature as homogeneous phases
”1” and ”2”. The differential entropy change of the individual phases is given by
dS = Cp d lnT . So we get,

∆S = ∆S1 +∆S2 = CP

∫ Tm

T1,0

d lnT + CP

∫ Tm

T2,0

d lnT = CP ln
T 2
m

T1,0T2,0
.

From this, ∆S ≈ 17.0 J/K, where Cp = ν · cp = 11.111 mol · 75.5 J/(mol K) and
Tm = 45◦C = 319 K.
b. The entropy change upon isobaric heating from T0 = 273 K to T1 = 500 K is,

∆Sisobar = ν

(
CV ln

T1
T0

+R ln
V1
V0

)
,

where ν = 1/22.4 is the molar fraction. Because of V1/V0 = T1/T0 for p =const and
with CP = R+ CV we get:
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∆Sisobar = νCp ln
T1

T0
with Cp = 21 J/(K·mol). From this ∆Sisobar = 21

22.4 ln
500
273 =

0.58 J/K.
Isochoric heating: ∆Sisochor = νCv ln

T1

T0
with Cv = 12.7 J/(K mol)= 0.34 J/K.

9.4.5.36 Ex: Material parameters

The compressibility κ, the thermal expansion coefficient α, and the stress coefficient
β are important material parameters. In the case of a single substance system, they
are defined by,

κ = − 1

V

∂V

∂p

∣∣∣∣
n,T

α =
1

V

∂V

∂T

∣∣∣∣
n,p

β =
1

p

∂p

∂T

∣∣∣∣
n,V

.

Here n is the number of moles.
a. Show that these relationships can be rewritten, using the molar volume v, to,

κ = −1

v

∂v

∂p

∣∣∣∣
T

α =
1

v

∂v

∂T

∣∣∣∣
p

β =
1

p

∂p

∂T

∣∣∣∣
v

.

b. Use the total differential of V = V (T, p, n) to show that, in general,

β =
α

κp
.

c. Calculate κ, α and β for an ideal gas as functions of p and T . Show that the
relationship from (b) is also fulfilled.

Solution: a. Relationship between volume V and molar volume v: V = n v.

κ = − 1

V

∂V

∂p

∣∣∣∣
n,T

= − 1

n v

∂(n v)

∂p

∣∣∣∣
n,T

= − 1

n v
n
∂v

∂p

∣∣∣∣
n,T

= −1

v

∂v

∂p

∣∣∣∣
n,T

.

Analogously for α. For p = p(T, v):

dp =
∂p

∂T

∣∣∣∣
v

dT +
∂p

∂v

∣∣∣∣
T

dv .

Constant v can be achieved by keeping V and n constant. So:

∂p

∂T

∣∣∣∣
v

=
∂p

∂T

∣∣∣∣
n,V

.

From this follows (as requested):

β =
1

p

∂p

∂T

∣∣∣∣
n,V

=
1

p

∂p

∂T

∣∣∣∣
v

.

b. Total differential of V :

dV =
∂V

∂T
dT +

∂V

∂p
dp+

∂V

∂n
dn
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can be rewritten with α and κ:

dV = V α dT − V κ dp+
∂V

∂n
dn .

If V and n are constant,

0 = V (α dT − κ dp)

with dp = ∂p
∂T

∣∣∣
n,V

dT . Hence:

0 = V

[
α− κ ∂p

∂T

∣∣∣∣
n,V

]
dT .

At V, dT ̸= 0 follows,

α− κ ∂p

∂T

∣∣∣∣
n,V

= 0 .

This leads to the wanted relationship.
c. With v = R T/p follows,

κ = −1

v

∂v

∂p

∣∣∣∣
T

= − p

RT

(
R T
−1
p2

)
=

1

p

α =
1

v

∂v

∂T

∣∣∣∣
p

=
p

R T

R

p
=

1

T

β =
1

p

∂p

∂T

∣∣∣∣
v

=
v

R T

R

v
=

1

T
.

9.4.5.37 Ex: A lake in winter

How long does it take at an air temperature of −6◦C to form a 4 cm thick layer of
ice on the surface of a lake (thermal conductivity of ice: κ = 1.7 · 10−2 J/(s cm K);
density of ice: ρ = 0.92 g/cm3; amount of heat that must be dissipated to form 1 g
of ice: 335 J)
Note: First consider a layer of ice of thickness z, and then think about how much heat
has to be dissipated from the lake in order to to form additional layer of thickness dz.

Solution: Consider a layer of ice of thickness z. To form the next layer of ice of
thickness dz, heat must be transported outside through the initial layer. The amount
of heat that must be dissipated to form an additional layer of thickness dz and area A
is,

dQ1 = Q0 · dM = Q0 · ρ ·A · dz
with Q0 = 335 J. The amount of heat that can be dissipated in time dt through the
layer of ice z is,

dQ2 = −κ A ∆T

z
· dt .
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The ice forms at T = 0◦C ⇒ ∆T = −6 K. dQ1 and dQ2 must be the same,

⇒ Q0 ρ A dz = −κ A ∆T

z
⇔ dt = − Q0 ρ

κ ∆T
z dz .

Integration on both sides yields,

∫ t

0

dt′ = − Q0 ρ

κ ∆T

∫ d

0

z dz ,

hence,

⇒ t = − Q0 ρ

κ ∆T
·d

2

2
⇒ 335 J/g · 0.92 g/cm

3

1.7 · 10−2J/(s·cm·K) · 6 K
·1
2
·16 cm2 ≈ 2.417·104 s ≈ 6h 43min .

9.4.5.38 Ex: Clausius-Clapeyron relationship

Show that the Clausius-Clapeyron equation,

dp

dT
=

L

T (Vgas − Vfl)

can also be derived via a cycle analogous to Carnot’s cycle. The working fluid is an
evaporating liquid, and the efficiency of this fictitious machine is dT/T , because the
temperature difference between the two isotherms is dT . From the heat Q used in the
evaporation and the work done

∮
pdV , which are related on one hand to the latent

heat L and on the other to the volume difference of Vfl and Vgas, results the rise in
vapor pressure dp/dt.

Solution: We know, W =
∫
pdV ≈ dp(Vgas − Vfl),

W
Q = η = dT

T , and Q ≡ L.

From this follows, dp
dT = L

T (Vgas−Vfl)
.

9.4.5.39 Ex: Hydrogen concentration in a metal

The concentration of hydrogen cH , which is dissolved in a metal in the form of H
atoms, depends on the pressure p of the H2 gas around the metal. Determine the
relationship between concentration and pressure!
Hint: In equilibrium the chemical reaction H2 = 2H is determined by µH2

= 2µH ,
where µH2

= kBT ln p+ χH2
(T ). Consult the textbooks to find a suitable ansatz for

the chemical potential of a substance (and thus also for atomic hydrogen) in dilute
solution.

Solution: The relation µH2
= kBT ln p + χH2

, in a solid corresponds to pH=̂cH .
Furthermore, µH = kBT ln cH + χH . In equilibrium be µH2

= 2µH , follows,

1

2
ln p+

χH2

2kBT
= ln cH +

χH
kBT

,
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follows,
cH = p1/2e(χH2

−2χH)/2kBT .

9.4.5.40 Ex: Heat power engine and heat pump

Consider a heat power engine and a heat pump based on the Carnot cycle. Calculate
the efficiency and the generated, respectively, consumed power ad a function of the
temperature difference between the hot and the cold bath.

��

�

�

Figure 9.20: Principle of a heat pump.

Solution:

9.4.5.41 Ex: Heat capacity

When drilling a brass block of 500 g (c = 0.1 cal/g◦C), a power of 300 W is provided
for 2 minutes. What is the temperature rise of the block if 75% of the heat generated
warms it up? What happens to the remaining 25%?

Solution:

9.4.5.42 Ex: Specific heat

Suppose the specific heat of a body varies with temperature according to the expres-
sion c = A + BT 2, where A and B are constant and T given in ◦C. Compare the
average value of c between T = 0 and T = T1 with its value at T1/2.

Solution:

9.4.5.43 Ex: Thermal expansion

Consider a solid body with momentum of inertia I. Show that due to a small tem-
perature variation ∆T , this momentum varies by ∆I = 2α∆T , where α is the linear
expansion coefficient. With this result, calculate how much the period of a physical
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pendulum varies when subject to a temperature variation ∆T .

Solution:

9.4.5.44 Ex: Thermal conduction

Show that the thermal current in a substance of conductivity K located between the
surfaces of two concentric spheres is given by:

dQ

dt
= H = (T1 − T2)

4πkr1r2
r2 − r1

,

where r1 and r2 are respectively the radii of the inner and outer surfaces and T1 > T2.

Solution:

9.4.5.45 Ex: Thermal work

A thermodynamic system is brought from an initial state A to another B and then
brought back to A via the point C, as illustrated in the diagram in the figure. Cal-
culate the work done by the system to complete the entire cycle.
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Fig. 13.14 

6- Uma barra com coeficiente de dilatação térmica α e módulo de Young Y 

( )
L
LY

A
F ∆=  está presa entre duas paredes, conforme mostra a Fig. 13.15. 

Calcule a tensão na barra quando a temperatura é acrescida de ∆T. 

 

 

 

 

 

 

Fig. 13.15 

7- Qual a quantidade de calor necessária para transformar 1g de gelo a  –10 
0
C (cgelo = 0.55 cal/g

 0
C, Lf = 80 cal/g) em vapor a 100 

0
C (LV = 540 

cal/g)? 

8- Coloca-se uma barra de metal (C = 0,2 cal/g
o
 C) a 100

o
C sobre um grande 

bloco de gelo a 0
o
 C. Qual é a massa da barra se quando o sistema atingir 

o equilíbrio térmico 500 g de gelo se derreteram? 

9- Coloca-se um bloco de gelo a –20 
0
C dentro de um recipiente 

hermeticamente fechado com 200g de vapor de água a 100 
0
C. Se a massa 

do gelo é 500 g, qual será a temperatura final do sistema? 

P (N/m
2
) 

V(m
3
) 

A 

B 

1 2 

C 

0 

20 

40 

0 

Figure 9.21:

Solution:

9.4.5.46 Ex: Thermal expansion

A bar with thermal expansion coefficient α and Young’s modulus Y
(
F
A = Y ∆L

L

)
is

stuck between two walls, as shown in the figure. Calculate the stress in the bar when
the temperature is increased by ∆T .

Solution:
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Fig. 13.14 

6- Uma barra com coeficiente de dilatação térmica α e módulo de Young Y 

( )
L
LY

A
F ∆=  está presa entre duas paredes, conforme mostra a Fig. 13.15. 

Calcule a tensão na barra quando a temperatura é acrescida de ∆T. 

 

 

 

 

 

 

Fig. 13.15 

7- Qual a quantidade de calor necessária para transformar 1g de gelo a  –10 
0
C (cgelo = 0.55 cal/g

 0
C, Lf = 80 cal/g) em vapor a 100 

0
C (LV = 540 

cal/g)? 

8- Coloca-se uma barra de metal (C = 0,2 cal/g
o
 C) a 100

o
C sobre um grande 

bloco de gelo a 0
o
 C. Qual é a massa da barra se quando o sistema atingir 

o equilíbrio térmico 500 g de gelo se derreteram? 

9- Coloca-se um bloco de gelo a –20 
0
C dentro de um recipiente 

hermeticamente fechado com 200g de vapor de água a 100 
0
C. Se a massa 

do gelo é 500 g, qual será a temperatura final do sistema? 

P (N/m
2
) 

V(m
3
) 

A 

B 

1 2 

C 

0 

20 

40 

0 

Figure 9.22:

9.4.5.47 Ex: Latent heat

How much heat is needed to transform 1 g of ice at −10◦C (cgelo = 0.55 cal/g
◦
C,

Lf = 80 cal/g) in a vapor at 100◦C (LV = 540 cal/g)?

Solution:

9.4.5.48 Ex: Heat capacity

A metal bar (C = 0.2 cal/g
◦
C) at 100◦C is placed on a large block of ice at 0◦C.

What is the mass of the bar if, when the system reaches thermal equilibrium, 500 g
of ice have melted?

Solution:

9.4.5.49 Ex: Latent heat

An ice block is placed at −20◦C in an airtight container together with 200 g of water
vapor at 100◦C. If the mass of the ice is 500 g, what will be the final temperature of
the system?

Solution:

9.4.5.50 Ex: Thermal conduction

Find the temperature gradient and thermal current in a bar of conductivity K, length
L and irregular cross section, as shown in the figure.
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10- Encontre o gradiente de temperatura e a corrente térmica numa barra de 

condutividade K, comprimento L e secção transversal irregular, como 

mostra a Fig. 13.16. 

 

 

 

 

 

 

Fig. 13.16 

12- Duas barras de materiais diferentes, com comprimentos, módulos de 

Young e coeficientes de dilatação térmica dados respectivamente por L1, 

L2, Y1, Y2, α1 e α2, estão presas entre duas paredes como mostra a Fig. 

13.14. Calcule a distância percorrida pelo ponto de junção das barras 

quando o sistema é aquecido de ∆T. Qual é a tensão nas barras? 

 

 

 

 

 

 

Fig. 13.17 
 

L 

L/2 

A 2A T2 T1>T2 

L1 L2 

α1 , Y1 α2 , Y2 

Figure 9.23:
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Solution:

9.4.5.51 Ex: Volumetric expansion of an ideal gas

Calculate the volumetric expansion coefficient of an ideal gas at constant pressure.

Solution:

9.4.5.52 Ex: Adiabatic expansion

Calculate the volumetric expansion coefficient of an ideal gas during an adiabatic
expansion.

Solution:

9.4.5.53 Ex: Compressibility of an ideal gas

Calculate the compressibility
(
κ = 1

V
dV
dP

)
T
of an ideal gas.

Solution:

9.4.5.54 Ex: Adiabatic expansion

An ideal gas, initially at pressure P1 and volume V1, expands adiabatically to pressure
P2 and volume V2. Show that the work done is W = (P1V1 − P2V2)/(γ − 1), where
γ = Cp/CV .

Solution:

9.4.5.55 Ex: The Otto cycle

Calculate the yield (η = W/Q, Q1 =heat received by the system) of the Otto cycle
(see figure).

Solution:

9.4.5.56 Ex: Specific heat at constant volume / pressure

Explain why the specific heat at constant volume is less than the specific heat at
constant pressure.
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e período:      

2PA

mV
2

γ
π=τ  

Desta forma, conhecendo-se P, V, m e A, podemos medir τ e obter γ como 

sendo 

22

2

PA

mV4

τ
π=γ  

Exercícios 

1- Um gás ideal, inicialmente com pressão P1 e volume V1, expande-se 

adiabaticamente até a pressão P2 e volume V2. Mostre que o trabalho 

realizado é W = (P1V1 – P2V2)/(γ - 1) onde γ = Cp/Cv 

2- Calcule o rendimento ( 1Q/W=η ,  Q1 = calor recebido pelo sistema) do 

ciclo do Otto (Fig. 14.9). 

3- Calcule o rendimento do ciclo de Carnot (Fig. 14.10). 

4-  

 

 

 

 

 

 

 

   Fig. 14.9                      Fig. 14.10 

5- Explique porque o calor específico a volume constante é menor que o calor 

específico a pressão constante. 

6- Calcule o coeficiente de dilatação volumétrica de um gás ideal à pressão 

constante. 

V2 

P 

V V1 

adiabáticas 

T2 

adiabática  

P 

V 

isoterma 

T1 

Figure 9.24:

Solution:

9.4.5.57 Ex: Adiabatic coefficient

Show that for a diatomic gas γ =
Cp

CV
= 7

5 .

Solution:

9.4.5.58 Ex: Thermal cycle

Consider the thermal cycle shown in the figure.
a. Calculate the heat supplied to the system in the isothermal branch 1→ 2,
b. Calculate the work in the isobaric branch 2→ 3 and
c. Calculate the heat supplied to the system in the isochoric branch 3→ 1.
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7- Calcule o coeficiente de dilatação volumétrica de um gás ideal durante uma 

expansão adiabátíca. 

8- Calcule a compressibilidade ( )
TdP

dV
V
1K =  de um gás ideal. 

9- A velocidade média das moléculas de um gás ideal é 500 m/s. Se o gás 

mantiver a mesma temperatura e as massas moleculares forem duplicadas, 

qual será a nova velocidade média? 

10- Mostre que para um gás diatômico 
5
7

C

C

V

p ==γ  

11- Calcule o trabalho realizado na expansão isotérmica de V1 a V2 de um gás 

real.  

12- Considere o ciclo térmico mostrado na Fig. 14.11. a) Calcule o calor 

fornecido ao sistema na isoterma 1 → 2, b) Calcule o trabalho na isobárica 

2 → 3 e c) Calcule o calor fornecido ao sistema na isocórica 3 → 1 

 

 

 

 

 

 

 

 

Fig. 14.11 

 

isotrma 

V2 V1 

 (isoterma) 

P 

v 

P1 

P2 

Figure 9.25:

Solution:
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9.5 Free energy and enthalpy

9.5.1 Equation of state of the real gas

In reality interparticle interactions increase the effective pressure and the finite size
of the molecules reduces the effective volume. In the van der Waals model the ideal
gas equation is generalized to,

(p+ p∗)(V − V ∗) = NkBT , (9.33)

with p∗ ∝ (N/NA)
2/V 2 and V ∗. Real gases are studied in Excs. 9.5.5.1 to 9.5.5.4.

9.5.1.1 Joule-Thompson process

In thermodynamics, the Joule-Thompson effect describes the temperature change of
a real gas or liquid (as differentiated from an ideal gas) when it is forced through a
valve or porous plug while keeping it insulated so that no heat is exchanged with the
environment (see Exc. 9.5.5.5).

9.5.2 Phase transitions

9.5.2.1 Liquid-gas phase transition

9.5.3 Solutions

9.5.4 Osmotic pressure

9.5.5 Exercises

9.5.5.1 Ex: Real gas

Here we study a real gas. The state equation for a real gas according to van der Waals
is, (

p+
a

V 2

)
(V − b) = NkBT .

a. Why is the critical point for the liquid-gas phase transition defined by to the
conditions,

dp

dV
=

d2p

dV 2
= 0 ?

b. Show that the temperature of the critical point Tc and the volume of the system at
the critical point Vc are linked to the material constants a and b by the relationships:

kBTc =
8a

27Nb
and Vc = 3b .

c.How to calculate the pressure at the critical point as a function of a and b?
d. For CO2 the values a = 3.6 · 10−6 bar m6 mol−2 and b = 4.3 · 10−5 m3 mol−1

are suitable parameters of the van der Waals equation. Consider a mole of CO2 and
calculate the values for the critical point Vc, Tc and pc.
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Solution: a. The critical point corresponds to a saddle point in the pV -diagram.
b. We have,

p(V ) =
NkBT

V − b −
a

V 2

dp

dV
= − NkBT

(V − b)2 +
2a

V 3

d2p

dV 2
=

2NkBT

(V − b)3 −
6a

V 4
.

Inserting the specified relations between Tc and Vc and the material constants yields,
for the second and third equations,

dp

dV
= − 8aN

27Nb4b2
+

2a

27b3
= 0

d2p

dV 2
=

2N8a

27b8b3
− 6a

81b4
= 0 .

c. The pressure is at the critical point is,

p =
N8a

27Nb2b
− a

9b2
=

a

27b2
.

d. The values for Tc and pc are,

Vc = 3 · 4.3 · 10−5 m3mol−1 · 1 mol = 12.9 · 10−5 m3

Tc =
8 · 3.6 · 10−6

27NAkB · 4.3 · 10−5
· 105 J m−3 = 298.5 K

pc =
3.6 · 10−5

27 · 4.32 · 10−10 bar = 72.1 bar .

9.5.5.2 Ex: Real gas

One mole of a real gas satisfies the Dieterici equation of state (an alternative to the
van der Waals equation),

peα/(NAkBTV )(V − β) = NAkBT ,

where are α and β parameters.
a. In what units α and β have to be specified? What sign do you expect for each
parameter?
b. Express the parameters of the critical point Tc and Vc by α and β.
c. What arises for pcVc/NAkBTc?

Solution:
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9.5. FREE ENERGY AND ENTHALPY 419

9.5.5.3 Ex: Real gas

The pressure p of a dense gas behaves as a function of temperature T and molar
volume v according to the following state equation,

p =
RT

v
− a

v2
,

where a is a positive constant and R is the universal gas constant.
a. Use the identity, (

∂u

∂v

)

T

= T

(
∂p

∂T

)

v

− p

to determine the molar energy u as a function of v.
b. Assuming that cv = (∂u/∂T )v be constant and equal to c, find u as a function of
T and v.
c. In a free gas expansion, does the temperature rise or fall? Take into account that in
a free expansion u remains invariant and v grows. Determine ∆T for a small variation
∆v of the molar volume.
d. Demonstrate the identity in item (a).

Solution: a. From the equation of state we obtain,

∂p

∂T
=
R

v

which, replaced in the identity, gives,

∂u

∂v
= T

R

v
− p = a

v2
.

Integrating,

u = −a
v
+K(T )

where K(T ) depends only on T .
b. Differentiating the above expression

cv =
∂u

∂T
= K ′(T ) = c .

Integrating K(T ) = cT +K0. Hence,

u = −a
v
+ cT +K0 .

c. As u is constant, the expression above says that, if v grows then T decreases.
Keeping u constant, the expression above says that,

c
dT

dv
=

a

v2
.

Hence,

∆T =
dT

dv
∆v =

a

cv2
∆v .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_RealGas03.pdf
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d. From du = Tds− pdv we get,

(
∂u

∂v

)

T

= T

(
∂s

∂v

)

T

− p .

Using the Maxwell relation, (
∂s

∂v

)

T

=

(
∂p

∂T

)

v

we obtain the identity.

9.5.5.4 Ex: Isothermal expansion

Calculate the work done during isothermal expansion from V1 to V2 of a real gas.

Solution:

9.5.5.5 Ex: Joule-Thomson process

Here we study the Joule-Thomson effect. A gas is forced under constant pressure p1
from a container B1 through a porous partition into a container B2 with constant
pressure p2 < p1. The constancy of the pressures in the containers is ensured by
increasing or decreasing their volumes. Finally, it is assumed that the gas is adiabat-
ically isolated from the environment and therefore only exchanges with it energy in
the form of work.
a. Show that the enthalpy H remains constant in both recipients during this process.
b. Show that, (

∂T

∂p

)

H

=
1

Cp

(
T
∂V

∂T p
− V

)

and calculate
(
∂T
∂p

)
H

explicitly for an ideal gas.

c. For a real gas, the so-called inversion curve p(T ) defined by
(
∂T
∂p

)
H

is obtained in

the pT -plane. Physically interpret the areas above and below this curve. Calculate
the inversion curve for the van der Waals gas using the thermal equation of state for
real gases.
d. Discuss the behavior of entropy in this process.

Solution:

9.6 Canonical formulation of thermodynamics

The state of stationary thermodynamic systems may ne expressed by equations of
state interrelating thermodynamic potentials:

f(x1, ..xq) = 0 . (9.34)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_RealGas04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_JouleThomson01.pdf
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The most current thermodynamic variables in a grand canonical ensemble are the
temperature T , the entropy S, the pressure −P , the volume V , the particle number
N , and the chemical potential µ. The pressure and volume may be replaced by other
mechanical variables.

9.6.1 The laws of thermodynamics

There are four fundamental truths in thermodynamics:

• 0. The zeroth law affirms that two systems each one in thermal equilibrium
with a third are in equilibrium themselves.

• 1. The first law states that the total energy is conserved dU = δQ+ dW .

• 2. The second law states that heat flows from hot to cold places, i.e. the entropy
of closed systems goes always increasing, dS ≥ 0.

• 3. The third law that for T → 0, the entropy difference between systems
connected by a reversible process vanishes, dS → 0. This last law has its origins
in quantum mechanics.

9.6.2 Thermodynamic potentials

The main thermodynamic potentials are the total energy E, the heatW , the Helmholtz
free energy F , the Gibbs free energy G, the free enthalpy H, and the grand potential
W :

E = TS − PV + µN and dE = TdS − PdV + µdN

H = TS + µN and dH = TdS + V dP + µdN

F = −PV + µN and dF = −SdT − PdV + µdN

W = PV and dW = −SdT − PdV −Ndµ
G = µN and dG = −SdT + V dP −Ndµ
Q = H and dQ = TdS

(9.35)

From that follow the conditional derivatives of the thermodynamic potentials and
other quantities, like the heat capacity:

CV =

(
∂E

∂T

)

N,V

= T

(
∂S

∂T

)

µ,V

(9.36)

CP =

(
∂E

∂T

)

N,P

.

Therefore, all thermodynamic quantities may be calculated from a few basic formulae:

TS(T ) = E −
∑

j
kBT ln [1− exp(−βEj)] . (9.37)
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9.6.3 Exercises

9.6.3.1 Ex: Legendre transform

Legendre transform.

Solution:

9.7 Thermodynamic phase transitions

9.7.1 The balance of transitions

The equilibrium of a chemical reaction may be on the left or right side.

Figure 9.26: The equilibrium of a chemical reaction may be on the left or right side.

9.7.2 Solid-liquid-vapor

In the case of the liquid-vapor transition the two phases are only quantitatively dis-
tinct, but have the same symmetry. Therefore, a discontinuity of the thermodynamic
potentials is required to reveal the phase transition.

In the case of the solid-liquid transition the two phases are qualitatively distinct
due to different symmetries. We do not need a discontinuity to distinguish the phases.
Landau’s theory holds for this class of transitions. It establishes a relationship between
symmetry considerations and physical characteristics by introducing the notion of the
order parameter and free energy.

9.7.3 Classification of phase transitions

The old Ehrenfest classification [641] calls a phase transition of nth order if the deriva-
tive ∂nµ/∂Tn is discontinuous. Thus BEC of a trapped ideal gas is a first-order phase
transition, because the chemical potential suddenly changes its slope at Tc.

The modern Landau classification distinguishes two types of phase transitions in
homogeneous systems: First-order phase transitions exhibit a discontinuity in the
order parameter, while for continuous phase transitions the order parameter does not
make jumps.

First order phase transitions are characterized by 1. equilibrium between phases
(liquid-gas, liquid-solid), 2. discontinuous entropy, therefore latent heat, 3. at least
one derivative of a thermodynamic potential is discontinuous. The two phases
coexist at the transition point. E.g. at T = 0◦C in a closed system water and ice
coexist.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ClassicalMechanics/Sol_CM_Thermodynamics_.pdf
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Continuous phase transitions are characterized by 1. no equilibrium, 2. no latent
heat, but often discontinuous heat capacity, 3. first order derivatives are all contin-
uous, but second order is discontinuous. There is no phase coexistence at the
critical point. E.g. at T = Tc there no condensate; only below Tc.

9.7.3.1 Bose-Einstein condensation

Is the observed phase transition in trapped gases really Bose-Einstein condensation?
A homogeneous gas has strong fluctuations near Tc that can heavily be influenced by
interactions, which could result in phase domains. In contrast, a trapped gas is quite
robust near Tc due to the modification of the density of states for small energies by
the trapping potential, which make the interaction less important (see stabilization
of attractive gases). However, Tc is not precisely defined and far from Tc interactions
become very important (Thomas-Fermi limit).

The dynamics of phase transition is rules by a competition between internal energy
which tries to minimize itself and entropy which tries to maximize itself. Here are a
few examples.

9.8 Quantum statistics

9.8.1 Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac dis-
tribution

9.8.1.1 Black-body radiation

The Bose-Einstein and the Fermi-Dirac distribution both have many applications
in quantum mechanics, e.g. for the explanation of the blackbody radiation, the heat
capacity of metals, the laser, the Bose-Einstein condensation, and much more. In fact,
these distributions must be used whenever quantum statistical effects are important.
Here, we will only focus on two examples, one for each type of distribution: We will
discuss the blackbody radiation using the Bose-Einstein distribution and an ideal
ultra-cold trapped fermion gas with the Fermi-Dirac distribution.

9.8.1.2 Ultra-cold ideal fermion gas

To address this problem, before we study the effects of quantum statistics, we begin
by identifying the geometric constraints. Many properties can be understood by
calculating the density-of-states g(ϵ) defined by,

∫
g(ϵ)dϵ =

1

(2π)3

∫
d3xd3k =

(2m)3/2

(2π)2ℏ3

∫
d3xdϵ

√
ϵ− U(r) . (9.38)

For example, for a box, U(x) = −U0χ(|x| > a), we get g(ϵ) = ... For a harmonic
oscillator, U(x) = m

2 ω
2|x|2, we get g(ϵ) = ϵ2/2ℏ2ω2.

Now, the Fermi-Dirac distribution,

N =

∫
g(ϵ)

eβ(ϵ−µ) + 1
. (9.39)
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gives the chemical potential.
We can now calculate all thermodynamic potentials, e.g.,

E =

∫
ϵg(ϵ)fFD(ϵ)∫
g(ϵ)fFD(ϵ)

. (9.40)

Same for BEC.

9.8.2 Bose-Einstein condensation

Start calculating the density of states on a box potential, ρ(ϵ)dϵ = 4πV
h3 (2m3)1/2ϵ1/2dϵ,

N and E are

N =

∫ ∞

0

fBEρdϵ = V λ−3th g3/2(e
−µ) (9.41)

E =

∫ ∞

0

ϵfBEρdϵ = V λ−3th
3kBT

2
g5/2(e

−µ)

=
3

2
kBT

(
1− 2−5/2nλ3th

)
+ ... ,

where λth =
√
2πℏ2/mkBT is the thermal de Broglie wavelength. Bose gases have a

lower pressure then classically predicted.

9.8.3 Fermi degeneracy

A completely analogous treatment to the Bose-gas yield for the case of fermion

E =
3

2
kBTN

(
1 + 2−5/2nλ3th

)
+ ... . (9.42)

Bosonic 4He has a very different behavior than fermionic 3He. It stays gaseous at
very low temperatures and becomes a Fermi gas before becoming fluid. Fermi gases
have a higher pressure then classically predicted.

Electrons in a solid are characterized by a high density and a low mass. Hence,
nλ3th ≈ 103. The interelectronic repulsion is canceled by atomic attraction, so that
they may be considered an ideal gas. For the density of states we get the same formula
as for bosons in a box multiplied with the factor 2 to account for the spin degree of
freedom. Thus, from

N =

∫ EF

0

ρfFDdϵ , (9.43)

we derive the Fermi energy EF = h2

8m (3N/πV )(2/3). The free electron gas is deep
in the Fermi regime, the classical statistics may only be used at temperatures above
T > 105 K. Hence the energy is temperature-independent and the heat capacity
vanishes, i.e. the electron gas does not contribute to the heat capacity of a metal. It
is only at very low temperatures of a few K, when the heat capacity of the atomic
lattice drops due to the underlying bosonic statistics, that the electrons contribute.

Now, make the metallic box potential having a finite depth. An electron can then
leave the metal, if it surmounts the exit work W = −Vmin−EF ≃ 10 eV, which is the
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difference between the potential depth and the Fermi energy. At high temperatures,
the tail of the Fermi-Dirac distribution can leak into the unbound regime, which gives
rise to thermoionic emission. This feature explains the existence of contact potentials:
Metals with different W and EF brought into contact exchange charges until their
Fermi level is at same height.

9.8.3.1 Phase space quantization

If phase space was not quantized, the cells’ size could be chosen so small that they
admit at most one particle. Then quantum statistics would not apply, the system
would be classical.

9.8.4 Microcanonical ensembles

To obtain the partition function in the microcanonical ensemble, we proceed as fol-
lows. Bosons have anti-symmetric wavefunctions, Fermions have symmetric ones.
Boltzmann particles (called boltzons here for simplicity) have all wavefunctions as
eigenfunctions. In the limit of high temperatures all particles behave like boltzons.
Discretize the one-particle energies in small cells labeled i of constant energy ei. Let ni
be their number and gi their degeneracy. For bosons, each level gk can hold arbitrarily
many of the ni particles:

W{ni} =
∏

i

(
ni + gi − 1

ni

)
. (9.44)

For boltzons, each level gk can hold ni particles:

W{ni} =
∏

i

gni
i

ni!
. (9.45)

For fermions, each level gk can hold at most one of the ni particles:

W{ni} =
∏

i

(
gi
ni

)
. (9.46)

Using the Laguerre variation principle with W{ni} = max{W{ni}} one can show:

n̄ni =
gi

z−1 exp(βei) + a
, (9.47)

where a = +1 for fermions, a = −1 for bosons, and a = 0 for boltzons. z and b follow
from the boundary conditions:

N =
∑

i
ni and E =

∑
i
ei . (9.48)

From W{ni} the thermodynamic potentials can be calculated. E.g. the entropy reads
S = kB lnW{ni} =

∑
i ni ln(gi/n̄i − a)− agi ln(1− an̄i/gi}.



426 CHAPTER 9. THERMODYNAMICS AND KINETIC GAS THEORY

-1 0 1
0

0.5

1

1.5

2

E (a.u.)
n

Figure 9.27: Quantum statistic weight for fermions (dash-dotted line), bosons (solid line)
and boltzons (dotted line).

9.8.5 Detailed balance

Quantum statistical (anti-)symmetrization of the wavefunction of a cold system leads
to Bose-enhancement(Pauli blocking). Take a state Ψ = ψα(1)ψβ(2) and symmetrize
it to Ψs, a = 2−1/2[ψα(1)ψβ(2)± ψα(2)ψβ(1)]. Now assume the single particle wave-
function overlap, α = β, then |Ψ|2 = (s + 1) |ψα(1)|2|ψβ(2)|2, where s = 0 for bolt-
zons, s = 1 for bosons, and s = −1 for fermions. Generalized to arbitrary numbers
of particles we state: If n bosons(fermions) are in state Ψ, the probability for another
bosons(fermions) to joint this state is 1 ± n times the probability without quantum
statistics.

An alternative intuitive derivation of the quantum statistical distribution function
is based on the postulate of detailed balance, claiming that equality of the ratesW12→34

for two particles to change their states and the rate for the inverse process W34→12 is
a sufficient condition for thermal equilibrium,

W12→34 = |M12,34|2n1n2(1 + sn3)(1 + sn4) (9.49)

W34→12 = |M12,34|2n3n4(1 + sn1)(1 + sn2) .

Hence,
n1

1 + sn1
+

n2
1 + sn2

=
n3

1 + sn3
+

n4
1 + sn4

. (9.50)

Energy conservation requires

E1 + E2 = E3 + E4 . (9.51)

For a macrocanonic ensemble in thermal equilibrium

f(Ei) = ni . (9.52)

To satisfy Eqs. (9.50) and (9.51) f must have the functional form

f(Ei) =
1

eβ(Ei−µ) ∓ s . (9.53)

The Bose-Einstein distribution follows directly from the assumption of stimulated
emission bosonic stimulation.

The Maxwell velocity distribution in a gas in a special application of the Boltz-
mann distribution.
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9.8.6 Canonical ensembles

In order to calculate the density of states, state equation, mean values in the grand
canonical ensemble, we start from the partition sum (upper signs for fermions and
lower signs for bosons):

Trρ =
∏

p

(
1 + ze−βep

)±1
. (9.54)

Internal energy with fixed volume is proportional to the pressure. For large systems

(thermodynamic limit) the sum may be replaced by an integral
∑

p
N→∞−→ V/h3

∫
d3p,

and the integral may be expressed by the Riemann zeta-function (see Sec. (??)). The
terms in {} brackets only hold for Bosons, because the integral diverges otherwise.
The thermodynamic potentials are

np = − 1

β

∂

∂ep
lnTrρ =

z exp(−βep)
1± z exp(−βep)

(9.55)

PV

kBT
= lnTrρ =

∑

p

ln (1± z exp(−βep)) N→∞−→
V

λ3dB
g
(±)
5/2 (z)− {N ln(1− z)}

N = z
∂

∂z
lnTrρ =

∑

p

np
N→∞−→ V

λ3dB
g
(±)
3/2 (z) + {

N

1− z } gives the chemical potential

E

N
= − ∂

∂β
lnTrρ =

∑

p

npep
N→∞−→ 3kBTV

2λ3dB
g
(±)
5/2 (z) ≈

3PV

2

S

kBN
= lnTrρ = βE −N ln z

N→∞−→ 5V

2λ3dB
g
(±)
5/2 (z)− {ln z}

T→0−→ 0

CV
kBN

=

(
∂E

∂ (kBT )

)

N,V

N→∞−→ 15V

4λ3dB
g
(±)
5/2 (z)−





9Ng
(±)
3/2 (z)

4g
(±)
1/2 (z)





T→0−→ 0

G

NkBT
= ln z .

The Bose-Einstein phase transition occurs at some critical temperature Tc. At high
temperature T > Tc the ground state population vanishes. At low temperature
T < Tc , we have to substitute in the above equations z by 1. Since g3/2 is limited for
z = 0..1 the population bilance must be equilibrated by an additional term describing
the ground state population:

N

V
=





g
(±)

3/2
(1)

λ3
dB

+ N0

V for T ≤ Tc
g
(±)

3/2
(z)

λ3
dB

for T ≥ Tc





(9.56)

P

kBT
=





g
(±)

5/2
(1)

λ3
dB

for T ≤ Tc
g
(±)

5/2
(z)

λ3
dB

for T ≥ Tc





State equation in the Bose-gas phase:

P

kBT
=
N

V

g
(±)
5/2 (z)

g
(±)
3/2 (z)

. (9.57)
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In the classical limit and we get the ideal gas equation:

P

kBT
=
N

V
. (9.58)

The state equation in the Bose-condensat phase follows directly from equation (II.2.3):

N0

N
= 1−

(
T

Tc

)3/2

. (9.59)
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Figure 9.28: Thermodynamic potentials for fermion, bosons and boltzons.

9.8.6.1 Micro- and macrocanonical Bose-condensates

The question which canonical ensemble is the correct assumption depends on the
experimental situation. The question is particularly interesting in the context of
Bose-Einstein condensation: Here it is related to the question which state better
describes a BEC: A Fock or a Glauber state.

The condensates experimentally produced in alkali gases consisted of relatively
small atom numbers between 1000 to 107, so that the validity of the thermodynamic
approximation and the use of the density of states approach has been questioned [551].
Also, the decision whether to use the grand canonical, the canonical or the micro-
canonical ensemble for calculating the thermodynamic quantities noticeably influences
the results. Herzog and Olshanii [615] have shown that for small atom numbers on
the order of 100 the canonical and grand canonical statistics lead to predictions on
the condensed fraction that differ by up to 10%. On the other hand, they give the
same results if the particle numbers are large. Which canonical statistics is more
appropriate is not a trivial question and depends on the experimental setup and in
particular on the time scale of the measurements. If we look at the sample for short
times, the number of condensed atoms will be fixed, and we can assume a canoni-
cal ensemble. For longer times, however, the atom number may be an equilibrium
parameter depending on the contact of the sample with a reservoir, and the grand
canonical statistics is better suited.
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9.8.7 Photons

9.8.7.1 Blackbody radiation

The chemical potential is the equilibrium parameter for the particle number. Since,
photons are massless and can be created or annihilated in the vacuum, the chemical
potential must vanish µ = 0. The Boson number is determined in the case of photons
by other thermodynamic quantities like temperature or volume. Blackbody radiation
is independent of the walls if the volume is sufficiently large, and only depends on the
temperature T . We can therefore freely fix the boundary conditions, f.e.

k = 2π/L · n where nx, ny, nz ∈ N . (9.60)

Allowed momentum on a sphere:

V/(2π)3 · 4πk2dk . (9.61)

For larger volumes:

∑
p
−→ V

h3

∫
d3p (9.62)

Z =
1

1− e−βℏω

Trρ =
∑

k,κ
exp(−βE{k,κ}) =

∏
k,κ

1

1− e−βℏω

⟨nk⟩ = −
1

β

∂

∂ℏω
lnTrρ =

2

eβℏω − 1
for the two polarizations

ρ =
∑

n
|n⟩⟨ρ⟩⟨n| =

∑

n

|n⟩ ⟨n⟩
(1 + ⟨n⟩)n+1

⟨n| =

E = − ∂

∂β
lnTrρ =

∑
k,κ

ℏω⟨nk⟩ = 3PV .

9.8.8 Statistical density

There are three possible ensembles that deal with a system of colliding particles
depending on the specific boundary conditions. In the microcanonical ensemble

ρmn =

{
C · δmn for E < En < E +∆ and H|ψn⟩ = E|ψn⟩

0 else

}
. (9.63)

It follows:

ρ =
∑

E<En<E+∆

|ψn⟩⟨ψn| . (9.64)

Connected to the thermodynamics via S(E, V ) = kB log Trρ. After that in almost
complete analogy to classical mechanics. In the canonical ensemble, the temperature
is an equilibrium parameter.

ρmn = δmn exp(−βEn) com β = 1/kBT . (9.65)
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It follows:
1ρ = exp(−βH)

∑

n

|ψn⟩⟨ψn| . (9.66)

In the grand canonical ensemble, the temperature and chemical potential are equilib-
rium parameters.

1ρmn = exp(−βEn − µN) . (9.67)

It follows:
1ρ = exp(−βH − µN) com [H,N ] = 0 . (9.68)

9.8.8.1 Calculating thermodynamic systems

The density operator depends on ϱ = ϱ(1) for a microcanonical ensemble, ϱ =
ϱ(1, E) for a canonical ensemble, ϱ = ϱ(1, E,N) for a grand canonical ensemble,
ϱ = ϱ(1, E,N, V ) for a macrocanonical ensemble. The variables on which the density
operator does not depend, ⟨1⟩, ⟨E⟩, ⟨N⟩, ⟨V ⟩, are fixed for the system,

δ (S + kB [(lnZ − 1)⟨1⟩ − β⟨E⟩+ βµ⟨N⟩ − βp⟨V ⟩]) = 0 . (9.69)

The thermodynamic quantities follow from equations like

dSrev = kBβ(βdE − µdN + pdV ) ≤ 0 . (9.70)

Other thermodynamic potentials may be defined via Legendre transformations.
How to calculate thermodynamical systems? Chose the ensemble that applies to

the problem, ϱ = e−β.../Z and the respective potential P with its thermodynamic
relation. Express the dynamic variables ai via the state sum Z = Tr e−β... and
the natural variables ni by ai = (∂P/∂ni)ak,al . Now express the other potentials
via the state sum and the natural variables by P ′ = P + aini. Express the second
derivatives and all other thermodynamic quantities by Z and ni. Calculate the state
sum explicitly, and finally substitute Z everywhere.

9.8.9 Heat capacity measurement

According to the theory of an ideal Bose gas trapped in a harmonic potential the tem-
perature dependence of the heat capacity at the threshold to condensation can easily
be obtained as follows. The condensed fraction determines the chemical potential
through:

N = N0 +

(
kBT

ℏω

)3

g3(z) , (9.71)

where z(T ) = exp(µ/kBT ) for a grand canonical ensemble and gn denotes the Rie-
mann zeta function. The condensed fraction vanishes above the critical tempera-
ture, the chemical potential vanishes below the critical temperature. (kBT/ℏω)3 =
2π(atrap/λdB)

3 denotes the normalized volume of a phase space cell. Knowing z(T )
from equation (9.71), we can calculate the total energy, the heat capacity and all the
other thermodynamic potentials:

CN = 12kB

(
kBT

ℏω

)3

g4(z)− 9kBN
g3(z)

g2(z)
. (9.72)
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The considerable interest in the measurement of thermodynamic quantities of a BEC
is motivated by its departure from ideal gas behavior (equations (??) and (9.72)).
Indeed, the abrupt discontinuous change in the heat capacity at the phase transition
to BEC, expected for ideal gases, is smeared out by atomic collisions [72]. Deviations
due to atomic interactions and the finite number of particles [551] should even show up
in the temperature dependent measurement of the condensed fraction as it is done by
simple time-of-flight analysis. But experimental uncertainties until now prohibited
a quantitative investigation [580]. A measurement of the release energy has been
performed in Ref. [417].

A possible approach is the in-situ analysis of the cloud’s shape while it is trapped.
The shape of its condensed fraction reveals its chemical potential which in turn de-
termines the excitation energies and populations of the thermal part of the gas [380].

Figure 9.29: Population variation during a slow adiabatic compression followed by a sudden
non-adiabatic decompression.

The basic idea consists of applying an adiabatic change followed by a sudden
change in the curvature of the trapping potential (Fig. 9.29) in such a way, that
the particle number remains constant, the temperature changes in a controllable and
predictable way, but the populations are redistributed over the excited energy levels.
We take pictures of the trapped cloud just before and after the trap manipulation
and analyze them to extract the energy change. The heat capacity can then directly
be calculated according to its definition:

CN =

(
∂U

∂T

)

N

. (9.73)

In the following, we will discuss the steps in more detail. During the slow adiabatic
compression the temperature of the trapped cloud will gradually increase like T ′ =
Tω′/ω , but the population distribution of the energy levels will not. This can be
seen from the phase space density, r = g3(z), that should remain unchanged under
adiabatic variations of the trapping potential. In contrast, the sudden switching from
ω′ back to w will first create a population imbalance (that can even be an inversion).
Elastic collisions between the atoms then will rethermalize the sample at the same
temperature T . We calibrate the temperature change to the amount of compression
and evaluate the heatcapacity:

CN ≈
U ′ − U
T ′ − T =

1

T

U ′ − U
ω′/ω − 1

. (9.74)

The adiabatic compression should be slow, the sudden switching should be fast com-
pared to the trap secular frequencies. The shape of a partially condensed gas is de-
termined by the geometry of the trapping potential ωr, ωz, the number of condensed
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atoms N0 and the equilibrium temperature T . One way to measure the energy distri-
bution is to fit the recorded shape of a trapped cloud with calculated wavefunctions
for the ground and excited states:

n(r) = |ψ0(r)|2 +
∑

j

Nj |ψj(r)|2 . (9.75)

The sum of the particle distribution functionsNj gives the total atom number, the sum
of the energy eigenvalues belonging to the wavefunction weigthed with the population
distribution (that depends on the temperature) gives the total energy:

N =
∑

j

Nj , U =
∑

j

NjEj . (9.76)

The fitting procedure using equation ((??)) consists of several steps. We assume the
validity of the two-gas model [380] stating, that the shape of the condensed cloud is
(almost) not affected by the thermal cloud. Knowing the condensed atom number,
we can solve the Gross-Pitaevski equation and calculate the chemical potential of the
trapped cloud. We employ the method of steepest descent [320]

[
− ℏ2

2m
∆+ Vtrp(r) + g|ψ0(r)|2

]
ψ0(r) = µψ0(r) . (9.77)

Within this two-gas model, we can now consider the thermal atoms to be moving in
an effective potential, that consists of the trapping potential modified by the presence
of the condensate Veff (r) = Vtrap(r) + g|ψ0(r)|2. We can therefore set up and solve
a Schrödinger equation eigenvalue problem:

[
− ℏ2

2m
∆+ Veff (r)

]

j

ψj(r) = Ejψj(r) . (9.78)

As soon as we found the eigenvalues Ej and the eigenfunctions ψj , we can determine
the population distribution Nj by fitting the measured shape of the total cloud to
equation (9.75) and calculate the total energy according to equation (9.76) and the
heat capacity according to equation (9.72). Of course, the fitting is only precise if few
excited states are populated.

This procedure requires a high resolution power of the imaging system, since
typical wavefunction sizes (N ≫ 100000, (νaxν

2
rad)

1/3 ≫ 80 Hz) are on the order
of a few 10 mm. In our actual setup the resolution would be diffraction limited to
6mm. We plan to drastically increase the resolution by placing an achromat inside the
vacuum chamber close to the atomic cloud. This should allow us to resolve the shapes
of the condensed and thermal clouds. Furthermore, we need to set up a nondestructive
dispersive imaging system as has been demonstrated by [34].

Experimentally, it is easier to perform Time-Of-Flight (TOF) measurements where
the cloud is allowed to freely expand until the spatial distribution of the cloud becomes
negligible compared to the expanded velocity distribution. Of course this method
is destructive and therefore the adiabatic-sudden change in the trapping potential,
meant to calibrate the temperature scale and maintain a fix atom number during the
measurement, makes no sense anymore.



9.9. OUT-OF-EQUILIBRIUM THERMODYNAMICS 433

The informations about the cloud that follow immediately from TOF measure-
ments are the following: The total number of atoms N is extracted from a calibrated
measurement of the integrated counts of missing photons in the probe beam shadow.
Since the thermal part and the condensed part are well separated in the expanded
cloud we can separately determine the number of condensed atoms Nc. Finally, we
can fit the temperature T from the thermal cloud in the far wings, where to a good
approximation, the equipartition theorem guaranties a Gaussian distribution:

n(E) =
1

exp((E − µ)/kBT )− 1
≈ (N −N0) exp

(−p2
2m

)
. (9.79)

With these data we can plot the condensed fraction Nc/N versus the reduced temper-

ature T/Tc(N), where kBTc = ℏω (N/g3(1))
1/3

[301] and compare with theory [580].
But the data contain some more information, because we know the absolute value of
the condensed atom number Nc. This enables us to calculate the chemical potential
by numerically solving the Gross-Pitaevski equation (9.77). Then we can calculate the
quasi-particle excitation spectrum according to equation (9.78). Assuming thermal
equilibrium we know:

Nj =
1

exp((Ej − µ)/kBT )− 1
, (9.80)

and are able to calculate the total energy and the heat capacity from equation (9.75).
It is obvious that this method requires much more input from theory and can barely
be considered an experimental test of the thermodynamics of ideal gases. For that
reason, we opt for the first method.

9.8.9.1 Adiabatic compression

Adiabaticity of a process means reversibility, while tha atom number is unchanged
N = const and, hence, constant entropy S − const. This implies an unchanged
population distribution nj = const and βεj/T = const also we get βµ, βU = const.
Furthermore, the phase space density keeps unchanged ρ = const. The process of
adiabatically compressing a harmonic trap therefore changes the temperature like
T ′ = Tω′/ω. This is valid above and below the transition point. The measure is
repeated twice: With and without adiabatic-sudden variation. The heat capacity
then follows from equation...

9.9 Out-of-equilibrium thermodynamics

9.9.1 Boltzmann’s transport equation

Until now we have only treated systems in thermal equilibrium. However many sys-
tems are not stable, they drift or oscillate. Even if they are stable, this stability
is sometimes only ensured by a continuous feeding with external energy or entropy,
which is balanced by some dissipation mechanism. Non-equilibrium systems are dif-
ficult to treat.
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9.9.1.1 H-theorem

Boltzmann’s H-theorem is concerned with the tendency of non-equilibrium systems
to return to equilibrium. The basic idea is that the fundamental process in gases
are collisions. They introduce randomness into the evolution, which breaks the time-
reversal symmetry. Other processes may have similar effects. The main point is that
a very precisely defined input channel couples to a continuum of output channels, so
that the equilibrium lies on the side of the larger mode volume (see Fig. (??)).

9.9.2 Stoßzahlansatz

Consider a gas with velocity distribution f . The Boltzmann Stoßzahlansatz reads,

∂f

∂t
= v

∂f

∂x
+

(
∂f

∂t

)

coll

. (9.81)

A general rate equation for may write,

dϱ

dt
=
∂ϱ

∂t
+ v∇r + a∇v = R+ −R−. (9.82)

For constant entropy increase dS/dt ≥ 0, we get,

dϱ

dt
=
∑

z′

(Wzz′ϱz′ −Wz′zϱz) . (9.83)

And finally follows the Boltzmann transport equation,

dϱ

dt
=

∫
|v − v′|σ(v,v′ → u,u′) [ϱ(t, r,u)ϱ(t, r,u′)− ϱ(t, r,v)ϱ(t, r,v′)] d3v′d3ud3u′ ,

(9.84)
which holds for binary collisions disregarding inner degrees of freedom, container
walls, molecular chaos, and so on. For a free gas consisting of a single particle species,
dS/dt = 0, the Liouville equation holds,

dϱ

dt
= 0 , (9.85)

which yields,

ϱ(t, r,u) = C(t, r) exp
[v − v0(t, r)]

2

−A(t, r) , (9.86)

and from which follows the Maxwell-Boltzmann distribution,

ϱ(v) =

(
3

2π∆v2

)3/2

exp−3[v − ⟨v⟩]2
2∆v2

. (9.87)

9.9.2.1 H quantity and entropy

From the Boltzmann Stoßzahlansatz is it possible to find for the quantity,

H ≡
∫
f ln f d3p , (9.88)
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the inequality,
dH

dt
≤ 0 . (9.89)

The equality holds for equilibrium.
It can be shown,

S = −kBH . (9.90)

Therefore the H quantity is nothing else than the entropy. Due to the derivation from
the Stoßzahlansatz, this equation gives a definition of entropy for non-equilibrium
systems.

9.9.2.2 Entropy problem

The H theorem is not generally true as is clear from Loschmidt’s reversibility paradox.
This illustrates a certain contradiction between classical mechanics and thermody-
namics. Consider the diffusion of a drop of ink in a glass of water. From the point
of view of mechanics the process is deterministic, thus our knowledge of the state of
the system stays constant, (information) entropy must be constant as well, which is
contradicted by thermodynamics.

The solution lies in the unprecisely known initial conditions, in particular in quan-
tum systems due to the Heisenberg uncertainty. The H theorem only makes sense if
it is understood in terms of its statistical nature: For equilibrium systems the most
probable state is the one with maximum entropy. For non-equilibrium systems we
have an overwhelming probability for an increasing entropy, but a decrease is not
excluded.

9.9.3 H theorem and Fokker-Planck equation

An H theorem can be derived from Fokker-Planck equations [1200]. The H quantity
is then the non-equilibrium analog to the Helmholtz free energy,

F = U − TS (9.91)

H = U/D − S . (9.92)

9.9.4 Irreversibility

Thermodynamics separates into two regimes: Of a reversible process and an irre-
versible process. Reversible processes are those, whose trajectories in parameter space
can be reverse by inverting the signs of heat exchange Q, mass exchange m and work
W . For systems in equilibrium, phase transitions are in general reversible by appro-
priately tuning some control parameter. For systems far from equilibrium, irreversible
temporal phase transition may occur. However this classification is phenomenologi-
cal and insufficient to make the connection to mechanics, in contrast to equilibrium
thermodynamics which has been traced back to statistical physics.

For equilibrium statistical mechanics it is the interaction among the degrees of
freedom which permits to approach equilibrium. This view coincides with modern
views of the role of decoherence. The final (steady) state exhibits no macroscopic
dynamics and is in a situation called detailed balance. In contrast a flux of energy or
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matter may result in the emergence of spatial patterns of rhythmic phenomena. The
transition to ordered structures requires a instabilities, i.e. a critical distance from
equilibrium and nonlinear kinetics.

For any change of the state of a system the entropy behaves like,

dS = deS + diS , (9.93)

where deS is the entropy exchange with the external world and diS ≥ 0 the inter-
nal entropy production. This shows that the entropy of a system can be lowered if
deS < 0. The thermodynamics of irreversible processes exhibits linear and nonlinear
phenomena. For small (linear) deviations from equilibrium the steady state of a sys-
tem is characterized by a minimum entropy production. This is however not generally
the case far from equilibrium. This rule is analogous to the change of internal energy,

dU = dQ+ dW , (9.94)

where dQ denotes the heat exchanged with the external world and dW the reversible
work applied to the system.

9.9.4.1 Application to the Kuramoto model

According to Prigogine the transition to a dissipative structure is governed by a
thermodynamic stability criterion involving excess entropy production. The excess
entropy is the amount of dissipation introduced by the disturbance causing the insta-
bility. From the above it becomes clear how it is possible that CARL creates order,
i.e. lowers entropy: the dissipative force constitutes a large entropy reservoir to which
the system may deliver excess entropy.

For Bénard structures and surface waves there is no intrinsic length scale on which
the order is expected. In contrast CARL bunching occurs on the order of an optical
wavelength. The microsystems are the atoms, the macrosystem is the light.

At first glance the Kuramoto model produces order without apparent dissipative
force: Universally coupled pendulum exhibit synchronization, i.e., the entropy of the
system is reduced. Since the dynamics is deterministic and thus reversible, one would
expect no entropy production or reduction. This is however incorrect, the Kuramoto
model inherently contains assumptions, which are equivalent to dissipation. This
is seen from the derivation of the equations governing weakly coupled pendulum. In
fact the Kuramoto does not describe coupled pendulum but pendulum clocks, i.e. limit
cycle oscillations sustained by an external force.

A thermodynamic treatment of the Kuramoto model establishing a link between
the Prigogine and Haken point of view is given by Shiino [1200]. The non-equilibrium
phase transition can also be of first-order.

[S.W. Koch, ’Dynamics of first-order phase transitions in equilibrium and nonequi-
librium systems.’, Springer, Lecture Notes in Physics]

9.9.5 Dissipative structures and synergetics

9.9.5.1 Prigogine’s approach

Consider a system that exits far from thermodynamic equilibrium (see thermodynam-
ics), hence efficiently dissipates the heat generated to sustain it, and has the capacity
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of changing to higher levels of orderliness (see self-organization). According to Pri-
gogine, systems contain subsystems that continuously fluctuate. At times a single
fluctuation or a combination of them may become so magnified by possible feedback,
that it shatters the preexisting organization. At such revolutionary moments or ”bi-
furcation points”, it is impossible to determine in advance whether the system will
disintegrate into ”chaos” or leap to a new, more differentiated, higher level of ”order”.
The latter case defines the dissipative structure so termed because they need more
energy to sustain them than the simpler structures they replace and are limited in
growth by the amount of heat they are able to disperse [1057].

Quite generally it is possible in principle to distinguish between two types of
structures: equilibrium structures, which can exist as isolated systems (for example
crystals), and dissipative structures, which can only exist in symbiosis with their sur-
roundings. Dissipative structures display two types of behaviour: close to equilibrium
their order tends to be destroyed but far from equilibrium order can be maintained
and new structures be formed.

The probability for order to arise from disorder is infinitesimal according to the
laws of chance. The formation of ordered, dissipative systems demonstrates, however,
that it is possible to create order from disorder. The description of these structures
have led to many fundamental discoveries and applications in diverse fields of human
endeavour, not only in chemistry. In the last few years applications in biology have
been dominating but the theory of dissipative structures has also been used to describe
phenomena in social systems [1250, 950].

9.9.5.2 Minimum entropy production

Far from equilibrium nonlinear effects in the rate equations get important. This
implies the possibility of multiple solutions, each one with different regions of stability.
Transitions from one solution to another occur as phase transitions. In the linear
regime with one thermodynamic force held fixed (e.g. temperature gradients) the
stable state is a steady-state with minimum entropy production and it is unique. We
say the state lies on the thermodynamic branch. Moving away from the linear regime
the thermodynamic branch gets unstable. A linear stability analysis can tell when
the system gets unstable, but it cannot predict where the system is going to go. At
some point a non-equilibrium phase transition occurs often accompanied by dramatic
macroscopic changes. The new state is characterized by an order parameter. Even
if the boundary condition is held fixed and the steady state in the linear regime is
homogeneous, the new state can exhibit oscillations in space and time. The symmetry
is broken. The new state has more structure (less symmetry). This requires a steady
flow of matter or energy, i.e. entropy production to maintain it.

In my words, Prigogine has in mind that a pumped system develops internal
invisible coherence. At some point it has to release it (what entropy/coherence) in
a kind of temporal phase transition, where the system has two choices: either turn
into chaos or develop a higher order. The state of higher order (or lower symmetry)
is called dissipative structure.
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9.9.5.3 Criticism

Ilya Prigogine coined the phrase dissipative structures as a name for the patterns
which self-organize in far-from-equilibrium dissipative systems. Dissipation inspires
the wrath of the moralist and the envy of most others; for the physicist, however,
it is merely faintly depressing. We call something dissipative if it looses energy to
waste-heat. (Technically: if volume in the phase space is not conserved.) The famous
Second Law of Thermodynamics amounts to saying that, if something is isolated
from the rest of the world, it will dissipate all the free energy it has. Equivalently, it
maximizes its entropy. Thermal equilibrium is the state of maximum entropy.

If something is (in a well-defined sense) near thermal equilibrium, one can show
that its behavior is governed by linear differential equations (hence the name ’linear
thermodynamics’ for the appropriate body of theory), and that left to itself it will
approach equilibrium exponentially (hence the somewhat more common name ’irre-
versible thermodynamics’). Here we are guided, not by the entropy, but by ’entropy
production’, the rate of increase in entropy. Since, once we reach equilibrium, the en-
tropy cannot increase (by definition), the entropy production at equilibrium is zero,
and the entropy production is always decreasing (the ’principle of minimum entropy
production’).

In general, however, things are not well-isolated from the rest of the world. If
energy arrives from the outside as quickly as it is dissipated, even bodies in the linear
regime can be kept away from equilibrium. (Hence various creationist arguments
about the Second Law are worthless: neither living things nor the Earth are well-
isolated from the rest of the universe, as may be observed every day at sunrise.)
Thus dissipation, and why dissipative systems are not necessarily dull as dish-water.
So you can have structures in dissipative systems, and there’s no reason not to call
them “dissipative structures”, though it’s not obvious that there are many interesting
generalizations about them.

”Far-from-equilibrium” means that your system is so far from its thermal equilib-
rium that the linear laws I mentioned a moment ago no longer apply; non-linear terms
become important. The only general rule about the solution to non-linear differential
equations is that there are no general rules; hence the interest in the subject. (Cf.
Chaos and non-linear dynamics.) This is not good news, of course, if what you want
to do is extend thermodynamics to the far-from-equilibrium case. But, one might
suppose, matters are not totally hopeless; we aren’t talking about just any arbitrary
system of equations, but the particular ones important in thermodynamics; perhaps
there is some general principle (like those of maximum entropy, or minimum entropy
production) which can guide us to solutions. What Prigogine claims to have done
is to have found, if not another extremum principle, then at least an inequality (a
”universal evolution criterion”), and to have used it to work out the theory of dissipa-
tive structures, according to which patterns are supposed to form when the uniform,
uninteresting ’thermodynamic branch’ of the system becomes unstable. The math for
all this is analogous to that of equilibrium phase transitions with ’broken symmetry’,
where, again, a uniform state becomes unstable, forcing the system into a patterned,
coherent one to minimize free energy. Even without Prigogine’s claims that this the-
ory is Very Significant to biology and social science, even without the philosophical
and cultural importance he claims for it, this would be very interesting, and the big
question is whether he’s right, i.e. whether and to what the theory applies.
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The authors compare symmetry-breaking in thermodynamic equilibrium systems
(leading to phase change) and in systems far from equilibrium (leading to dissipative
structures). They conclude that the only similarity between the two is their ability to
lead to the emergent property of spatial variation from a homogeneous background.
There is a well-developed theory for the equilibrium case involving the order parameter
concept, which leads to a strong correlation of the order parameter over macroscopic
distances in the broken symmetry phase (as exists, for example, in a ferromagnetic
domain). This correlation endows the structure with a self-scaled stability, rigidity,
autonomy or permanence. In contrast, the authors assert that there is no developed
theory of dissipative structures (despite claims to the contrary) and that perhaps
there are no stable dissipative structures at all! Symmetry-breaking effects such as
vortices and convection cells in fluids — effects that result from dynamic instability
bifurcations — are considered to be unstable and transitory, rather than stable dissi-
pative structures. Thus, the authors do not believe that speculation about dissipative
structures and their broken symmetries can, at present, be relevant to questions of
the origin and persistence of life.

Prigogine and his school have made a series of attempts to build an analogy
between these dissipative far-from-equilibrium systems which form patterns and the
Landau free energy and its dependence on the order parameter, which leads to the
important properties of equilibrium broken symmetry systems. The attempt is to
generalize the principle of maximum entropy production, which holds near equilibrium
in steady-state dissipative systems, and to find some kind of dissipation function whose
extremum determines the state. As far as we can see, in the few cases in which this
idea can be given concrete meaning, it is simply incorrect [773]. In any case, it is
clearly out of context in relation to the observed chaotic behavior of real dissipative
systems.

9.9.5.4 Haken’s approach

The synergetics is the theory of cooperation, i.e. the theory of the behavior of coupled
systems and in particular of self-organization [571].

Equilibrium phase transitions (liquid-solid, ferromagnetic, BEC,...) occur by tem-
perature reduction. The less symmetric (or broken) phase, i.e. the phase with more
structure is at lower temperature. This is not generally the case, e.g. living systems
tend to die at low temperatures. (The universe will die the ’Kältetod’ [Boltzmann,
Helmholtz, Clausius]. Did the big bang really have lower entropy, than the today’s
universe?) Such systems are characterised by a steady flow of energy or matter.

The dynamic systems exhibit transition from disorder to order analogous to phase
transitions. Those temporal transitions can be understood in the following way. Any
system has fluctuations. By continuously emitting small subsystems (fluctuations)
out of its equilibrium, the system probes the range of possible motional states it
can possibly adopt. If the current state of the system is not stable, a fluctuation
may trigger a collective instability. More and more subsystems are slaved into the
collective motion. If several instabilities occur simultaneously, often only the fittest
survives. This is called mode competition (see superradiance) and often leads to
symmetry breaking. A mode is called order parameter if it slaves subsystems.

Eventually the driven system may find to a dynamically stable state (see Paul-
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traps). Too strong thermodynamic forcing may lead to turbulence or deterministic
chaos.

Note that one may influence which modes survives by external forces. Further-
more, one may speed up the instability by the application of noise (see stochastic
resonance).

9.9.5.5 Feedback principle

According to Dawson [332] the state of macroscopic systems made of coupled micro-
scopic subsystems subjected to noise not only is the statistical manifestation of the
interacting subsystems as suggested by Boltzmann, but also prescribes the environ-
ment felt by the subsystem. This provides a positive feedback: Random perturbation
of the microsystems are compensated for and the macrosystem exhibits a coherent self-
regulated behaviour. However in special circumstances microscopic fluctuations can
become amplified by collective action and become important on a macroscopic scale,
then termed critical phenomena. The distinction between macro- and microsystems
breaks down, if the macrosystem gets intrinsically stochastic itself. The role of critical
phenomena is ideally studied with bistable systems. It is reminiscent to stochastic
resonances.

Feedback is an essential ingredient. It leads to a cyclic causality. Examples are the
problem of the hen and the egg, and the self-generated CARL wave. It is very similar
to Darwinism, the cyclic recurrence of randomness and necessity, of fluctuation and
competition, of mutation and selection.

Figure 9.30: Principle of synergetics.

9.9.5.6 Comparison to Prigogine

Prigogine correctly identifies the role of fluctuations.
However he does not rely on feedback. He rather tries to find universal rules based

on entropy, i.e. the principle of minimum excess entropy production. Synergetics goes
beyond dissipative structures.

9.9.5.7 Example: Bénard instability

Examples range from physical instabilities, autocatalytic chemical reactions to bio-
logical, evolutionary, social and economic systems.
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The most well-known dissipative structure is perhaps the so-called Bénard in-
stability. This is formed when a layer of liquid is heated from below. At a given
temperature heat conduction starts to occur predominantly through convection, and
it can be observed that regularly spaced, convection cells are formed in the layer of
liquid. This structure is wholly dependent on the supply of heat and disappears when
this ceases. The form of the structures may vary from vertical rolls (distorted to
hexagons due to surface tension in the liquid) to concentric rings or spirals. This
depends on the exact form of the thermodynamic force, i.e. of the heat gradients.

9.9.5.8 Example: Surface waves

Waves are typically associated with perturbations that propagate in a system and
transfer the energy of the system. Wave dynamics is possible both in conservative
and dissipative (active) systems. Physical models of nonlinear waves are derived to
simplify a complicated system of primary equations in a number of approximations.
The same equations at the leading order describe main effects such as nonlinearity,
dispersion, diffraction, diffusion, damping and driven forces, and resonances that
determine wave propagation.

Oceanic waves generated by wind can reach anomalous high amplitudes in 10-
20 meters. Such a giant surface wave are called a freak wave or rogue wave. They
are formed as a result of a nonlinear interaction of multiple spectral components of
the wave perturbations that propagate with different group velocities. The physical
model for freak waves is based in the weak amplitude approximation on the nonlinear
Schrödinger equation (NLS)

Refs: [http://dmpeli.math.mcmaster.ca/ResearchProjects/ResearchPage4.html].

9.9.5.9 Example: Faraday crispations in fluids

The undulation of the free surface of a viscous fluid in container under vertical vi-
bration is known as Faraday crispation. The forced surface waves, which form many
interesting spatio-temporal dissipative structures, oscillate at a frequency half the forc-
ing frequency. In presence of large dissipation in a thin layer of viscous fluid, the
surface crispation may be synchronous with forcing [432, 122, 434, 759, 936, 243].

9.9.5.10 Example: Predator-prey model

The Lotka-Volterra or predator-prey model is an example for a temporal oscillation.
The populations of predators and prey interdepend via

Ṅpy = εpyNpy − γprNpdNpy (9.95)

Ṅpd = −εpdNpd + γpdNpyNpd .

9.9.5.11 Example: Physiology

Kelso’s experiment of finger waved in parallel driven by a metronom. Passed a certain
critical frequency the fingers are waves in the antiparallel mode. The transition is
a phase transition. Amputierte Tausendfüssler spontaneously change their motion
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pattern: to insect-like for 6 legs left, dog-like for 4 legs left. The movement is not
controlled/programmed by brain, but self-organised via Rückenmark.

The brain exhibits self-organization on many different levels. Firing neurons syn-
chronize, synapses tentatively establish new connections which are only confirmed
and reinforced if frequently used. The brain thus resembles much more a dynamically
moving system than a computer. Cognition and understanding seems to work like
self-organization. Perception is an external control parameter which is only received
and processed if it fits into an existing frame. If it doesn’t it may still trigger a new
idea, a though fluctuation, which can change the state of mind to a new one, if the
new state appears to be more consistent or satisfying. The idea takes on the role as
order parameter, the brain cell is slaved.

9.9.5.12 Example: Social systems

Static systems are often more unstable than dynamic systems if subject to exter-
nal forcing. E.g. democracies which are based on an institutionalised permanent
revolution can be more robust than dictatures.

9.9.5.13 Example: Laser

The laser is an open system far from equilibrium, because it is coupled to systems
with different temperatures. The inversion corresponds to T < 0. On the other hand
the the emitted photons coupled to ambient atoms at temperatures T ≪ ℏω/kB ,
i.e. T ≈ 0. Nevertheless, Haken has shown that the laser exhibits all features of a
standard equilibrium phase transition.

In particular the equations describing a homogeneously broadened, unidirectional,
single mode ring laser are mathematically equivalent to those describing the Bénard
instability.

The conversion from a low quality microscopic form of energy (heat, chemical
affinity) to a high quality macroscopic form (electricity, work) requires energy itself.

9.9.5.14 Example: CARL

Is a self-organizing system by feedback. As compared to biological systems or even
Bénard instabilities, CARL is very simple. CARL is of course nonlinear: every
degrees of freedom is a nonlinear function of the others.

9.9.5.15 Example: Vortex patterns

However there is another example for phase transitions in BECs: The transition from
one vortex pattern to another has been classified as a first-order phase transition. But
it seems to me that this is rather a non-equilibrium phase transition. I think, vortex
pattern are dissipative structures. They decay by losing the vortices one by one due
to relaxation into thermal excitations. On the other hand, vortex pattern are formed
by a dissipative force: stirring up a condensate. In fact, an irreversible process is
necessary to form a vortex: The BEC is excited by stirring (Dalibard’s method) and
decays into the vortex state. The is perhaps not true even for Cornells method, where
the vortex is formed by engineering of the BEC phase.
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Vortex pattern are unstable, they have a limited lifetime. It might however be
possible to stabilize them have a continuous stirring. This would be a true dissipative
structure: A stirring force relying on friction on one hand, diffusion by thermal decay
on the other.

9.9.6 Friction and diffusion

Friction and diffusion arise from coupling to a reservoir. Friction comes from cou-
pling to a 0-temperature reservoir, diffusion to a reservoir at finite temperature. For
example the decay of a cavity (friction) can be described by coupling to the external
vacuum. However if the vacuum contains blackbody radiation, T > 0, photons may
be coupled in which leads to diffusion.

9.9.7 Non-equilibrium quantum phase transitions

It might be interesting to look out for nonequilibrium quantum phase transitions.
However, those are difficults to imagine. Mott-transitions are clearly in some kind of
equilibrium (not really a thermal one). They are reversible via a control parameter.
They do not require the feeding with energy or entropy, i.e. heating. Clearly, entropy
is and must remain zero at T = 0.

9.9.8 Fluctuation-dissipation theorem

In statistical physics, the fluctuation-dissipation theorem is derived from the assump-
tion that the response of a system in thermodynamic equilibrium to a small external
perturbation is the same as its response to a spontaneous fluctuation. There is there-
fore a direct relation between the fluctuation properties of the thermodynamic system
and its linear response properties.

For example, Einstein in his 1905 paper on Brownian motion noted that the same
random forces which cause the erratic motion of a particle in Brownian motion would
also cause drag if the particle were pulled through the fluid. In other words, the
fluctuation of the particle at rest has the same origin as the dissipative frictional force
one must do work against, if one tries to perturb the system in a particular direction.
From this observation he was able to use statistical mechanics to derive a previously
unexpected connection, the Einstein-Smoluchowski relation: D = µkBT , linking the
diffusion constant D and the mobility of the particles µ (i.e. the ratio of the particle’s
terminal drift velocity to an applied force, µ = vd/F ).

The fluctuation-dissipation theorem can be used to give an explicit relationship
between molecular dynamics at thermal equilibrium, and the macroscopic response
that is observed in a dynamic measurement. It thus allows molecular scale models
(microscopic models) to be used quantitatively to predict material properties in the
context of linear response theory.

The essence of fluctuation-dissipation theorem is that it relates equilibrium fluc-
tuations to out-of-equilibrium quantities, like noise power is related to resistance.
The theorem is based on fields that are weak relative to the potential of molecular
interaction so that rates of relaxation are not affected by the applied field. ’Out-of-
equilibrium’ in the above sentence should be understood as close to equilibrium or
stationary states.
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9.9.9 Long-range interactions

Having been pioneered in astrophysics (e.g. in the formation of coherent structures
like galaxies and stars), long-range interactions also play a role in plasma physics,
hydrodynamics (e.g. jets, vortices like the gulf stream or the Jupiter vortex), systems
with dipolar interactions, cold and ultracold gases, clusters and even in some nuclear
systems. Today the most promising systems to experimentally study long-range in-
teractions are atomic gases with electromagnetic interactions. However, those are
mostly quantum systems. And one is still far from discerning which properties are
genuinely ascribable to long-range interactions (whether fundamental or effective).

Systems with long-range interaction can behave very differently from systems with
short-range interaction. The most prominent features are ensemble inequivalence
and negative specific heat.1 The dynamical aspects of the approach of long-range
interacting systems to equilibrium is not yet well understood. The statistical physics
has to learn in this domain. In particular, if the interacting particles are microscopic
objects with quantized degrees of freedom or quantum statistical constraints.

A short-range interacting system is always [229]

• additive, i.e. the total energy of two parts of a system is E1 + E2, because the
interaction energy between the parts E12 is negligibly small (is decreases like the
surface-to-volume ratio like N2−α/3 for an interaction potential V (R) ∝ R−α);

• having extensive thermodynamical potentials (e.g. energy, free energy, entropy,
Gibbs free energy,...), i.e. for given values of the intensive thermodynamical
parameters (e.g. n, T , p,...) they are proportional to N ;

• rapid to find to equilibrium (non-equilibrium states are unstable);

• homogeneous at equilibrium (in the absence of external fields).

• having equivalent micro- and macrocanonical ensembles (i.e. the same values
for the thermodynamic potentials are calculated for both situations).

In contrast a long-range interacting system

• is not additive;

• has extensive thermodynamical potentials;

• has non-equilibrium situations lasting for macroscopic times (the metastable
states represent local extrema of thermodynamic potentials, the evolution to-
wards other non-equilibrium states is driven by mean-field fluctuations);

• is inhomogeneous at all scales;

• exhibits strange concepts like negative specific heat C = (∂E/∂T ) < 0;

• has non-equivalent micro- and macrocanonical ensembles (probably, one has to
pick the appropriate ensemble depending on the experimental condition, i.e. iso-
lated system or system held at a fixed temperature);

1A specific statistical ensemble is obtained by keeping two out of four (for a 1 component gas)
thermodynamic parameters fixed (p, V , T , N).
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• exhibits ergodicity breaking;

• shows non-equilibrium phase transitions.

Interaction potentials are short-range if
∫∞
R0
V (R⃗)d3R⃗ < ∞. Alternatively, inter-

action potentials are short-range if there exist constants C > 0 and R0 > 0 for which,
|V (r)| = C/|r|α for all |r| > R0, where α > 3d and d is the dimensionality of the
system. The main long-range forces of interest are gravitation and electro-magnetic
forces, e.g. Coulomb repulsion and radiation pressure.

α < 3 E12 ∝ N2−α/3

α = 3 E12 ∝ N lnN

3 < α < 4 E12 ∝ N2−α/3

α = 4 E12 ∝ N2/3 lnN

4 < α E12 ∝ N2/3

One distinguishes between continuous and lattice systems.
Long-range interaction is a prerequisite of CARL and self-organization.

9.9.9.1 Negative specific heat

In macrocanonical ensembles the specific heat does not get negative, only in micro-
canonical ensembles, i.e. in systems isolated from heat baths.

Self-gravitating systems can have negative specific heat. According to the virial
theorem the energy of such a system is 0 > E = Ekin + Epot = −Ekin = m

2 ⟨v2⟩ =
3
2kBT . For a gravitationally bound two-body system this is easy to see (see Auf-
gabensammlung zu Integrierter Kurs Physik I, ”Keplerbahnen”). Hence, increasing
T reduces E. Negative specific heat is usually connected to astrophysical long-range
interactions, like self-gravitating clouds, and applies more to equilibrium situations.
There is probably no chance of seeing it with CARL. The molasses CARL is best de-
scribed by a macrocanonical ensemble, since the atoms are not isolated, but connected
to a heat bath. The system is completely described by a set of Langevin equations
[?].

9.9.9.2 Small systems

A short-range interacting small system can exhibit similar features as long-range
interaction systems, in particular non-additivity [?]. A small system is defined by the
fact, that the range of its interaction is similar to the system’s size. As an example
one may consider an ultracold atomic gas near a Feshbach resonance. The power law
of the interaction potential does not change, but the scattering length can be as large
as the atomic cloud.

9.10 Further reading

H.M. Nussenzveig, Edgar Blucher (2014), Curso de Fisica Basica: Fluidos, Vibrações
e Ondas, Calor - vol 2 [962]ISBN

P.H. Chavanis, Dynamics and thermodynamics of systems with long-range interac-
tions: interpretation of the different functional [?]DOI

http://isbnsearch.org/isbn/978-8-521-20801-2
http://doi.org/10.1063/1.2839131
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A. Giansanti, Thermodynamics of Small Systems [?]DOI

http://doi.org/10.1063/1.2839115


Chapter 10

Structure of matter

10.1 High energy physics

10.1.1 Nuclear models

There is a new force coming into play, which act between nucleons. Nuclear models
are complicated, several models are used to explain the various features. The energy
scale is MeV, hence at room temperature the nuclei are in their ground state. However
inside stars or in the history of the universe, excited states play an important role.

α scattering reveals deviation from the Coulombian law for collision parameters
below 10 fm, indicates the typical size of a nucleus. The nuclear force which helds
together the nucleons is short ranged (2 fm), its energy about 10 times larger than the
Coulomb repulsion at typical internucleon distances. The force is charge independent,
but depends on the nuclear spin. The Yukawa potential is,

V (r) = −g2 e
−r/r0

r
, (10.1)

with r0 = ℏmπc
The hyperfine structure in atomic spectra tells the total nuclear spin, which is

on the order µ ≃ µK ≡ πℏe/2mp. The angular moment µ can be parallel or anti-
parallel to the spin I. All nucleons have spin 1/2. If A = N + Z is even/odd, I is
integer/half-integer.

Neutrons can be detected by sending them onto a parafine sheet, from which they
expel protons into a Geiger counter.

Irregularities in the hyperfine structure (deviations from the Landé interval rule)
point to non-spherical nuclear charge distributions giving rise a quadrupole moment.

While α scattering reveals the nuclear mass density, electron scattering tells the
electric charge distribution (like in an electron microscope). The first minimum of
the diffraction pattern θ ≃ λ/r follows from the electron de Broglie wavelength and
the charge radius. Such study confirm the following empirical formula for the charge
density

ρ(r) =
ρ(0)

1 + e(r−a)/b
, (10.2)

where a ≈ A1/3 × 1.07 fm and b ≈ 0.55 fm. This shows that ρ(r) is flat in the center
and has a radius r1/2 ∝ A1/3. The mass and the charge densities are related by
Zρm(r) ≃ Aρ(r).

447
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10.1.1.1 Mass defect

The atomic mass unit is u ≡ 12−1m(12C). Deviation of measured atomic masses
from integer m(X)/u is due to isotope mixtures. Nuclear reactions a + A → B + b
(e.g. α+14 N→17 O+ p) conserve relativistic energy,

Ka +mac
2 +mAc

2 = KB +mBc
2 +Kb +mbc

2 . (10.3)

The Q value of the reaction is Q = KB − Kb − Ka = (ma + mA − mB − mb)c
2.

Measure the kinetic energies Kb and Ka, express KB via the scattering angle θ using
momentum conservation.

The mass of a nucleus is less than the sum of its components. The difference is
the nuclear binding energy or defect mass ∆m(X) = ∆E/c2 = Zmp+Nmn−m(X).
Hence, a neutron capture (if it is possible) liberates electromagnetic energy. The
defect mass per nucleon rapidly increases from H to Ca and then slowly drops for
higher nuclear masses. The behavior is explained by the Weizsäcker droplet model.
According to this the absolute nuclear ground state is around Ca (Z = 40), and all
other nuclei are metastable, i.e. would ultimately decay into Ca is a proper mechanism
was at hand.

For example, the energy balance for nuclear fission converting 238U →119 X is
2×119×8.5MeV−238×7.6MeV = 210MeV, which goes into kinetic, i.e. thermal en-
ergy. Similar considerations hold for fusion and radioactive decay processes. Another
example is the capture of a neutron by 235U, which liberatesm(235U)+mp−m(236U) =
6.6MeV. This energy excites nuclear shape oscillations, which may then induce a fis-
sion process. In contrast, for 238U the liberated energy is only 5MeV, which is not
enough to excite an oscillation, so that the fission process is inhibited.

10.1.1.2 Droplet nuclear model

The droplet model compares the nucleus with a drop of an incompressible liquid: The
density is constant as well as the exit work for evaporation, i.e. the binding energy
per nucleon. The analogy is expressed in the following semi-empirical defect mass
formula. The mass difference of the nucleus and the sum of its components B(Z,N) =
Nmn + Zmp −mnucl is according to Weizsäcker’s droplet model approximately,

B(Z,A) = 14.1A−13A2/3−0.595 Z2

A1/3
−19(Z −N)2

A
+33.5

1

A3/4
×





−1 for uneven Z,N

1 for even Z,N

0 else
(10.4)

The first (volume) term expressed the constance of B/A, i.e. the nucleus matter is
distributed rather homogeneously. The second (surface) term corrects, i.e. lowers the
binding energy for anisotropies near the surface of the nucleus. The third (Coulomb)
term describes the fact that Coulomb repulsion tends to lower the density of the pro-
tons, which reduces their contribution to the binding energy. The forth (symmetry)
term accounts for the observation that light nuclei with Z ≃ N have larger binding
energies.

For heavy nuclei N ≳ Z. This is because of Coulomb repulsion more neutrons
are necessary to dilute protons than neutrons. The fifth (pairing) term expresses
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the tendency of the nucleons to pair with other nucleons of the same species. The
maximum of B(Z,A) traces stable regimes in the isotope table.

10.1.1.3 Fermi gas model

Assuming that the nucleons move independently in a square well potential made
out of the mean-field of the nucleons, we obtain Weisskopf’s Fermi gas model. The

Fermi energy of the ground state nuclei is estimated via A =
∫ EF

0
ρ(E)n(E)dE. The

potential depth is simply B + EF . In this model it becomes clear, why Z ≃ N is
energetically favorable, or when Coulomb repulsion increases the level spacing N ≳ Z.

10.1.1.4 Shell model and collective model

The binding energy exhibits more feature not explained by the droplet model, such as
the existence of magical numbers for A around which the binding energy is particularly
high: 2,8,10,... This suggests the existence of a shell structure. The formal approach,
somewhat analogous to the Hartree treatment of the electron shell of the atoms, is to
set up multiparticle Schrödinger equation and to solve by self-consistently adjustment
of the potential shape and the excitation levels. In this picture, the magical number
are due to a shell structure, where the energies of the shells are interchanges, because
they are shifted by strong nuclear spin-orbit interactions.

The model can also predict to some extend the nuclear spins, which predominantly
result from jj coupling. In contrast to the electron shell, where Coulomb repulsion
favors ↑↑↑ states according Hund’s rule, in nuclei the Coulomb attraction favors ↑↓
pairing.

The shell model treats individual nucleons, while the droplet model describes
collective effects. There are models trying to include collective effects in the shell
model by allowing for anisotropic mean-field potentials. Collective motion of nucleons
will then lead to time-dependent shape distortions of V (r). E.g. a nucleon with a
large orbital momentum moving around the nuclear surface like a protuberance drags
other nucleons thus forming a collective tide wave. Such models can quantitatively
explain nuclear quadrupole moments and collective rotations and vibrations. See the
analogy to the nonlinear Schrödinger equation in collective oscillations in gaseous
Bose-condensates.

The optical model is another generalization of the shell model.

10.1.2 Radioactive decay

10.1.2.1 α-decay

Nuclei can mutate via fission, fusion or radioactive α, β or γ-decay. The α-decay
consists in the emission of 4He particles. The nuclei resulting from α-decay can decay
themselves, and so on until a stable isotope is reached. Hence, there are 4 possible
decay families, whose fathers are long-lived (T1/2 ≈ 1010 a) radioactive isotopes:
4n →233 Th, 4n + 1 →237 Np, 4n + 2 →238 U , and 4n + 3 →235 U . The released
energy ∆E = m(Z,A) − m(Z − 2, A − 4) − m(α) is mainly Coulombian, since the
sum of the volume terms is nearly unchanged. It can be determined by measuring
the kinetic energy of the α particles.
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The potential seen by an α particle has an attractive square well shape inside the
nucleus surrounded by a Coulombian repulsive barrier. In a nucleus which is excited
into a shape resonance, an α particle may tunnel through this barrier with a rate R,
dN = −NRdt. The half decay lifetime is T1/2 = ln 2/R.

A decay family in a dynamic equilibrium is characterized by NkRk = NlRl, which
is found by solving coupled differential equations in steady-state. This allows for some
amount of natural abundance even of very short-lived isotopes (T1/2 ≈ 1µs).

Fathers of a decay family have low decay energies, which makes them stable. For
Z < 80 the nuclei are stable anyway. In contrast to other small particles, 4He has a
strong defect mass per nucleon. This makes it favorable to emit α particles. However,
other heavier particles can be emitted, as in the fission process. The heavier the
particles the more Coulomb energy can be released, which makes fission processes
take over beyond A > 100.

The product of nuclear reactions generally end up in excited states.

Note the tendency to liberate low-quality (kinetic/thermal) energy having high
entropy.

Radioactive α-decay families would always maintain the same Z − N , which is
unfavorable for heavy nuclei. The β-decay converts protons into neutrons (and vice
versa) by the emission or capture of electrons or positrons. Note that this decay does
not lead to a change of the decay family. The β-decay is directed into the directions
toward the stability region N ≳ Z. Thus an α-decay is often followed by an electron
emission or a positron capture to reduce Z and increase N . The energy balance is
∆E = m(Z,A)−m(Z ± 1, A)±me.

10.1.2.2 β-decay

β-emission yields a continuous spectrum. Since the electron takes all the kinetic
energy, the nucleus being to heavy, one could expect a single narrow peak in the
spectrum. Furthermore, angular momentum is not conserved by the creation of an
electron. This led Pauli to postulate the existence of (anti-)neutrinos in reactions
like AXZ →A XZ+1 + e− + ν̄e. The neutrino spin is 1/2 and it has no charge. The
neutrino mass is 0, in order to allow for the electron taking all the decay energy.

Gamov-Teller selection rules for β-decay: ∆i = 0 and conserved parity. The
β-decay results from a new force, the weak interaction. Its range is so short that neu-
trinos traverse stars without interactions. Nevertheless, neutrinos have been detected
via the process ν̄ +1 H → n + ē, where the positrons can be detected in scintillation
chambers, because they also sense the electro-magnetic interaction.

Wu observed that nuclei with aligned dipolar magnetic moments preferentially
emit β-radiation into one direction, the one with clockwise heliticity, i.e. the process
is not invariant under mirroring (three mirrors make a parity transformation). This
implies that the weak interaction does not conserve parity. The spin of a neutrino is
Lν ↑↓ k and for an anti-neutrino Lν̄ ↑↑ k, hence there is a Lνk interaction. The weak
interaction is the only one to be sensitive to heliticity.

A well-defined heliticity requires vanishing rest mass, i.e. light velocity for the
particles. Otherwise an inertial system could be found, where the momentum k is
inverted and thus, for a given angular momentum, the helicitity.
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10.1.2.3 γ-decay

Subsequently to nuclear reactions (β-decay, n-capture,...) excited nuclear states with
typically E > 10−2 can be populated. Those may decay via emission of γ-radiation
thus yielding excitation spectra, which are probed via electrons produced by photo-
effect, Compton scattering or pair-production. In contrast to the optical regime,
where M1 radiation is suppressed by (v/c)2 ≃ 10−4 and E2 radiation by (aB/λ)

2 ≃
10−6, multipolar transitions are more likely especially at high γ energies. Collisional
deexcitation is inhibit by the Coulomb barrier surrounding the nuclei. The selection
rules are |If − Ii| ≤ L ≤ If + Ii and ∆P = (−1)L for electric and (−1)L+1 for
magnetic radiation. ∆I = 0 is forbidden, because photons carry away 1 unit of
angular momentum.

10.1.2.4 Nuclear conversion

γ-decay can be accompanied by emission of groups of monoenergetic electrons. This
occurs if the γ-photon is reabsorbed by electrons of the inner shells (K, L, M,...)
of the atomic electrons. The rate for this process adds up to the normal γ-decay,
Rγ + (αK + αL + ..)Rγ .

Mössbauer effect (see Sec. 38.3.3).

10.1.3 Nuclear reactions

10.1.3.1 Nuclear conversion

Until we considered spontaneous nuclear decay. Now let us discuss nuclear reactions.
The balance of an equilibrated nuclear reaction tells the masses of the participating
nuclei. Any reaction must conserve the following quantities: Relativistic energies,
momentum, angular momentum, charge, parity (if the weak force is not involved)
and the baryon number.

The p-capture is a process, which can be studied in particle accelerators. If a p
has sufficient energy to cross the Coulomb barrier, its de Broglie wave is larger than
the range of the nuclear force, but smaller than the size of the nucleus. If it collides
with a nucleon, it may loose sufficient energy to be reflected from the potential walls.
It then collides again with other nucleons, until the energy is uniformly distributed,
so that for no single nucleon the energy is sufficient to escape. However, fluctuations
may impart sufficient energy to individual nucleons. Preferentially neutrons, which
do not sense the Coulomb barrier may then evaporate. The remaining excitation is
dissipate via γ-emission. p-capture followed by n-emission (d +A X →A Y + α or
p +A X →A Y + n) in nuclear power plants often generates β-active isotope, which
are precious side-products used for radioactive tracing, etc..

The differential cross section dσ/dΩ is Coulombian at low scattering angles θ. At
large θ, where the nuclear potential comes into play, interference effects result in an
oscillatory behavior of (dσ/dΩ)(θ).

The shape resonances are due to constructive interference of incident and reflected
de Broglie waves. How about Feshbach resonances?

n scattering can probe resonances of composite nuclei. The resonances are de-
scribed by the Breit-Wigner formula for the total cross-section, which holds for every



452 CHAPTER 10. STRUCTURE OF MATTER

damped oscillation,

σr(E) =
λ2

4π

ΓnΓr
(E − Ei)2 + Γ2/4

≪ πr2nucl . (10.5)

This is similar to the optical cross section, where λ2/2π ≪ πa2B .

10.1.3.2 Fission

Hahn and Strassman discovered that the reaction n+238U→ X+Y+n+n+ ..+∆E
liberates 200MeV plus 2 or 3 neutrons, which is 106 times more than for a chemical
reaction. In this process as long as the products X and Y are closer than the radius
of the target nucleus, the energy increases with their distance, because the surface
increases. Triggered by collective vibrations leading to shape oscillations the products
may eventually separate. From this point on the surface terms are constant, but
the products are strongly accelerated by Coulomb repulsion. I.e. the fission slightly
increases the surface energy, but strongly minimizes the Coulomb energy. Since for
the target N ≳ Z, 2 or 3 neutrons must be reemitted (≈ MeV) to approach the
N ≃ Z regime for the products.

The lifetime for spontaneous fission is 1016 a, but it can be induced by slow n. To
moderate the neutrons graphite (12C) or heavy water (D2O) is used, or light water
(H2O) in combination with enriched 235U. The moderation increases the de Broglie
wavelength of the neutrons and thus the cross section for capture. In practice, it is
tuned such that exactly 1 out of the 2 to 3 emitted neutrons is captured to induce
the next fission. The reaction products are decelerated by reactor materials, which
heat up and drive gas turbines.

Fast breeder reactors are based on the process n +238 U →239 U →239 Pu + 2e−.
The product 239Pu now fissions upon n capture similar to 235U.

10.1.3.3 Fusion

While fission is driven by the desire to reduce Coulomb energy, fusion reduces surface
energy. The problem is that the collision partners must override the Coulomb barrier
at 1MeV (= 1010 K). In the sun the rate for this becomes noticeable above T >
108 K. Fusion reactors must compensate their limited resources by more efficient
rates, i.e. higher temperatures T > 109 K.

Fusion is the basic process in the creation of all elements up to Fe. All starts with
the big bang, a kind of neutron star, where the following processes were in equilibrium

n→ p+ e+ ν̄ (10.6)

ν̄ + p→ p+ ē

p+ n→ p+ n+ γ

e+ ē→ γ + γ

γ → e+ ē .

Doppler recoil expands this soup, until it gets transparent for the γ, which subsist
today as the 3K blackbody radiation. Now starts the He-cycle producing the 10%
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helium in the actual universe,

p+ n→ D+ γ (10.7)

D + D→3 He + n

D+D→ D+ p

D+ p→4 He + n .

The 90% hydrogen are formed through β-decay of n.
Mass fluctuations now trigger agglomerations, where the temperature rises to T >

105 K, forming a proton electron plasma. Beyond T > 107 K fusion sets in in the
pp-cycle,

p+ p→ D+ ē+ ν + 0.42MeV (10.8)

p+D →3 He + γ + 0.55MeV
3He +3 He→4 He + p+ p+ 12.9MeV .

If the star heats up to T > 108 K, the carbon-cycle

4He +4 He→8 Be (10.9)
4He +8 Be→12 C

become likely, the second one by a collision resonance-enhanced three-body collision.
Once enough carbon has been produced, it catalyses the formation of N and O.

Note that our sun has not yet reached the carbon-cycle. All heavier elements
in our solar system are remainders from a previous generation of stars. As the star
contracts, more Ne and Mg is formed. At T > 109 K the Coulomb barrier to the
formation of Fe can be overruled. But convection between the elements formed in
the core and the outer region, in which the pp-cycle is still active is needed to form
Na. Elements beyond A > 60 cannot be formed by fusion. However, together with
n-capture and β-decay elements can be formed up to 209Bi. Beyond this n-capture
only induces rapid α-decay.

When the hydrogen has been used up, thermal motion cannot counterbalance
gravitation. The sun collapses in a few seconds (e.g. in a supernova) expelling an
enormous flux of n. This flux may be high enough to allow for the simultaneous
capture of several n circumventing the α-decay and thus creating the heavier elements
observed in our solar system.

10.1.4 Elementary particles

10.1.4.1 Fundamental forces

At the surface of a nucleus the relative strength of the 4 fundamental forces is
Fnucl/Felmg/Fweak/Fgrav = 1 : 10−2 : 10−12 : 10−40. The range of the forces is
rgrav = relmg =∞, rweak ≪ rnucl ≈ 1 fm. The range is inversely proportional to the
mass of the exchange particles (gravitons, photons, pi-mesons and vector bosons).

Transitions emitting photons must occur between states having different angular
momentum, because there are no oscillating monopoles; this is the reason why photons
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must carry away 1 unit of angular momentum. For analogous reasons, gravitons must
carry away 2 units of angular momentum, because the absence of negative gravitational
mass renders gravitational dipole oscillations impossible.

The nuclear force is spin-dependent. This is seen by the fact that the deuteron
has as only one bound state a 3S1 spin state, while the 1S0 is unbound.

conserved quantity nuclear force el.mg. force weak force gravity

energy + + +

momentum + + +

angular momentum + + +

charge + + +

# leptons (e and µ) + + +

# baryons + + +

isospin I + − −
isospin Iz + + −
strangeness + + −
parity (P) + + −
charge conjugation (C) + + −
time reversal (T) + + x

intensity 1 10−2 10−12 10−40

exchange particle π γ ? graviton

mass (MeV) 140 0 > 104 0

spin 0 1 2

range (fm) 1 ∞ < 10−17 ∞
sign both + or − ? +

Time reversal symmetry and charge conjugation (i.e. particle antiparticle trans-
formation) are broken by the weak interaction in the (rare) K0K̄0 decay, but the CPT
symmetry is conserved.

Note that the Schrödinger equation breaks time-reversal symmetry, but its abso-
lute value does not.

10.1.4.2 Mesons

The nuclear force is known to saturate. This suggests that (while it vanishes at dis-
tances r0 > 2 fm) the nuclear potential is repulsive at short distances r0 < 0.5 fm.
Thus every nucleon only interacts with a limited number of neighbors. The nuclear
force can be understood as been transmitted by virtual particles, called mesons, carry-
ing momentum. According to Yukawa every nucleon constantly emits and reabsorbes
mesons for a short time satisfying ∆E∆t ∼ ℏ. Within this time the meson could
maximally reach a distance r0 = c∆t = ℏc/∆E = ℏ/mπc, which is the range of
the interaction and the Compton wavelength of the π meson (mπ = 140MeV). In
the presence of another nucleon within this reach, the meson can be reabsorbed by
that one. The transferred momentum is largest, when the mesons carry large kinetic
energies, which is close to the nuclei.
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This is similar to the Coulomb force being mediated by the exchange of virtual
photons by electric charges in a second-quantized theory. The range of the Coulomb
interaction is infinite, because the photons have no rest mass. I.e. photons with
small energies ω can be encountered at very large distances. However, the transferred
momentum is largest, when the photons have high energies capable of imparting large
recoils, which is close to the charge.

Mesons can be liberated from virtual to real during a collision; they are observed
in cosmic rays.

Mesons interconvert protons and neutrons,

p↔ n+ π+ (10.10)

p↔ p+ π0

p↔ p+ π−
n↔ n+ π0 .

They can carry charge, have an intrinsically negative parity and are instable π0 →
γ + γ and π+ → µ+ + νµ.

Mesons are like all exchange particles bosons. They cannot be fermions because
the number of fermions is conserved.

Protons and neutrons have a charge distribution that can be probed by electron
scattering. This is why also the neutron has an electric dipole moment.

10.1.4.3 Muons

Muons are quasi heavy electrons and decay via µ− → e− + ν̄e + νµ.
Every fermion has its anti-particle. The number of fermions-antifermions is con-

served, in particular the lepton numbers and baryon numbers are constant:
∑
Le =

const,
∑
Lµ = const , and

∑
B = const, where Le− = Lνe = 1 = −Le+ = −Lν̄e .

10.1.4.4 The particle zoo

Generations of leptons, neutrinos, quarks
[
e u

νe d

]
,

[
µ s

νµ c

]
,

[
τ t

ντ b

]
(10.11)

and their antiparticles.
The quarks do not exist alone, but as hadrons, i.e. either antiquark pairs called

mesons or quark triplets called baryons. The most common ones are the π-mesons
(π0 = uū?, π± = ud̄), the proton (p = uud) and the neutron (p = udd). The up
quark has the charge 2/3, the down quark -1/3.

10.2 Solid state physics

10.2.1 Models for electrons in crystals

10.2.1.1 Types of solids

In contrast to a gas, which in most cases consists of isolated particles, the interparticle
interaction plays a dominant role in crystals. Solids, or more specifically crystals, are
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classified according to the predominant type of binding. 1. Molecular binding is
responsible for the solidification of binary gases like O2. Here, fluctuating dipole
moments inducing dipole moments in neighboring molecules lead to van der Waals
attractive forces on the order of Ebind ≃ 10−2 eV going like r−7. 2. Ionic binding
gives rise to periodic structures alternating positive and negative charges, as in NaCl.
3. Covalent binding is directional. This directionality determines the crystalline
structure, such as in graphite and diamonds. In those three binding types there
are no free electrons and hence no conductance. However, covalently bound crystals
can sometimes be semiconductors or transparent. 4. Metallic binding is a limit of
covalent binding, in which the valence electrons, which shared by all atoms, overrule
the repulsion between the ions. The ionic lattice is immersed in a gas of free electrons.
The ions have filled shells and are spherically symmetric. The electrons can easily
absorb light, which makes the crystal opaque. The type of binding is studied via
X-ray diffraction, via the dielectric properties, etc..

10.2.1.2 Band model

The number of orbitals in the isolated atoms forming the crystal gives the number
of states available to the free electron gas. The exchange interaction of the fermionic
electrons lifts the degenerescence (generalization of the H2 molecule) and gives rise to
a band structure. The electronic localization determines the width of the band: very
delocalized electrons move in large bands. The interatomic distance also influences
the band width. The closer the atoms the stronger the interaction, the larger the
bands.

Bands connecting to different orbital may finally overlap. Note that the ml degen-
eracy is lifted because spherical symmetry is broken by the crystal [E(3s) ̸= E(3p)].

10.2.1.3 Electrical conductance

Electrons can only move in presence of a sufficient number of unpopulated states,
even under the influence of an external force. If no states are available the crystals
becomes isolating. Overlapping filled and empty bands reserve many states and allow
for good conductance.

If the Fermi energy EF lies between a completely filled conducting band and an
empty valence band. The crystal is isolating. However, at T > 0, if the forbidden
band is narrow as in the case of semiconductors (for Si ∆E ≃ 1 eV), the gap may be
bridged by thermal excitations.

The electrons collide with crystal impurities, defects and phonons. While the
velocity of the electrons is about v̄ ≃ 107 cm/s, the short mean free path λ limits the
drift velocity to vd ≃ 10−2 cm/s. The Lorentz force eE/m accelerates the electrons
between successive collisions occurring at a rate v̄/λ, such that

j

ne
= vd =

eE

m
× λ

v̄
, (10.12)

where j is the current density and ne the charge density. The fact that v̄ and λ do
not depends on the electric field is known as Ohm’s law. The mobility µ ≡ vd/E
allows to write the electrical conductance as

ρ−1 = n−e−µ− + n+e+µ+ . (10.13)
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The value and sign of the Hall coefficient 1/ne can be measured by the Hall effect. It
is positive if the conductance occurs primarily through holes and negative if it occurs
through electrons.

10.2.1.4 Electron gas model

In this model the electrons move in a square well potential, a mean-field approach
accounts globally for the periodic lattice of ions and the influence of all other electrons.
The density of states and the electron density are the same as for blackbody radiation

ρ(ϵ)dϵ =
V (2m3)1/2

π2ℏ3
√
ϵdϵ , (10.14)

n(ϵ)ρ(ϵ)dϵ =
1

e(ϵ−ϵF )/kBT + 1
ρ(ϵ)dϵ .

The maximum energy at T = 0 can be estimated from the quantized energy levels
of a square well potential filled with N2 electrons,

Emax =
ℏ2π2

2mL2
N2 =

ℏ2π2

2ma2
, (10.15)

where a is the lattice constant. This confirms that the width of the bands depends
on the interatomic spacing, but not on the number of ions. The electron gas model is
good for large overlap of the bands. In the presence of isolated bands ρ(ϵ) gets more
complicated. In particular, if a band edge is reached while filling the potential well
with states, n(ϵ)ρ(ϵ) reaches a maximum before in drops down to zero.

10.2.1.5 Electrons in a periodic potential

The Bloch model assumes ψ(x) = uk(x)e
ıkx with uk(x) = uk(x + a). The Kronig-

Penney model approximates the lattice potential by a periodic array of square well
potentials. Bands open at the edges of Brillouin zones thus forming forbidden gaps.
The dispersion relation for free particles E = ℏω = ℏ2k2/2m with v = dω/dk plus a
Lorentz force dϵ = e|E|dx yields

m∗ =
dv

dt
= e|E| (10.16)

1

m∗
=
d2ω

dk2
,

For free particles me = m∗. Without friction the acceleration is constant and, in
a lattice m∗ goes through apole at the edges of the Brillouin zones due to Bragg
reflection. Note that the momentum beyond π/a, which cannot be given to the electron
is transferred to the lattice. Note also that the density of states goes with the effective
mass and is ∝ ρ. m∗ is a material constant (for Fe m∗ ≃ 10me, thus Fe is a poor
conductor). ???

10.2.1.6 Semiconductors

There is an intrinsic temperature-dependent conductivity (for Si ρ(600K)/ρ(300K) ≈
109). Extrinsic conductivity can be induced by photoexcitation or doping. E.g. Ar/Ga
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in a Ge crystal has one weakly bound electron more/less than required to fit into the
lattice. This generates discrete energy levels slightly below the conducting/above the
valence band, min(Ec)− En, Ep −max(Ev) ≃ 0.01 eV.

The Fermi energy EF is the energy, where half of the electrons are below that.
In an isolator is between max(Ev) and min(Ec). In the presence of doping EF is
shifted by the additional amount of electrons/holes toward En, Ep. If n and p-doped
materials are combined, electrons drift from the n to the p region, such as to minimize
energy and obtain a uniform EF across the hole crystal.

Thermally excited electrons may drift and recombine with holes. The junction
is maintained by a steady flux in a dynamic equilibrium. An external voltage can
higher/lower the barrier, because the potential drops mostly near the junction, where
the resistance is highest. In this case the thermal current is not equilibrated, the
diode either blocks or opens. The electrons move to try to rectify EF .

A transistor is a series of junctions in npn of pnp configuration. The base-emitter
current can be used to switch a collector-emitter current by injecting electrons. A
tunnel diode acts like a normal diode except that when the bands come closer together
within the junction (at low voltages in conduction polarization), electrons may pass
by tunneling from the conducting into the valence band. This flow gradually stops
when EF is leveled (for zero voltage). Tunneling currents react much faster than
thermal drift currents.

10.2.2 Kondo effect

Magnetic ions dilutely distributed in a non-magnetic metallic crystal can increase
resistance at low temperatures. This is due to an exchange interaction between the
dipole moments of the ’impurity’ ions and the conducting electrons giving rise to an
additional scattering mechanism. The magnetization of the e− in the vicinity of an
ion is known as Friedel interaction or RKKY interaction (Rutherford-Kittel-Kasuya-
Yosida) interaction. The effect is known as Kondo effect. A similar effect is observed
for quantum dots: a spin-entanglement of the electron trapped in the dot with the
conducting electrons give rise to an exchange interaction with increases resistance.

10.3 Plasmas

10.3.1 Debye length

Consider a mixture of charges + and −, that is, a plasma. Energy seeks to be
minimized by local compensation of charge imbalance. However, thermal motion
spoils perfect homogeneity. That is, if on the one hand, looking at large scales, the
environment seems neutral and homogeneous, at small scales there may be charge
imbalances producing potential sites with exponentially decreasing ranges,

1

λD
=

1

λD−
+

1

λD+
=
ne2

ε0

(
1

kBT+
+

1

kBT−

)
. (10.17)

The Debye length naturally enters the thermodynamic description of large sys-
tems of mobile charges. We consider a system of 2 different species of charges q±
and n±(r) at locations r. According to the so-called primitive model, these charges
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are distributed in a continuous medium characterized only by its relative static per-
mittivity, εr. This distribution of charges through the medium generates an electric
potential Φ(r) that satisfies the Poisson equation:

ε∇2Φ(r) = −q+n+(r)− q−n−(r)− ρE(r) , (10.18)

where ε ≡ εrε0, ε0 is the dielectric constant, and ρE is the charge density outside the
medium (logically, not spatially).

The mobile charges do not only generate Φ(r), but also are moved according to the
associated Coulomb force, −q±∇Φ(r). Assuming the system to be in thermodynamic
equilibrium with a heat reservoir at an absolute temperature T , the concentrations
of discrete charges, n±(r), can be considered as thermodynamic averages (ensem-
ble average) and the associated electrical potential as a thermodynamic mean field.
With these assumptions, the concentration of species j is described by the Boltzmann
distribution,

n±(r) = n0±e
−q±Φ(r)/kBT , (10.19)

where n0j is the mean field concentration of the charge species j.
Identifying the instantaneous concentrations and the potentials in the Poisson

equation with their mean-field counterparts in the Boltzmann distribution, we obtain
the Poisson-Boltzmann equation:

ε∇2Φ(r) = −q+n0+e−q+Φ(r)/kBT − q−n0−e−q−Φ(r)/kBT − ρE(r) . (10.20)

Solutions of this nonlinear equation are known for simple systems. Solutions for more
general systems can be obtained in the high-temperature (or low-coupling) limit,
qjΦ(r)≪ kBT , by Taylor expansion of the exponential,

e−q±Φ(r)/kBT ≈ 1− q±Φ(r)
kBT

. (10.21)

This approximation gives the linearized Poisson-Boltzmann equation,

ε∇2Φ(r) =

(
n0+q

2
+

kBT
+
n0−q

2
−

kBT

)
Φ(r)− n0+q+ − n0−q− − ρe(r) (10.22)

also known as Debye-Hückel equation. The second term on the right side disappears
for electrically neutral systems. The term in parentheses divided by ε, has the unit
1/m2. By a dimensional analysis, it leads to a definition of a characteristic length
scale,

λD =

(
εkBT

n0+q
2
+ + n0−q

2
−

)1/2

(10.23)

usually called Debye-Hückel length. Being the only characteristic length scale of the
Debye-Hückel equation, λD defines the scale of variations in the potential and the
concentrations of the charged species. All charged species contribute to the Debye-
Hückel length in the same manner regardless of the charge signal. For an electrically
neutral system, the Poisson equation is,

∇2Φ(r) = λ−2D Φ(r)− ρe(r)

ε
. (10.24)
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To illustrate the Debye shielding, the potential produced by an external point-like
charge ρe = Qδ(r) is,

Φ(r) =
Q

4πεr
e−r/λD . (10.25)

The bare Coulomb potential is exponentially shielded by the medium over a distance
corresponding to the Debye length.

The length of Debye-Hückel can be expressed in terms of the length of Bjerrum
λB as,

λD =


4πλB

N∑

j=1

n0j z
2
j



−1/2

, (10.26)

where zj = qj/e.

10.3.1.1 Typical values

In plasmas in space, where the electron density is small, the Debye’s length can reach
macroscopic values.

system density electronic temperature magnetic field Debye length

ne (m−3) T (K) B(T) λD(m)

solar core 1032 107 − 10−11

Tokamak 1020 108 10 10−4

gas discharge 1016 104 − 10−4

ionosphere 1012 103 10−5 10−3

magnetosphere 107 107 10−8 102

solar wind 106 105 10−9 10

interstellar medium 105 104 10−10 10

intergalactic medium 1 106 − 105

10.3.1.2 Length of Debye in a plasma

In a plasma, the background medium may be treated as the vacuum (εr = 1), and
the length of Debye is,

λD =

√
ε0kB/q2e

ne/Te +
∑
j z

2
jnj/Tj

, (10.27)

where T± are the temperatures of the electrons and ions, n− is the density of the
electrons and n+ that of the atomic species j, with positive ionic charge z+qe. The
ion term is often neglected, giving,

λD =

√
ε0kBTe
neq2e

, (10.28)

although this is valid only, when the mobility of ions is negligible on the time scale of
the process.



10.4. FURTHER READING 461

10.4 Further reading

H.M. Nussenzveig, Curso de F́ısica Básica: Ótica, Relatividade e F́ısica Quântica
(Volume 4) [964]ISBN

http://isbnsearch.org/isbn/978-8-521-20801-4
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Chapter 11

Appendices to ’Classical
Mechanics’

11.1 Constants and units in classical physics

11.1.1 Constants

11.1.1.1 Mathematical constants

π constant π = 3.1415..

Euler constant e = 2.71828..

11.1.1.2 Constants of the SI unit system

These numbers of the special adjustment CODATA 2019 were proposed as exact
values.

frequency of the hyperfine transition of Cs ν = 9 192 631 770Hz

velocity of light c = 299 792 458m/s

Planck’s constant h = 6.626 070 15 · 10−34 Js
electronic charge e = 1.602 176 634× 10−19 C

Boltzmann’s constant kB = 1.380 649× 10−23 J/K

Avogadro’s constant NA = 6.022 14076× 1023 mol-1

Luminous efficiency Kcd = 683 lm

463
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11.1.1.3 Derived constants

fine-structure constant α = e2/4πε0ℏc ≈ 1/137

vacuum permittivity ε0 = 1/µ0c
2 = 8.8542× 10−12 As/Vm

vacuum permeability µ0 = 10−7 Vs/Am

Faraday’s constant F = 96485.309C/mol

atomic mass unit uA = 1/NA × 1g/mol = 1.6605402× 10−27 kg

gas constant R = NAkB = 8.314510L/mol K

Bohr radius aB = α/4πR∞ = 0.529× 10−10 m

Bohr magneton µB = eℏ/2me = 9.27× 10−24 J/T

classical electron radius re = α2aB

Rydberg constant R∞ = mecα
2/2h = 13.7 eV

Compton wavelength λC = h/mec

Thomson cross section σe = (8π/3)r2e

gravitational constant γ = 6.67259× 10−11 m3kg-1s-2

11.1.1.4 Particle constants

electron mass me = 9.1096× 10−12 kg

g-factor of the electron g = 2.002 319 304 386

muon mass mµ = 105.658389MeV

proton mass mp = 938.27231MeV

g-factor of the proton g = 5.5858

neutron mass mp = 939.56563MeV

g-factor of the neutron g = −3.8261
deuteron mass md = 1875.61339MeV
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11.1.1.5 Astronomical constants

earth mass m& = 5.9736× 1024 kg

earth radius R& = 6370 km

earth gravity g& = 9.80665m/s

lunar mass m$ = 7.348× 1022 kg

lunar radius R$ = 1740 km

lunar gravity g$ = 1.62m/s

distance earth-moon dES = 384000 km

sun massa m. = 1.99× 1030 kg

sun radius R. = 695300 km

sun gravity g. = 273m/s

distance earth-sun dES = 1.496× 108 km

sinodic day dsyn = 24h

sideric day dsyn = 23.9345 h = 23 h 56min 4 s

sinodic month monsyn = 29.530590 d

sideric month monsid = 27.321666 d

sideric year asyn = 365.256365 h = 365 d 6 h 9min 10 s

lunar day dlunar = 24.8412 h

1
monsid

= 1
asid

+ 1
monsyn

1
dsid

= 1
asid

+ 1
dsyn

1
dsid

= 1
monsid

+ 1
dlunar

11.1.2 Units

charge Q basic unit

current I A=C/s

voltage U V=N/As

polarizability αpol Asm2/V

susceptibility χ 1

dipolar moment 1 Debye = 10−27/2.998 Cm = 10−19/c Cm2/s = 39.36 eaB
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11.2 Quantities and formulas in classical mechanics

time t basic unit

position r basic unit

velocity v v = ṙ

acceleration a a = v̇

mass m basic unit

linear momentum p p = mv

force F F = ṗ = ma

kinetic energy Ekin Ekin = m
2 v

2

angle ϕ⃗ basic unit

angular velocity ω⃗ ω⃗ = ṙ

angular acceleration α⃗ α⃗ = ˙⃗ω

inertial moment (continuous density) I I =
∫
r2⊥dm =

∫
V
ρ(r)[r2 − (r · êω)]dV

inertial moment (discrete density) I I =
∑
imir

2
i

angular momentum L L = Iω⃗ = r× p

torque τ⃗ τ⃗ = L̇ = Iα⃗ = r× F

rotational energy Erot Erot =
m
2 ω

2r2

potential energy Epot Egravpot = mgh , Esprngpot = k
2x

2

work W W =
∫ s2
s1

F · ds
power P P = Ẇ

11.2.1 Particular forces

gravitation Fgrav = mg

Hooke’s for elastic spring Fmola = −k∆x
friction Fat = −µN
Stokes’ friction Ffr = −γv

Newton’s friction Ffr = −γv2



11.2. QUANTITIES AND FORMULAS IN CLASSICAL MECHANICS 467

11.2.2 Inertial momentum

Steiner’s theorem
Iω2

= Iω1
+md2 ,

where d is the distance between parallel axes

theorem of perpendicular axes Iz = Ix + Iy para ρ(r) = δ(z)σ(x, y)

11.2.3 Inertial forces due to transitions to translated and ro-
tated systems

transformation to an accelerated frame FGal = −ma

centrifugal force Fcf = −mω⃗ × (ω⃗ × r)

Coriolis force FCor = −2mω⃗ × v

11.2.4 Conservation laws

energy conservation
∑
k E

(ini)
kin +

∑
k E

(ini)
pot =

∑
k E

(fin)
kin +

∑
k E

(fin)
pot

linear momentum conservation
∑
k p

(ini)
k =

∑
k p

(fin)
k

angular momentum conservation
∑
k L

(ini)
k =

∑
k L

(fin)
k

definition of the center-of-mass rcm ≡
∑

k mkrk∑
k mk

11.2.5 Rigid bodies, minimum required number of equations
of motion

1. estimate number of moving masses m1, m2, ...

2. identify possible movement (degree of freedom) for every mass

v1x, v2x, ...

v1y, v2y, ...

v1z, v2z, ...

ω1, ω2, ...

3. write down for every degree of freedom an equation of motion
mv̇kl =

∑
j Fj

Iω̇k =
∑
j τj

11.2.6 Gravitational laws

Newton’s law F(r) = − GMm
|R−r|2 êRr = −∇V (r)

gravitational potential V (r) = −
∫

Gm
|r−r′|2 ρ(r

′)dV ′
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11.2.7 Volume elements

cartesian coordinates dV = dxdydz

cylindrical coordinates dV = ρdρdϕdz

spherical coordinates dV = r2 sin θdrdθdϕ

11.2.8 Oscillations ma+ bv + kx = F0 cosωt

dissipative motion k = 0, F0 = 0 x(t) = Ae−γt, γ = b
2m

harmonic oscillation b = 0, F0 = 0 x(t) = A cos(ω0t+ δ), ω0 =
√

k
m

damped oscillation F0 = 0 x(t) = Ae−γt cos(ωt+ δ), ω =
√
ω2
0 − γ2

forced oscillation
x(t) = A cos(ωt+ δ) , A = F0√

m2(ω2
0−ω2)2+b2ω2

,

tan δ = bω
m(ω2

0−ω2)

11.3 Probability distributions

The binomial distribution is defined by,

B
(n)
k =

(
n

k

)
pk(1− p)n−k . (11.1)

The Poisson distribution is defined by,

Pk =
λk

k!
e−λ , (11.2)

for large n and small p, we get B
(n)
k ≃ Pk with λ = np.

11.3.1 Some useful formulae

If the limits of two functions tend to 0, limt→t0 f(t) = 0 = limt→t0 g(t) a rule called
l’Hôpital’s rule goes like,

lim
t→t0

f(t)

g(t)
= lim
t→t0

f ′(t)
g′(t)

. (11.3)
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Electrodynamics
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Chapter 12

Foundations and
mathematical tools

The electrodynamic force is one of the four fundamental forces, together with gravi-
tation, the strong nuclear force, and the weak nuclear force. It is a long-range force
(F ∝ r−2) in the same way as gravitation, but unlike nuclear forces, which are short-
ranged. Unlike gravitation, it can be attractive or repulsive. The experimentally

Figure 12.1: The four known fundamental forces.

observed fact, that two spatially separated bodies can exert mutual forces (beyond
gravitation), is not explained within classical mechanics. It is necessary to introduce a
new degree of freedom called electric charge which, to take account of the existence of
attractive and repulsive forces, must exist in two different types called positive or neg-
ative charges. Identical charges repel each other, different charges attract each other.
Other observations suggest that the charge is a conserved and quantized quantity.

Electrodynamics is an field theory, that is, it can describe all electric or magnetic
phenomena observed in the following way: Every charge gives rise to a force field,
called field electric E⃗ , which accelerates other charges. But other experimental ob-
servations suggest the existence of another force field, called the magnetic field B⃗,
whose existence is necessary to understand forces only acting on moving charges.
That is, the electric and magnetic fields are introduced to explain the forces named
after Coulomb and Lorentz,

F = qE⃗ + v × B⃗ . (12.1)

Thus, fields are quantities distributed in space, which in addition can vary in time,

F = F(r, t) . (12.2)
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The concept of a field represents a powerful mathematical tool for describing forces,
which are the only observable magnitudes of electromagnetism. That is, we have
no sense to see the electricity. We can only infer their existence from the observa-
tion of forces. On the other hand, the formulation of electrodynamics via vectorial
force fields, can be replaced by a description via potentials, which are either scalar
or vectorial fields. In many circumstances, potentials facilitate the resolution of elec-
trodynamic problems, but it is important to keep in mind, that potentials are not
directly observable.

Maxwell’s electrodynamics has a very deep relationship to Einstein’s theory of
special relativity, such that each theory is conditioned to the validity of the other.
The relativistic formulation allows to distill the symmetry inherent to electrodynamics
in a highly aesthetic way.

In view of the fundamental role played by scalar and vector fields in electrody-
namics, we will start this course the basic mathematical notions of field theory, that
is, differential and integral calculus with fields in Cartesian or curvilinear coordi-
nates. We will also have to review basic notions of complex numbers and the Dirac
distribution.

12.1 Differential calculus

12.1.1 Scalar and vector fields

The most basic application of vectors is the designation of positions in space, r =
xêx+yêy+zêz. But other physical quantities may also depend on the position where
they are measured. In case the quantity varying with position is a scalar, Φ = Φ(r),
we speak of scalar field. An example for a scalar field is the temperature distribution
across a room. In the case the quantity is a vector, A = A(r), we speak of vector
field. Light propagating through space is an example for a vector field.

A position is generally defined with respect to the center of the coordinate system,
called the origin, such that the distance from the center is given by,

r ≡
√
r · r =

√
x2 + y2 + z2 , (12.3)

with êr being a unit vector pointing in the direction of r. In electrodynamics we
will often deal with quantities (fields) that depend on the distance between a source
located at a position r′ and a detector placed at a position r, such as Φ(R) = Φ(r−r′),

êR =
(x− x′)êx + (y − y′)êy + (z − z′)êz√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (12.4)

12.1.2 The gradient

The derivative of a one-dimensional function Φ(x) measures, how fast the function
changes when we move the position x. That is, when we change x by an amount dx,
Φ changes by an amount dΦ given by,

dΦ =

(
dΦ

dx

)
dx . (12.5)
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Of course it gets trickier, when Φ is a field depending on three coordinates, because
we need to specify in which direction we are changing the position. We have,

dΦ =

(
∂Φ

∂x

)
dx+

(
∂Φ

∂y

)
dy +

(
∂Φ

∂z

)
dz . (12.6)

This equation resembles the scalar product because,

dΦ =

(
êx
∂Φ

∂x
+ êy

∂Φ

∂y
+ êz

∂Φ

∂z

)
· (dxêx + dyêy + dzêz) ≡ ∇Φ · dr , (12.7)

where we defined a new operator called nabla,

∇ ≡




∂/∂x

∂/∂y

∂/∂z


 . (12.8)

The three-dimensional derivative ∇Φ is called the gradient of the scalar field Φ,

∇Φ(r) = êx
∂Φ

∂x
+ êy

∂Φ

∂y
+ êz

∂Φ

∂z
, (12.9)

and it measures the variation of the value of the field from Φ to Φ + dΦ, when we
move the vector by an infinitesimal amount between two points r and r+ dr.

We understand the geometric interpretation of the gradient through its formula-
tion as a scalar product:

dΦ = ∇Φ · dr = |∇Φ| · |dr| cos θ , (12.10)

where θ is the angle between the gradient and the infinitesimal displacement. Now,
we fix a magnitude of the displacement |dr| and look for the direction θ in which the
variation dΦ is maximum. Obviously, we find the direction θ = 0, that is, when the
gradient points in the same direction as the predefined displacement.

The gradient of a scalar field Φ(r) calculated at a point r indicates the
direction of the greatest field variation from this point, and its absolute
value is a measure for the variation.

The concept of the gradient is easy to understand in a two-dimensional landscape:
Imagine being on the slope of a mountain. Depending on the direction in which you
are heading and the duration of the journey dr, you will gain or lose a certain amount
of potential energy dΦ, which you can calculate by the scalar product ∇Φ · dr. If the
direction chosen is that indicated by the gradient, you will lose (or gain) a maximum
of potential energy. If you choose to go in a direction perpendicular to the gradient,
that is, along an equipotential line, the potential energy remains unchanged. This is
illustrated in Fig. 12.2.
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Let us consider the example of a parabolic field, Φ(r) = −r2:

∇(−r2) =




−2x
−2y
−2z


 = −2r . (12.11)

We find that at all points of space the variation is faster in radial direction.

Figure 12.2: The gradient indicates the direction of the largest field variation Φ.

Although the operator ∇ has the shape of a vector, it has no meaning by itself. In
fact, it is a vector operator, that is, a mathematical prescription telling us what to do
with the scalar field on which it acts. Nevertheless, it assimilates all the properties of
a vector. (We will see in quantum mechanics, that this is more than a coincidence.)
Thus, in a way similar as done for the gradient of scalar fields, we can try to apply
the ∇ operator on vector fields using the definitions of the scalar and vector products,

grad Φ(r) ≡ ∇Φ(r) and div A(r) ≡ ∇ ·A(r) and rot A(r) ≡ ∇×A(r) .
(12.12)

We practice the calculation with the ∇ operator in the Excs. 12.1.7.1 to 12.1.7.3.

12.1.3 The divergence

Let us now analyze the possible meaning of the expression ∇ ·A called divergence. It
is easy to show,

∇ ·A(r) =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

. (12.13)

Obviously the divergence is a scalar field calculated from a vector field.

The divergence measures how much a vector field A(r) spreads out starting
from a point r. For a given infinitesimal volume it measures the difference
between the number of incoming and outgoing field lines.

Exposed to a field with divergence, an extended distribution of masses will start to
concentrate (spread out) in case of a drain (source). The field lines trace the masses
trajectories.

Example 30 (Divergence of a radial field): We consider the example of the
radial field, A(r) = r:

∇ · r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3 . (12.14)
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12.1.4 The rotation

Let us now examine the possible meaning of the expression ∇×A called rotation. It
is easy to show,

∇×A(r) =

∣∣∣∣∣∣∣∣∣

êx êy êz

∂x ∂y ∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣
= êx

(
∂Az
∂y
− ∂Ay

∂z

)
+êy

(
∂Ax
∂z
− ∂Az

∂x

)
+êz

(
∂Ay
∂x
− ∂Ax

∂y

)
.

(12.15)
Obviously the rotation is a vector field calculated from another vector field.

The rotation measures how many of the field lines of a vector field A(r)
passing through an infinitesimal volume, return into it.

Exposed to a field with rotation, an extended distribution of masses will start spinning
in closed orbits.

We consider the examples shown in Fig. 12.3. The properties of divergence and
rotation are complementary. There are fields exhibiting only one of the properties, or
both, or none of them. In cases where there is rotation, it is problematic to specify
equipotential lines: Either, the field lines are not orthogonal to the equipotential lines,
or they come back.

(a) (b) (c) (d) (e)

Figure 12.3: (a) Field without divergence, (b) with constant divergence, (c) with radial
divergence, (d) with rotation, and (e) with rotation.

Example 31 (Rotation of a radial field): We consider the example of a
radial field, A(r) = −yêx + xêy:

∇×A =


0− ∂zx

∂z(−y)− 0

∂xx− ∂y(−y)

 = 2êz . (12.16)

We practice the calculation with divergence and rotation in the Excs. 12.1.7.4

to 12.1.7.7.

12.1.5 Taylor expansion of scalar and vector fields

We know well the Taylor expansion of functions of one variable:

Φ(x+ h) = exp(h d
dx )Φ(x) =

∞∑

ν=0

1
ν! (h

d
dx )

νΦ(x) = Φ(x) + hΦ′(x) + h
2Φ
′′(x) + ... .

(12.17)
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The generalization of the expansion to a scalar field, which depends on a vector, is,

Φ(r+ h) = exp(h · ∇r)Φ(r) =

∞∑

ν=0

1

ν!
(h · ∇r)

νΦ(r) (12.18)

= Φ(r) + (h · ∇r)Φ(r) +
1
2 (h · ∇r)(h · ∇r)Φ(r) + ... .

We see that the operator ∇r generates a translation. We study the Taylor expansion
of scalar fields in Exc. 12.1.7.8.

The generalization of the gradient of a vector field is the Jacobian,

A =




A1

...

An


 =⇒ J [A] =




∂A1

∂x1
· · · ∂A1

∂xn

...
. . .

...

∂An

∂x1
· · · ∂An

∂xn


 . (12.19)

Therefore, the generalization of the expansion to a vector field is,

A(r+ h) = exp(h · ∇r)A(r) = A(r) +




(h · ∇r)A1

...

(h · ∇r)An


+ ... (12.20)

= A(r) +




h1
∂F1

∂x1
+ ...+ hn

∂F1

∂xn

...

h1
∂Fn

∂x1
+ ...+ hn

∂Fn

∂xn


+ ... = A(r) + J [A]h+ ... .

12.1.6 Rules for calculation with derivatives

In total there are four possible ways of defining products involving scalar and vector
fields, ΦΨ, ΦA, A · B, and A × B, and six product rules to calculate the following
expressions,

∇(ΦΨ) , ∇(A·B) , ∇·(ΦA) , ∇·(A×B) , ∇×(ΦA) , ∇×(A×B) .
(12.21)

Second derivatives can also be defined in six different combinations,

∇ · (∇ϕ) , ∇× (∇ϕ) , ∇(∇ ·A) , ∇ · (∇×A) , ∇× (∇×A) . (12.22)

As these rules are used frequently, we summarized them in Secs. 21.6.1 and 21.6.2.
The rules can be derived componentwise from scalar product rules. Very useful

tools for this are the Kronecker symbol and the Levi-Civita tensor. Let us consider
a Cartesian coordinate system i = 1, 2, 3. The coordinates in this system are xi and
the derivatives ∂i ≡ ∂

∂xi
. The Kronecker symbol is defined by,

δmn =

{
1 for m = n

0 else
. (12.23)
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The Levi-Civita tensor is defined by,

ϵkmn =





1 when (kmn) is an even permutation of (123)

−1 when (kmn) is an odd permutation of (123)

0 when at least two indices are identical

. (12.24)

Adopting Einstein’s summing convention, we automatically take the sum of an ex-
pression over all indexes appearing twice. For example, the scalar product can be
written,

A ·B =
∑

i

AiBi ≡ AiBi . (12.25)

For the vector product we obtain,

(A×B)k ≡ ϵkmnAmBn . (12.26)

Other examples will be discussed in the Excs. 12.1.7.9 to 12.1.7.11.

12.1.7 Exercises

12.1.7.1 Ex: Differential operators

Find the gradients of the following scalar fields:
a. Φ(r) = x2 + y3 + z4 ,
b. Φ(r) = x2y3z4 ,
c. Φ(r) = ex sin y ln z .

Solution: a. ∇Φ(r) = 2xêx + 3y2êy + 4z3êz ,
b. ∇Φ(r) = 2xy3z4êx + 3x2y2z4êy + 4x2y3z3êz ,

c. ∇Φ(r) = ex sin y ln zêx + ex cos y ln zêy +
ex sin y
z êz .

12.1.7.2 Ex: 2D landscape

A 2D landscape is parametrized by h(x, y) = 10(2xy − 3x2 − 4y2 − 18x+ 28y + 12).
a. Where is mountain top?
b. What is its height?

Solution: a. The gradient is,

∇h(x, y) =


20y − 60x− 180

20x− 80y + 280


 = 0 ,

yielding x = −2 and y = 3.
b. The height is,

h(−2, 3) = 720 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial02.pdf
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12.1.7.3 Ex: Differential operators

Calculate ∇r′ |r− r′|n.

Solution: With

∂

∂x′
[(x− x′)2 + (y − y′)2 + (z − z)2]n/2

=
n

2
[(x− x′)2 + (y − y′)2 + (z − z′)2]n/2−12(x− x′)(−1)

= −n|r− r′|n−2(x− x′) .

With this,
∇(r− r′)n = −n|r− r′|n−2(r− r′) .

12.1.7.4 Ex: Differential operators

Calculate the divergence and the rotation of the vector field A = e−x
2yêx+

z
1+y2 êy+

xêz at the position (0, 1, 1).

Solution: With Maple

∇ ·A = −2xye−x2y − 2
z

(1 + y2)2
y .

At the given point the divergence is ∇ ·A(0, 1, 1) = −0.5. In addition we find,

∇×A =




− 1
1+y2

−1
x2e−x

2y


 .

At the given point the rotation is ∇×A(0, 1, 1) = (− 1
2 ,−1, 0).

12.1.7.5 Ex: Sources and vertices

a. Determine the divergence and the rotation of the vector field A = Axêx +Ayêy +
Azêz.
b. Calculate for the following fields the sources and vortices:

A1 = −yêx + xêy , A2 = +yêx + xêy ,

A3 = +xêx + yêy , A4 = +xêx + xêy .

c. Make a graphic illustration of the fields and give a geometric interpretation of div
and rot.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial05.pdf
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Solution: a. Easy.
b. The solutions are:

∇ ·A1 = 0 , ∇×A1 = 2êz ,

∇ ·A2 = 0 , ∇×A2 = 0 ,

∇ ·A3 = 2 , ∇×A3 = 0 ,

∇ ·A4 = 1 , ∇×A4 = êz .

c. Graphical illustration:

-2 0 2

-2

0

2

y

A1

-2 0 2

-2

0

2

A2

-2 0 2

x

-2

0

2

y

A3

-2 0 2

x

-2

0

2

A4

Figure 12.4: Illustration of Sources and vertices.

12.1.7.6 Ex: Sources and vertices

Calculate the divergence ∇ · r
r3 .

Solution: With

∂

∂x

x

(x2 + y2 + z2)3/2
= − 2x2 − y2 − z2

(x2 + y2 + z2)5/2
,

we obtain,

∇ · r
r3

= −2x2 − y2 − z2
r5

− 2y2 − z2 − x2
r5

− 2z2 − x2 − y2
r5

= 0 .

12.1.7.7 Ex: Chain rule for functions of vector field

Apply the chain rule to the gradient of a scalar function of a vector field: ∇ϕ(E(r)).

Use the rule to calculate ∇
√
ar2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial07.pdf
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Solution: By components we have,

dϕ(Ex, Ey, Ez)

dx
=

∂ϕ

∂Ex

∂Ex
∂x

+
∂ϕ

∂Ey

∂Ey
∂x

+
∂ϕ

∂Ez

∂Ez
∂x

= ∇Eϕ ·
∂

∂x
E .

Hence,

∇ϕ(E(r)) =
∑

k

∂ϕ

∂Ek
∇Ek .

For the given function,

∇
√
ar2 =

∑

k

∂
√
ar2

∂(ax2k)
∇(ax2k) =

∑

k

1

2
√
ar2

2axkêk =
√
aêr .

12.1.7.8 Ex: Taylor expansion in 3D

Consider the function,

f(x) =
1

|d− x| .

Calculate the Taylor expansion in x of this function in Cartesian coordinates at the
position x = 0 (in all three spatial coordinates) up to second-order.

Solution: In general we have,

f(x) = f |x=0 +
∂f

∂xi

∣∣∣∣
x=0

xi +
1

2

∂2f

∂xixj

∣∣∣∣
x=0

xixj +O(|x|3) ,

where we add over equal indices.
In 0. order,

f |x=0 =
1

|d| .

In 1. order,
[
∂

∂xi
[(d1 − x1)2 + (d2 − x2)2 + (d3 − x3)2]−1/2

]

x=0

=

[
di − xi

[(d1 − x1)2 + (d2 − x2)2 + (d3 − x3)2]3/2
]

x=0

=
di
|d|3 .

So we get in first order,
∂f

∂xi

∣∣∣∣
x=0

xi =
d · x
|d|3 .

In 2. order for i ̸= j,

[
∂

∂xj

di − xi
|d− x|3

]

x=0

=



∂(di−xi)
∂xj

|d− x|3 − (di − xi) ∂
∂xj
|d− x|3

|d− x|6



x=0

=

[
3(di − xi)(dj − xj)

|d− x|5
]

x=0

= 3
didj
|d|5 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CalculoDiferencial08.pdf
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In 2. order for i = j,

[
∂(di−xi)
∂xi

|d− x|3 − (di − xi) ∂
∂xi
|d− x|3

|d− x|6

]

x=0

=

[−|d− x|3 + (di − xi)3(di − xi)|d− x|
|d− x|6

]

x=0

=
1

|d|5 (3d
2
i − |d|2) .

So we get in second order,

1

2

∂2f

∂xixj

∣∣∣∣
x=0

xixj =
3

2

didj
|d|5 xixj +

3

2

d2i
|d|5x

2
i −

1

2

1

|d|3x
2
i =

3

2|d|5
∑

i,j

didjxixj −
1

2|d|3
∑

i

x2i .

12.1.7.9 Ex: Levi-Civita tensor

Prove the following relationships for the Kronecker symbol and the Levi-Civita tensor
by distinguishing the cases in the indices,
a. ϵijkδij = 0 ,
b. ϵijkϵijk = 6 ,
d. ϵijkϵimn = δjmδkn − δjnδkm ,
c. ϵijkϵijn = 2δkn .

Solution: a. We sum over i and j. Therefore, we can rename these indexes. Now,
δijis obviously symmetric about permutation, but ϵijk is antisymmetric. With that we
get,

ϵijkδij = ϵjikδji (rename)

= −ϵijkδij (symmetries)

= 0 .

Here we must take into account that δjj =
∑
j δjj = 3.

b. This immediately follows from (b), letting i = l and summing over i.
c. Summing over the i index, which appears twice. j, k, l,m they are fixed indices.
Due to tensor properties ϵ the only terms they don’t zero are for j ̸= k ̸= i as well
as l ̸= m ̸= i. Therefore, only one i can contribute from the sum and, in addition, it
has to be j = l and k = m or j = m and k = l. In the first case we get +1, in the
second (since we must exchange l and m) −1. With this, we immediately prove the
statement.
d. Using the result (c) we have,

ϵijkϵljk = ϵkijϵklj = δilδjj − δijδjl = 3δil − 1δil = 2δil .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_LeviCivita01.pdf
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12.1.7.10 Ex: Levi-Civita tensor

Let the vectors A, B, C, and D ∈ R3 be given. Using the Kronecker Symbol and the
Levi-Civita Tensor
a. show {A×B}i = ϵijkAjBk;
b. prove the relationship, (A × B) · C = (B × C) · A = (C × A) · B; c. Using the
formulas of (b) derive the following rules of calculation:

i. (A×B)2 = A2B2 − (A ·B)2

ii. (A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) ;

d. prove that:

i. (A×B) · [(B×C)× (C×A)] = [A · (B×C)]
2

ii. A× (B×C) +B× (C×A) +C× (A×B) = 0 .

Solution: a. Since the indices j and k appear twice, we take the sum applying the
Einstein convention. Without restricting generality we choose, i = 1. Due to the
properties of the ϵ-tensor we get non-zeroing terms just for j = 2 and k = 3 as well
as for j = 3 and k = 2. In the first case, we have an even permutation of 1, 2, 3, in
the second an odd. We get immediately,

{A×B}1 = A2B3 −A3B2 .

Analogously we get,

{A×B}2 = A3B1 −A1B3

{A×B}3 = A1B2 −A2B1 .

b. We have,
ϵijkAjBkCi = ϵjkiBkCiAj = ϵkijCiAjBk .

c.i. Vide (c.ii).
c.ii. We have,

ϵijkAiBjϵlmkClDm = AiBjClDm(δilδjm − δimδjl) = AiCiBjDj −AiDiBjCj .

d.i. We have,

ϵijkAiBjϵlmhBlCmϵnpqCnApϵhqk = ϵlmhϵnpq(δihδjq − δiqδjh)AiBjBlCmCnAp .

We have,

= ϵlmiBlCmAiϵnpjCnApBj − ϵnpiAiCnApϵlmjBlCmBj = ϵlmiBlCmAiϵnpjCnApBj .

d.ii. We have,

ϵijkϵlmj(AiBlCm+BiClAm+CiAlBm) = (δlkδmi−δliδmk)(AiBlCm+BiClAm+CiAlBm) = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_LeviCivita02.pdf
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12.1.7.11 Ex: Levi-Civita tensor and vector tautologies

Be Ψ and Φ scalar fields and A, B, C, and D vector fields. Show the following iden-
tities with the help of the Kronecker symbol.:
a. A · (B×C) = B · (C×A),
b. (A×B) · (C×D) = (A ·C)(B ·D)− (B ·C)(A ·D),
c. (A×B)× (C×D) = ((A×B) ·D)C− ((A×B) ·C)D,
d. ∇(ΦΨ) = Φ∇Ψ+Ψ∇Φ,
e. ∇× (ΦA) = (∇Φ)×A+Φ∇×A,
f. ∇× (A×B) = (B · ∇)A− (A · ∇)B+A(∇ ·B)−B(∇ ·A),
g. ∇(A ·B) = A× (∇×B) +B× (∇×A) + (A · ∇)B+ (B · ∇)A,
h. ∇ · (∇Φ) = ∆Φ,
i. A · (∇Φ) = (A · ∇)Φ,
j. A× (∇Φ) = (A×∇)Φ.
k. ∇ · (A×B) = B · (∇×A)−A · (∇×B),
l. ∇ (ΨA) = A · ∇Ψ+Ψ∇ ·A,
m. ∇ · (Ψ∇Ψ) = Ψ∆Ψ+ (∇Ψ)2

n. ∇ · (A×B) = B · (∇×A)−A · (∇×B),
o. ∇ · (∇×A) = 0,
p. ∇× (∇Φ) = 0,
q. ∇× (∇×A) = ∇(∇ ·A)−∇2A.

Solution: a. We have,

A · (B×C) = ... = B · (C×A)

b. We have,

(A×B) · (C×D) = (A×B)i(C×D)i

= ϵijkϵilmAjBkClDm

= (δjlδkm − δjmδkl)AjBkClDm

= AjCjBkDk −AjDjBkCk = (A ·C)(B ·D)− (A ·D)(B ·C) .

c. We have,

{(A×B)× (C×D)}i = ϵijk(A×B)j(C×D)k

= ϵijkϵjlmϵkrsAlBmCrDs = ϵkijϵkrsϵjlmAlBmCrDs

= (δirδjs − δisδjr)ϵjlmAlBmCrDs

= CiDjϵjlmAlBm −DiCjϵjlmAlBm

= Ci(D · (A×B))−Di(C · (A×B))

= Ci(A · (B×D))−Di(A · (B×C)) ,

where we use in the last line the cyclic permutativity of the triple product.
d. We have,

∇(ΦΨ) = ... = Φ∇Ψ+Ψ∇Φ .

e. We have,
∇× (ΦA) = ... = (∇ϕ)×A+Φ∇×A .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_LeviCivita03.pdf
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f. Here we have,

{∇ × (A×B)}i = ϵijk∂j(A×B)k = ϵijkϵklm∂jAlBm

= (δilδjm − δimδlj)∂jAlBm (T15b)

= ∂jAiBj − ∂jAjBi
= Bj(∂jAi) +Ai(∂jBj)−Bi(∂jAj)−Aj(∂jBi)
= {A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B}i .

g. We have,

∇(A ·B) = ... = A× (∇×B) +B× (∇×A) + (A · ∇)B+ (B · ∇)A .

h. We have,
∇ · (∇Φ) = ... = ∆Φ .

i. We have,
A · (∇Φ) = ... = (A · ∇)Φ .

j. We have,
A× (∇Φ) = ... = (A×∇)Φ .

k. We get,

∇ · (A×B) = ϵijk∂iAjBk = ϵijk(Bk(∂iAj) +Aj(∂iBk))

= Bkϵkij∂iAj −Ajϵjik∂iBk
= B · (∇×A)−A · (∇×B) .

l. We have,

∇ · (ΨA) = ∂k(ΨA)k = ∂kΨAk = Ψ∂kAk +Ak∂kΨ = Ψ(∇ ·A) +A · (∇Ψ) .

m.
n. We have,

∇ · (A×B) = ∂k(A×B)k = ∂kεkmnambn = εnkmbn∂kam − amεmkn∂kbn
= bn(∇×A)n − am(∇×B)m = B(∇×A)−A(∇×B) .

o. We obtain consecutively,

∇ · (∇×A) = ∂iϵijk∂jAk = ϵijk∂i∂jAk

= ϵjik∂j∂iAk (rename)

= −ϵijk∂i∂jAk (symmetry)

= 0 .

where we used in the penultimate line, that we can exchange partial derivatives.
p. Here we obtain,

{∇ × (∇Φ)}i = ϵijk∂j∂kΦ

= ϵikj∂k∂jΦ (rename)

= −ϵijk∂j∂kΦ (symmetry)

= 0 ,
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where we once again use the interchangeability of partial derivatives.
q. Vale

{∇ × (∇×A)}i = ϵijk∂j {∇ ×A}k
= ϵijkϵklm∂j∂lAm

= (δilδjm − δimδjl)∂j∂lAm (Exc. 12.1.7.10(b))

= ∂i∂jAj − ∂j∂jAi
= (∇)i(∇ ·A)−∇2Ai .

What was to prove.

12.2 Integral calculus

Three types of integrals are often used in electrodynamics, the path integral, the
surface integral, and the volume integral.

12.2.1 Path integral

The path integral is defined on a trajectory C(a,b) through a (scalar or vector) field
linking a start point a to an end point b. While following the path point by point,
incrementing the infinitesimal displacement vector dl (see Fig. 12.5), we evaluate the
local value and the direction of the field, multiply it with dl, and sum it up,

∫

C(a,b)
Φdl ,

∫

C(a,b)
A · dl . (12.27)

Note that in case of a vector field, the integral is taken over the scalar product
between the local field vector and the path element. The work exerted by a force
field, W ≡

∫
F · l is an example. For a path through a field crossing all force lines

under right angle, the path integral zeroes, meaning that no work is accumulated.

Depending on the properties of the field, the integral may only depend on the
points a and b and not on the path C chosen to go from one to the other. In this case,
we say that the vector field is conservative, but this is not always the case. Choosing
a = b we get a closed path, which can be thought of as delimiting a surface in 3D
space. We use the notation, ∮

∂S
A · dl , (12.28)

where the symbol ∂S suggests, that the path goes along the edge of the surface S.

In practice, it is often useful to find a parametrization l(t) for the path with a
parameter (e.g. time) defined over t ∈ [0, 1]. It allows us to calculate explicitly,

∫

C(a,b)
∇Φ · dl =

∫ 1

0

∇Φ(r) · dl(t)
dt

dt . (12.29)
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Figure 12.5: Integrating along a path in three-dimensional space.

Example 32 (Path integral): As an example, we will calculate the integral
along the path parametrized by l(t) = êx cos t + êy sin t, which is a unit circle
around the origin, inside the field A(r) = −yêx + xêy:∮

A · dl =
∫ 2π

0

(−yêx + xêy) · dl
dt
dt (12.30)

=

∫ 2π

0

(−êx sin t+ êy cos t)

(
êx
d cos t

dt
+ êy

d sin t

dt

)
dt =

∫ 2π

0

(sin2 t+ cos2 t)dt = 2π .

We calculate other examples of path integrals in the Excs. 12.2.7.1 to 12.2.7.4.

12.2.2 Surface integral

The surface integral is defined on a surface S, which can be folded in three-dimensional
space. The surface is parceled into infinitesimal areas dS, the local value and the
direction of the field are evaluated, multiplied with dS, and summed up,

∫

S
ΦdS ,

∫

S
A · dS . (12.31)

The vector of the area dS is the local normal vector. In case of the vector field, the
integral is taken over the scalar product between the field and the local area. The flux,
that is the field lines crossing a surface, Ψ ≡

∫
E · dS it is an example. The normal

vector of the surface of a volume is usually taken as pointing out of the volume. For
example, a surface element of the x-y plane can be written dS = êzdxdy in Cartesian
coordinates. For curved surfaces or in curvilinear coordinates the expression will be
more complicated.

Often we consider closed surfaces, which can be considered as delimiting a volume
in 3D space. We use the notation,

∮

∂V
A · dS , (12.32)

where the symbol ∂V suggests that the surface encloses the volume V.

Example 33 (Flow of a field): As an example, we calculate the field flux
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A = −yêx + x2yêy through the unit cube:∮
cubo

A · dS =

∫ 1

−1

∫ 1

−1

A|z=1êzdxdy +

∫ 1

−1

∫ 1

−1

A|z=−1(−êz)dxdy +
∫ 1

−1

∫ 1

−1

A|x=1êxdydz

+

∫ 1

−1

∫ 1

−1

A|x=−1dydz +

∫ 1

−1

∫ 1

−1

A|y=1êydzdx+

∫ 1

−1

∫ 1

−1

A|y=−1(−êy)dzdx

= 0 + 0 +

∫ 1

−1

∫ 1

−1

(−y)dydz +
∫ 1

−1

∫ 1

−1

ydydz +

∫ 1

−1

∫ 1

−1

x2dzdx+

∫ 1

−1

∫ 1

−1

x2dzdx

=
8

3
. (12.33)

We calculate other examples of surface integrals in Excs. 12.2.7.5 to 12.2.7.8.

12.2.3 Volume integral

The volume integral defined by,

∫

V
ΦdV ,

∫

V
AdV . (12.34)

In the case of a vector field, we simply write: êx
∫
AxdV + êy

∫
AydV + êz

∫
AzdV .

Example 34 (Integral de volume): As an example, we calculate the mass of
a cube with homogeneous density ρ0:

m =

∫ a/2

−a/2

∫ a/2

−a/2

∫ a/2

−a/2
ρ0dxdydz = a3ρ0 . (12.35)

We calculate another example of a volume integral in Exc. 12.2.7.9.

12.2.4 Fundamental theorem for gradients

The fundamental theorem of infinitesimal calculus says,

∫ fb

fa

df =

∫ b

a

F (x)dx = f(b)− f(a) or df = F (x)dx , (12.36)

for F (x) = df
dx . That is, derivation and integration are inverse operations.

Now in vector analysis, as explained above, we know three different types of deriva-
tives. For each one we need to formulate the fundamental theorem in a specific way.
For gradients,

∫

C(a,b)
∇Φ · dl = Φ(b)− Φ(a) or dΦ = ∇Φ · dl . (12.37)

Since the right-hand side does not depend on the path C, the integral of the gradient
can not either. As a consequence,

∮

C
∇Φ · dl = 0 . (12.38)
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The geometric interpretation of the fundamental theorem for gradients is simple:
Climbing a mountain following a path step by step and gaining at each step the
potential energy dΦ = ∇Φdx, we accumulate between the end and the start point
of the path the energy Φ(b) − Φ(a). Path independence is an inherent property of
gradients.

Example 35 (Fundamental theorem for gradients): Let us consider the
following example. To travel inside the potential Φ(r) = xy2 between the points
r1 = (0, 0, 0) and r2 = (2, 1, 0), we can choose between several paths, f.ex. l1(t) =
êx2t+ êyt or l2(t) = êx2t+ êyt

2 with t ∈ [0, 1]. In both cases we gain the same
potential energy Φ(r2)− Φ(r1) = 2:∫
C(r1,r2)

∇Φ · dl1 =

∫ 1

0

(êxy
2 + êy2xy) · (êx2 + êy)dt =

∫ 1

0

(2t2 + 4t2)dt = 2

(12.39)∫
C(r1,r2)

∇Φ · dl2 =

∫ 1

0

(êxy
2 + êy2xy) · (êx2 + êy2t)dt =

∫ 1

0

(2t4 + 8t4)dt = 2 .

An example for the application of the fundamental theorem for gradients is

discussed in Exc. 12.2.7.10.

12.2.5 Stokes’ theorem

Stokes’ theorem allows us to convert a surface integral into a path integral provided
the field to be integrated can be expressed as a rotation,

∫

S
(∇×A) · dS =

∮

∂S
A · dl . (12.40)

To find a geometric interpretation we remember that the rotation measures the
twist of a field A. The integral over the rotation within a given surface (or, more
precisely, the flux of the rotation through this surface) measures the total amount of
vorticity. A rotating region is like a kitchen beater stirring the surface of an incom-
pressible liquid: The more beaters are in the area, the more the liquid will be moved
along the edges of the area. Instead of measuring the number of beaters (left-hand
side of the theorem (12.40)), we can also walk along the edge of the area and measure
the flux along the rim (right-hand side of the theorem (12.40)).

An interesting consequence of Stokes’ theorem is that the path integral is inde-
pendent of the shape of the surface. That is, if the field to be integrated can be
expressed bin terms of a rotation, we can deform the surface (without touching the
edge) without changing the twist of the field,

∮

S
(∇×A) · dS = 0 . (12.41)

This is analogous to the corollary obtained for gradients (12.38).

Example 36 (Teorema de Stokes): Consider the following example. A field
be given by, A = −yêx + xêy, such that ∇×A = 2êz. The surface be a disk of
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radius R enclosed by a circular path parametrized by, l =


R cosωt

R sinωt

0

. Then,

∮
circle

A · dl =
∫ 2π

0

A · l̇dt =
∫ 2π/ω

0


−y
x

0

 ·

−Rω sinωt

Rω cosωt

0

 dt = 2πR2

∫
disk

(∇×A) · dS =

∫
disk


0

0

2

 êzdA = 2

∫
disk

dA = 2πR2 .

In the Excs. 12.2.7.11 and 12.2.7.12 we show applications of Stokes’ theorem.

12.2.6 Gauß’ theorem

Gauß theorem allows us to convert a volume integral into a surface integral provided
the field to be integrated can be expressed by a divergence,

∫

V
(∇ ·A) · dV =

∮

∂V
A · dS . (12.42)

To find a geometric interpretation we remember that the divergence measures
the expansion force of the field A. The integral over the divergence within a given
volume measures the total amount of expansion. A divergent region with is like a tap
releasing an incompressible liquid: The more taps are in the volume, the more liquid
will be expelled by the edges of the volume. Instead of measuring the number of taps
(left-hand side of the theorem (12.42)), we can also bypass the volume by measuring
the flux through the surface (right-hand side of the theorem (12.42)).

Figure 12.6: Illustration of the theorems of Gauß (above) and Stokes (below).
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Example 37 (Gauß theorem): Consider the following example. A field be
given by, A = r, such that ∇ · A = 3. The volume be a sphere of radius R
enclosed by a surface. So:∮
sphericalsurface

A · dS =

∫
sphericalsurface

r · êrdS = rr2
∫ 2π

0

∫ π

0

sin θdθdϕ = 4πR3

∫
sphere

(∇ ·A)dV =

∫
sphere

3dV = 3
4π

3
R3 = 4πR3 .

In the Excs. 12.2.7.13 to 12.2.7.16 we show applications of Gauß’ theorem.

The theorems of Stokes and Gauß are often used in the context of cylindrical
or spherical coordinates. Therefore, we will postpone the presentation of further
examples, until we have discussed curvilinear coordinates.

12.2.7 Exercises

12.2.7.1 Ex: Path integral and work

Be the field electric A(r) = E0zêz be given. A charge +q be shifted on a straight line
from the point (0, 0, 0) to the point (1, 1, 1).
a. Write down parametrization for the trajectory.
b. Calculate the work spent on this charge explicitly along the path integral W =
q
∫
E(r) · dr.

c. Calculate the work via the potential ϕ.

Solution: a. One possible parametrization is,

x(t) =




t

t

t


 with t ∈ [0, 1] .

b. The line integral within this parametrization is given by:

W = qE0

∫ 1

0




0

0

z(t)


 ·




t

t

t


 dt = qE0

∫ 1

0

tdt =
1

2
qE0 .

c. A potential, which corresponds to the field E(r), is given by,

ϕ(r) = −E0

2
z2 since −∇ϕ(r) = −




d/dx

d/dy

d/dz


ϕ(r) = E0zêz .

The work is given by,

W = −qϕ(r = (1, 1, 1)) + qϕ(r = (0, 0, 0)) =
1

2
qE0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho01.pdf
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12.2.7.2 Ex: Path integral and work

Consider a field E depending on z in the following way E = E0zêz. A charge q is
moved on a spiral-shaped trajectory r(t) with radius R,

r(t) =




R cos t

R sin t

h
6π t




between z = 0 until z = h. Make a scheme of r(t). Calculate work made on the charge
explicitly via a path integralW = q

∫
E ·dr. How can we calculate work more easily?

Solution: Explicitly,

W = q

∫
E · dr = q

∫ 6π

0

E0
h

6π
têz




0

0

h/6π


 dt =

1

2
qE0h2 .

A integral sobre o potential ϕ = −E0

2 z2,

W = q(ϕ(1)− ϕ(2)) = q

(
+
E0

2
h2

)
.

12.2.7.3 Ex: Path integral and work

Calculate the path integral in the field Φ = x2êx + 2yzêy + y2êz from the origin to
the point (1, 1, 1) on three different paths:
a. For the path (0, 0, 0) −→ (1, 0, 0) −→ (1, 1, 0) −→ (1, 1, 1);
b. for the path (0, 0, 0) −→ (0, 0, 1) −→ (0, 1, 1) −→ (1, 1, 1);
c. and on a straight line.

Solution:

12.2.7.4 Ex: Curve parametrization

The movement of a mass point is given in Cartesian coordinates by the vector
r(t) = (ρ cosϕ(t), ρ sinϕ(t), z0) with ρ = vt and ϕ = ωt + ϕ0. What is the geo-
metric figure dashed by the movement? Express the speed ṙ(t) and the acceleration
r̈(t) in Cartesian coordinates. Calculate |r(t)|2, |ṙ(t)|2,r(t) · r̈(t) and r(t)× ṙ(t).

Solution: We have,

r(t) =




vt cos(ωt+ ϕ0)

vt sin(ωt+ ϕ0)

z0


 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralCaminho04.pdf
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from which follows,

ṙ(t) = v




cos(ωt+ ϕ0)− ωt sin(ωt+ ϕ0)

sin(ωt+ ϕ0) + ωt cos(ωt+ ϕ0)

0


 ,

and

r̈(t) = vω




−2 sin(ωt+ ϕ0)− ωt cos(ωt+ ϕ0)

2 cos(ωt+ ϕ0)− ωt sin(ωt+ ϕ0)

0


 .

We also calculate the scalar products,

|r(t)|2 = v2t2 + z20 and |ṙ(t)|2 = v2ω2t2 + v2 ,

as well as,

r(t) · r̈(t) = v2t and r(t)× ṙ(t) = v




−z0 sin(ωt+ ϕ0) + z0ωt cos(ωt+ ϕ0)

z0 cos(ωt+ ϕ0)− z0ωt sin(ωt+ ϕ0)

vωt2


 .

12.2.7.5 Ex: Surface integrals

Given be the vector field A = zyêx + y3 sin2 xêy + xy2ezêz. Calculate the integrals∫
A · dF over the triangle (0, 0, 0) → (0, 3, 0) → (0, 0, 3) → (0, 0, 0), and over the

rectangle (2, 2, 0)→ (2, 4, 0)→ (4, 4, 0)→ (4, 2, 0)→ (2, 2, 0).

Solution: The unit vector of the square points into êz-direction, so with the help
of MAPLE, ∫

A · dF =

∫ 4

2

dx

∫ 4

2

dy xy2 = 112 .

The unit vector of the triangle points into êx-direction, hence,

∫
A · dF =

∫ 3

0

dz

∫ 3−z

0

dy yz =

∫ 3

0

dz
(3− z)2z

2
=

27

8
.

12.2.7.6 Ex: Surface integrals

Calculate the integral over a closed surface
a. of the field A = r over the cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 e
b. of the field A = ρEρ over the radial surface of the cylinder 0 ≤ z ≤ 1, 0 ≤ ρ ≤ 1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie02.pdf
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Solution: a. Surface integral of the cube,

∮

cube

r · dS =

∮

cube




x

y

z







dSx

dSy

dSz


 =

∫ 1

0

xdydz

∣∣∣∣
x=1

x=0

+

∫ 1

0

ydzdx

∣∣∣∣
x=1

x=0

+

∫ 1

0

zdxdy

∣∣∣∣
x=1

x=0

= 3

∫ 1

0

1dy

∫ 1

0

1dz = 3 .

b. Parametrization of the cylinder with radius ρ = R

F =




r =




R cosϕ

R sinϕ

z








, z = [0, 1] , ϕ = [0, 2π] .

Two linearly independent vectors in directions tangential to the surface are,

dFz =
∂r

∂z
dz = êzdz and dFϕ =

∂r

∂ϕ
dϕ = Rêϕdϕ .

With this the area element becomes,

dF = dFϕ × dSz = Rêϕdϕ× êzdz = Rêρdϕdz .

The surface integral of the cylinder is now,

∮

cylinder

ρêρdS =

∮

cylinder

ρêρRêρdϕdz = 2πR2 = 2π .

Alternatively, we can express the divergence in cylindrical coordinates,

∇v =
1

ρ

∂

∂ρ
(ρvρ) +

1

ρ

∂

∂ϕ
vϕ +

∂

∂z
vz

and use Gauß’s theorem,

∮

cylinder

ρêρdF =

∫
∇(ρêρ)dV =

∫
1

ρ

∂

∂ρ
(ρρ)dϕρdρdz =

∫
2ρdϕdρdz = 2π

∫
2ρdρ = 2π .

12.2.7.7 Ex: Surface integrals

Calculate for the vector field A(r) = cr with c =constant the surface integral

I =

∫

F

A(r)× dS

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie03.pdf


494 CHAPTER 12. FOUNDATIONS AND MATHEMATICAL TOOLS

a. over the surface of a sphere (radius R, center in the origin of coordinates)
b. over the surface of a cylinder (radius R, length L).

Solution: a. To the surface of the sphere holds dF = R2 sin θdθdϕEr. Also, holds
A = cr and hence A× dF ∼ Er ×Er = 0. Thus, I = 0.
b. For the radial surface of the cylinder dF = RdφdzEρ. For the axial surfaces,

F± = {r = (ρ cosφ, ρ sinφ,±L/2), where 0 ≤ ρ ≤ R, and 0 ≤ φ ≤ 2π} .

So here we have,

dF =

(
∂r

∂ρ
× ∂r

∂φ

)
dρdφ

= (cosφ, sinφ, 0)× (−ρ sinφ, ρ cosφ, 0)dρdφ
= ρdρdϕEz

Following a general convention the normal vector of closed surfaces dF points outside.
We get,

I =

∫

F

A× dF = c

∫

F

(ρEρ + zEz)× dF

= c

∫

Srad

Rdφdz(ρEρ + zEz)×Eρ + c

∫

Sax+L/2

dρdφρ(ρEρ + zEz)×Ez

− c
∫

Sax−L/2

dρdφρ(ρEρ + zEz)×Ez

= cR

2π∫

0

dφ

L/2∫

−L/2

dzzEφ + c

R∫

0

dρ

2π∫

0

dφρ2(−Eφ)− c
R∫

0

dρ

2π∫

0

dφρ2(−Eφ) .

Only that now,
2π∫

0

dφEφ =

2π∫

0

dφ(− sinφ, cosφ, 0) = 0 .

So here we also get, I = 0.

12.2.7.8 Ex: Surface integrals

Prove the relationship:

tij ≡
∫

O(a)

dfxixj =
4π

3
a4δij ,

where i, j = 1, 2, 3, x1 = x, x2 = y, x3 = z, and the integral has to be calculated on
the surface of a sphere with radius a.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralSuperficie04.pdf
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Solution: The area element on the sphere’s surface is df = a2dϕdθ sin θ. Also,
on the surface of the sphere we have x = a sin θ cosϕ, y = a sin θ sinϕ and z = a cos θ.
With

2π∫

0

dϕ sinϕ =

2π∫

0

dϕ cosϕ =

2π∫

0

dϕ sinϕ cosϕ = 0 ,

we get immediately that the integral zeroes for i ̸= j. For i = j = 1 we obtain,

t11 = a4
2π∫

0

dϕ cos2 ϕ

π∫

0

dθ sin3 θ

= πa4
+1∫

−1

dx(1− x2) = 4π

3
a4 .

In the same way for i = j = 2,

t22 = a4
2π∫

0

dϕ sin2 ϕ

π∫

0

dθ sin3 θ =
4π

3
a4 .

Finally, for i = j = 3

t33 = 2πa4
+1∫

−1

dxx2 =
4π

3
a4 .

This was the statement.

12.2.7.9 Ex: Volume integrals

Calculate the volume integral of the function Φ = z2 over the tetrahedron with the
corners in (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Solution:

12.2.7.10 Ex: Fundamental theorem for gradients

What is the energy gain within the potential Φ(r) = Φ0
sin kr
kr along a path keeping a

constant distance from the origin.

Solution: Obviously it’s 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_IntegralVolume01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGradiente01.pdf
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12.2.7.11 Ex: Stokes integral theorem

Calculate for following field,

A(r) =




yz

azx

xy




using Stokes’ law the path integral
∮
A · r for an integration along a circle with radius

R around the z-axis at the position z = h.

Solution: The path integral is,

∫

∂S

A · r =

∫

S

(∇×A) · dF =

∫ 2π

0

∫ R

0

ρ




∂yxy − ∂zaxz
∂zyz − ∂xxy
∂xaxz − ∂yyz


 êzdρdφ

=

∫ 2π

0

∫ R

0

ρ(az − z)dρdφ =

∫ 2π

0

(a− 1)( 12zR
2)dφ = 2π(a− 1) 12zR

2 =︸︷︷︸
h=z

a−1
π hR2 .

12.2.7.12 Ex: Stokes integral theorem

Calculate the integral
∮
C x(êx + êy) dr, where C be the unit circle in the x-y-plane.

Solution: We have,
∮

circumference

x(êx + êy) dr =

∫

S
rot x(êx + êy) dS =

∫

C
êzdS = π .

12.2.7.13 Ex: Gauß integral theorem

Calculate the flux of the vector field A(r) = r through a sphere with radius R
a. by the surface integral and
b. with the help of Gauß’s theorem for the volume integral over the divergence.

Solution: The surface integral is,
∮

∂V

A · dF =

∮

∂V

r

(
êr −

1

r

∂r

∂θ
êθ −

1

r

1

sin θ

∂r

∂ϕ
êϕ

)
r2 sin θdθdϕ =

∮
r3 sin θdθdϕ = 4πR3 .

The volume integral is,
∫

V

∇ ·AdV =

∫

V

3dV = 4πR3 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalStokes01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalStokes02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss01.pdf
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12.2.7.14 Ex: Gauß integral theorem

Let F be the surface of an arbitrary volume V . Determine for A(x1, x2, x3) =
(ax1, bx2, cx3) the validity of the relationship,

∮

F

dF ·A = (a+ b+ c)V .

Solution: Vale, pois de ∇ ·A = a+ b+ c segue
∮
F
dF ·A =

∫
V
∇ ·A = (a+ b+ c)V .

12.2.7.15 Ex: Gauß integral theorem

Be a a scalar field and B a vector field. Show,
∫

V

d3r B · ∇a =

∫

O(V )

aB · dF−
∫

V

d3r a∇ ·B .

Solution: Using the Gauß theorem and the chain rule we obtain for an arbitrary
volume V and its surface O(V ):

∫

O(V )

aB · dF =

∫

V

d3r ∇ · (aB) =

∫

V

(B · ∇a+ a∇ ·B) d3r

From this follows immediately,
∫

V

d3r B · ∇a =

∫

O(V )

aB · dF−
∫

V

d3r a∇ ·B .

12.2.7.16 Ex: Gauß integral theorem

Calculate the integral
∮
C x(êx + êy) · dr about a unitary circular path C along the

equator and the integral
∮
F x(êx+ êy) · dF, where F be the surface of a unit sphere.

Solution: Using Gauß law,
∮

surface

x(êx + êy) dF =

∫

volume

div x(êx + êy) dV =

∫

surface

dV =
4π

3
.

Using Stokes Law,
∮

circumference

x(êx + êy) dr =

∫

area

rot x(êx + êy) dF =

∫

F

êzdF = π .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_FundamentalGauss04.pdf
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12.3 Curvilinear coordinates

The most commonly used coordinate systems are Cartesian, cylindrical and spherical.
Cylindrical coordinates are expressed in terms of Cartesian coordinates by,




x

y

z


 =




ρ cosϕ

ρ sinϕ

z


 . (12.43)

And spherical coordinates are expressed in terms of Cartesian coordinates by,



x

y

z


 =




r sin θ cosϕ

r sin θ sinϕ

r cos θ


 . (12.44)

The task now is to express the differential elements (that is, line, surface and
volume elements), as well as differential operators (that is, the gradient, divergent
and rotation) and the Laplacian in term of curvilinear coordinates.

Let us first consider the general case. The transformation from a Cartesian coor-
dinate system (x, y, z) into a general, curvilinear system (u, v, w) is given by,

r ≡




x(u, v, w)

y(u, v, w)

z(u, v, w)


 . (12.45)

The change dur resulting from a small variation du is then dur = ∂r
∂udu and occurs in

the direction of the new unit vector êu. The unit vectors of the new system, therefore,
can be written as,

êu = U(u, v, w)
∂r

∂u
, êv = V (u, v, w)

∂r

∂v
, êw =W (u, v, w)

∂r

∂w
, (12.46)

where

U =

∣∣∣∣
∂r

∂u

∣∣∣∣
−1

, V =

∣∣∣∣
∂r

∂v

∣∣∣∣
−1

, W =

∣∣∣∣
∂r

∂w

∣∣∣∣
−1

. (12.47)

In the Excs. 12.3.8.1 we study transformations into cylindrical and spherical coordi-
nates.

12.3.1 Differential elements in curvilinear coordinates

In the following we restrict ourselves to orthogonal coordinates, where the unit vectors
are perpendicular. In this case, the total differential dr has the form,

dr =
∂r

∂u
du+

∂r

∂v
dv +

∂r

∂w
dw = êu

du

U
+ êv

dv

V
+ êw

dw

W
, (12.48)
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and has the length,

|dr|2 =

(
du

U

)2

+

(
dv

V

)2

+

(
dw

W

)2

. (12.49)

The volume element is,

dτ = dsudsvdsw . (12.50)

12.3.2 Gradient in curvilinear coordinates

We can now express the gradient of a scalar field Φ in orthogonal curvilinear coordi-
nates,

grad Φ = ∇Φ = fuêu + fvêv + fwêw , (12.51)

where the fi are functions which have yet to be determined. To this end we compare
the coefficients of the expressions,

dΦ =
∂Φ

∂u
du+

∂Φ

∂v
dv +

∂Φ

∂w
dw , (12.52)

and, inserting (12.48) and (12.51),

dΦ = dr · ∇Φ =
fu
U
du+

fv
V
dv +

fw
W
dw . (12.53)

We obtain,

∇Φ =

(
U
∂Φ

∂u

)
êu +

(
V
∂Φ

∂v

)
êv +

(
W
∂Φ

∂w

)
êw . (12.54)

12.3.3 Divergence in curvilinear coordinates

Now we will show how to express the divergence of a vector field A in orthogonal
curvilinear coordinates,

div A = ∇ ·A . (12.55)

The derivation is a bit complicated. We begin by expressing the unit vectors êu,
êv, and êw by the gradients ∇u, ∇v, and ∇w, using the expression for the gradient
(12.54),

∇u = U êu , ∇v = V êv , ∇w =W êw . (12.56)

We now express each unit vector as the vector product of two of these gradients,

∇u×∇v = UV êu × êv = UV êw (12.57)

∇v ×∇w = VW êv × êw = VW êu

∇w ×∇u =WU êw × êu =WU êv .
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After that we write A = auêu + avêv + awêw and start considering the first term of
the divergence:

∇ · (auêu) = ∇ ·
( au
VW

∇v ×∇w
)

(12.58)

= (∇v ×∇w) · ∇
( au
VW

)
+

au
VW

∇ · (∇v ×∇w) using ∇ · (αA) = A · (∇α) + α(∇ ·A)

= VW êu ·
[
êuU

∂

∂u

( au
VW

)
+ êvV

∂

∂v

( av
VW

)
+ êwW

∂

∂w

( aw
VW

)]

+
au
VW

[∇w · (∇×∇v)−∇v · (∇×∇w)] using ∇ · (A×B) = B · (∇×A)−A · (∇×B)

= UVW
∂

∂u

( au
VW

)
using ∇× (∇α) = 0 .

Similarly we can show,

∇ · (avêv) = UVW
∂

∂v

( av
UW

)
and ∇ · (awêw) = UVW

∂

∂w

( aw
UV

)
. (12.59)

With this we finally get,

∇ ·A = UVW

[
∂

∂u

( au
VW

)
+

∂

∂v

( av
UW

)
+

∂

∂w

( aw
UV

)]
. (12.60)

12.3.4 Rotation in curvilinear coordinates

Now we will show how to express the rotation of a vector field A in orthogonal
curvilinear coordinates,

rot A = ∇×A . (12.61)

We write again, A = auêu + avêv + awêw and start considering the first term of the
rotation:

∇× (auêu) = ∇×
(au
U
∇u
)

using (12.56) (12.62)

=
(
∇au
U

)
×∇u+

au
U

(∇×∇u) using ∇× (αA) = (∇α)×A+ α(∇×A)

= U
(
∇au
U

)
× êu and ∇× (∇α) = 0 using (12.56)

= U

[
êuU

∂

∂u

(au
U

)
+ êvV

∂

∂v

(au
U

)
+ êwW

∂

∂w

(au
U

)]
× êu

= U

[
êvW

∂

∂w

(au
U

)
− êwV

∂

∂v

(au
U

)]

= UVW

[
êv

1

V

∂

∂w

(au
U

)
− êw

1

W

∂

∂v

(au
U

)]
.

Similarly we can show,

∇× (avêv) = UVW

[
êw

1

W

∂

∂u

(av
V

)
− êu

1

U

∂

∂w

(av
V

)]
(12.63)

∇× (awêw) = UVW

[
êu

1

U

∂

∂v

(aw
W

)
− êv

1

V

∂

∂u

(aw
W

)]
.
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With this we finally obtain,

∇×A = êuVW

[
∂

∂v

(aw
W

)
− ∂

∂w

(av
V

)]
+ êvUW

[
∂

∂w

(au
U

)
− ∂

∂u

(aw
w

)]
(12.64)

+ êwUV

[
∂

∂u

(av
V

)
− ∂

∂v

(au
U

)]
,

or, written as a determinant,

∇×A = UVW det




êu

U
êv

V
êw

W

∂
∂u

∂
∂v

∂
∂w

au
U

av
V

aw
W


 . (12.65)

12.3.5 Cylindrical coordinates

Let us now identify the general coordinates u, v, and w with the cylindrical coordinates
ρ, θ, and ϕ defined in Eq. (12.43). In Exc. 12.3.8.2 we calculate for the line element,

dr = dρêρ + ρdϕeϕ + dzêz , (12.66)

the distance element,
|dr|2 = (dρ)2 + (ρdϕ)2 + (dz)2 , (12.67)

the surface element given by z = z(ρ, ϕ),

ds =

(
−∂z
∂ρ

êρ −
1

ρ

∂z

∂ϕ
êϕ + êz

)
ρdρdϕ , (12.68)

and the volume element,
dτ = rdzϕdr . (12.69)

In the Excs. 12.3.8.3 to 12.3.8.5 we calculate, respectively, the gradient,

∇Φ = êρ
∂Φ

∂ρ
+ êϕ

1

ρ

∂Φ

∂ϕ
+ êz

∂Φ

∂z
, (12.70)

the divergence,

∇ ·A =
1

ρ

∂

∂ρ
[ρ aρ] +

1

ρ

∂

∂ϕ
[aϕ] +

∂

∂z
[az] , (12.71)

the rotation,

∇×A = êρ
1

ρ

[
∂az
∂ϕ
− ρ∂aϕ

∂z

]
+ êϕ

[
∂aρ
∂z
− ∂az

∂ρ

]
+ êz

1

ρ

[
∂

∂ρ
(ρaϕ)−

∂aρ
∂ϕ

]
(12.72)

and the Laplace operator,

∆Φ ≡ ∇ · (∇Φ) = 1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2
∂2Φ

∂ϕ2
+
∂2Φ

∂z2
. (12.73)

in cylindrical coordinates.
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Figure 12.7: Illustration of Cartesian, polar, cylindrical and spherical coordinates.

12.3.6 Spherical coordinates

Let us now identify the general coordinates u, v, and w with the spherical coordinates
r, θ, and ϕ defined in Eq. (12.44). In Exc. 12.3.8.2 we calculate for the line element,

dr = drêr + rdθeθ + r sin θdϕêϕ , (12.74)

the distance element,

|dr|2 = (dr)2 + (rdθ)2 + (r sin θdϕ)2 , (12.75)

the surface element given by r = r(θ, ϕ),

ds =

(
êr −

1

r

∂r

∂θ
êθ −

1

r

1

sin θ

∂r

∂ϕ
êϕ

)
r2 sin θdθdϕ , (12.76)

and the volume element,

dτ = dsudsvdsw = r2 sin θdθdϕdr . (12.77)

In the Excs. 12.3.8.3 to 12.3.8.5 we calculate, respectively, the gradient,

∇Φ = êr
∂Φ

∂r
+ êθ

1

r

∂Φ

∂θ
+ êϕ

1

r sinϕ

∂Φ

∂ϕ
, (12.78)

the divergence,

∇ ·A =
1

r2
∂

∂r
[r2ar] +

1

r sin θ

∂

∂θ
[sin θ aθ] +

1

r sin θ

∂

∂ϕ
[aϕ] , (12.79)

the rotation,

∇×A = êr
1

r sin θ

[
∂

∂θ
(sin θaϕ)−

∂

∂ϕ
(aθ)

]
+ êθ

1

r sin θ

[
∂

∂ϕ
(ar)− sin θ

∂

∂r
(raϕ)

]

+ êϕ
1

r

[
∂

∂r
(raθ)−

∂

∂θ
(ar)

]
(12.80)
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and the Laplace operator,

∆Φ ≡ ∇ · (∇Φ) = 1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂ϕ2
, (12.81)

in spherical coordinates. We note that the radial part of the Laplace operator can
also be written,

1

r

∂2

∂r2
(rΦ) . (12.82)

12.3.7 Differential operators for tensor fields

Until now, we restricted to scalar and vector fields, that is spatially dependent physical
quantities such as the temperature or the magnetic field distribution in a room. Some
quantities, however, need to be given as matrices or even higher-dimensional objects,
for example, gravity gradients or the susceptibility of a crystal. These objects are
called tensors. With the definition,

êk ⊗ êl = êkê
⊺
l (12.83)

we can express a scalar, vector, and second-order tensor as,

Φ , A = Akêk , G = Gklêk ⊗ êl . (12.84)

For instance, in Cartesian coordinates a second-order tensor reads,

G = Gxxêxê
⊺
x +Gxyêxê

⊺
y +Gyxêyê

⊺
x +Gyyêyê

⊺
y =


Gxx Gxy

Gxy Gyy


 . (12.85)

If a tensor T = Φ(r),A(r),G(r) varies in space, we can apply differential operators
to it. The gradient ∇T (r) of a tensor field in the direction of an arbitrary constant
vector x is defined as,

x · ∇T = lim
α→0

d

dα
T (r+ αx) . (12.86)

The gradient of a tensor field of order n is a tensor field of order n+ 1. In Cartesian
coordinates, x = xêx + yêy + zêz,

∇Φ = êk
∂

∂xk
Φ ≡ Φ,kêk =


∂xΦ
∂yΦ


 (12.87)

∇A = êk
∂

∂xk
⊗Alêl ≡ A,klêk ⊗ êl =


∂xAx ∂yAx

∂xAy ∂yAy




∇G = êk
∂

∂xk
⊗Glmêl ⊗ êm ≡ G,klmêk ⊗ êl ⊗ êm =


∂x
∂y




Gxx Gxy

Gxy Gyy


 .
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The divergence of a tensor field T (r) is defined using the recursive relation,

(∇ ·A) · x = Tr (∇A) (12.88)

(∇ · G) · x = ∇ · (x · G⊺) .

In Cartesian coordinates the divergence is,

∇ ·A = êk
∂

∂xk
·Alêl =

∂Ak
∂xk

≡ Ak,k (12.89)

∇ · G = êk
∂

∂xk
·Glmêl ⊗ êm =

∂Glk
∂xk

⊗ êl ≡ Glk,kêl .

The curl of an order n > 1 tensor field T (r) is also defined using the recursive
relation,

(∇×A) · x = ∇ · (A× c) (12.90)

(∇× G) · x = ∇× (x · G⊺) ,

where c is an arbitrary constant vector. In Cartesian coordinates the divergence the
rotation is,

∇×A = ϵklmêk∂lAm (12.91)

∇× G = ϵklmêm ⊗ ên∂kGnl .

12.3.8 Exercises

12.3.8.1 Ex: Spherical and cylindrical coordinates

a. Express the cylindrical coordinates ρ, φ, z in terms of the Cartesian ones x, y, z.
b. Express the spherical coordinates r, θ, φ in terms of the Cartesian ones x, y, z.

Solution: a. We have,

r =
√
x2 + y2 + z2

φ = arccos
z

r
z = z .

b. We have,

r =
√
x2 + y2 + z2

θ = arccos
z

r
= arcsin

√
x2 + y2

r

φ = arccos
x

r sin θ
= arccos

x√
x2 + y2

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_CoordCurvilineas00.pdf
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12.3.8.2 Ex: Differential elements in curvilinear coordinates

We have seen in class that the transformation from a Cartesian coordinate sys-
tem (x, y, z) to another curvilinear and orthogonal system (u, v, w) is given by r ≡
(x(u, v, w), y(u, v, w), z(u, v, w)). Now consider the spherical polar coordinates r ≡
(x(r, θ, ϕ), y(r, θ, ϕ), z(r, θ, ϕ) defined in class.
a. Calculate the functions Ur, Vθ,Wϕ defined by,

Ur =

∣∣∣∣
∂r

∂r

∣∣∣∣
−1

, Vθ =

∣∣∣∣
∂r

∂θ

∣∣∣∣
−1

, Wϕ =

∣∣∣∣
∂r

∂ϕ

∣∣∣∣
−1

.

b. Determine the Cartesian coordinates of the new unit vectors êr, êθ, êϕ, draw the
position of these vectors at a point r0, and check the orthogonality of the unit vectors.
Express the Cartesian unit vectors by the spherical ones.
c. Determine the total differential dr, the line element (ds)2 = |dr|2, and the volume
element dτ = dsudsvdsw in terms of the new coordinates.
d. Repeat steps (a)-(c) for planar polar coordinates.

Solution: a. We have,

∂r

∂r
= sin θ cosϕêx + sin θ sinϕêy + cos θêz

∂r

∂θ
= r cos θ cosϕêx + r cos θ sinϕêy − r sin θêz

∂r

∂ϕ
= −r sin θ sinϕêx + r sin θ cosϕêy .

From this follows,

1

Ur
=

∣∣∣∣
∂r

∂r

∣∣∣∣ =
√
sin2 θ(cos2 ϕ+ sin2 ϕ) + cos2 θ = 1

1

Vθ
=

∣∣∣∣
∂r

∂θ

∣∣∣∣ = r

√
cos2 θ(cos2 ϕ+ sin2 ϕ) + sin2 θ = r

1

Wϕ
=

∣∣∣∣
∂r

∂ϕ

∣∣∣∣ = r

√
sin2 θ(cos2 ϕ+ sin2 ϕ) = r sin θ .

So we have, Ur = 1, Vθ =
1
r and Wϕ = 1

r sin θ .
b. The unit vectors are,

êr = Ur
∂r

∂r
= êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ

êθ = Vθ
∂r

∂θ
= êx cos θ cosϕ+ êy cos θ sinϕ− êz sin θ

êϕ =Wϕ
∂r

∂ϕ
= −êx sinϕ+ êy cosϕ .
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It is easy to see that all three unit vectors are orthogonal. Reversing the system of
equations, we get,

êx = êr sin θ cosϕ+ êθ cos θ cosϕ− êϕ sinϕ

êy = êr sin θ sinϕ+ êθ cos θ sinϕ+ êϕ cosϕ

êz = êr cos θ − êθ sin θ .

c. The total differential dr has the form,

dr = êr
dr

Ur
+ êθdθVθ + êw

dw

Wϕ
.

This makes it easy to show,

(ds)2 = |dr|2 =

(
du

U

)2

+

(
dv

V

)2

+

(
dw

W

)2

= (dsu)
2 + (dsv)

2 + (dsw)
2

= (dr)2 + (rdθ)2 + (r sin θdϕ)2 .

Now,
dτ = dsudsvdsw = r2 sin θdθdϕdr .

d. This is easy.

12.3.8.3 Ex: Spherical and cylindrical coordinates

Calculate ∇Φ, ∇ ·A, ∇×A and ∆Φ = ∇ · (∇Φ)
a. in spherical coordinates (r, θ, ϕ).
b. in cylindrical coordinates (ρ, ϕ, z).

Solution: a. With Exc. 12.3.8.2(a) segue Ur = 1, Vθ = 1
r and Wϕ = 1

r sin θ . With
the results obtained in for arbitrary coordinates we get consecutively:

∇Φ = êr
∂Φ

∂r
+ êθ

1

r

∂Φ

∂θ
+ êϕ

1

r sinϕ

∂Φ

∂ϕ
,

and

∇ ·A =
1

r2 sin θ

(
∂Φ

∂r
[r2 sin θ ar] +

∂Φ

∂θ
[r sin θ aθ] +

∂Φ

∂ϕ
[r aϕ

]
)

=
1

r2
∂Φ

∂r
[r2ar] +

1

r sin θ

∂Φ

∂θ
[sin θ aθ] +

1

r sin θ

∂Φ

∂ϕ
[aϕ] ,

and also,

∇×A =
1

r2 sin θ
det




êr rêθ r sin θêϕ

∂
∂r

∂
∂θ

∂
∂ϕ

ar raθ r sin θaϕ


 ,
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respectively,

∇×A = êr
1

r sin θ

[
∂Φ

∂θ
(sin θaϕ)−

∂Φ

∂ϕ
(aθ)

]
+ êθ

1

r sin θ

[
∂Φ

∂ϕ
(ar)− sin θ

∂Φ

∂r
(raϕ)

]

+ êϕ
1

r

[
∂Φ

∂r
(raθ)−

∂Φ

∂θ
(ar)

]
.

With the expression for ∇Φ we get immediately,

(∇Φ)r =
∂Φ

∂r
, (∇Φ)θ =

1

r

∂Φ

∂θ
, (∇Φ)ϕ =

1

r sin θ

∂Φ

∂ϕ
,

and

∇ · (∇Φ) = 1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂ϕ2
≡ ∆Φ .

b. The cylindrical coordinates are given by,

r = (x, y, z) = (ρ cosϕ, ρ sinϕ, z) ,

From this follows,

∂r

∂ρ
= cosϕ êx + sinϕ êy

∂r

∂ϕ
= −ρ sinϕ êx + ρ cosϕ êy

∂r

∂z
= êz ,

and also,

Uρ
−1 =

∣∣∣∣
∂r

∂ρ

∣∣∣∣ =
√
cos2 ϕ+ sin2 ϕ = 1

Vϕ
−1 =

∣∣∣∣
∂r

∂ϕ

∣∣∣∣ = ρ

Wz
−1 =

∣∣∣∣
∂r

∂z

∣∣∣∣ = 1 .

With that we get consecutively,

∇Φ = êρ
∂Φ

∂ρ
+ êϕ

1

ρ

∂Φ

∂ϕ
+ êz

∂Φ

∂z
,

and

∇ ·A =
1

ρ

∂

∂ρ
[ρ aρ] +

1

ρ

∂

∂ϕ
[aϕ] +

∂

∂z
[az] ,

and also,

∇×A =
1

ρ
det




êρ ρêϕ êz

∂
∂ρ

∂
∂ϕ

∂
∂z

aρ ρaϕ az


 ,
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respectively,

∇×A = êρ
1

ρ

[
∂az
∂ϕ
− ρ∂aϕ

∂z

]
+ êϕ

[
∂aρ
∂z
− ∂az

∂ρ

]
+ êz

1

ρ

[
∂

∂ρ
(ρaϕ)−

∂aρ
∂ϕ

]
,

and finally,

∆Φ = ∇ · (∇Φ) = 1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2
∂2Φ

∂ϕ2
+
∂2Φ

∂z2
.

12.3.8.4 Ex: Divergence in curvilinear coordinates

Calculate the divergence of the force field F(r) =




x2y

2yz

x+ z


 (a) in Cartesian and (b)

cylindrical coordinates and compare the results.

Solution: a. In Cartesian coordinates we have ∇ · F(r) = 2xy + 2z + 1.
b. The transformation to cylindrical coordinates is defined by

r =




ρ cosϕ

ρ sinϕ

z


 ,

respectively,

êρ ≡
∂r

∂r
= êx cosϕ+ êy sinϕ

êϕ ≡
1

r

∂r

∂ϕ
= −êx sinϕ+ êy cosϕ

êz ≡
∂r

∂z
= êρ × êϕ ,

hence,

êx = êρ cosϕ− êϕ sinϕ

êy = êϕ cosϕ+ êρ sinϕ .

The vector field is in cylindrical coordinates,

F = x2yêx + 2yzêy + (x+ z)êz

= êxρ
3 cos2 ϕ sinϕ+ êy2ρz sinϕ+ êz(ρ cosϕ+ z)

= (êρ cosϕ− êϕ sinϕ)ρ
3 cos2 ϕ sinϕ+ (êϕ cosϕ+ êρ sinϕ)2ρz sinϕ+ êz(ρ cosϕ+ z)

= êρ(ρ
3 cos3 ϕ sinϕ+ 2ρz sin2 ϕ) + êϕ(2ρz sinϕ cosϕ− ρ3 cos2 ϕ sin2 ϕ) + êz(ρ cosϕ+ z) .
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The divergence now is,

∇ · F =
1

ρ

∂

∂ρ
(ρFρ) +

1

ρ

∂

∂ϕ
Fϕ +

∂

∂z
Fz

=
1

ρ

∂

∂ρ
(ρ4 cos3 ϕ sinϕ+ 2ρ2z sin2 ϕ) +

1

ρ

∂

∂ϕ
(2ρz sinϕ cosϕ− ρ3 cos2 ϕ sin2 ϕ) +

∂

∂z
(ρ cosϕ+ z)

= (4ρ2 cos3 ϕ sinϕ+ 4z sin2 ϕ) +
(
2z cos2 ϕ− 2z sin2 ϕ+ 2ρ2 cosϕ sin3 ϕ− 2ρ2 cos3 ϕ sinϕ

)
+ 1

=
4x3y

ρ2
+

4zy2

ρ2
+

2zx2

ρ2
− 2zy2

ρ2
+

2ρ2xy3

ρ4
− 2ρ2x3y

ρ4
+ 1 = 2xy + 2z + 1 ,

with ρ2 = x2 + y2.

12.3.8.5 Ex: Differential operators in curvilinear coordinates

In Cartesian coordinates the differential line element has the form dr = êxdx+ êydy+
êzdz and in arbitrary orthogonal coordinates dr = ê1h1dq1 + ê2h2dq2 + ê3h3dq3

with êi = ∂r
∂qi
·
∣∣∣ ∂r∂qi

∣∣∣
−1

and hi =
∣∣∣ ∂r∂qi

∣∣∣. For spherical coordinates (r, ϕ, θ) we find

hr = 1, hϕ = r sin θ, hθ = r; for cylindrical coordinates (ρ, ϕ, z) we find hρ = 1, hϕ =
ρ, hz = 1.
a. The gradient has the general form,

∇iΦ(r) =
1

hi

∂

∂qi
Φ(r) .

Determine the gradient in spherical and cylindrical coordinates.
b. The divergence of a vector field A has the general form,

∇ ·A(r) =
1

h1h2h3

[
∂

∂q1
(A1h2h3) +

∂

∂q2
(A2h1h3) +

∂

∂q3
(A3h1h2)

]
.

Determine ∇ ·A in spherical and cylindrical coordinates.
c. Use the results of (a) and (b) to determine the Laplace operator

∆ = ∇ · ∇

in spherical coordinates.

Solution: For spherical coordinates the coefficients hi are determined from r =


r sin θ cosϕ

r cos θ cosϕ

r sinϕ


 and for cylindrical coordinates from r =




ρ cosϕ

ρ sinϕ

z


.

Gradient in cylindrical coordinates,

∇Ψ(ρ, ϕ, z) =
∂

∂ρ
Ψ(ρ, ϕ, z)êρ +

1

ρ

∂

∂ϕ
Ψ(ρ, ϕ, z)êϕ +

∂

∂z
Ψ(ρ, ϕ, z)êz .

Gradient in spherical coordinates

∇Ψ(r, θ, ϕ) =
∂

∂r
Ψ(r, θ, ϕ)êr +

1

r

∂

∂θ
Ψ(r, θ, ϕ)êθ +

1

r sin θ

∂

∂ϕ
Ψ(r, θ, ϕ)êϕ .
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Divergence in cylindrical coordinates,

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂

∂ϕ
Aϕ +

∂

∂z
Az .

Divergence in spherical coordinate,

∇ ·A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂

∂ϕ
Aϕ .

Laplace operator in cylindrical coordinates,

∆ =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2
.

Laplace operator in spherical coordinate,

∆ =
1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
.

12.3.8.6 Ex: Acceleration in spherical coordinates

In spherical coordinates the velocity vector has the following form,

v =
dr

dt
= ṙêr + rθ̇êθ + ϕ̇r sin θêϕ .

Calculate the acceleration vector in spherical coordinates. Respect the fact that the
basis vectors must also be derived by time.

Solution: The derivatives of the basis vectors are,

d

dt
êr =

d

dt




sin θ cosϕ

sin θ sinϕ

cos θ


 =




θ̇ cos θ cosϕ− ϕ̇ sin θ sinϕ
θ̇ cos θ sinϕ+ ϕ̇ sin θ cosϕ

−θ̇ sin θ


 = θ̇êθ + ϕ̇ sin θêϕ

d

dt
êθ =

d

dt




cos θ cosϕ

cos θ sinϕ

− sin θ


 =




−θ̇ sin θ cosϕ− ϕ̇ cos θ sinϕ
−θ̇ sin θ sinϕ+ ϕ̇ cos θ cosϕ

−θ̇ cos θ


 = −θ̇êr + ϕ̇ cos θêϕ

d

dt
êϕ =

d

dt




− sinϕ

cosϕ

0


 =




−ϕ̇ cosϕ
−ϕ̇ sinϕ

0


 = −ϕ̇ sin θêr − ϕ̇ cos θêθ .

Hence,

a =
dv

dt
=
d2r

dt2
= r̈

= r̈êr + ṙ ˙̂er + ṙθ̇êθ + rθ̈êθ + rθ̇ ˙̂eθ + ϕ̈r sin θêϕ + ϕ̇ṙ sin θêϕ + ϕ̇rθ̇ cos θêϕ + ϕ̇r sin θ ˙̂eϕ .
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Inserting ˙̂er, ˙̂eθ and ˙̂eϕ gives,

a =
(
r̈ − rθ̇2 − ϕ̇2r sin2 θ

)
êr

+
(
2ṙθ̇ + rθ̈ − ϕ̇2r sin θ cos θ

)
êθ

+
(
2ϕ̇ṙ sin θ + 2ϕ̇rθ̇ cos θ + ϕ̈r sin θ

)
êϕ .

12.3.8.7 Ex: Volume element in curvilinear coordinates

a. Calculate the surface of a rectangle with width a and height b in Cartesian coordi-
nates.
b. Calculate the surface of a disk of radius R in polar coordinates.
c. Calculate the volume of a cuboid with dimensions a, b, c in Cartesian coordinates.
d. Calculate the volume of a cylinder with the radius R and height H in cylindrical
coordinates.
e. Calculate the volume a sphere with the radius R in spherical coordinates.

Figure 12.8: Curvilinear coordinates.

Solution: a. The surface element is,

dS = dxdy .

With this we calculate the surface of the rectangle,

S =

∫

rec tan gulo

dS =

∫ a

0

(∫ b

0

dy

)
dx =

∫ a

0

dx

∫ b

0

dy = ab .

b. The surface element is,

dS = rdϕdr .
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With this we calculate the disk surface,

S =

∫

disco

dS =

∫ R

0

(∫ 2π

0

rdϕ

)
dr =

∫ 2π

0

dϕ

∫ R

0

rdr = 2π
R2

2
= πR2 .

c. The volume element is,
dV = dxdydz .

d. The volume element is,
dV = rdϕdrdz .

With this we calculate the cylinder volume,

V =

∫

cylinder

dV =

∫ H

0

(∫ R

0

(∫ 2π

0

rdϕ

)
dr

)
dz

=

∫ 2π

0

dϕ

∫ R

0

rdr

∫ H

0

dz = 2π
R2

2
H = πR2H .

e. The volume element is
dV = r2 sin θdϕdθdr .

With this we calculate the cylinder volume,

V =

∫

sphere

dV =

∫ π

0

(∫ R

0

(∫ 2π

0

r sin θdϕ

)
dr

)
rdθ

=

∫ 2π

0

dϕ

∫ R

0

r2dr

∫ π

0

sin θdθ = 2π
R3

3
2 =

4π

3
R3 .

12.3.8.8 Ex: Spherical volume

The volume of a body is given by the following formula:

V =

∫

V

1 dV .

a. Calculate the volume of a 3D-sphere in spherical coordinates.
By the Gauß integral law we can establish a relationship between the volume of the
sphere and its surface. (Help: For which vector field A holds: ∇ ·A = 1?)
b. Now calculate the volume of the sphere in this sense. You may assume that the
surface of the sphere is known.
c. Similarly to the above formula, derive a general relationship between the volume
of an n-dimensional hypersphere and its (n − 1)-dimensional hypersurface. Help:
Gauß’s law holds in arbitrary dimensions with the n-dimensional operator nabla-
operator defined by, ∇ = (∂/∂x1, . . . , ∂/∂xn).

Solution: a. The volume of the sphere is,

V =

∫

sphere

r2 sin θdrdθdϕ =
4π

3
R3 .
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b. By the law of Gauß,

V =

∫

sphere

1 dV =
1

3

∫

V

div r dV =
1

3

∮

surfaceofsphere

rdS

=
R

3

∮

surfaceofsphere

R2dθdϕ =
R

3
· 4πR2 .

c. In n dimensions,

V =

∫

hypersphere

1 dV =
1

n

∫

V

divr dV =
1

n

∮

surfaceofhypersphere

rdS

=
R

n

∮

surfaceofhypersphere

R2dθdϕ =
R

n
· ∂V .

It i interesting that for n→∞ the volume of the unitary sphere tends to 0.

12.3.8.9 Ex: Spherical volume

The density distribution of a gas be given by n(r) = C2− x2

r20
− y2

r20
− z2

r20
. Determine the

constant C in such a way that the density n(r) is normalized to the number of atoms
in the gas, i.e.,

∫
V n(r)d

3r = N , where V is the volume within which the density is
positive, n(r) ≥ 0.

Solution: The volume integral is,

∫

V
n(r)d3r =

∫

V

(
C2 − r2

r20

)
d3r = 4π

∫ Cr0

0

(
C2 − r2

r20

)
r2dr

= 4π

[
C2r3

3
− r5

5r20

]Cr0

0

=
8πC5r30

15
≡ N .

With this we get the constant,

C =

(
15N

8πr30

)1/5

.

12.3.8.10 Ex: Spherical and cylindrical volume

a. Integrate a circular surface with radius R in Cartesian coordinates and then in
polar coordinates.
b. The density distribution of a trapped atomic gas is described by n(r) = n0e

−r2/r̄2 ,
where n0 = 1013 cm-1 is the maximum density and r̄ = 100µm a measure for the ex-
tent of the distribution. Calculate the number of atoms N =

∫
R3 n(r)d

3r, integrating
over Cartesian coordinates and then over polar coordinates.
c. Calculate the density of a homogeneous cylinder of mass 10 kg and length 20 cm by
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integrating over its volume..
d. The density distribution of a trapped atomic gas is described by

n(ρ, z) = max
{
0, n0 ·

(
1− ρ2

ρ2m
− z2

z2m

)}
, where n0 = 1013 cm-3 is the maximum den-

sity and zm = 2ρm = 100µm a measure for the extent of the distribution. Calculate
the number of atoms by integrating over cylindrical coordinates.

Solution: a. The surface of the circle is,

S =

∫

circle

d2r =

∫ ∫ √R2−y2

−
√
R2−y2

dxdy =

∫
2
√
R2 − y2dy = y

√
R2 − y2 +R2 arcsin

y

R

∣∣∣
R

−R
= R2π

S =

∫

circle

d2r =

∫ 2π

0

∫ R

0

rdrdϕ = 2π
R2

2
= πR2 .

b. The number of atoms is,

N =

∫

R3

n(r)dxdydz = n0

(∫ ∞

−∞
e−x

2/r̄2dx

)3

= n0
(
r̄
√
π
)3

N =

∫

R3

n(r)dr =

∫ 2π

0

∫ θ

0

∫ ∞

0

n(r)r2 sin θdrdθdϕ = 4πn0

∫ ∞

0

e−r
2/r̄2r2dr

= 4πn0

(
−1

2
r̄2e−r

2/r̄2r

∣∣∣∣
∞

0

−
∫ ∞

0

−1

2
e−r

2/r̄2 r̄2dr

)
= πn0r̄

3
√
π .

Hence, we have N = 55.7 · 106 atoms.
c. The mass is,

m =

∫

R3

ρ(r⃗)d3r =

∫ h

0

∫ 2π

0

∫ R

0

ρ0rdrdϕdz = ρ0πh
R2

2
= ρ0V .

So the density is, ρ0 = m
πR2h ≃ 6.4 kg/l.

d. The number of atoms is,

N =

∫
R3

n(ρ, z)d3r = n0

∫
n(r)≥0

(
1− ρ2

ρ̄2
− z2

z̄2

)
ρdρdϕdz

= 2πn0

∫
n(r)≥0

[
ρ2

2
− ρ4

4ρ̄2
− z2ρ2

2z̄2

]ρ̄√1−z2/z̄2

0

dz = 2πn0
ρ̄2

4

∫ z̄

−z̄

(
1− z2

z̄2

)2

dz

= 2πn0
ρ̄2

4

[
1

5a4
z5 − 2

3

z3

a2
+ z

]z̄
−z̄

= 2πn0
ρ̄2

4

16

15
a =

8π

15
n0z̄ρ̄

2 .

Hence, we have N = 4.2 · 106 atoms.

12.3.8.11 Ex: Cylindrical volume

Consider a material (gas or liquid) whose mass density ρ(r) depends on the z-
coordinate as follows: ρ(r) = ρ0(1 − αz). This material is filled into a cylinder
(radius R and height c) until the total mass in the cylinder isM . The cylinder stands
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in a circular area above the xy in z = 0.
a. Calculate the density parameter ρ0.
b. Calculate vector of center of mass rs of the material in the cylinder.
c. Now fill the same material inside a sphere of radius R instead of the cylinder. What
are the results in this case if α = 0.1 /m, R = 1 m, and M = 10 kg.
d. A cake of massM , height h and radius R be cut into fourth equal pieces. Calculate
the center of mass of a piece. Calculate the center of mass of the rest of the cake
when a piece is taken.

Solution: a. The total mass integrated over the cylinder is,

M =

∫

cylinder

ρ(r⃗)d3r =

∫ R

0

∫ 2π

0

∫ z0

0

ρ0(1− αz)rdrdϕdz = ρ02π
R2

2

(
z0 −

α

2
z20

)
.

Therefore, the density parameter is,

ρ0 =
M(

z0 − α
2 z

2
0

)
πR2

=
M

V

1

1− α
2 z0

.

b. The center of mass vector is defined by,

r⃗s =
1

M

∫

cylinder

r⃗ρ(r⃗)d3r = (0, 0, zs) .

Hence,

zs =
1

M

∫ R

0

∫ 2π

0

∫ z0

0

ρ0z(1− αz)rdrdϕdz =
ρ0
M
πR2

(
z20 −

α

3
z30

)
= z0

1− α
3 z0

1− α
2 z0

.

c. For a sphere we calculate in the same way,

M =

∫

sphere

ρ(r⃗)d3r =

∫ z0

0

∫ √R2−(R−z)2

0

∫ 2π

0

ρ0(1− αz)rdrdϕdz

= 2πρ0

∫ z0

0

∫ √R2−(R−z)2

0

rdr(1− αz)dz = 2πρ0

∫ z0

0

√
R2 − (R− z)22

2
(1− αz)dz

= 2πρ0

∫ z0

0

(
α
z3

2
− z2

2
− αRz2 +Rz

)
dz = πρ0z

2
0

(
αz20
4
− z0

3
− 2αRz0

3
+R

)
.

We easily verify that limα→0,z0→2RM = 4π
3 R

3ρ0. he center of mass is,

r⃗s =

∫

sphere

r⃗ρ(r⃗)d3r = (0, 0, zs)

zs =
1

M

∫ z0

0

∫ √R2−(R−z)2

0

∫ 2π

0

zρ0(1− αz)rdrdϕdz =
2πρ0
M

∫ z0

0

∫ √R2−(R−z)2

0

z(1− αz)rdrdz

=
2πρ0
M

∫ z0

0

√
R2 − (R− z)22

2
z(1− αz)dz = 2πρ0

M

∫ z0

0

(
α
z4

2
− z3

2
− αRz3 +Rz2

)
dz

=
πρ0z

3

M

(
αz20
5
− z0

4
− αRz0

2
+

2R

3

)
= z0

αz20/5− z0/4− αRz0/2 + 2R/3

αz20/4− z0/3− 2αRz0/3 +R
.
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Once again we can check, limα→0,z0→2R zs = R.
d. The center of mass of a cake segment is,

r⃗s =

∫
segment

r⃗d3r

V
=

∫ ϕ0

0

∫ R
0

∫ h
0
r⃗rdrdϕdz

∫ ϕ0

0

∫ R
0

∫ h
0
rdrdϕdz

=
1

ϕ0R2h/2

∫ ϕ0

0

∫ R

0

∫ h

0




r cosϕ

r sinϕ

z


 rdrdϕdz

=
2

ϕ0R2h




∫ ϕ0

0

∫ R
0

∫ h
0
r2 cosϕdrdϕdz

∫ ϕ0

0

∫ R
0

∫ h
0
r2 sinϕdrdϕdz

∫ ϕ0

0

∫ R
0

∫ h
0
zrdrdϕdz


 =

2

ϕ0R2h




R3

3 h
∫ ϕ0

0
cosϕdϕ

R3

3 h
∫ ϕ0

0
sinϕdϕ

R2h2

4

∫ ϕ0

0
dϕ


 =




− 2R
3ϕ0

sinϕ0

2R
3ϕ0

(cosϕ0 − 1)

h
2


 .

Since
∫
O⃗d3r = V O⃗, we can without loss of generality place the origin of the coordinate

system in the center of the cake.

12.3.8.12 Ex: Vector potential in curvilinear coordinates

Be given a constant field B oriented in z-direction. What is the vector potential A in
(a) spherical coordinates, (b) cylindrical coordinates, and (c) Cartesian coordinates?
For case (c) also consider the gauge transformation A′ = A+∇λ with λ = ±Bxy/2.

Solution: With Stokes’ theorem,
∫

F

B · dS =

∫

F

(∇×A) · dS =

∫

R(F )

A · dS .

Since
B = Bêz ,

We chose as integration area a circle with radius ρ in a plane perpendicular to the
z-direction at a distance z from the origin of our coordinate system. The integration
area and the origin then form a cone with the length of the side edges r and the half
opening angle of the cone θ.
a. In spherical coordinates ρ = r sin θ is then,

Bπr2 sin2 θ = Aϕ2πr sin θ ,

that is,

A = Aϕêϕ =
B

2
r sin θêϕ .

b. In cylindrical coordinates we get immediately,

Bπρ2 = Aϕ2πρ ,

that is,

A = Aϕêϕ =
B

2
ρêϕ .
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c. For Cartesian coordinates we use the result of (b) with ρ2 = x2 + y2 and insert êϕ:

A =
B

2

√
x2 + y2êϕ =

B

2

√
x2 + y2(−êx sinϕ+êy cosϕ) =

B

2
(−yêx+xêy) =

B

2
(−y, x, 0) .

We now consider the gauge transformation,

A′ = A+∇λ .

For

λ ≡ +
B

2
xy .

we obtain,

A′ =
B

2
(−yêx + xêy) + êx

∂λ

∂x
+ êy

∂λ

∂y
= Bxêy .

For

λ ≡ −B
2
xy .

we get in the same way,

A′ =
B

2
(−yêx + xêy) + êx

∂λ

∂x
+ êy

∂λ

∂y
= −Byêx .

12.3.8.13 Ex: Gauß’ theorem in curvilinear coordinates

a. Check Gauß’ theorem for function A = r2êr using the volume of a sphere of radius
R.
b. Do the same for the function B = r−2êr and discuss the result.

Solution:

12.3.8.14 Ex: Gauß’ theorem in curvilinear coordinates

Calculate the divergence of the function,

A = rêr cos θ + rêθ sin θ + rêφ sin θ cosφ .

Verify Gauß’s theorem for this function using the volume of an inverted semisphere
of radius R lying in the x-y-plane.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_.pdf
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12.3.8.15 Ex: Gauß’ theorem in curvilinear coordinates

Calculate the gradient and Laplacian of the function T = r(cos θ + sin θ cosφ).
Check the Laplacian by converting T into Cartesian coordinates. Verify Gauß’s
theorem using the path l1(t) = 2êx cosπt + 2êy sinπt for t ∈ [0, 0.5] followed by
l2(t) = 2êy sinπt− 2êz cosπt para t ∈ [0.5, 1].

Solution:

12.3.8.16 Ex: Gauß’ theorem in curvilinear coordinates

a. Find the divergence of the function,

A = ρêρ(2 + sin2 φ) + ρêφ sinφ cosφ+ 3zêz .

b. Verify Gauß’ theorem for this function using a quadrant of cylinder with radius
R = 2 and height h = 5.
c. Find the rotation of A.

Solution:

12.4 Differential geometry in curved space

In previous sections we mainly concentrated on orthogonal coordinate systems, such
as Cartesian, cylindrical, or spherical. In cases one has to use non-orthogonal systems
the formalism needs to be generalized. For this purpose it is necessary to introduce
some new concepts and notations.

Repeat expressions in index formalism Einstein’s sum rule, anan =
∑n
a an,

ds2 = gmndx
mdxn . (12.92)

12.4.1 Co- and contravariant tensors

A contravariant vector or tangent vector (often abbreviated simply as vector, such as
a direction vector or velocity vector) has components that contra-vary with a change
of basis to compensate. That is, the matrix that transforms the vector components
must be the inverse of the matrix that transforms the basis vectors. Examples of
contravariant vectors include the position of an object relative to an observer, or
any derivative of position with respect to time, including velocity and acceleration.
Contravariant components are denoted with upper indices as in,

v = viei . (12.93)

A covariant vector or cotangent vector has components that co-vary with a change
of basis. That is, the components must be transformed by the same matrix as the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_.pdf
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change of basis matrix. Examples of covariant vectors generally appear when taking
a gradient of a function. Covariant components are denoted with lower indices as in,

w = wie
i . (12.94)

Figure 12.9: (a) Covariant and (b) contravariant basis.

12.4.2 Jacobian for coordinate transformations

The Jacobian of a vector field F is a matrix defined by,

J ≡ ∂(F1, .., Fm)

∂(x1, .., xn)
≡
(
∂Fm
∂xn

)
≡ (Jmn) . (12.95)

We may understand a curvilinear coordinate system {xµ} as a vector field in
Cartesian space {x′ν},

xµ = xµ(x′1, .., x′ν , .., x′m) (12.96)

for µ = 1, ..,m. The Jacobian of this field represents a tool used to transform between
the coordinate systems by taking the rate of change of each component of an old basis
with respect to each component of a new basis and expressing them as coefficients
that make up an old basis. Do the Excs. 12.4.4.2 and 12.4.4.3,

J ij ≡
∂ix

∂x′j
. (12.97)

Example 38 (Jacobian for polar coordinates): For example, the Jacobian
matrix that transforms polar coordinates to Cartesian coordinates in 2 dimen-
sions is given by,

J ij =

∂rx ∂θx

∂ry ∂θy

 =

cos θ r sin θ

sin θ r cos θ

 . (12.98)

The components of Cartesian basis vectors can now be written as a linear com-
bination of these coefficients and their corresponding polar bases,

êx =
∂x

∂r
êr +

∂x

∂θ
êθ = êr cos θ − êθr sin θ (12.99)

êy =
∂y

∂r
êr +

∂y

∂θ
êθ = êr sin θ + êθr cos θ .
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In the case of relating the Jacobian to the metric tensor, the Jacobian can be used
to transform the components of one metric to another via the following method,

g′ij =
∂

∂x′i
∂

∂x′j
=

(
∂xa

∂x′i
∂

∂xa

)(
∂xb

∂x′i
∂

∂xb

)
=
∂xa

∂x′i
∂xb

∂x′i

(
∂

∂xa
∂

∂xb

)
= JaiJ

b
jgab .

(12.100)
Knowing this, taking the determinant of the metric gij requires taking the determinant
of the Jacobian matrices and gab as well,

det g′ij = (det Jai)(det J
b
j)(det gab) . (12.101)

Since both Jacobian terms are part of the same matrix and are just written using
different indices to differentiate between the components of the old basis,

(det Jai)(det J
b
j) = (detJ)2 . (12.102)

In the case of our old basis being written in Cartesian coordinates,

det gab = det I = 1 . (12.103)

Therefore the equation of our new transformed metric gij , simplifies to,

det gij = (detJ)2 =⇒ det J =
√
det gij . (12.104)

It can be shown that,

d

dt

∂(u, v)

∂(x, y)
≡ ∂( ddtu, v)

∂(x, y)
+
∂(u, ddtv)

∂(x, y)
. (12.105)

The Hessian is a square matrix of second-order partial derivatives of a scalar field.

12.4.3 Metric and geodesic equation in Euclidean space

For an arbitrary curvilinear coordinate system ui we define tangent vectors forming
a basis,

ei =
∂

∂ui
= ∂i , (12.106)

the metric tensor is,
gij ≡ ei · ej . (12.107)

See also Secs. 6.4 and 20.5.

12.4.3.1 Metric in spherical coordinates

For spherical coordinates,

r =




x

y

z


 =




r sin θ cosϕ

r sin θ sinϕ

r cos θ


 ,




r

θ

ϕ


 =




√
x2 + y2 + z2

arccos z√
x2+y2+z2

arctan y
x


 , (12.108)



12.4. DIFFERENTIAL GEOMETRY IN CURVED SPACE 521

the tangent vectors are,

er =
∂r

∂r
= êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ = êr (12.109)

eθ =
∂r

∂θ
= rêx cos θ cosϕ+ rêy cos θ sinϕ− rêz sin θ = rêθ

eϕ =
∂r

∂ϕ
= −r sin θêx sinϕ+ r sin θêy cosϕ = r sin θêϕ .

Note that, in contrast to the basis vectors êi the tangent vectors ei are not normalized.
The spherical metric is,

gij =
∂xa
∂ui

∂xa

∂uj
=




er · er er · eθ er · eϕ
eθ · er eθ · eθ eθ · eϕ
eϕ · er eϕ · eθ eϕ · eϕ


 =




1 0 0

0 r2 0

0 0 r2 sin2 θ


 ,

with xa = x, y, z, ui = r, θ, ϕ, and the contra-variant spherical metric being,

gij =
∂ui

∂xa

∂uj

∂xa
=




1 0 0

0 r−2 0

0 0 r−2 sin−2 θ


 . (12.110)

we obtain the contra-variant tangent vectors,

er = grrer = êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ = êr (12.111)

eθ = gθθeθ =
1

r
êx cos θ cosϕ+

1

r
êy cos θ sinϕ−

1

r
êz sin θ =

1

r
êθ

eϕ = gϕϕeϕ = − 1

r sin θ
êx sinϕ+

1

r sin θ
êy cosϕ =

1

r sin θ
êϕ .

The diagonal shape of the metrics are comes from the fact that spherical coordi-
nates are orthogonal. In the example 39 we discuss the metric of an non-orthogonal
coordinate system.

Example 39 (Metric in elliptical coordinates): In contrast to polar, cylin-
drical, or spherical coordinates, elliptical coordinates given by,

r =

x
y

 =

ar cosϕ
br sinϕ

 ,

r
ϕ

 =

√(x
a
)2 + ( y

b
)2

arctan ay
bx

 , (12.112)

are not orthogonal. The tangent vectors are,

er =
∂r

∂r
= êxa cosϕ+ êyb sinϕ (12.113)

eϕ =
∂r

∂ϕ
= −êxar sinϕ+ êybr cosϕ .
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Note that, in contrast to the basis vectors êi the tangent vectors ei are not
normalized. The elliptical metric is,

gij =
∂xa
∂ui

∂xa

∂uj
=

er · er er · eϕ
eϕ · er eϕ · eϕ

 =

 a2 cos2 ϕ+ b2 sin2 ϕ (b2 − a2)r sinϕ cosϕ
(b2 − a2)r sinϕ cosϕ (a2 sin2 ϕ+ b2 cos2 ϕ)r2

 ,

with xa = x, y, ui = r, ϕ, and the contra-variant elliptical metric being,

gij =
∂ui

∂xa

∂uj

∂xa
=

1

a2b2r2

a2r2 sin2 ϕ+ b2r2 cos2 ϕ (a2 − b2)r sinϕ cosϕ
(a2 − b2)r sinϕ cosϕ a2 cos2 ϕ+ b2 sin2 ϕ)

 .

(12.114)
we obtain the cotangent vectors,

er = griei = grrer + grϕeϕ = êxa
−1 cosϕ+ êyb

−1 sinϕ (12.115)

eϕ = gϕiei = gϕrer + gϕϕeϕ = −êxa−1r−1 sinϕ+ êyb
−1r−1 cosϕ .

The fact that the metric is not diagonal is due to the elliptical coordinates not
being orthogonal. One verifies,

er · eϕ = 0 = er · eϕ , er · er = 1 = eϕ · eϕ . (12.116)

Interestingly, while neither the tangent nor the cotangent vectors are orthogonal,

they are mutually orthogonal.

12.4.3.2 Christoffel symbols

The Christoffel symbols are defined by,

Γkij ≡
∂ei
∂xj
· ek . (12.117)

They yields for spherical coordinates with j = r, θ, ϕ,

Γair =




0 0 0

0 r−1 0

0 0 r−1


 , Γaiθ =




0 −r 0

r−1 0 0

0 0 − tan θ


 (12.118)

Γaiϕ =




0 0 −r cos2 θ
0 r−1 sin θ cos θ

r−1 − tan θ 0


 .

Do the Exc. 12.4.4.4.

12.4.3.3 Geodesic equation

In differential geometry the geodesic equation is a curve representing in some sense
the shortest path between two points in a surface, or more generally in a Riemannian
manifold. It is a generalization of the notion of a ’straight line’. The geodesic line is
obtained by solving the differential equation,

d2xk

ds2
+ Γkab

dxa

ds

dxb

ds
= 0 . (12.119)
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12.4.4 Exercises

12.4.4.1 Ex: Tensors of rank n

Be given F = E+ ıB and F∗ = E− ıB. Identify (in this order) the scalar F∗ ·F/(8π),
teh vector F∗×F/(8πı), and the dyade (tensor) (F∗ ·F+F ·F∗)/(8π). What happens
to these quantities if we exchange F for e−ıϕF, where ϕ is supposed constant?

Solution: We get first,

1

8π
F∗ · F =

1

8π
(E− ıB) · (E+ ıB) =

1

8π
(E2 +B2) = U .

Then,
1

8πı
F∗ × F =

1

8πı
(E− ıB)× (E+ ıB) =

1

4π
(E×B) =

1

c
S .

Finally,

1

8π
(F∗ · F+ F · F∗) = 1

8π
[(E− ıB) · (E+ ıB) + (E+ ıB) · (E− iB)]

=
1

8π
[E ·E+ ıB ·E− ıE ·B+B ·B+E ·E− ıB ·E+ ıE ·B+B ·B]

=
1

4π
(E ·E+B ·B) =

↔
T +U

↔
1 .

Exchanging,
F→ e−ıϕF hence F∗ → e+ıϕF∗ .

and we see immediately that all three expressions above are invariant about this trans-
formation.

12.4.4.2 Ex: Jacobian for transformation into curvilinear coordinates

a. Calculate the Jacobian of the transformation from cylindrical coordinates (ρ, z, φ)
to Cartesian coordinates (x, y, z).
b. Calculate the Jacobian of the transformation from spherical coordinates (r, θ, φ)
to Cartesian coordinates (x, y, z).

Solution: a. The Jacobian is given by the function F = r with the components,

x = ρ cosφ

y = ρ sinφ

z = z .

The Jacobian of this function is,

JF(r, z, φ) =




∂x
∂ρ

∂x
∂z

∂x
∂φ

∂y
∂ρ

∂y
∂z

∂y
∂φ

∂z
∂ρ

∂z
∂z

∂z
∂φ


 =




cosφ 0 −ρ sinφ
sinφ 0 ρ cosφ

0 1 0


 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Fundaments_TuebT20.pdf
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The determinant is −ρ. As an example, the volume element can be expressed as
dV = dxdydz = ρdrdzdφ. However, this determinant varies with the coordinates.
b. The Jacobian is given by the function F = r with the components,

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ .

The Jacobian of this function is,

JF(r, θ, φ) =




∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ


 =




sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ −r sin θ cosφ

cos θ −r sin θ 0


 .

The determinant is r2 sin θ. As an example, the volume element can be expressed as
dV = dxdydz = r2 sin θdrdθdφ. However, this determinant varies with the coordi-
nates.

12.4.4.3 Ex: Jacobian for Galilei and Lorentz transform

Determine the Jacobean of the Galilei transformation,

ct′ = ct and x′ = x and y′ = y and z′ = z − u
c ct ,

and the Lorentz transformation,

ct′ = γ(ct− u
c x) and x′ = x and y′ = y and z′ = γ(z − u

c z) .

Solution: We have,

Gµν =
∂x′µ
∂xν

=




1 0 0 0

0 1 0 0

0 0 1 0

−uc 0 0 1




, Λµν =
∂x′µ
∂xν

=




γ 0 0 −uc γ
0 1 0 0

0 0 1 0

−uc γ 0 0 γ




.

12.4.4.4 Ex: Christoffel symbols for two-dimensional polar coordinates

Derive the Christoffel symbols for two-dimensional polar coordinates.

Solution: Polar coordinates are defined by,

x
y


 =


r cosφ
r sinφ


 ,


r
φ


 =



√
x2 + y2

arctan y
x


 .
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From the definition of the Christoffel symbols,

Γmab =
∂xm

∂uk
∂2uk

∂xa∂xb
,

we get explicitly,

Γabr =


Γrrr Γrφr

Γφrr Γφφr


 =




∂r
∂x

∂2x
∂r2 + ∂r

∂y
∂2y
∂r2

∂r
∂x

∂2x
∂φ∂r +

∂r
∂y

∂2y
∂φ∂r

∂φ
∂x

∂2x
∂r2 + ∂φ

∂y
∂2y
∂r2

∂φ
∂x

∂2x
∂φ∂r +

∂φ
∂y

∂2y
∂φ∂r


 =


0 0

0 0




Γabφ =


Γrrφ Γrφφ

Γφrφ Γφφφ


 =




∂r
∂x

∂2x
∂r∂φ + ∂r

∂y
∂2y
∂r∂φ

∂r
∂x

∂2x
∂φ2 + ∂r

∂y
∂2y
∂φ2

∂φ
∂x

∂2x
∂r∂φ + ∂φ

∂y
∂2y
∂r∂φ

∂φ
∂x

∂2x
∂φ2 + ∂φ

∂y
∂2y
∂φ2


 =


0 −r
0 0


 .

12.4.4.5 Ex: Distorted polar coordinates

a. Study the coordinate system,

r =


x
y


 =


f(r) cosϕ
g(r) sinϕ




for arbitrary radial functions f(r) and g(r).
b. Consider the particular cases (i) f = g and (ii) f = ar and g = br.

Solution: a. The tangent vectors are,

er =
∂r

∂r
= êxf

′(r) cosϕ+ êyg
′(r) sinϕ

eϕ =
∂r

∂ϕ
= −êxf(r) sinϕ+ êyg(r) cosϕ ,

and the metric,

gij =


 f ′(r)2 cos2 ϕ+ g′(r)2 sin2 ϕ [g(r)g′(r)− f(r)f ′(r)] sinϕ cosϕ
[g(r)g′(r)− f(r)f ′(r)] sinϕ cosϕ f(r)2 sin2 ϕ+ g(r)2 cos2 ϕ


 .

The determinant of the metric is,

det gij =
[
f ′(r)g(r) cos2 ϕ+ f(r)g′(r) sin2 ϕ

]2

and the inverse metric,

gij = g−1ij =
1

det gij


 f ′(r)2 sin2 ϕ+ g′(r)2 cos2 ϕ [f(r)f ′(r)− g(r)g′(r)] sinϕ cosϕ
[f(r)f ′(r)− g(r)g′(r)] sinϕ cosϕ f(r)2 cos2 ϕ+ g(r)2 sin2 ϕ


 .
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b. For the case f = g this simplifies to,

gij =


f
′(r)2 0

0 f(r)2


 , gij =


f(r)

2 0

0 f ′(r)2


 ,

and for the case, f = ar and g = br to,

gij =


 a2 cos2 ϕ+ b2 sin2 ϕ (b2 − a2)r sinϕ cosϕ
(b2 − a2)r sinϕ cosϕ (a2 sin2 ϕ+ b2 cos2 ϕ)r2




gij =


 a−2 cos2 ϕ+ b−2 sin2 ϕ (b−2 − a−2)r−1 sinϕ cosϕ
(b−2 − a−2)r−1 sinϕ cosϕ (a−2 sin2 ϕ+ b−2 cos2 ϕ)r−2


 .

12.4.4.6 Ex: Metric for ellipsoidal coordinates

Generalize the metric for ellipsoidal coordinates.

Solution: For ellipsoidal coordinates,

r =




x

y

z


 =




ar sin θ cosϕ

br sin θ sinϕ

cr cos θ


 ,




r

θ

ϕ


 =




√(
x
a

)2
+
(
y
b

)2
+
(
z
c

)2

arccos z/c√
(x/a)2+(y/b)2+(z/c)2

arctan ay
bx


 ,

the tangent vectors are,

er =
∂r

∂r
= aêx sin θ cosϕ+ bêy sin θ sinϕ+ cêz cos θ

eθ =
∂r

∂θ
= arêx cos θ cosϕ+ brêy cos θ sinϕ− crêz sin θ

eϕ =
∂r

∂ϕ
= −arêx sin θ sinϕ+ brêy sin θ cosϕ .

Note that, in contrast to the basis vectors êi the tangent vectors ei are not normalized.
The ellipsoidal metric is,

gij =
∂xa
∂ui

∂xa

∂uj
=




er · er er · eθ er · eϕ
eθ · er eθ · eθ eθ · eϕ
eϕ · er eϕ · eθ eϕ · eϕ




=




Bϕ sin
2 θ + c2 cos2 θ (Bϕ − c2)r sin θ cos θ Cϕr sin

2 θ

(Bϕ − c2)r sin θ cos θ (Bϕ cos
2 θ + c2 sin2 θ)r2 Cϕr

2 sin θ cos θ

Cϕr sin
2 θ Cϕr

2 sin θ cos θ Aϕr
2 sin2 θ


 ,
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with xa = x, y, z, ξi = r, θ, ϕ and with the abbreviations Aϕ ≡ a2 sin2 ϕ + b2 cos2 ϕ,
Bϕ ≡ a2 cos2 ϕ+ b2 sin2 ϕ, and Cϕ ≡ (b2 − a2) sinϕ cosϕ. The determinant is,

det gij = a2b2c2r4 sin2 θ .

The contra-variant ellipsoidal metric being,

gij = g−1ij =
∂ξi

∂xa

∂ξj

∂xa

=
1

a2b2c2r2




(a2b2 cos2 θ +Aϕc
2 sin2 θ)r2 (−a2b2 +Aϕc

2)r sin θ cos θ −Cϕc2r
(−a2b2 +Aϕc

2)r sin θ cos θ a2b2 sin2 θ +Aϕc
2 cos2 θ −Cϕc2 cot θ

−Cϕc2r −Cϕc2 cot θ Bϕc
2

sin2 θ


 .

we obtain the contra-variant tangent vectors,

er = griei =
êx sin θ cosϕ

a
+

êy sin θ sinϕ

b
+

êz cos θ

c

eθ = gθiei =
êx cos θ cosϕ

ar
+

êy cos θ sinϕ

br
− êz sin θ

cr

eϕ = gϕiei = −
êx sinϕ

ar sin θ
+

êy cosϕ

br sin θ
.

One verifies,
ei · ej = δij , ei · ej ̸= 0, 1 ,

for i, j = r, θ, ϕ.

Figure 12.10: (code) Tangent and cotangent coordinates on an ellipsoid.

12.5 Dirac’s δ-function

Calculating the divergence of the vector field A = r/r3 in spherical coordinates 1,

∇ ·A =
1

r2
∂

∂r

(
r2

1

r2

)
= 0 , (12.120)

1Or in Cartesian coordinates: ∇ ·A = ∂
∂r3

x
r3

+ ∂
∂r3

y
r3

+ ∂
∂r3

z
r3

= 3r3−3x2r
r6

+ ... = 0.
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we expect, ∫

sphere

∇ ·AdV = 0 . (12.121)

This is surprising, because intuition tells us to expect a huge divergence near the
origin. The problem is that the field A diverges at the origin, which calls for a
modification of the expression for the gradient. Gauß’ law gives us an indication since,
according to this law, the result (12.121) should be equal to the surface integral,

∮

∂ sphere

A · dS =

∫ 2π

0

∫ π

0

êr
R2
· (R2 sin θdθdϕêr) = 4π . (12.122)

As the integral (12.121) contains a divergence within the volume of integration, we
conclude that the integral (12.122), which has no divergence within the integration
surface is more reliable. Therefore, we look for a function δ satisfying,

∫

sphere

∇ ·A(r)dV =

∫

sphere

4πδ(r)dV = 4π , (12.123)

that is, a function having the property of killing integrals.

12.5.1 The Dirac function in 1 dimension

In one dimension the Dirac function is defined by,

δ(x) ≡
{
0 for x ̸= 0

∞ for x = 0
, (12.124)

such that, ∫ ∞

−∞
δ(x)dx = 1 . (12.125)

The Dirac function can be expressed as the limit of a series of continuous functions,

δ(x) = lim
n→∞

n

π

1

1 + n2x2
(12.126)

δ(x) = lim
n→∞

n

π

(
sinnx

nx

)2

δ(x) = lim
n→∞

1

π

sinnx

x
= lim
n→∞

1

2π

∫ +n

−n
eıkxdk .

We also note that the Dirac function is even, δ(−x) = δ(x), non-linear, δ(ax) =
δ(x)/|a|, and can be interpreted as the derivative of the Heavyside function,

∫ x

−∞
δ(x′)dx′ = Θ(x) or

dΘ

dx
= δ(x) . (12.127)

We will train the calculus with the Dirac function in Excs. 12.5.4.1 to 12.5.4.3.
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-1 0 1

x

0
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δ n
(x
)
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x

0

5
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15

δ n
(x
)

Figure 12.11: (code) Illustration of the function 1
π

sinnx
x

(left) and of the function 1
π

n
1+n2x2

(right) for various n→∞.

When the argument of a Dirac function is itself a function f(x), the Dirac is
evaluated at each zero-passage of f ,

∫ b

a

dx g(x)δ(f(x)) =

∫ b

a

dx g(x)
∑

i

δ(x− xi)
|f ′(xi)|

, (12.128)

where f ′(xi) ̸= 0. We will apply this theorem in Exc. 12.5.4.4.

12.5.2 The Dirac function in 2 and 3 dimensions

In more dimensions the δ-function is often used to parametrize points, paths, or
surfaces within a volume. For example, a point charge Q at the position a can be
described by the three-dimensional density distribution,

ρ(r) = Qδ3(r− a) = Qδ(x− ax)δ(y − ay)δ(z − az) , (12.129)

a current I in a circular loop with radius R within the z = 0 plane generates a current
density,

j = Iδ(r −R)δ(z)êϕ , (12.130)

called a current yarn. Similarly, a two-dimensional arrangement of charges σ homo-
geneously distributed over the surface of a sphere with radius R can be described by
the three-dimensional density distribution,

ρ(r) = σδ(r −R) . (12.131)

Such parametrizations are useful, because they can be applied in fundamental laws
of electromagnetism (see Exc. 12.5.4.5).

Example 40 (Parametrization of a current distribution): As an example
we calculate the current I produced by the distribution (12.130) crossing a
rectangular area around the point r = Rêx,∫

area

j · dA = I

∫ R+∆x

R−∆x

∫ ∆z

−∆z

δ(r −R)δ(z)êydA = I

∫ r+∆x

r−∆x

δ(x−R)dx = I .
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Example 41 (Parametrization of a charge distribution): In another ex-
ample we calculate the total charge Q produced by the distribution (12.131),∫

volume

ρ(r)dV = σ

∫ 2π

0

∫ π

0

∫ ∞
0

δ(r −R)r2 sin θdθdϕdr = σ4πR2 = Q .

Example 42 (Dirac function in Coulomb’s Law): In a third example we
show that the field of a point charge, ϱ(r) = Qδ(x)δ(y)δ(z), can be obtained
from Coulomb’s law,

E⃗ =

∫
ϱ(r′)

4πε0

r− r′

|r− r′|3 dV
′ =

Q

4πε0

r

r3
.

12.5.3 Analytical signals

In signal processing theory, an analytic signal is a complex-valued function without
negative frequency components. The real and imaginary parts of an analytic signal are
mutually related by a Hilbert transform. Conversely, the analytic representation of a
real-valued function is an analytic signal, which comprises the original function and its
Hilbert transform. This representation facilitates many mathematical manipulations.
The basic idea is that the negative frequency components of the Fourier transform
(or spectrum) of a real function are superfluous due to the Hermitian symmetry of
such a spectrum. These negative-frequency components can be discarded without
loss of information, as long as we are willing to deal with a complex function. This
makes certain attributes of the function more accessible, particularly for application
in radiofrequency manipulation techniques.

While the manipulated function has no negative frequency components (that is,
it is still analytic), the inverse conversion from complex to real is just a matter of
discarding the imaginary part. The analytical representation is a generalization of the
phasor concept: while the phasor is restricted to time-invariant amplitudes, phases
and frequencies, the analytic signal allows for temporally variable parameters.

12.5.3.1 Transfer function generating an analytical signal

We consider a real function s(t) with its Fourier transform S(f). Then the transformed
function exhibits a Hermitian symmetry about the point f = 0, since,

S(−f) = S(f)∗ , (12.132)

The function,

Sa(f) ≡





2S(f) for f > 0

S(f) for f = 0

0 for f < 0

= S(f) + sgn(f)S(f) , (12.133)
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where sgn(f) calculates the sign of f , only contains the non-negative components of
S(f). This operation is reversible due to the Hermitian symmetry of S(f):

S(f) =





1
2Sa(f) para f > 0

Sa(f) para f = 0
1
2Sa(−f)∗ para f < 0

= 1
2 [Sa(f) + Sa(−f)∗] . (12.134)

The analytical signal of s(t) is the inverse Fourier transform of Sa(f),

sa(t) ≡ F−1[Sa(f)] = F−1[S(f) + sgn(f) · S(f)] (12.135)

= F−1[S(f)] + F−1[sgn(f)] ⋆ F−1[S(f)] = s(t) + ı
[

1
πt ⋆ s(t)

]
= s(t) + ıŝ(t) ,

where ⋆ denotes the convolution.

ŝ(t) ≡ H[s(t)] ≡ 1
πt ⋆ s(t) =

1
πP
∫ ∞

−∞

s(τ)

t− τ dτ , (12.136)

with P denoting Cauchy’s principal value, is the definition of the Hilbert transform
of s(t) 2.

Example 43 (Analytical signal of the cosine function): We consider the
signal s(t) = cosωt, where ω > 0. Now

ŝ(t) = cos(ωt− π
2
) = sinωt ,

sa(t) = s(t) + ıŝ(t) = cosωt+ ı sinωt = eıωt .

In general, the analytical representation of a simple sinusoidal function is ob-
tained by expressing it in terms of complex exponentials, discarding the negative
frequency components, and doubling the positive frequency components, as in
the example s(t) = cos(ωt+ θ) = 1

2
(eı(ωt+θ) + e−ı(ωt+θ)). Here, we get directly

from Euler’s formula,

sa(t) =

{
eı(ωt+θ) = eı|ω|teıθ if ω > 0

e−ı(ωt+θ) = eı|ω|te−ıθ if ω < 0
.

The analytical representation of a sum of sinusoidal functions is the sum of the

analytical representations of the individual sinuses.

We note that it is not forbidden to compute sa(t) for a complex s(t). But this rep-
resentation may be irreversible, since the original spectrum is usually not symmetric.
Therefore, with the exception of the case s(t) = e−ıωt with ω > 0, where,

ŝ(t) = ıe−ıωt (12.137)

sa(t) = e−ıωt + ı2e−ıωt = e−ıωt − e−ıωt = 0 ,

2Also holds,

ŝ(t) = − 1
π

lim
ϵ→0

∫ ∞
ϵ

s(t+ τ)− s(t− τ)

τ
dτ

H(H(s))(t) = −s(t) .
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we assume real s(t).
We also note that, since s(t) = Re [sa(t)], we can retrieve the negative-frequency

components simply by discarding Im [sa(t)], which may seem counterintuitive. On
the other hand, the conjugate complex part s∗a(t) contains only the negative-frequency
components. Therefore, s(t) = Re [s∗a(t)] retrieves the suppressed positive frequency
components. In Exc. 12.5.4.7 we calculate the intensity of an electromagnetic wave.

12.5.3.2 Envelope and instantaneous phase

An analytical signal can also be expressed in polar coordinates,

sa(t) = |sa(t)|eıϕ(t) , (12.138)

in terms of an instantaneous amplitude or envelope |sa(t)| varying with time and an
instantaneous phase angle ϕ(t) ≡ arg[sa(t)]. In Fig. 12.12 the blue curve shows s(t)
and the red curve shows |sa(t)|.

Figure 12.12: Illustration of a function (blue) and the magnitude of its analytical represen-
tation (red).

The time derivative of the unwrapped instantaneous phase is the instantaneous
angular frequency,

ω(t) ≡ dϕ(t)

dt
. (12.139)

The instantaneous amplitude and the instantaneous phase and frequency are used
in some applications to measure and detect local characteristics of the signal or to
describe the demodulation of a modulated signal. Polar coordinates conveniently
separate amplitude and phase modulation effects.

Analytical signals are often frequency-shifted (down-converted) to 0 Hz, which can
create negative (non-symmetric) frequency components:

s′a(t) ≡ sa(t)e−ıω0t = sm(t)eı(ϕ(t)−ω0t) , (12.140)

where ω0 is an arbitrary reference angular frequency. The function s′a(t) is called
complex envelope or ’baseband’. The complex envelope is not unique, but determined



12.5. DIRAC’S δ-FUNCTION 533

by the choice of ω0. This concept is often used to deal with band-pass signals. When
s(t) is a modulated signal, ω0 is conveniently chosen as the carrier frequency.

12.5.4 Exercises

12.5.4.1 Ex: Dirac’s δ function

a. Calculate
∫ π
0
dθ sin3 θ δ(cos θ − cos π3 ).

b. Now, be r0 a fixed three-dimensional vector with Cartesian coordinates x0, y0, and
z0. For the three-dimensional δ-function holds,

∫

V

f(r)δ(r− r0)d
3r =

{
f(r0) if r0 is within the volume V

0 else
.

In Cartesian coordinates, δ(3)(r−r0) ≡ δ(x−x0)δ(y−y0)δ(z−z0). Express δ(3)(r−r0)
in cylindrical coordinates (ρ, φ, z) as a product of three one-dimensional functions δ
in ρ− ρ0, φ− φ0, and z − z0.

Solution: a. Here, g(θ) = cos θ − cos π3 . This function goes through zero within the
interval [0, π] at position θ1 = π/3. Now, g′(θ) = − sin θ and hence g′(θ1) = − sin θ1.
Consequently, we get,

∫ π

0

dθ sin3 θδ(cos θ − cos π3 ) =

∫ π

0

dθ
sin3 θ

| sin θ1|
δ(θ − π

3 ) = sin2 θ1 =
3

4
.

b. In cylindrical coordinates the volume element is, d3r = ρdρdφdz. We also have,
r = (x = ρ cosφ , y = ρ sinφ , z) and r0 = (x0 = ρ0 cosφ0 , y0 = ρ0 sinφ0 , z0) Making
the ansatz,

δ(3)(r− r0) = f(ρ, φ, z)δ(ρ− ρ0)δ(φ− φ0)δ(z − z0) ,
we get immediately, (for r0 in V )

1 =

∫

V

d3rδ(3)(r− r0) =

∫

V

dρρdφdzf(ρ, φ, z)δ(ρ− ρ0)δ(φ− φ0)δ(z − z0)

= ρ0f(ρ0, φ0, z0)

and hence, f(ρ0, φ0, z0) = ρ−10 respectively,

δ(3)(r− r0) =
1

ρ0
δ(ρ− ρ0)δ(φ− φ0)δ(z − z0) .

12.5.4.2 Ex: Dirac’s δ function

Calculate the following expressions:

a.
∫ +1

−1 δ(x)[f(x)− f(0)] dx,
b.
∫ 3

−1(x
3 − x) sin

(
π
4x
)
δ(x− 2) dx,
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c.
∫ 2π

0
sinx δ(cosx)dx,

d.
∫
R3 δ(r −R)d3r,

e.
∫
R3 δ(r −R)δ(z)d3r,

f.
∫∞
−∞

(
d
dxδ(x)

)
f(x)dx por integration parcial,

g.
∫∞
−∞

(
dn

dxn δ(x)
)
f(x)dx.

Solution: The solutions are: a.
∫ +1

−1 δ(x)[f(x)− f(0)] dx = 0,

b.
∫ 3

−1(x
3 − x) sin

(
π
4x
)
δ(x− 2) dx = 6,

c.
∫ 2π

0
sinx δ(cosx)dx =

∫ 2π

0
sinx

(
δ(x−π/2)

1 + δ(x−3π/2)
1

)
dx = 0,

d.
∫
R3 δ(r −R)d3r = 4πR2,

e.
∫
R3 δ(r −R)δ(z)d3r = 2πR,

f.
∫∞
−∞

(
d
dxδ(x)

)
f(x)dx = δ(x)f(x)|∞−∞ −

∫
δ(x)

(
d
dxf(x)

)
dx = −f ′(0),

g.
∫∞
−∞

(
dn

dxn δ(x)
)
f(x)dx = (−1)nf (n)(0).

12.5.4.3 Ex: Dirac’s δ function

Show, ∫ ∞

−∞
1 · f̂(k)dk =

∫ ∞

−∞
1̂(x)f(x)dx = 2πf(0) ,

where f̂(k) ≡
∫∞
−∞ e−ıkxdx is the Fourier transform and f(x) ≡

∫∞
−∞ eıkxdk the inverse

transform. Also show,

1̂ = 2πδ(x) .

Help: 1 = eık0.

Solution: We have,

∫ ∞

−∞
1 · f̂(k)dk =

∫ ∞

−∞
f̂(k)eik0dk = 2πf(0) ,

with the definition of inverse Fourier transformation. We also have,

∫ ∞

−∞
1 · f̂(k)dk =

∫ ∞

−∞

∫ ∞

−∞
f(x)e−ikxdx · 1dk

=

∫ ∞

−∞

∫ ∞

−∞
1(k)e−ikxdkf(x)dx =

∫ ∞

−∞
1̂(x)f(x)dx .

Comparing these two results,

∫ ∞

−∞

(
1

2π
1̂(x)

)
f(x)dx = f(0) that is

1

2π
1̂(x) = δ(x) .
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12.5.4.4 Ex: Dirac’s δ function

The following properties are, among others, characteristics for Dirac’s δ-function,

b∫

a

f(x)δ(x− c) dx =

{
f(c) if c ∈ [a, b]

0 else
.

Being g(x) a function with simple zero passages xn, that is, g(xn) = 0 and g′(xn) ̸= 0,
we have

δ(g(x)) =
∑

n

1

|g′(xn)|
δ(x− xn) .

Use these relationships to solve the following integrals,

a.
∫ 5

−2 dx (x2 − 5x+ 6) δ(x− 3).

b.
∫∞
−∞ dx x2 δ(x2 − 3x+ 2) .

Solution: a. 0
b. We have,
∫ ∞

−∞
dx x2 δ(x2 − 3x+ 2) =

∫ ∞

−∞
dx x2

(
δ(x− 1)

|2x− 3|x=1
+

δ(x− 2)

|2x− 3|x=2

)
= 5 .

12.5.4.5 Ex: Dirac’s δ function

Demonstrate the following property of the δ-function:

δ(ω1 − ω)δ(ω2 − ω) =
δ(ω1 − ω) + δ(ω2 − ω)

|ω1 − ω2|
.

Solution:

12.5.4.6 Ex: Parametrization of currents

Parametrize the current density j(r′) of a current loop
a. in Cartesian coordinates and
b. in spherical coordinates.

Solution: a. In Cartesian coordinates we make ansatz, j(r′) = αδ(z′)δ(ρ′ − R)êϕ.
The normalization condition requires that the integral of j across the surface in the
y = 0 plane for x > 0 be,

I =

∫

S
j(r′) · dS′ =

∫ ∞

−∞

∫ ∞

0

αδ(z′)δ(ρ′ −R)dρ′dz′ = α ,

such that,
j(r′) = Iδ(z′)δ(ρ′ −R)êϕ
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b. In spherical coordinates we make ansatz, j(r′) = αδ(θ′)δ(r′ − R)êϕ. The normal-
ization condition requires that the integral of j across the surface in the y = 0 plane
for x > 0 be,

I =

∫

S
j(r′) · dS′ =

∫ π

0

∫ ∞

0

αδ(θ′)δ(r′ −R)r′dr′dθ′ = αR ,

such that,

j(r′) =
I

R
δ(θ′)δ(r′ −R)êϕ .

Note that for a function g(x) with simple zero crossings, g(xn) = 0 but g′(xn) ̸= 0,
we get δ(g(x)) =

∑
n

1
|g′(xn)|δ(x− xn). In our example,

δ(cos θ) =
δ(θ − π

2 )

| − sin π
2 |

= δ(θ − π
2 ) .

12.5.4.7 Ex: Intensity of an electromagnetic wave

Calculate the intensity of the electromagnetic wave given by (a) E⃗(r, t) = E⃗0 cos(kz−
ωt) and (b) E⃗(r, t) = E⃗0eıkz−ıωt. Discuss!

Solution: The magnetic field of the wave is,

B⃗ = k
ω × E⃗0 cos(kz − ωt) or B⃗ = k

ω × E⃗0eıkz−ıωt .

With this we calculate the Poynting vector,

S = E⃗ × B⃗ = k
ωE20 cos2(kz − ωt) or S = k

ωE20e2ıkz−2ıωt .

The intensity is now,

I = |S|2 = 1
cE20 cos2(kz − ωt) or I = 1

cE20 .

The results are different.

12.6 Further reading

J.D. Jackson, Classical Electrodynamics [659]ISBN

D.J. Griffiths, Introduction to Electrodynamics [545]ISBN

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [577]ISBN

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [963]ISBN
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http://isbnsearch.org/isbn/978-1-108-42041-9
http://isbnsearch.org/isbn/978-0-471-21643-8
http://isbnsearch.org/isbn/978-8-521-20801-3


Chapter 13

Electrostatics

We have already seen that all electromagnetic phenomena are due to charges, that
these charges are quantized and conserved, and that the superposition principle holds
for electromagnetic forces. In principle, it should be possible to explain all electro-
magnetic phenomena by calculation the forces exerted by every charge on every other
charge for arbitrary charge distributions. In reality however, the situation is much
more complex, because the forces not only depend on the position of the charges,
but also on their speed and acceleration. In addition, any information on the actual
state of a charge is only transmitted at the finite speed of light, which gives rise to
retardation effects.

To simplify the problem we will initially only consider immobile charges. The
theory dealing with immobile electric charges is named electrostatics. Its fundamental
task of electrostatics resides in calculating the force exerted by spatial distributions
of charges.

13.1 The electric charge and the Coulomb force

13.1.1 Quantization and conservation of the charge

We know that ordinary matter consists of electrically neutral atoms. An atom, con-
sists of a heavy nucleus and a shell of very light-weighted electrons. The nucleus, in
turn, is made up of a number of protons and neutrons. Each proton carries a positive
elementary charge Q = +e, that is, the charge is quantized in units of e. For an atom
to be neutral, the number of electrons (with negative charge −e) in the shell must be
equal to the number of atoms.

Macroscopic bodies are usually neutral, but that does not mean that positive and
negative charges are annihilated. What they can do, is to bunch by equal numbers
within restricted regions of space. Then, the forces exerted by the positive and neg-
ative charges of a specific region on other far-away charges compensate each other.
This effect is called shielding.

Nevertheless, it is possible, exerting work, to separate positive and negative charges,
to generate polarizations in dielectric materials or currents in conducting metals, and
to perform experiments with electrically charged macroscopic objects.

537
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13.1.2 Coulomb’s law

To begin with, we consider a single point charge Q at the position r′ exerting a force
on another charge located in r. The so-called Coulomb force is,

FC =
Qq

4πε0

r− r′

|r− r′|3 , (13.1)

where ε0 is a constant called the permittivity of free space. The Coulomb force de-
creases quadratically with the distance and is directed along the straight line connect-
ing the two charges. Note that the force can be attractive (for Qq < 0) or repulsive
(for Qq > 0). See the Excs. 13.1.3.1 to 13.1.3.22.

According to the superposition principle the force acting on the charge is not
influenced by the possible existence of other forces, for example, exerted by other
charges Qk located in other positions rk,

F = F1 + F2 + ... =
∑

k

Qkq

4πε0

r− rk
|r− rk|3

. (13.2)

Introducing an abbreviation,

E⃗ =
∑

k

Qk
4πε0

r− rk
|r− rk|3

, (13.3)

called the electric field, we can express the Coulomb force as,

FC = qE⃗ . (13.4)

Using the Dirac function we can parametrize the distribution of charges by,

ϱ(r) =
∑

k

Qkδ
3(r− rk) . (13.5)

The charge of a single electron is small, and often many charges are involved in
electrical phenomena. Thus, the discrete character of the charge does not appear,
and the charge distribution appears as a smooth distribution of charge density, such
that, ∫

R
ϱ(r′)dV ′ =

∫

R

∑

k

Qkδ
3(r′ − rk)dV

′ =
∑

k

Qk . (13.6)

With this (fluid model) approximation,

∑

k

Qk... −→
∫
dV ′ϱ(r′)... , (13.7)

the Coulomb law can be written,

E⃗ =

∫
ϱ(r′)
4πε0

r− r′

|r− r′|3 dV
′ , (13.8)

since by inserting the discrete distribution (13.5) we recover Coulomb’s law (13.3).
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It is also possible to define from ϱ a two-dimensional surface charge density σ or
a one-dimensional linear charge density λ using the Dirac function. For example, the
surface charge density on a spherical shell,

ϱ(r) = σ(θ, ϕ)δ(r −R) , (13.9)

or the linear charge density on a ring,

ϱ(r) = λ(ϕ)δ(r −R)δ(z) . (13.10)

Substituting ϱ of the Coulomb law with these expressions, we reduce the dimension-
ality of the integral. We will study problems related to charge distributions in the
Excs. 13.2.4.1 to 13.2.4.12.

13.1.3 Exercises

13.1.3.1 Ex: • Coulomb force

A point charge of −2.0µC and a point charge of 4.0µC are separated by a distance
L. Where should a third point charge be placed in order for the electrostatic force on
this third charge to be zero?

Solution: Gabarite: At a distance equal of 0.41L from the charge −2.0µC on side
opposite side to the charge 4.0µC.
The forces must compensate each other, F13 + F23 = 0, giving,

1

4πε0

q1q3
(L+ x)2

=
1

4πε0

q2q3
x2

.

For q1 = 2q2 we get the equation,

x2 − 2Lx− L2 = 0 ,

with the solution,
x = L(1±

√
2) .

Only the positive sign produces a force minimum, the negative sign corresponds to a
maximum.

13.1.3.2 Ex: • Coulomb force

A point particle with a charge of −1.0µC is located at the origin; a second point par-
ticle with a charge of 2.0µC is located at x = 0, y = 0.1m; and a third point particle
with a charge of 4.0µC is located at x = 0.2m, y = 0. Determine the electrostatic
force on each of the three particles.

Solution: We have,

F1 = (0.9N)êx + (1.8N)êy ,

F2 = (−1.3N)êx − (1.2N)êy ,F3 = (0.4N)êx − (6.4N)êy .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb02.pdf
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13.1.3.3 Ex: • Coulomb force

A point charge of −5.0µC is located at x = 4.0m, y = −2.0m, and a second point
charge of 12.0µC is located at x = 1.0m, y = 2.0m.
a. Determine the absolute value, the direction and the orientation of the electric field
in x = −1.0m, y = 0.
b. Calculate the absolute value, the direction and the orientation of the electric force
acting on an electron placed in the electric field at x = −1.0m, y = 0.

Solution: a. We have 13 kN/C at 230◦.
b. We have 2.1 · 10−15 N at 51◦.

13.1.3.4 Ex: Coulomb force

Imagine an electron near the Earth’s surface. At what point should we place a second
electron in order for the electrostatic force between the electrons to compensate the
gravitational force acting on the first electron?

Solution: The gravitational force will be compensated by the Coulomb force when

FG = meg = 1
4πε0

e2

r2 = FC . Hence,

r =

√
e2

4πε0 meg
= 5m .

13.1.3.5 Ex: Coulomb force

Three positive point charges Q1, Q2, and Q3 are placed at the corners of an equilat-
eral triangle with the edge length L = 10 cm. Calculate the value and direction of the
force acting on an electron located in the center of the triangle.

Solution: Following the Coulomb law we have,

∑

j

Fj =
∑

j

1

4πε0

Qje

|r0 − rj |2
r0 − rj
|r0 − rj |

.

Placing the origin in the center, r0 = 0, we get,

r1 = r2 = r3 ≡ r .
Defining h as the shortest distance between the center and the edges,

(
L

2

)2

+ h2 = r2 and (r + h)2 +

(
L

2

)2

= L2 .

Solving the second equation by L and replacing r using the first equation,

r + h =

√
3

2
L and

√(
L

2

)2

+ h2 + h =

√
3

2
L .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb05.pdf
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Solving by h and r,

h =
L

2
√
3

and r =

(√
3L

2
− L

2
√
3

)
=

L√
3
.

Hence,

r1 = −L
2
êx − hêy = −L

2
êx −

L

2
√
3
êy ,

r2 =
L

2
êx − hêy =

L

2
êx −

L

2
√
3
êy ,

r3 = rêy =
L√
3
êy .

Finally,

F = F1+F2+F3 =
1

4πε0

e

r3
(Q1r1+Q2r2+Q3r3) =

1

4πε0

3

2L2
e




−
√
3Q1 +

√
3Q2

−Q1 −Q2 + 2Q3

0


 .

e-

L
Q1 Q 2

Q3

x

y

Figure 13.1: Coulomb force.

13.1.3.6 Ex: • Coulomb force

Two particles carrying equal charges q are placed at a mutual distance of r = 3mm
and then released. The acceleration of the first particle after having been released is
a1 = 7m/s2, and the acceleration of the second particle is a2 = 2m/s2. The mass of
the first particle is m1 = 6 · 10−7 kg.
a. What is the mass of the second particle?
b. What is the charge of the particles?

Solution: a. The Coulomb force acting on both particles is FC = 1
4πε0

q1q2
r2 , q1 =

q2 = q. Soon after releasing, we have

m1a1 =
1

4πε0

q

r2
= −m2a2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb06.pdf
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Hence, m2 = −m1a1/a2 = 2.1 · 10−6 kg.
b. In addition, we calculate,

q =
√
4πε0r2m1a1 = 6.5 · 10−11 C = 4 · 108 e .

13.1.3.7 Ex: • Coulomb force

A small ball of graphite (mass m = 1kg) suspended on a wire is touched by an elec-
trically charged plastic stick and picks up 1% of its charge. The result is that the ball
is displaced by an angle of 30◦, while the stick is held in place at the former position
of the ball. The distance between the center of the ball and the end of the stick is
10 cm.
a. Calculate the force exerted by the wire on the ball?
b. Assume that the charge on the stick is fully concentrated at its end. What are the
charges on the ball and on the stick?

Solution:

13.1.3.8 Ex: • Acceleration of charges

An electron has an initial velocity of v0 = 2 · 106 m/s in +x-direction. It enters a

region of uniform electric field E⃗ = (300N/C) êx.
a. Determine the acceleration of the electron.
b. How long does it take for the electron to travel a distance of s = 10.0 cm along the
x-axis towards +x in the region that has field.
c. At what angle and in what direction does the motion of the electron deflect as it
travels 10.0 cm in x-direction?

Solution: a. The acceleration is,

a =
F

me
=
−eE
me

= −5.28 · 1013 m/s2 .

b. Instantaneous speed is,
v = v0 − at .

With this we get the traveled distance,

s =

∫ t

0

vdt = v0t− a
2 t

2 .

Hence, the time is,

t =
v0
a
±
√
v20
a2
− 2s

a
= 50ns .

c. The angle is calculated by,

θ = tan ∆y
∆x = 33.4◦ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb08.pdf
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in −y-direction.

13.1.3.9 Ex: • Acceleration of charges

A charged particle of 2.0 g is released from rest in a region that has a uniform electric
field, E⃗ = (300 kN/C)êx. After traveling a distance of 0.5m in this region, the particle
has a kinetic energy of 0.12 J. Determine the particle’s charge.

Solution: Putting the formulas together,

v = at and s = a
2 t

2 ,

we obtain,

s = v2

2a .

The acceleration is,
a = F

m = qE
m ,

such that the kinetic energy gets,

Ecin = m
2 v

2 = m
2 2as = sqE .

Finally we get,

q =
Ecin
sE

= 800µC .

13.1.3.10 Ex: Charged copper coins

The positive proton charge and the negative electron charge have the same abso-
lute value. Assume that the absolute values would have a relative difference of only
0.0001%. Consider copper coins with 3 · 1022 atoms. What would be the repulsive
force of two coins 1m apart?
Help: A neutral copper atom contains 29 protons and the same amount of electrons.

Solution: Each coin has the charge Q = 29 · 3 · 1022 · 0.0001% · e = 0.14C. The
copper coins repel each other with the electrostatic force,

FC =
1

4πε0

Q2

r2
= 1.7 · 108 N .

13.1.3.11 Ex: • Weight of the electron

A metal sphere is charged with Q = +1µC. Determine whether the mass of the
sphere increases or decreases due to the charging and calculate the value?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb11.pdf
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Solution: Since the sphere is positively charged, the electrons must exit the sphere.
Therefore, the sphere loses mass. An electron has the charge e = 1.6 · 10−19 C and its
mass me = 9.1 · 10−31 kg. The loss of mass is therefore δm = meQ

e = 5.7 · 10−18 kg,
which is little.

13.1.3.12 Ex: The hydrogen atom

In the hydrogen atom the typical distance between the positively charged proton and
the negatively charged electron is d ∼ 5 · 10−11 m.
a. Calculate the Coulomb force.
b. Compare this force with the gravitational force between the two particles.
c. What should be the speed of the electron around the nucleus to compensate for
the gravitational attraction by the centrifugal force?

Solution: a. Coulomb’s force is,

FC =
1

4πε0

q1q2
r2

= 9.2 · 10−8 N .

b. The gravitational force is,

FG
FC

=
−Gm1m2

r2

1
4πε0

q1q2
r2

= −4πε0G
m1m2

q1q2
= 4.5 · 10−40 .

Therefore, the ratio is independent of the distance and in addition very small.
c. The balance of forces requires,

FC =
1

4πε0

q1q2
r2

=
mv2

r
= FZ ,

such that,

v =

√
1

4πε0

q1q2
mr

= 2.25 · 106 m/s ≈ 1

133
c .

Comment: The ratio of this speed to the speed of light is approximately equal to the
fine-structure constant α ≈ 1

137 .

13.1.3.13 Ex: Exercise of understanding

Two metallic spheres are placed at a distance d from each other and respectively
charged with +Q and −2Q.
a. Do spheres attract or repel each other?
b. What happens if we let the spheres contact each other and then put them at the
same distance d. How much does the force change?

Solution: a. Initially, the spheres attract each other, because they are loaded with
opposite charges.
b. When the spheres touch, the charge can flow and will spread evenly over the two

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb12.pdf
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spheres. Therefore, each sphere will have the same charge −Q/2, and the spheres will
repel each other. While initially the spheres attracted each other with a force propor-
tional to 2Q2, now they repel each other with a force proportional to Q2/4. That is,
the absolute value of the force decreased by a factor of 8.

13.1.3.14 Ex: • Charged sphere on a spring

A ball with the m is suspended on a spring with the spring constant f .
a. What will be the displacement of the ball due to its weight? What will be the
frequency of oscillation?
b. Now the ball is loaded with the charge Q and a second ball with the same charge
is approached from below the first ball. Derive the relationship between the position
of the first ball z1 and the position of the second z2. The position z1 = 0 is the
resting position of the spring, that is, the position that the spring would have without
suspended mass. CAUTION: you’ll get a third order equation in z1, don’t try to solve
it!
c. For which position z2 of the second ball does the first ball stay at the resting po-
sition of the spring, that is, for which z2 do we find z1 = 0 to be solution? Are there
any other solutions? What are your interpretations?
d. What is the frequency of oscillation under these conditions, when ball 1 is only
slightly displaced around z1 = 0? Use the approximation 1

(a−x)2 ≈ 1
a2 + 2

a3x, which

holds for x≪ a.

Solution: a. Displacement:

mg = fz1 → z1 =
mg

f
.

Oscillation frequency: in the displaced position z1 holds:

mz̈1 = −fz1 .

With the ansatz z1 = cos(ωt) follows ω =
√
f/m. b. Setting the sum of all forces

equal to zero:

mg − fz1 −
1

4πε0

Q2

(z2 − z1)2
= 0

−fz31 + z21(2fz2 +mg) + z1(−2mgz2 − fz22) +mgz22 −
1

4πε0
Q2 = 0 .

There is a solution z1 = 0, when the constant term disappears, that is, for,

mgz22 −
1

4πε0
Q2 = 0

z2 =
Q√

4πε0mg
.

We are left with a second order equation. This can have two real solutions, but only
one is physically significant: the one where the first ball is below the second. Here, the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb15.pdf
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spring tries to bounce the first ball upwards, which is prevented by Coulomb’s repulsion
force exerted by the second ball.
c. The force in the equilibrium position is, with the approximation z1 ≪ z2

F (z1, z2) ≈ mg − fz1 −
1

4πε0
Q2(

1

z22
+

2

z32
z1) = mg − Q2

4πε0z22
− (f − 2Q2

4πε0z32
)z1

= mg − Q2

4πε0

4πε0mg

Q2
− (f − 2Q2

4πε0

(4πε0mg)
3/2

Q3
)z1 = −(f − 2

√
4πε0(mg)3

Q
)z1 .

Therefore, the new oscillation frequency is,

ω =

√√√√ 1

m

(
f − 2

√
4πε0(mg)3

Q

)
.

That is, the frequency is less than before.

13.1.3.15 Ex: Stability of a charge distribution

The charge distributions shown in the figure are given. All positive and negative
charges have the same absolute value.
a. Determine whether one of these distributions is stable? What happens in different
cases?
b. Is it possible to choose the absolute values of the charges in such a way as to make
the configurations stable?

Figure 13.2: Geometry of charge distribution.

Solution: a. As Coulomb’s force falls quadratically with distance and since unequal
charges are at twice the distance of equal charges, the two positively charged balls will
approach the negative and collide.
b. Considering the energies we have,a =

√
3r:

E = 3× 1

4πε0
(2
Q2

a
− Q2

r
) = 3× 1

4πε0
(2
Q2

√
3r
− Q2

r
) = 3× Q2

4πε0r
(
2√
3
− 1) .

Since 2√
3
− 1 > 0, holds F = −dEdr > 0, and so the positive charges will move away

from the negative ones.
a. We call the negative charge −Q1 and the two positive charges Q2,

Q1Q2

r2
=
Q2Q2

(2r)2
such that

Q1

Q2
=

1

4
.
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The outer charges must be four times greater than the inner charges for the force
to zero at all distances, that is, to be at equilibrium. However, this equilibrium is
unstable, as a small deviation from the correct charges is sufficient to let the system
collapse or explode.
b. Analogically with the energy:

Q1Q2

r
=

2Q2Q2√
3r

such that
Q1

Q2
=

2√
3
.

The problem here is, that the charge ratio should be irrational. This is not possible
because of the charge quantization.

13.1.3.16 Ex: Stability of a charge distribution

Three balls with massm and each charged with the charge Q are placed in a parabolic
bowl. This can be described as a surface in space, where the coordinate z of the sur-
face is given by z = z(x, y) = A(x2 + y2). Gravitation shows into −êz direction.
What is the distance the balls adopt, when we set as an additional condition, that all
charges are at the same height?

Solution: The gravitational potential energy is,

Wgr =

3∑

k=1

mgzk = 3mgz1 .

The balls have the same reciprocal distance a12 and r1 from the center of the bowl:
a12 = r1

√
3 =

√
3 (x21 + y21). Hence,

Wgr = 3mgA
(
x21 + y21

)
= mgAa212 .

The electrostatic energy is,

Wel =
1

2

3∑

k,j=1
k ̸=j

1

4πε0

Q2

|rk − rj |
=

1

2

1

4πε0

Q2

a12
3(3− 1) =

3

4πε0

Q2

a12
.

From the minimization condition,

0 =
d

da12
(Wgr +Wel) =

d

da12

(
mgAa212 +

3

4πε0

Q2

a12

)
=

d

da12

(
2mgAa12 −

3

4πε0

Q2

a212

)

we have,

a12 =

(
3

8πε0

Q2

mgA

)1/3

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb17.pdf


548 CHAPTER 13. ELECTROSTATICS

The energy then becomes,

Wgr +Wel =
3

4πε0

Q2

a12
+mgAa212 =

3

4πε0

Q2

(
3

4πε0

Q2

mgA

)1/3 +mgA

(
3

4πε0

Q2

mgA

)2/3

a12 =

(
3

4πε0

Q2

mgA

)1/3

Wgr +Wel =

(
3mgAQ2

4πε0

)4/3

.

Comment: It is not obvious whether there are other configurations with a charge
in the center that would have less energy. Alternatively, we could suspend three balls
loaded on a spring.

13.1.3.17 Ex: Ions in a harmonic potential

Two ions with the positive charge +e are confined to an isotropic harmonic potential.
Each ion has the potential energy U = 1

2mω
2r2, where r is the distance from the

center of the potential. The ions are at rest, only consider two dimensions.
a. What is the distance of the two ions from the center?
b. Calculate the distance for three identical ions.

Solution: a. The force exerted by the harmonic potential on an ion is,

−dU
dr

= −mω2r .

This force must be equalized with the Coulomb force:

mω2r =
1

4πε0

Q2

(2r)2
such that r =

(
1

4πε0

Q2

4mω2

)1/3

.

b. With three ions, we must consider that the ions minimize energy by placing them-
selves in a symmetrical triangle. So the distance between two ions is a =

√
3r. The

total energy of the three ions is,

E = 3×
(

1

4πε0

Q2

a
+

1

2
mω2r2

)
=

√
3

4πε0

Q2

r
+

3

2
mω2r2 .

The force is given by,

F = −dE
dr

=

√
3

4πε0

Q2

r2
− 3mω2r .

From the equilibrium condition, F = 0, follows:

r =

(
1

4πε0

Q2

√
3mω2

)1/3

.
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13.1.3.18 Ex: Spheres on a wire

Two identical spheres with mass m = 0.1 kg are suspended at the same point of a ceil-
ing by a 1 m long wire and have the same charge. What is the value of the charge if the
two centers of the spheres are 4 cm apart. Use the approximation sinα ≈ tanα ≈ α
for small angles α.

Solution: Each of the two spheres is displaced by d = 2 cm from the center. The
displacement angle is in first order, α = d/l with l = 1m the wire length. By this dis-
placement the ball is lifted (in first approximation) by a value of h = αd, hence we have

h = d2

l . The potential energy of the two balls, therefore, is Epot = 2mgh = 2mgd2

l .
This energy must be matched with the Coulomb potential:

2mgd2

l
=

1

4πε0

Q2

d
such that Q =

√
8πε0mgd3

l
.

Inserting the values we get, Q = 42nC.

13.1.3.19 Ex: Oscilloscope

We consider a simple model of an oscilloscope. Inside the device is a Braun tube,
inside which electrons are accelerated by a voltage U to a speed v. Then, the elec-
trons fly through the plates of a capacitor and are deflected by the electric field E
of the capacitor. (In a real oscilloscope there are two capacitors: one for horizontal
deviation and one for vertical.) Behind the capacitor, the electrons fly to a screen,
where they produce a bright spot.
a. Calculate the electron velocity v for an accelerating voltage of U = 1kV. (Do not
consider relativistic effects!)
b. The capacitor has a length of l = 5 cm and a distance from the plates of d = 2 cm.
What is the maximum allowable voltage Umax at the capacitor to prevent electrons
from hitting one of the capacitor plates? (Electrons enter the capacitor in the center
between the plates.)
c. What should be the distance between the plates and the screen (which is 10 cm
wide), so that with maximum voltage Umax the entire area of the screen is used?
Comment: Disregard capacitor edge effects!

Solution:

13.1.3.20 Ex: • Electron between charged plates

Between two parallel horizontal plates there is a homogeneous electric field |E⃗ | =
2 · 103 N/C. The lower plate is charged with a positive charge, the upper plate with a
negative, such that the field is oriented upwards. The length of the plates is L = 10 cm,
their distance d = 2 cm. From the left edge of the bottom plate an electron is shot
at an initial velocity |v0| = 6 · 106 m/s under an angle 45◦ into the space between the
plates.
a. When will the electron hit one of the plates?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb19.pdf
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b. Which plate is eventually hit and at what horizontal distance from the firing point?

Solution: a. The electron in the homogeneous field is accelerated downward by the
Coulomb force, mÿ = −eE. The gravitational force is many orders of magnitude
weaker. The electron trajectory is given by,

x = v0t cosα and y = − eE
2m

t2 + v0t sinα .

The electron reaches its maximum height when ẏ = 0, that is,

tm =
mv0 sinα

eE = 12ns .

At this moment it has reached the height,

ym = − eE
2m

t2m + v0tm sinα =
mv20 sin

2 α

2eE = 25.7 cm

and the distance,
xm = v0tm cosα = 51.1 cm .

That is, at most only the top plate can be reached.
b. The height of the upper plate is reached, when y = d = − eE

2m t
2
d + v0td sinα. From

this follows,

td =
mv0 sinα

eE ±
√(

mv0 sinα

eE

)2

− 2md

eE = 6.4 ns or 17.7 ns .

At the previous instant the distance is xd = v0td = 23.8 cm, that is, the electron can
escape.

13.1.3.21 Ex: • The Coulomb-Kepler problem

We consider two particles charged with charges Q1 and Q2 and masses m = m1 = m2

which, for simplicity, can only move along the êz-axis and are subject to mutual
Coulomb forces.
a. Derive the differential equations for the positions z1 and z2 of the two particles.
Reduce the number of variables of the problem by introducing the difference variable
z = z2 − z1 and establish the differential equation for z.
b. The differential equation obtained has the same shape as that of the Kepler prob-
lem in mechanics, which, however, is not defined along an axis but on a plane. What
are the solutions to Kepler’s problem? What important physical quantity does not
appear to constrain the freedom of movement to one axis? What would be the impact
of this constraint on the solutions to Kepler’s problem? What is the additional degree
of freedom in the Coulomb-Kepler problem as compared to the Kepler problem?
c. Kepler’s differential equation is not easy to solve. Even so, we can learn something
by looking at the phase space diagram. For this, we consider two identical particles
Q = Q1 = Q2 and m = m1 = m2, placed at a distance z0. What is going to happen?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_ForcaCoulomb22.pdf
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How will the velocities v1 and v2 of the two particles behave with respect to each
other? Derive a relationship between the distance z and the velocity v of one of the
particles (energy conservation). What is the value of the velocity for z →∞? Prepare
a phase space diagram in (z, v) for three different distances z0.

Solution: a. We have,

mz̈1(t) = −
Q1Q2

(z2(t)− z1(t))2
and mz̈2(t) =

Q1Q2

(z2(t)− z1(t))2
,

and with z = z2 − z1 taking the difference of the two differential equations follows,

mz̈(t) = 2
Q1Q2

z2
.

b. The solutions to Kepler’s problem are described by Kepler’s three laws. These are,

• The orbits are ellipses, the center of gravity is in one of the focus of the ellipse.

• During same time intervals, a beam sweeps through equal areas.

• The squares of the orbital periods of two objects behave like the cubes of the large
semi-axes.

In Kepler’s problem, the angular momentum is an important parameter, since it neu-
tralizes attractive gravity, and thus stabilizes the orbit. In just one dimension the
angular momentum is zero, therefore, two bodies attract each other without stopping.
In the Coulomb-Kepler problem we have the additional freedom, that the force can be
repulsive.
c. The two particles will move away from each other without limit. From momentum
conservation mv1(t) +mv2(t) = 0 follows v1(t) = −v2(t). Therefore, it is sufficient
to analyze only one of the two velocities.
The total energy of the system consists of the potential energy and the kinetic energy
of both particles:

E = U + T

U =
1

4πε0

Q2

z

T =
1

2
mv21 +

1

2
mv22 = mv2 .

The energy is fixed by the initial conditions z(0) = z0 and v(0) = 0:

E =
1

4πε0

Q2

z0
.

Inserting we get,

1

4πε0

Q2

z0
=

1

4πε0

Q2

z
+mv2 such that v =

√
1

4πε0m

(
1

z0
− 1

z

)
.
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Figure 13.3: Coulomb-Kepler problem.

In the limiting case z →∞ we get,

v∞ =

√
1

4πε0mz0
.

13.1.3.22 Ex: Particle spinning around a charged wire

An infinitely long line uniformly charged with negative charge, has a charge density
of λ and is located on the z-axis. A small positively charged particle has mass m and
a charge q and is on circular orbit of radius R in the xy-plane centered on the charge
line.
a. Deduce an expression for the velocity of the particle.
b. Obtain an expression for the period of the particle’s orbit.

Solution: The field is

Er =
1

2πε0

λ

r
.

Therefore, force is,

Fr = qEr = q
1

2πε0

λ

r
= Fcentr = m

v2

r
.

With that we get the velocity,

v =

√
1

2πε0

λq

m
,

and the period of revolution,

T =
2π

ω
=

2π

v/r
= 2πr

√
2πε0m

λq
.
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13.2 Properties of the electric field

In principle the fundamental problem of electrostatics is solved by Coulomb’s law.
In practice however, the calculation of the electric field generated by a charge distri-
bution can be complicated. On the other hand, electrostatic problems often exhibit
symmetries, which allow for their resolution by other techniques avoiding the integrals
of Coulomb’s law.

13.2.1 Field lines and the electric flux

When we calculate the electric vector field for a charge distribution on a matrix of
points in space, we get diagrams like the one shown in Fig. 13.4. The arrows represent,
through the lengths of the vectors, the value of the field and, through the orientation
of the vector, the direction of the force exerted by the field. The diagram suggests
to connect the arrows thus forming lines called field lines. These lines are nothing
more than the trajectories taken by test charges placed inside the field 1. Field lines
can never intersect (otherwise the direction of force acting on a test charge would
be ambiguous) and can never begin or end in free space. They always start from a
positive charge and end up in a negative charge.

Figure 13.4: Field lines of two equal charges (right) and two opposed charges (left).

The electric flux is a measure for the density of field lines crossing a surface. As we
have already said, the field line density corresponds to the amplitude of the electric
field E⃗ . The normal vector of the surface S being locally perpendicular to the plane,
we must calculate the flux by taking the integral of the scalar product,

ΨE ≡
∫

S
E⃗ · dS . (13.11)

Then, instead of illustrating the amplitude of a field through the length of the arrows
representing the force exerted on a charge, E⃗ ∝ F, we can illustrate the amplitude
through the local density of lines field, E⃗ ∝ ΨE .

The concept of the flux allows us to quantitatively formulate the statement, that
field lines can not start or end in free space, but always come out (or penetrate) into
charges. For this, we calculate the flux through a sphere around an electric charge q

1Note, that the representation by lines (instead of vectors) misses the information about the local
field strength. However, this information is still encoded in the local density of the field lines.
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located at the origin using Coulomb’s law:

∮

spherical surface

E⃗ ·dS =

∮

spherical surface

1

4πε0

q

|r|2 êr ·r
2 sin θdθdϕêr =

q

ε0
. (13.12)

With the superposition principle we can generalize this result to arbitrary distribu-
tions of charges Q. The so-called Gauß’ law, or Maxwell’s third equation,

∮

∂V
E⃗ · dS =

Q

ε0
, (13.13)

states, that the number of field lines entering a charge-free volume V through a closed
surface ∂V must equal the number of lines leaving it. The law also states that there
exist electric charges acting as sources or drains of field lines. We will resolve flux
problems in the Excs. 13.2.4.13 to 13.2.4.29.

13.2.2 Divergence of the electric field and Gauß’ law

Gauß’ integral theorem (12.42) allows us to rewrite Gauß’ law (13.13). On the one
hand, we have, ∮

∂V
E⃗ · dS =

∫

V
∇ · E⃗dV , (13.14)

on the other hand, we can express the total charge inside the volume V as a sum over
the charge distribution,

Q =

∫

V
ϱ(r)dV . (13.15)

comparing the integrands, we obtain the differential form of Gauß’ law or Maxwell’s
third equation:

∇ · E⃗ =
ϱ

ε0
. (13.16)

The Gauß law can also be derived directly from the general Coulomb law: We
calculate the divergence of the field of formula (13.8),

∇ · E⃗ = ∇r ·
∫
ϱ(r′)
4πε0

r− r′

|r− r′|3 dV
′ =

1

4πε0

∫
ϱ(r′)∇r ·

r− r′

|r− r′|3 dV
′ (13.17)

=
1

4πε0

∫
ϱ(r′)4πδ3(r− r′)dV ′ =

ϱ(r)

ε0
.

In the integral form, Gauß’ law is very useful for calculating electric fields partic-
ularly in situations with a high degree of symmetry. Let us discuss some examples in
the following.

Example 44 (Electric field outside a charged sphere): We consider a sphere
with radius R carrying the total charge Q. Gauß’ law says,∮

∂V
E⃗ · dS =

Q

ε0
,
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where we choose as volume a sphere with radius r > R. At first glance, this
does not seem to help much because the field, in which we are interested, is
under the integral. But we can explore the symmetry of the system to simplify
the integral, since E⃗ = E êr and dS = dSêr, such that we can write the integral,∫ π

0

∫ 2π

0

Er2 sin θdθdϕ = 4πr2E =
Q

ε0
.

Hence,

E⃗ =
Q

4πε0r2
êr .

This is precisely Coulomb’s law. It is interesting to note that the field does not

depend on the distribution ϱ of the charge within the volume. Of course, to

take advantage of the symmetry of the system, it is important to choose the

adequate volume.

Example 45 (Box containing an interface): Let us now give another exam-
ple of the utility of Gauß’ law. We are interested in the electric field generated
by an infinitely extended plane carrying a homogeneous surface charge density
σ. By symmetry, the E⃗-field must cross the plane perpendicularly and have
opposite directions above and below the plane. We now imagine a rectangular
pill box enclosing a small area of the plane, so that two surfaces of the box (with
area S) are parallel to the plane. Inside the box we find the charge,

Q = ε0

∮
Sbox
E⃗ · dS = ε0

∫
Supper

EdS + ε0

∫
Slower

EdS = 2SE .

On the other hand, Q =
∫
Vbox

ϱdV = σS. Hence,

E⃗ =
σ

2ε0
n̂ .

It may seem strange that the electric field does not depend on the distance from

the plane, but this is due to the fact that the plane is supposed infinite, which

is an unrealistic concept. For a limited surface we expect field components not

being perpendicular to the interface, which come from the edges of the surface.

13.2.3 Rotation of the electric field and Stokes’ law

Stokes’ integral theorem (12.40) allows us to rewrite Maxwell’s fourth equation(13.23).
From ∮

∂S
E⃗ · dr = 0 =

∫

S
(∇× E⃗) · dS , (13.18)

we obtain the differential form of Maxwell’s second equation:

∇× E⃗ = 0 . (13.19)

The second Maxwell equation (applied to electrostatics) can also be derived di-
rectly from the general Coulomb law: We calculate the rotation of the field of formula
(13.3),

∇× E⃗ = ∇r ×
∫
ϱ(r′)
4πε0

r− r′

|r− r′|3 dV
′ =

1

4πε0

∫
ϱ(r′)∇r ×

r− r′

|r− r′|3 dV
′ = 0 . (13.20)
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The fact that the rotation of any electrostatic field must vanish is a severe constraint.
For example, there is no charge distribution leading to a field of the form E⃗ = yêx.

A direct consequence of this law is that we can introduce the concept of the
potential. This is fundamental, because electrodynamics can be fully formulated in
terms of scalar potentials. We will devote the whole next section to electric potentials.

13.2.4 Exercises

13.2.4.1 Ex: Use of Dirac’s function in Coulomb’s law

Show how the following Coulomb law formulas for one-, two- and three-dimensional
density distributions,

E⃗(r) = 1

4πε0

∫

V

r− r′

|r− r′|3 ρ(r
′)dV ′

E⃗(r) = 1

4πε0

∫

A

r− r′

|r− r′|3σ(r
′)dA′

E⃗(r) = 1

4πε0

∫

C

r− r′

|r− r′|3λ(r
′)dC ′

are linked using Dirac’s δ-function, defined by,

δ(x) =




∞ for x = 0

0 for x ̸= 0



 such that

∫
f(x)δ(x− a)dx = f(a)∞ 1

∞ = f(a) .

Use the examples of a. A linear charge distribution along the x-axis, given by ρ(r′) =
λ(x′)δ(y′)δ(z′), and b. a surface charge distribution in the z = 0 plane, given byρ(r′) =
σ(x′, y′)δ(z′).

Solution: a. We have

E⃗(r) = 1

4πε0

∫

V

r− r′

|r− r′|3 ρ(r
′)dV ′ =

1

4πε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

r− r′

|r− r′|3λ(x
′)δ(y′)δ(z′)dx′dy′dz′

=
1

4πε0

∫ ∞

−∞

r− r′

|r− r′|3λ(x
′)dx′ =

1

4πε0

∫ ∞

−∞

r− x′êx
|r− x′êx|3

λ(x′)dx′ .

b. We have

E⃗(r) = 1

4πε0

∫

V

r− r′

|r− r′|3 ρ(r
′)dV ′ =

1

4πε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

r− r′

|r− r′|3σ(x
′, y′)δ(z′)dx′dy′dz′

=
1

4πε0

∫ ∞

−∞

∫ ∞

−∞

r− r′

|r− r′|3σ(x
′, y′)dx′dy′

=
1

4πε0

∫ ∞

−∞

∫ ∞

−∞

r− x′êx − y′êy
|r− x′êx − y′êy|3

σ(x′, y′)dx′dy′ .
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13.2.4.2 Ex: Electric field generated by a linear charge distribution

Calculate the electric field generated by a linear charge distribution. Analyze the field
in a remote region.

Solution: We put the charge distribution λ(x) = Q/L along the x-axis and the
observation point at x = 0. Following Coulomb’s law we have,

E⃗(r) = 1

4πε0

∫ x2

x1


x
y


−


x
′

y′




√
(x− x′)2 + (y − y′)23

λ(x′)dx′ = λ

∫ x2

x1


0

y


−


x
′

0




√
x′2 + y2

3 dx′ .

Using

∫
zdz

√
z2 + a2

3 = − 1√
z2 + a2

and

∫
dz

√
z2 + a2

3 =
z

a2
√
z2 + a2

,

we obtain,

Ex(r) =
λ

4πε0

∫ x2

x1

−x′
√
x′2 + y2

3 dx
′ =

λ

4πε0

√
x21 + y2 −

√
x22 + y2√

x22 + y2
√
x21 + y2

=
λ

4πε0

(
1

r2
− 1

r1

)

Ey(r) =
λ

4πε0

∫ x2

x1

y
√
x′2 + y2

3 dx
′ =

λ

4πε0

x2
√
x21 + y2 − x1

√
x22 + y2√

x22 + y2y
√
x21 + y2

=
λ

4πε0

(
x2
yr2
− x1
yr1

)
.

with the abbreviations rk ≡
√
x2k + y2. At long distances along the axis x, x1, x2 ≫ L,

we get Ey(x) = 0 for symmetry reasons and

Ex(x) =
λ

4πε0

(
1

x2
− 1

x1

)
=

Q

4πε0L

−L
x1(x1 + L)

≃ −Q
4πε0x21

.

At long distances along the y-axis, that is, y ≫ L, we get Ex(x) = 0 and,

Ey(x) =
λ

4πε0

(x1 + L)
√
x21 + y2 − x1

√
(x1 + L)2 + y2√

x21 + y2y
√
(x1 + L)2 + y2

≃ λ

4πε0

(x1 + L)
√
y2 − x1

√
y2√

y2y
√
y2

=
Q

4πε0

L

y2
.

For an infinite charge distribution, x2 = −x1 ≫ y,

Ey(x) =
λ

4πε0

x2
√
x21 + y2 − x1

√
x22 + y2√

x21 + y2y
√
x22 + y2

=
λ

4πε0

2x2

y
√
x22 + y2

≃ λ

2πε0

1

y
.
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13.2.4.3 Ex: Electric field produced by a charged disc

a. Calculate the electric field along the symmetry axis generated by a thin disk of
radius R evenly charged with the charge Q.
b. Discuss the limit R→∞ assuming that the surface charge density is kept constant.

Solution: a. The electric field produced by a charged disc is,

E⃗(r) = 1

4πε0

∫

disco

r− r′

|r− r′|3 ρ(r
′)r′dr′dϕ′dz′

=
Q

4πε0πR2

∫

disco




x

y

z


−




R cosϕ′

R sinϕ′

0




√
(x− r′ cosϕ′)2 + (y − r′ sinϕ′)2 + z2

3 r
′dr′dϕ′ .

On the symmetry axis we have Ex(z) = Ey(z) = 0 e

Ez(z) =
Q

4πε0πR2

∫

disco

z
√
r′2 cos2 ϕ′ + r′2 sin2 ϕ′ + z2

3 r
′dr′dϕ′

=
Q

4πε0πR2
2πz

∫ R

0

r′
√
r′2 + z2

3 dr
′ =

Q

4πε0πR2
2πz

∫ R2+z2

z2

u−3/2

2
du

=
Q

4πε0πR2
2πz

−1√
r′2 + z2

∣∣∣∣
R

0

=
Q

2πε0R2

( −z√
R2 + z2

+
z

|z|

)
,

with
∫

udu√
u2+z2

3 = − 1√
u2+z2

.

b. Considering a disk with infinite extension, R −→ ∞, but with constant charge
surface density, σ ≡ Q/πR2 = const, we obtain,

Ez(z) =
σ

2ε0

z

|z| .

That is, the electric field is uniform and opposite on both sides of the disk.

13.2.4.4 Ex: Electric field produced by a spherical layer

A charge q is deposited on a solid conducting sphere of radius R.
a. Parametrize the charge distribution ρ(r).
b. Determine the surface charge density σ on the sphere’s surface.
c. Using the Gauß law,

∮
∂V
E⃗(r)·da = Q

ε0
, calculate the electric field inside and outside

the sphere.
d. Using the Coulomb law, E⃗(r) = 1

4πε0

∫
A

r−r′
|r−r′|3σ(r

′)dA′ in spherical coordinates,

r′ =




R sin θ′ cosϕ′

R sin θ′ sinϕ′

R sin θ′


 and dA′ = R2 sin θ′dθdϕ′ ,
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calculate the electric field Ez(z) along the z-axis in- and outside the sphere. Help:

∫ R

−R

z − z′
√
z2 − 2zz′ +R2

3 dz
′ =





−2R
z2

0

2R
z2

for

z < −R
−R < z < R

R < z

.

Solution: a. The charge density is given by a δ-function: ρ(r) = C · δ(3)(r − R),
where the constant C must be determined by integration over the entire space. Inte-
grating the density, we hope to obtain the total charge:

∫

V

ρ(r) = C

∫

V

δ(3)(r −R) ≡ Q .

On the other hand, the integral over the δ-function reproduces the total surface:

∫

∂V

δ(3)(r −R) = 4πR2 .

Hence, C = Q
4πR2 = σ is the surface charge density.

b. The charge will be deposited on the outer surface of the sphere. Thus, the surface
charge density is,

σ =
Q

4πR2
.

c. Using the Gauß law,

∮

∂V

E⃗(r) · da = Er4πr
2 =

Qinside
ε0

,

we find

E⃗(r) = 0 for r < R and E⃗(r) = Q

4πε0r2
êr for r > R ,

what exactly is Coulomb’s law.
d. On the surface σ is constant. Hence,

E⃗(r) = σ

4πε0

∫

A

r− r′

|r− r′|3 dA
′ =

σ

4πε0

∫

A

r−Rê′r
|r− r′|3R

2 sin θ′dθ′dϕ′

=
σR2

4πε0

∫

A




0

0

z


−R




sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′




√
(x− x′)2 + (y − y′)2 + (z − z′)23

sin θ′dθ′dϕ′ .
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For the component Ez along the z-axis we have

Ez(z) =
σR2

4πε0

∫ π

0

∫ 2π

0

z −R cos θ′
√
(R sin θ′ cosϕ′)2 + (R sin θ′ sinϕ′)2 + (z −R cos θ′)2

3 sin θ′dθ′dϕ′

=
σR2

4πε0
2π

∫ π

0

z −R cos θ′
√
(R sin θ′)2 + (z −R cos θ′)2

3 sin θ′dθ′

=
Q

8πε0

∫ 1

−1

z −R cos θ′
√
z2 − 2Rz cos θ′ +R2

3 d cos θ
′ =

Q

8πε0R

∫ R

−R

z − z′
√
z2 − 2zz′ +R2

3 dz
′ .

Using the formula for calculating the integral, we find,

Ez(z) =
Q

4πε0z2
·





−1
0

1

for

z < −R
−R < z < R

R < z

.

13.2.4.5 Ex: Field of a homogeneously charged sphere

Calculate with the Gauß law the electric field of a homogeneously charged sphere
(charge Q, radius R)
a. for r < R and
b. for r ≥ R.

Solution: For reasons of symmetry the electric field E⃗ produced by the charge must
show radially outward and the absolute value E can only depend on r. The charge
density of the sphere is ρ(r) = ρ0 = Q

4πR3/3 for r ≤ R, else ρ(r) = 0. Following the

Gauß law we have
∫
∂ subsphere

E⃗ · dS = 1
ε0

∫
subsphere

ρ(r)d3r. Hence, for r < R

4πr2Er =
ρ0
ε0

∫

subsphere

r2 sin θdrdθdϕ =
4πρ0
3

r3 ,

and finally,

Er =
Q

4πε0R3
r .

For r ≥ R we have,

4πr2Er =
ρ0
ε0

∫

sphere

r2 sin θdrdθdϕ =
4πρ0
3

R3 ,

and finally,

Er =
Q

4πε0r2
.
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13.2.4.6 Ex: Field of a charge distribution with spherical symmetry

The electric field generated by a spherically symmetric charge distribution ρ(r) can
be given in the form,

E⃗(r) = r

r3
4π

∫ r

0

dr′ r′ 2 ρ(r′) ,

where the origin is in the center of the sphere and r = |r|.
a. Show that divE⃗ = 4π ρ and rotE⃗ = 0.
b. Calculate the field for a sphere of radius R, which is homogeneously charged in the
entire volume with the total charge Q.
c. Resolve (b) for a homogeneously charged hollow concentric sphere with inner radius
Ri, outer radius Ra and full load Q.
d. Resolve (c) for the case, that the center of the hollow spherical part is displaced
by a vector d with respect to the center of the spherical surface.
Help: The electric field is an additive quantity.

Solution: a. We have

∇ · E⃗ = ∇⃗ ·
[
4π

r2

∫ r

0

dr′ r′ 2ρ(r′)

]
êr =

1

r2
∂

∂r

[
r2

4π

r2

∫ r

0

dr′ r′ 2ρ(r′)

]

=
4π

r2
∂

∂r

∫ r

0

dr′ r′ 2ρ(r′) =
4π

r2
r2ρ(r) = 4πρ(r) .

Vale E⃗ = êrEr ≡ ∇g(r). From this follows immediately,

∇⃗ × E⃗ = ∇⃗ × (∇⃗g) ≡ 0 .

b. We have,

ρ(r) =

{
Q

4πR3/3 para r ≤ R
0 else

.

Hence, ∫ r

0

dr′ r′2ρ(r′) =

{
Q

4πR3/3
r3

3 for r ≤ R
Q

4πR3/3
R3

3 for r > R

e por isso,

E⃗(r) = êrQ

{
r
R3 for r ≤ R
1
r2 for r > R

.

c. We have

ρ(r) =





0 para r < Ri
Q

4π(R3
a−R3

i )/3
for Ri ≤ r ≤ Ra

0 for r > Ra

.

Hence,

∫ r

0

dr′ r′2ρ(r′) =
Q

4π(R3
a −R3

i )/3





0 for r < Ri

(r3 −R3
i )/3 para Ri ≤ r ≤ Ra

(R3
a −R3

i )/3 for r > Ra
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and therefore,

E⃗(r) = êr Q





0 forr < Ri
r3−R3

i

R3
a−R3

i

1
r2 for Ri ≤ r ≤ Ra

1
r2 for r > Ra

.

In the outer region, therefore, we have the same behavior as in (b). Here the field
only depends on the total evenly distributed charge Q.
d. We want to place the origin in the center of a large solid sphere. An arbitrary
point r on the surface of the sphere has the vector relative to the center of the small
hollow sphere r′ = r− d. We let the charge density be,

ρ1 =
Q

4π
3 (R3

a −R3
i )

and use that
E⃗ = E⃗solid sphere − E⃗hollow sphere .

Now,

E⃗solid sphere =
r

r

4π

3
ρ1

{
r for r ≤ Ra
R3

a

r2 for r > Ra

and

E⃗hollow sphere =
r ′

r ′
4π

3
ρ1

{
r ′ for r ′ ≤ Ri
R3

i

r ′ 2 forr ′ > Ri
.

From this follows immediately,

E⃗(r) = 4π

3
ρ1





d inside the hollow sphere

r− r−d
|r−d|3R

3
i within the shell

r
r3R

3
a − r−d

|r−d|3R
3
i outside

.

13.2.4.7 Ex: Field of a charge distribution with spherical symmetry

A sphere of radius R is in a vacuum. It is made of a material with a constant per-
mittivity ε and carries the charge q in its center.
a. Calculate the field the electrostatic field E⃗ inside and outside the sphere.
b. Calculate the electrostatic potential Φ in the entire space.

Solution:

13.2.4.8 Ex: Charge distribution

We consider the charge density ρ(r) = cr
∫ R
0
dr′δ(r′ − r), where r = |r|, R > 0 and

c = const. The total charge be Q.
a. Make a scheme of the function ρ(r). What is the relationship between the constant
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c and the total charge Q?
b. Start by showing that the electric field created by a spherically symmetric charge
distribution ρ can be written as E⃗(r) = r

r3

∫ r
0
dr′r′2 1

ε0
ρ(r′) . Here, r is the vector

starting from the origin at the center of symmetry and reaching the surface. Deter-
mine the absolute value and direction of the electric field E⃗(r) for |r| < R and |r| > R

for the given charge distribution. Make a scheme of the profile |E⃗(r)|.

Solution: a. The charge is,

Q =

∫
ρ(r)d3r = 4π

∫ ∞

0

r2ρ(r)dr = 4πc

∫ ∞

0

dr r3
∫ R

0

dr′δ(r′ − r)

= 4πc

∫ R

0

dr r3 = 4πc
R4

4
= πcR4

=⇒ c =
Q

πR4
.

The charge distribution therefore increases linearly with the pitch c between r = 0 and
r = R and drops to zero for r > R.
b. For ρ(r) = ρ(r) the expression E⃗ = Er

r
r is the volume integral of a sphere with

radius r, where the center of the sphere is the center of symmetry,

∫

V

div E⃗d3r′ =
∫

V

1

ε0
ρd3r′ =

4π

ε0

∫ r

0

ρ(r′)r′2dr′ .

With Gauß ∫

V

div E⃗d3r′ =
∫

∂V

E⃗d2f = 4πr2Er(r) .

Follows

E⃗(r) = 1

ε0

r

r3

∫ r

0

dr′r′′ρ(r′) =
c

ε0

r

r3

∫ r

0

dr′r′′′r′
∫ R

0

dr′′δ(r′′)− r′)

=





c
ε0

r
r3

∫ r
0
dr′r′′′ = Q

4πε0
êr

r2

R4 for r ≤ R
c
ε0

r
r3

∫ R
0
dr′r′′′ = Q

4πε0
êr

1
r2 for r > R

.

The amplitude Er of the electric field increases between r = 0 and R quadratically and
then falls as 1/r2.

13.2.4.9 Ex: Charge distribution

A thin, square and conductive sheet has d = 5.0 m long edges and a charge of
Q = 80µC. Assume that the load is evenly distributed on the faces of the sheet.
a. Determine the charge density on each face of the sheet and the electric field in the
vicinity of one face.
b. The sheet is placed to the right of an infinite, non-conductive plane charged with
the charge density σinf = 2.0 µC/m

2
, with the faces of the sheet parallel to the plane.

Determine the electric field on each face of the sheet and determine the charge density
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on each face.

Solution: a. The charge densities on each side of the sheet are,

σesq = σdir =
Q
2A = 1.6µC/m2 .

With that, we get the fields close to the surfaces,

Eesq = −σesq

ε0
= −181 kN/C and Edir = σdir

ε0
= 181 kN/C .

b. The field generated by the infinite plane on its right side is,

Einf =
σinf

2ε0
= 113 kN/C .

Therefore, the total fields on both sides of the sheet are,

Eesq,x = Eesq + Einf = −68 kN/C and Edir,x = Edir + Einf = 294 kN/C .

As the sheet is conductive, the charge densities rearrange themselves like

σesq,x = ε0Eesq,x = 0.6µC/m2 and σdir,x = ε0Edir,x = 2.6µC/m2 .

13.2.4.10 Ex: Charge distribution

A large, flat, non-conductive and non-uniformly charged surface is placed along the
x = 0 plane. At the origin, the charge density is σ = 3.1µC/m2. At a short distance
from the surface in the positive direction of the x-axis, the x-component of the electric
field is Edir = 4.65 ·105 N/C. What is the value of Ex a short distance from the surface
in the negative direction of the axis x.

Solution: The discontinuity of the normal of the electric field has to be,

∆En =
σ

ε0
.

Hence, the field on the left is

Eesq = Edir −
σ

ε0
= −115 kN/C .

The inequality of the fields on the left and right sides comes from the superposition of
another electric field due to the uneven distribution of charge on the surface.

13.2.4.11 Ex: Charge distribution

An infinite flat non-conductive blade with surface charge density σ1 = +3.0µC/m2

is located in the y0 = −0.6m plane. A second infinite flat blade with surface charge
density of σ2 = −2.0µC/m2 is located in the x0 = 1.0m plane. Finally, a thin
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non-conductive spherical shell with radius R = 1.0m and its center in the z0 = 0
plane at the intersection of the two charged blades, has a surface charge density of
σ3 = −3.0µC/m2. Determine the magnitude, direction, and orientation of the elec-
tric field along the x-axis and
a. x1 = 0.4m and
b. x2 = 2.5m.

Solution: a. The fields produced by σn are,

E⃗1 =
σ1
2ε0

y − y0
|y − y0|

êy , E⃗2 =
σ2
2ε0

x− x0
|x− x0|

êx ,

E⃗3 = 0 for r < R and
σ34πR

2

4πε0

1

r
êr for r > R ,

where r2 ≡ (x− x0)2 + (y − y0)2 + (z − z0)2. The total field is,

E⃗ = E⃗1 + E⃗2 + E⃗3 .

We verify that the observation point r1 = (x1, 0, 0) is within the sphere σ3, r1 < R.
Hence,

E⃗ =
σ1
2ε0

êy +
σ2
2ε0

(−êx) + 0 ,

giving E =

√
σ2
1+σ

2
2

2ε0
= 204 kN/C and θ = σ1

σ2
= 56.3◦.

b. We verify that the observation point r2 = (x2, 0, 0) is outside the sphere σ3, r2 > R.
Hence,

E⃗ =
σ1
2ε0

êy +
σ2
2ε0

(+êx) +
σ3
ε0

R2

r21
êx ,

giving E =

√
σ2
1+(σ2+

2R2

r21
)2

2ε0
= 263 kN/C and θ = σ1

σ2+
2R2

r1

= 153◦.

13.2.4.12 Ex: Charged sphere

A solid non-conducting sphere with radius R = 1.0 cm carries a uniform volumetric
charge density. The magnitude of the electric field at a distance r = 2.0 cm from the
center of the sphere is Er = 1.88 · 103 N/C.
a. What is the volumetric charge density of the sphere?
b. Determine the magnitude of the electric field at a distance d = 5.0 cm from the
center of the sphere.

Solution: a. Using the Gauß law,

Er =
1

4πε0

Qinside
r2

,

we obtain,
Qinside = 4πε0r

2Er .
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The density follows from,

ρ =
Qinside
4π
3 R

3
=

3ε0r
2Er

R3
= 2.0 µC .

b. The electric field at this distance is,

Ed =
1

4πε0

Qinside
d2

= 301.3N/C .

Gabarite: a. 2.0µC/m3. b. 470N/C.

13.2.4.13 Ex: Electrical flow

A point charge Q is placed in the center of a hypothetical ball with radius R, which
on one side is cut at a height h. What is the flow of electric field E⃗ through the plane
of the cut A illustrated in the figure?

Figure 13.5: Scheme.

Solution: The electric field is given by,

E⃗(r) = 1

4πε0

Q

r2
êr .

As in a central field without divergence or rotation the flow must be preserved, we can
consider instead of the flow through the cut A, a flow through the spherical cap. The
flow of the electric field is therefore,

Φ =

∫

A

E⃗(r′) · dS′ =
∫

S

1

4πε0

Q

r2
êr · dS =

∫

A

1

4πε0

Q

R2
R2 sin θdθdϕ

= 2π
Q

4πε0
cos θ|0arccos(h/R) =

Q

2ε0

(
1− h

R

)
.

13.2.4.14 Ex: Electrical flow

The cube shown in the figure has an edge length of d = 1.4m and is located inside
an electric field.
a. Calculate the electrical flux through the right surface of the cube for an electric
field given by E⃗ = −3V/m ·êx + 4V/m ·êz. What is the total flux across the entire
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y

x

z

Figure 13.6: Scheme.

surface of the cube?
b. Calculate the total flux across the entire surface of the cube for the electric field
E⃗ = −4V/m2 ·êx + (6V/m+3V/m

2 ·y)êy. What charge is contained in the cube?

Solution:

13.2.4.15 Ex: Electrical flow

Calculate the electric field flux E⃗(r) = E0êz through the semi-sphere with radius R
shown in the figure.

E

z

R

Figure 13.7: Scheme.

Solution: The surface element in spherical coordinates is,

da = R2 sin θdθdϕêr with êr =




sin θ cosϕ

sin θ sinϕ

cos θ


 .

The electric field on the surface of the sphere is,

E⃗ = E0




0

0

1


 .

The flux through the semi-sphere is therefore,

Ψ = R2

∫ π/2

0

dθ sin θ

∫ 2π

0

dϕE0




0

0

1


·




sin θ cosϕ

sin θ sinϕ

cos θ


 = 2πE0R2

∫ π/2

0

dθ sin θ cos θ = πE0R2 .
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Smart solution: As the field is homogeneous, the flux
∫
E⃗ ·da =

∫
E0êz ·da through

the area of the semi-sphere is equal to the flux through a circular surface with the
same radius: ∫

semi−sphere
E⃗ · da =

∫

circle

E0êz · êzdA = E0πR2 .

13.2.4.16 Ex: Electrical flow

Calculate the flow of the vector field with cylindrical symmetry E⃗(r) = E0êρ through
the half cylindrical surface shown in the figure with radius R and length L.

z

R

L

E

Figure 13.8: Scheme.

Solution: The surface element is in cylindrical coordinates,

dS = Rdϕêρ with êρ =




cosϕ

sinϕ

0


 .

The flux through the cylinder surface is given by the following expression:

Ψ =

∫
E⃗(r) · dS =

∫

S
E0êρêρdf = E0πRL .

13.2.4.17 Ex: Electric field of a charged sheet

An infinitely extended non-conductive sheet carries a charge with a surface density
of 0.1µC/m2 on either side. What is the distance of the equipotential surfaces for a
potential difference of 50V?

Solution: With ρ(r) = σ0δ(z) vale,
∫
E df =

∮

∂V

E⃗ dS =
1

ε0

∫
ρdV =

σ0
ε0

∫
dS .

Follows E = σ/ε0. With E = U/d follows d = ε0U/σ = 4.4mm.
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13.2.4.18 Ex: Electric field between charged planes

Consider two thin, non-conductive planes with infinite length perpendicular to the
x-axis and crossing this axis at the positions x1 and x2 with x1 < x2. The planes are
uniformly charged with charge densities σ2. Calculate the electric fields in the three
regions x < x1 and x1 < x < x2 and x2 < x. Discuss the particular cases σ2 = σ1
and σ2 = −σ1.

Solution: The fields are,

Eesq = −
σ1
2ε0
− σ2

2ε0
, Emed = +

σ1
2ε0
− σ2

2ε0
, Edir = +

σ1
2ε0

+
σ2
2ε0

.

For σ2 = −σ1, we obtain Eesq = Edir = 0 and Emed = σ1/ε0.
For σ2 = σ1, we obtain Emed = 0 and Eesq = Edir = σ1/ε0.

13.2.4.19 Ex: Electric field of a photocopier

The electric field just above the surface of the electrically charged drum of a photo-
copier has the absolute value 2.3 · 105 N/C. The drum has a length of 42 cm and a
diameter of 12 cm.
a. What is the charge density on the surface supposed conductive?
b. What is the total charge on the drum?
c. Decreasing the drum to 8 cm in order to build a more compact photocopier, the
field on the surface must remain the same. What should the charge be in this case?

Solution: a. For an infinitesimal volume element including a part of the drum’s
surface we can express the surface density of charges as σ = ε0E = 2 · 10−6 C/m2

.
b. For the whole cylinder,

∮

cylindersurface

E⃗ dS = E · 2πRL =
Q

ε0
.

Follows Q = ε0E · 2πRL = 6.4 · 10−7 C.
c. The charge on the smaller drum should be 12/8=1.5 times less.

13.2.4.20 Ex: Geiger counter

A Geiger-Müller meter consists essentially of a metal tube filled with gas (inner radius
ra) with a thin wire inside (radius ri). A high voltage is applied between the two.
The meter serves, for example, to detect charged particles, which produce pairs of
electrons and ions from the gas, which are then extracted by an applied voltage and
detected as an electrical signal.
a. Calculate the potential ϕ(r), where ϕ(ra) = 0 and ϕ(ri) = U = 1000V.
b. Be ri = 15µm, ra = 1 cm. Calculate the strength of the field at the tube’s surface.
c. The average free path in the gas is L = 3µm. At what distance RI from the wire
does an avalanche form, that is, an electron stopped due to a collision is accelerated
over a distance L up to the ionization energy EI = 5 eV and, thus, can generate
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Figure 13.9: Geiger counter.

another electron-ion pair in the subsequent collision?

Solution: a. The flux through the curved surface of a cylinder with radius r sur-
rounding the wire follows Gauß’ law:

∫

∂V

E⃗ · dS =
1

ε0

∫

V

ρdV .

and with that E = Q
2πε0lr

with the charge Q within a segment of the wire of length l.

The potential continues follows from the integration of E⃗ = −∇⃗Φ,

Φ = −
∫
Edr + C = −

∫
Q

2πε0lr
dr + C = − Q

2πε0l
ln r + C .

With the boundary condition Φ(r)|r=ra = − Q
2πε0l

ln ra+C = 0 segue Φ(r) = Q
2πε0l

(ln ra − ln ri).

With the boundary condition Φ(r)|r=ri =
Q

2πε0l
(ln ra − ln r) = U segue,

Φ(r) = U
ln(ra/r)

ln(ra/ri)
.

b. With that we get the field strength on the wire surface,

E(ri) =
Q

2πε0lri
=

1

ri

U

ln ra
ri

= 7.2 · 104 V/cm .

c. Avalanches happen at the position RI ,

EI = eΦ(RI)− eΦ(RI − L) =
eQ

2πε0l
ln
RI − L
RI

= eU
ln RI−L

RI

ln ra
rI

.

From this,

RI =
L

1 +
(
ra
rI

)EI/eU
= 1.5mm .
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13.2.4.21 Ex: Electrical flow

A thin, non-conductive uniformly charged spherical shell with radius R, has a total
positive charge equal to Q. A small piece is removed from the surface.
a. What are the absolute value, the direction and the orientation of the electric field
at the center of the void?
b. The piece is placed back into the void. Determine the electrical force exerted on
the piece.
c. Using the strength of the force, calculate the electrostatic pressure that tends to
expand the sphere.

Solution: a. The total charge is,
∫

esfer

ρ(r′)dV ′ =
∫ π

0

∫ 2π

0

∫ ∞

0

Q

4πR2
δ(r′ −R)r′2dr′ sin θ′dθ′dϕ′

= 4π

∫ ∞

0

Q

4πR2
δ(r′ −R)r′2dr′ = Q .

The electric field is,

E⃗(r) = 1

4πε0

∫

sphere

r− r′

|r− r′|3 ρ(r
′)dV ′

=
1

4πε0

∫ π

dθ

∫ 2π

0

∫ ∞

0

r− r′

|r− r′|3
Q

4πR2
δ(r′ −R)r′2dr′ sin θ′dθ′dϕ′ .

At the observation point r ≡ Rêz

E⃗(r) = 1

4πε0

Q

4πR2

∫ π

dθ

∫ 2π

0

∫ ∞

0

Rêz − r′
√
x′2 + y′2 + (R− z′)23

δ(r′ −R)r′2 sin θ′dθ′dϕ′ ,

that is,

Ez(Rêz) =
1

4πε0

Q

4πR2

∫ π

dθ

∫ 2π

0

R−R cos θ′

R3

√
sin2 θ′ cos2 ϕ′ + sin2 θ′ sin2 ϕ′ + (1− cos θ′)2

3R
2 sin θ′dθ′dϕ′

=
1

4πε0

Q

4πR2
2π

∫ π

dθ

1− cos θ′
√
sin2 θ′ + (1− cos θ′)2

3 sin θ′dθ′

=
1

4πε0

Q

4πR2
2π

∫ π

dθ

sin θ′dθ′√
8
√
1− cos θ′

=
1

4πε0

Q

4πR2
2π

(
1− 1√

2

√
1− cos dθ

)

=
1

4πε0

Q

2R2

(
1− sin dθ

2

)
≃ 1

4πε0

Q

2R2
.

The force is,

F = QvoidE⃗ =
πa2Q

4πR2
Ezêz =

πa2Q

4πR2

1

4πε0

Q

2R2
êz =

a2Q2

32πε0R4
êz .
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Alternatively we can subtract the field above the entire sphere Er from the field of a
disk with radius a at a height h above the disk:

Esphere − Edisc =
1

4πε0

Q

R2
− σ

2ε0

(
1− h√

a2 + h2

)

=
1

4πε0

Q

R2
− 1

2ε0

Q

4πR2

(
1− sin dθ

2

)
≃ Q

8πε0R2
.

Gabarite: a. E = Q
8πε0R2 , radially outward. b. F = Q2a2

32πε0R4 , radially outward.

c. P = Q2

32π2ε0R4 .

13.2.4.22 Ex: Flow through a cone

An imaginary straight circular cone with base angle θ and base radius R is in a charge-
free region exposed to a uniform electric field E⃗ (the field lines are vertical to the cone
axis). What is the ratio between the number of field lines per unit area entering the
base and the number of lines per unit area entering the cone’s conical surface. Use
Gauß’s law in your answer.

Solution: An element of the cone surface is,

dS = ρdϕ
dz

sin θ
=
(
R− z

tan θ

)
dϕ

dz

sin θ
.

The total surface of the cone is,

Scone =

∫ 2π

0

∫ R tan θ

0

(
R− z

tan θ

)
dϕ

dz

sin θ
=

2π

sin θ

∫ R tan θ

0

(
R− z

tan θ

)
dz

= 2π
tan θ

sin θ

R2

2
=
πR2

cos θ
=
Sbase
cos θ

.

Since the number of field lines crossing Sbase and Scone is the same, but the areas are
different, the number of lines per unit area is cos θ times less for Scone.

13.2.4.23 Ex: Flow of a field

Consider the rectangle with the corners,



xi

yi

zi


 =




b

a√
2

0


 ,




0

a√
2

0


 ,




0

0

a√
2


 ,




b

0

a√
2




and calculate the flux integral of the field A(r) through the area F of the rectangle,

A(r) =




y2

2xy

3z2 − x2


 .
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Solution: The solution is,
∫

A · dF = ab
√
2 (

1

2
a2 − 1

3
b2 +

1

2
√
2
ba)

.

13.2.4.24 Ex: Flow of a vector field

Calculate the flux of the vector field A(r) across the surface of a sphere of radius R
around the origin of the coordinate system for
a.

A(r) = 3
r

r2
.

b.

A(r) =




3z − 2y

x+ 5z

y + x


 .

Solution: We have dF = R2 sin θ dθ dϕ êr.
a. Hence, A(r) · dF = 3R sin θdθdϕ and therefore,

∫
A(r) · dF = 12π R .

b. Now,

A(r) =




R(3 cos θ − 2 sin θ sinϕ)

R(sin θ cosϕ+ 5 cos θ)

R sin θ(sinϕ+ cosϕ)




and hence,

A(r) · dF = R3 (cos θ sin2 θ(4 cosϕ+ 6 sinϕ)− sin3 θ cosϕ sinϕ)dθdϕ .

Now, ∫ 2π

0

dϕ sinϕ =

∫ 2π

0

dϕ cosϕ = 0 ,

as well as, ∫ 2π

0

dϕ sinϕ cosϕ =

∫ +1

−1
dx x = 0 .

Hence follows immediately, ∫
A(r) · dF = 0 .

Alternatively: We immediately see that ∇ · A = 0. With Gauß’ theorem the same
result immediately follows.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_FluxoEletrico12.pdf
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13.2.4.25 Ex: Van de Graaff generator

The spherical shell (radius R) of a Van de Graaf generator must be charged until a
potential difference of 106 V. What should be the minimum diameter of the sphere
to avoid lightning discharge?
Help: The field for disruptive discharge in air is 3 · 106 V/m.

Solution: From the Gauß law,

Er =
Q

4πε0r2
and Φ = − Q

4πε0r
.

The potential difference regarding ∞ is,

V =
Q

4πε0R
.

The electric field on the surface is,

Rr =
Q

4πε0R2
=
V

R
.

from this follows,

R =
V

E >
V

Edisrp
=

106

3 · 106 m = 33 cm .

13.2.4.26 Ex: Van de Graaff accelerator

Protons are released from rest in a Van de Graaff accelerator system. The protons
are initially located at a position where the electrical potential has a value of 5.0MV,
and then, they travel through vacuum to a region where the potential is zero.
a. Determine the final velocity of these electrons.
b. Determine the magnitude of the accelerating electric field if the potential changes
uniformly over a distance of 2m.

Solution: a. 3.09 · 107 m/s.
b. 2.5MV/m.

13.2.4.27 Ex: Faraday cage

Show that in a space confined by a grounded surface the electric field must disappear.

Solution: By the second fundamental law of electrostatics ∇ · E⃗ = ρ/ε0 with ρ = 0

and with the field E⃗ = −∇Φ, follows the Poisson equation,

∆Φ = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_FluxoEletrico13.pdf
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According to the boundary condition, the surface is at a given potential:

Φ|∂V = Φ0 = const .

Obviously, Φ(r) ≡ Φ0 it is a solution. This solution is unequivocal, such that the field
is,

E⃗ = ∇ · Φ = 0 .

13.2.4.28 Ex: Waveguide

The figure shows a portion of the cross section of an infinitely long concentric cable.
The inner conductor has a linear charge density of 6 nC/m and the outer conductor
has no net charge.
a. Determine the electric field for all values of R, where R is the distance perpendic-
ular to the common axis in the cylindrical system.
b. What are the surface charge densities on the surfaces inside and outside the outer
conductor?

Figure 13.10: Waveguide.

Solution: a. We imagine an axial cylindrical volume of radius r and length d. The
radial electric field is given by Gauß’ law,

ERA = ER2πdR =
q

ε0
=
λd

ε0
.

Hence, ER = λ
2πε0R

. As the charge goes to the surface of the inner cylinder, we have,

ER = 0 for R < Rint and ER =
λ

2πε0R
=

1

R
107.85Nm/C for Rint < R < Rextint

ER = 0 for Rextint < R < Rext and ER =
λ2

2πε0R
=

1

R
107.85Nm/C for R < Rext .

b. With dλ = q = 2πrintdσ we have,

σextint =
λ

2πRextint
= −21.2 nC/m2

and σext =
λ

2πRext
= 14.7 nC/m

2
.
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13.2.4.29 Ex: Fundamental equations of electrostatics

a. Gives the fundamental electrostatic equations in integral and differential form.
b. Gives the fundamental equation in terms of the electrostatic potential.

Solution: a. In the differential form:

div E⃗ =
ρ(r)

ε0
and rot E⃗ = 0 .

Using the Gauß’, respectively, Stokes theorem we obtain the integral form:
∮

∂V

E⃗ · dS =
Q

ε0
and

∮

∂S
E⃗ · dr = 0 .

b. For a given charge distribution rho( r) we have:

Φ(r) =
1

4πε0

∫

V

d3r
ϱ(r′)
|r− r′| .

13.3 The scalar electrical potential

We already noted that the electric field generates a force that can accelerate a charge
Q along a field line. Therefore, the electric field contains a potential energy which
it can convert into kinetic energy by exerting work, W =

∫
F · r = Q

∫
E⃗ · r. The

quantity 2,

Φa,b ≡
∫

Ca,b
E⃗ · dr (13.21)

is called the difference of electric potential between the points a and b connected by
a path Ca,b.

Stokes’ law (13.18) allows us to state, that the potential difference (13.21) does
not depend on the path chosen, because for two different paths C and C′ between the
points a and b we have,

∫

C(a,b)
E⃗ · dr−

∫

C′(a,b)
E⃗ · dr = 0 . (13.22)

Consequently, the potential defined between a reference point O and any observation
point r is unambiguous,

Φ(r) = −
∫ r

O
E⃗ · dr , (13.23)

and the potential difference between two points a and b is well defined,

Φ(b)− Φ(a) = −
∫ b

a

E⃗ · dr . (13.24)

2We note that the electric potential is linked to potential energy, but is not the same.
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The fundamental theorem for gradients, on the other hand, says that,

Φ(b)− Φ(a) =

∫ b

a

(∇Φ) · dr . (13.25)

These results being valid for any choice of points a and b, we conclude by comparing
these two equations,

E⃗ = −∇Φ . (13.26)

Example 46 (Potential of a point charge): For an electric field generated
by an electric charge e located at the origin we can easily calculate the integral
along a path C between two points a and b using Coulomb’s law:∫

C
E⃗ · dr =

∫ b

a

1

4πε0

e

|r|2 êr · (êrdr + êθrdθ + êϕr sin θdϕ)

=
1

4πε0

∫ b

a

e

r2
dr =

1

4πε0

(
e

ra
− e

rb

)
.

With the superposition principle we can generalize this result for distributions

of arbitrary charges Q.

Some comments are appropriate at this point:

• The formulation by the potential (a scalar field) instead of the vector electric
field is more compact. It summarized the Coulomb (13.8) law along with the
constraint (13.19).

• The reference point O is arbitrary. Exchanging this reference point by another
O′ only adds a global constant to the potential,

Φ′(r) = −
∫ r

O′
E⃗ · dr = −

∫ O

O′
E⃗ · dr−

∫ r

O
E⃗ · dr = K +Φ(r) , (13.27)

but does not affect neither the difference of two potentials,

Φ′(b)− Φ′(a) = Φ(b)− Φ(a) , (13.28)

nor the electric field,
∇Φ′ = ∇Φ . (13.29)

We conclude that the potential is not a real quantity, but a mathematical trick
to simplify our life 3. Generally, the reference point is placed at infinity, O =∞,
fixing the free choice of the global constant by,

Φ(∞) ≡ 0 . (13.30)

• In the same way as the electric field, the electric potential also obeys the super-
position principle.

3We shall see later that this conclusion must be reviewed in quantum mechanics in the context
of the Aharonov-Bohm effect.
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13.3.1 The equations of Laplace and Poisson

We already learned the two equations defining the electrostatic field (13.19) and

(13.16), that is, ∇× E⃗ = 0 and ∇ · E⃗ = ϱ/ε0. Let us now rewrite these equations for
the electric potential,

∇× (∇Φ) = 0 , ∇ · ∇Φ = ∆Φ = −ϱ/ε0 . (13.31)

Thus, the formulation by the potential (13.21) automatically satisfies the require-
ment (13.22), that the rotation must disappear.

On the other side, we have a second-order differential equation called the Poisson
equation. In regions with no charge, this equation turns into a Laplace equation,

∆Φ = 0 . (13.32)

13.3.2 Potential generated by localized charge distributions

The Poisson equation allows us to reconstruct a charge distribution once its potential
is known. However, we usually want to do the opposite. Let us start with a point
charge, located at the origin, the potential of which is,

Φ(r) = −
∫
E⃗ · dr′ = −1

4πε0

∫
Q

r′2
dr′ =

1

4πε0

Q

r′

∣∣∣∣
r

∞
=

1

4πε0

Q

r
. (13.33)

Figure 13.11: The fundamental laws of electrostatics relate the three fundamental quantities,
the charge distribution ϱ, the electric field E⃗ , and the electric potential Φ.

According to the superposition principle, for a discrete distribution of charges Qk
located at the positions rk,

Φ(r) =
1

4πε0

∑

k

Qk
|r− rk|

. (13.34)

Finally, for a continuous distribution ϱ(r′), we obtain the fundamental solution of the
electrostatic problem,

Φ(r) =
1

4πε0

∫
dQ′

|r− r′| =
1

4πε0

∫
ϱ(r′)
|r− r′|d

3r′ . (13.35)
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From this equation we can derive the Coulomb law (13.8).
Low-dimensional distributions can be treated by suitable parametrization, as in

the examples (13.9) and (13.10).

13.3.3 Electrostatic boundary conditions

We have already noticed that the electric field always suffers a discontinuity when
passing through a surface charge distribution. To study this, we consider a charged
interface traversed by an external electric field E⃗ext. Now, we make two thought
experiments: (1) We envision a rectangular pill box enclosing a small part of the
interface, as shown in Fig. 13.12. The height ϵ of the box is so small that the flux
through the sides of the box can be neglected. With this,

∮
E⃗ · dS = 1

ε0
Q = 1

ε0
σS , (13.36)

where E⃗ is the total electric field (that is, the sum of the field generated by the surface

charge and field E⃗ext). A is the surface of the box. This gives,

E⊥top − E⊥bottom = 1
ε0
σ . (13.37)

(2) We imagine a rectangular surface perpendicular to the interface and cutting
through the interface. As shown in Fig. 13.12, the height ϵ of the surface is so small
that the potential difference along the vertical branches can be neglected. With this,

∮
E⃗ · dl =

∫
E⃗top · dl+

∫
E⃗bottom · dl = (E⃗top − E⃗bottom) · l = 0 , (13.38)

where l is the length of the surface. This gives,

E⃗∥top = E⃗∥bottom . (13.39)

That is, when traversing a charged interface, only the part of the electric field
which is perpendicular to the interface suffers a discontinuity. This simply reflects
the fact that the charge generates its own electric field, which is perpendicular to the
interface and superposes to the external field.

Figure 13.12: Surface S around a box-shaped volume enclosing a small part of the interface,
path l around a small area cutting through the interface, and potential difference between
two points a and b.
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The potential, on the other hand, is continuous, since the integral between a point
a above the interface and a point b below is,

∫ a

b

E⃗ · dl = Φ(b)− Φ(a)
a→b−→ 0 . (13.40)

We study the electrostatic boundary conditions in Exc. 13.3.4.18.

13.3.4 Exercises

13.3.4.1 Ex: Earnshaw theorem

Show that the electrostatic potential in free space does not exhibit a maximum. Com-
ment: This is why it is not possible to confine charged particles in electrostatic fields.

Solution: For a charged particle to remain in a stable equilibrium, the force act-
ing on the particle must be repulsive in every direction of space, that is, all field lines
must be directed towards the equilibrium point. This is only possible when the diver-
gence of this field is less than zero, that is, this point acts as a sink. However, this is
prohibited in free space (that is, inthe absence of charges) by Gauß’s law:

∇ · F = ∇ · (∇Φ) = ∆Φ = 0 .

An electrostatic force that can be derived from a potential Φ(r) is always non-divergent,
that is, it has neither minimums nor maximums but, at best, saddle points.

13.3.4.2 Ex: Electrical potential between point charges

A point particle with a charge equal to +2µC is fixed at the origin.
a. hat is the electrical potential V at a point 4m from the origin, considering that
V = 0 at infinity?
b. How much work must be done to bring a second point charge with a charge of
+3µC from infinity to a distance of 4.0m from the first charge?

Solution: a. 4.49 kV
b. 13.5 J

13.3.4.3 Ex: Electrical potential between point charges

Three identical point particles with charge q are located at the corners of an equilat-
eral triangle that is circumscribed in a circle of radius a contained in the plane z = 0
and centered at the origin. The values of q and a are +3.0µC and 60 cm, respectively.
(Consider that, far from all charges, the potential is zero.)
a. What is the electrical potential at the origin?
b. What is the electrical potential at the point of the z-axis being at z = a?
c. How would your responses to the parts (a) and (b) change if the charges q were
larger? Explain your answer.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico01.pdf
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Solution: a. 135 kV.
b. 95.3 kV.
c. Since the two field points are equidistant from all points in the circle, the responses
to the parts (a) and (b) do not change.

13.3.4.4 Ex: Electrical potential between point charges

Two identical positively charged point particles are fixed to the x-axis at x = +a and
x = −a.
a. Write down an expression for the electrical potential V (x) as a function of x for all
points on the x-axis.
b. Draw V (x) versus x for all points on the x-axis.

Solution: a. V (x) = 1
4πε0

(
1
|x−a| +

1
|x+a|

)
.

13.3.4.5 Ex: Electrical potential between point charges

The electric field on the x-axis due to a fixed point charge at the origin is given by
E⃗ = (b/x2)êx, where b = 6.0 kV ·m and x ̸= 0.
a. Determine the amplitude and sign of the point charge.
b. Determine the potential difference between the points on the x-axis at x = 1m and
x = 2m. Which of these points is at a higher potential?

Solution: a. +668 nC.
b. 3.0 kV. The point at x = 2m is at the highest potential.

13.3.4.6 Ex: Dielectric disruption of air

Determine the maximum surface charge density σmax that can exist on the surface of
any conductor before dielectric discharge in the air occurs.

Solution: ≈ 3 · 10−5 C/m2
.

13.3.4.7 Ex: Potential energy of a charged sphere

a. How much charge is on the surface of an isolated spherical conductor that has a
radius of R = 10.0 cm and is charged with 2.0 kV?
b. What is the electrostatic potential energy of this conductor? (Consider that the
potential is zero far from the sphere.)

Solution: a. 22.3 nC,
b. 22.3µJ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico04.pdf
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13.3.4.8 Ex: Energy of a particle in a potential

Four point charges are attached to the vertices of a square centered on the origin.
The length of each side of the square is 2a. The charges are located as follows: +q is
in (−a,+a), +2q is in (+a,+a), −3q is in (+a,−a), and +6q is in (−a,−a). A fifth
particle with mass m and charge +q is placed at the origin and released from rest.
Determine its velocity when it is far from the origin.

Solution: v = q

√
6
√
2k

ma = 2.91q
√

k
ma .

13.3.4.9 Ex: Energy of a particle in a potential

Two metallic spheres have radii of 10 cm each. The centers of the two spheres are
separated by 50 cm. The spheres are initially neutral, but a charge Q is transferred
from one sphere to another, creating a potential difference between them of 100V. A
proton is released from rest at the surface of the positively charged sphere and travels
to the negatively charged sphere.
a. What is the kinetic energy once it reaches the negatively charged sphere?
b. At what velocity does it collide with the sphere?

Solution: a. As the potential difference ∆V is known, it is sufficient to calculate,

U = e∆V = 100 eV .

b. With the mass of the proton mp = 1.672·10−27 kg and the kinetic energy U =
mp

2 v
2,

we calculate,

v =

√
2U

mp
= 1.38 · 105 m/s .

13.3.4.10 Ex: Potential of connected spheres

A spherical conductor of radius R1 is charged with Vi = 20 kV. When it is connected
through a very thin and long conductive wire to a second very distant spherical con-
ductor, its potential drops to Vf = 12 kV. What is the radius of the second sphere?

Solution: We have

Vi =
1

4πε0

Q

R1
, Vf =

1

4πε0

Q1

R1
=

1

4πε0

Q2

R2
, Q1 +Q2 = Q .

Solving

R2 = R1
Q2

Q1
= R1

Q−Q1

Q1
= R1

Vi − Vf
Vf

= R1
2

3
.
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13.3.4.11 Ex: Potential of a charged disk

Along the central axis of a uniformly loaded disc, at a point 0.6m away from the cen-
ter of the disc, the potential is 80V and the field intensity is 80V/m. At a distance
of 1.5m, the potential is 40V and the electric field strength is 23.5V/m. (Consider
that the potential is very far from the disk). Determine the total charge of the disk.

Solution: 7.1 nC.

13.3.4.12 Ex: Potential of spherical shells

Two conductive concentric spherical shells have equal charges with opposite signs.
The inner shell has an external radius a and the charge +q; the outer shell has an
internal radius b and the charge −q. Determine the potential difference Va − Vb be-
tween the shells.

Solution: Va − Vb = q
4πε0

(
1
a − 1

b

)
.

13.3.4.13 Ex: Electrical potential of a disk

A disk of radius R has a surface charge distribution given by σ = σ0r
2/R2, where σ0

is a constant and R is the distance from the center of the disk.
a. Determine the total charge on the disk.
b. Find the expression for the electrical potential at a distance z from the center of
the disk along the axis that passes through the center of the disk and is perpendicular
to its plane.

Solution: a. Q = 1
2πσ0R

2,

b. V = σ0

6ε0R2 [(R
2 − 2z2)

√
z2 +R2 + 2z3] .

13.3.4.14 Ex: Electrical potential of a rod

A stick of length L has a total charge Q evenly distributed along its length. The stick
is placed along the x-axis with its center at the origin.
a. What is the electrical potential as a function of the position along the x-axis for
x > L/2?
b. Show that for x≫ L/2, your result reduces to that due to a point charge Q.

Solution: a. V (x) = Q
4πε0L

ln x+L/2
x−L/2 .

13.3.4.15 Ex: Potential of a thin disk

Calculate the electrical potential of a thin disc homogeneously charged with the charge
Q along the symmetry axis.
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Solution: The potential that a charge distribution ϱ(r′) exerts on a test charge q
located at the position r is,

V (r) = −
∫

disc

1

4πε0
ρ(r′)

q

|r− r′|d
3r′

= − q

4πε0

∫ a

−a

∫ R

0

∫ 2π

0

ρ(z′)
1√

(r − r′)2 + (z − z′)2
r′dr′dz′dϕ′ .

Now let r = zêz.

V (z) = −2π q

4πε0

∫ a

−a

∫ R

0

ρ(z′)
1√

r′2 + (z − z′)2
r′dr′dz′

= −2π q

4πε0

∫ a

−a
ρ(z′)(

√
R2 + (z − z′)2 − (z − z′))dz′ .

for a thin disc ρ(z) ≃ ρ0∆aδ(z)

V (z) = −2π q

4πε0

∫ a

−a
ρ0(
√
R2 + (z − z′)2 − (z − z′))δ(z)∆adz′

=
−qρ0
2ε0

[
√
R2 + z2 − z]∆a .

The forçe is,

F = − d

dz
V (z) = 2π

q

4πε0
ρ0∆a

(
z√

R2 + z2
− 1

)
.

13.3.4.16 Ex: Electrical potential of four wires

Consider four wires oriented parallel to the z-direction, as shown in the figure. The
wires are charged with the charge per unit length q/L.
a. Calculate the electrical potential as a function of x and y.
b. Expand the potential around x = 0 and y = 0 (|x|, |y| ≪ a) up to second order.
What is the shape of the potential at this point?

Solution: a. The electrostatic potential is given by Φ(r) = 1
4πε0

∫ ρ(r′)
|r−r′|d

3r′ with

the distribution of ρ(r′) = −qδ(x′ − a)δ(y′) + qδ(x′)δ(y′ − a) − qδ(x′ + a)δ(y′) +

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_PotencialEletrico15.pdf
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a

-a

-a a

+q/L

-q/L-q/L

+q/L

y

x

Figure 13.13: Four wires.

qδ(x′)δ(y′ + a). With that, the integral becomes,

Φ(r) =
q

4πε0

∫ [ −1√
(x− a)2 + y2 + (z − z′)2

+
1√

x2 + (y − a)2 + (z − z′)2

+
−1√

(x+ a)2 + y2 + (z − z′)2
+

1√
x2 + (y + a)2 + (z − z′)2

]
dz′

=
q

4πε0
ln

(
z′ − z +

√
x2 + (y − a)2 + (z − z′)2

)(
z′ − z +

√
x2 + (y + a)2 + (z − z′)2

)

(
z′ − z +

√
(x− a)2 + y2 + (z − z′)2

)(
z′ − z +

√
(x+ a)2 + y2 + (z − z′)2

)

∣∣∣∣∣∣

∞

−∞

=
q

8πε0
ln

[x2 + (y − a)2][x2 + (y + a)2]

[(x− a)2 + y2][(x+ a)2 + y2]
.

And now??? Alternative solution:
a. We first consider a conductor. The flux through the cylindrical cap with radius r

around the wire follows from the Gauß law,
∫
∂V
E⃗ · n⃗df⃗ = 1

ε0

∫
V
ρdV hence El2πr =

1
ε0
Q, with Q the charge on apiece of wire of length l . With the definition of linear

charge density q = Q/l follows: E = 2q
4πε0r

. For the potential ϕ (E⃗ = −∇⃗ϕ) we

integrate the field and obtain: ϕ = − 2q
4πε0

ln r. With four conductors we add the
potentials:

Φ(r) = − 2q

4πε0

[
− ln

√
(x− a)2 + y2 + ln

√
x2 + (y − a)2 − ln

√
(x+ a)2 + y2 + ln

√
x2 + (y + a)2

]
=

q

4πε0
ln

[x2 + (y − a)2][x2 + (y + a)2]

[(x− a)2 + y2][(x+ a)2 + y2]
.

b. The expansion up to second order is formally, ϕ(r) = ϕ(0)+(r∇)ϕ(0)+ 1
2! (r∇)2ϕ(0)+

.... We easily get the zero order,

Φ(0) =
q

4πε0
ln
a2a2

a2a2
= 0 .

Auxiliary calculation for the first order,
(
x
d

dx′
+ y

d

dy′

)
ln
[
(x′ − a)2 + (y′ − b)2

]
=

2x(x′ − a) + 2y(y′ − b)
(x′ − a)2 + (y′ − b)2

x′,y′=0−→ −2ax− 2by

a2 + b2
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With that we get for the first order,

(r · ∇)Φ(0) = q

4πε0

[−2ay
a2

+
2ay

a2
− −2ax

a2
− 2ax

a2

]
= 0 .

Auxiliary calculation for the second order,
(
x2

d2

dx′′
+ 2xy

d2

dx′dy′
+ y2

d2

dy′′

)
ln[(x′ − a)2 + (y′ − b)2]

= −2x2 (x′ − a)2 − (y′ − b)2
[(x′ − a)2 + (y′ − b)2]2 − 8xy

(x′ − a)(y′ − b)
[(x′ − a)2 + (y′ − b)2]2 − 2y2

−(x′ − a)2 + (y′ − b)2
[(x′ − a)2 + (y′ − b)2]2

x′,y′=0−→ −2(x2 − y2)(a2 − b2)− 8xyab

(a2 + b2)2
.

With that we get for the second order,

1

2!
(r · ∇)2ϕ(0) = q

8πε0

[
2(x2 − y2)a2

a4
+

2(x2 − y2)a2
a4

− −2(x
2 − y2)a2
a4

− −2(x
2 − y2)a2
a4

]

=
q

πε0a2
(x2 − y2) .

Therefore, we obtain a saddle potential.

13.3.4.17 Ex: Stokes law

Consider a thin straight wire of infinite length uniformly charged with linear charge
density λ.
a. Parametrize the linear load density using the δ-function.
b. Using Gauss’ law, calculate the electric field.
c. Calculate the path integral

∫
E⃗ ·ds for the path parametrized by s(t) = ρ(êx cos t+

êy sin t) with t ∈ [0, 2π].

d. From the electric field obtained in (b) calculate ∇× E⃗ in Cartesian or cylindrical
coordinates.
Help: ∇× S = êρ

1
ρ

[
∂Sz

∂ϕ − ρ
∂Sϕ

∂z

]
+ êϕ

[
∂Sρ

∂z − ∂Sz

∂ρ

]
+ êz

1
ρ

[
∂
∂ρ (ρSϕ)−

∂Sρ

∂ϕ

]
.

Solution: a. The linear charge density is,

ϱ(r) = λδ(x)δ(y) .

b. Gauss’ law requires,

2πEρρ
∫ ∞

−∞
dz =

∫ 2π

0

∫ ∞

−∞
Eρρdϕdz =

∮
E⃗ · dS =

∫

R
∇ · E⃗dV =

1

ε0

∫
ϱ(r)dV

=
1

ε0

∫ ∞

−∞
δλ(x)δ(y)dV =

1

ε0
λ

∫ ∞

−∞
dz .

Therefore, the electric field is,

E⃗ρ =
λ

2πε0ρ
êρ =

λ

2πε0

êx cosϕ+ êy sinϕ√
x2 + y2

.
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c. The integral yields,

∮
E⃗ · ds =

∫ 2π

0

λ

2πε0ρ
êρ · ρêϕdϕ = 0 .

d. Thus, satisfying Maxwell’s law, we obtain in Cartesian coordinates,

∇× E⃗ =




∂yEz − ∂zEy
∂zEx − ∂xEz
∂xEy − ∂yEx


 =

λ

2πε0




0

0

∂
∂x

sinϕ√
x2+y2

− ∂
∂y

cosϕ√
x2+y2




=
λ

2πε0




0

0

− x sinϕ

(x2+y2)
3
2
+ y cosϕ

(x2+y2)
3
2


 =

λ

2πε0




0

0

−xy sinϕρ4 + yx cosϕ
ρ4


 = 0 .

Alternatively, we calculate in spherical coordinates,

∇× E⃗ = êρ
1

ρ

[
∂Ez
∂ϕ
− ρ∂Eϕ

∂z

]
= 0 .

13.3.4.18 Ex: Surface of a conductor

Consider an arbitrary macroscopic conductor whose surface is closed and smooth.
Starting from Gauss’s law and the electrostatic rotation of the electric field:
a. calculate the electric field inside the conductor;
b. obtain the normal component of the electric field on the outer surface of the con-
ductor in terms of the surface charge density;
c. obtain the tangential component of the electric field on the outer surface of the
conductor.

Solution: a. The electrical charges in the conductor will repel mutually and go to
its surface. Tracing a Gaussian surface just below the conductor’s surface we see
that, in electrostatic equilibrium, there are no charges inside the conductor, such that,

∇ · E⃗ = ρ/ε0 = 0 =⇒
∫

V

(∇ · E⃗)dV =

∫

S

(E⃗ · n̂)dA = EA =⇒ E⃗ = 0

inside the conductor.
b. Consider a Gaussian surface in the shape of a cylinder of infinitesimal height with
the top face being outside and the bottom face inside the surface:

∇·E⃗ = ρ/ε0 =⇒
∫

V

(∇·E⃗)dV =

∫

V

(ρ/ε0)dV =⇒
∫

S

(E⃗ ·n̂)dA =

∫

S

(σ/ε0)dA =⇒ E⃗·n̂ = σ/ε0 ,

which is the normal component of the electric field in the vicinity of the surface.
c. Consider a closed, rectangular path γ with infinitesimal height h with one of the
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1

Exame Unificado de Física

Eletromagnetismo

GABARITO

1. Considere um condutor arbitrário e macroscópico cuja superfície é fechada e suave. Partindo da lei de Gauss e do rotacional
eletrostático do campo elétrico:

(a) Calcule o campo elétrico no interior do condutor;

Resposta: (0,5 pontos)

As cargas elétricas inseridas no condutor irão se repelir, posicionando-se na sua superfície. Traçando uma superfície
gaussiana logo abaixo da superfície do condutor, vemos que, no equilíbrio eletrostático, não há cargas no seu interior,
assim:

~∇ · ~E = ρ/ε0 = 0 ⇒
∫

V

(~∇ · ~E)dV =

∫

S

( ~E · n̂)dA = E × A = 0 ⇒ ~E = 0

no interior do condutor.
(b) Obtenha a componente normal do campo elétrico na superfície externa do condutor em termos da densidade superficial

de carga;

Resposta: (0,75 pontos)
Considere uma superfície gaussiana no formato de um cilindro de altura infinitesimal, tendo a face superior fora e a
face inferior dentro da superfície:

~∇ · ~E = ρ/ε0 ⇒
∫

V

(~∇ · ~E)dV =

∫

V

(ρ/ε0)dV ⇒
∫

S

( ~E · n̂)dA =

∫

S

(σ/ε0)dA ⇒

⇒ ~E · n̂ = σ/ε0 ,

que é a componente normal do campo elétrico na vizinhança da superfície.

Figure 13.14: Surface of a conductor.

1

Exame Unificado de Física

Eletromagnetismo

GABARITO

1. Considere um condutor arbitrário e macroscópico cuja superfície é fechada e suave. Partindo da lei de Gauss e do rotacional
eletrostático do campo elétrico:

(a) Calcule o campo elétrico no interior do condutor;

Resposta: (0,5 pontos)

As cargas elétricas inseridas no condutor irão se repelir, posicionando-se na sua superfície. Traçando uma superfície
gaussiana logo abaixo da superfície do condutor, vemos que, no equilíbrio eletrostático, não há cargas no seu interior,
assim:

~∇ · ~E = ρ/ε0 = 0 ⇒
∫

V

(~∇ · ~E)dV =

∫

S

( ~E · n̂)dA = E × A = 0 ⇒ ~E = 0

no interior do condutor.
(b) Obtenha a componente normal do campo elétrico na superfície externa do condutor em termos da densidade superficial

de carga;

Resposta: (0,75 pontos)
Considere uma superfície gaussiana no formato de um cilindro de altura infinitesimal, tendo a face superior fora e a
face inferior dentro da superfície:

~∇ · ~E = ρ/ε0 ⇒
∫

V

(~∇ · ~E)dV =

∫

V

(ρ/ε0)dV ⇒
∫

S

( ~E · n̂)dA =

∫

S

(σ/ε0)dA ⇒

⇒ ~E · n̂ = σ/ε0 ,

que é a componente normal do campo elétrico na vizinhança da superfície.

Figure 13.15: Surface of a conductor.

longer path sections L outside and the other inside the surface:

∇×E⃗ = 0 =⇒
∫

S

(∇×E⃗)·(t̂×n̂)dA =

∮

γ

E⃗ ·d⃗l = 0 =⇒ EtL+Enh−0L−Enh = 0 =⇒ Et = 0 ,

which is the tangential component of the electric field in the vicinity of the surface.

2

(c) Obtenha a componente tangencial do campo elétrico na superfície externa do condutor.

Resposta: (0,75 pontos)
Considere um caminho γ fechado, retangular e de altura h infinitesimal, tendo um dos lados maiores L fora e o outro
dentro da superfície:

~∇ × ~E = 0 ⇒
∫

S

(~∇ × ~E) · (t̂ × n̂)dA =

∮

γ

~E · ~dl = 0 ⇒

Et · L + En · h − 0 · L − En · h = 0 ⇒ Et = 0 ,

que é a componente tangencial do campo elétrico na vizinhança da superfície.

2. Considere um conjunto de soluções de ondas planas eletromagnéticas no vácuo, cujos campos (elétrico ou magnético) são
descritos pela parte real de funções: ~u(~x, t) = ~Aei(~k·~x−ωt), com fase (~k · ~x − ωt) constante. Definem-se, nestas funções,
o vetor de onda ~k (que determina a direção de propagação da onda) e a freqüência angular ω = vk, onde v = 1/

√
εµ é a

velocidade de propagação das ondas.

(a) Mostre que o divergente de ~u(~x, t) satisfaz: ~∇ · ~u = i~k · ~u;

Resposta: (0,5 pontos)
Primeiramente, notamos que ~u(~x, t) = ~Aei(kx·x+ky·y+kz·z−ωt), assim:

∂

∂x
~u(~x, t) = ikx

~Aei(kx·x+ky·y+kz·z−ωt),

∂

∂y
~u(~x, t) = iky

~Aei(kx·x+ky·y+kz·z−ωt),

∂

∂z
~u(~x, t) = ikz

~Aei(kx·x+ky·y+kz·z−ωt),

o que pode ser generalizado na forma:

∂

∂xj
~u(~x, t) = ikj

~Aei(
∑

j kjxj−ωt)

Figure 13.16: Surface of a conductor.
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13.4 Electrostatic energy

We calculate the work required to move a test charge q between two points a and b
within the potential created by a charge distribution,

W = −
∫ b

a

F · dr = −q
∫ b

a

E⃗ · dr = q[Φ(b)− Φ(a)] . (13.41)

Since the work does not depend on the path, we call the potential conservative. Taking
the test charge from the reference point to infinity,

W = q[Φ(b)− Φ(∞)] = qΦ(b) . (13.42)

In this sense, the potential is nothing more than the energy per unit of charge q
required to take a particle from infinity to a point r.

13.4.1 Energy of a charge distribution

The next question is, what energy is needed to put together a distribution of charges
taking them one by one from infinity to predefined points. Every charge Qk uses an
amount of work Wk, only the first charge does not, W1 = 0. Using the abbreviation,

Wk,m ≡
1

4πε0

QkQm
|rk − rm|

, (13.43)

the work is easily calculated for the second charge, W2 = W1,2. For the third and
fourth charge we need additionally the amounts of work,

W3 =W1,3 +W2,3 and W4 =W1,4 +W2,4 +W3,4 . (13.44)

The general rule is obvious: For N charges we need in total to provide the work,

W =

N∑

k=1

Wk =

N∑

k=1

N∑

m=1
m<k

Wk,m =
1

2

N∑

k=1

N∑

m=1
m ̸=k

Wk,m . (13.45)

Explicitly, calling Φ the potential created by all charges minus the charge Qk,

Φ(rk) ≡
N∑

m=1
m ̸=k

1

4πε0

Qm
|rk − rm|

, (13.46)

we can write the energy as,

W = 1
2

∑

k

QkΦ(rk) . (13.47)

For continuous distributions, this equation turns into,

W = 1
2

∫
ΦdQ = 1

2

∫
ϱΦdV . (13.48)
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13.4.2 Energy density of an electrostatic field

The energy of a continuous charge distribution can be rewritten using Gauß’ law,

W = ε0
2

∫
(∇ · E⃗)ΦdV . (13.49)

Integration by parts allows transferring the derivative of E⃗ to Φ,

W = ε0
2

[∮

∂V
ΦE⃗ · dS−

∫

V
E⃗ · (∇Φ)dV

]
. (13.50)

The surface integral can be neglected, because we can choose the integration volume
arbitrarily large V. Expressing the gradient by the field,

W = ε0
2

∫

V
E⃗2dV = ε0

2

∫

V
udV , (13.51)

introducing the energy density,

u ≡ ε0
2 E⃗2 . (13.52)

Example 47 (Electrostatic energy of a charged spherical layer): As an
example we calculate the electrostatic energy of a spherical shell of radius R
uniformly charged with the total charge Q. Using the formula (13.48) we obtain,

W =
1

2

∫
ϱΦdV =

1

2

∫
Q

4πR2
δ(r−R)ΦR2 sin θdθdϕdr =

Q

2
Φ(R) =

Q

2

1

4πε0

Q

R
=

Q2

8πε0

1

R
.

Alternatively, we calculate by the formula (13.51),

W =
ε0
2

∫
R3

E⃗2dV =
ε0
2

∫
r≥R

(
1

4πε0

Q

R2

)2

R2 sin θdθdϕdr =
Q2

8πε0

∫ ∞
R

1

R2
dr =

Q2

8πε0

1

R
.

1. Comparing the expressions for the electrostatic energy (13.47) and (13.51) 4 we
perceive an inconsistency, since the second only allows positive energies, while
the former allows positive and negative energies, for example, in the case of two
charges with opposed signs aiming to attract each other.

In fact, both equations are correct, but they describe slightly different situations.
Equation (13.47) does not take into account of the work necessary to create these
elementary point charges in the first place. In fact, equation (13.51) indicates
that the energy of a point charge diverges,

W =
ε0
2

1

(4πε0)2

∫

R3

( e
r2

)2
r2 sin θdrdθdϕ =

e2

8πε0

∫ ∞

0

1

r2
r2 sin θdrdθdϕ→∞ .

The equation (13.51) is more complete in the sense that it gives the total energy
stored in the charge configuration, but the (13.47) is more appropriate when
working with point charges, because we then prefer to ignore the part needed

4Or equivalently (13.48), which also can not be negative.
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for the construction of the electrons. Anyway, we do not know how to create or
dismount electrons.

The inconsistency enters the derivation, when we make the transition between
the Eqs. (13.47) and (13.48). In the first equation, Φ(ri) represents the poten-
tial due to all the other charges except qi, while in the second Φ(r) is the total
potential. For continuous distributions there is no difference, since the amount
of charge at any mathematical point r is negligible, and its contribution to the
potential is zero.

In practice, the divergence does not appear because, when we use Eq. (13.51),
generally we consider smooth distributions of charges and not point-like charges.

2. The energy is stored in the entire electrostatic field, that is, we need to integrate
over the entire space R3.

3. The superposition principle is not valid for electrostatic energy, since it is
quadratic in the fields,

∫
(E⃗1 + E⃗2)2dV ̸=

∫
(E⃗21 + E⃗22 )dV .

13.4.3 Dielectrics and conductors

In an insulating material, such as rubber or glass, all electrons are attached to in-
dividual atoms. They can be displaced inside the atom by an external electric field,
which creates a polarization of the atom. But they do not move away from the atom.
In contrast, in a conducting material, such that a metal, one or more electrons per
atom can move freely.

What are the characteristics of an ideal conductor?

1. E⃗ = 0 inside a conductor. The electric field inside a conductor must vanish,
otherwise there would be forces on the charges working to rearrange them until
the forces (and the motion of charges) compensate. In the presence of an exter-
nal electric field, the charges arrange themselves in such a way as to generate
their own field designed to compensate the external field.

2. ϱ = 0 inside a conductor. Since there is no electric field, Gauß’ law prevents
residual charges in the interior, since ϱ = ∇ · E⃗/ε0.

3. All residual charge is on the surface, simply because it can not be inside.

4. Conductor as an equipotential. As there is no electric field, Stokes’ law

prevents different potentials because Φ(b)− Φ(a) = −
∫ b

a
E⃗ · dr = 0.

5. E⃗ is perpendicular to the surface near the surface. Otherwise, the electric
field components parallel to the surface would create forces to rearrange the
residual charges until the parallel components disappear. Consequently, electric
field lines always meet a conductor orthogonally to the surface E⃗⊥∂V .

13.4.4 Induction of charges (influence)

When we place a charge in front of a neutral conductor we measure an attraction force.
The reason is that free charges of the conductor with opposite sign are attracted, while
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charges with the same sign are repelled 5. Now, since the charges with opposite sign
are closer to the charge in front than those with the same sign, the attractive force
will dominate the repulsive force (see Fig. 13.17 left).

Figure 13.17: Electrostatic induction.

The electric field inside a conductor must vanish, but this only holds for the
conductor’s bulk material and not necessarily for dielectric impurities or cavities en-
closed by the conductor. For example, in the case where there is a charge +q inside
a enclosed cavity [see Fig. 13.17(right)], the electric field inside the cavity is clearly
nonzero. However, since it must vanish within the conductor, Gauß’ law requires
that within a volume enclosed by a Gaussian surface, the total charge must be zero.
Choosing this Gaussian surface very close to the cavity, we find that a surface charge
must have formed at the edges of the cavity, compensating for the charge +q inside
the cavity. This charge can only come from the outer surface, which is now charged
with the opposite charge, as well. In this way the charge +q becomes visible from the
outside of the conductor.

The electric field inside a cavity without charges enclosed by a conductor must
be zero, because without charges, the field lines could only traverse the cavity. How-
ever, the entrance and exit points between the cavity and the conductor are on the
same potential, and have no surface charge. This is the principle of Faraday’s cage,
where people inside a conductive cage are shielded and thus protected from electrical
phenomena like lightning discharges.

The migration of free excess charges in conductors to the surface is also called
skin effect: The potential inside the metal the same everywhere, and the electric field
disappears E⃗ = 0.

Example 48 (Conductors with enclosed cavities): Two cavities with radii
a and b are excavated from a neutral conducting sphere of radius R. In the
center of each cavity there be charges, qa and qb, respectively.

• The charges on the surfaces of the cavities σa and σb must be organized
such as to shield the charges qa,b in order to prevent the formation of an
electric field inside the conductor. If the charges are at the centers of the
spheres we simply obtain, σa = qa

4πa2
and σb = qb

4πb2
. The charges used

for shielding are missing from the conductor and must be compensated for
by charges of opposite sign. The only place where these opposite charges
can accumulate is the outer surface of the conductor. Thus, we have the
surface charge σR = −qa−qb

4πR2 .

5That is, the charges in the conductor rearrange to compensate for the electric field created by
the charge in front until the total field inside the conductor has vanished.
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• The field outside the driver is consequently, E⃗ = qa+qb
4πε0

r
r3
, where r is the

point of observation with respect to the center of the conductor.

• Inside each cavity the electric field is determined by Gauß’ law, E⃗ =
qa,b

4πε0

r
r3
,

where r is the observation point respect to the center of the cavity. Note
that the surface charge σa,b does not influence the field.

• Since the charges qa,b do not feel external fields, they are not subject to
forces.

• Putting a third charge qc near the conductor, the charge distribution σR
would change in order to compensate the field within the conductor. Thus,
the other quantities determined in (a)-(d) would not change. The conduc-
tor effectively decouples all processes occurring on disconnected surfaces.

13.4.5 Electrostatic pressure

What is the force exerted by an applied electric field E⃗ext on a charged conductive
surface? We know that the surface charge causes a discontinuity of the electric field,
so that we need to calculate the force on a surface element dS as the average of the
forces acting from above and from below,

dF = dS
σ

2
(E⃗top + E⃗bottom) = P⃗dS , (13.53)

where P⃗ is the electrostatic pressure (see Fig. 13.18).

Figure 13.18: Electrostatic pressure exerted by a field E⃗ext on a charged surface element.

In the case of a thin surface, we have,

E⃗top = E⃗ext +
σ

2ε0
n̂ , E⃗bottom = E⃗ext −

σ

2ε0
n̂ , (13.54)

such that the pressure is,
P⃗ = σE⃗ext . (13.55)

In the case of a charged surface of a massive conductor without external field,

E⃗outside =
σ

ε0
n̂ , E⃗inside = 0 , (13.56)

such that the pressure is,

P⃗ =
σ

2

σ

2ε0
n̂ =

ε0
2
E2outsiden̂ . (13.57)

That is, even without external field a charged conductor suffers a force trying to push
it into the field created by itself, regardless of the sign of the charge. It is interesting
to note that this force goes with the square of σ and of E⃗outside.
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13.4.6 Exercises

13.4.6.1 Ex: Motion of two charges

Two particles with masses m1 and m2 and charges Q1 > 0 and Q2 > 0 are placed at
a mutual distance d0 and can move freely in space.
a. What will happen to the particles qualitatively? Which relation holds at all times
for the velocities v1 and v2 of the two particles?
b. Calculate the velocities of the two particles as a function of their distance and
plot the functions v1(d), respectively v2(d) (phase space diagrams). What are the
velocities reached in the limit d→∞?

Solution: a. The charges repel each other. Here, momentum conservation holds,
m1v1 = −m2v2.
b. The equation of motion for the distance follows from Coulomb’s law, m1v̇1 =

1
4πε0

Q1Q2

|r1−r2|2 = −m2v̇2.

d̈ = v̇1 − v̇2 =
1

4πε0

(
1

m1
+

1

m2

)
Q1Q2

d2
.

b. The total energy of the system is composed of the potential energy and the kinetic
energy of the two particles:

E = T + U ,

U =
1

4πε0

Q1Q2

d
,

T =
m1

2
v21 +

m2

2
v22 .

The energy is fixed by the initial conditions d(0) = d0 and v(0) = 0:

E =
1

4πε0

Q1Q2

d0
.

Inserting,

m1

2
v21 +

m2

2
v22 +

1

4πε0

Q1Q2

d
=

1

4πε0

Q1Q2

d0

=⇒ v21

(
m1

2
+

m2
1

2m2

)
= v22

(
m2

2

2m1
+
m2

2

)
=
Q1Q2

4πε0

(
1

d0
− 1

d

)

=⇒ vk =

√√√√ Q1Q2

2πε0m2
k

(
1
m1

+ 1
m2

)
(

1

d0
− 1

d

)
.

over large distances d

vk →
1

mk

√√√√ Q1Q2

2πε0

(
1
m1

+ 1
m2

) 1

d0
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica01.pdf
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13.4.6.2 Ex: Paul trap

We consider four parallel wires oriented along the z-direction and forming a quadrupo-
lar configuration in the xy-plane, as shown in the figure. The wires are charged with
±q per unit of length l. Calculate the electrical potential as a function of x and y in
the center between the wires and expand around x = 0 and y = 0 (|x|, |y| ≪ a) up to
second order. What is the shape of the potential at this position? Do you think it is
possible to trap a charged particle in this potential?

Solution:

13.4.6.3 Ex: Energy of the electron

Supposing that the charge is homogeneously distributed over a sphere, calculate the
classical electron radius.

Solution: We assume that the charge is evenly distributed inside a sphere of ra-
dius re, e = ϱ 4π

3 r
3
e . We try two equivalent calculations:

a. Using Gauss’ law we get for the electric field,

Er<re =
ϱ

3ε0
r =

e

4πε0

r

r3e
, Er>re =

ϱ

3ε0

r3e
r2

=
e

4πε0

1

r2
.

With that, the energy becomes,

Eele =
ε0
2

∫

V

|Er|2dV =
ε0
2
4π

∫ re

0

(
e

4πε0

r

r3e

)2

r2dr+
ε0
2
4π

∫ ∞

re

(
e

4πε0

1

r2

)2

r2dr =
e2

4πε0

3

5re
.

b. Knowing that the electric field within the homogeneous charge distribution grows
linearly with the distance from the origin, we do the following ansatz for the potential,
Φ(r) = ar2 + b. The coefficients are calibrated using the known solutions for the
potential and the field on the surface::

Φ(r = re) = ar2e + b =
e

4πε0

1

re
=⇒ b =

e

4πε0

1

re
− ar2e

E(r = re) = −
d

dr
Φ(re) = −2are =

e

4πε0

1

r2e
=⇒ a = − e

8πε0

1

r3e
.

Finally,

Φ(r) = − e

8πε0

1

r3e
r2 +

e

4πε0

1

re
− ar2e =

e

4πε0re

(
3

2
− R2

2r2e

)
.

13.4.6.4 Ex: Radius of the electron

a. Try to calculate the electrostatic energy of the field of an electron via,

EF =

∫

R3

ε0
2
E⃗2(r) d3r

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica02b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica03.pdf
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What problem appears in the calculation of the radial part of the integral
∫
dr, if the

lower limit of integration goes to r0 → 0?
b. This problem is known as self-energy divergence. It is possible to work around
this problem, leaving the limits out and choosing the classic electron radius r0 as the
integration limit. The energy EF of the electric field is then identified with half the
energy E = 1

2mec
2 of the electron rest massme. Calculate the classic electron radius!

Solution: a. We have

E⃗ =
1

4πε0

q

r2
êr .

With that,

EF =
4πε0
2

lim
r0→0

∫ ∞

r0

E⃗2(r)r2dr = 1

2

1

4πε0
lim
r0→0

∫ ∞

r0

q2

r2
dr = lim

r0→0

1

2

q2

4πε0

1

r0
→∞ .

b. Equalizing we obtain,
1

2

q2

4πε0

1

r0
=

1

2
mec

2 ,

and from this,

r0 =
q2

4πε0mec2
= 2.82 fm .

13.4.6.5 Ex: Electrostatic energy

a. Write the potential energy of a charge q in an external field E⃗ = −∇⃗Φ?
b. What is the value of the electrostatic energy of N point charges?
c. What is the value of the energy of a charge distribution in the electric field E⃗(r)?
d. What are the boundary conditions for the E⃗-field on a conductor’s surface?
e. Draw the electric field of a point charge q located in front of a metallic plane. What
is the induced charge? What is the value of the force on the charge q?

Solution: a. Electrostatic energy W = qΦ.
b. Electrostatic energy W = 1

2

∑N
i,k=1;i̸=k

qiqk
4πε0|ri−rk| .

c. Electrostatic energy W = ε0
2

∫
d3r|E⃗(r)|2.

d. Boundary conditions on the conductor surface E⃗condutor = 0, E⃗t = 0, n̂ · E⃗ = σ
ε0
.

e. The induced charge is −q, the force is,

F = −∇ϕ = −∇ 1

4πε

−q
|r+ d| = ∇

q

4πε

r+ d

|r+ d|3
∣∣∣∣
r=d

=
1

4πε

q

(2d)2
.

13.4.6.6 Ex: Electrostatic energy

What is the electrostatic energy of
a. four equal charges Q located at the corners of a tetrahedron with the edge length

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica05.pdf
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d?
b. a dielectric sphere with radius R homogeneously charged with the charge Q? To
do this, calculate the electric field inside and outside the sphere using Gauß’ law.

Solution: a. The energy of a charge distribution is,

W =
1

2

N∑

i,k=1
i ̸=j

1

4πε0

qiqk
|ri − rk|

.

In the equilateral tetrahedron all charges are equidistant, so that,

W =
1

2

4∑

i,k=1
i ̸=j

1

4πε0

Q2

d
=

1

2

1

4πε0

Q2

d
4(4− 1) =

3

2πε0

Q2

d
.

b. The energy of a homogeneously charged sphere with radius R follows from,

W =
ε0
2

∫

V

E⃗2(r)d3r = ε0
2

∫

V

E2(r)r2 sin θdθdϕdr .

For reasons of symmetry the electric field must be radial, E⃗(r) = E(r)êr. The electric
field at distance r from the origin follows from the charge inside a sphere having the
same radius,

Q(r) = ε0

∫
∇E⃗ · (r′)d3r′ = ε0

∮
E(r)r2 sin θdθdϕ = ε0E(r)4πr2 .

The field inside and outside the charge distribution is,

Ein(r) =
1

4πε0

Q(r)

r2
=

1

4πε0

Qr

R3
resp. Eout(r) =

1

4πε0
Q

1

r2
=

1

4πε0

Q

r2
.

With that we get the same energy,

W =
ε0
2

∫
E2
in(r)r

2 sin θdθdϕdr +
ε0
2

∫

V

E2
out(r)r

2 sin θdθdϕdr

=
ε0
2
4π

[∫

r≤R

(
1

4πε0

Qr

R3

)2

r2dr +

∫ (
1

4πε0

Q

r2

)2

r2dr

]

=
1

2

Q2

4πε0

(
r5

5R6

∣∣∣∣
R

0

+
−1
r

∣∣∣∣
∞

R

)
=

3Q2

20πε0R
.

13.4.6.7 Ex: Electrostatic energy

a. Eight point charges q are placed in the corners of a cube with the edge length l.
Calculate the electrostatic energy of this configuration.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_EnergiaEletrica06.pdf
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b. A balloon with radius R is charged homogeneously with the charge Q. What is the
value of electrostatic energy? What is the force required to inflate the balloon even
more, neglecting the elastic force of the balloon?

Solution: We have for the potential energy of N point charges in their own field:

Wtot =
1

2

N∑

i,k=1;k ̸=i

qiqk
4πε0|ri − rk|

.

The potential energy of a charge in the given configuration is,

W = 3Wdistance l + 3Wdistance
√
2l +Wdistance

√
3l =

q2

4πε02

(
3

l
+

3√
2l

+
1√
3l

)

=
q2

8πε0l

(
3 +

3√
2
+

1√
3

)
.

So we get Wtot

Wtot = 8W =
q2

πε0l

(
3

l
+

3√
2l

+
1√
3l

)
≈ 5.7q2

πε0l
.

b. With Gauß follows E = Q
4πε0

1
r2 for r > R and E = 0 for r ≤ R. The energy is,

EF =

∫
dV

ε0
2
E⃗2(r)dr = 4π

ε0
2

∫ ∞

0

r2E(r)dr = 4π
ε0
2

Q2

(4πε0)2

∫ ∞

0

r−2dr

=
Q2

8πε0

∫ ∞

R

r−2dr =
Q2

8πε0
R−1 .

To increase the radius of the air balloon we must change the energy by F = −∇EF
follows:

F = − d

dR
EF =

Q2

8πε0

1

R2
.

The force is positive. The air balloon tries to inflate itself !

13.4.6.8 Ex: Charge separation

Two conducting neutral spheres are in contact and attached to insulating rods on a
large wooden table. A positively charged stick is brought close to the surface of one
of the spheres on the side opposite the point of contact with the other sphere.
a. Describe the charges induced in the two conductive spheres and discuss the charge
distribution in both.
b. The two spheres are separated and then the charged stick is taken away. Then,
the spheres are separated by a great distance. Discuss the charge distributions on the
spheres after they are separated.

Solution: a. When approaching the positively charged stick, a negative charge is
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induced to the sphere being close to the stick, leaving the more distant sphere posi-
tively charged.
b. After separating the spheres and then moving the stick away, the induced charges
are evenly distributed in each of the spheres.

13.5 Treatment of boundary conditions and the unique-
ness theorem

In practice, the solution of an electrostatic problem, that is, the resolution of the
Poisson equation, can be hampered by boundary conditions. For example, charges in
front of conducting surfaces induce a redistribution of charges in the conductor which
modifies the electric field. The field is unequivocally determined by the charge and
the boundary conditions. In this section we will discuss the method of image charges,
which is a heuristic model, and the mathematical treatment of boundary conditions.

13.5.1 The method of images charges

One way to simulate boundary conditions is to ’invent’ imaginary charges and dis-
tribute them in a way that the total field automatically satisfies these boundary
conditions. This is usually only helpful when the boundary conditions exhibit a high
degree of symmetry. This is the method of the so-called image charges.

The simplest case is that of the point charge Q at a distance d in front of a
conductive and grounded plane. By induction the charge will cause a redistribution
of charges on the surface of the conductor in such a way, that the field lines cross
the surface of the conductor at right angles. But the same boundary conditions can
be satisfied by replacing the conductive plane with a second imaginary charge with
opposite sign at the position of the image of the first charge regarding the plane
as a mirror. From the point of view of the electric field the two configurations are
equivalent, but the field is much easier to calculate for a charge and its image using
Coulomb’s law. See Excs. 13.5.6.1, 13.5.6.2, 13.5.6.3, 13.5.6.4, and 13.5.6.5.

Example 49 (Induced surface charge): In the case of the point charge in
front of a conducting plane, which is the simplest case imaginable, the boundary
conditions are,

Φ(x, y, 0) = 0 , Φ(|r| ≫ d) = 0 ,

the potential is,

Φ(r) =
1

4πε0

(
Q√

x2 + y2 + (z − d)2
+

−Q√
x2 + y2 + (z + d)2

)
,

and the field is,

E⃗ = −∇Φ =
−Q
4πε0

(
−1√

x2 + y2 + (z − d)23
(êz − r) +

1√
x2 + y2 + (z + d)2

3 (êz + r)

)
.
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Figure 13.19: Point charge in front of a conductive plane.

We can now calculate the charge distribution on the surface. Gauß’ law says,

∫
box

E⃗ · dS =
Q

ε0
=

1

ε0

∫
ϱ(r)dV =

1

ε0

∫
σ(x, y)δ(z)dV =

1

ε0

∫
σ(x, y)dA .

Therefore, on the surface,

êz · E⃗(x, y, z = 0) =
σ(x, y)

ε0
.

Resolving by the charge density,

σ(x, y) = ε0êz · E⃗(x, y, z = 0) =
−Q
4π

2√
x2 + y2 + d2

3 .

Also, we can verify that the total surface charge is, Qs = −Q.

13.5.2 Formal solution of the electrostatic problem

The solution of the Laplace equation will, in general, depend on boundary conditions
imposed by the geometry of the system. For example, a charge in free space will gen-
erate another field than a charge above a conductive surface. The two most common
boundary conditions are named after Dirichlet and von Neumann. The Dirichlet con-
dition fixes the value of the potential on a geometry of surfaces enclosing a volume,
Φ|∂V = Φ0, while the von Neumann condition fixes the value of the potential gradient,

∇Φ|∂V = E⃗0. Let us discuss these conditions in the following.

Using the following four relationships,

(i) ∇2 1
4π|r−r′| = −δ(r− r′) (13.58)

(ii) ∇ · (ϕF) = ϕ(∇ · F) + (∇ϕ) · F

(iii)

∫

V
∇ · FdV ′ =

∫

∂V

F·dS′

(iv) ∇2Φ = − ϱ
ε0
,
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we now solve the Poisson equation,

Φ(r) =

∫

V
Φ(r′)δ(r− r′)dV ′ = −1

4π

∫

V
Φ(r′)︸ ︷︷ ︸
ϕ

∇ ·
(
∇ 1
|r−r′|

)

︸ ︷︷ ︸
F

dV ′ with (i) (13.59)

= 1
4π

∫

V
∇Φ(r′)︸ ︷︷ ︸

F

· ∇ 1
|r−r′|︸ ︷︷ ︸
ϕ

dV ′ − 1
4π

∫

V
∇ ·
(
Φ(r′)∇ 1

|r−r′|

)
dV ′ with (ii)

= − 1
4π

∫

V
1

|r−r′|∇ · ∇Φ(r′)dV ′ + 1
4π

∫

V
∇ ·
(

1
|r−r′|∇Φ(r′)

)
dV ′ − 1

4π

∫

V
∇ ·
(
Φ(r′)∇ 1

|r−r′|

)
dV ′ .

Finally, using relations (iii and iv), we obtain the final result,

Φ(r) = 1
4πε0

∫

V

ϱ(r′)
|r−r′|dV

′ + 1
4π

∮

∂V

(
Φ(r′)∇′ 1

|r−r′| − 1
|r−r′|∇′Φ(r′)

)
· dS′ , (13.60)

which is an integral version of the Poisson equation. For volumes going to infinity,
where the potential disappears, the surface integrals can be neglected, and we get the
familiar form of Coulomb’s law. For finite volumes, boundary conditions on surfaces
can dramatically influence the potential.

Example 50 (Consistency of Green’s relationship): Obviously, by impos-
ing boundary conditions that coincide with equipotential surfaces of the field
created by the charge distribution, the surface terms vanish. Choosing as an
example a point charge placed at the origin, ϱ(r′) = Qδ3(r′), and inserting its
potential,

Φ(r = Rêr) =
Q

4πε0

1

R
=

Q

4πε0

1

|r− r′|

∣∣∣∣
r∈∂V

. (13.61)

in the relationship (13.60), we find that the surface integrals cancel out.

Figure 13.20: Illustration of boundary conditions.

The surface term can be interpreted in terms of a surface charge density, because
we know that the normal electric field is discontinuous when crossing a charged sur-
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face 6:
σ(r′)
ε0

= −∇′Φ(r′) · n̂ . (13.62)

We consider the example of a charge distribution, ϱ(r′), surrounded by a surface
on which the potential is zero, Φ(r′)|∂V′ = 0, such that the first surface term of the
relation (13.60) fades away. Inserting the expression (13.62) in the second surface
term, the relation becomes,

Φ(r) =
1

4πε0

∫

V

ϱ(r′)
|r− a| +

1

4πε0

∮

∂V

σ(r′)
|r− r′|dS

′ . (13.63)

The interpretation of this modified Coulomb law is, that the charge induces a density
distribution of surface charges σ within the conducting plane which modifies the
electric potential, such that the boundary condition is satisfied.

13.5.3 Green’s Function

The function 1
4π|r−r′| not the only one to satisfy the condition (13.58)(i). In fact,

there is an entire class of functions called Green functions defined by,

∇2G(r, r′) ≡ −δ(r− r′) . (13.64)

Obviously, for these functions the formula derived in (13.59) will be generalized,

Φ(r) = 1
ε0

∫

V
ϱ(r′)G(r, r′)dV ′ +

∮

∂V
(Φ(r′)∇G(r, r′)−G(r, r′)∇Φ(r′)) · dS′ .

(13.65)
The advantage of the Green function is, that we have the freedom to add any function
F ,

G(r, r′) =
1

4π|r− r′| + F (r, r′) (13.66)

satisfying the Laplace equation,

∇2F (r, r′) = 0 , (13.67)

and the Green function (13.66) will still satisfy the definition (13.64). In particular,
we can choose the function F in a way to eliminate one of the two surface integrals in
Eq. (13.65) and to obtain an expression only involving Dirichlet’s or von Neumann’s
boundary conditions.

6We can derive this considering a thin disk located within the x-y plane and homogeneously
charged with the charge density σ0,

Φ(zêz) =
1

4πε0

∫
disco

σ(r′)

|zêz − r′|dA
′ =

σ0

2ε0

∫ R

0

1√
r′2 + z2

r′dr′ =
σ0

2ε0
[
√
R2 + z2 − z] ,

and therefore,

Ez = −dΦ(zêz)

dz
= − σ0

2ε0

(
z√

R2 + z2
− 1

)
z≪R−→ σ0

2ε0
.
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13.5.4 Poisson equation with Dirichlet’s boundary conditions

The first uniqueness theorem proclaims,

The solution of the Poisson (or Laplace) equation in a volume V is uniquely
determined, if Φ is specified on the surface of the volume ∂V.

To prove this theorem, let us specify that the potential adopts the (not necessarily
constant) value Φ0 on the surface and consider two possible solutions of the Laplace
equation, Φ1 and Φ2. The difference Φ3 ≡ Φ1−Φ2 disappears on the surface, Φ3|∂V =
0, and must also satisfy the Laplace equation: ∇2Φ3 = 0. Now, since the Laplace
equation does not allow local maxima or minima 7, Φ3 must be zero throughout space
(see Fig. 13.21 left).

Figure 13.21: Illustration of the uniqueness theorems.

We consider as an example a finite volume V without charges, ϱ = 0, surrounded
by a conducting border ∂V maintained at a fixed potential, Φ(r ∈ ∂V) = Φ0 = const.
This is a typical situation realized, for example, in conductive materials such as metals.
Therefore, ∆Φ = 0 within the volume. A possible trivial solution of the Laplace
equation is, Φ(r) = Φ0. The uniqueness theorem now tells us that this is the unique
solution.

To implement this theorem we choose the following boundary conditions,

GD(r, r
′
∈∂V) = 0 , (13.68)

such that the relationship (13.64) becomes,

Φ(r) = 1
ε0

∫

V
ϱ(r′)GD(r, r

′)dV ′ +
∮

∂V
Φ(r′)∇′GD(r, r′) · dS′ . (13.69)

Do the Excs. 13.5.6.7, 13.5.6.8, 13.5.6.9, and 13.5.6.10.

13.5.5 Poisson equation with von Neumann’s boundary con-
ditions

The second uniqueness theorem proclaims,

In a volume V surrounded by conductors and containing a specified charge
density ϱ, the electric field is uniquely determined by the total charge of
each conductor.

7For in a hypothetical maximum (minimum) we would have ∇2Φ3 < 0 (> 0).
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To prove this theorem, we will consider a sample of conductors i each one carrying
the charge Qi. Assuming that there are two solutions for the electric field between
the conductors, E⃗1 and E⃗2, each of these fields must satisfy, ∇ · E⃗1 = ∇ · E⃗2 = Qi. The
difference E⃗3 ≡ E⃗1 − E⃗2 must also satisfy Gauss’ law ∇ · E⃗3 = 0. Hence, E⃗3 must be
vanish throughout the space (see Fig. 13.21 right) 8.

In the case of von Neumann boundary conditions we choose,

∇′GN (r, r′∈∂V) = − n̂
S , (13.70)

because we must satisfy the definition (13.60),

−1 =

∫

V
∇′2GN (r, r′)dV ′ =

∮

∂V
∇′GN (r, r′) · dS =

∮

∂V
−n̂
S · dS (13.71)

such that,

Φ(r) = 1
ε0

∫

V
ϱ(r′)GN (r, r′)dV ′ − 1

A

∮

∂V
Φ(r′)dA′ −

∮

∂V
GN (r, r′)∇′Φ(r′) · dS′ .

(13.72)
The first surface term is simply the average of the potential over the area of the
surface.

13.5.6 Exercises

13.5.6.1 Ex: Mirror charge

A long, thin wire is suspended along the y-direction at a distance z = d parallel to a
grounded metal plate located in the z = 0-plane. The surface of the wire carries the
charge Q/l per unit length.
a. Draw a scheme of the electric field in the semi-space z > 0. Help: Use the principle
of image charges!
b. Calculate the profile of the electric field near the surface of the plate.
c. What is the surface density σ(x, y) of charges on the plate surface.
d. What is the charge induced in the plate per unit length in y-direction?
Comment: A similar problem occurs for conductors on printed circuits. The metal
plate corresponds to the copper coating on the backside of the circuit board.

Solution: a. Analogously to a point charge in front of a metallic plate we now expect
a mirror wire with the charge −Q in the distance −d from the surface.
b. The absolute value of the field generated by the wire is at the position z = +d,

Ewire =
Q

2πε0l

1

ρ
=

Q

2πε0l

1√
x2 + (z − d)2

(towards radially away from the wire). Analogously, for the mirror wire at the position
z = −d,

Emirror =
−Q
2πε0l

1√
x2 + (z + d)2

.

8We present here a slightly simplified argumentation. See [545] for a more complete proof.
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On the plate surface the field is parallel to êz. The x and z-components of the E field
on the plate surface at the position z = 0 are,

Ewire,x = |Ewire,x| sinϕ = |Ewire,x|
x√

x2 + d2
=

Q

2πε0l

1√
x2 + d2

x√
x2 + d2

=
Q

2πε0l

x

x2 + d2

and

Ewire,z = −|Ewire,x| cosϕ = −|Ewire,x|
d√

x2 + d2
=
−Q
2πε0l

1√
x2 + d2

d√
x2 + d2

=
−Q
2πε0l

d

x2 + d2
.

for the mirror wire we have analogously,

Ewire,x =
−Q
2πε0l

x

x2 + d2

and

Ewire,z =
−Q
2πε0l

d

x2 + d2
.

This means that the x-component disappears and (for z > 0),

Ez = 2Ewire,z =
−Q
πε0l

d

x2 + d2
.

c. We use ρ(x, y, z) = σ(x, y)δ(z). Furthermore, div E⃗ = ∂Ez
∂z , because all other

components disappear on the surface. Now we place a small box (area dA parallel to
the surface) such that a piece of the surface is inside. Now,

1

ε0

∫
ϱ(x, y, z)dV =

1

ε0

∫
σ(x, y)dA .

Furthermore,
1

ε0

∫

V

ϱdV =

∮

∂box

E⃗ · dS = Ez,z>0dS .

From this follows,

σ(x, y) = ε0Ez,z>0 = −Qd
πl

1

x2 + d2
.

d. Integrating over the length l in y-direction and over all values of x gives,

Qplate =

∫ l

0

dy

∫ ∞

−∞
dx

(−Qd
πl

1

x2 + d2

)
=
−Qdl
πl

∫ ∞

−∞
dx

1

x2 + d2
=
−Qdl
π

1

d
arctan

x

d

∣∣∣∣
∞

−∞
= −Q .

13.5.6.2 Ex: Mirror charge

Consider the scheme, illustrated in the figure, of a point charge +q in front of a corner
of a grounded wall.
a. Determine the positions and values of the image charges.
b. Calculate the electrostatic potential Φ(r) in the upper right quadrant.
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Figure 13.22: Mirror charge.

Solution: a. There are three image charges,

−q,




−a
a

0


 , + q,




−a
−a
0


 , − q,




a

−a
0


 .

b. So we have for r in the upper right quadrant:

Φ(r) =
q

4πε0

[
− 1√

(x+ a)2 + (y − a)2 + z2
+

1√
(x+ a)2 + (y + a)2 + z2

− 1√
(x− a)2 + (y + a)2 + z2

+
1√

(x− a)2 + (y − a)2 + z2

]
.

Proof: Φ(r) = 0 para x = 0 ou y = 0.

13.5.6.3 Ex: Mirror charge

Inside a grounded hollow metallic sphere with the inner radius a be a charge +Q at
the position r1 = (0, 0, z1). Determine the charge Q′ and the position r2 of an image
charge with which it is possible to describe the potential Φ(r) of the original charge
distribution using only the system consisting of the charge and the image charge.
Determine Φ(r).
Help: The position r2 and the charge Q′ are not unambiguously determined. Choose
r1 = (0, 0, z1) and z2/a = a/z1.

Solution: The boundary condition is Φ(|r| = a) = 0. We now place a charge Q′

for symmetry reasons at the point z2:

4πε0Φ(r) =
Q

|r− z1êz|
+

Q′

|r− z2êz|

with r = rêr follows from the condition

4πε0Φ(r = aêr) =
Q/a

|êr − z1êz/a|
+

Q′/a
|êr − z2êz/a|

≡ 0 .
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z
x

z

q'

q

z

2

1

Figure 13.23: Mirror charge.

This is satisfied when

Q
√
a2 + z22 − az2êr · êz = −Q′

√
a2 + z21 − az1êr · êz .

The square gives,

Q2(a2 + z22 − az2êr · êz) = Q′2(a2 + z21 − az1êr · êz)Q′Q < 0 .

Since this should be satisfied for all angles θ = arccos(êr · êz),

Q2(−az2êr · êz) = Q′′(−az1êr · êz) and Q2(a2 + z22) = Q′′(a2 + z21) ,

resp.
Q2

Q′′
=
z1
z2

=
a2 + z21
a2 + z22

.

The second equation gives,

z1a
2 + z1z

2
2 − a2z2 − z21z2 = 0 ,

which yields z1 = a2/z2. With that we substitute z1 in the first equation,

Q′ = ±Qz2
a

and Q′Q < 0 .

We get a trivial solution for z2 = z1 and Q = −Q′.

13.5.6.4 Ex: Mirror charge

A conductive surface in the (x, y)-plane has a protrusion in the form of a semi-sphere
with radius R. The center of the sphere is in the plane and at the origin of the coor-
dinates. On the symmetry axis êz at a distance d > R from the plane there is a point
charge Q. Determine with the image charge method the potential Φ(r) and the force
F on the charge Q.
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a. To make the surface of the semisphere an equipotential surface (Φ ≡ 0) we need a
mirror charge Q1 on the z-axis at a distance z1 from the origin. Determine Q1 and
z1.
b. For the (x, y)-plane to become an equipotential surface as well, we need two more
image charges Q2 and Q3. Determine the value and position of these charges.
c. With the values and positions of the charges determine: The electrostatic potential
Φ(r) at an arbitrary point r above the conductive surface, the force F on the charge
Q and its direction (repulsive or attractive).

+q

R

z

d

Figure 13.24: Mirror charge.

Solution: a. The potential must satisfy the boundary condition,

Φ(r)|r∈spheresurface =
1

4πε0

[
Q

|r− z0êz|
+

Q1

|r− z1êz|

]

r∈spheresurface
= 0 .

This can be met in a non-trivial way by z1 = R2/z0 and q1 = −qR/z0, since[
Q

|r− z0êz|
+
−qR/z0
|r− R2

z0
êz|

]
r∈spheresurface

=
Q√

X2 + Y 2 + (Z − z0)2
− QR/z0√

X2 + Y 2 +
(
Z − R2

z0

)2
=

Q√
R2 − 2Zz0 + z20

− QR√
z20X

2 + z20Y
2 + z20Z

2 − 2z0ZR2 +R4
= 0 .

b. The two additional charges must reflect the charges Q and Q1 in the (x, y)-plane:
z2 = −z0 and Q2 = −Q and z3 = −z1 and Q3 = −Q1.
c. With that we have a complete expression for the potential,

Φ(r) =
1

4πε0

3∑

k=0

Qk
|r− zkêz|

=
Q

4πε0

(
1

|r− z0êz|
− 1

|r+ z0êz|
+

R
z0

|r+ R2

z0
êz|
−

R
z0

|r− R2

z0
êz|

)
.

The force acting on the charge follows from the gradient of the field of the three image
charges at the position of Q,

F(r = z0êz) = −∇
1

4πε0

3∑

k=1

Qk
|r− zkêz|

=
−Q
4πε0

êz

(
− 2z0
|z0êz + z0êz|3

+
R
z0
(z0 +

R2

z0
)

|z0êz + R2

z0
êz|3

−
R
z0
(z0 − R2

z0
)

|z0êz − R2

z0
êz|3

)

=
−Q
4πε0

(
− 1

4z20
+

Rz0
(z20 +R2)2

− Rz0
(z20 −R2)2

)
=

Q

4πε0

(
1

4z20
+

4R3z30
(z40 −R4)2

)
> 0 .
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Figure 13.25: Mirror charge.

Therefore, the force is attractive.

13.5.6.5 Ex: Mirror charge

Consider a hollow conducting sphere with radius R whose center is at the origin. At
the position with the vector a (|a| > R) be a point charge q.
a. The sphere is grounded (that is, Φ = 0 at the edge of the hollow sphere). Calculate
the potential outside the sphere using the image charge method.
b. Calculate the charge induced on the surface of the sphere.
c. What changes when the sphere is not grounded, but neutral?

Solution:

13.5.6.6 Ex: Point charges in front of a conductor

Consider a point charge Q located at a distance d in front of an infinitely extended
conductive plane.
a. Find the parametrization ϱ(r) of the volume charge distribution for the charge and
its image.
b. Calculate the potential from the distribution ϱ(r).
c. Calculate the electric field from the distribution ϱ(r).
d. Calculate the surface charge distribution σ(ρ) induced in the conductor using
Gauss’ law.
e. Calculate the potential Φ(z) along the z-axis from Coulomb’s law using the surface
charge distribution σ(ρ).
f. Compare the result obtained in (e) with the potential produced by the image charge
calculated in (b).

Help::
∫

1√
u2+a2

3
1√

u2+b2
udu = 1

a2−b2
√

u2+b2

u2+a2

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CargaImagem05.pdf
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Figure 13.26: Mirror charge.

Solution: a. We invent a second charge on the other side of the conductive plane,
such that the volume charge distribution is,

ϱ(r) = Q[δ3(r− dêz)− δ3(r+ dêz)] .

b. The potential becomes,

Φ(r) =
1

4πε0

∫

V

ϱ(r′)dV ′

|r− r′| =
1

4πε0

∫

V

Q
[
δ3(r− dêz)− δ3(r+ dêz)

]

|r− r′| dV ′

=
1

4πε0

(
Q

|r− dêz|
− Q

|r+ dêz|

)
.

c. The field becomes,

E⃗(r) = 1

4πε0

∫

V

r− r′

|r− r′|3 ϱ(r
′)dV ′ =

Q

4πε0

(
r− dêz
|r− dêz|3

− r+ dêz
|r+ dêz|3

)
.

d. With Gauss’ law we calculate,

1

ε0

∫ 2π

0

∫ ∞

0

σ(ρ)ρdρdϕ =
Q

ε0
=

∫

V
∇ · E⃗(r)dV =

∮

∂V
E⃗(r) · dS

=
Q

4πε0

∫ 2π

0

∫ ∞

0

(
ρêρ · êz − d
|ρêρ − dêz|3

− ρêρ · êz + d

|ρêρ + dêz|3
)
ρdρdϕ

=
Q

4πε0

∫ 2π

0

∫ ∞

0

(
−d

√
ρ2 + d2

3 −
d

√
ρ2 + d2

3

)
ρdρdϕ ,

such that,

σ(ρ) =
−2dQ

4π
√
ρ2 + d2

3 .

e. The potential produced by the distribution of surface charge is, for z ≥ 0,

Φ+(z) =
1

4πε0

∮

∂V

σ(r′)
|r− r′|dA

′ =
1

4πε0

∫ 2π

0

∫ ∞

0

1

|zêz − r′|
−2dQ

4π
√
ρ′2 + d2

3 ρ
′dρ′dϕ′

=
1

4πε0

−2dQ
4π

2π

∫ ∞

0

1√
z2 + ρ′2

1
√
ρ′2 + d2

3 ρ
′dρ′ = − Q

4πε0

1

d+ z
,
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using the given integral formula.
f. From the result obtained in (b) we find the same result for the potential produced
by the image load along the z-axis,

Φ(z) = − 1

4πε0

Q

|zêz + dêz|
= − 1

4πε0

Q

|z + d| .

13.5.6.7 Ex: Dirichlet boundary conditions by the Green method

Here we want to analyze the problem of a potential in the semi-space defined by z ≥ 0
with Dirichlet boundary conditions in the z = 0-plane and at infinity.
a. Determine the corresponding Greens function.
b. The potential has in the z = 0-plane within a circle of radius a the fixed value Φ0.
Outside this circle and on the same plane the potential is Φ = 0. Derive the integral
expression for the potential at a point in the upper semi-space with the cylindrical
coordinates (ρ, ϕ, z).
c. Now show that the potential along an axis perpendicularly traversing the center of
the circle is given by Φ(z) = Φ0(1− z/

√
a2 + z2).

Figure 13.27: Green’s function.

Solution: a. Be r = (x, y, z) = (ρ cosφ, ρ sinφ, z) the position vector of an arbi-
trary point in the upper semi-space. For the establishment of the Green function, we
consider a test charge q = +1 at a point in the upper semi-space given by the vector
r′ = (ρ′ cosφ′, ρ′ sinφ′, z′), together with the corresponding image charge q = −1 at
the r′′ = (ρ′ cosφ′, ρ′ sinφ′,−z′) of the lower semi-space. In this case,

G(r, r′) =
1

4π|r− r′| −
1

4π|r− r′′|

=
1

4π
√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + (z − z′)2

− 1

4π
√
ρ2 + ρ′ 2 − 2ρρ′ cos(φ− φ′) + (z + z′)2

.

b. For the Dirichlet boundary problem,

Φ(r) = −
∫

F

Φ(ρ′, φ′, 0)

(
−∂G
∂z′

)

z′=0

ρ′dρ′dφ′

=
1

2π

∫

F

dφ′dρ′ρ′Φ(ρ′, φ′, 0)
z

(ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + z2)3/2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CondicaoGreen01.pdf
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From this follows,

Φ(ρ, φ, z) =
1

2π

2π∫

0

dφ′
a∫

0

dρ′ρ′
Φ0z

(ρ2 + ρ′ 2 − 2ρρ′ cos(φ− φ′) + z2)3/2
.

c. Now we let ρ = 0 (z-axis). Then,

Φ(0, φ, z) =
1

2π

2π∫

0

dφ′
a∫

0

dρ′ρ′
Φ0z

(ρ′ 2 + z2)3/2
= Φ0z

a∫

0

dρ′ρ′

(ρ′ 2 + z2)3/2

= Φ0z

[
−1√

ρ′ 2 + z2

]ρ′=a

ρ′=0

= Φ0z

[
1

z
− 1√

z2 + a2

]
= Φ0

[
1− z√

z2 + a2

]
.

13.5.6.8 Ex: Conductor plates with mirror charges by the Green method

We consider two flat conductive plates (infinitely extended) with the mutual distance
L. Exactly in the middle between the plates there is a point charge +q. Use the
method of an infinite series of mirror images to calculate the potential between the
plates and the force on a plate.

Solution: We place the z-axis perpendicular to the two conductive plates and through
the charge +q. At the position of the charge we set z = 0. The mirror charges must
then adopt at ±L the value −q, at ±2L the value +q, etc. With that, we get for the
Green’s function (and therefore for the potential),

G = Φ(x, y, z) =

m=+∞∑

m=−∞

(−)m√
x2 + y2 + (z −mL)2

The Coulomb force on the right plate is then equal to the sum of the forces exerted by
the real charge and the image charges on the left side (z < 0) on the mirror charges
on the right side. For z ≤ 0 we have charges q(−)n at z = −Ln for n = 0, 1, 2, .... For
z > 0 q(−)m at z = +Lm for m = 1, 2, 3, .... For the force between n-th left charge
and all the right charges m then holds,

Fn = q(−)n
∞∑

m=1

q(−)m
[L(m+ n)]2

With that we get,

F =

∞∑

n=0

Fn =

∞∑

n=0

∞∑

m=1

q2(−)n+m
L2(m+ n)2

=
q2

L2

∞∑

s=1

s∑

m=1

(−)s
s2

=
q2

L2

∞∑

s=1

(−)s
s

=
q2

L2
ln 2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CondicaoGreen02.pdf
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13.5.6.9 Ex: Hollow sphere by the Green method

We consider an infinitely thin conductive hollow sphere with radius a. In spherical
coordinates, the potential on the surface of the sphere is given by Φ(a, θ, ϕ) = Φ0 cos θ.
a. Calculate, using the Green function for the sphere, the potential and the field inside
the sphere on the z-axis.
b. Show that Φ(r, θ, ϕ) = Φ0(r/a) cos θ is the solution for the interior of the sphere

and that E⃗(r) = −(Φ0/a)êz.

Solution: a. Green’s function inside the sphere is

G(r, r′) =
1

4π|r− r′| −
a

4πr′|r− a2

r′2 r
′|
.

Letting r point in z-direction we get,

G =
1

4π
√
r2 + r′2 − 2rr′ cosϑ′

− 1

4π
√

r2r′ 2

a2 + a2 − 2rr′ cosϑ′
.

So, inside the sphere on the z-axis,

Φ±(r) = ±
∫

F

Φ(r′)
∂G(r, r′)
∂r′

df ′ .

On the other hand,

∂G(r, r′)
∂r′

∣∣∣∣
r′=a

=
r2 − a2

a
√
r2 + a2 − 2ra cosϑ′

3 ,

where the ± index indicates r going to ±z. With that we get,

Φ± = ± 1

4π

∫

F

V0 cosϑ
′ r2 − a2

a
√
r2 + a2 − 2ra cosϑ′

3 a
2 sinϑ′dϑ′dφ′

= ±V0
2
a(a2 − r2)

+1∫

−1

xdx

(r2 + a2 − 2arx)3/2
= ±V0

2
a(a2 − r2)

[
1

r2a2
−rax+ a2 + r2√
r2 + a2 − 2rax

]+1

−1

= ± (a2 − r2)V0
2r2a

[−ra+ a2 + r2

a− r − ra+ a2 + r2

a+ r

]
= ± r

a
V0 .

Here it is important to have, in both cases, positive roots (for this reason we chose
a− r and not r−a, which would give the solution in outer space). Since Φ = V0 cosϑ
is given, we have that the sign + holds for ϑ = 0, and the sign − for ϑ = π.
b. We let,

Φ(r) =
V0
a
r cosϑ ,

and hence,

E⃗(r) = −V0
a
êz .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CondicaoGreen03.pdf


614 CHAPTER 13. ELECTROSTATICS

Here we use the Laplace operator in spherical coordinates. So on the surface of the
spheres holds,

∆Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂Φ

∂ϑ

)
=

2V0

a cosϑ

r
−

2V0

a cosϑ

r
= 0 .

Using the gradient in spherical coordinates and replacing the corresponding unit vec-
tors by Cartesian ones, we obtain immediately,

E⃗(r) = −V0
a
êz .

13.5.6.10 Ex: Unambiguity of the solution of the contour problem

Show that with the Dirichlet boundary condition Φ(r) = Φ0(r)|∈∂V or the von Neu-

mann boundary condition ∂Φ
∂n

∣∣
∂V

= − σ
ε0

within the region of the volume V the

potential Φ is unambiguously determined by the Poisson equation ∆Φ = − 1
ε0
ρ(r)and

a constant.

Solution: Be Φ1(r) and Φ2(r) solutions of the Poisson equation with

Φ1(r) ≡ Φ2(r) on ∂V ,

respectively
∂Φ1

∂n
≡ ∂Φ2

∂n
on ∂V .

For the potential Ψ(r) = Φ1(r)− Φ2(r) then holds ∆Ψ ≡ 0 with

Ψ|∂V ≡ 0 resp.
∂Ψ

∂n

∣∣∣∣
∂V

.

We consider,
∫

V

∇(Ψ∇Ψ)d3r =

∫

V

Ψ∆Ψd3r +

∫

V

(∇Ψ) · (∇Ψ)d3r =

∫

V

(∇Ψ) · (∇Ψ)d3r ,

and, with the Gauß theorem,
∫

V

∇(Ψ∇Ψ)d3r =

∮

∂V

Ψ(∇Ψ) · dF = 0 ,

because according to the boundary condition, on the border Ψ = 0 (Dirichlet) respec-
tively ∇Ψ · dF = 0 (von Neumann). But since (∇Ψ)2 ≥ 0, necessarily everywhere
(∇Ψ) = 0, that is, Ψ must be constant. For the Dirichlet boundary condition, the
constant must disappear, because Ψ|∂V = 0, that is,

Φ1 = Φ2 .

For von Neumann’s boundary condition,

Φ1 = Φ2 + const .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_CondicaoGreen04.pdf
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13.6 Solution of the Laplace equation in situations
of high symmetry

The Poisson (or Laplace) equation is a second order partial differential equation,
which depends on three spatial coordinates. Many situations are characterized by
symmetries, which allow us to disregard some spatial dimensions and dramatically
simplify the mathematical problem. In the following, we will discuss situations of
Cartesian, cylindrical and spherical symmetry.

13.6.1 Variable separation in Cartesian coordinates

In situations where the symmetry of the problem suggests a separation of the Carte-
sian variables, we can make the ansatz,

Φ(r) = X(x)Y (y)Z(z) . (13.73)

In Cartesian coordinates the Laplace equation is written,

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Φ = 0 . (13.74)

Inserting the ansatz into the Laplace equation and dividing by Φ,

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
= 0 . (13.75)

The three terms are functions of different variables and must therefore be constant
independently and separately,

1

X

∂2X

∂x2
= C1 ,

1

Y

∂2Y

∂y2
= C2 ,

1

Z

∂2Z

∂z2
= C3 = −C1 − C2 . (13.76)

The advantage of this procedure is that, the differential equations for the three
spatial coordinates being decoupled, we can be solve them separately. In the best case,
the field is homogeneous in one of the coordinates, which reduces the dimensionality
of the problem.

Example 51 (Field of a grounded board): For example, to calculate the
field of a plate held at a fixed potential Φ0 and being infinitely extended in the
x-y-plane, we can let X ′(x) = Y ′(y) = 0 and solve the equation,

∂2Z

∂z2
= 0 , (13.77)

which gives, Φ(r) = Z(z) = Cz + Φ0 and E⃗ = Cêz. The constants C and Φ0

must be specified by additional boundary conditions. See Exc. 13.6.4.1.
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13.6.2 Variable separation in cylindrical coordinates

In situations where the symmetry of the problem suggests a possible separation of
cylindrical variables, we can try the ansatz,

Φ(r) = R(r)F (ϕ)Z(z) . (13.78)

In cylindrical coordinates the Laplace equation is written,

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

]
Φ = 0 . (13.79)

Inserting the ansatz into the Laplace equation and dividing by Φ,

1

Rρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
+

1

F

∂2F

∂ϕ2
+

1

Z

∂2Z

∂z2
= 0 . (13.80)

The three terms are functions of different variables and must therefore be constant
separately,

1

Rρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
= C1 ,

1

F

∂2F

∂ϕ2
= C2 ,

1

Z

∂2Z

∂z2
= C3 = −C1−C2 . (13.81)

Example 52 (Field of a straight wire): Many geometries have cylindrical
symmetry, such that the equations in θ and z become trivial. For example, to
calculate the field of a straight and infinite wire maintained at a fixed potential,
it is enough to solve a radial differential equation,

∂

∂ρ

(
ρ
∂R

∂ρ

)
= 0 ,

which gives, Φ(r) = R(ρ) = C ln ρ + Φ0 and E⃗ = Cêρ/ρ. The constants C and

Φ0 must be specified by additional boundary conditions.

13.6.3 Variable separation in spherical coordinates

In situations where the symmetry of the problem suggests a possible separation of
the spherical variables, we can try the make ansatz,

Φ(r) = R(r)T (θ)F (ϕ) . (13.82)

In spherical coordinates the Laplace equation is written,

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

]
Φ = 0 . (13.83)

Inserting the ansatz into the Laplace equation and dividing by Φ,

1

R

∂

∂r

(
r2
∂R

∂r

)
+

1

T sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

Fr2 sin2 θ

∂2F

∂ϕ2
= 0 . (13.84)
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The three terms are functions of different variables and must therefore be constant
separately,

1

R

∂

∂r

(
r2
∂R

∂r

)
= C1 ,

1

T sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
= ℓ(ℓ+ 1) (13.85)

1

Fr2 sin2 θ

∂2F

∂ϕ2
= m = −C1 − ℓ(ℓ+ 1) .

Example 53 (Sphere with fixed potential): Many geometries have spherical
symmetry, such that the equations in θ and ϕ become trivial. For example, to
calculate the field of a sphere held at a fixed potential, we only have to solve a
radial differential equation,

1

R

∂

∂r

(
r2
∂R

∂r

)
= 0 ,

which gives, Φ(r) = R(r) = −C/r +Φ0 and E⃗ = Cêr/r
2. The constants C and

Φ0 must be specified by additional boundary conditions.

In case of only azimuthal symmetry, we have m = 0 and C1 = −ℓ(ℓ + 1). The
solutions of the radial equation are simple,

R(r) = Aℓr
ℓ +

Bℓ
rℓ+1

. (13.86)

The solutions of the angular equation are called Legendre polynomials,

T (θ) = Pℓ(cos θ) . (13.87)

They can be derived from the Rodrigues formula,

Pℓ(z) =
1

2ℓℓ!

(
d

dz

)ℓ
(z2 − 1)ℓ . (13.88)

The first polynomials are,

P0(z) = 1 , P1(z) = z , P2(z) =
1
2 (3z

2− 1) , P3(z) =
1
2 (5z

3− 3z) . (13.89)

All in all we get,

Φ(r) =

∞∑

ℓ=0

(
Aℓr

ℓ +
Bℓ
rℓ+1

)
Pℓ(cos θ) . (13.90)

Example 54 (Charged spherical layer): In this example we consider a spher-
ical shell carrying a surface charge described by σ(θ). The regions r ≤ R and
r ≥ R are treated separately. The ansatz (13.90) can not diverge, neither within
the sphere where we must let Bℓ = 0, nor outside the sphere where we have to
let Aℓ = 0. On the surface even the potential has to be continuous, such that

0 = [Φ≥ − Φ≤]r=R =

∞∑
ℓ=0

Bl
Rℓ+1

Pℓ(cos θ)−
∞∑
ℓ=0

AℓR
ℓPℓ(cos θ) ,
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resulting in Bℓ = AℓR
2ℓ+1. On the other hand, the electric field is discontinuous,

−σ(θ)
ε0

=

[
∂Φ≥
∂r
− ∂Φ≤

∂r

]
r=R

=

∞∑
ℓ=0

(2ℓ+ 1)AℓR
ℓ−1Pℓ(cos θ) .

The coefficients are,

Aℓ =
1

2ε0Rℓ−1

∫ π

0

σ(θ)Pℓ(cos θ) sin θdθ ,

which can be verified from the orthogonality relation,∫ 1

−1

Pℓ(z)Pℓ′(z)dz =
2δℓ,ℓ′

2ℓ+ 1
.

Particularly for the case σ(θ) = σ0 cos θ = σ0P1(cos θ) we obtain,

Aℓ =
σ0

2ε0Rℓ−1

∫ π

0

P1(z)Pl(z)dz =
σ0

2ε0Rℓ−1

2

2ℓ+ 1
δℓ,1 =

σ0

3ε0
δℓ,1 .

Finally,

Φ(r) =

{
σ0
3ε0

r cos θ = σ0
3ε0

r · êz for r ≤ R
σ0R

3

3ε0

1
r2

cos θ = σ0R
3

3ε0

r·êz
r3

for r ≥ R
.

Figure 13.28: Distortion of a homogeneous field by a metallic sphere.

13.6.4 Exercises

13.6.4.1 Ex: Variable separation

Calculate the potential within an infinite rectangular waveguide in the z-direction by
solving the Laplace equation using the variable separation method.

Solution: After separating the variables, Φ(r) = X(x)Y (y)Z(z), the Laplace equation
in Cartesian coordinates becomes,

1

X

∂2X

∂x2
= k2 ,

1

Y

∂2Y

∂y2
= −k2 ,

1

Z

∂2Z

∂z2
= 0 .

This gives,

X(x) = Aekx +Be−kx , Y (y) = C sin ky +D cos ky , Z(z) = Ez + F ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_SeparacaoVariaveis01.pdf
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where the amplitudes are fixed by the boundary conditions imposed by the waveguide,
for example,

Φ(x, y, z →∞) = 0 , Φ(x, y = 0, z) = Φ(x, y = b, z) = 0 , Φ(x = a, y, z) = Φ(x = −a, y, z) = Φ0 .

Satisfying the first two conditions,

Φ = 2A cosh
nπx

b
sin

nπy

b
.

To satisfy the third condition we construct a linear combination,

Φ =

∞∑

n=1

2A cosh
nπx

b
sin

nπy

b
,

postulating,

Φ(a, y, z) =

∞∑

n=1

2A cosh
nπa

b
sin

nπy

b
≡ Φ0 .

It is possible to show by comparison with the Fourier expansion,

Φ(x, y, z) =
4Φ0

π

∑

n=1,3,5,..

1

n

coshnπx/b

coshnπa/b
sin

nπy

b
.

13.6.4.2 Ex: Field of a sphere with a hole

On the surface of a hollow sphere of radius R, from which a cap defined by the opening
angle θ = α was cut out at the north pole, there is a homogeneously distributed surface
charge density Q/4πR2.
a. Show that the potential within the volume of the sphere can be written in the form,

Φ(r, θ, ϕ) =
Q

2

∞∑

ℓ=0

1

2ℓ+ 1
[Pℓ+1(cosα)− Pℓ−1(cosα)]

rℓ

Rℓ+1
Pℓ(cos θ)

where for ℓ = 0 we have to let Pℓ−1(cosα) = −1. What is the shape of the potential
outside the hollow sphere?
b. Determine the absolute value and the direction of the electric field at the origin.
c. What potential do we get for α→ 0?
Help: Use the following relation for the surface charge density:

− σ
ε0

=

[
∂Φ>
∂r
− ∂Φ<

∂r

]

r=R

,

where the indices < resp. > hold for regions inside resp. outside the sphere. For the
integration, the following recursion relation is useful,

Pl(x) =
1

2ℓ+ 1

(
dPℓ+1(x)

dx
− dPℓ−1(x)

dx

)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_SeparacaoVariaveis02.pdf
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that holds for ℓ > 0.

Solution: a. The solutions inside and outside the hollow sphere must join together
in a continuous manner at r = R. Therefore, the following Ansätze are valid,

Φ>(r, θ) =

∞∑

ℓ=0

Aℓ

(
R

r

)ℓ+1

Pℓ(cos θ) , Φ<(r, θ) =

∞∑

ℓ=0

Aℓ

( r
R

)ℓ
Pℓ(cos θ) .

Given the surface charge density,

σ(cos θ) =

{
Q

4πR2 when cos θ < cosα

0 else
.

Now we have Gauß’ law,

σ

ε0
=

[
∂Φ<
∂r
− ∂Φ>

∂r

]

r=R

=
1

R

∞∑

ℓ=0

(2ℓ+ 1)AℓPℓ(cos θ) .

Using the orthogonality of the Legendre polynomials, (2ℓ + 1)
∫ 1

−1 dxPℓ(x)Pℓ′(x) =

2δℓ,ℓ′ , and the abbreviation x = cos θ we apply the operation
∫ 1

−1 dxPℓ′(x)... to both
sides of the last equation,

1

ε0

+1∫

−1

dxσ(x)Pℓ′(x) =
Q

4πε0R2

cosα∫

−1

dxPℓ′(x) =
1

R

∞∑

ℓ=0

(2ℓ+1)Aℓ

+1∫

−1

dxPℓ(x)Pℓ′(x) =
2

R
Aℓ′ .

Therefore, we have for the expansion coefficients with the given relationship,

Aℓ =
Q

8πε0R

cosα∫

−1

dxPℓ(x) =
Q

8πε0R

1

2ℓ+ 1
[Pℓ+1(x)− Pℓ−1(x)]cosα−1

=
Q

8πε0R

1

2ℓ+ 1
(Pℓ+1(cosα)− Pℓ−1(cosα)) ,

at least for ℓ ̸= 0. But for ℓ = 0 the integral is trivial:
∫ cosα

−1 dxPℓ(x) = cosα + 1 =
P1(cosα)− P−1(cosα) with the definition of the problem. Insertion into our original
Ansätze immediately gives the potential inside and outside the hollow sphere.
b. We have,

E⃗ = −∇Φ = −êr
∂Φ

∂r
− êθ

1

r

∂Φ

∂θ
+ 0 = −êr

∂Φ

∂r
+ êθ

sin θ

r

∂Φ

∂ cos θ
.

Therefore, we have inside,

E⃗ =
Q

8πε0

∞∑

ℓ=0

Pℓ+1(cosα)− Pℓ−1(cosα)
2ℓ+ 1

rℓ−1

Rℓ+1

[
−êrℓPℓ(cos θ) + êθ sin θ

dPℓ(x)

dx

]
.

For r → 0 all terms with the exception of ℓ = 1 disappear. We therefore have

E⃗(r = 0) =
Q

6R2
(P2(cosα)− P0(cosα))(−êr cos θ + êθ sin θ) .
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Now, êr cos θ − êθ sin θ = êz, P2(cosα) = (3 cos2 α − 1)/2 and P0(cosα) = 1. With
that, we get for the electric field at the origin,

E⃗(r = 0) = − Q

6R2
êz(

3

2
cos2 α− 3

2
) =

Q

4R2
sin2 αêz .

c. For α = 0 we have cosα = 1 and Pℓ(cosα) = Pℓ(1) = 1. With that, in our formulas
for the potential, only the terms ℓ = 0 survive:

Φ<(r) =
Q

4πε0R
, Φ>(r) =

Q

4πε0r
.

This is the known result for a closed spherical layer.

13.7 Multipolar expansion

The basic idea of multipolar expansion is the approximate description of the poten-
tial generated by an arbitrary distribution of charges localized within a volume V.
The larger the distance between the observation point and the charge distribution in
comparison to the extent of the volume V, the more the potential looks like that of a
point charge. The smaller the distance, the more terms (multipole moments) must be
taken into account, Φ(r) =

∑
k Φk(r). High multipolar orders decay faster (like r−k)

with the distance between the observation point and the volume where the charge is
concentrated.

We have already seen how to do the Taylor expansion of scalar fields in the formula
(12.17) 9. Here, we want to expand in terms of r−1. We start by expanding the
function,

1

|r− r′| =
1

r

∞∑

ℓ=0

(
r′

r

)ℓ
Pℓ(cos θ

′) , (13.91)

where θ′ is the angle between r and r′. Inserting the expansion into Coulomb’s law
(13.35),

Φ(r) =
1

4πε0

∫
ϱ(r′)
|r− r′|d

3r′ =
1

4πε0

∞∑

ℓ=0

1

rℓ+1

∫
ϱ(r′)r′ℓPℓ(cos θ

′)d3r′ . (13.92)

Example 55 (Multipolar expansion by Legendre polynomials): To dis-
cuss the multipolar expansion of the function 1

|r−r′| we chose the axis r̂ as the
symmetry axis, as shown in Fig. 13.29, because in this coordinate system the
function has azimuthal symmetry in the variable r′. Therefore, we can apply
the solution of the Laplace equation in spherical coordinates derived above,

Φ(r′) =

∞∑
ℓ=0

(
Aℓr

′ℓ +
Bℓ
r′ℓ+1

)
Pℓ(cos θ

′) .

9Using the following property of the Legendre polynomials,

1√
1 + η(η − 2z)

=
∑
ℓ

ηℓPℓ(z) ,

where the left side is called the generating function of the polynomials.
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We consider two cases: In a first case in which r′ < r, for the solution Φ(r′) to
converge, we need to guarantee Bℓ = 0 such that,

1

|r− r′| =
∞∑
ℓ=0

Aℓ(r)r
′ℓPℓ(cos θ

′) .

In the second case in which case r′ > r, we need to ensure Aℓ = 0, such that,

1

|r− r′| =
∞∑
ℓ=0

Bℓ(r)

r′ℓ+1
Pℓ(cos θ

′) ,

The coefficients Aℓ(r) and Bℓ(r) can not depend on r′. Let us now have a closer
look at this second case and rename the variables r↔ r′:

1

|r′ − r| =
∞∑
ℓ=0

Bℓ(r
′)

rℓ+1
Pℓ(cos θ) .

Comparing this to the first case and using θ = −θ′ we find,

Aℓ(r)r
ℓ+1 =

Bℓ(r
′)

r′ℓ
= const = C .

Hence,

1

|r− r′| =
∞∑
ℓ=0

C
r′ℓ

rℓ+1
Pℓ(cos θ

′) .

The constant C can be calibrated considering a particular case, for example
r ∥ r′ and r ≫ r′. In this case, since Pℓ(1) = 1, the multipolar expansion,

1

|r− r′| =
1

|r − r′| =
∞∑
ℓ=0

C
r′ℓ

rℓ+1
,

is nothing more than a Taylor expansion around the point r − r′ ≃ r.

Figure 13.29: In the coordinate system r̂ = êz the function |r−r′|−1 has azimuthal symmetry.

13.7.1 The monopole

For n = 0 the contribution of the monopole moment Q to the potential is,

Φ0(r) =
Q

4πε0

1

r
where Q =

∫

V
d3r′ ϱ(r′) (13.93)

is just the electric charge.
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13.7.2 The dipole

For n = 1 the contribution of the electric dipole moment d to the potential follows
immediately from formula (13.91),

Φ1(r) =
1

4πε0
1
r2

∫
ϱ(r′)r′P1(cos θ

′)d3r′

= 1
4πε0

1
r3

∫
ϱ(r′)rr′ cos θ′d3r′ = 1

4πε0
r
r3 ·

∫
ϱ(r′)r′d3r′ .

We obtain,

Φ1(r) =
1

4πε0

∑

k

dk
xk
r3

where d =

∫

V
d3r′ r′ϱ(r′) . (13.94)

13.7.3 The quadrupole

For n = 2 the contribution of the electric quadrupole moment qi,j to the potential
follows immediately from the formula(13.91),

Φ2(r) =
1

4πε0
1
r3

∫
ϱ(r′)r′2P2(cos θ

′)d3r′ = 1
4πε0

1
r3

∫
ϱ(r′)r′2 3 cos2 θ′−1

2 d3r′

= 1
4πε0

1
2r5

∫
ϱ(r′)(3(r · r′)2 − r2r′2)d3r′

= 1
4πε0

1
2r5

∑

k,m

∫
ϱ(r′)(3xkx

′
kxmx

′
m − xkxmr′2δk,m)d3r′ .

We obtain,

Φ2(r) =
1

4πε0

1

2

∑

k,m

qk,m
xkxm
r5

where qk,m =

∫

V
d3r′ (3x′kx

′
m − r′2δk,m)ϱ(r′) .

(13.95)

Example 56 (Multipole moments of a dipole): As an example, we consider
the simplest dipole, which consists of two charges e and −e separated by a fixed
distance a, which we choose parallel to the z-axis. The monopolar moment is,

Q =

∫
d3r′ [eδ(a

2
êz − r′)− eδ(a

2
êz + r′)] = 0 ,

as expected. The dipole moment is,

d =

∫
d3r′ r′[eδ(a

2
êz − r′)− eδ(a

2
êz + r′)] = ea


0

0

1

 ,



624 CHAPTER 13. ELECTROSTATICS

and the quadrupolar moment is,

qk,m =

∫
d3r′ (3x′kx

′
m − r′2δkm)[eδ(a

2
êz − r′)− eδ(a

2
êz + r′)]

=
ea2

4


−1 0 0

0 −1 0

0 0 2

− ea2

4


−1 0 0

0 −1 0

0 0 2

 = 0 .

See the Excs. 13.7.5.1 to 13.7.5.10.

Example 57 (The electric dipole): The gradient of the potential of a dipole
is,

E⃗1 = −∇ r · d
4πε0r3

=
−1
4πε0

êx
∂

∂x

xdx + ydy + zdz
(x2 + y2 + z2)3/2

+ ...

=
−1
4πε0

êx
dx(x

2 + y2 + z2)3/2 − (xdx + ydy + zdz)3x(x
2 + y2 + z2)1/2

(x2 + y2 + z2)3
+ ...

=
−1
4πε0

êx
dxr

2 − r · d3x
r5

+ ... =
1

4πε0

3(êr · d)êr − d

r3
.

13.7.4 Expansion into Cartesian coordinates

The multipolar expansion can also be done in Cartesian coordinates by a Taylor
series of the Green function 10. To take this into account, we evaluate the function
G(r, r′) = G(r− r′) around the distance r− r′ ≃ r,

G(r− r′) =
∑

k

1

k!
(r′ · ∇)kG(r) = G(r) +

∑

k=1

x′k
∂

∂xk
G(r) +

1

2!

(
3∑

k=1

x′k
∂

∂xk

)2

G(r) + ...

(13.96)

= G(r) +
∑

k=1

x′k
∂

∂xk
G(r) +

1

2!

3∑

k,m=1

x′kx
′
m

∂2

∂xk∂xm
G(r) + ...

= G(r) +
∑

k=1

x′k
∂

∂xk
G(r) +

1

6

3∑

k,m=1

(3x′kx
′
m − r′2δk,m)

∂2

∂xk∂xm
G(r) + ...

The last transformation is valid if the function G satisfies the Laplace equation,
∇2G = 0.

Figure 13.30: Taylor expansion of the Green function around the point r− r′ ≃ r.

10We can imagine the Green function as the potential created by a point-charge distribution,
ϱ(r′) = Qδ(r − a), since Φ(r) =

∫
G(r − r′)ϱ(r′)dV ′ = QG(r′ − a). That is, the multipolar terms

come into play due to a small stretching of the charge distribution around the point r′ = a
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Example 58 (Cartesian multipolar expansion): As an example, we expand
the Coulomb potential, G(r− r′) = 1

|r−r′| . The first derivatives,

∂

∂xk

1

|r− r′| =
xk − x′k
|r− r′|3 ,

and the second derivatives,

∂2

∂xk∂xm

1

|r− r′| =
3(xk − x′k)2 − (r− r′)2δk,m

|r− r′|5 ,

allow us to calculate,

1

|r− r′| =
1

r
+

r · r′
r3

+
1

6

3∑
k,m=1

3xkxm − r2δk,m
r5

(3x′kx
′
m − r′2δk,m) .

The octupolar term of the multipole expansion of the Coulomb potential is,

1

3!
(r′·∇)3 1

r′
=

1

6

3∑
k,m,n=1

x′kx
′
mx
′
n
−15xkxmxn + 3r′′(xkδmn + xmδkn + xnδmk)

r7
.

Inserting this into Coulomb’s Law,

Φ(r) =
1

4πε0

∫
ϱ(r′)

|r− r′|dV
′ =

1

4πε0

1

r
Q+

r

r3
· d+

1

6

3∑
k,m=1

3xkxm − r2δk,m
r5

qk,m + ...

 ,

with the definitions of the multipole moments.

13.7.5 Exercises

13.7.5.1 Ex: Multipoles

A point charge +2Q is at the position (0, 0, a) and another charge +1Q at the posi-
tion (0, 0,−a). Calculate a. The monopolar, b. the dipolar, and c. the quadrupolar
contribution of the multipolar expansion.

Solution: a. The charge distribution is parametrized by ρ(r) = 2Qδ(x)δ(y)δ(z −
a) +Qδ(x)δ(y)δ(z + a). So, the monopolar moment is,

Q =

∫
ρ(r)d3r = 3Q .

b. The dipole moment is,

d =

∫
rρ(r)d3r = 2Q

∫
rδ(x)δ(y)δ(z − a)d3r +Q

∫
rδ(x)δ(y)δ(z + a)d3r

= 2Qaêz +Q(−a)êz = Qaêz .

c. The quadrupole moment is qij =
∫ (

3xixj − r2δij
)
ρ(r)d3r. In particular,

q11 = q22 = 2Q

∫
(3x2 − r2)δ(x)δ(y)δ(z − a)d3r +Q

∫
(3x2 − r2)δ(x)δ(y)δ(z + a)d3r

= −3Qa2 ,

q33 = 2Q

∫
(3z2 − r2)δ(x)δ(y)δ(z − a)d3r +Q

∫
(3z2 − r2)δ(x)δ(y)δ(z + a)d3r = 6Qa2 ,

q12 = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar01.pdf
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13.7.5.2 Ex: Di- and quadrupolar momenta of spherical charge distri-
butions

Do spherically symmetrical load distributions have dipole or quadrupolar moments?
Justify!

Solution: Spherically symmetrical distributions appear, outside the volume by which
they are confined, as point charges and, therefore, can be completely described by the
monopolar moment, that is, they have neither dipole nor quadrupolar moment.

13.7.5.3 Ex: Electric dipole

An electrical dipole consists of two charges of the value q = 1.5 nC distant by a = 6µm.
a. What is the dipole moment?
b. Calculate the dipole potential along the êz axis of symmetry and in the xy-plane.
c. The dipole is in an 1100N/C electric field. What is the difference in potential
energies comparing parallel and antiparallel orientations of the dipole.

Solution: a. With ρ(r) = qδ(r− a/2)− qδ(r+ a/2) the charge is,

Q =

∫
ρ(r)d3r = 0 .

The dipole moment is,

a =

∫
rρ(r)d3r = qa = 9 · 10−15 Cm .

b. The potential is,

Φ(r) =
1

4πε0

q

|r− a/2| −
1

4πε0

q

|r+ a/2| .

Along the z-axis we have for z /∈ [−d/2, d/2]

Φ(0, 0, z) =
±q
4πε0

(
1

z − a/2 −
1

z + a/2

)
=
±q
4πε0

a

z2 − a2/4 .

Along the z-axis we have for z ∈ [−d/2, d/2]

Φ(0, 0, z) =
−q
4πε0

(
1

a/2− z −
1√

z + a/2

)
=

q

4πε0

2z

z2 − a2/4 .

In the x-y-plane we have,

Φ(x, y, 0) =
q

4πε0

(
1√

x2 + y2 + a2/4
− 1√

x2 + y2 + a2/4

)
= 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar03.pdf
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c. The energy of the dipole in the electric field is,

E± = −d · E⃗± = ∓aE .

With that, the energy difference is E+ − E− = 2aE = 1.8 · 10−11 Cm.

13.7.5.4 Ex: Electric dipole

An electric dipole with the moment d is at the position r. At the origin of the coor-
dinate system there is a point charge e.
a. Calculate the potential energy of the dipole.
b. Calculate the force acting on the dipole.
c. Calculate the force acting on the charge. Is Newton’s axiom of mechanics valid:
’actio = reactio’?

Solution: a. The potential energy of the dipole d = qa can be calculated from the
charge of the dipole in the field of the electron,

Ed,pot =
1
2

∫
d3r′ ρd(r

′)Φe(r
′) =

1

4πε0

1

2

∫
d3r′

(
qδ3(a/2)− qδ3(−a/2)

) e

|r′|

=
1

4πε0

q

2

(
e

|a/2| −
e

| − a/2|

)
= 0 ,

or from the charge of the electron e in the field of the dipole,

Ee,pot =
1

2

∫
d3r′ ρe(r

′)Φd(r
′) =

1

4πε0

1

2

∫
d3r′ eδ3(r)

(
q

|r′ − a/2| −
q

|r′ + a/2|

)

=
1

4πε0

e

2

(
q

|a/2| −
q

|a/2|

)
= 0 .

b. The force acting on the dipole follows from Fd = −∇rEd,pot|r=0, where

Ed,pot(r) =
1

2

∫
d3r′ ρd(r

′)Φe,r(r
′) =

1

4πε0

1

2

∫
d3r′

(
qδ3(r′ − a/2)− qδ3(r′ + a/2)

) e

|r′ − r|

=
1

4πε0

q

2

(
e

|a/2− r| −
e

| − a/2− r|

)
.

With this,

Fd = −
1

4πε0

q

2
∇r

[
e

|a/2− r| −
e

| − a/2− r|

]

r=0

=
1

4πε0

q

2

(
ea/2

|a/2|3 +
ea/2

|a/2|3
)

=
1

πε0

eq

d2
êd .

c. The force acting on the dipole follows from Fe = −∇rEe,pot|r=0, where

Ee,pot(r) =
1

2

∫
d3r′ ρe(r

′)Φd,r′(r
′) =

1

4πε0

1

2

∫
d3r′ eδ3(r′ + r)

(
q

|r′ − a/2| −
q

|r′ + a/2|

)

=
1

4πε0

e

2

(
q

| − r− a/2| −
q

| − r+ a/2|

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar04.pdf
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With this,

Fe = −
1

4πε0

e

2
∇r

[
q

| − r− a/2| −
q

| − r+ a/2|

]

r=0

=
1

4πε0

e

2

(
− qa/2

|a/2|3 +
−qa/2
|a/2|3

)
=
−1
πε0

eq

d2
êd .

Hence, the principle ’actio = reactio’ is valid, Fd = −Fe.

13.7.5.5 Ex: Electric dipole in a field

What is the force acting on an electric dipole d = ea · êr at a point r being aligned
along the field lines of an external field produced by a sphere with radius R homoge-
neously charged with a charge Q?

R

-e
e

Q
d

r

Figure 13.31: Electric dipole in a field.

Solution: Following Gauß’s law,
∫
∂V E⃗(r) · dA = 1

ε0

∫
V ϱ(r)d

3r outside the sphere,
∫

∂V
EdA = E4πr2 =

∫

∂V
EdA =

1

ε0
Q

and with that,

E⃗ =
Q

4πε0r2
êr .

The force now is,

F = eE⃗(r− a/2) + eE⃗(r+ a/2) =
Qe

4πε0
êr

(
1

(r − a/2)2 −
1

(r + a/2)2

)
.

for small d≪ r we can approximate as follows,

F =
Qe

4πε0
êr

(r + a/2)2 − (r − a/2)2
(r − a/2)2(r + a/2)2

≃ Qe

4πε0
êr

2ar

r4
.

This result also follows for small dipolar moments approximating the interaction en-
ergy by,

W = −d · E⃗ = −eaêr ·
Q

4πε0r2
êr = −

Qea

4πε0r2

where we assume, that E⃗(r+ a/2) ≃ E⃗(r− a/2). The force is finally,

F = −∇W = − Qea

2πε0r3
êr .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar05.pdf
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13.7.5.6 Ex: Electric dipole in a field

Consider a molecule that consists of two rigidly bound masses m1 = m2 = 10−25 kg
at a distance of a = 10−12 m and with charges +e resp. −e.
a. Calculate the electric dipole moment d = d · êx of this charge distribution.
b. Now the molecule is put into rotation by a homogeneous electric field E⃗ = êz ·
100V/m. Calculate the rotation speed of the molecule as a function of the angle
between the dipole moment and the electric field.
Help: The sum of the kinetic and electrostatic energies is conserved during the ro-
tation.

Solution: a. The dipole moment is,

d = eaêx = 1.6 · 10−31 Cm êx.

A homogeneous electric field placed in êz direction produces a torque,

D⃗ =
(
r+

a

2

)
× eE⃗ −

(
r− a

2

)
× eE⃗ = eaêx × E êz = −eaE êy .

b. The energy of the dipole in the electric field is,

W = −d · E⃗ = −dE cosϕ .

The kinetic energy is,

T =
m

2
v21 +

m

2
v22 = mv21 ,

since |v1| = |v2|. With the angular velocity,

ω1 =
v1
a/2

the kinetic energy becomes,

T = mv21 = m
(ω1a

2

)2
.

At the beginning (t = 0) the electrostatic energy disappears because, ϕ(0) = 90◦, and
the kinetic energy disappears, because vk(0) = 0,

T (0) +W (0) = 0 = m
(ω1a

2

)2
− dE cosϕ .

Hence,

ω2
1 = 4

dE cosϕ
ma2

.
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13.7.5.7 Ex: Dipolar field in two dimensions

Consider two infinitely long parallel conductors with distance d carrying the linear
charge density +λ resp.−λ (charge±Q per length l of the conductor). Using the Gauß
theorem, first calculate the electric field and the electric potential of one conductor.
Then calculate the potential of both conductors by overlapping the individual poten-
tials as a function of the distance r and the angle α (see Fig. 13.32). Note: Choose
as integration volume a cylinder with length l and radius r along the symmetry axis
around the wire. Determine the asymptotic behavior for r ≫ d/2 and for r ≪ d/2.
To do this, do a Taylor expansion of the expression using: ln 1+ϵ

1−ϵ ≈ −2ϵ + O(ϵ3).
Write the result as a function of the dipole moment p, where p = |p| = λd is positive
and indicates the direction of the dipole moment vector showing from the positive
conductor to the negative.

Figure 13.32: Dipolar field.

Solution: With Gauß’ integral theorem,
∮
∂V E⃗ · n⃗dA = 4π

∫
V ρdV follows El2πr =

4πQ, with the charge Q on a piece of wire of length l. With the definition of the linear
charge density λ = Q/l follows, E = 2λ

r . For the potential Φ (E⃗ = −∇Φ) we integrate
the field and obtain,

Φ = −2λ ln(r) .

With two conductors we add the potentials: Φ = −2λ(ln(d+) − ln(d−)) = −λ ln d2+
d2−

.

For d+ and d− we obtain:

d2+ = r2 + a2 − 2ar sinα, and d2+ = r2 + a2 + 2ar sinα ,

where we let a = d/2. Therefore, the potential of the two conductors is:

Φ = −λ ln
(
1 + a2

r2 − 2ar sinα

1 + a2

r2 + 2ar sinα

)
= −λ ln

(
1 + r2

a2 − 2 ra sinα

1 + r2

a2 + 2 ra sinα

)
.

For short distances r/a ≪ 1 we take the second expression and, neglecting the terms
with r2/a2, we get,

Φ = 4λ
r

a
sinα .

For long distances r/a≫ 1 we take the first term and get analogously,

Φ = 4λ
a

r
sinα .
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With sinα = −pr
pr follows for short distances Φ = −2p·r

a2 and for long distances

Φ = −2p·r
r2 .

13.7.5.8 Ex: Dipolar and quadrupolar fields

Let us consider a system of three point charges aligned to the z-axis. At the positions
z = ±a we have charges +Q, at the position z = 0 the charge −2Q.
a. Determine the charge distribution in terms of the δ-function in Cartesian coordi-
nates.
b. Calculate the electrostatic potential Φ(r) of this charge distribution and approx-
imate for long distances |r| ≫ a. (Help: Write the denominators that appear as

1
|r±a| =

1
r

1√
1+x

with x ≡ a2±2a·r
r2 and expand up to second order in a.)

c. Calculate the monopolar moment and the Cartesian components of the dipolar
moment and the quadrupolar tensor.
d. Calculate the monopolar, dipolar, and quadrupolar potentials and show that the
results coincides with the expansion (b).
e. Now rotate the coordinate system around the x-axis by an angle of 45◦. What are
the new values for multipolar moments? (Help: The quadrupolar tensor is trans-

formed with the rotation matrix λ as q′il = λilqlmλ
†
mj).

Solution: a. The density of charges is,

ϱ(r) = Qδ(x)δ(y)(δ(z − a) + δ(z + a)− 2δ(z)) .

b. We define the vector a ≡ aêz. In this case, we have for the potential at an arbitrary
point r,

Φ(r) =
1

4πε0

(
Q

|r− a| +
Q

|r+ a| −
2Q

|r|

)
.

Using the Taylor expansion,

1√
1+x

= 1− 1
2x+ 3

8x
2 − ...

we approximate up to the second order terms in a/r and we get,

1

|r± a| =
1√

r2 + a2 ± 2a · r
=

1

r

1√
1 + a2±2a·r

r2

=
1

r

(
1∓ a · r

r2
− a2

2r2
+

3

2

(a · r)2
r4

)
+...

Follows for the potential,

Φ(r) ≃ Q

4πε0

(
−2

r
+

2

r
+

a · r
r3
− a · r

r3
− a2

r3
+ 3

(a · r)2
r5

)
=

Q

4πε0

(
3(a · r)2
r5

− a2

r3

)
.

c. The monopolar moment of this charge distribution is equal to the total charge and
therefore obviously equal to 0,

Qtot =

∫

R
ϱ(r′)dV ′ = 0 .
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For the dipole moment we need to integrate ρ(r)r. The x and y-components of the
vector obviously give 0. Now, we consider the z-component. Here we get Q(a − a −
2 · 0) = 0,

d =

∫

R
r′ϱ(r′)dV ′ = 0 .

Finally, we consider the quadrupolar moment using the general formula,

qij =

∫

R
(3xixj − r2δij)ϱ(r′)dV ′ .

For i ̸= j we see immediately, qij = 0. For i = j and i = 1 holds,

q11 =

∫

R
(2x2 − y2 − z2)ϱ(r′)dV ′ = −2Qa2

in the same way,

q22 =

∫

R
(2y2 − x2 − z2)ϱ(r′)dV ′ = −2Qa2

and finally,

q33 =

∫

R
(2z2 − x2 − y2)ϱ(r′)dV ′ = +4Qa2

Hence,

(qij) = 2Qa2




−1 0 0

0 −1 0

0 0 2


 .

d. For the potential follows,

Φ(r) = 1
4πε0r

∑

i

Qi +
1

4πε0r3

∑

i

diri +
1
2

1
4πε0r5

∑

ij

qijxixj + ...

≃ 0 + 0 + 1
8πε0r5

2Qa2(−x2 − y2 + 2z2) = 1
4πε0

Qa2

r5 (3z2 − r2) .

e. The matrix describing a rotation around the x-axis is,



x′

y′

z′


 =




1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2







x

y

z


 ,

resp. in a compressed version, x′i =
∑
j λijxj. The monopolar moment transforms

like a scalar and, therefore, remains unchanged. The dipole moment is like a vector
but, as all components in the previous coordinate system are 0, also in the rotated
system there is no dipole moment. We need to calculate the quadrupolar tensor. We
use now, that λ is an orthogonal transformation, (detλ = 1, λ−1 = λT ), and write,

q′ij =
∫
d3r ′(3x′ix

′
j−r′

2
δij) =

∑

lm

λilλjm

∫
d3r ′(3xlxm−r2δlm) =

∑

lm

λilqlm(λT )mj ,
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where we use that d3r′ = d3r. Inserting the matrix above gives immediately,

q′ =


1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2



−2Qa2 0 0

0 −2Qa2 0

0 0 4Qa2



1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

 =


−2aQ2 0 0

0 −Qa2 3Qa2

0 3Qa2 3Qa2

 .

13.7.5.9 Ex: Multipoles

The two charge distributions shown in the graph are given.
a. Calculate for both cases first the electrical potential Φ for the distances r = 2a,
r = 10a, and r = 100a for the angles α = 0◦, α = 45◦, and α = 90◦, respectively.
b. The results must now be compared with those of the quadrupolar expansion. What
are the monopolar, dipolar and quadrupolar moments for these two geometries? Cal-
culate the monopolar, dipolar and quadrupolar contributions of the electrical potential
for the same positions as above. Compare these values with those calculated exactly
and identify the dominant contributions.

+q

+q

+q

-q

-q-q

x

x

y

y

-a

-a

-a

+a

+a

+a

r

r

r

r

r

r

�

�

Dipol

Quadrupol

Figure 13.33: Multipoles.

Solution: We first consider only the superior charge distribution. The potential
is,

Φ =
1

4πε0

−q
|r− a⃗| +

1

4πε0

q

|r+ a⃗| .

In the given positions with α = 0◦ we have,

Φ|r=na,α=0 = Φ(na, 0, 0) =
1

4πε0

−q√
(na− a)2

+
1

4πε0

q√
(na+ a)2

=
−2q
4πε0a

1

n2 − 1

Φ|r=2a,α=0 =
−q

4πε0a

2

3
, Φ|r=10a,α=0 =

−q
4πε0a

2

99
, Φ|r=100a,α=0 =

−q
4πε0a

2

9999
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with α = 45◦

Φ|r=na,α=45◦ = Φ

(
na√
2
,
na√
2
, 0

)
=
∑

±

1

4πε0

∓q√
( na√

2
∓ a)2 + ( na√

2
)2

=
∑

±

1

4πε0a

∓q√
n2 ∓

√
2n+ 1

Φ|r=2a,α=0 =
−q

4πε0a
· 0.32 , Φ|r=10a,α=0 =

−q
4πε0a

· 0.014 , Φ|r=100a,α=0 =
−q

4πε0a
· 0.00014

with α = 90◦

Φ|r=na,α=90◦ = Φ(0, na, 0) =
1

4πε0

−q√
(−a)2 + (na)2

+
1

4πε0

q√
(a)2 + (na)2

= 0 .

b. With the charge density ρ(r) = q[δ(r+a⃗)−δ(r−a⃗)] the monopolar moment becomes,

Q =

∫
ρ(r′)d3r′ = q − q = 0 .

The monopolar part of the potential then is,

Φ0(r) =
Q

4πε0
= 0 .

The dipole moment is,

d =

∫
r′ρ(r′)d3r′ = q

∫
r′[δ(r′ + a⃗)− δ(r′ − a⃗)]d3r′ = −2qa⃗ .

The dipolar part of the potential is then,

Φ1(r) =
1

4πε0

r · d⃗
r3

=
−2q
4πε0

r · a⃗
r3

.

In the given positions with α = 0◦ we have,

Φ1|r=na,α=0 =
−2q
4πε0

na2

(na)3
=
−q

4πε0a

2

n2

Φ1|r=2a,α=0 =
−q

4πε0a

2

4
, Φ1|r=10a,α=0 =

−q
4πε0a

2

100
, Φ1|r=100a,α=0 =

−q
4πε0a

2

10000

with α = 45◦

Φ1|r=na,α=45◦ =
−2q
4πε0

(na/
√
2)a

(na)3
=
−q

4πε0a

√
2

n2

Φ1|r=2a,α=45◦ =
−q · 0.35
4πε0a

, Φ1|r=10a,α=0 =
−q · 0.014
4πε0a

, Φ1|r=100a,α=0 =
−q · 0.00014

4πε0a

with α = 90◦

Φ1|r=na,α=90◦ = 0 .

The quadrupolar moment is,

Qij =

∫
ρ(r′)[3x′Ix

′
j − r′′δij ]d3r′

Q11 =

∫
ρ(r′)[3x′′1 − x′′1 − x′′2 ]d3r′ = 0 = Q22

Q12 =

∫
ρ(r′)[3x′1x

′
2 − x′′1 − x′′2 ]d3r′ = 0 = Q21 .
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The quadrupolar part of the potential then is,

Φ2(r) =
1

4πε0

1

2

∑

ij

Qij
xIxj
r5

= 0 .

Now we consider the distribution of the inferior charges.

13.7.5.10 Ex: Multipoles

Four point charges +e and −e are located at the Cartesian coordinates (x, y, z) =
(0, d, 0), (0,−d, 0), (0, 0, d), (0, 0,−d) and four other charges−e at the points (−d, 0, 0),
(−d2 , 0, 0), and (d, 0, 0). Calculate the monopolar moment and the Cartesian compo-
nents of the dipolar and quadrupolar moment of this charge distribution.

Solution:

13.7.5.11 Ex: Multipolar moments of a charge distribution

An ideal hollow sphere with radius R0 has the surface charge density σ(r, θ, ϕ) =
σ0 cos θ with σ0 =const. Calculate:
a. The multipolar moments of this charge distribution.
b. The electrostatic potential outside the sphere.

Solution: a. We have,

σ(R0, θ, ϕ) = σ0 cos θ resp. ρ(r, θ, ϕ) = σ0 cos θ δ(r −R0) .

Because of,

Y10(θ, ϕ) =

√
3

4π
cos θ vale ρ(r, θ, ϕ) = σ0δ(r −R0)

√
4π

3
Y10(θ) .

From this follows

qlm ≡
∫ R0+ϵ

0

dr′
∫

(4π)

dΩ′(r′)l+2ρ(r′, θ′, ϕ′)Y ∗lm(θ′, ϕ′)

= σ0

√
4π

3
Rl+2

0

∫

(4π)

dΩ′Y10(θ
′)Y ∗lm(θ′, ϕ′)

= σ0

√
4π

3
R3

0δl1δm0 .

Therefore, there is only the dipole moment. Defining it as always,

P ≡
√

4π

3
q10.

we get immediately,

P =

(
4π

3
R3

0

)
σ0 = Vsphereσ0 .
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b. Outside the sphere,

Φ(r, θ, ϕ) =

∞∑

l=0

+l∑

m=−l

4π

2l + 1
qlm

Ylm
rl+1

=
4π

3
R3

0 σ0

√
4π

3

Y10(θ)

r2

=
4π

3
R3

0 σ0
cos θ

r2
= P

cos θ

r2
.

13.7.5.12 Ex: Multipolar moment of an atomic nucleus

A simple model of a deformed atomic nucleus is a body homogeneously charged
with the full charge Ze and being delimited by the quadrupolar surface R(θ) =
R0(a(β) + βY20(θ)). We now assume that the absolute value of the deformation pa-
rameter β is very small with respect to 1. For the average radius it is R0 = 1.2 A1/3

[fm], where A is the number of nucleons present.
a. Visualize the shape of the nucleus.
b. Determine a(β) up to second order in β from the request, that the core volume is
always V = 4πR3

0/3.
c. Calculate the multipolar moments Qlm up to the octupolar term and up to the
linear terms in β. Are there any multipolar moments that zero exactly?
d. Calculate also the electrostatic potential also up to linear terms in β.

Solution: a. We have

Y20 =
1

2

√
5

4π
(3 cos2 θ − 1) .

Hence, Y20 = 0, when cos θ = ± 1√
3
, that is, θ ≈ 55◦. Depending on whether β > 0 or

β < 0 we obtain the schemes shown in Fig. 13.34.
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Figure 13.34: Shapes of an atomic nucleus for β > 0 (blue) and β < 0 (red).
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b. The request reads,

V =
4π

3
R3

0 = const =

∫
dΩ

R(θ)∫

0

r2dr

=

∫
dΩ

1

3
R3(θ) =

R3
0

3

∫
dΩ(a3 + 3a2βY20 + 3aβ2Y 2

20 +O(β3)) =
4π

3
R3

0(a
3 +

3aβ2

4π
) .

With this we obtain,

a =

(
1− 3β2a

4π

)1/3

= 1− β2

4π
a+ ... .

resp.

a =
1

1 + β2

4π

= 1− β2

4π
+ ... .

c. In general we get,

qlm =

∫

V

ρ(r′)(r′)l+2Y ∗lm(θ′, ϕ′)dr′dΩ′ .

Due to the independence on ϕ follows immediately, that all multipolar moments with
m ̸= 0 should disappear. Now,

ρ =
3Ze

4πR3
0

.

With that, follows for q00,

q00 =
3Ze

4πR3
0

∫

V

1√
4π

∫
dΩ

R(θ)∫

0

drr2 =
Ze√
4π

.

With that the monopolar moment becomes,

Q0 ≡
√
4πq00 = Ze .

In the same way,

q10 =
3Ze

4πR3
0

R4
0

4

∫
dΩ

(
1− β2

4π
+ βY20

)4

Y ∗10 = 0 ,

since Y20 (and hence its powers Y k20) is an even function of cos θ, while Y10 contains
the argument cos θ linearly. For the dipole moment follows from that,

P ≡
√

4π

3
q10 = 0 .

Furthermore,

q20 =
3Ze

4πR3
0

R5
0

5

∫
dΩ(1 + 5βY20 +O(β2))Y20 =

3Ze

4π
R2

0β .
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resp. for the quadrupolar moment often found in nuclear physics,

Q20 ≡
√

16π

5
q20 =

3Ze√
5π
R2

0β .

The octupolar moment q30is, on the other hand, equal to 0, since Y30 is again an odd
function in cos θ.
d. Generally speaking,

Φ(r) =

∞∑

l=0

+l∑

m=−l

4π

2l + 1
qlm

Ylm
rl+1

.

For our case we get (m = 0),

Φ(r) =

∞∑

l=0

ql0
Yl0
rl+1

= 4πq00
1√
4π

1

r
+

4π

5
q20

Y20
r3

+ ... =
Ze

r
+

3Ze

5
R2

0β
Y20
r3

.

13.7.5.13 Ex: Dipole-dipole interaction

a. Consider an electric dipole with dipole moment d. Show that the electric field of
the dipole is given by:

E⃗(r = rêr) = −
1

4πε0

d− 3êr(êr · d)
r3

.

You may use the expression for a dipole potential.
b. Use this result to calculate the interaction energy U12 of two equal dipoles located
at a distance d from one another for the dipole configurations shown in the scheme.
Help: To calculate the interaction energy U12(a) between the two dipoles we con-

Hausaufgabe 4 (Dipol-Dipol Wechselwirkung)

1. Gegeben Sei ein elektrischer Dipol mit dem Dipolmoment ~d. Zeigen Sie, dass das
elektrische Feld des Dipols gegeben ist durch :

~E(~r = rêr) = − 1

4πǫ0

~d− 3êr(~dêr))

r3
. (10)

Hierzu dürfen Sie den Ausdruck für das Potenzial eines Dipols verwenden.

2. Nützen Sie dieses Ergebnis, um die Wechselwirkungsenergie U12 zweier gleicher
Dipole, die sich im Abstand d voneinander befinden, für folgende Anordnung der
Dipole zu berechnen: Hinweis: Um die Wechselwirkungsenergie U12(~a) zwischen

d d

d d
d d

d d

1 1

1 1

2 2

2 2a a

a a

(i) (ii) (iii) (iv)

den beiden Dipolen zu berechnen, betrachten wir die Energie des Dipols 1 im elek-
trischen Feld des Dipols 2. Dann gilt: U12(~a) = −~d1 ~E2. In welchen Anordnungen
ziehen sich die Dipole an, in welchen stossen sie sich ab?

3. Ein aktuelles Forschungsgebiet beschäftigt sich mit kalten dipolaren Molekülen. In
Tübingen wird z.B. an kalten RbLi-Molekülen geforscht, welche ein permanentes
elektrisches Dipolmoment von dRbLi = 4.3 Debye besitzen. Wie groß muss die Dichte
der Atome n sein, wobei n = a−3 gilt, damit die Dipolwechselwirkung U0 mindestens
so groß ist wie die thermische Energie der Moleküle. Ultrakalte Moleküle besitzen
typischerweise eine Temperatur von 10−6 K.

Lösung
Das Potenzial eines Dipols lautet

Φ(~r) =
1

4πǫ0

~d~r

r3
. (11)

Das elektrische Feld ist gegeben durch ~E = −~∇Φ Mit Ableiten ergibt sich:

−~∇Φ =
−1

4πǫ0

[
(dx, dy, dz)

r3
− 3

2

~d · ~r
r5

(2x, 2y, 2z)

]
= (12)

=
−1

4πǫ0

[
~d

r3
− 3

~d~r

r5
~r

]
=

−1

4πǫ0

[
~d

r3
− 3

~̂er
r3
êr

]
= (13)

=
−1

4πǫ0

~d− 3(~d · êr) · êr
r3

(14)

Figure 13.35: Dipole-dipole interaction.

sider the energy of dipole 1 in the electric field of dipole 2. So, U12(a) = −d1E⃗2. In
which configurations do the dipoles attract, in which do they repel each other?
c. A current research area deals with cold dipolar molecules, for example, RbLi
molecules having a permanent dipole electrical moment of dRbLi = 4.3 Debye. What
should be the atomic density n, where n = a−3, in order to obtain a dipolar interac-
tion U0 at least as large as the thermal energy of the molecules? Ultra-cold molecular
gases typically have a temperature around 10−6 K.

Solution: The potential of a dipole is,

Φ(r) =
1

4πε0

d · r
r3

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_MomentoMultipolar14.pdf
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The electric field is given by E⃗ = −∇Φ. Derivating,

∇Φ =
−1
4πε0

[
(dx, dy, dz)

r3
− 3

2

d · r
r5

(2x, 2y, 2z)

]

=
−1
4πε0

[
d

r3
− 3

d · r
r5

r

]
=
−1
4πε0

d− 3(d · êr)êr
r3

.

The interaction energy is:

−d1 · E⃗2 = −d1
−1
4πε0

d2 − 3(d2 · êr)êr
a3

=
−1

4πε0a3
(d1 · d2 − 3(d1 · êr)(d2 · êr)) .

Extracting the absolute value of the dipole moment: di = dd̂1:

U12 =
d2

4πε0a3

(
d̂1 · d̂2 − 3(d̂1 · êr)(d̂2 · êr)

)
.

b. We define U0 ≡ d2

4πε0a3
, so we get for the various configurations:

i. U12 = U0(1− 3(0) · (0) = U0 > 0 this is repulsive
ii. U12 = U0(−1− 3(0) · (0) = −U0 < 0 this is attractive
iii. U12 = U0(1− 3(1) · (1) = −2U0 < 0 this is attractive
iv. U12 = U0(−1− 3(1) · (−1) = 2U0 > 0 this is repulsive
c. One Debye corresponds to 3.3 · 10−33 cm. Therefore, the RbLi molecule has the
dipole moment 14.2 · 10−33 Cm. We get the density from,

d2

4πε0a3
= kBT and hence n =

kBT4πε0
d2

= 7.6 · 1024 m-3 .

13.7.5.14 Ex: Photoelectric effect

During the process described by the photoelectric effect, ultraviolet light can be used
to electrically charge a piece of metal.
a. If this light strikes a bar of conductive material electrons, and are ejected with
sufficient energy to escape from the surface of the metal, after how much time will
the metal have accumulated a charge of +1.5 nC if 1.0 · 106 electrons are ejected per
second?
b. If 1.3 eV is required to eject an electron from the surface, what is the power of the
light beam? (Consider the process to be 100% efficient.)

Solution: a. It will take
1.5 nC

e · 1.0 · 106 s-1 = 2.6 h .

b. The required power is

1.3V ·e · 1.0 · 106 s-1 = 2.1 · 10−13 W .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_.pdf
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13.7.5.15 Ex: Polonium and the use of the Green function

The radioactive metal Polonium (Po), discovered by Marie and Pierre Curie in 1898,
crystallizes in a simple cubic lattice (each atom has six neighbors on a regular grid).
The nucleus contains 84 protons and the diameter of the atom is approximately 3 ·
10−8 cm. Calculate the distribution of the potential within a primitive cell of a Po
crystal traversed by a constant current. Suppose the following model for the crystal:
Atomic nuclei (radius ∼ 9 ·10−13 cm) are at positions x′λµν = (λa+a/2, µa+a/2, νa+
a/2) for λ, µν = 0,±1,±2, ..., and will be treated as point charges. The electronic
shell of a Po atom is represented by charges induced in a grounded conducting cube
of size a, in the middle of which is located the positively charged nucleus inducing
these charges. Proceed as follows:
a. Start showing that,

G(r, r′) = 32
πa

∞∑

l,m,n=1

1
l2+m2+n2 sin

lπx
a sin lπx′

a sin mπy
a sin mπy′

a sin nπz
a sin nπz′

a ,

is the Green function for the Dirichlet contour problem of a cube with edge length a.
b. Calculate the potential in the atom at the position (a/2, a/2, a/2), where we assume
for the interior of the cube a charge ρ(x′, y′, z′) = qδ(x′ − a/2)δ(y′ − a/2)δ(z′ − a/2)
and that the potential on the six surfaces of the cube adopts the following values:
Φ(r′) = 0 on the surface x′ = 0, Φ(r′) = V0 on the surface x′ = a, and Φ(r′) = V0x

′/a
on the other 4 surfaces y′ = 0, y′ = a, z′ = 0, z′ = a.
c. Reformulate the term describing the contribution of the surface to the potential
using that for 0 < x < π holds: 1 = (4/π)(sinx+ (1/3) sin 3x+ (1/5) sin 5x+ ...) and
x = 2(sinx− (1/2) sin 2x+ (1/3) sin 3x− (1/4) sin 4x+ ...).

Solution: a. We need to show:
(i) G(r, r′) = G(r′, r)
(ii) G(r, r′ ∈ peripherical surface) = 0
(iii) ∆G(r, r′) = −4πδ(3)(r− r′)
(i) and (ii) they are trivially satisfied. For (iii) we calculate:

∆G(r, r′)

= 32
πa

∞∑

l,m,n=1

1
l2+m2+n2 sin

lπx
a sin lπx′

a sin mπy
a sin mπy′

a sin nπz
a sin nπz′

a · π2

a2 (−l2 −m2 − n2)

= −4π
(√

2
a

)6 ∞∑

l,m,n=1

1
l2+m2+n2 sin

lπx
a sin lπx′

a sin mπy
a sin mπy′

a sin nπz
a sin nπz′

a .

Now holds the completeness relation,

∞∑

l=1

√
2

a
sin

(
lπx

a

)
sin

(
lπx′

a

)
= δ(x− x′) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_TuebH9.pdf
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yielding the statement (iii).
b. Vale,

Φ(x, y, z) =

∫

V

ρ(x′, y′, z′)G(r, r′)dx′dy′dz′

− 1

4π

a∫

0

dy′
a∫

0

dz′Φ(x′ = 0)
∂G

∂x′
|x′=0 −

1

4π

a∫

0

dy′
a∫

0

dz′Φ(x′ = a)
∂G

∂x′
|x′=a

− 1

4π

a∫

0

dx′
a∫

0

dz′Φ(y′ = 0)
∂G

∂y′
|y′=0 −

1

4π

a∫

0

dx′
a∫

0

dz′Φ(y′ = a)
∂G

∂y′
|y′=a

− 1

4π

a∫

0

dx′
a∫

0

dy′Φ(z′ = 0)
∂G

∂z′
|z′=0 −

1

4π

a∫

0

dx′
a∫

0

dy′Φ(z′ = a)
∂G

∂z′
|z′=a .

The volume integral gives, after inserting the charge density,

32q

πa

∞∑

l,m,n=1

(−)l+m+n sin
(

(2l+1)πx
a

)
sin
(

(2m+1)πy
a

)
sin
(

(2n+1)πz
a

)

(2l + 1)2 + (2m+ 1)2 + (2n+ 1)2
.

For the surface term we get,

8V0
π3

∞∑

l,m,n=1

(−)l+1 (1− (−)n)(1− (−)m)

lmn
sin

(
lπx

a

)
sin
(mπy

a

)
sin
(nπz

a

)
.

With x = y = z = a/2 we get from this the desired result.
c. We obtain for the surface term Φ2, by applying the given formulas on l,m, n inside
the cube:

Φ2(r) = V0
x

a
.

This is the profile of a potential due to the influence of the constant current toward
the negative x-direction, which overlaps with the potential of the crystal.

13.7.5.16 Ex: Electrostatic potential of a hollow sphere via Green func-
tion

On the surface of a hollow sphere with radius b without charge there be a certain
potential V (θ, ϕ) = V0[P2(cos θ) + αP3(cos θ)]. Calculate the electrostatic potential
Φ(r) inside the sphere.
Help: Green’s function for the interior space between two concentric spheres with
radii a and b (a < b) is,

G(r, r′) =
∞∑

l=0

4π

2l + 1

[
1−

(a
b

)2l+1
] [
rl< −

a2l+1

rl+1
<

] [
1

rl+1
>

− rl>
b2l+1

] +l∑

m=−l
Ylm(Ω)Y ∗lm(Ω′) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Electrostatics_TuebK3.pdf
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where r< ≡ min(|r|, |r′|) and r> ≡ max(|r|, |r′|). We also know, Yl0(θ, ϕ) =
√
(2l + 1)/4πPl(cos θ).

Solution: We consider the Green function as given. For the space of a single sphere
we set a = 0. Hence,

G(r, r′) =
∞∑

l=0

4π

2l + 1
rl<

[
1

rl+1
>

− rl>
b2l+1

] +l∑

m=−l
Ylm(Ω)Y ∗lm(Ω′) .

The hollow sphere is uncharged. So for all r in the sphere volume VK , holds,
∫

VK

G(r, r′)ρ(r′)d3r′ = 0 .

and therefore,

Φ(r) = − 1

4π

∫

OK

V (Ω′)

(
∂G(r, r′)
∂r′

)

r′=b

b2dΩ′ .

where OK denotes the surface of the sphere. For this surface obviously holds |r′| = r>
and |r| = r<, and so we have within the sphere

Φ(r) = − 1

4π

∫

(4π)

V (Ω′)
∞∑

l=0

4π

2l + 1
rl
(
− l + 1

bl+2
− lbl−1

b2l+1

) +l∑

m=−l
Ylm(Ω)Y ∗lm(Ω′)b2dΩ′

=

∞∑

l=0

(r
b

)l +l∑

m=−l
Ylm(Ω)

∫

(4π)

V (Ω′)Y ∗lm(Ω′)dΩ′

Now,

V (Ω′) = V0 (P2(cos θ) + αP3(cos θ)) = V0
√
4π

(
Y20(θ)√

5
+
αY30(θ)√

7

)
.

Using the orthonormality of spherical harmonics,

Φ(r) = V0
√
4π

[(r
b

)2 Y20(θ)√
5

+
(r
b

)3 αY30(θ)√
7

]

= V0

(r
b

)2 [
P2(cos θ) + α

(r
b

)
P2(cos θ)

]
.

13.8 Further reading

D.J. Griffiths, Introduction to Electrodynamics [545]ISBN

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [577]ISBN

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [963]ISBN

http://isbnsearch.org/isbn/978-1-108-42041-9
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Chapter 14

Electrical properties of matter

There are many types of materials, such as solids, liquids, gases, metals, wood or glass,
all of which respond differently to applied electric fields. However, most materials can
at least roughly be classified into two categories: In materials called dielectrics (or
insulators) the electrons are strongly bound to the atoms, while in metals there are
free electrons. Some materials, such as semiconductors, have particular properties,
which do not fit into these categories.

Under the influence of electric (or magnetic) forces the electrons can be displaced
within a macroscopic body, thus producing a polarization, when the electrons are
bound, or a current, when the electrons are free.

14.1 Polarization of dielectrics

Let us first discuss dielectrics. The elementary blocks (molecules) of dielectric ma-
terials can react in various ways to applied electric fields, For example, they can be
insensitive to electric fields or behave like permanent dipoles. Permanent dipoles exist
independently of the application of an external field, but generally (without exter-
nal field) they have random and disorderly orientations. Under the influence of an
external field the dipoles will try to reorient themselves, which is called orientation
polarization.

It is also possible that a material does not have intrinsic dipole moments, but
develops dipole moments under the action of an external field. In this case we speak
of induced dipoles. Induced dipoles are formed in the presence of a field displacing
bound positive and negative charges in molecules against each other, thus producing
a translation polarization.

14.1.1 Energy of permanent dipoles

Polar molecules exhibit permanent electric moments. Water is an example or salt
Na+Cl−. The reason is that halogens, which have a much higher electro-affinity than
alkalines, and try to steal electrons from their partner and monopolize the electronic
cloud.

The potential energy of a dipole depends on its orientation with respect to the
electric field. Using the parametrization ϱ(r′) = Q[δ3(r′ − a

2 ) − δ3(r′ + a
2 )], we find

643
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for the interaction energy with a homogeneous field given by Φ(r′) = −E0z′,

Hint =

∫
ϱ(r′)Φ(r′)dV = −QE0az = −d · E⃗ . (14.1)

Hence 1,

Hint = −d · E⃗ . (14.2)

The energy is minimal when d ∥ E⃗ .
To calculate the interaction energy between two dipoles d1 and d2 we calculate the

energy of d1 within the field created by d2 (which has been derived in the example 57),

Hint = −d1 · E⃗2 = −d1 ·
1

4πε0

3(êr · d2)êr − d2

r3
=

1

4πε0

d1 · d2 − 3(d1 · êr)(d2 · êr)
r3

.

(14.3)

14.1.1.1 Alignment of permanent dipoles

In a homogeneous field the force on an (neutral) electric dipole d = Qa vanishes,

since F = QE⃗ + (−Q)E⃗ = 0. However, there will be a torque because,

τ⃗ =
a

2
×QE⃗ + −a

2
× (−Q)E⃗ = d× E⃗ . (14.4)

This means that a freely moving molecule will rotate about its mass center, as illus-
trated in Fig. 14.1, until (in the presence of dissipation) it finds the orientation with
the lowest energy. In this orientation the molecule is aligned to the applied field. See
Exc. 14.1.7.1.

Figure 14.1: Torque on a dipole exerted by an electric field.

In a non-homogeneous field, the forces on the charges ±Q do not compensate 2,
F = QE⃗+ −QE⃗− = Q(a · ∇)E⃗ . Hence,

F = (d · ∇)E⃗ . (14.5)

Placed in front of a conductive surface a dipole feels the forces exerted by the
charge of its own image. In Exc. 14.1.7.2 we calculate the torque exerted by a con-
ducting surface on a dipole.

1We can also calculate the energy of a dipole in an electric field by the work required to rotate it

away from its rest position, Hint =
∫
τ⃗ · dθ =

∫
d× E⃗dθ =

∫ θ
0 dE sin θdθ = −dE cos θ.

2We note that the force that a field exerts on a dipole can be calculated as a gradient of the
interaction energy: F = −∇Hint = ∇(d·E⃗) = (d·∇)E⃗+(E⃗ ·∇)d+(d×∇)×E⃗+(E⃗×∇)×d = (d·∇)E⃗.
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14.1.2 Induction of dipoles in dielectrics

A priori, neutral non-polar atoms and molecules should not react to applied electric
fields. However, the fact that atoms are composed of positive charge distributions
(concentrated in a heavy nucleus) and negative ones (concentrated in a light-weighed
electron shell), permits a more or less important displacement of these charge distri-
butions with respect to the center-of-mass. Consequently, an electric field polarizes
the atom and induces an electric dipole moment whose magnitude is approximately
proportional to the field,

d = αpolE⃗ , (14.6)

where the constant αpol is called polarizability.

Example 59 (Polarizability of a primitive atom): In a primitive model we
envision an atom as a point-like nucleus carrying the charge +Q surrounded by
a uniformly charged electron sphere with radius a carrying the inverse charge
−Q. In the presence of an external field E⃗ the nucleus will be slightly shifted
by a distance ϵ/2 to one side and the electron sphere by a distance −ϵ/2 to the
opposite side. The polarized atom is in equilibrium, when the field created by
the induced dipole Edp (calculated in Exc. 13.2.4.5) equalizes the external field,
i.e.,

Edp =
1

4πε0

Qϵ

a3
= E .

Hence,
αpol
4πε0

=
d

4πε0E
= a3 ≈ 0.15 · 10−30 m3 ,

using for a = aB the Bohr radius. Despite the simplicity of the model, this

results represents a good approximation. A slightly better model is discussed in

Exc. 14.1.7.3.

The values for the atomic polarizability range from αpol/4πε0 = 0.205 · 10−30 m3

for helium to 59.6 · 10−30 m3 for cesium. This shows that it is far more difficult to
polarize atoms with closed electron shells (like noble gases) than atoms with isolated
valence electron (such as alkaline atoms). Molecules may react in a more complicated
way to the applied fields necessitating an interpretation of the polarizability αpol in
terms of a tensor represented by a matrix.

14.1.2.1 Energy of induced dipoles

We now calculate the energy of a polarizable molecule inside an external electric
field. We expect two contributions: The first one is the energy Wind stored in the
field created by the separation of charges under the action of the external field. The
second contribution is the energy Hint due to the interaction of the induced dipole
with the external field.

Wind is calculated by the work spent on separating the charges. Let e be the
valence charge bound to the molecule. The force between this charge and the molecule
is described, in first approximation, by a harmonic oscillator with the spring constant
k. Inside the electric field, the charge feels the force eE⃗ , but at the same time the
force of the ’molecular spring’ goes in the opposite direction. In equilibrium,

−ka+ eE⃗ = 0 . (14.7)



646 CHAPTER 14. ELECTRICAL PROPERTIES OF MATTER

To induce this dipole, the electric field must do the work,

Wind =
1
2ka

2 = 1
2eEa . (14.8)

Defining the induced dipole as dind ≡ Zed, we obtain:

Wind =
1
2di · E⃗ . (14.9)

Since the energy of a dipole in an external electric field is, Hint = −di · E⃗ , for the
induced dipole we obtain the total energy,

Htot = Hint +Wind = − 1
2di · E⃗ . (14.10)

The energy value is less than in the case of a permanent dipole (14.5), since part of
the energy had to be spent on creating the dipole in the first place. Expressing the
dipole moment by the polarizability (14.6),

Htot = −
αpol
2
E⃗2 . (14.11)

14.1.3 Macroscopic polarization

With these results we can now describe, what happens to a dielectric material placed
in an electric field: If the substance consists of neutral atoms (or non-polar molecules),
the field will induce in each particle a small dipole moment pointing in the direction
of the field. If the substance consists of polar molecules, each permanent dipole will
try to orientate itself along the field 3.

Note that both mechanisms produce the same result: a multitude of small dipoles
aligned along the applied field. The sum of the microscopic moments gives rise to a
macroscopic polarization defined by the sum over all dipole moments,

P⃗ =
Nd

V
. (14.12)

In reality, the two types of polarization are not always well separated, and there
are cases where both contribute. Nevertheless, it is usually much easier to rotate a
molecule (rotational energy) than to stretch it (vibrational energy). In some (ferro-
electric) materials it is possible to freeze the polarization.

14.1.4 Electrostatic field on a polarized or dielectric medium

In this section we will describe the electric field inside a polarized medium forgetting
the physical cause of the polarization P⃗. The field produced by the polarization
(not the external field) can be calculated by the sum of the fields produced by the
individual dipoles,

Φ(r) =
1

4πε0

∑

k

dk · (r− rk)

|r− rk|3
−→ 1

4πε0

∫

V
dV ′
P⃗(r′) · (r− r′)
|r− r′|3 , (14.13)

3Note that thermal motion, particularly at high temperatures, competes with this process, such
that the alignment will never be perfect.
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introducing the dipole moment distribution P⃗(r′) by dk → P⃗dV ′. We can rewrite the
integral in the form,

Φ(r) =
1

4πε0

∫

V
P⃗(r′) · ∇′ 1

|r− r′|dV
′ =

1

4πε0

[∫

V
∇′ · P⃗(r

′)
|r− r′|dV

′ −
∫

V

1

|r− r′|∇
′P⃗(r′)dV ′

]

=
1

4πε0

∮

∂V

P⃗(r′)
|r− r′|dS

′ − 1

4πε0

∫

V

1

|r− r′|∇
′ · P⃗(r′)dV ′ . (14.14)

Defining,

σb ≡ P⃗ · nS and ϱb ≡ −∇ · P⃗ , (14.15)

we obtain

Φ(r) =
1

4πε0

∮

∂V

σb
|r− r′|dS

′ − 1

4πε0

∫

V

ϱb
|r− r′|dV

′ . (14.16)

The meaning of this result is that the potential (and therefore the field) of a polarized
object is the same as the one produced by a volume distribution ϱb plus a surface
charge distribution σb. The index b indicates the fact that we consider here ’bound
charges’ (i.e. localized charges). Instead of integrating the field contributions of all
individual infinitesimal dipoles, as in Eq. (14.13), we can try to find these bound
charges, and then calculate the fields they produce, as we already did in the previous
chapter.

Figure 14.2: Distortion of polarization.

Example 60 (Microscopic theory of induced dipoles): As an example we
calculate the electric field produced by a homogeneous polarization within a
sphere. While the volume charge is zero (otherwise P⃗ could not be uniform),
the surface charge is σb = P⃗ · nS = P cos θ. This charge distribution generates
a potential which, applying the result derived in example 54, we can write,

Φ(r, θ) =

{
P
3ε0

r cos θ = 1
4πε0

d·r
R3 for r ≤ R

P
3ε0

R3

r2
cos θ = 1

4πε0

d·r
r3

for r ≥ R
,

with d = 4π
3
R3P⃗. The potential produces a field, which is uniform within the

sphere,

E⃗ = −∇Φ =

{
− P

3ε0
êz

∂Φ
∂z

= − P⃗
3ε0

for r ≤ R
P
3ε0

R3

r2
cos θ = 1

4πε0

3(êr·d)êr−d

r3
for r ≥ R

.
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The physical interpretation of the surface charge produced by a uniform polar-
ization is simply a displacement of all the electrons of the body with respect to the
positively charged nuclei. Since the electrons remain attached to the nuclei, the
volume charge inside the sphere remains neutral. However, the edges of the body
accumulate negative charge on one side and positive charge on the other.

14.1.5 Electric displacement

In the previous section we found that the phenomenon of polarization can be un-
derstood as being due to a volume charge ϱb = −∇ · P⃗ inside the dielectric and a
surface charge on the surface of the body σb = P⃗ ·nS . However, many materials have
dielectric characteristics and at the same time conductive characteristics, which do
not result from a polarization and which we take into account via a distribution of
free charges, ϱf , the index f indicating ’free charges’.

14.1.5.1 Gauß’ Law in dielectric media

Gauß’s law can now be generalized for arbitrary media,

ε0∇ · E⃗ = ϱ = ϱb + ϱf = −∇ · P⃗ + ϱf , (14.17)

where E⃗ is the total electric field. Defining a new field called the electric displacement,

D⃗ ≡ ε0E⃗ + P⃗ , (14.18)

we can now write,
∇ · D⃗ = ϱf . (14.19)

The electric displacement is that part of the electric field, which comes only from
free charges (which is the part useful for generating currents). We can also define the
electric susceptibility χε via,

P⃗ = ε0χεE⃗ , (14.20)

or the permittivity ε via,
D⃗ = εE⃗ = ε0(1 + χε)E⃗ . (14.21)

Note that the rotation of the polarization does not necessarily vanish, since the sus-
ceptibility may depend on position, χε = χε(r),

∇× D⃗ = ε0(∇× E⃗) +∇× P⃗ = ∇× (ε0χεE⃗) ̸= 0 . (14.22)

Therefore, D⃗ generally can not be derived from a potential, and Coulomb’s law is not
valid for D⃗.

14.1.5.2 Boundary conditions involving dielectrics

The integral version of Gauß’s law,
∮
D⃗ ·dS = Qf , allows us to determine the behavior

of the electric displacement near interfaces,

D⊥top −D⊥bottom = σf . (14.23)
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On the other hand, Stokes’ law ∇× D⃗ = ε0∇× E⃗ +∇× P⃗ = ∇× P⃗ yields,

D⃗∥top − D⃗∥bottom = P⃗∥top − P⃗∥bottom . (14.24)

This is in contrast to the behavior of the electric E⃗ field at interfaces described by
Eqs. (13.37) and (13.39).

14.1.6 Electrical susceptibility and permittivity

14.1.6.1 Linear dielectrics

In many materials, as long as the applied electric field is not too strong, the polariza-
tion is proportional to the field, P⃗ ∝ E⃗ , that is, the electric susceptibility depends on
the material’s microscopic properties and external factors such as temperature, but
not on the applied field, χε ̸= χε(E⃗). Hence, linear media can be characterized by a
constant,

εr ≡
ε

ε0
, (14.25)

called relative permittivity.
In non-linear media, in contrast, the susceptibility χε(E⃗) depend on the strength

of the electric field. Often the polarization can be expanded in orders of the electric
field,

P⃗(E⃗) = ε(1)E⃗ + ε(2)E⃗2 + ε(3)E⃗3 + ... . (14.26)

In anisotropic materials the situation gets more complicated, because the susceptibil-
ity and the permittivity must be understood as tensors,

Pk(E⃗) =
∑

m

ε
(1)
kmEm +

∑

ml

ε
(2)
kmlEmEl +

∑

mlj

ε
(3)
kmljEmElEj + ... . (14.27)

Example 61 (Microscopic theory of induced dipoles): We know that an
external electric field E⃗ext applied to a linear purely dielectric medium generates
a macroscopic polarization proportional to the field,

P⃗ = χεε0E⃗ext .

On the other hand, if the material consists of atoms (or non-polar molecules),
the microscopic dipole moment induced in each atom is proportional to the local
field,

dind = αpolE⃗loc .
Here, E⃗loc is the total field due to the applied field E⃗ext plus the field E⃗self gen-
erated by the polarization of the other atoms which are around. The question
now is, what is the relationship between the atomic polarizability αpol (charac-
terizing the sample from a microscopic point of view) and the susceptibility χe
(characterizing the sample from a macroscopic point of view)?
To begin with we consider low densities, in which case it is a good approximation
to suppose that the atom does not feel the polarization of its neighbors, that
is E⃗loc ≃ E⃗ext. We already noticed in Eq. (??) that the polarization is nothing
more than the sum over all the dipole moments induced by the local electric
field, such that, comparing the last two relations, a first trial would be to affirm,

χε =
N

V

αpol
ε0

.
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But for dense gases, there will be a correction, and the local field will be a
superposition of the external field and the field generated by the surrounding
dipoles, E⃗loc = E⃗ext + E⃗self . To estimate this field, we imagine a single dipole
located inside a sphere. The polarization of the surrounding medium is modeled
by a surface charge density with the value σb ≡ −P cos θ. The electric field
produced by this charge distribution was calculated in example 60: E⃗self =
P⃗/3ε0. With this we calculate,

χε =
P

ε0Eext
=

P
ε0(Eloc − Eself )

=
P

ε0(
pind
αpol
− P

3ε0
)
=

Nαpol/ε0V

1−Nαpol/3ε0V
.

(14.28)
This equation is known as Clausius-Mossotti formula. The difference between
the denominator and 1, called Lorentz-Lorenz shift, comes from the energy dis-
placements of the atoms due to the dipole-dipole interactions. At low densities
we recover the linear relation. In terms of the relative permittivity we can also
write,

αpol
ε0

=
3V

N

εr − 1

εr + 2
.

Figure 14.3: The local field E⃗loc is the sum of the external field E⃗ext and the field generated
by the polarization E⃗self .

14.1.7 Exercises

14.1.7.1 Ex: Torque on dipoles

Calculate the torque on a dipole in front of a conducting surface.

Solution: The coordinates of the charges of the dipole and its image are,

r± = ±d

2
, x± = −2aêz ∓

[
d

2
− (êz · d)êz

]
.

With this we calculate the vector products,

r+ × x± = −r− × x± = (−2a± êz · d)
d

2
× êz = −

(
a∓ d

2
cos θ

)
d sin θêx .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloPermanente01.pdf
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O torque agora é,

τ⃗ = r+ ×QE⃗(r+) + r− × (−Q)E⃗(r−)

=
Q2

4πε0

[
r+ ×

(
r+ − x+

|r+ − x+|3
− r+ − x−
|r+ − x−|3

)
− r− ×

( −r+ − x+

| − r+ − x+|3
− −r+ − x−
| − r+ − x−|3

)]
=

Q2

4πε0

[
r+ × x+

|d+ (2a− (êz · d))êz|3
− r+ × x−
|2a+ (êz · d)|3

+
r+ × x+

|2a− (êz · d)|3
− r+ × x−
| − d+ (2a+ (êz · d))êz|3

]
=

Q2

4πε0

[
−a− d

2
cos θ√

4a2 + d2 sin2 θ
3 +

a− d
2
cos θ

√
4a2 + d2 + 4ad cos θ

3 +
−a− d

2
cos θ

√
4a2 + d2 − 4ad cos θ

3 +
−a+ d

2
cos θ√

4a2 + d2 sin2 θ
3

]
d sin θêx

≃ Q2

4πε0

[
a+ z

2√
4a2 + 4az

3 +
−a+ z

2√
4a2 − 4az

3 +
−z
√
4a2

3

]
d sin θêx ≃ − Q2

4πε0

3d2 sin θ cos θ

8a3
êx .

Assuming d ≪ a we disregarded, in the last line, the terms ∝ d2 and expanded in

Figure 14.4: Dipoles.

terms of z ≡ cos θ. In particular, when the dipole is perpendicular to the surface
(θ ≃ 0),

τ⃗perp = −
Q2

4πε0

3d2

8a3
êxθ .

That is, in this position it is in a stable position, because when θ increases (θ > 0◦), it
receives a torque pushing it backwards. On the other hand, when the dipole is parallel
to the surface (θ′ ≡ θ − 90◦ ≃ 0), we have,

τ⃗para ≃
Q2

4πε0

3d2

8a3
êxθ
′ .

That is, it stays in a labile equilibrium, because when θ′ increases (θ′ > 0◦), it gets a
torque pushing it forward.

14.1.7.2 Ex: Torque on dipoles

Consider the configuration of two dipoles shown in the figure and calculate the recip-
rocal torques.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloPermanente02.pdf
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Figure 14.5: Dipoles.

Solution: a. We put the first dipole in the origin, r± = ±d2 êz, such that the second

is at the coordinates x± = (a + d
2 )êx. The electric field E⃗± generated by the second

dipole at the position of the first is,

E⃗(r+) =
Q

4πε0

d
2 êz − (a+ d

2 )êx

|d2 êz − (a+ d
2 )êx|3

− Q

4πε0

d
2 êz − (a− d

2 )êx

|d2 êz − (a− d
2 )êx|3

E⃗(r−) =
Q

4πε0

−d2 êz − (a+ d
2 )êx

| − d
2 êz − (a+ d

2 )êx|3
− Q

4πε0

−d2 êz − (a− d
2 )êx

| − d
2 êz − (a− d

2 )êx|3
.

The torque now is,

τ⃗ = d
2
êz ×QE⃗(r+) +

(
− d

2
êz
)
× (−Q)E⃗(r−) = Q2

4πε0

d

2
êz

×
(

d
2
êz − (a+ d

2
)êx

| d
2
êz − (a+ d

2
)êx|3

−
d
2
êz − (a− d

2
)êx

| d
2
êz − (a− d

2
)êx|3

+
− d

2
êz − (a+ d

2
)êx

| − d
2
êz − (a+ d

2
)êx|3

− − d
2
êz − (a− d

2
)êx

| − d
2
êz − (a− d

2
)ex|3

)

= − Q2

4πε0

d

2

 a+ d
2√(

d
2

)2
+
(
a+ d

2

)23 − a− d
2√(

d
2

)2
+
(
a− d

2

)23 +
a+ d

2√(
d
2

)2
+
(
a+ d

2

)23 − a− d
2√(

d
2

)2
+
(
a− d

2

)23
 êy

= − Q2

4πε0

d

2

 2a+ d√(
d
2

)2
+
(
a+ d

2

)23 − 2a− d√(
d
2

)2
+
(
a− d

2

)23
 êy

≃ − Q2

4πε0

d

2

(
2a+ d

a3
− 2a− d

a3

)
êy = − Q2

4πε0

d2

a3
êy .

That is, there exists a torque.
b. Now we put the second dipole at the origin, r± = ±d2 êz, such that the second is at
the coordinates ...

14.1.7.3 Ex: Polarizability of hydrogen

In quantum mechanics we find for the electronic charge distribution in a hydrogen
atom,

ϱ(r) =
Q

πa3B
e−2r/aB .

Calculate the polarizability.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloInduzido01.pdf
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Solution: The electric field of the electronic shell is given by Gauss’s law,

∮
E⃗ele·dS = 4πr2Eele(r)

=

∫
ϱ(r′)
ε0

dV ′ =
1

ε0

∫
Q

πa3B
e−2r

′/aB4πr′2dr′ =
Q

ε0

[
1−

(
1 +

2r

aB
+

2r2

a2B

)
e−2r/aB

]

≃ Q

ε0

[
4r3

3a3B
− 2r4

a4B
+ ...

]
.

Applying an outer field along the z-axis, in equilibrium position,

Q

3πε0a3B
r ≃ E⃗ele = E⃗ext = Eextêz ,

yielding,

r =
3πε0a

3
B

Q
Eextêz .

The dipole moment of the electron shell being shifted away from the nucleus is,

d =

∫ [
Qδ3(r′ − z

2 êz)− ϱ(r′ + z
2 êz)

]
r′dV ′ =

∫ [
Qδ3(r′ − zêz)− ϱ(r′)

]
(r′ − z

2 êz)dV
′

= Q z
2 êz −

Q

πa3B

∫
e−2r

′/aBr′dV ′ +
Q

πa3B

z
2 êz

∫
e−2r

′/aBdV ′

= Q z
2 êz − 0 +

Q

π
z
2 êz4π

∫ ∞

0

u2e−2udu = Qzêz .

Finally, the polarizability is,

αpol
4πε0

=
d

4πε0Eext
=

Qz

4πε0Eext
=

3

4
a3B .

Alternatively:

4πr2Eele(r) =
Q

πε0a3B
4π

∫ r

0

e−2r
′/aBr′2dr′ ≃ Q

πε0a3B
4π

∫ r

0

r′2dr′ =
Q

ε0a3B

4r3

3
(14.29)

gives the same result.

14.1.7.4 Ex: Susceptibility

One liter of water is evaporated in 10m3 of dry air at room temperature T = 300K.
a. Calculate the dipolar density n of the air. Assume that only the dipolar moments
of the evaporated molecules contribute.
b. Determine the susceptibility χε of the air. Use the relation P = ε0χεE , as well as
Curie’s law for the polarization P.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_DipoloInduzido02.pdf
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Solution: a. The number of molecules in 1 l = 1 kg = m0 of water, with the molecular
mass being mH2O = 18u = 18 · 1.66 · 10−27 kg, is,

N =
m0

mH2O
= 3.35 · 1025 .

the dipolar density is:

n =
N

V
= 3.35 · 24m-3 .

b. The definition of χe is given by: P = ε0χ0E. With Curie’s law:

P⃗ =
1

3
n
d · E⃗
kBT

d =
1

3
n
d2E
kBT

êd

to d parallel to E. Equalizing,

ε0χ0 =
1

3
n
d2

kBT
= 1.17 · (−3) .

14.2 Influence of charges and capacitance

We now assume that we have two separate conductors, one carrying the charge +Q
and the other −Q. Since the potential of each conductor is the same at each point of
its body, we can specify a potential difference, called voltage, between them,

U ≡ Φ+ − Φ− = −
∫ (+)

(−)
E⃗ · dl , (14.30)

which does not depend on the distribution of the charges throughout the conductors.
However, we know from Coulomb’s law that the electric field is proportional to the
charge Q and from the above equation, also the voltage. The proportionality factor
is called capacitance,

C ≡ Q

U
. (14.31)

14.2.1 Capacitors and storage of electric energy

A device capable of storing charges is called capacitor.

Example 62 (Plate capacitor): The simplest geometry for a capacitor are
two parallel conducting plates (area S) maintained at a distance d. The surface
charge distribution σ = Q/S produces a field E = σ/ε0 and a potential difference
U = Ed, such that,

C = ε0
S

d
. (14.32)
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To charge a capacitor we must bring electrons from the positive side to the negative
side of the capacitor. For a single electron, this requires the work

∆We =

∫ d

0

F · dr = ed|E⃗ | = eU .

For a small amount of charge dq,

∆We =

∫
U dQ =

∫ Q

0

Q

C
dQ =

Q2

2C
=

1

2
CU2 .

Resolve the Excs. 14.2.2.1-14.2.2.10.

14.2.1.1 Capacitors with dielectrics

In the presence of a dielectric the capacitance increases, C = εrCvac. Thus, the field
energy also increases by a factor of εr.

We consider a capacitor filled with a linear dielectric and charged with the free
charge ϱf , which generates a voltage U between the electrodes. We want to know the
work needed to add a little bit more charge δϱf to the volume element dV ,

δW =

∫
U δϱfdV . (14.33)

Now, with Eq. (14.19) we write ϱf = ∇ · D⃗ and δϱf = ∇ · δD⃗, such that,

δW =

∫

V
U∇ · δD⃗dV =

∫

∂V
U δD⃗ · dS−

∫

V
δD⃗ · ∇UdV =

∫

V
δD⃗ · E⃗dV . (14.34)

For a linear dielectric, D⃗ = εE⃗ , such that, E⃗ · δD⃗ = E⃗ε · δE⃗ = 1
2δ(εE

2) = 1
2δ(D⃗ · E⃗),

giving,

δW = 1
2

∫
δ(D⃗ · E⃗)dV . (14.35)

Finally, to charge the capacitor completely,

W =

∫
δW = 1

2

∫
D⃗ · E⃗ =

∫
udV , (14.36)

with the energy density,

u =
1

2
E⃗ · D⃗ . (14.37)

Do the Excs. 14.2.2.11-14.2.2.18.

Example 63 (Forces on dielectrics): Dielectrics in electric fields are sub-
jected to forces due to the polarization induced in the medium. Let us consider
the example of a plate capacitor inside which we insert a dielectric. In the
scheme shown in Fig. 14.6 the electric field homogeneously traverses the capac-
itor and also the dielectric body, such that the forces should disappear. On the
other hand, on its edges the dielectric distorts the field, such that forces become
possible.
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The easiest way to calculate these forces is via the potential energy gradient,
F = −∇W . If the dielectric body is free to move in x-direction, we have,

F = −dW
dx

= − d

dx

Q2

2C
= − d

dx

CU2

2
.

We use the first expression, in case the charge on the capacitor is kept constant,
and the second, when the voltage on the capacitor is kept constant. Gradually
inserting the dielectric, a part of the volume of the capacitor will be empty and
another part will be filled with the dielectric medium:

C = Cvac
x

a
+ Cvacεr

a− x
a

.

Keeping the charge constant, we get,

F =
Q2

2C2

dC

dx
= − d

dx

Q2

2(Cvac
x
a
+ Cvacεr

a−x
a

)
=

Q2

2Cvac

−aχε
(a− xχε)2

.

Since the force is negative, the dielectric is drawn into the capacitor.
The situation is different when we keep the voltage constant, for example, by
connecting the capacitor to a battery. In this case we need to use the second
expression. However, we must take into account the work UdQ that the battery
must do to increase the charge on the capacitor in order to maintain the voltage
constant while we increase the capacity via Cvac → C,

dW = −Fdx+ UdQ .

Hence,

F = −dW
dx

+ U
dQ

dx
= −U

2

2

dC

dx
+ U2 dC

dx
=

Q2

2C2

dC

dx
,

and we get the same result as in the case where we kept the charge constant.

Figure 14.6: Force on the dielectric between the plates of a capacitor.

14.2.1.2 Capacitor circuits

For parallel circuits Ctot = C1 + C2, for circuits in series C−1tot = C−11 + C−12 . Do the
Excs. 14.2.2.19-14.2.2.27.

14.2.2 Exercises

14.2.2.1 Ex: Capacitors

Be given two isolated conductors carrying equal charges but with opposite signs ±Q.
The capacity of this configuration is the ratio between the absolute value of the charge
of one conductor and the absolute value of the potential difference between the two

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorGeometria01.pdf
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conductors. Using Gauß’ law calculate the capacity of
a. 2 large parallel plates with area A being at a short distance d;
b. 2 concentric cylindrical conductors (without surfaces at the ends of the cylinders)
with radii ρ1 and ρ2.
c. 2 concentric spherical surfaces with radii r1 and r2.
Help: Choose integration volumes that fits the symmetry of your system.

Solution: a. Choosing a volume enclosing one of the plates and using Gauß’ law:

Q

ε0
=

∫

∂V

E⃗ · dS =

∫

∂V

Ez dxdy = EzS .

The potential difference is,

Φ1 − Φ2 =

∫ plane2

plane1

E⃗ · ds =
∫ z2

z1

Q

ε0S
dz =

Q

ε0A
d .

Therefore, the capacity is,

C =
Q

|Φ1 − Φ2|
= ε0

S

d
.

b. Choosing a volume enclosing the inner cylinder and using Gauß’ law:

Q

ε0
=

∫

∂V

E⃗ · dS =

∫

∂V

Eρ ρdϕdz = Eρ2πρL .

The potential difference is,

Φ1 − Φ2 =

∫ cilext

cilint

E⃗ · dl =
∫ ρ2

ρ1

Q

2πε0L

1

ρ
dρ =

1

2

Q

πε0L
ln
ρ2
ρ1

.

Therefore, the capacity is,

C =
Q

|Φ1 − Φ2|
=

2πε0L

ln ρ2 − ln ρ1
.

c. Choosing a volume enclosing the inner sphere and using Gauß’ law:

Q

ε0
=

∫

∂V

E⃗ρ · dS =

∫

∂V

Er r2 sin θdθdϕ = Err24π .

The potential difference is,

ϕ1 − ϕ2 =

∫ esfext

esfint

E⃗ · ds =
∫ r2

r1

Q

4πε0r2
dr = − Q

4πε0

r1 − r2
r2r1

.

Therefore, the capacity is,

C =
Q

|ϕ1 − ϕ2|
=

4πε0r2r1
r2 − r1

.
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14.2.2.2 Ex: Capacitance of a mercury drop

The capacity of a spherical drop of mercury with radius R is given by C = 4πε0.
Now, two of these drops merge. What is the capacity of this larger drop?

Solution: The capacity of this larger drop ...

14.2.2.3 Ex: Charged plates

Consider a thin, very extended metal plate, d2 ≪ A, with area A and thickness d
carrying the charge Q. Calculate the charge distribution (surface charge density) and
the electric field on both sides of the plate neglecting edge effects. How do the charge
distribution and the electric field change, when we have two plates instead of one with
thickness d at a distance l, one being charged with the charge Q and the other with
−Q.

Solution:

14.2.2.4 Ex: Plate capacitor

A capacitor is made of two flat metal plates with the surfaces 1m2. What should be
the distance of the plates to give the capacitor a capacity of 1 F? Is it possible to
build such a capacitor?

Solution: a. From the relationship C = ε0
A
d It follows that the distance between

the plates should be less than d = ε0
A
C < 8.9 pm, which is smaller than the atomic

radius and therefore impossible.

14.2.2.5 Ex: Cylindrical capacitor

A cylindrical capacitor is made of two infinitesimally thin coaxial cylindrical surfaces
with radii R1 and R2. For simplicity, assume that the cylinders are infinitely extended
in z-direction. The charge per unit length on the inner cylinder is +Q/l, on the outer

cylinder −Q/l. Calculate the electric field E⃗(r) as a function of the distance r from
the symmetry axis for r ≤ R1, R1 < r < R2, and r ≥ R2.
Help: Use the symmetry of the problem and Gauß’ law.

Solution: From Gauß’ law,
∫
V
∇ · E⃗d3r =

∮
∂V
E⃗ · dS together with ∇ · E⃗ = ϱ/ε0

gives, ∫

V

ϱd3r = ε0

∮

∂V

E⃗ · dA .

Because of the cylindrical symmetry we only need to consider the radial component of
the field. We integrate on a cylinder with radius r. For r < R1 we get,

Er<R1
= 0 .
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for R1 < r < R2 we get
∫
Vr
ϱd3r = πr2ϱL = Q

l L and
∮
∂V
E⃗ · dS = Er · 2πrL. From

this follows, Ql L = ε0Er2πrL, and finally,

ER1<r<R2
=

Q

2πε0l

1

r
.

for R2 < r we get Q = 0, hence,

ER2<r = 0 .

14.2.2.6 Ex: Cylindrical capacitor (T7)

Two concentric infinitely thin hollow conductive cylinders with radii a and b (a < b)
and length l are charged with charges +q resp. −Q. l is much larger than b, such that
border effects are negligible. For symmetry reasons, the electric field can only have
one radial component.
a. Write down the charge distribution ϱ(r) in cylindrical coordinates (r, ϕ, z) with the
help of the δ-function.
b. Calculate the electric field E⃗(r, ϕ, z) in the whole space (r < a, a < r < b, b < r).

Use for this the fundamental equations of electrostatics and ∇· E⃗ = 1
r
d
dr (eEr). Alter-

natively, this part can be resolved using Gauß’ law.
c. Calculate the potential difference |Φ(r = b)−Φ(r = a)| between the two surface of

the cylinders. To do this, calculate the line integral
∫
E⃗ · dr along a suitable path.

d. The capacity C of the device is defined by the absolute value of the ratio between
the charge on one cylinder and the potential difference between the cylinders. Calcu-
late the capacity of this ’cylindrical capacitor’.

Solution: a. We have,

ϱ(r, ϕ, z) =
q

2πal
δ(r − a)− q

2πbl
δ(r − b) .

Proof:
∫

cil.int

d3rϱ = 2πl

a+ε∫

a−ε

drrϱ = 2πal
q

2πal
= q .

b. Using Gauß’ faw:
∫

sup. cyl.

E⃗ · df⃗ = 2πrlEr =

∫

vol. cyl.

d3r ∇ · E⃗ = 4πQ ,

where Q is the total charge inside the integration volume. Follows,

Er = 0 for r < a and r > b

Er =
2q

l

1

r
for a < r < b .
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Alternatively with Gauß’ law,

∇ · E⃗ =
1

r

d

dr
(rEr) = 4πϱ ,

and hence,

rEr|r0 = 4π

r∫

0

dr′r′ϱ =
2q

l

1

r
for a < r < b ,

and 0 else.
c. We have,

∆Φ =

cyl.ext∫

cyl.int

E⃗ · dr =

b∫

a

dr
2q

lr
=

2q

l
ln(

b

a
) .

d. We have,

C =
q

∆Φ
=
l

2

1

ln( ba )
.

14.2.2.7 Ex: Spherical capacitor

Consider a homogeneously charged ball with radius R1 and an infinitely thin spherical
homogeneously charged shell with radius R2. The ball has the full charge +Q, the
shell −Q. Calculate the electric field E⃗(r) for r ≤ R1, R1 < r < R2 and r ≥ R2.

Help: Use the fact that E⃗ must be, for symmetry reasons, radially symmetrical, and
depends on the charge density via ∇ · E⃗(r) = ϱ(r)/ε0. Also use Gauß’ law.

Solution: From the ansatz:

E⃗(r) = E(r)êr and dS = r2 sin θ dθ dϕ êr .

with Gauß: ∫

∂V

E⃗(r) · dS =
1

ε0
q(V ) .

For the case r ≤ R1:
∫
E⃗ · dS =

∫ π

θ=0

∫ 2π

ϕ=0

E(r)r2 sin θdθdϕ = 4πr2E(r) ≡ 1

ε0
Q(r)

Q(r) = ϕV (r) with ϕ = Q
4/3πR3

1
homogeneous charge density, hence Q(r) = Q r3

R3
1
,

hence E(r) = Q
4πε0R3

1
r.

For the case R1 < r < R2:
Q(r) = +Q

with Gauß ; 4πr2E(r) = Q
ε0
, hence E(r) = Q

4πε0
1
r2 .

For the case r ≤ R2:
Q = +Q+ (−Q) = 0

Hence, E(r) = 0.
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14.2.2.8 Ex: Thunderstorm

The cloud of a thunderstorm with 17 km2 of total area floats at a height of 900m
above the Earth’s surface and forms with it a plate capacitor.
a. Calculate the capacity of this plate capacitor (the area to be considered on Earth
is equal to that of the cloud).
b. What is the maximum charge of the thundercloud before the capacitor discharges?
(The discharge electric field in air is 104 V/cm).
c. The capacitor is totally discharged by a lightning, once the critical field strength is
reached. What is the current flowing to Earth if the lightning’s duration is 1ms?
d. What power does this correspond to? For how long a power station with a power
of 2000MW needs to work to produce the energy released by lightning?

Solution:

14.2.2.9 Ex: Spherical capacitor

A spherical capacitor consists of two concentric conducting spheres of radii R1 and
R2, with R1 < R2. The inner sphere has a charge +Q and the outer sphere has a
charge −Q.
a. Calculate the absolute value of the electric field and the energy density as a func-
tion of r, where r is the radial distance from the center of the spheres for any r.
b. Determine the capacitance C of the capacitor.
c. Calculate the energy associated with the electric field integrated over a spherical
shell of radius r, thickness dr, and volume 4πr2dr located between the conductors.
Integrate the obtained expression to find the total energy between the conductors.
Give your answer in terms of the charge Q and the capacitance C.

Solution: a. We have

E⃗(r) = E(r)êr and dF = r2 sin θ dθ dϕ êr .

Gauß’ law requires ∫

∂V

E⃗(r) · dF =
1

ε0
q(V ) .

That is:

∫
E⃗dF =

∫ π

θ=0

∫ 2π

ϕ=0

E(r)r2 sin θdθdϕ = 4πr2E(r) ≡ 1

ε0
Q(r) ,

where Q(r) is the charge concentrated within a sphere with radius r. For r ≤ R1, as
there is no charge inside the inner sphere, we have,

E(r) = 0 .

Between the spheres we have

E(r) = Q

4πε20
.
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Outside the outer sphere we have,

E(r) = 0 ,

because the opposite charges of the spheres compensate. The energy density is,

u(r) =
1

2
D⃗ · E⃗ =

ε0
2
E2 =

Q2

32π2ε0r4
.

b. The voltage between the spheres is,

∆V = −
∫ R2

R1

E(r)dr = − Q

4πε0

∫ R2

R1

1

r2
dr =

Q

4πε0

(
1

R2
− 1

R1

)
.

The capacitance is,

C =
Q

∆V
=

4πε0
1
R1
− 1

R2

.

c. The energy inside a thin layer is given by,

U =

∫

V

u(r)d3r =

∫ 2π

0

∫ π

0

∫ r+dr

r

Q2

32π2ε0r4
r2 sin θdϕdθdr

=
Q2

32π2ε0
4π

∫ r+dr

r

1

r2
dr =

Q2

8πε0

dr

r
.

The total energy between the spheres is,

U =

∫

V

u(r)d3r =

∫ 2π

0

∫ π

0

∫ R2

R1

Q2

32π2ε0r4
r2 sin θdϕdθdr

=
Q2

32π2ε0
4π

∫ R2

R1

1

r2
dr =

Q2

8πε0

−1
r

∣∣∣∣
R2

R1

=
Q2

8πε0

[
1

R1
− 1

R2

]
.

14.2.2.10 Ex: Lightning rod

The absorption of lightning by a lightning rod can be described by the following model
(outlined in the figure): The (x, y) plane of a Cartesian coordinate system divides a
half space with the conductivity κ (the soil of the Earth, z < 0) from a space with
conductivity 0 (air, z > 0). In the center of the coordinates is an extremely conductive
semispherical electrode connected with the lightning rod of diameter d. Current I can
cross the semisphere and enter the conducting half space. For symmetry reasons, the
current density may only depend on the distance r from the origin of the coordinates
and must be oriented radially: j = jr(r)êr. All of the following questions refer to
points in the conductive semi-space outside the electrode.
a. Calculate the current density j as a function of the current amplitude I and the
distance r from the source. Help: The current flowing from the electrode to the
conducting half space must also exit the semisphere K.
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b. Determine the electric field E⃗(r).
c. Determine the electrical voltage U(x, s) between two points on the positive x-axis,
having the coordinates x and x+ s, respectively.
d. Determine the voltage Utot for x = d/2 and s → ∞. What ohmic resistance can
be attributed to the conducting half space?

Hausaufgaben (Abgabe: 19.06.2007)

14) Gewitterwolke

5

Eine Gewitterwolke mit 17 km2 Gesamtfläche schwebt in 900 m Höhe über der Erdoberfläche und
bildet mit ihr einen “Plattenkondensator”.

(a) Berechnen Sie die Kapazität dieses Plattenkondensators (die begrenzende Fläche auf der Erde sei
gleich der Wolkenfläche).

(b) Wie groß kann die Ladung der Gewitterwolke werden, bis sich der “Kondensator” entlädt? (Die
Durchschlagsfeldstärke von Luft beträgt 104 V/cm).

(c) Der Kondensator wird, wenn er die kritische Feldstärke erreicht, durch einen Blitz vollständig
entladen. Welcher Strom fließt zur Erde, wenn der Blitz 1 ms dauert?

(d) Welcher Leistung entspricht dies? Wie lange müsste ein Kraftwerk mit 2000 MW Leistung arbei-
ten, um die von Blitz freigesetzte Energie zu produzieren?

15) Blitzableiter

7

Ein Blitzeinschlag in einen Blitzableiter kann durch
folgendes Modell beschrieben werden: Die (x, y)-
Ebene eines kartesischen Koordinatensystems trennt
einen Halbraum mit der elektrischen Leitfähigkeit κ
(Erdreich, z < 0) von einem mit der Leitfähigkeit 0
(Luft, z > 0). Im Koordinatenursprung befindet sich
eine mit dem Blitzableiter verbundene hochleitfähige
halbkugelförmige Elektrode mit Durchmesser d, über
die ein Strom I in den leitfähigen Halbraum hin-
einfließt. Aus Symmetriegründen kann die Strom-
dichte nur vom Abstand r vom Koordinatenursprung
abhängen und muss radial gerichtet sein: ~ = jr(r) r̂ .





κ

I

K

d

z

0 x

Alle folgenden Fragen beziehen sich auf Punkte im leitfähigen Halbraum außerhalb der Elektrode.

(a) Berechnen Sie die Stromdichte ~ als Funktion der Stromstärke I und des jeweiligen Abstands r
vom Ursprung.

Hinweis: Der aus der Elektrode in den leitfähigen Halbraum hineinfließende Strom I fließt durch
die Halbkugelschale K auch wieder hinaus.

(b) Ermitteln Sie das elektrische Feld ~E(~r).

(c) Bestimmen Sie die elektrische Spannung U(x, s) zwischen zwei Punkten auf der positiven x-
Achse, welche die x-Koordinaten x bzw x + s haben.

(d) Geben Sie die Spannung Utot für x = d/2 und s→ ∞ an. Welcher Ohmsche Widerstand kann also
hier dem leitfähigen Halbraum zugeordnet werden?

Figure 14.7:

Solution:

14.2.2.11 Ex: Plate capacitor (H13)

An ideal plate capacitor consists of two parallel plates at a distance d. One of the
plates, defined by the corners (0, 0, 0), (a, 0, 0), (a, b, 0), and (0, b, 0)), be charged with
the charge −Q, the other plate, defined by the corners (0, 0, d), (a, 0, d), (a, b, d) and
(0, b, d), has the charge +Q. A part of the intermediate space (up to the surface be-
tween the points (x, 0, 0), (x, b, 0), (x, b, d), and (x, 0, d)) be filled with a homogeneous
dielectric with the dielectric constant ε; the rest of the space between the plates is
empty. We assume that a and b are very large, such that border effects can be ne-
glected.
a. Calculate the electric field E⃗ and the dielectric displacement D⃗ between the plates.
Help: Use ∇× E⃗ = 0 and ∇ · D⃗ = ϱ. Use surface charge densities.
b. Calculate the energy of the electrostatic field W of this device.
c. What force F = −dW/dx acts on the dielectric for an infinitesimal displacement
dx?

Solution: a. We want to neglect edge effects. The dielectric displacement in the
region of the dielectric is given by,

D⃗1 = εE⃗1 .

in the remaining region (without dielectric) between the plates by,

D⃗2 = ε0E⃗2
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Of course, all of these fields only have the z-component. Now we have,

∇× E⃗ = 0 .

Hence, Ez cannot depend on x nor on y and must be continuous on the boundary
surface of the dielectric (in the following, we no longer place the index ’z’ to simplify
the notation):

E1 ≡ E2 ≡ E .
Now we have in the dielectric,

D1 = εE
in the free space between the plates,

D2 = ε0E

and everywhere,
∇ · D⃗ = ϱ .

Hence,
D1 = σ1 and D2 = σ2 ,

where σ1 resp. σ2 represent the densities of surface charges. With that we get the full
charge,

Q = σ1 A1+σ2 A2 = D1A1+D2A2 = E(εA1+ε0A2) = Eb(εx+ε0a−ε0x) = Eb(ε0a+(ε−ε0)x) .

resp. for the electric field,

E =
Q

b(ε0a+ [ε− ε0]x)
.

b. Follows immediately,

W =
1

2

∫
dτ E⃗ · D⃗ =

1

2
[ED1A1d+ ED2A2d] =

1

2
E2d[εA1 +A2]

=
1

2
E2db[ε0a+ (ε− ε0)x] =

1

2

Q2d

b[ε0a+ (ε− ε0)x]
.

c. The force follows with,

F = −dW
dx

=
1

2

dQ2(ε− ε0)
b[a+ (ε− ε0)x]2

≥ 0 .

It is oriented in +x-direction. The dielectric is therefore dragged to the capacitor.

14.2.2.12 Ex: Spherical capacitor with dielectric (H14)

Two concentric conducting spheres with radii a and b (a < b) carry the charges ±Q.
Half of the space between the spheres is filled by a dielectric ε = const.
a. Determine the electric field at all points between the spheres.
b. Calculate the surface charge distribution on the inner sphere.
c. Calculate the polarization charge density induced on the surface of the dielectric
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at r = a.

Solution: We denote the region between the spheres without dielectric by I, the
one with dielectric by I. Without dielectric we have in the intermediate region,
Φ(r) = α/r + c. Since the field within the dielectric is also radial, we can use this
ansatz in this region as well.
a. Integration gives immediately,

Dr(r) =
{

α
r2 ED I e
εα
r2 ED II

.

The constant α can be determined by Gauß’ law:
∫

S

dS êr · D⃗ = 4πQ ,

where Q is the enclosed charge. With that we get,

Q =
1

4π

∫

S

dS
α

r2
+

1

4π

∫

S

dS
εα

r2
=
ε+ 1

2
α ,

since the integration over the area in both cases gives the same value 4πr2/2. From
this follows for a < r < b,

E⃗(r) = 2Q

ε+ 1

1

r2
êr .

b. Inside and outside the inner spherical layer we have, D⃗ = 0, on the surface Dr(r =
a) = 4πσ. Therefore,

σ =

{
1
ε+1

Q
2πa2 ED I

ε
ε+1

Q
2πa2 ED II

.

c. We have Dr = Er + 4πσpol. Hence, σpol = (Dr − Er)/(4π) = (ε− 1)Er/4π. Hence,

σpol =

{
0 ED I
ε−1
ε+1

Q
2πa2 ED II

.

14.2.2.13 Ex: Potential of a charged sphere (T10)

A sphere of radius R be in the vacuum. It consists of a material with the dielectricity
constant ε = const and carries in its center the charge q. Calculate the potential in
full space.

Solution: As there is no surface charge (σ = 0), a normal component of D⃗ is

continuous. For r < R we have E⃗i = Di(r)E⃗r. Hence,
∫

V(∇)

d3r ∇ · D⃗i =
∫

O(V (r))

dS · D⃗i =
∫

V (r)

d3r 4πϱ = 4πq .
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Integration gives immediately,

4πr2 ε Di(r) = 4πq ,

and hence,

Di(r) =
q

εr2
well as, obviously Da(r) =

q

r2
,

where the index a indicates the region r > a. The potential outside the sphere is
obviously,

Φa(r) =
q

r
.

Inside we have,

Φi(r) =
q

R
−

r∫

R

q

εr′2
dr =

q

εr
+
q

R

ε− 1

ε
.

14.2.2.14 Ex: Plate capacitor with dielectric

We consider two parallel electrodes with area A and distance d (see figure). Calculate
the force on the upper electrode in the x-direction, once for constant voltage V0 and
once for constant charge Q for the following two cases:
a. The electrodes are inside a dielectric liquid with permittivity ε;
b. a fixed dielectric with permittivity ε is introduced between capacitor plates. In the
residual gap there is no dielectric medium.

Hausaufgabe 4 (Plattenkondensator mit Medium)
Gegeben seien zwei parallele Elektroden mit Fläche A und Abstand d (Abbildung).
Berechnen Sie die Kraft auf die obere Elektrode in x-Richtung, einmal für konstante
Spannung V0 und einmal für konstante Ladung Q in beiden folgenden Fällen:

(a) Die Elektroden befinden sich in einer dielektrischen Flüssigkeit mit Permittivität ǫ.

(b) Eine festes Dielektrikum mit Permittivität ǫ wird zwischen die Kondensatorplatten
eingeführt. Im Restspalt befindet sich kein Medium.

- -
+ +V0 V0

(a) (b)

e

-Q -Q

+Q +Q

e

e
0

x x

⋆ Hausaufgabe 5 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender drei Schaltungen: Lösung

C1 C1
C1

C2 C2

C2

C3 C3

C3

C4 C4

C4

C5

(a) (b) (c)

a) Bei Reihenschaltung werden Kapazitäten reziprok addiert, bei Parallelschaltungen
normal addiert.
Cges = C1C2

C1+C2
+ C3C4

C3+C4

b) Durch Umzeichnung des Schaltbildes sieht man, dass es sich um zwei in Reihe geschal-
tete Parallelschaltungen der Kondensatoren C1 und C3 bzw. C2 und C4 handelt.
Cges = (C1+c3)(C2+C4)

(C1+C3)+(C2+C4)

c) Durch Umzeichnung erkennt man, dass die in Reihe geschalteten Kondensatoren C2

und C4 parallel zu C5 und den in Reihe geschalteten Kondensatoren C1 und C3

geschaltet sind.
Cges = C2C4

C2+C4
+ C5 + C1C3

C1+C3

Abgabe: Montag, 2.6.2008 um 12h, Kasten im Eingangsbereich D-Bau.
Bitte Namen und Übungsgruppe deutlich auf dem Blatt vermerken!!
http://www.pit.physik.uni-tuebingen.de/Courteille/Uebungen.htm

Figure 14.8: Plate capacitor.

Solution: a. The power of the plate capacitor is (when Q1 = −Q2)

W =
1

2
CU2 = −1

2

Q2

C

with C = ε0ε
A
x . Now, we have,

FU = − ∇W |U=const = −
d

dx

1

2
CU2 =

1

2
ε0ε

A

x2
U2

as well as,

FQ = − ∇W |Q=const =
d

dx

1

2

Q2

C
=

1

2

1

ε0εA
Q2
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that is, the force is attractive.
b. As in (a) but with the total capacity of two capacitors in series:

C =
1

1
ε0

A
x−s

+ 1
ε0ε

A
s

where x is the distance and s the thickness of the dielectric. Now we have,

FU = − d

dx

U2

2

1
x−s
ε0A

+ s
ε0εA

CU2 =
ε0εAU

2

2

1

(ε(x− s) + s)2

as well as,

FQ =
d

dx

Q2

2

(
x− s
ε0A

+
s

ε0εA

)
=

Q2

2ε0A
.

14.2.2.15 Ex: Plate capacitor with dielectric

The plate capacitor shown in the figure has a plate surface of A = 115 cm2 and a
plate distance of d = 1.24 cm. Between the plates we have the potential difference
U0 = 85.5V produced by a battery. Now, the battery is removed and a dielectric
b = 0.78 cm thick plate with dielectric constant ε = 2.61 is inserted, as shown in the
figure. First calculate
a. capacitance without dielectric and
b. the free charge on the capacitor plates.
c. Now, the dielectric is inserted. Calculate the electric field in the voids and within
the dielectric, as well as
d. the potential difference between the plates.
e. What is the capacitance with dielectric?
f. Now assume that the battery remains connected to the capacitor while the dielectric
is inserted into the space between the plates. Calculate now the capacitance,
g. the charge on the capacitor plates, and
h. the electric field in the void and inside the dielectric.

b

d

Q

-Q

�

Figure 14.9: Plate capacitor.

Solution: a. The capacity is,

C = ε0
A

d
= 8.2 pF .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico05.pdf


668 CHAPTER 14. ELECTRICAL PROPERTIES OF MATTER

b. The free charge follows from,

Q = CU0 = 8.2 pF ·85.5V = 7 · 10−10 C .

c. The electric field in the spaces is,

Ef =
Q

ε0A
=

7 · 10−10 C
ε0 · 115 cm2

= 68.75V/cm .

and in the dielectric,

Eε =
Ef
ε

=
71.25V/cm

2.61
= 26.34V/cm .

d. After insertion of the dielectric the potential difference is,

Uε = ϕ2−ϕ1 =

∫
E⃗ ·ds⃗ = Ef (d−b)+Eεb = 71.25V/cm ·0.46 cm+27.30V/cm ·0.78 cm = 52.9V .

e. The capacitance in the dielectric is,

Cd =

(
1

ε0
2A

(d−b)
+

1

ε0ε
A
b

+
1

ε0
2A

(d−b)

)−1
= 10.9 pF .

f. If the dielectric is inserted while the battery is connected, the capacity obviously
remains unchanged.
g. However, the charge on the capacitor plates is,

Q′ = CdU0 = 10.9 pF ·85.5V = 9.3 · 10−10 C .

h. The electric field in the empty spaces is,

Ef =
Q′

ε0A
=

9.3 · 10−10 C
ε0 · 115 cm2

= 91.43V/cm .

and in the dielectric,

Eε =
Ef
ε

=
71.25V/cm

2.61
= 35.03V/cm .

14.2.2.16 Ex: Plate capacitor with dielectric

Consider a quadratic plate capacitor with edge length l and plate distance d.
a. What is the capacity of the empty capacitor? What is the electrostatic energy
when the plates are charged with the charges kept fixed +Q and −Q?
b. A dielectric with thickness d, width L > l, and dielectric constant ε is now inserted
from the side. What is the electrostatic energy as a function of penetration depth x
for 0 < x < l?
c. What is the force acting on the dielectric with function of x for 0 < x < l?
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Universität Tübingen SoSe 2008
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Aufgabe 1 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender Schaltung,

P1 P2

P3

C

C C C C

(a) zwischen den Punkten P1 und P3,
(b) zwischen den Punkten P1 und P2.

Aufgabe 2 (Kondensator mit Dielektrikum)
Gegeben sei ein quadr. Plattenkondensator mit Seitenlängen l und Plattenabstand d.

-Q

l

l

d

x

e +Q
l

L

d

(a) Wie groß ist die Kapazität des leeren Kondensators? Wie groß ist die elektrostatische
Energie, wenn sich auf den beiden Platten die Ladungen +Q und −Q befinden?
(b) Von der Seite wird ein Dielektrikum mit Dicke d, Breite l, Länge L > l und Dielek-
trizitätskonstante ǫ in den Kondensator eingeführt. Wie groß ist die elektrostatische
Energie in Abhängigkeit der Einführtiefe x für 0 < x < l?
(c) Welche Kraft wirkt auf das Dielektrikum als Funktion von x für 0 < x < l?

Figure 14.10: Plate capacitor.

Solution: a. The capacity and energy of the empty capacitor are,

C = ε0
l2

d
,

W =
Q2

2C
=

dQ2

2ε0l2
.

b. Inserting the dielectric we change the capacity and the energy,

Cε(x) = ε0
l(l − x)

d
+ εε0

lx

d
=
ε0l

d
(l + xε− x) ,

W =
Q2

2Cε(x)
=

dQ2

2ε0l(l + xε− x) .

c. On the dielectric acts a force in x-direction,

Fx = −∇xW = − d

dx

dQ2

2ε0l(l + xε− x) = − dQ2

2ε0l(ε− 1)

1
(

l
ε−1 + x

)2 .

14.2.2.17 Ex: Plate capacitor with dielectric

At a plate capacitor consisting of two parallel metal plates of area 0.5m2 and distant
by d = 10 cm, there be a voltage of U0 = 1000V.
a. What are the values for the capacitance of the capacity C, the electrical field E
between plates, and the charge surface density σ on the plates?
b. A quarter of the capacitor volume is now filled with a dielectric (ε = 5), as shown
in the diagram. What is now the capacitance Cg?
Help: We may construct an equivalent circuit diagram by inserting imaginary ca-
pacitor plates along equipotential surfaces.

Solution: a. In a vacuum we have:

C = ε0
A

d
= 4.43 · 10−11 and E =

U

d
= 104 V/m

The surface density of the charge on the capacitor plates is,

σ =
Q

A
=
CU

A
= ε0

U

d
= ε0E = 8.85 · 10−8 C/m2

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico07.pdf
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4) Koaxialkabel

8

Ein Koaxialkabel bestehe aus zwei unendlich langen konzentrischen zylin-
derförmigen metallischen Leitern der Radien R1 und R2 und jeweils vernach-
lässigbarer Dicke. Der Raum zwischen den Leitern ist mit einem Isolator mit
relativer Permeabilität µ gefüllt (siehe Skizze).
(a) Beide Leiter führen in gegenläufiger Richtung jeweils den Strom I, wobei die

Stromdichte Zylindersymmetrie aufweist. Berechnen Sie Magnetfeld ~B und
magnetische Erregung ~H als Funktion des Abstandes r von der Mittelachse
des Kabels in den Bereichen r < R1, R1 < r < R2 und r > R2.

2R
2R

1

2

µ

(b) Welche magnetische Feldenergie ist pro Längeneinheit im Kabel gespeichert?

5) Spule und Schleife

8

Betrachtet werde eine Spule mit N = 1000 Windungen, Querschnittfläche A =
2cm2, Länge ` = 6cm und ohmschen Widerstand R = 10Ω.
(a) Welche Induktivität L hat die Spule?

(b) Zum Zeitpunkt t = 0 wird Schalter S geschlossen und damit an der Spule
eine Gleichspannung U = 12V angelegt. Zeigen Sie, dass das Magnetfeld
in der Spule danach den zeitlichen Verlauf B(t)= B0[1−exp(−Rt/L)] hat.
Berechnen Sie B0.

NONONONONONONONONONONON
NONONONONONONONONONONON
POPOPOPOPOPOPOPOPOPOP
POPOPOPOPOPOPOPOPOPOP

U

S

Uind

Spule

(c) Welche Spannung Uind(t) wird an einer um die Spule gelegten Induktionsschleife gemessen?
Zeigen Sie, dass der Maximalwert dieser Spannung nur von U0 und N abhängt.

(d) Hängt |Uind| davon ab, wie die Ebene der Induktionsschleife relativ zur Spulenachse orientiert ist?

Hinweise: Nehmen Sie an, dass ~B innerhalb der Spule parallel zu deren Längsachse und homogen ist
und außerhalb der Spule verschwindet.

6) Ein Kondensator

8

An einem Plattenkondensator aus zwei parallelen Metallplatten der Fläche 0.5m2, die
sich im Abstand d = 10cm gegenüberstehen, liegt eine Spannung U0 = 1000V an.
(a) Wie groß sind die Kapazität C des Kondensators, die elektrische Feldstärke E

zwischen den Platten und die Flächenladungsdichte σ auf den Platten?

(b) Ein Viertel des Kondensatorvolumens wird nun mit einem Dielektrikum (ε = 5)
gefüllt, siehe Skizze. Wie groß ist nun die Kapazität C′?

Hinweis: Beachten Sie beim Ersatzschaltbild, dass Kondensatorplatten nur entlang
Äquipotentialflächen eingefügt werden dürfen!

QRQRQQRQRQQRQRQQRQRQQRQRQQRQRQ

SRSSRSSRSSRSSRSSRS

TRTTRTTRT
URUURUURU

d/2

d

ε

7) Geschwindigkeitsfilter

8

Elektronen werden durch eine Beschleunigungsspannung U aus der
Ruhe beschleunigt und gelangen dann in einen Kondensator, in dem
ein homogenes elektrisches Feld von E = 2kV/m sowie ein homo-
genes Magnetfeld von B = 1mT herrschen; ~E, ~B und die Elektron-
Flugrichtung stehen paarweise senkrecht aufeinander. U wird so ein-
gestellt, dass der Strahl im Kondensator nicht abgelenkt wird. B

Quelle
Elektronen−

+−
U

E

e−

(a) Welche Kräfte wirken im Kondensator auf die Elektronen?

(b) In welche Richtung zeigt das Magnetfeld aus der Blickrichtung des Elektronenstrahls, wenn ~E
nach unten gerichtet ist? Begründung!

(c) Welche Geschwindigkeit v haben die Elektronen im Kondensator?
Ersatzlösung: v = 106 m/s.

(d) Welche Beschleunigungsspannung wurde eingestellt?

Hinweis: Elektronen haben Masse me = 9.11×10−31 kg und Ladung Q = −e = −1.619×10−19 C.

Figure 14.11: Plate capacitor.

b. The equivalent circuit becomes a parallel circuit of the upper half of the capacitor
C1 with the circuit in series of the dielectric quarter C2 and the empty quarter in the
lower half of the capacitor:

C1 = ε0
A/2

d
=
C

2
and C2 = ε0ε

A/2

d/2
= εC and C3 = ε0

A/2

d/2
= C .

With that we get the full capacitance,

Cg = C1 +
C2C3

C2 + C3
=
C

2

εC

1 + ε
=

4

3
C = 5.91 · 10−11 F .

14.2.2.18 Ex: Water capacitor

Consider a plate capacitor (plate distance d = 20 cm, plate surface area A = 400 cm2),
which can be half filled with water (dielectric constant εw = 80.3). We apply a voltage
of U = 240V.
a. Calculate the capacitance of the capacitor for the following cases:
i. No water.
ii. The water is perpendicular to the plates..
iii. The water is parallel to the plates.
b. Calculate the charges on the plates for these three cases.
c. Compare the electric field energy of the cases (i) and (iii). From what source does
the energy difference come from when the capacitor is filled with water?
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Übungsblatt 6 (12.06.2007)
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Präsenzaufgaben

11) Wasserkondensatoren

Gegeben ist ein Plattenkondensator (Plattenabstand d = 20 cm, Plattenfläche A = 400 cm2), der zur
Hälfte mir Wasser (Dielektrizitätskonstante εw = 80.3) gefüllt werden kann. Es liegt eine Spannung
von U = 240 V an.

2OH

H2O

U

U

U

(i) (ii) (iii)

(a) Berechnen Sie die Kapazität des Kondensators für folgende Fälle:

(i) Ohne Wasser.
(ii) Das Wasser steht senkrecht zu den Platten.

(iii) Das Wasser steht parallel zu den Platten.

(b) Berechnen Sie die Ladungen auf den Kondensatorplatten für die drei Fälle.

(c) Vergleichen Sie die elektrische Feldenergie für die Fälle (i) und (iii). Aus welcher Quelle kommt
die entsprechende Energiedifferenz beim Füllen des Kondensator mit Wasser?

12) Spiegelladungen

Skizzieren Sie die Spiegelladungen und Feldlinienbilder für die rechts gezeigten
Anordnungen von Ladung Q und geerdeten Metallplatten.

Q

13) Poisson-Gleichung

In einer Kugel des Durchmessers 2a sei eine Gesamtladung Q homogen verteilt. Bestimmen Sie das
Potential φ(~r) und die elektrischen Feldstärke ~E(~r) im gesamten Raum durch Lösung der Poisson-
Gleichung ∆φ = −ρ(~r)/ε0.

Hinweis: Der Radialanteil des Laplace-Operators in Kugelkoordinaten ist
1
r2

∂

∂r

(

r2 ∂

∂r

)

.

Figure 14.12: Capacitor.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorDieletrico08.pdf
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14.2.2.19 Ex: Capacitor circuit

The capacitance of the capacitors in the schematic circuit are C1 = 10µF, C2 = 5µF
and C3 = 4µF. The voltage is U = 100V.
a. Calculate the total capacitance.
b. Determine for each capacitor the value of the charge, voltage, and stored energy.

C1

C2

C3U

Figure 14.13: Capacitor.

Solution: a. The total capacitance is,

C =

(
1

C1
+

1

C2

)−1
+ C3 = 7.3µF .

b. From the relationships U1 + U2 = U and C1U1 = Q1 = Q2 = C2U2 follows,

U1 =
C2U

C1 + C2
= 33.3V and U2 =

C1U

C1 + C2
= 66.6V .

Furthermore,

Q1 = Q2 =
C1C2U

C1 + C2
= (C − C3)U = 333µC and Q3 = C3U = 400µC ,

which shows that Q = Q1 + Q3 = CU = 733C. With W = 1
2CU

2, the potential
energies are,

W1 = 5.5mJ , W2 = 11.1mJ , W3 = 20mJ .

The sum of the energies is W1 +W2 +W3 = 1
2CU

2.

14.2.2.20 Ex: Capacitor circuit

Calculate the total capacitance of the circuits shown in the figure.
a. between the points P1 and P3,
b. between the points P1 and P2.

Solution: a. Between P1 and P3 the total capacity is:

C13 = C + C +
1

1
C + 1

C+C

=
8

3
C .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito02.pdf


672 CHAPTER 14. ELECTRICAL PROPERTIES OF MATTER
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Aufgabe 1 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender Schaltung,

P1 P2

P3

C

C C C C

(a) zwischen den Punkten P1 und P3,
(b) zwischen den Punkten P1 und P2.

Aufgabe 2 (Kondensator mit Dielektrikum)
Gegeben sei ein quadr. Plattenkondensator mit Seitenlängen l und Plattenabstand d.

-Q

l

l

d

x

e +Q
l

L

d

(a) Wie groß ist die Kapazität des leeren Kondensators? Wie groß ist die elektrostatische
Energie, wenn sich auf den beiden Platten die Ladungen +Q und −Q befinden?
(b) Von der Seite wird ein Dielektrikum mit Dicke d, Breite l, Länge L > l und Dielek-
trizitätskonstante ǫ in den Kondensator eingeführt. Wie groß ist die elektrostatische
Energie in Abhängigkeit der Einführtiefe x für 0 < x < l?
(c) Welche Kraft wirkt auf das Dielektrikum als Funktion von x für 0 < x < l?

Figure 14.14: Capacitor circuit.

b. Between P1 and P2 the total capacity is:

C12 = C +
1

1
C+C + 1

C+C

= 2C .

14.2.2.21 Ex: Capacitor circuit

Calculate the total capacitance of the circuits shown in the figure.

Hausaufgabe 4 (Plattenkondensator mit Medium)
Gegeben seien zwei parallele Elektroden mit Fläche A und Abstand d (Abbildung).
Berechnen Sie die Kraft auf die obere Elektrode in x-Richtung, einmal für konstante
Spannung V0 und einmal für konstante Ladung Q in beiden folgenden Fällen:

(a) Die Elektroden befinden sich in einer dielektrischen Flüssigkeit mit Permittivität ǫ.

(b) Eine festes Dielektrikum mit Permittivität ǫ wird zwischen die Kondensatorplatten
eingeführt. Im Restspalt befindet sich kein Medium.

- -
+ +V0 V0

(a) (b)

e

-Q -Q

+Q +Q

e

e
0

x x

⋆ Hausaufgabe 5 (Kondensatorschaltungen)
Berechnen Sie die Gesamtkapazität folgender drei Schaltungen: Lösung

C1 C1
C1

C2 C2

C2

C3 C3

C3

C4 C4

C4

C5

(a) (b) (c)

a) Bei Reihenschaltung werden Kapazitäten reziprok addiert, bei Parallelschaltungen
normal addiert.
Cges = C1C2

C1+C2
+ C3C4

C3+C4

b) Durch Umzeichnung des Schaltbildes sieht man, dass es sich um zwei in Reihe geschal-
tete Parallelschaltungen der Kondensatoren C1 und C3 bzw. C2 und C4 handelt.
Cges = (C1+c3)(C2+C4)

(C1+C3)+(C2+C4)

c) Durch Umzeichnung erkennt man, dass die in Reihe geschalteten Kondensatoren C2

und C4 parallel zu C5 und den in Reihe geschalteten Kondensatoren C1 und C3

geschaltet sind.
Cges = C2C4

C2+C4
+ C5 + C1C3

C1+C3

Abgabe: Montag, 2.6.2008 um 12h, Kasten im Eingangsbereich D-Bau.
Bitte Namen und Übungsgruppe deutlich auf dem Blatt vermerken!!
http://www.pit.physik.uni-tuebingen.de/Courteille/Uebungen.htm

Figure 14.15: Capacitor circuit.

Solution: a. In circuit in-series the capacities are added reciprocally, in-parallel they
are added normally.

Ctot =
C1C2

C1 + C2
+

C3C4

C3 + C4
.

b. Redrawing the circuit we realize that we are dealing with two parallel circuits of
capacitors C1 and C3, resp., C2 and C4 put in series,

Ctot =
(C1 + C3)(C2 + C4)

C1 + C3 + C2 + C4
.

c. Redrawing the circuit we realize that the capacitors in series, C2 and C4, are par-
alleled to C5 and the in-series capacitors C1 and C3,

Ctot =
C2C4

C2 + C4
+ C5 +

C1C3

C1 + C3
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito03.pdf
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14.2.2.22 Ex: Energy in combinations of capacitors

a. Two identical capacitors are connected in parallel. This combination is then con-
nected to the terminals of a battery. How does the total energy stored in the parallel
combination of these two capacitors compare to the total energy stored if only one of
the capacitors were connected to the terminals of the same battery?
b. Two identical discharged capacitors are connected in series. This combination is
then connected to the terminals of a battery. How does the total energy stored in
the in-series combination of these two capacitors compare to the total energy stored
if only one of the capacitors were connected to the terminals of the same battery?

Solution: a. Uparalelo = 2Uunico.
b. Userie =

1
2Uunico

14.2.2.23 Ex: Plate capacitor

An air-filled plate capacitor consists of plates of 2.0m2 area separated by 1mm and
is charged with 100V.
a. What is the electric field between the plates?
b. What is the electrical energy density between the plates?
c. Determine the total energy by multiplying the response to part (b) with the volume
between the plates.
d. Determine the capacitance of this arrangement.
e. Calculate the total energy using U = 1

2CV
2 and compare your answer with the

result of part (c).

Solution: a. 100 kV/m.

b. 44.3mJ/m
3
.

c. 88.5µJ.
d. 17.7 nF.
e. 88.5µJ

14.2.2.24 Ex: Combination of capacitors

A 10.0µF capacitor and a 20.0µF capacitor are connected in parallel to the terminals
of a 6.0V battery.
a. What is the equivalent capacitance of this combination?
b. What is the potential difference in each capacitor?
c. Determine the charge on each capacitor.
d. Determine the energy stored in each capacitor.

Solution: a. 30.0µF.
b. 6.0V.
c. Q10 = 60µC, Q20 = 120.0µC.
d. U10 = 180µJ, U20 = 360µJ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito06.pdf
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14.2.2.25 Ex: Infinite series of capacitors

What is the equivalent capacitance (in terms of C, which is the capacitance of one of
the capacitors) of the infinite chain shown in the figure.

C

C

C

C

C

C

C

C ...

Figure 14.16: Capacitor circuit.

Solution: The capacitance Ck between the vertical capacitors of one mesh is related
to the capacitance Ck−1 of the previous mesh by,

Ck = C + (Ck−1 ∥ C) = C +
1

1
C + 1

Ck−1

.

For an infinite succession we can put Ck = Ck−1, which gives,

C2
k − CCk − C2 = 0 ,

with the solution,

Ck =
C

2
(1±

√
5) .

Therefore, the equivalent capacitance is Ceq =
C
2 (1 +

√
5).

14.2.2.26 Ex: Reconnecting capacitors

A 100 pF capacitor and a 400 pF capacitor are both charged at 2.0 kV. They are
then disconnected from the voltage source and connected together, positive plate to
positive plate and negative plate to negative plate.
a. Determine the resulting potential difference at each capacitor.
b. Determine the dissipated energy when the connection is made.

Solution: a. V100 = V400 = 1.2 kV.
b. 640µJ.

14.2.2.27 Ex: Reconnecting capacitors

A 1.2µF capacitor is charged at 30V. After charging the capacitor is disconnected
from the voltage source and is connected to the terminals of a second capacitor that
had previously been discharged. The final voltage on the 1.2µF capacitor is 10V.
a. What is the capacitance of the second capacitor?
b. How much energy was dissipated when the connection was made?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_CapacitorCircuito09.pdf
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Solution: a. 2.4µF.
b. 0.4mJ.

14.3 Conduction of current and resistance

To charge a capacitor we need to carry charges to its electrodes. By permitting a
displacement of charges we escape, in this section, for the first time from the premises
of electrostatics and introduce the concept of a current as being due to a movement of
charges within a conductor. For now, let us not raise the question, how this current
will act on other charges or currents, this subject being discussed in the next chapter.

14.3.1 Motion of charges in dielectrics and conductors

In electrostatics the electromotive force accelerating a charge Q is the Coulomb force,
F = QE⃗ . Interpreting the current as the sum of the motions vk of all charges

∑
k
Nk

V Qk
within a volume V , we introduce the current density in a way analogous to the charge
density,

j(r) =
∑

k

NkQk

V vk −→ ϱ(r)vmed(r) , (14.38)

where the average is calculated over a small volume. The flow of charges in and out
of the volume satisfies the continuity equation,

∇ · j+ ∂tϱ = 0 . (14.39)

To interpret this equation we consider a volume V and calculate the flow of charges
through the surface of the volume,

I ≡
∮

∂V
jdS =

∫

V
∇ · jdV =

∫

V
ϱ̇dV = Q̇ . (14.40)

That is, the charges passing through the surface must accumulate within the volume.
The charge flow I is called current.

14.3.2 Ohm’s law, stationary currents in continuous media

In the case of free charges inside a conductor, we empirically observe that the elec-
tromotive force leads to a stationary current. Obviously, this current depends on the
electric field,

j = j(E⃗) , (14.41)

despising the magnetic force, which is usually weak. Moreover, we find empirically
that the current is often proportional to the field,

j = ς E⃗ . (14.42)

with the conductivity ς. This observation is called Ohm’s law.
We said earlier that E⃗ = 0 inside a conductor for electrostatic situations, j = 0.

This remains valid for perfect conductors, E⃗ = j/ς = 0, even when current is flowing.
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14.3.2.1 Microscopic view of conduction

Ohm’s law may seem surprising, since the current arising from charges accelerated by a
potential difference, we would expect that the flow of charges (i.e. the current) should
grow in time as the velocity of the charges increases. But in fact, the accelerated
electrons often collide with the atoms of the conducting material and are decelerated
by the electromotive force F = mea or redirected. Moreover, at finite temperature,
the thermal velocity of the electrons is very high,

vterm =

√
2kBT

3me
≈ 6700m/s , (14.43)

so that the average velocity is constant. The time between two collisions of an electron
can be related to its mean free path λ by,

t =
λ

vterm
. (14.44)

Now, the average velocity is,

vmed =
1

t

∫ t

0

v(t′)dt′ =
at

2
. (14.45)

Finally, with na molecules per unit volume, each one providing N free electrons, the
current density is,

j = naNQvmed = naNq
t

2me
F = naNQ

λ

2mevterm
F =

naNQ
2λ

2mevterm
E⃗ . (14.46)

That is, the conductivity can be estimated as,

ς =
naNQ

2λ

2mevterm
. (14.47)

The resistivity is

ρ ≡ 1

ς
. (14.48)

We note that the resistivity depends on the temperature, ρ ∝ T 1/2.

Figure 14.17: Microscopic view of the current.
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Example 64 (Estimation of the average velocity of electrons in a con-
ductor): Based on Eq. (14.38) we now want to estimate the average propagation
velocity of electrons in a copper wire (radius R = 1mm) carrying a current of
I = 1A. With the density of copper of ρm = 8920 kg/m3, its atomic mass
ma = 63.5u and N = 1 valence electron per atom we estimate,

vmed =
I

naNeπR2
=

Iu

maeπR2
≃ 8.5 cm/h .

14.3.2.2 Resistors and energy consumption

Let us consider the conductor with the most common geometry: a metallic wire with
the shape of a cylinder with cross section S and length L. Applying an electric field,
we get,

I = j · S = ς E⃗ · S =
ςS

L
U , (14.49)

where R = l/ςA is called resistance. In this form the Ohm’s law adopts the following
form,

U = RI . (14.50)

Figure 14.18: Concept of resistance.

A consequence of the frequent collisions of the electrons with the atoms is, that
the conductor heats up. The power wasted on a resistance R is,

P = V I = RI2 . (14.51)

14.3.2.3 Resistor circuits

For parallel circuits R−1tot = R−11 +R−12 , for circuits in series Rtot = R1 +R2.

14.3.3 Exercises

14.3.3.1 Ex: The α-particle

A beam of α-particles (q = +2e), which move with constant kinetic energy E =
20MeV, corresponds to a current of I = 0.25µA. The beam is directed perpendicular
to a flat surface.
a. How many α-particles hit the surface in t = 3 s?
b. How many α-particles are at each instant of time within a s = 20 cm long beam
segment?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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c. What potential difference does an α-particle have to travel to be accelerated from
rest to an energy of 20MeV?

Solution: a. The number is N = It/q = 2.3 · 1012.
b. The velocity is v =

√
2E/m = 3.1 ·107 m/s for m = 4u. The time that the particles

need to travel the distance is ta = s/v = 6.4 ns. Hence, there are Na = Ita/q = 5000
particles in this segment.
c. To reach this energy, a particle must travel the potential difference U = E/e =
20MV.

14.3.3.2 Ex: Electric power

A potential difference of 120V powers a heater whose resistance is 1Ω when it is hot.
a. At what rate does this device transform electricity into heat?
b. What is the electricity consumption bill for t = 5h of operation with a price for
electricity of S = 5 ct/kWh?

Solution: a. The rate is dE
dt = P = U2

R = 1kJ/s.
b. The cost is K = t P S = 25.7 ct.

14.3.3.3 Ex: Ohm’s Law and electric Power

By how many degrees does a copper conductor of 100m in length and 1.2mm2 in di-
ameter heat up, when it is traversed for 1 hour by a current of 6A? Assume the heat
is not dissipated and use the following data: specific resistivity: ρ = 0.02Ωmm2/m;
density: ρCu = 8.93 kg/dm3; specific heat capacity: cCu = 389.4 J/kg K.

Solution: Conductor resistance:

R = ρ
l

A
= 0.02

Ωmm2

m
.

Power spent:

P = UI = RI2 = 60W .

Joule heat produced in 1 h:

Q = Pt = 216000 J .

Mass of the wire:

mCu = ρCu V = ρCu A l = 1.0716 kg .

Heating of the wire:

Q = cCumCu∆T ⇒ ∆T =
Q

cCumCu
= 518K .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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14.3.3.4 Ex: Continuity equation and conserved quantities

The continuity equation,
ρ̇+∇ · (v⃗ρ) = 0 ,

appears in various areas of physics and describes, for example, the conservation of
matter, charge or probability.
a. Explain, based on Gauß’ law, the relationship between the continuity equation and
charge conservation.
b. Consider a simple mechanical example: A 10 l gas bottle is opened letting gas
escape. Determine with the help of the continuity equation after how many minutes
half of the gas is gone, if the gas exits at a constant velocity of v = 1m/s and the
outlet valve has a cross-sectional area of A = 10mm2?

Solution: a. Charge conservation requires,

dQ

dt
=

∫
dV

∂ρ

∂t
= −

∫
dV∇ · vρ = −

∫
dS · vρ .

The integral form of the continuity equation holds for any volume V . If within this
volume the mass, charge or probability changes, a corresponding quantity must flow
across the surface of the volume. This is precisely the conservation.
b. Continuity equation,

dM

dt
=

∫
dV

∂ρ

∂t
= −

∫
dV∇ · v⃗ρ = −

∫
dS · vρ = −Svρ = −SvM

V
.

Ansatz for the differential equation,

M(t) =M0e
−Avt/V .

If half of the gas escaped by the time T , then

M(T )

M0
= e−AvT/V =

1

2
.

Hence,

T = ln 2
V

Av
= 690 s .

14.3.3.5 Ex: Drift of electrons in a conducting wire

A gold wire has a circular cross section of 0.1mm diameter. The ends of this wire are
connected to the terminals of a 1.5V battery. If the wire length is 7.5 cm, how long
does it take on average for two electrons leaving the negative terminal of the battery
to reach the positive terminal? Consider a resistivity of gold of 2.44 · 10−8 Ωm.

Solution: 0.86 s.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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14.4 The electric circuit

Within a (ideal) conductor potential differences vanish everywhere ∆Φ = 0, regardless
of the conductor’s length or shape. In a stationary situations, that is, in the presence
of static electric fields, the free electrons of the conductor self-organize their spatial
distribution (if necessary by creating local charge imbalances) in order to satisfy this
condition. As soon as the condition is satisfied, the movement of charges, necessary
for their spatial reorganization, comes to an end.

To sustain a stationary current we need to recycle the electrons, that is, waste the
electrons accumulated on the side, where the conductor is connected to the positive
potential and provide new electrons on the side, where the conductor is connected
to the negative potential. In other words, we need to close the circuit by an source-
drain device for electrons, called voltage source or current source depending on the
properties of the device.

In addition to the source, there is a wide variety of electronic components capable
of manipulating the potential or the current in different ways, such as resistors, ca-
pacitors, inductors or transistors. In a circuit, these components are interconnected
by conductive wires assumed to be ideal in the sense that they a potential without
losses from one component to another.

14.4.1 Kirchhoff’s rules

Electrical circuits can be more complicated and consist of several branches. The mesh
rule, ∑

k

Uk = 0 (14.52)

and the node rule, ∑

k

Ik = 0 , (14.53)

govern the behavior of the potentials and currents in any circuit and serve to analyze
its properties.

Figure 14.19: Illustration of Kirchhoff mesh and node rules.

Example 65 (R-C circuit in series): In addition to the voltage source we
got to know two types of elements which can locally influence the voltage or
the current: the capacitor and the resistor. The simplest imaginable electrical
circuit containing these two components is the R-C circuit shown in Fig. 14.20.
This circuit can be treated by Kirchhoff’s laws,

0 = UF + UC + UR and IF = IC = IR . (14.54)
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RU

C

Figure 14.20: Illustration of a R-C-circuit.

Since the current is the same at each point of the circuit, we get the differential
equation,

0 = UF +
Q

C
+RI = UF + 1

C

∫ t

0

Idt′ +RI , (14.55)

which can quickly be solved by imposing the condition that the charge of the
capacitor is initially zero,

I(t) = I0(1− e−t/RC) . (14.56)

14.4.2 Measuring instruments

Instruments for voltage and current measurement are discussed in the applied under-
graduates courses, and we will not repeat this here.

14.4.3 Exercises

14.4.3.1 Ex: Motor starter issues

The starter of a car runs too slow. The mechanic has to decide which part is defective:
the motor, the power cord, or the battery. According to the manufacturer’s techni-
cal instructions, the internal resistance of the U0 = 12V battery should not exceed
Rbat < 0.02Ω, resistance of the motor must not exceed Rmot < 0.2Ω, and the resis-
tance of the power cord must not exceed Rcab < 0.04Ω. Examining the starter motor
the mechanic finds a potential difference of 11.4V at the battery, 3V in the cable,
and a current of 50A in the starter circuit. Which element of the starter is defective?

R

U

mot

RkabRbat

0

Figure 14.21: Motor starter circuit.

Solution: The voltage measured on the battery is,

Ubat = U0 −RbatI = (Rcab +Rmot)I .

That is, the current that must flow is,

I =
U0

Rbat +Rcab +Rmot
=

12

0.02 + 0.04 + 0.2
= 46.2Ω .
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The measured resistances are,

R′bat =
U0 − U ′bat

I ′
=

12− 11.4

50
= 0.012Ω

R′cab =
U ′cab
I ′

=
3V

50A
= 0.06Ω

R′mot =
U ′bat
I ′
−R′cab =

11.4V

50A
− 0.06Ω = 0.17Ω .

Therefore, the cables are defective.

14.4.3.2 Ex: Solar cell

A solar cell generates a voltage of 0.1V at a resistive load of 500Ω, but only a voltage
of 0.15V at a resistive load of 1000Ω. Consider the cell as a real voltage source with
an internal resistance.
a. What are the internal resistance and unloaded voltage of the cell?
b. Calculate the efficiencies obtained with the two mentioned loads.

Solution: a. We know,

U0 −RiI1 = R1I1 = U1 and U0 −RiI2 = R2I2 = U2 .

Hence,

U0 −Ri
U1

R1
= U1 and U0 −Ri

U2

R2
= U2

We obtain,

Ri =
U1 − U2

U2

R2
− U1

R1

= 1000Ω and U0 = U1 +
U1 − U2

U2

R2
− U1

R1

U1

R1
= 0.3V

b. Efficiency is defined by,

η =
Pc

Pi + Pc
=

R1,2I
2
1,2

RiI21,2 +R1,2I21,2
=

R1,2

Ri +R1,2
.

Hence, η1 = 1/3 and η2 = 1/2.

14.4.3.3 Ex: Current and voltage measurement

Circuit (a) shows an arrangement with an amperemeter with internal resistance RA
and a voltmeter with internal resistance RU to measure resistance R. The value of the
resistance follows from R = UV /IR, where UV is the value indicated by the voltmeter
and IR the current through the resistance. A part of the current IA measured by the
amperemeter, however, flows through the voltmeter, such that the ratio UV /IA of the
measured values only indicates an apparent resistance, which we will call R′.
a. How are the true resistance R and the apparent resistance R′ interconnected

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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through the internal resistance RV voltmeter? How should the internal resistance
of the voltmeter be chosen to guarantee that R′ → R?
b. With the circuit (b) it is also possible to measure a resistance with an amperemeter
and a voltmeter, and also in this case the ratio between the measured values gives
only an apparent resistance. How can we determine the true resistance R in this
circuit, and how should the internal resistance RA of the amperemeter be chosen?
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Figure 14.22: Current and voltage measurement.

Solution: a. With UV = RIR, UV = R′IA, UV = RV IV and IA = IR + IV we
have,

R =
UV

IA − IV
=

UV

IA − UV

RV

=
1

1
R′ − 1

RV

.

For RV →∞ we have R′ → R.
b. With UR = RIA, UV = R′IA, UA = RAIA and UV = UR + UA we have,

R =
UV − UA

IA
=
R′IA − UA

IA
= R′ −RA .

For RA → 0 for R′ → R.

14.4.3.4 Ex: Real current source

a. How should the internal resistance of a current source Ri be specified in order to
obtain a current as independent as possible from the consuming load?
b. You want to run 40A through an electric coil. The coil has the ohmic resistance
of R = 1Ω. What should be the internal resistance of the current source in order for
a 10% increase in resistance not to change the current by more than 0.1%?

Solution: a. The current that runs is I = U0/(Ri + R). To prevent that R has
an influence, we need to let Ri ≫ R.
b. We imagine the source as a circuit in series with an ideal voltage source U0 and
an internal resistance Ri,

U0 = (Ri +R)I and U0 = (Ri +R′)I ′ ,

with R′ = 1.1R and I ′ = 0.99I follows,

Ri = −
RI −R′I ′
I − I ′ = −R1− R′I′

RI

1− I′

I

= 98.9R .
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14.4.3.5 Ex: Real voltage source

A battery can be understood as a real voltage source, consisting of an ideal voltage
source U0 and an internal resistance Ri. The voltage supplied by the battery depends
on the consuming load. Which current flows through the resistor R and which voltage
Uout does the battery supply? How must the resistive load be chosen to maximize
the power spent at the ohmic resistor?

RU

C

R
U

U

Ri

0

R
I I

Ri

0

Figure 14.23: Battery.

Solution: The current through R is,

U0 = RgesI = (Ri +R)I ⇒ I =
U0

Ri +R
.

With Kirchhoff’s law:

−U0 + UR + Ui = −U0 +RI +RiI = 0 ⇒ I =
U0

Ri +R
.

The voltage Uout at the battery is,

Uout = RI = U0
R

R+Ri
.

The resistance of the load for which the ohmic power at R is maximum (power match-
ing):

P = UoutI = U0
R

R+Ri

U0

R+Ri
= U2

0

R

(R+Ri)2
.

Deriving,

dP

dR
= U2

0

(R+Ri)
2 −R2(R+Ri)

(R+Ri)4
= U2

0

R2 + 2RRi +R2
i − 2R2 − 2RRi

(R+Ri)4

= U2
0

R2
i −R2

(R+Ri)4
= 0 ⇒ R = Ri .

Second derivative:

d2P

dR2
= U2

0

−2R(R+Ri)
4 − (R2

i −R2)4(R+Ri)
3

(R+Ri)8
= U2

0

−32R5 − 0

(2R)8
= − U2

0

8R3
< 0

for Ri = R. Therefore, the power is maximum for R = Ri.
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14.4.3.6 Ex: Battery circuit

Two batteries 1 and 2 (voltages U1 = 2V and U2 = 0.5V) and three resistors
R1 = R2 = R3 = 1Ω are connected as shown in the figure.
a. What currents flow through the resistors R1, R2, and R3?
b. What is the voltage drop between points A and B?

Probeklausur im Integrierten Kurs Physik II, SS 2008, 30.06.2008 
besprochen in den Präsenzstunden 11 und 12 

 
 
Aufgabe 1: Schaltung mit zwei Batterien    (8 Punkte)  
 
Zwei Batterien 1 und 2 (Spannungen 
U1=2 V und U2 = 0.5 V, sowie drei 
Widerstände R1 = R2 = R3 = 1 Ω sind wie 
in der Abbildung geschaltet.  
a) Welche Ströme fließen durch die 
Widerstände R1, R2 bzw. R3? 
b) Wie groß ist der Spannungsabfall 
zwischen den Punkten A und B? 
 

R1

R2

U1

U2

R3

A B

 
 
Aufgabe 2: Induktiver Schaltkreis          (8 Punkte) 
 
Wir betrachten eine Reihenschaltung aus einer langen 
Spule, einer Spannungsquelle (Spannung U) und einem 
ohmschen Widerstand R = 100 Ω. Die Spule hat 50 
Windungen pro cm und eine Induktivität von 200 mH. 
Für Zeiten t < 0 fließe kein Strom durch die Spule. Zur 
Zeit t = 0 werde die Spannung schlagartig von 0 auf 10 V 
erhöht.  
Nach welcher Zeit erreicht das Magnetfeld in der Spule 
π⋅10-4 T?  
 

 

R

LU

 
 
Aufgabe 3: Fallender Stab       (6 Punkte) 
 
Ein metallischer Stab (Länge L = 1 m) fällt im 
Gravitationsfeld der Erde (Bei t = 0 sei die 
Anfangsgeschwindigkeit 0). Der Stab sei parallel zum 
Erdboden orientiert, senkrecht zum Stab und parallel zum 
Erdboden herrsche das Magnetfeld B

r
 (Betrag: 2⋅10-5 T).  

 

v

B

Welche Spannung wird zwischen den Enden des Drahtes in Abhängigkeit von der Fallstrecke 
h induziert?  
Welchen Spannungswert erhalten Sie nach einem Fall von 5 m? 
 
 
Aufgabe 4: Leitende Kreisringe     (8 Punkte) 
 
Gegeben seien zwei "unendlich dünne", leitende, konzentrische Ringe mit Radien a und b (a 
< b). Die Ringe sollen in der xy-Ebene liegen und ihren gemeinsamen Schwerpunkt im 
Ursprung haben. Auf dem inneren Ring möge sich homogen verteilt (d. h. mit konstanter 
Streckenladungsdichte) die Ladung +q, auf dem äußeren homogen verteilt die Ladung -q 
befinden. 

 1

Figure 14.24: Battery circuit.

Solution:

14.4.3.7 Ex: Circuit with battery

Three batteries (U1 = 20V, U2 = 5V, U3 = 20V) each with a finite internal resis-
tance of 0.1Ω are connected in parallel. In series with this circuit two resistors are
connected (R1 = 100Ω, R2 = 200Ω) (see scheme). What is the electrical voltage at
R1 and R2?

R

U

2R1

3

U2

U1

Figure 14.25: Battery circuit.

Solution: We can imagine each individual battery as being composed by an ideal volt-
age source Uk and an internal resistance Rik. So the voltage Uk measured at the par-
allel circuit corresponds to the voltage drop between points a and b: Uk = U2+Ri2Ii2.
In addition, we have 2Ii1 = Ii2, since the node law gives at the point the current
Ii1 + Ii3 = Ii2 and, for symmetry reasons, also holds Ii3 = Ii1. Moreover, the mesh
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law gives,

−U1 +Ri1Ii1 +Ri2Ii2 + U2 = 0

=⇒ −U1 +Ri1
Ii2
2

+Ri2Ii2 + U2 = 0

=⇒ Ii2

(
Ri1
2

+Ri2

)
= U1 − U2

=⇒ Ii2 = 2
U1 − U2

3Ri2
,

since Ri1 = Ri2. With that follows Uk = U2 +Ri22
U1−U2

3Ri2
= 2U1 − 1

3U2 = 115
3 V. For

the circuit in series we have Uk = UR1 + UR2 and UR1

UR2
= R1

R2
. Finally,

UR1 =
1

3

115

3
V and UR1 =

2

3

115

3
V .

14.4.3.8 Ex: Kirchhoff’s rules

The current circuit shown in the figure consists of voltage sources, U1 = 20V and
U2 = 10V and resistors, R1 = 150Ω, R2 = R3 = R5 = 100Ω, and R4 = 50Ω. What
is the current measured by the Ampèremeter A?

Hausaufgaben (Abgabe: 26.06.2007)

16) Eisenstabbahn

5

Zwei parallele Modelleisenbahnschienen haben eine Dicke von d = 5mm und einen lichten Abstand
a = 50mm. Sie sind durch einen senkrecht zu den Schienen liegenden, beweglichen Metallstab der
Masse m = 0.5g leitend verbunden. Ein an die Schienen angelegter Strom, der auch durch den Me-
tallstab fließt, bewirkt die Beschleunigung des Stabes entlang der Schienen.

(a) Berechnen Sie das Magnetfeld zwischen den beiden Schienen, wenn durch beide der gleiche (aber
unterschiedlich gerichtete) Strom I fließt. Vernachlässigen Sie dabei Inhomogenitäten am Beginn
der Schienen und das vom Strom durch den Stab erzeugte Magnetfeld.

(b) Wie groß ist die Kraft in Schienenrichtung, die den Stab beschleunigt?

(c) Welcher Strom wäre notwendig, um den Stab bei einer Schienenlänge von l = 5m auf eine Ge-
schwindigkeit von 10m/s zu beschleunigen? Vernachlässigen Sie alle Reibungseffekte.

17) Massenspektrometer

3

Ein Massenspektrometer bestehe wie im Bild skiz-
ziert aus einem Kondensator mit Plattenabstabd
D = 5mm, der sich in einem homogenen Magnet-
feld der Stärke B = 0.4T befinde. Ein Isotopenge-
misch aus einfach positiv geladenen Kohlenstoffio-
nen 12C und 14C tritt durch eine Lochblende in den
Kondensator ein. Nach Durchlaufen des Konden-
sators bewegen sich die Ionen im Magnetfeld auf
einer Halbkreisbahn und werden von einem Detek-
tor gezählt, dessen Abstand y zur Lochblende vari-
iert werden kann.

U

D

y

v

B

(a) Welche Spannung muss an die Kondensatorplatten angelegt werden, damit nur Ionen einer Ge-
schwindigkeit von v = 105 m/s den Kondensator durch die zweite Blende verlassen können?

(b) In welchen Abständen y werden die beiden Kohlenstoffisotope jeweils detektiert?

18) Kirchhoffsche Regel

4

Der im Bild gezeigte Stromkreis besteht aus den
Spannungsquellen U1 = 20V und U2 = 10V so-
wie den Widerständen R1 = 150Ω, R2 = R3 =

R5 = 100Ω und R4 = 50Ω. Welcher Strom
wird am Ampèremeter A gemessen?

+
-

U
1

R
4

R
1

A

R
3

R
5

+
-

U
2

R
2

Figure 14.26: Circuits.

Solution:

14.4.3.9 Ex: Kirchhoff’s rules

Be given R1 = 1Ω, R2 = 2Ω, as well as ε1 = 2V and ε2 = ε3 = 4V.
a. Show that Kirchhoff’s node rule for steady currents is a consequence of the conti-
nuity equation

∮
j⃗dA⃗ = dq

dt .
b. Calculate the currents across the three ideal batteries in the circuit shown in figure.
c. Calculate the potential difference between points a and b.
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R
U U1 3

2

R1 R1

R1 R1

a

b

U2

Figure 14.27: Circuits.

Solution: a. For steady currents we may request: dq
dt = 0. When several currents

parameterized by jk(r)dA⃗k = Ik combining, follows,
∮

jdA =
∑

k

Ik = 0 .

b. We start writing Kirchhoff rules for both nodes and both meshes (node b is redun-
dant):

−U1 +R1I1 +R2I2 + U2 +R1I1 = 0

−U3 +R1I3 +R2I2 + U2 +R1I3 = 0

I1 + I3 − I2 = 0 .

Eliminating the third equation,

(2R1 +R2) I1 +R2I3 + U2 − U1 = 0

R2I1 + (2R1 +R2) I3 + U2 − U3 = 0 .

Solving for I1 and I3

I3 = −1

4

R2U1 + 2R1U2 − (2R1 +R2)U3

R1 (R1 +R2)

I1 =
1

4

(2R1 +R2)U1 − 2R1U2 −R2U3

R1 (R1 +R2)

I2 =
1

2

U1 − 2U2 + U3

R1 +R2
.

Hence, the currents are I1 = −2/3A, I3 = 1/3A and I2 = −1/3A.
c. The potential difference is,

Uab = R2I2 + U2 =
1

2

R2U1 + 2R1U2 +R2U3

R1 +R2
.

Hence, Uab = 10/3V.

14.4.3.10 Ex: Kirchhoff’s rules

Consider the following circuit fed by a battery of voltage V . Using Kirchhoff’s laws
calculate the voltages and currents at the points P1 and P2. What is the total resis-
tance of this circuit?
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R1 R1

R2 R2

R3

P1

P2

0 v

Figure 14.28: Circuits.

Solution: Applying Kirchhoff’s first law to the current at nodes,

(i for the node P1) I1,l − I1,r − I3 = 0 ⇒ I1,r = I1,l − I3
(ii for the node P2) I2,l − I2,r + I3 = 0 ⇒ I2,r = I2,l + I3

Applying Kirchhoff’s second law to the meshes,

(iii for the upper left mesh) U1,l + U3 − U2,l = I1,lR1 + I3R3 − I2,lR2 = 0

(iv for the upper right mesh) U1,r − U2,r − U3 = I1,rR1 − I2,rR2 − I3R3 = 0

(v for lower mesh) U2,l + U2,r − |V | = I2,lR2 + I2,rR2 − |V | = 0 .

Inserting (i) and (ii) into (iv) we obtain,

(iv’) I1,lR1 − I3R1 − I2,lR2 − I3R2 − I3R3 = 0 .

Subtracting (iii)-(iv’) we get,

I3R1 + I3R2 + 2I3R3 = R1 +R2 + 2R3)I3 = 0 ⇒ I3 = 0 .

Thus, it follows from (i) and (ii),

I1,r = I1,l = I1 and I2,r = I2,l = I2 ,

and with (v),

2I2R2 = |V | ⇒ I2 =
|V |
2R2

and with (iii):

I1R1 = I2R2 ⇒ I1 = I2
R2

R1
=
|V |
2R1

.

Using Ohm’s law we find the voltages at the resistances,

U1,l = U1,r = R1I1 =
|V |
2

and U2,l = U2,r = R2I2 =
|V |
2

.

The voltage at points P1 and P2 is V/2, i.e. there is no current I3 flowing. That is,
we have the case of a balanced bridge circuit.
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To calculate the total circuit resistance we consider two possibilities of equivalent
circuits:
a. Points P1 and P2 staying at the same potential can be short-circuited, giving,

Rges =

(
1

R1
+

1

R2

)−1
+

(
1

R1
+

1

R2

)−1
= 2

(
R2 +R1

R1R2

)−1
=

2R1R2

R1 +R2
.

b. Since the current I3 = 0, points P1 and P2 can be separated, giving,

Rges =

(
1

R1 +R1
+

1

R2 +R2

)−1
=

(
R2 +R1

2R1R2

)−1
=

2 R1 R2

R1 +R2
.

Universität Tübingen SoSe 2008
Hausaufgaben zum Integrierten Kurs Physik II Blatt 7 2.6.2008

? Hausaufgabe 1 (Kirchhoff)
Gegeben sei folgende Schaltung, die mit einer Batterie der Spannung V versorgt wird. Berech-
nen Sie mit Hilfe der Kirchhoffschen Gesetze die Spannungen und die Ströme an den Punkten
P1 und P2. Wie groß ist der Gesamtwiderstand der Schaltung?

R1 R1

R2 R2

R3

0 V

P1

P2

Festgelegte Stromrichtungen und Umlaufsinn für
Kirchhoff-Regeln, V = -|V|.

Lösung:

• 1. Kirchhoffsches Gesetz: Strom in Knoten P1, P2

I) P1: I1,l − I1,r − I3 = 0 ⇒ I1,r = I1,l − I3

II) P2: I2,l − I2,r + I3 = 0 ⇒ I2,r = I2,l + I3

• 2. Kirchhoffsches Gesetz: Maschenregel

III) o.l.: U1,l + U3 − U2,l = I1,lR1 + I3R3 − I2,lR2 = 0

IV) o.r.: U1,r − U2,r − U3 = I1,rR1 − I2,rR2 − I3R3 = 0

V) u: U2,l + U2,r − |V| = I2,lR2 + I2,rR2 − |V| = 0

• Einsetzen I), II) in IV): IV)’ I1,lR1 − I3R1 − I2,lR2 − I3R2 − I3R3 = 0

• III) - IV)’: I3R1 + I3R2 + 2I3R3 = (R1 + R2 + 2R3)I3 = 0 ⇒ I3 = 0

• ⇒ I), II): I1,r = I1,l = I1 & I2,r = I2,l = I2

• ⇒ V): 2I2R2 = |V| ⇒ I2 = |V|
2R2

, III): I1R1 = I2R2 ⇒ I1 = I2
R2

R1
= |V|

2R1

• ⇒ Ohm: Spannungsabfall Widerstände U1,l = U1,r = R1I1 = |V|
2

, U2,l = U2,r = R2I2 = |V|
2

Spannung an P1, P2 ist mit je (V/2) identisch, es fließt kein Strom I3. → Abgeglichene
Brückenschaltung.

• Gesamtwiderstand der Schaltung: 2 Möglichkeiten für Ersatzschaltbild:

(a) Punkte P1, P2 mit gleichem Potential können kurzgeschlossen werden,

⇒ Rges = ( 1
R1

+ 1
R2

)−1 + ( 1
R1

+ 1
R2

)−1 = 2(R2+R1

R1R2
)−1 = 2 R1 R2

R1+R2

(b) Strom I3 = 0: Punkte P1, P2 können getrennt werden,

⇒ Rges = ( 1
R1+R1

+ 1
R2+R2

)−1 = (R2+R1

2R1R2
)−1 = 2 R1 R2

R1+R2

(b)(a) R1 R1 R1 R1

R2 R2 R2 R2

Figure 14.29: Circuits.

14.4.3.11 Ex: Combination of resistors

You have a maximum of 5 resistors of 100Ω each. With these try to build circuits
having the total resistance of a. R = 25Ω, b. R = 66.6̄ Ω, c. R = 120Ω.

Solution: a. 4 parallel resistors, 1
Rges

= 1
R + 1

R + 1
R + 1

R = 4
R ⇒ Rges =

R
4 = 25Ω

b. 3 resistors, 1
Rges

= 1
R+R + 1

R = 3
2R ⇒ Rges =

2
3R = 66, 6Ω

c. 5 resistors, 1
Rges

= 1
R+R+R + 1

R+R = 5
6R ⇒ Rges =

6
5R = 120Ω

? Hausaufgabe 2 (Widerstände schalten)
Sie haben maximal 5 Widerstände zu je 100 Ω zur Verfügung. Bauen Sie eine Schaltung, die
einen Gesamtwiderstand von
(a) R = 25 Ω,
(b) R = 66.6̄ Ω,
(c) R = 120 Ω besitzt.

Lösung:

(a) 4 parallele Widerstände, 1
Rges

= 1
R

+ 1
R

+ 1
R

+ 1
R

= 4
R

⇒ Rges = R
4

= 25 Ω

(b) 3 Widerstände, 1
Rges

= 1
R+R

+ 1
R

= 3
2R

⇒ Rges = 2
3
R = 66, 6Ω

(b) 5 Widerstände, 1
Rges

= 1
R+R+R

+ 1
R+R

= 5
6R

⇒ Rges = 6
5
R = 120 Ω

(a) (b) (c)

? Hausaufgabe 3 (reale Spannungsquelle)
Eine Batterie kann als reale Spannungsquelle angesehen werden, die aus einer idealen Span-
nungsquelle mit Spannung U0 und Innenwiderstand Ri besteht. Die Ausgangsspannung der
Batterie hängt dann von der Last R ab. Welcher Strom fließt durch den Widerstand R
und welche Spannung Uout liefert die Batterie? Wie groß muss der Lastwiderstand gewählt
werden, damit die ohmsche Leistung im Widerstand R maximal wird?

U
0

U
out

R
i

Batterie

R

Lösung:

• Strom durch R: U0 = RgesI = (Ri + R)I ⇒ I = U0

Ri+R

bzw. Kirchhoff: −U0 + UR + Ui = −U0 + RI + RiI = 0 ⇒ I = U0

Ri+R

• Spannung Uout der Batterie: Uout = RI = U0
R

R+Ri

• Lastwiderstand, für den ohmsche Leistung in R maximal ist (Leistungsanpassung):

P = UoutI = U0
R

R+Ri

U0

R+Ri
= U2

0
R

(R+Ri)2

dP
dR

= U2
0

(R+Ri)
2−R2(R+Ri)

(R+Ri)4
= U2

0
R2+2RRi+R2

i −2R2−2RRi

(R+Ri)4
= U2

0
R2

i −R2

(R+Ri)4
= 0 ⇒ R = Ri

Test: d2P
dR2 = U2

0
−2R(R+Ri)

4−(R2
i −R2)4(R+Ri)

3

(R+Ri)8
= (für Ri=R) U2

0
−32R5−0

(2R)8
= − U2

0

8R3 < 0

⇒ P maximal für R=Ri

Figure 14.30: Resistors circuits.

14.4.3.12 Ex: Circuit with capacitors and resistors

In the circuit shown in the figure be R1 = 600Ω, R2 = 200Ω, R3 = 300Ω, C = 20µF,
and U = 12V.
a. Calculate the voltages measured at the individual resistors and the capacitor as
well as the total current Iges when the capacitor is fully charged (stationary case).
b. At time t = 0 the switch S is opened. After which time the capacitor voltage drops
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R

U

2

R1 R3

S

C

Figure 14.31: Circuits.

to 10mV?

Solution: a. When the capacitor is fully charged, no current flows through the resis-
tors R2 and R3. The total voltage of 12V drops at the capacitor and the resistor R1.
Through the resistor R1 goes the current I = U/R1 = 20mA.
b. When the switch is opened, the capacitor discharges through the circuit in series of
all three resistors. Therefore,

(R1 +R2 +R3)I = (R1 +R2 +R3)Q̇ = U = Q/C ,

resp.

U = U0e
−t/(R1+R2+R3)C .

14.4.3.13 Ex: Circuits with resistors and capacitors

Consider the circuit shown in the figure with the following values, R1 = R3 = 100Ω,
R2 = R4 = 200Ω, C1 = C2 = 10µF, and U0 = 20V.
a. Calculate equivalent resistance and the equivalent capacity of the circuit.
b. At time t = 0 the switch S is closed. Find the differential equation for the voltage
U(t) at the capacitor C1 and solve it. When does the voltage drop to 1/e of its max-
imum value?
c. Determine the evolution of the amplitude of the resistor current R3.

R

S

4R3

R2

R1

C2

C1

U0

Figure 14.32: Circuits.

Solution: a. Equivalent resistance,

Req =

(
1

R1
+

1

R2
+

1

R3 +R4

)−1
≈ 54.5Ω .
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Equivalent capacity,
Ceq = C1 + C2 = 20µF .

b. The mesh rule gives U0 = RersI(t) + U(t), since the voltage in C1 is the same as
that in C2. From this follows,

U0 = Req
dQ

dt
+ U(t) = RersCers

dU(t)

dt
+ U(t) ≡ 1

M

dU(t)

dt
+ U(t) .

Hence, we get the differential equation,

dU(t)

dt
=MU0 −MU(t) .

The solution is obviously, U(t) = U0(1 − e−Mt). The value 1/e is reached when
t = − 1

M ln(1− 1/e) ≈ 0.5ms.
c. With I(t) = 1

Rtot
[U0 − U(t)] and the nodes rule, I(t) = I34 + I12, and the mesh

rule, I34(R3 +R4)− I12(R1 ∥ R2) = 0 , we obtain,

I1(t) =
R1 ∥ R2

(R1 ∥ R2) +R3 +R4
I(t) =

R1 ∥ R2

(R1 ∥ R2) +R3 +R4
U0e

−Mt .

14.4.3.14 Ex: Circuits with resistors and capacitors

Calculate the total resistances and capacitances of the following circuits.
Help for (e): Consider the capacitor as a set of capacitors with/without dielectric
in series and in parallel.

Figure 14.33: Circuits.
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Solution: a.

R =
1

1
R1+R2

+ 1
R3+R4

.

b.

R =
1

1
R1

+ 1
R2

+
1

1
R3

+ 1
R4

.

c.

R =
1

1
C1

+ 1
C2

+
1

1
C3

+ 1
C4

.

d.

R =
1

1
C1+C2

+ 1
C3+C4

.

e.

C = ε0
a2/2

d
+

1
1

ε0ε
a2/2

d

+
1

ε0
a2/2
d

= ε0
a2

2d

2 + ε

1 + ε
.

14.4.3.15 Ex: Charging a capacitor

The circuit shown in Fig. 14.20 consists of a voltage source U , a resistance R, and a
capacity C. Initially be U = 0. From the time t = 0 on the voltage source shall give
the constant value U = U0. Calculate the time evolution of the current I in the circuit
as well as the time evolution of the voltages at the capacitor and at the resistance.
Help: Begin by establishing the differential equation for the current I.

Solution: Before turning on the source we have U0 = UR = UC = 0. Immedi-
ately after turning on we have U0 = UR +UC . With the current across the resistance
I = UR/R and the capacitor charge Qc = CUC we get,

U0 = RI +
Q

C
.

With I = Q̇C follows,

U̇0 = Rİ +
I

C
= 0 .

Finally,

İ = − 1

RC
I ,

with the solution I(t) = I0e
−t/τ with τ = RC. At time t = 0 the capacitor is

discharged, so UC = 0. Hence, U0 = UR(t = 0) = RI(t = 0) and I0 = U0/R, hence,

I(t) =
U0

R
e−t/τ .
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The resistor voltage drops exponentially, U(t) = RI(t) = U0e
−t/τ . For the capacitor

voltage we have,

U̇C =
I

C
=

U0

RC
e−t/τ

=⇒ UC =
Q

C
= −τ U0

RC
e−t/τ + const = −U0e

−t/τ + const .

At time t = 0 holds UC = 0 and with that const = U0, hence UC goes exponentially
from 0 to U0: UC = U0(1− e−t/τ .

14.4.3.16 Ex: R-C circuit

Consider the electrical circuit shown in the figure with the ideal voltage sources Uk,
the resistors Rk, and the capacitor C. Initially the switch C1 is open.
a. Calculate the charge Q0 on the capacitor after a long time.
b. Now, the switch is closed. Using Kirchhoff’s laws, express the charge on the capac-
itor as a function of the current IC across the capacitor and the parameters shown in
the figure.
c. Based on the result obtained in (b), calculate the time evolution of the capacitor
charge.
d. Indicate the values for t = 0 and t→∞.
e. Discuss the cases (i) U2 = U1 and (ii) U2 = −U1.

RR

U1 U2

C

RC

Figure 14.34: Circuits.

Solution: a. Kirchhoff’s node rule for the left mesh gives:

U1 −
Q0

C
−RCI −RI = 0 .

In steady state no current is flowing, I = 0. Hence,

Q0 = CU1 .

b. Now we have two connected meshes. We start writing Kirchhoff’s rules for both
nodes and both meshes (node b is redundant):

U1 −
Q

C
−RCIC −RI1 = 0

U2 −
Q

C
−RCIC −RI2 = 0

I1 + I2 − IC = 0 .
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Adding the first and second equation and replacing the third,

0 = U1 + U2 − 2
Q

C
− 2RCIC −R(I1 + I2) = U1 + U2 − 2

Q

C
− 2RCIC −RIC .

c. Solving for IC ,

(2RC +R)
dQ

dt
+ 2

Q

C
= U1 + U2

C
2 (2RC +R)

dQ
C
2 (U1 + U2)−Q

= dt

−C2 (2RC +R) ln[C2 (U1 + U2)−Q]
∣∣Q(t)

Q0
= t

Q(t) = C
2 (U1 + U2)− [C2 (U1 + U2)−Q0]e

−2t/C(2RC+R) .

Substituting Q0 = CU1, we obtain,

Q(t) = C
2 (U1 + U2) +

C
2 (U1 − U2)e

−2t/C(2RC+R) .

d. We have Q(t = 0) = CU1 and Q(t→∞) = C
2 (U1 + U2).

e. For (i) U2 = U1

Q(t) = CU1 = const ,

and for (ii) U2 = −U1

Q(t) = CU1e
−2t/C(2RC+R) .

14.4.3.17 Ex: Internal resistance of a battery

A 5V power supply has an internal resistance of 50Ω. What is the smallest resistor
that can be taken in series with the power source so that the potential drop in the
resistor is larger than 4.5V?

Solution: 0.45 kΩ.

14.4.3.18 Ex: Circuit with two batteries

In the circuit shown in the figure, the batteries have negligible internal resistances.
Determine
a. the current in each branch of the circuit
b. the potential difference between the points a and b, and
c. the power supplied by each battery.

Solution: a. I4Ω = 0.667A, I3Ω = 0.889A and I6Ω = 1.56A.
b. Vab = 9.88V,
c. Pesq = 8.0W, Pdir = 10.7W.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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12 V 12 V6 W

4 W 3 Wa

b

Figure 14.35: Circuits.

14.4.3.19 Ex: Circuit with three batteries

For the circuit shown in the figure, determine the potential difference between the
points a and b.

2 V 2 V
4 W

1 W 1 Wa

b1 W 1 W

4 V

Figure 14.36: Circuits.

Solution: Va − Vb = 2.4V.

14.4.3.20 Ex: Real voltmeter

The voltmeter shown in the figure can be modeled as an ideal voltmeter (a voltmeter
that has an infinite internal resistance) in parallel with a 10MΩ resistor. Calculate
the voltmeter reading when
a. R = 1.0 kΩ,
b. R = 10.0 kΩ,
c. R = 1.0MΩ,
d. R = 10.0MΩ,
e. R = 100.0MΩ.
f. What is the largest possible value of R if the measured voltage should be within
10% of the true voltage (i.e. the voltage drop at R without placing the voltmeter)?

Solution: a. 3.33V,
b. 3.33V,
c. 3.13V,
d. 2.00V,
e. 0.435V,
f. Rmax = 1.67MΩ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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10 V VR

2R

voltímetro

Figure 14.37: Voltmeter.

14.4.3.21 Ex: Circuit with battery and capacitor

The switch shown in the figure is closed after having been open for a long time.
a. What is the initial value of battery current right after the switch S has been closed?
b. What is the battery current a long time after the key has been closed?
c. What are the charges on the capacitor plates a long time after the switch has been
closed?
d. Now, the switch S is opened again. What are the charges on the capacitor plates
a long time after the switch has been reopened?

50V

15�

S

12�

15�

10�F

��F

10�

Figure 14.38: Circuits.

Solution: a. .

14.4.3.22 Ex: Circuit with battery and capacitor

In the circuit shown in the figure, the capacitor has a capacitance of 2.5µF and the
resistor has a resistance of 0.5MΩ. Before the switch is closed, the potential drop in
capacitor is 12V, as shown in the figure. The switch S is closed at t = 0.
a. What is the current immediately after the switch has been closed?
b. At what instant of time t is the voltage on the capacitor 24V?

Solution: a. 48.0µA.
b. 0.866 s.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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36 V
R

12 V

�������

S

C

Figure 14.39: Circuits.

14.4.3.23 Ex: Three-phase current

Three-phase current is generated by three potential differences with respect to ground
described by,

Un(t) = U0 sin(ωt+ n 2π
3 ) ,

where n = 1, 2, 3 labels the three phases. Assuming U0 = 127V.
a. What is the period-averaged voltage of each phase with respect to ground?
b. What is the period-averaged voltage difference between two phases?
c. What is the amplitude of the voltage difference between two phases?
d. Derive the time-dependent expressions for all currents labeled in Fig. 14.40(a).

Figure 14.40: (a) Star connection, (b) triangular connection.

Solution: a. The period-averaged voltage of each phase is,

Ūn =

√
ω

2π

∫ 2π/ω

0

U2
n(t)dt = U0

√
ω

2π

∫ 2π/ω

0

sin2(ωt+ n 2π
3 )dt =

U0√
2
.

b. The period-averaged voltage difference between two phases is,

Ūd = U0

√
ω

4π

∫ 4π/ω

0

[
sin(ωt+ 2π

3 )− sinωt
]2
dt =

√
3
2U0 =

√
3Ūn .

c. The voltage difference between two phases is,

U(t) = U0

[
sin(ωt+ 2π

3 )− sinωt
]
= U0

(√
3
2 cosωt− 3

2 sinωt
)
= U0

√
3 sin(ωt+ 5π

6 ) .

Hence, Ud0 =
√
3U0 = 220V. d. Kirchhoff’s node rule yields,

I1 = Ia − Ic , I2 = Ib − Ia , I3 = Ic − Ib .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Current_.pdf
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Resulting in I1 + I2 + I3 = 0. We also know from Kirchhoff’s mesh rule,

U12 = RaIa , U23 = RbIb , U31 = RcIc

with Umn = Um − Un. Hence,

I1 =
U12

Ra
− U31

Rc
=
U1 − U2

Ra
− U3 − U1

Rc

= U0

[(
1

Ra
+

1

Rc

)
sin
(
ωt+ 2π

3

)
− 1

Ra
sin
(
ωt+ 4π

3

)
− 1

Rc
sin
(
ωt+ 6π

3

)]

etc.. Furthermore,

Ia =
U12

Ra
=
U1 − U2

Ra
=
U0

Ra

[
sin
(
ωt+ 2π

3

)
− sin

(
ωt+ 4π

3

)]
=
U0

Ra

√
3 sin

(
ωt+ 9π

6

)

etc..

14.5 Further reading

D.J. Griffiths, Introduction to Electrodynamics [545]ISBN

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [577]ISBN

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [963]ISBN

http://isbnsearch.org/isbn/978-1-108-42041-9
http://isbnsearch.org/isbn/978-0-471-21643-8
http://isbnsearch.org/isbn/978-8-521-20801-3


Chapter 15

Magnetostatics

Magnetostatics is the theory dealing with stationary currents, the fundamental prob-
lem being the calculation of the force exerted by spatial current distributions. Since
a current is always due to displacement of charges, it is obviously not stationary in
the strict sense. On the other hand, if the charge is transported in such a way that
every charge leaving a volume element is immediately replaced by another equivalent
charge, the integral over the volume element yields a stationary charge distribution.

15.1 Electric current and the Lorentz force

In the previous chapter we have shown that charges can travel through electric con-
ductors, thus producing currents. We observe experimentally that electrically neutral
conductors can exert reciprocal forces. For example, passing currents through two
parallel, almost infinitely long thin wires, we find that they attract (repel) each other
when their directions are (anti-)parallel. We also observe that a compass needle is
deflected near a current-carrying conductor in directions describing concentric circles
around the conductor. If the compass needle traces the field lines of a yet unknown
field, the force attracting (or repelling) two currents DOES NOT point in the direc-
tion of the field lines. These observations show the presence of another phenomenon
and another force not explained by Coulomb’s law (see Fig. 15.1).

Figure 15.1: Mutual force between two conductors carrying antiparallel and parallel currents.
Torque exerted by a current on a compass.

Apparently, the new force is not oriented in the direction of the current I, nor in
the direction of the lines described by the compass needle, but perpendicular to the
two. To describe this fact, we postulate the existence of a field B⃗ called magnetic

699
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field, such that the force is described by the vector product,

FL = Il× B⃗ , (15.1)

where l is an element of the current path. This force is called Lorentz force. Note,
that this force behaves like a pseudo-vector(see Exc. 1.6.3.7).

In order to analyze this phenomenon from the microscopic point of view, we put
forward the hypothesis that the observed force has to do with the motion of the
charges constituting the current within the postulated magnetic field. We have al-
ready introduced in the previous chapter the notion of the current, and we connected
the current density with the propagation velocity of charges in the Eqs. (14.38) and
(14.46),

j(r′) = ϱ(r′)v′ . (15.2)

With this we get,

FL = I

∫

C
dl′ × B⃗ = I

∫

C
ê′j × B⃗dl′ (15.3)

=

∫

V
Iδ2(r′⊥ − l⊥)ê

′
j × B⃗dV ′ =

∫

V
j(r′)× B⃗dV ′ =

∫

V
ϱ(r′)v′ × B⃗(r′)dV ′ ,

where we simplified the notation j(r′) = Iδ2(r′⊥ − l⊥)ê′j = Iδ(ê1 · r′ − ê1 · l)δ(ê2 · r′ −
ê2 · l)ê′j , where ê1,2 and ê′j are all mutually orthogonal. We conclude,

FL = Qv × B⃗ . (15.4)

Figure 15.2: Parametrization of a yarn of current using the following recipe: For each point
in space r′ ∈ R check that this point is also in r′ ∈ C, that is, whether there exists a t
such that r′ = l(t). At this point determine the direction of the path, ê′j = dl/|dl|, find two
orthogonal unit vectors ê1,2 and apply the Dirac distribution to these dimensions.

Example 66 (Cyclotron and synchrotron motion): A consequence of the
fact that, according to (15.4), the force on moving charges is always perpendic-
ular to their velocity is, that their trajectory in a homogeneous magnetic field
are circular. The centrifugal force compensates for the Lorentz force when,

FL = QvB = m
v2

R
= Fcf ,

which allows to determine the radius R of the circle 1.

This fact is used in particle accelerators called cyclotrons, where beams of

1This behavior can be observed by injecting a charged particles into a homogeneous magnetic
field. Collimated electron beams can be created by an electrode device called the Wehnelt’s cylinder
used in cathode ray tubes called Braun’s tube.
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charged particles are accelerated in by electric fields and deflected by homo-

geneous magnetic fields located between the regions of acceleration.

An important consequence of the particular form of the Lorentz force is the fact
that magnetic forces do not work,

Wmg =

∫

C
F · dl = 0 .

The direction of motion of a charge can be changed by magnetic fields, but not the
absolute value of its velocity. This may seem surprising, as we know that magnets
can exert forces of iron bodies.

Example 67 (Work exerted by magnetic fields): We consider a conduc-
tive wire loop carrying current and being partially immersed in a homogeneous
magnetic field, as shown in Fig. 15.3. The device is in equilibrium, when,

F = IaB = mg .

When the current exceeds the value mg/aB, a vertical force lifting the device is
observed, such that the device gains potential energy,

W = Fh ,

where h is the acquired height. However, the vertical motion corresponds to a

current Iêz, which creates a force contrary to the current I, such that the battery

feeding the wire loop needs to work to maintain the current. The magnetic

field only reorients the force into a direction having a parallel component to

the horizontal part of the wire loop, thus allowing the battery to work against

this force. We shall discuss this from another point of view in context of the

Lenz-Faraday law.

Figure 15.3: Hypothetical device to make the magnetic field work.

15.1.1 The Hall effect

As an example we consider the Hall effect: As shown in Fig. 15.4, a current flows to
the right through a rectangular rod made of conductive material in the presence of a
perpendicular uniform magnetic field B⃗. If the mobile charges are positive, they will
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be deflected by the magnetic field in downward direction. This deflection results in an
accumulation of charges on the upper and lower boundaries of the rod which, in turn,
generates an electric Coulomb force counteracting the magnetic force. A balance is
reached when the two forces compensate:

FC = QE = Q
UH
w

= QvmedB = FL . (15.5)

The difference of the electric potentials on the upper and lower boundaries is called
Hall voltage. The average velocity of the charges can be estimated from Eq. (14.46),

vmed =
j

naNQ
, (15.6)

where na is the volumetric density of molecules of the rod material, each molecule
providing N free electrons. Now, using the dimensions of the rod outlined in Fig. 15.4,
we calculate the Hall voltage,

UH = vmedBw =
j

naNQ
Bw =

IB
d naNQ

= AH
IB
d

, (15.7)

where AH = 1/naNQ is a constant which depends on the rod material.
If the mobile charges were negative, the Hall voltage would change its sign. This

fact can be used to identify the sign of free charges in unknown current conductors.
Resolve the Excs. 15.1.3.1-15.1.3.13.

Figure 15.4: Illustration of the Hall Effect.

15.1.2 Biot-Savart’s law

In the same way as we parametrize charge distributions (linear, superficial and volu-
metric) in electrostatics,

∑

k

(..)Qk −→
∫

C
(..)λdl ∼

∫

S
(..)σdS ∼

∫

V
(..)ϱdV , (15.8)

we can parametrize current distributions (linear, superficial and volumetric) in mag-
netostatics,

∑

k

(..)Qkvk −→
∫

C
(..)Idl ∼

∫

S
(..)κ⃗dS ∼

∫

V
(..)jdV . (15.9)
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In electrostatics we had the condition ϱ̇ = 0, which implies, via the continuity
equation (14.39),

∇ · j = 0 . (15.10)

In magnetostatics we furthermore demand that j̇ = 0.

The equivalent of Coulomb’s law in magnetostatics is the Biot-Savart law,

B⃗(r) = µ0

4π

∫

C

I(r′)× (r− r′)
|r− r′|3 dl′ =

µ0I

4π

∫

C

dl′ × (r− r′)
|r− r′|3 =

µ0

4π

∫

V
j(r′)× r− r′

|r− r′|3 dV
′ .

(15.11)

Analogously to the way in which we apply Coulomb’s law to electrostatics to
calculate the electric field produced by charge distributions, we can apply the Biot-
Savart’s law in magnetostatics to calculate the magnetic field produced by currents.

Example 68 (Magnetic field of a straight current wire): We consider
an infinitely long and thin wire oriented along the z-axis carrying a current I
parametrized by j(r′) = êzIδ(x

′)δ(y′). Using r = ρêρ + zêz and r′ = z′êz we
calculate,

B⃗(r) = µ0I

4π

∫ ∞
−∞

dz′
êz × (r− r′)

|r− r′|3 =
µ0I

4π
êz × ρêρ

∫ ∞
−∞

dz′√
ρ2 + (z − z′)23

=
µ0I

4π
êz × ρêρ

[
z′

ρ2
(ρ2 + z′2)−

1
2

]∞
−∞

=
µ0I

4π
êz × ρêρ 2

ρ2
=
µ0I

2πρ
êϕ .

With this we can now calculate the force exerted by this current on another
current I2 flowing in parallel direction but at a distance ρ:

F = I2lêz × B⃗ =
µ0II2l

2πρ
(−êρ) .

So the force is attractive.

Example 69 (Magnetic field of a loop of circular current): We consider
a circular current parametrized by j(r′) = êϕIδ(z)δ(ρ−R). Following the Biot-
Savart law the generated magnetic field is,

B⃗(r) = µ0

4π

∫
V

j(r′)× (r− r′)

|r− r′|3 dV ′ =
µ0I

4π

∮
C

êϕ′ × (r−Rêr′)
|r−Rêr′ |3

Rdϕ′ .

On the symmetry axis r = zêz we get,

B⃗(zêz) = µ0IR

4π

∮
C

êϕ′ × (zêz −Rêr′)√
R2 cos2 ϕ′ +R2 sin2 ϕ′ + z2

3 dϕ
′

=
µ0IR

4π

∮
C

zêr +Rêz√
R2 + z2

3 dϕ
′ =

µ0IR
2

2
√
R2 + z2

3 êz ,

where the integral containing the term zêr vanishes by symmetry.

Resolve the Excs. 15.1.3.14-15.1.3.15.
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15.1.3 Exercises

15.1.3.1 Ex: Force on a current conductor

A piece wire having the shape of a semicircle (radius R) congruent to the xy-plane

at z = 0 is immersed in a homogeneous magnetic B⃗-field oriented along êz, as shown
in the scheme. Through the wire runs a current I. Calculate the force on the loop
and compare it to the force on a piece of straight wire oriented along the y-axis with
length 2R. The current in this wire runs along êy.

Figure 15.5: Wires.

Solution: For a small piece of wire holds,

dF = Idl× B⃗ .

The force shows into radial direction and has the absolute value,

dF = IdlB = IBRdϕ .

The component parallel to y is,

Fy =

∫ π/2

−π/2
dF sinϕ = 0 .

The component parallel to x is,

Fx = IBR
∫ π/2

−π/2
dϕ cosϕ = 2IBR .

This is equal but in opposite direction to the force acting on the piece of wire with
length 2R toward y (the force on the entire loop is 0, as expected).

15.1.3.2 Ex: Lorentz force

In a wooden cylinder of mass m = 0.25 kg and length L = 10 cm is wound a 10 turns
coil of conducting wire such that the axis of the cylinder is within the plane of the
coil. The cylinder is (not slipping) on an plane inclined by α = 30◦ with respect
to the horizontal, so that the plane of the coil is parallel to the inclined plane. The
whole setup is subject to a homogeneous vertical magnetic field with the absolute

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz02.pdf
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Figure 15.6: Lorentz force.

value B = 0.5T. What should be the minimum current through the coil to prevent
the coil from rotating around its center of mass?

Solution: The weight Fg = −mgêz exerts a torque around the support point A of the
cylinder in the inclined plane. Imagining the cylinder as a mass point concentrated
at its center C, we find a torque acting on it,

τ⃗g = rg × Fg ,

where rg = R(êx sinα+ êz cosα) is the vector from A to C and R is the radius of the
cylinder. Therefore,

τ⃗g = −mgrg × êz = Rmgêy sinα .

The Lorentz forces acting on the front side and the back side of the conductive loop,
F± = ±NI L× B⃗ = ±NILBêx, cause torques,

τ⃗± = r± × F± ,

where r± = rg ± R(êx cosα − êz sinα) = R(êx sinα ± êx cosα + êz cosα ∓ êz sinα)
are the vectors of A to the points, where the Lorentz force acts. Therefore,

τ⃗l = τ⃗+ + τ⃗− = NILB(r+ − r−)× êx

= RNILBêz × êx [(cosα− sinα)− (cosα+ sinα)] = −R2NILBêy sinα .

Alternatively, we calculate from magnetic moment, m = 2RLNIêg, the torque,

τ⃗l = m× B⃗ = −2RLNIB sinα .

To prevent the cylinder from moving, we need M⃗g + M⃗l = 0, which means that the
current is independent of the slope,

I =
mg

2NLB .

The current is I = 2.45A.

15.1.3.3 Ex: Magnetic field mass spectrometer

A spectrometer is used to separate doubly ionized uranium ions of mass 3.92×10−25 kg
from other similar isotopes. The ions are first accelerated by a potential difference of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz03.pdf
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Figure 15.7: Lorentz force.

100 kV and then enter a homogeneous magnetic field, where they are deviated into a
circular orbit of radius 1m. After having covered an angle of 180◦, they enter through
a 1mm wide and 1 cm high slit and are accumulated in a collector.
a. Determine the magnetic field of the mass spectrometer from the energy balance of
the (individual) ions.
b. The device should be able to separate 100mg of the desired ions per hour. What
should be the intensity of the ionic flux in the beam?
c. What heat is produced in the collector in one hour?

Solution:

15.1.3.4 Ex: Mass spectrometer

In a mass spectrometer, a 24Mg+ ion has a mass of 3.983 ·10−26 kg and is accelerated
by a potential difference of 2.5 kV. It then enters a region, where it is deflected by a
magnetic field of 557G.
Determine the radius of curvature of the orbits of the ion.
b. What is the difference between the radii of the orbits of the ions 26Mg and 24Mg?
Consider a ratio between the masses of 26 : 24.

Solution: a. 63.3 cm.
b. 2.58 cm.

15.1.3.5 Ex: Magnetron

A magnetron consists of a diode tube, an anode shaped like a circular cylinder with
radius RA = cm in the center of which the cathode filament is coaxially located. On
the glass tube of this diode is a wound cylindrical coil whose axis coincides with the
anode. The coil is long enough that the magnetic field along the cathode can be con-
sidered homogeneous. The electrons emitted from the cathode wire simultaneously
are subject to the electric field between cathode and anode, U = 1000V and the
magnetic field B = 0.533 · 10−2 T. The latter has been adjusted so that the electrons
barely do not reach the anode. The whole apparatus is basically a velocity filter for
electrons and thus a compact version of J.J. Thomson’s e/m experiment (1987). From
the equation of motion of an electron in the tube, determine the ratio e/m.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz05.pdf
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Solution:

15.1.3.6 Ex: Conductive copper strips

A copper strip of length l = 2 cm, width b = 1 cm, and thickness d = 150µm lies within
a homogeneous magnetic field B⃗ of value 0.65T, oriented perpendicular to the flat side
of the strip. The concentration of free charges in copper is 8.47× 1028 electrons/m3.
What is the potential difference V across the width of the tape, if it is traversed by
a current of I = 23A?

Solution: The Hall voltage is,

UHall = bEH = b
1

en

I

bd
B =

1

en

I

d
B ≃ 7.3µV .

15.1.3.7 Ex: Lorentz force

A firm, horizontal, 25 cm long linear wire has a mass of 5 g and is connected to an
emf-source via light and flexible wires. A magnetic field of 1.33T is horizontal and
perpendicular to the wire. Determine the current needed for the wire to float, that
is, when the wire is released from rest, it remains at rest.

Solution: 1.5A.

15.1.3.8 Ex: Lorentz force

A current carrying wire is bent in a closed semicircle of radius R in the xy-plane.
The wire is inside a uniform magnetic field oriented in +z-direction, as shown in the
figure. Verify that the force exerted on the ring is zero.

Figure 15.8: Lorentz force.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_ForcaLorentz08.pdf
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15.1.3.9 Ex: Coulomb and Lorentz force

Two equal point charges are, at some instant of time, located at (0, 0, 0) and (0, b, 0).
Both are moving with velocity v in +x-direction (consider v ≪ c). Determine the
ratio between the magnitude of the magnetic force and the magnitude of the electric
force at each charge.

Solution: The first charge generates a magnetic field at the position of the second
charge which, following the Biot-Savart law, is,

B⃗(b) = µ0

4π

qv × b

b2
.

That is,

B =
µ0qv

4πb2
.

This produces the Lorentz force,

FL = qvB =
µ0q

2v2

4πb2
.

The Coulomb force following Coulomb’s law is,

FC =
1

4πε0

q2

b2
.

Hence,
FL
FC

= ε0µ0c
2 .

15.1.3.10 Ex: Penning trap

In Penning traps, charged particles move under the influence of a homogeneous mag-
netic field B⃗ = Bhêz and a quadrupolar electric field E⃗ = Eq(ρêρ − 2zêz). On which
orbits do the particle move?
Help: Consider the axial and radial movements separately. For the radial motion
consider two cases:
1. The influence of the electric field is negligible,
2. centripetal force is negligible.

Solution: Lorentz force,

F = QE⃗ +Qv × B⃗
= QEq(ρêρ − 2zêz) +Qv × Bhêz

= QEq




x

y

2z


+QBh




vy

−vx
0 .
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The linear restoring force in axial direction Fz = −QEq2z generates a harmonic
oscillation, z = z0 cosωt+

v0
ω sinωt with the oscillation frequency,

ωh =

√
q

m
2Eq .

For the radial motion, we get,

mẍ = QEqx+QBhvy and mÿ = QEqy −QBhvx .

Despising the electric field,

mẍ = QBhvy and mÿ = QBhvx .

Taking the square gives, mr̈ = QBhv resp. mω2r = QBhωr. The particle rotates in
the equatorial plane with the cyclotron frequency,

ωc =
QBh
m

.

Neglecting inertia,

0 = QEqx+QBhvy and 0 = QEqy −QBhvx .

Taking the square gives, Eqr = Bhv resp. Eqr = Bhωr. The particle rotates in the
equatorial plane with the magnetron frequency of,

ωm =

√
Eq
Bh

.

15.1.3.11 Ex: Magnetic trap near a current wire

An infinitely long conducting wire (radius R, axis in z-direction at position x = y = 0)
carries the current I.
a. Calculate the magnetic field inside and outside the wire.
b. Now a homogeneous magnetic field is added, B⃗apl = B0êx. Calculate the absolute

value of the total magnetic field |B⃗tot| inside and outside of wire.

c. Where inside and outside the wire do appear points where |B⃗tot| vanishes? What
conditions for the parameters I, R, and B0 must be met for such points to exist?

Solution: a. The magnetic field produced by the current is outside the wire,

B⃗fio =
µ0I

2πρ
êϕ =

µ0I

2πρ2




−y
x

0
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and inside,

B⃗fio =
µ0I

2πR2
ρêϕ =

µ0I

2πR2




−y
x

0




b. Total field is outside the wire,

|B⃗tot| =
∣∣∣∣B0êx +

µ0I

2πρ
êϕ

∣∣∣∣ = ∣∣∣∣(B0 − µ0I

2πρ2
y

)
êx +

µ0I

2πρ2
xêy

∣∣∣∣ =
√(

B0 − µ0I

2πρ2
y

)2

+

(
µ0I

2πρ2
x

)2

.

and inside,

|B⃗tot| =
∣∣∣∣B0êx +

µ0I

2πR2
êϕ

∣∣∣∣ = ∣∣∣∣(B0 − µ0I

2πR2
y

)
êx +

µ0I

2πR2
xêy

∣∣∣∣ =
√(
B0 − µ0I

2πR2
y

)2

+

(
µ0I

2πR2
x

)2

.

c. The point outside the wire, where the absolute value vanishes, follows with,

(
B0 −

µ0I

2πρ2
y

)2

+

(
µ0I

2πρ2
x

)2

= 0

and is at,

x = 0 and ρ = y =
µ0I

2πB0
.

For such points to stay outside the wire, ρ > R, we need µ0I
2πB0

> R.
The point inside the wire, where the absolute value vanishes, follows with,

(
B0 −

µ0I

2πR2
y

)2

+

(
µ0I

2πR2
x

)2

= 0 ,

and is at,

x = 0 and ρ = y =
2πB0R2

µ0I
.

For such points to stay inside the wire, ρ < R, we again need µ0I
2πB0

> R. That is,
once the condition is met, the zero points appear in pairs outside and inside the wire.

15.1.3.12 Ex: Charge in homogeneous fields

A charge e moves in vacuum under the influence of homogeneous fields E⃗ and B⃗.
Suppose that E⃗ · B⃗ = 0 and v · B⃗ = 0. At what speed does the charge move without
acceleration? What is the absolute value of its speed if |E⃗ | = |B⃗|?

Solution: By hypothesis, the electric field E⃗ as well as the speed of the charge v
are perpendicular to the magnetic induction. The total force on the charge is,

F = eE⃗ + e

c
v × B⃗ .
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Without acceleration, due to Newton’s law, this force must disappear:

eE⃗ + e

c
v × B⃗ = 0 .

But that means, that E⃗ and v × B⃗ must be parallel. From this it follows that the
velocity must also be perpendicular to the electric field. Since,

v · E⃗ = v · B⃗ = 0 .

we can write,
v = λE⃗ × B⃗ .

where λ is a constant. Inserting into the force equation gives,

eE⃗ + e

c
λ(E⃗ × B⃗)× B⃗ = 0 .

But now we have,
(E⃗ × B⃗)× B⃗ = B⃗(E⃗ · B⃗)− E⃗(B⃗ · B⃗) .

Since E⃗ · B⃗ = 0 by hypotheses, immediately follows,

eE⃗ − e

c
λB2E⃗ = 0 .

where we introduced B ≡ |B⃗|. With this relationship follows,

λ =
c

B2 .

resp.

v =
c

B2 E⃗ × B⃗ .

For |E⃗ | = |B⃗| we obtain (E⃗ · B⃗ = 0) |E⃗ × B⃗| = B2, and therefore for this particular
case,

|v| = c .

15.1.3.13 Ex: Rain accelerated by the Earth’s magnetic field

Analyze the following train propulsion concept. The train shall be propelled by the
magnetic force of the vertical component of the Earth’s magnetic field acting on the
current-carrying axes of the train. The value of the vertical component of the Earth’s
magnetic field is 10 µT, the axes have a length of 3 m. The current is fed by the rails
and flows from one rail through the conducting wheels and axles to the other rail.
a. What must be the amplitude of the current to generate the modest force of 10 kN
on an axis?
b. What is the rate of electric energy loss due to heat production?

Solution: a. Lorentz’s force is F = Il× B⃗. Therefore, the required current is,

I =
F

lB
= 333 · 106 A .

b. ???
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15.1.3.14 Ex: Biot-Savart law

We consider an infinitely long and thin wire oriented along the z-axis and concen-
trically embraced by a hollow conductor with radius R and negligible wall thickness.
Through the conductor flows the current I0 and through the wire the current I1.
a. Calculate based on the Biot-Savart law the magnetic field produced by the inner
wire at a distance d from the z-axis.
b. Calculate the force exerted by the magnetic field of the inner wire on a surface
element of the current conductor.
c. What is the resulting pressure with I1 = −I0 = 10 A, R = 1 mm?
Help: ∫ b

a

(c2 + x2)−
3
2 dx =

[ x
c2

(c2 + x2)−
1
2

]b
a

Solution: a. Magnetic field

B⃗(r) = µ0I1
4π

∫ ∞

−∞
dz′

êz × (r− r′)
|r− r′|3 .

With r = d+ zêz and r⃗′ = z′êz

B⃗(r) = µ0I1
4π

êz × d

∫ ∞

−∞
dz′(d2 + (z − z′)2)−3/2

=
µ0I1
4π

êz × d

[
z′

d2
(d2 + z′2)−

1
2

]∞

−∞

=
µ0I1
4π

êz × d
2

d2
=
µ0I1
2πd

êϕ .

b. Force

dF = dI0dlêz × B⃗ = −I0dϕ
2π

dl
µ0I1
2πR

êρ

= − µ0I0I1
(2πR)2

dS .

c. Pressure

P =
dF

dA
= − µ0I0I1

(2πR)2
≈ 3.183Pa .

15.1.3.15 Ex: Biot-Savart law

We consider an infinitely long hollow conductor running along the z-axis with finite
wall thickness with inner radius R− ϵ and outer radius R+ ϵ. The current density j0
within the hollow conductor is constant and the total current is I0.
a. Calculate j0 from I0, ϵ, and R.
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b. Calculate, based on Ampere’s law, the magnetic field produced by the hollow con-
ductor at a distance ρ from the z-axis for R− ϵ < ρ < R+ ϵ.
c. Calculate the resulting force on a volume element of the current-carrying conduc-
tor.
d. Integrate the radial force and calculate the limit ϵ→ 0.
e. What is the resulting pressure in I0 = 10 A, R = 1 mm? Does the force act inward
or outward?

Solution: a. Current density,

I0 = j0π[(R+ ϵ)2 − (R− ϵ)2] = 4πRϵj0

j0 =
I0

4πRϵ
.

b. Total current within a cylinder of radius ρ,

I(ρ) = π
(
ρ2 − (R− ϵ)2

)
j0 .

With Ampere’s law and making use of the axial symmetry follows for the magnetic
field,

B⃗(ρ) = µ0

2πρ
I(ρ)êϕ =

µ0j0
2ρ

(
ρ2 − (R− ϵ)2

)
êϕ .

c. Force on the volume element,

dF⃗ = j0ρ dϕ dρ dz êz × B⃗(ρ)

= j0ρ dϕ dρ dz êz × êϕ
µ0j0
2ρ

(
ρ2 − (R− ϵ)2

)

= −j
2
0µ0

2
dϕ dρ dz êρ

(
ρ2 − (R− ϵ)2

)
.

d. Integrated force,

∫ R+ϵ

R−ϵ
(ρ2 − (R− ϵ)2)dρ =

[
1

3
ρ3 − ρ(R− ϵ)2

]R+ϵ

R−ϵ

= 4Rϵ2 − 4

3
ϵ3 → 4Rϵ2 .

The radially integrated force on a surface element in the limes ϵ→ 0 is,

dF⃗A = −2j20µ0Rϵ
2 dϕ dz êρ = −2j20µ0ϵ

2dS = − µ0I
2
0

8π2R2
dS .

e. Pressure,

P = − µ0I
2
0

8π2R2
≈ −1.592Pa .

The force acts inwards, because currents following the same direction attract each
other.
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15.1.3.16 Ex: Magnetic field of the Earth

The Earth’s magnetic field is approximately 0.6G at the magnetic poles and points
vertically downwards at the magnetic pole of the northern hemisphere. If the mag-
netic field were due to an electric current circulating on a ring with a radius equal to
Earth’s inner iron core (approximately 1300 km),
a. what would be the required amplitude of the current?
b. What orientation would the current need to have, the same as Earth’s rotational
motion or the opposite? Justify.

Solution: a. 15.5GA
b. As the Earth’s magnetic field points downward at the north pole, the application of
the right-hand rule tells us that the current is opposite to the Earth’s rotation.

15.1.3.17 Ex: Biot-Savart law

Consider the following device: A current I runs through two identical infinitely thin
rings with radius R. The common center of the two rings is at the origin of the
coordinates. One ring lies in the xy-plane and the other on the xz-plane.
a. Parametrize the current density j in spherical coordinates.
b. Show that the B⃗ field resulting from this device at source is given by:

B⃗(0) = −µ0I

2

1

R
êz −

µ0I

2

1

R
êy .

Help: A δ-function in spherical coordinates for the r variable must be multiplied by
1
r ; a δ-function in spherical coordinates for the ϕ variable must be multiplied by π

2 .

Solution: a. Current density in spherical coordinates:

j = I
[
1
r δ(r −R)δ(θ − π

2 )êϕ +
1
r δ(r −R)

π

2
δ(ϕ)êϕ − 1

r δ(r −R)π2 δ(ϕ− π)êϕ
]
.
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b. Following the law of Biot-Savart:

B⃗(r) = µ0

4π

∫
V ′
∇× j(r′)

|r− r′|dV
′ =

µ0

4π

∫
V ′

(r− r′)× j(r′)

|r− r′|3 dV ′

=
µ0

4π

[∫
V ′
dV ′

π

2

1

r′
δ(r′ −R)δ(θ′ − π

2
)
(r− r′)× êϕ
|r− r′|3 +

∫
V ′
dV ′

π

2

1

r′
δ(r′ −R)δ(ϕ′) (r− r′)× êθ

|r− r′|3

−
∫
V ′
dV ′

π

2

1

r′
δ(r′ −R)δ(ϕ′ − π) (r− r′)× êθ

|r− r′|3
]

=
µ0

4π



∫
V ′
dV ′

1

r′
δ(r′ −R)δ(θ′ − π

2
)



0

0

0

−

r′ sin θ′ cosϕ′

r′ sin θ′ sinϕ′

r′ cos θ′


×


− sinϕ′

cosϕ′

0


∣∣∣∣∣∣∣∣∣


0

0

0

−

r′ sin θ′ cosϕ′

r′ sin θ′ sinϕ′

r′ cos θ′


∣∣∣∣∣∣∣∣∣
3

+

∫
V ′
dV ′

π

2

1

r′
δ(r′ −R)δ(ϕ′)



0

0

0

−

r′ sin θ′ cosϕ′

r′ sin θ′ sinϕ′

r′ cos θ′


×


cos θ′ cosϕ′

cos θ′ sinϕ′

− sin θ′


∣∣∣∣∣∣∣∣∣


0

0

0

−

r′ sin θ′ cosϕ′

r′ sin θ′ sinϕ′

r′ cos θ′


∣∣∣∣∣∣∣∣∣
3

−
∫
V ′
dV ′

π

2

1

r′
δ(r′ −R)δ(ϕ′ − π)



0

0

0

−

r′ sin θ′ cosϕ′

r′ sin θ′ sinϕ′

r′ cos θ′


×


cos θ′ cosϕ′

cos θ′ sinϕ′

− sin θ′


∣∣∣∣∣∣∣∣∣


0

0

0

−

r′ sin θ′ cosϕ′

r′ sin θ′ sinϕ′

r′ cos θ′


∣∣∣∣∣∣∣∣∣
3


.
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In the next step we transform the volume element into spherical coordinates and
evaluate the δ-function:

B⃗(r) =
µ0

4π

[∫ 2π

0
R

2
sin

(
θ
′
=

π

2

) 1

R
dϕ

′




−R cosϕ′

−R sinϕ′

0


 ×




− sinϕ′

cosϕ′

0




[√
R2 cosϕ′ + R2 sinϕ′

]3 +

∫ π

0
R

2
sin(θ

′
)
π

2

1

R
dθ

′




−R sin θ′

0

−R cos θ′


 ×




cos θ′

0

− sin θ′




[√
R2 cos θ′ + R2 sin θ′

]3

−
∫ π

0
R

2
sin(θ

′
)
π

2

1

R
dθ

′




+R sin θ′

0

−R cos θ′


 ×




− cos θ′

0

− sin θ′




[√
R2 cos θ′ + R2 sin θ′

]3

]

=
µ0

4π
R

[∫ 2π

0
dϕ

′




0

0

−R cos2 ϕ′ − R sin2 ϕ′




R3
+

∫ π

0

π

2
dϕ

′




0

−R cos2 θ′ − R sin2 θ′

0




R3
−
∫ π

0

π

2
dϕ

′




0

+R cos2 θ′ + R sin2 θ′

0




R3

]

=
µ0

4π
R

[
2π

R

R3
(−êz) + 2

π

2

R

R3
(−êy) − 2

π

2

R

R3
(êy)

]
.

15.2 Properties of the magnetic field

15.2.1 Field lines and magnetic flux

The magnetic flux is introduced in the same way as the electric flux,

ΨM ≡
∫

S
B⃗ · dS . (15.12)

Resolve the Exc. 15.2.4.1.

15.2.2 Divergence of the magnetic field and Gauß’s law

Let us compute the divergence of a magnetic field given by Biot-Savart’s law 2,

∇r · B⃗ =
µ0

4π

∫

V
[∇r × j(r′)] · r− r′

|r− r′|3 dV
′ − µ0

4π

∫

V
j(r′) ·

[
∇r ×

r− r′

|r− r′|3
]
dV ′ = 0 ,

(15.13)
since, as we have already shown, the rotation of a Coulombian field is zero. Therefore,

∇ · B⃗ = 0 . (15.14)

With Gauß’ law we can derive the integral version of this statement,

∮

∂V
B⃗ · dS = 0 . (15.15)

Comparing this equation with the corresponding electrostatic equation (13.13), we de-
duce the following interpretation: The total magnetic flux ΨM across a closed surface

2Using the rule ∇ · (E⃗ × B⃗) = (∇× E⃗) · B⃗ − E⃗ · (∇× B⃗).
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must vanish and can not be changed by hypothetical magnetic charges, i.e. magnetic
charges do not exist !

A direct consequence of this law is that we can introduce the concept of the
vector potential, which is fundamental in the sense that it allows us to formulate
electrodynamics completely in terms of potentials. We will dedicate the whole next
section to magnetic potentials.

15.2.3 Rotation of the magnetic field and Ampère’s law

Let us now calculate the rotation of the magnetic field given by Biot-Savart’s law 3,

∇r × B⃗ =
µ0

4π

∫

V
−[j(r′) · ∇r]

r− r′

|r− r′|3 dV
′ +

µ0

4π

∫

V
j(r′)

(
∇r ·

r− r′

|r− r′|3
)
dV ′

(15.16)

=
µ0

4π

∫

V
[j(r′) · ∇r′ ]

r− r′

|r− r′|3 dV
′ +

µ0

4π

∫

V
j(r′)4πδ(r− r′)dV ′

=
µ0

4π

∫

V
[j(r′) · ∇r′ ]

r− r′

|r− r′|3 dV
′ + µ0j(r) . (15.17)

Considering the x-component,

(∇r × B⃗)x =
µ0

4π

∫

V
j(r′) · ∇r′

x− x′
|r− r′|3 + µ0jx(r)

= −µ0

4π

∮

∂V
j(r′)

x− x′
|r− r′|3 dS

′ +
µ0

4π

∫

V

x− x′
|r− r′|3∇r′ · j(r

′)dV ′ + µ0jx(r) .

The surface integral vanishes when the volume goes to infinity. On the other hand,
∇ · j = −ϱ̇ = 0. With this, we obtain,

∇× B⃗ = µ0j . (15.18)

The results (15.14) and (15.18) represent parts of Maxwell’s first and fourth equa-
tions. The equation (15.18) is also called Ampère’s law. The integral version can be
obtained from Stokes’ law, ∮

C
B⃗ · dl = µ0I . (15.19)

The interpretation of Ampere’s law is, that every current produces a rotational mag-
netic field, that is, a field with closed field lines. Measuring the magnetic field along
an closed path we can evaluate the current passing through the surface delimited by
the path.

Ampère’s law has many applications. Let’s discuss some in the next.

Example 70 (Magnetic field of a straight current-carrying wire): Let us
re-evaluate the example 68 using Ampere’s law,∮

B⃗ · dl = B

∫ 2π

0

ρdϕ = B2πρ = µ0I .

3Using the rule ∇× (E⃗ × B⃗) = (B⃗ · ∇)E⃗ − (E⃗ · ∇)B⃗ + E⃗(∇ · B⃗)− B⃗(∇ · E⃗).
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Hence,

B =
µ0I

2πρ
.

Example 71 (Ampère’s law): We can use Ampère’s law to show that a locally
uniform magnetic field, such as the one shown in Fig. 15.9, is impossible. Let
us have a look at the rectangular curve shown by the dashed lines. With the
chosen geometry, the curve does not include current,

µ0I = 0 .

On the other hand, the magnetic field accumulated along the curve is,∮
C

B⃗ · dl ̸= 0 .

This is a contradiction. Thus, this example shows that, in the absence of cur-

Figure 15.9: Impossibility of a localized homogeneous magnetic field.

rents, any magnetic field is conservative. We could then define a scalar potential

whose gradient would be the magnetic field, but this potential must be simply

connected, i.e. not be traversed by currents, which limits the practical use of

such a potential.

Example 72 (Field of a solenoid): A solenoid is a very long coil (the distance
between two consecutive turns is much smaller than the radius and the total
length l of the coil) carrying a current I (see diagram in Fig. 15.10). Ampère’s
law can be used to easily calculate the magnetic field inside a solenoid composed
of N turns,

Bdl =
∮
C
B⃗ · dr = µ0I dN .

Hence,

B = µ0I
dN

dl
.

Resolve the Excs. 15.2.4.2 to 15.2.4.9. In the Excs. 15.2.4.10 to 15.2.4.12 we apply
the Biot-Savart law to Helmholtz coils and anti- Helmholtz coils.
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Figure 15.10: Scheme of a solenoid with loop density dN/dl.

15.2.4 Exercises

15.2.4.1 Ex: Magnetic flux

A long solenoid has n turns per unit length, radius R1, and carries a current I. A
circular coil with radius R2 and N turns is coaxial to the solenoid and is equidistant
from its ends.
a. Determine the magnetic flux through the coil if R2 < R1.
b. Determine the magnetic flux through the coil if R2 > R1.

Solution: a. ϕm = µ0nINπR
2
1.

b. ϕm = µ0nINπR
2
2.

15.2.4.2 Ex: Magnetic field of a conducting ring and Ampère’s law

A ring-shaped conducting loop lies in the yz-plane; the loop’s symmetry axis is
the x-axis. It is traversed by a current I generating on the axis the field Bx =
1
2µ0IR

2(x2 +R2)−3/2.

a. Calculate the line integral
∫
B⃗ · ds along the x-axis between x = −L and x = +L.

b. Show that for L→∞ the line integral converges to µ0I.
Help: This result can also be obtained with Ampère’s law, when we close the inte-
gration path through a semicircle with radius L, for which holds B ≃ 0, when L is
very large.

Solution: The line integral is,

∫
B⃗ · ds = µ0I

2

∫ L

−L

R2êx
(x2 +R2)3/2

· ds = µ0I

2

∫ L

−L

R2

(x2 +R2)3/2
dx

=
µ0I

2

x√
(x2 +R2)

∣∣∣∣∣

L

−L
=
µ0I

2

2L√
L2 +R2

.

For large distances L, ∫
B⃗ · ds −→ µ0I .

For very large L we can close the integration path,

lim
L→∞

∫
B⃗ · ds ≃

∮
B⃗ · ds = µ0I ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_FluxoMagnetico01.pdf
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and obtain Ampere’s law.

15.2.4.3 Ex: Biot-Savart’s and Ampère’s laws

a. Calculate the magnetic field generated by a constant current I on a straight con-
ductor piece of length L.
b. Show that for an infinitely long conductor the Biot-Savart law becomes Ampere’s
law.

Solution: a. Following the Biot-Savart,

B⃗(r) = µ0

4π

∫

V ′

(r− r′)× j(r′)
|r− r′|3 d3r′ .

With the current wire j(r) = Iêzδ(x)δ(y)θ(−L/2 < z < L/2) follows,

B⃗(r) = µ0I

4π
(yêx − xêy)

∫
1

√
ρ2 + (z − z′)23

dz′ =
µ0I

4π
(yêx − xêy)

z′ − z
ρ2
√
ρ2 + (z − z′)2

∣∣∣∣∣

L/2

−L/2

=
µ0I

4π

yêx − xêy
ρ2

[
L/2− z√

ρ2 + (z − L/2)2
+

L/2 + z√
ρ2 + (z + L/2)2

]
.

For long conductor pieces L→∞,

B⃗(r) −→ µ0I

2π

yêx − xêy
ρ2

.

The absolute value is now, |B⃗(r)| = µ0I
2πρ . The magnetic field follows as rotation from

the potential vector, B⃗(r) = ∇×A(r) = ∇× −µ0I
4π

êz

ρ2 .

15.2.4.4 Ex: Solenoid

a. To determine the number of turns of a solenoid with diameter D = 4 cm and length
L = 10 cm, an experimenter passes a current I = 1A through the coil. He measures
the magnetic field B = 10mT. How many windings are there?
b. To confirm it measures the diameter of the copper wire (d = 1mm) and ohmic
resistance finding R = 2Ω. On the internet he finds the resistivity of copper ρ =
1.7 · 10−8 Ωm.

Solution: a. The field is

B(ρ) = µ0
N

L
I .

Hence, N = 796 .
b. The resistance is,

R = ρ
L

A
= ρ

N2π(D/2)

π(d/2)2
= 2 Ω .

Hence, N = 735.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere02.pdf
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15.2.4.5 Ex: Toroidal coil

A coil with N turns is arranged in a toroidal form with rotational symmetry around
z-axis and has its center at the origin of the coordinates. The coil is densely wound
and traversed by a current I (see scheme).

a. Calculate the êϕ-component of the B⃗-field for z = 0 (xy-plane) as a function of
distance ρ from the origin.
b. Determine the êϕ-component of the B⃗-field in the entire inner space outside the
toroid. Draw the êϕ component as a function of ρ.
c. What should be the value of b, so that Bϕ is constant within the toroid with an
accuracy of α = 1%, when a = 1 cm? [That is: Bϕ(b− a)− Bϕ(b+ a) < α · Bϕ(b)]

a b

I N

�

Figure 15.11: Toroidal coil.

Solution: a. Following Stokes’ law:
∮

C

B⃗ds = Nµ0

∫
j(r)df

Bϕ2πρ = Nµ0I

⇒ Bϕ =
Nµ0I

2πρ
para (b− a) ≤ ρ ≤ (b+ a) ,

where the path C is chosen on a circle around the symmetry axis.
b. Outside the torus we have Bϕ = 0 in the entire space. Scheme of the Bϕ-component:
1
ρ : hyperbolic cut between b− a and b+ a.

c. a = 0.01 m and we need: Bϕ(b− a)− Bϕ(b+ a) < αBϕ(b), hence,
Nµ0I

2π

(
1

b− a −
1

b+ a

)
< 0.01

Nµ0I

2π

1

b

1

b− a −
1

b+ a
< α

1

b

⇒ 0 < b2 − 2ab

α
− a2

⇒ b > 200.005 cm .

15.2.4.6 Ex: Toroidal coil

A toroidal coil tightly wound with 1000 turns has an inner radius of 1.0 cm, an outer
radius of 2.0 cm, carries a current of 1.5A. The torus is centered at the origin with

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere04.pdf
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the centers of the individual turns in the z = 0 plane. What is the intensity of the
magnetic field in the z = 0 plane a distance of (a) 1.1 cm and (b) 1.5 cm away from
the origin?

Solution: a. B(1.1 cm) = 27.3mT.
b. B(1.5 cm) = 20.0mT

15.2.4.7 Ex: Inhomogeneous current density

The current density on a straight wire of infinite length with the radius R grows lin-
early from the center outward, j(r) = j0rêz, where êz shows in the direction of the
wire and the total current going through the wire is I.
a. Calculate j0 as a function of I.
b. Calculate, using Ampere’s law, the magnetic field inside and outside the wire.
c. Make a graph of the normalized magnetic field, B(r)/BR, versus r/R, where
BR ≡ µ0I/2πR.

Solution: a. The integral of the current density over the surface shall give the total
current:

2π∫

0

rdϕ

R∫

0

j0rdr =
2π

3
j0R

3 = I .

Hence, j0 = 3
2π

I
R3 .

b. Using Ampère’s law we calculate for r < R:

∮
B⃗dl = 2πrB(r) = µ0

∫
j · dS

= µ0
3

2π

I

R3

2π∫

0

r′dϕ

r∫

0

r′dr = µ0
3

2π

I

R3
2π
r3

3
= µ0I

r3

R3
.

Hence,

B(r) = µ0

2π
I
r2

R3
.

In the case r > R, we find again B(r) = µ0

2π
I
r .

c. The normalized magnetic field starts growing quadratically up to the edge of the

conductor, B(r)BR
= r2

R2 , where it adopts the value 1. Then it falls off like, B(r)BR
= R

r .

15.2.4.8 Ex: Magnetic field in a coaxial cable

A coaxial cable consists of an inner conductor with radius R1 and a cylindrical outer
conductor with inner radius R2 and outer radius R3. In both conductors flows the
same current I in opposite directions. The current densities in each conductor are
homogeneous.
a. Calculate the current densities in each conductor.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere06.pdf
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0

Figure 15.12: Magnetic field.

b. Calculate the magnetic field B(r) for r ≤ R1,
c. for R1 ≤ r ≤ R2,
d. for R2 ≤ r ≤ R3,
e. for R3 ≤ r.

Figure 15.13: Magnetic field in a coaxial cable.

Solution: a. Current densities in the inner and outer conductors are given by,

ji =
I

πR2
1

and je =
I

π(R2
3 −R2

2)
.

b. With
∮
B⃗ · dl = µ0

∫
j · dS segue para r ≤ R1,

2πrBb(r) = µ0jiπr
2 = µ0I

r2

R2
1

Bb(r) =
µ0I

2πR2
1

r .

c. For R1 ≤ r ≤ R2 we get,

2πrBc(r) = µ0jiπR
2
1 = µ0I

Bc(r) =
µ0I

2πr
.
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d. For R2 ≤ r ≤ R3 we get,

2πrBd(r) = µ0jiπR
2
1 − µ0jaπ(r

2 −R2
2) = µ0I − µ0I

r2 −R2
2

R2
3 −R2

2

B(r)d =
µ0I

2πr

(
1− r2 −R2

2

R2
3 −R2

2

)
.

e. For R3 ≤ r we get,

2πrBe(r) = µ0jiπR
2 − µ0jeπ(R

2
3 −R2

2) = 0

Be(r) = 0 .

Note that the magnetic field is continuous at the interfaces: Bb(R1) = Bc(R1),
Bc(R2) = Bd(R2), and Bd(R3) = Be(R3).

15.2.4.9 Ex: Magnetic field of a current conductor

In a straight, infinitely long conductor with circular cross-sectional area with radius
R runs a current I with a uniform current density distribution. How are the magnetic
induction field lines B⃗?
a. Calculate B⃗ inside and outside the conductor.
b. Prepare a scheme of the profile B(r) ≡ |B⃗(r)|, where r be the distance from the
symmetry axis of the conductor in a direction perpendicular to it.

Solution: In Cartesian coordinates j = (0, 0, I/(πR2)). For symmetry reasons the

B⃗-field lines follow circles in the planes perpendicular to the conductor symmetry axis.
a. We have ∇ × B⃗ = 4πj/c. We now integrate over a circular area S with radius r
in a plane perpendicular to the symmetry axis of the conductor. The symmetry axis
crosses the center of the area,

∫

S

(∇× B⃗) · dS =
4π

c

∫

S

j · dS

=
4π

c

I

πR2

{
πr2 ser ≤ R
πR2 ser > R

.

On the other hand, Stokes’s law shows,
∫

S

(∇× B⃗) · dS =

∫

∂S

B⃗ · dS = 2πrB(r)

This gives,

B(r) = 2I

c

{
r
R2 ser ≤ R
1
r ser > R .

b. Is trivial.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_LeiAmpere08.pdf
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15.2.4.10 Ex: Helmholtz and anti-Helmholtz coils

a. Show that the magnetic field of a round current loop conductor with radius R on
the symmetry axis is given by,

B⃗(z) = −µ0I

2

R2

√
R2 + z2

3 êz .

b. Now consider two identical parallel loops placed on the symmetry axis with distance
d = R. The loops are traversed by currents of equal amplitude. What is the behavior
of the magnetic field on the symmetry axis for (i) equal directions of currents (ii)
opposite directions? Choosing as the origin the center between the two coils, expands
the magnetic field to second order in a Taylor series around the origin.

Solution: a. The current density can be parametrized by j(r) = Iδ(ρ − R)δ(z)êϕ.
The vector potential is,

A(r) =
µ0

4π

∫
j(r′)
|r− r′|d

3r′ .

Following the Biot-Savart law the magnetic field is,

B⃗(r) = µ0

4π

∫
∇× j(r′)

|r− r′|d
3r′ =

µ0

4π

∫
d3r′

(r− r′)× j(r′)

|r− r′|3

=
µ0I

4π

∫
ρ′dρ′dϕ′dz′

δ(ρ′ −R)δ(z′)(r− r′)× êϕ′

|r− r′|3

=
µ0I

4π

∫
ρ′dρ′dϕ′dz′

δ(ρ′ −R)δ(z′)


ρ cosϕ− ρ′ cosϕ′

ρ sinϕ− ρ′ sinϕ′

z − z′

×

− sinϕ′

cosϕ′

0


√

(ρ cosϕ− ρ′ cosϕ′)2 + (ρ sinϕ− ρ′ sinϕ′)2 + (z − z′)23

=
µ0I

4π

∫
Rdϕ′


−z cosϕ′

−z sinϕ′

(ρ cosϕ−R cosϕ′) cosϕ′ + (ρ sinϕ−R sinϕ′) sinϕ′


√

(ρ cosϕ−R cosϕ′)2 + (ρ sinϕ−R sinϕ′)2 + z2
3 .

Along the axis ρ = 0,

B⃗(z) = µ0I

4π

∫
Rdϕ′

1
√
R2 + z2

3


−z cosϕ′

−z sinϕ′

−R

 =
µ0I

4π
2πR

1
√
R2 + z2

3


0

0

−R


= −µ0I

2

R2

√
R2 + z2

3 êz = −µ0I

2

R2

√
R2 + z2

3 êz .

b. For two conductive loops distant by d = R,

B⃗t(z) = B⃗(z−R/2)±B⃗(z+R/2) = −µ0I

2
êz

(
R2√

R2 + (z −R/2)23
± R2√

R2 + (z +R/2)2
3

)
.
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A Taylor expansion for identical, respectively, opposite currents gives,

B⃗t+(z) = −
8

5
√
5

µ0Iêz
R

[1 +O(z3)]

B⃗t−(z) = −
48

25
√
5

µ0Iêz
R2

[z +O(z3)] .

Alternatively, the formula can be derived from the magnetic field of a current element,

dB⃗ =
µ0I

4π

dl× (r− r′)
|r− r′|3

dBz = dB sinα = dB R√
R2 + z2

Bz =
µ0I

4π

∮
∣∣∣d⃗l × (r− r′)

∣∣∣
|r− r′|3

R√
R2 + z2

=
µ0I

4π
2πR

R
√
R2 + z2

3 =
µ0I

2

R2

√
R2 + z2

3 .

15.2.4.11 Ex: Helmholtz coils

Two identical circular coils of radius R and negligible thickness are mounted with
their axes coinciding with the z-axis, as shown in the figure below. Their centers are
separated by a distance d, with the midpoint P coinciding with the origin of the z-axis.
The coils carry electric currents of the same intensity I, and both counterclockwise.
a. Use the Biot-Savart law to show that the magnetic field B(z) along the z-axis is,

B⃗t+(z) = −
µ0I

2
êz

(
R2

√
R2 + (z −R/2)23

± R2

√
R2 + (z +R/2)2

3

)
.

b. Assuming that the spacing d is equal to the radius R of the coils, show that at
point P the following equalities are valid: dB/dz = 0 and d2B/dz2 = 0.
c. Looking at the graphs below, which curve describes the magnetic field along the
z-axis in the configuration of item (b)? Justify!
d. Assuming that the current in the upper coil is reversed, calculate the new value of
the magnetic field at point P.

Solution: a. The magnetic field generated at a position r by a current element dl
located at position r′ is,

dB⃗(r) = µ0I

4π

d⃗l × (r− r′)
|r− r′|3 .

Considering a circular coil located in the xz-plane and integrating with r = (0, 0, z)

and r′ = R(cosϕ, sinϕ, 0) and dℓ⃗ = Rdϕ(sinϕ,− cosϕ, 0),

Bz =
µ0I

4π

∮
(d⃗l × (r− r′))z
|r− r′|3 =

µ0I

4π

∫ 2π

0

−R2dϕ

|r− r′|3 =
µ0I

2

R2

√
R2 + z2

3 .
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Figure 15.14: (code) Geometry and magnetic field amplitude of a pair of Helmholtz coils.

Now, for two coils distant by d = R,

B⃗t(z) = B⃗(z−R/2)±B⃗(z+R/2) = −
µ0I

2
êz

(
R2

√
R2 + (z −R/2)23

± R2

√
R2 + (z +R/2)2

3

)
.

b. Taylor expansion for equal and opposite current directions,

B⃗t+(z) = −
8

5
√
5

µ0Iêz
R

[1 +O(z3)]

B⃗t−(z) = −
48

25
√
5

µ0Iêz
R2

[z +O(z3)] .

It is obvious that for equal directions the first and second derivatives of the field dis-
appear.
c. Curve (3) corresponds to the Helmholtz configuration, since this curve satisfies
dB/dz = 0 = d2B/dz2 in the center. Curve (1) describes the anti-Helmholtz configu-
ration, since this curve is linear in the center.
d. The magnetic field at point P for anti-Helmholtz configuration is 0 according to the
formula obtained in item (a) or in the Taylor expansion in item (b).

15.2.4.12 Ex: Helmholtz coils

A pair of identical coils, each with a radius of 30 cm, is separated by a distance equal to
their radii. Called Helmholtz coils, they are coaxial and carry equal currents oriented
such that their axial fields point into the same z-direction. A feature of Helmholtz
coils is, that the resulting magnetic field in the region between the coils is quite uni-
form. Assume that the current in each one is 15A and that there are 250 turns for
each coil. Using a spreadsheet, calculate and plot the magnetic field along the z-axis
for −30 cm < z < +30 cm. Within which z-range does the field vary by less than
20%?

Solution: See the figure.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Magnetostatics_Helmholtz.m
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Figure 15.15: Numerical integration of the Biot-Savart law.

15.3 The magnetic vector potential

The fact that the divergence of the magnetic field vanishes, ∇ · B⃗ = 0, allows us to
introduce a vector field A called vector potential of which the magnetic field is the
rotation,

B⃗ = ∇×A . (15.20)

15.3.1 The Laplace and Poisson equations

Ampère’s law says,

µ0j = ∇× B⃗ = ∇× (∇×A) = ∇(∇ ·A)−∇2A . (15.21)

Note that, just as we can add a constant to the electrostatic potential without
changing the electric field, we have the freedom to add to the vector potential the
gradient of a scalar field,

∇×A = ∇× (A+∇χ) , (15.22)

since the rotation of a gradient always vanishes. This freedom allows us to impose
other conditions on this scalar field χ(r). One of them is called the Coulomb gauge,

∇ ·A ≡ 0 . (15.23)

To show that it is always possible to choose a function χ such, that the potential
vector A+∇χ satisfies the condition (15.23) and at the same time produces the same
magnetic field (15.22), we just insert this potential into Eq. (15.23) and find a formal
solution of the following Poisson equation,

∇2χ = −∇ ·A . (15.24)
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is simply the Coulomb potential [see (13.33)],

χ(r) =
1

4π

∫

V

∇r′ ·A(r′)
|r− r′| dV ′ , (15.25)

supposing that ∇ ·A r→∞−→ 0.

Within the Coulomb gauge the Eq. (15.21) also adopts the simple form of a Poisson
equation,

∇2A = −µ0j , (15.26)

which we can solve,

A(r) =
µ0

4π

∫
j(r′)
|r− r′|d

3r′ . (15.27)

This relationship is the equivalent of the electrostatic potential (13.35). We verify
that we recover Biot-Savart’s law (15.8) via,

∇r ×A(r) =
µ0

4π

∫

V
j(r′)× |r− r′|

|r− r′|3 dV
′ . (15.28)

Example 73 (Vector potential of a one-dimensional current): As an
example we consider a one-dimensional current, j(r′) = Iδ2(r′ − s⊥)ê

′
j ,

A(r) =
µ0I

4π

∫
C

ds′

|r− r′| and B⃗(r) = µ0I

4π

∫
C

ds′ × |r− r′|
|r− r′|3 .

For a current element oriented along the z-axis,

A(r) =
µ0I

4π

∫ a

0

êzdz
′√

ρ2 + (z − z′)2
=
µ0I

4π
êz ln

−(z − a) +
√
r2 + (z − a)2

−z +
√
r2 + z2

.

The scheme 15.16 summarizes the fundamental laws of magnetostatics.

Figure 15.16: Organization chart for the fundamental laws of magnetostatics. Note, that
there is no simple expression to calculate A from B⃗.
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15.3.2 Magnetostatic boundary conditions

In order to find the magnetostatic boundary conditions imposed by current-carrying
interfaces, we proceed in the same way as in the electrostatic case. First, we consider
a ’pill box’, as schematized in Fig. 15.17. From

∮
B⃗ · dS = 0 , (15.29)

we find for the component of the magnetic field perpendicular to the interface,

B⊥top = B⊥down . (15.30)

Figure 15.17: Illustration of the pillbox-shaped volume delimited by the surface A cutting
through a small part of the interface. Also shown are paths on the interface being perpen-
dicular (l1) or parallel (l2) to the surface current κ.

We now consider a closed loop in the plane defined by the magnetic field and
perpendicular to the current. From

∮
B⃗ · dl2 = (B(2)top − B(2)bottom)l2 = µ0I = µ0κl2 , (15.31)

where we defined κ ≡ I/l2 as the surface current density, that is, the current dI
flowing through a ribbon of width dl2 sticking to the interface. We find,

B(2)top − B(2)bottom = µ0κ . (15.32)

Thus, the component of B⃗ parallel to the surface but perpendicular to the current is
discontinuous by a value µ0κ.

Similarly, a closed loop in the direction parallel to the current shows that the
parallel component of B⃗ is continuous,

∮
B⃗ · dl1 = (B(1)top − B(1)bottom)l1 = 0 . (15.33)

In summary,

B⃗top − B⃗bottom = B⃗∥top − B⃗∥bottom = µ0κ⃗× n̂ . (15.34)

In the same way as the scalar potential in electrostatics, the potential vector
remains continuous through the interface,

Atop = Abottom , (15.35)
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because ∇ ·A = 0 ensures that the normal component is continuous and,

∮
A · dl =

∫
∇×A · dS =

∫
B⃗ · dS = ΨM , (15.36)

means that the tangential components are continuous (the flux through an Amperian
loop of negligible thickness vanishes). On the other hand, the derivative of A inherits

the discontinuity of B⃗:
∂Atop

∂n
− ∂Abottom

∂n
= −µ0κ⃗ , (15.37)

where n is the coordinate perpendicular to the surface.

Example 74 (Proof of the discontinuity of the derivative of the vector
potential): To prove the statement (15.37) we consider a surface current in the
direction κ⃗ = κêx within an interface located in the x-y-plane. So,

B⃗top − B⃗bottom =


0

µ0κ

0

 =


∂yA

(z)
top − ∂zA(y)

top

∂zA
(x)
top − ∂xA(z)

top

∂xA
(y)
top − ∂yA(x)

top

−

∂yA

(z)
bottom − ∂zA

(y)
bottom

∂zA
(x)
bottom − ∂xA

(z)
bottom

∂xA
(y)
bottom − ∂yA

(x)
bottom

 .

Now,

0 = ∂yA
(z)
top − ∂yA(z)

bottom = ∂zA
(y)
top − ∂zA(y)

bottom = ∂xA
(y)
top − ∂xA(y)

bottom = ∂yA
(x)
top − ∂yA(x)

bottom

µ0κx = ∂zA
(x)
top − ∂zA(x)

bottom − ∂xA
(z)
top + ∂xA

(z)
bottom .

Assuming a uniform field, only the derivative in z can contribute, such that,

µ0κx = ∂zA
(x)
top − ∂zA(x)

bottom .

15.3.3 Exercises

15.3.3.1 Ex: Vector potential and electric field of a rotating charged
sphere

On the surface of a hollow sphere with radius R be evenly distributed the charge Q.
The sphere rotates at constant angular velocity ω⃗ around one of its diameters.
a. Determine the current density generated by the motion j(r).

b. Derive the components of the potential vector A(r) and the magnetic field B⃗(r).

Solution: a. The charge density is,

ρ(r) =
Q

4πR2
δ(r −R) ,

giving the current density,

j(r) = ρ(r)v(r) = ρ(r)[ω⃗ × r]
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Now, we have at the surface,

r = Rêr = R(sin θ cosϕ, sin θ sinϕ, cos θ) .

With ω⃗ = ωêz = ω(0, 0, 1) we obtain,

êz × êr = (− sin θ sinϕ, sin θ cosϕ, 0) = sin θ(− sinϕ, cosϕ, 0) = sin θêϕ

and therefore the current density,

j(r) =
Qω

4πR
sin θδ(r −R)êϕ

b. For the potential vector we have,

A(r) =
µ0

4π

∫
j(r′)
|r− r′|d

3r′ =
Q

(4π)2R2
ω⃗ ×

∫
d3r ′δ(r′ −R) r′

|r− r′| .

For the integration we let r go towards z (in this case, the direction of ω⃗ is no longer

the z-axis). Now we have, |r−r′| =
√
r2 + r′2 − 2rr′ cos θ′ and r′ = r′(sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′).

A integration over ϕ′ then gives for the x and y components the value 0. Denoting
cos′ by u′ and replacing êz, we get again, after integration for êr,

A(r) =
2πQ

(4π)2R2
(ω⃗ × êr)

∫
r′3δ(r′ −R)

∫ +1

−1

u′du′√
r2 + r′2 − 2rr′u′

dr′

=
µ0QR

8π
(ω⃗ × êr)

∫ +1

−1

u′du′√
r2 +R2 − 2rRu′

.

The integral can be resolved by partial integration,

I =

∫ +1

−1

u′du′√
r2 +R2 − 2rRu′

= − 1

rR

[
u′
√
r2 +R2 − 2rRu′

]+1

−1
+

1

rR

∫ +1

−1

√
r2 +R2 − 2rRu′

= − 1

rR
(|r −R|+ |r +R|) + 1

rR

[
−2

3

1

2rR
(r2 +R2 − 2rRu′)3/2

]+1

−1

= − 1

rR
(|r −R|+ |r +R|)− 1

3r2R2
(|r −R|3 − |r +R|3) .

For r > R we get from this I = 2R
3r2 , while for r < R we find I = 2r

3R2 . With this we
get for the potential vector,

A(r) =
µ0QR

12π
(ω⃗ × êr)

{
r
R2 if r < R
R
r2 se r > R

=
µ0QR

12π
ω sin θêϕ

{
r
R2 if r < R
R
r2 se r > R

where we use again that ω⃗ = ωêz and êz × êr = sin θêϕ. Obviously, A has only the
component ϕ.
b. Now the magnetic induction is B⃗ = ∇×A. Using the rotation in spherical coordi-
nates (12.80), we get immediately,

B⃗ = êr

[
1

r sin θ

∂Aϕ sin θ

∂θ

]
−êθ

[
1

r
Aϕ +

∂Aϕ
∂r

]
=
µ0Qω

6πR

{
(êr cos θ − êθ sin θ) if r < R
R3

r3 (êr cos θ +
1
2 êθ sin θ) if r > R

With êr cos θ− êθ sin θ = êz we find that, curiously, the magnetic field is homogeneous
within the layer.
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15.3.3.2 Ex: Magnetic field of a rotating spherical layer with spherical
harmonics

Calculate the vector potential, magnetic field and magnetization of a charged rotating
spherical layer using spherical harmonics.

Solution: We can express the current density in Cartesian coordinates,

jx = −vϕ sinϕ = − eω
4πre

δ(r − re) sin θ sinϕ
jy = +vϕ cosϕ = + eω

4πre
δ(r − re) sin θ cosϕ

jz = 0 .

Now we have,

Y1±1(θ, ϕ) = ∓
√

3
8π sin θ(cosϕ± i sinϕ)

Y11 + Y1−1 = −2ı
√

3
8π sin θ sinϕ

Y11 − Y1−1 = −2
√

3
8π sin θ cosϕ ,

that is,

jx =
eω

4πre
δ(r − re)

(
+

1

2i

√
8π
3

)
(Y11 + Y1−1)

jy =
eω

4πre
δ(r − re)

(
−1

2

√
8π
3

)
(Y11 − Y1−1) .

Now we have,

A =
1

c

∫
dτ ′

j(r′)
|r− r′|

and also,
1

|r− r′| =
∑

lm

4π

2l + 1

rl<
rl+1
>

Ylm
∗(θ′, ϕ′)Ylm(θ, ϕ) .

The current density is limited to the surface of the sphere. For the calculation of the
vector potential in outer space we obtain, r< = r′ and r> = r. With that we get,Ax
Ay

 =

 1
2i

√
8π
3

− 1
2

√
8π
3

 eω

4πrec

∑
lm

4π

2l + 1
Ylm(θ, ϕ) ·

∫
δ(r′ − re)r′l+2

Y ∗lm(θ′, ϕ′)

Y11 + Y1−1

Y11 − Y1−1

 dr′dΩ′

=
eω

3c

(
r

re

)2 1
2i

√
8π
3
(Y11 + Y1−1)

− 1
2

√
8π
3
(Y11 − Y1−1)

.

So,

Ax = −eω
3c

(re
r

)2
sin θ sinϕ

Ay = +
eω

3c

(re
r

)2
sin θ cosϕ

Az = 0
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that is,

A = Aϕêϕ with Aϕ =
eω

3c

(re
r

)2
sin θ .

Now we have B⃗ = ∇×A. We get immediately,

Br =
1

r sin θ

[
∂

∂θ
(sin θAϕ)

]
=
eωr2e
3cr3

2 cos θ

Bθ = −
1

r

[
∂

∂r
(rAϕ)

]
=
eωr2e
3cr3

sin θ

Bϕ = 0 .

Comparing with Exc. 15.4.2.19(d) we get,

M⃗ =
eωr2e
3c

êz =
eωr2e
3c

(cos θêr − sin θêϕ) .

15.3.3.3 Ex: Conducting thin loops

Consider a circular conducting loop with radius R. The wire of the loop is infinitely
thin (δ-function). Through the loop flows a continuous current I.
a. What is the expression for current density j(r)? Express the result in spherical
coordinates considering that the integral of the current over a surface perpendicular
to the wire must give I.
b. Calculate the magnetic dipolar moment of this current loop,

m =
1

2

∫
[r× j(r)]d3r .

c. For large distances from a localized current distribution, the potential vector A is
dominated by the dipolar contribution,

A(r) =
m× r

r3
.

What are, in this approximation, the values of the potential vector A and the mag-
netic field B⃗ for the conducting loop?

Solution: a. The useful parametrization is j(r, t) = Iêzδ(z)δ(ρ−R).
b. We use the definition,

m = 1
2

∫
r′×j(r′, t)d3r′ = 1

2

∫
r′×Iêϕδ(z′)δ(ρ′−R)ρ′dρ′dz′dϕ′ = 1

2I2πRR×êϕ = IπR2êz .

c. Inserting into the expression for potential vector,

A(r) =
IπR2êz × r

r3
=
IπR2

r2
êϕ .
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Using the relation with the magnetic field and the expression for the rotation in spher-
ical coordinates (12.80),

E⃗(r) = ∇×A = êr
1

r sin θ

∂

∂θ
(sin θAϕ)− êθ

1

r

∂

∂r
(rAϕ)

= IπR2

[
êr

1

r sin θ

1

r2
∂ sin θ

∂θ
− êθ

1

r

∂

∂r

1

r

]
=
IπR2

r3
(êθ − êr cot θ) .

15.3.3.4 Ex: Conducting thin loops

Consider a system of N different conducting loops (use δ-functions) through which
runs a current Ij (j = 1, . . . , N). The magnetic flux through the j-th loop is then
given by,

Φj =

N∑

m=1

∫

Fj

B⃗m · dS ,

where the integral must be taken over the area enclosed by the current loops j and
B⃗m is the part of the magnetic field due to the j-th loop.
a. Show,

Φj = c

N∑

m=1

LjmIm

with the induction coefficient,

Ljm = 1
c2

∫
j

∫
m
drj · drm

|rj − rm| ,
where the integrals are taken over the loops j and m.
b. Also show that the magnetic field energy of the loop system is given by,

W =
1

2

∑

j,m

LjmIjIm .

Solution:

15.3.3.5 Ex: Conducting thin loops

A conducting loop made of two semicircles (see diagram) with radii ri = 0.3m and
ra = 0.5m carries a current I = 1.5A.
a. Calculate the magnetic moment µ⃗ of the conducting loop.
b. The conducting loop is now traversed by a B-field of amplitude B = 0.3T. Calcu-
late the resulting torque m on the loop, when the B-field is directed (i) toward z, (ii)
toward x, and (iii) orthogonal to the plane of the scheme.

Solution:
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Figure 15.18: Loop.

15.3.3.6 Ex: Gauge transformation

Be given the potential vector,

A(r) =
1

y2 + z2 + a2




0

z

−y


 .

Discusses the corresponding magnetic field B⃗ = ∇×A.
a. Show that the potential

A′(r) =
1

y2 + z2 + a2




0

y + z

z − y




gives the same magnetic field as the potential A(x).
b. Show:

A′(r) = A(r)−∇α(r)
and determine α(r).

Solution: It is easy to verify that,

B⃗(r) = − 2a2

(y2 + z2 + a2)2
êz ,

for both potentials A(r) and A′(r). The function α(r) is obtained by the relation:

A′(r)−A(x) =
1

y2 + z2 + a2




0

y

z


 =

1

2
∇ ln(y2 + z2 + a2) ,

and hence,

α(r) = −1

2
ln(y2 + z2 + a2).
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15.3.3.7 Ex: Coulomb gauge

Be given the vector potential,

A(x, y, z) =
(x+ y)êx + (−x+ y)êy√

x2 + y2
.

Find a gauge transformation α(x, y, z), where A → A′ = A − ∇α, such that trans-
formed vector potential satisfies the Coulomb gauge.
Help: The Laplace operator in cylindrical coordinates has the form,

∆ =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2
+

1

ρ2
∂2

∂ϕ2
.

where ρ2 = x2 + y2.

Solution: In the Coulomb gauge, ∇ · A′ = 0; it implies ∆α = ∇ · A. From the
given expression for the potential vector A we get,

∇ ·A =
2√

x2 + y2
.

The function α is the solution to the differential equation.:

∆α(x, y, z) =
2√

x2 + y2
.

The easiest is to solve this equation in cylindrical coordinates. With ρ =
√
x2 + y2,

we have:
∂

∂ρ

(
ρ
∂

∂ρ
α

)
= 2 .

(We already used the fact that the function α does not depend on z, ϕ). The solution

is straightforward, α = 2ρ; in Cartesian coordinates, α = 2
√
x2 + y2.

15.3.3.8 Ex: Vector potential of a homogeneous field

We consider a homogeneous magnetic field in z-direction,

B⃗ = Bêz .
Invent a potential vector A, such that B⃗ = rot A. How does the potential vector look
like in the Coulomb gauge (that is, under the condition: div A = 0).

Solution: The potential vector,

A = 1
2 B⃗ × r = B

2 (−yêx + xêy)

gives the magnetic field,

B⃗ = ∇×A = B
2∇× (−yêx + xêy) =

B
2




∂y0− ∂zx
∂z(−y)− ∂x0
∂xx− ∂y(−y)


 = Bêz .
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15.4 Multipolar expansion

Using the expansion (13.91) we can expand the vector potential in the same way as
we did with the electrostatic potential in formula (13.92),

A(r) =
µ0I

4π

∮
1

|r− r′|dl
′ =

µ0I

4π

∞∑

ℓ=0

1

rℓ+1

∮
r′ℓPℓ(cos θ

′)dl′ . (15.38)

Explicitly,

A(r) =
µ0I

4π

[
1

r

∮
dl′ +

1

r2

∮
r′ cos θ′dl′ +

1

r3

∮
r′2( 32 cos

2 θ′ − 1
2 )dl

′ + ...

]
. (15.39)

15.4.1 Multipolar magnetic moments

Since there are no magnetic monopoles, the first term of the multipolar expansion
will be

∮
dl′ = 0. The next term is the dipole term,

Adip =
µ0I

4πr2

∮
r̂ · r′dl′ . (15.40)

Doing the calculation,

c ·
∮

r̂ · r′dl′ =
∮

c(r̂ · r′) · dl′ =
∫
∇r′ × [c(r̂ · r′)] · dS′ (15.41)

= −
∫

[c×∇r′(r̂ · r′)] · dS′ = − (c× r̂) ·
∫
dS′ = −c ·

(
r̂×

∫
dS′
)
,

for arbitrary constants c, we find,

Adip = −
µ0I

4πr2
r̂×

∫
dS′ =

µ0

4π

m× r̂

r2
where m ≡ I

∫
dS (15.42)

is the magnetic dipole moment.

Example 75 (Magnetic moment of a current loop): The magnetic moment
of a conductive coil of radius R lying in the x-y-plane and traversed by a current
is calculated by,

m = I

∫
dS = IπR2êz .

We will show in Exc. 15.4.2.1 how the magnetic dipole moment of a current loop
can also be calculated from a suitable parametrization via the definition,

m = 1
2

∫
r′ × j(r′, t)d3r′ . (15.43)
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15.4.2 Exercises

15.4.2.1 Ex: Magnetic moment

Calculate the torque on a rectangular coil with N loops placed in a homogeneous
magnetic field, as shown in the figure.

Figure 15.19: Magnetic moment.

Solution:

15.4.2.2 Ex: Magnetic moment

a. Determine the magnetic moment of a circular conducting loop with radius R car-
rying a current I1. The loop is in the xy-plane.
b. Now two outer segments of the circle are deformed at a distance a at right angles
to the direction −êz. What is the magnetic moment of the new configuration.
c. Now consider an infinitely long current line I2 at a distance d from the origin and
oriented in z-direction. What is the torque acting on the configurations in (a) and
(b).

Figure 15.20: Magnetic moment.

Solution: a. m1 = I1F = −πr2I1êz
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b. The magnetic moment of the deformed segments is exactly opposite. Therefore,
only the magnetic moment of the area in the plane x-y is relevant. The inner
area has the value: F = r2(π − 2α − sin 2α) with α in rad. Hence, m2 = I1F =
−r2(π − 2α− sin 2α)I1êz.
c. The magnetic field of an infinitely long wire is given by:

B(r) = µ0I2/2πr ⇒ B(d) = µ0I2/2πd .

In the questions (a) and (b): d1,2 = m1,2 × B⃗.

15.4.2.3 Ex: Magnetic moment of a cube

A conductor carries the current I = 6A along the path shown in the figure, which
runs through 8 of the 12 corners of the cube whose length is L = 10 cm.
a. Calculate dipole magnetic moment along the way.
b. Calculate the magnetic induction B⃗ at the points (x, y, z) = (0, 5m, 0) and (x, y, z) =
(5m, 0, 0).

I

dA x

y
z

Figure 15.21: Magnetic moment.

Solution: a. Explicitly the magnetic moment follows from the definition,

m = 1
2

∫
r′ × j(r′)d3r′ .
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Hence,

m =
1

2

∫
r
′ × êzδ(x

′
)δ(y

′
)d

3
r
′
+

1

2

∫
r
′ × êxδ(y

′
)δ(z

′ − L)d
3
r
′ −

1

2

∫
r
′ × êzδ(x

′ − L)δ(y
′
)d

3
r
′

+
1

2

∫
r
′ × êyδ(x

′ − L)δ(z
′
)d

3
r
′
+

1

2

∫
r
′ × êzδ(x

′ − L)δ(y
′ − L)d

3
r
′ −

1

2

∫
r
′ × êxδ(y

′ − L)δ(z
′ − L)d

3
r
′

−
1

2

∫
r
′ × êzδ(x

′
)δ(y

′ − L)d
3
r
′ −

1

2

∫
r
′ × êyδ(x

′
)δ(z

′
)d

3
r
′

=
1

2

∫ L

0




y′

−x′

0


 δ(x

′
)δ(y

′
)d

3
r
′
+

1

2

∫ L

0




0

z′

−y′


 δ(y

′
)δ(z

′ − L)d
3
r
′ −

1

2

∫ L

0




y′

−x′

0


 δ(x

′ − L)δ(y
′
)d

3
r
′

+
1

2

∫



−z′

0

x′


 δ(x

′ − L)δ(z
′
)d

3
r
′
+

1

2

∫



y′

−x′

0


 δ(x

′ − L)δ(y
′ − L)d

3
r
′ −

1

2

∫



0

z′

−y′


 δ(y

′ − L)δ(z
′ − L)d

3
r
′

−
1

2

∫



y′

−x′

0


 δ(x

′
)δ(y

′ − L)d
3
r
′ −

1

2

∫



−z′

0

x′


 δ(x

′
)δ(z

′
)d

3
r
′

=
1

2

∫ L

0




0

0

0


 dz

′
+

1

2

∫ L

0




0

L

0


 dx

′ −
1

2

∫ L

0




0

−L

0


 dx

′

+
1

2

∫ L

0




0

0

L


 dy

′
+

1

2

∫ L

0




L

−L

0


 dz

′ −
1

2

∫ L

0




0

L

−L


 dx

′

−
1

2

∫ L

0




L

0

0


 dz

′ −
1

2

∫ L

0




0

0

0


 dy

′

=
L2

2

(
0 + êy + êy + êz + (êx − êy) − (êy − êz) − êx − 0⃗

)
= L

2
êz .

Alternatively, the path can be decomposed into three flat loops. Their magnetic mo-
ments are additive,

m = mx=0,y,z +mx,y,z=L +mx=L,y,z = −L2êx + L2êz + L2êx = L2êz .

15.4.2.4 Ex: Magnetic moment of thin circular disk

Consider a very thin disk with radius R, homogeneously charged with the charge Q,
and spinning around the z-axis with angular velocity ω.
a. Parametrize the charge and current distributions.
b. Calculate the magnetic moment.

Solution: a. The charge distribution is,

ρ(r) =
Q

πR2
δ(z) para r ≤ R .

The current distribution is,

j(r) = ρ(r)v⃗(r) = ρ(r)ω⃗ × r =
Q

πR2
δ(z)ωrêϕ for r ≤ R .
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b. With this we get the magnetic moment,

m⃗ =
1

2

∫

V

r× j(r) d3r =
1

2

Q

πR2
ω

∫

V

δ(z)r2êr × êϕ d
3r

=
1

2

Q

πR2
ωêz

∫ 2π

0

∫ R

0

r2 rdrdϕ =
1

2

Q

πR2
ωêz2π

R4

4
=

1

4
QR2ωêz .

15.4.2.5 Ex: Magnetic compass

A topographer uses a magnetic compass while standing 6.1m under a high voltage
line on which flows a current of 100A. The horizontal component of the Earth’s mag-
netic field at this place is 20µT. How large is the magnetic field due to the current at
the position of the compass? Will the magnetic field disturb the compass noticeably?

Solution: The magnetic field of the conductor at the distance r follows from
∮
B⃗·ds⃗ =

µ0I, giving,

B(r) = µ0I

2πr
≃ 3.3µT .

This is not negligible compared to the magnetic field of the Earth.

15.4.2.6 Ex: Torque of a magnetic needle

A magnetic needle has a dipolar magnetic moment µ = 10−2 Am2. Calculate the
torque on the needle due to the horizontal component of the Earth’s magnetic field
at the equator (BH = 4 · 10−5 T), if the magnetic north pole of the needle points in
northeastern direction.

Solution: The torque of a magnetic needle is,

d = m×B⃗H = −m sinϕ ·BH êz = −10−2 Am2 ·0.71 ·4 ·10−5 T ·êz = 2.8 ·10−7 Nm ·êz .

15.4.2.7 Ex: Curved conductive circuit

A rectangular conducting loop is deformed in the middle of the edges (length a) to
form a right angle. The conducting loop is traversed by a current I. Calculate the
dipolar magnetic moment m of this configuration. Give the absolute value and ori-
entation of m.
Help: Use the overlapping principle and replace the above geometry with an overlap
of two conductive loops.
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Figure 15.22: Curved conductive circuit.

Solution: We consider two conductive loops, closed by the dashed line in the fig-
ure. For the loop in the xy-plane,

mxy =
Iab

2
êz .

For the loop in the xz-plane,

mxz =
Iab

2
êx .

In total,

m = mxy +mxz =
Iab

2
(êz + êx) .

The direction of the magnetic momentum is the diagonal in the xz-plane. The absolute
value is,

m =
Iab√
2
.

15.4.2.8 Ex: Magnetic dipole

A magnetic dipole µ⃗ = µêz is at origin of the coordinate system and has the value
µ = 1 esu · cm. This dipole generates a magnetic field of the form,

B⃗(r) = 3r(µ⃗ · r)− r2µ⃗
r5

.

a. At what distance from the origin does the absolute value of B⃗ take the value
1 esu/cm2 going (i) in z-direction, (ii) in x-direction, and (iii) in a diagonal direction
with in the xz-plane?
b. Which direction does B⃗ point in these three cases?

Solution: The evaluation of the given formula immediately yields,

r3Bx = µ3 cos θ sin θ cosϕ

r3By = µ3 cos θ sin θ sinϕ

r3Bz = µ(3 cos2 θ − 1) .

For y = 0 we obviously have ϕ = 0 and hence sinϕ = 0 and cosϕ = 1.
a. Thus we get (for y = 0),

r3|B⃗| = µ

√
9 cos2 θ sin2 θ + (3 cos2 θ − 1)2 .
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In the direction of the z-axis [case (i)] we have θ = 0, in the direction of the x-axis
[case (ii)] we have θ = 90◦, and in the diagonal direction [case (iii)] we have θ = 45◦.
Therefore,

(i) r3|B⃗| = 2µ , (ii) r3|B⃗| = µ , (iii) r3|B⃗| =
√
10
2 µ .

For µ/|B⃗| = 1 cm3, giving,

(i) r = 21/3 cm , (ii) r = 1 cm , (iii) r = (
√
10
2 )1/3 cm .

b. For the orientations of B⃗ in all three cases follows,

(i) + êz , (ii) − êz , (iii) 3
2 êx +

1
2 êz .

15.4.2.9 Ex: Fields of electric and magnetic point dipoles

a. Calculate the field of an electric dipole taking care to remove the divergence in the
center of origin by calculating the field averaged over a sphere and comparing it with
known results.
b. Repeat the procedure of (b) for a magnetic dipole.

Solution: The scalar electrostatic potential and field of an electric dipole at the origin
are given by,

Φdip(r) =
1

4πε0

p cos θ

r2
=

1

4πε0

p · êr
r2

E⃗dip(r) = −∇Φdip =
p

4πε0r3
(2êr cos θ + êθ sin θ) =

1

4πε0r3
[3(p · êr)êr − p] ,

where p is the electric dipole moment. This term appears as the second term in the
multipolar expansion of any electrostatic potential Φ(r). If the source of Φ(r) is a
dipole, this term is the only term that does not go to zero in the multipolar expansion
of Φ(r). The average field is, by symmetry, oriented in z-direction. Hence, using
êz · êr = cos θ and êz · êθ = − sin θ,

¯⃗E =

∫ R
0

∫ π
0

∫ 2π

0
(E⃗dip · êz)êzr2 sin θdθdrdϕ∫ R

0

∫ π
0

∫ 2π

0
r2 sin θdθdrdϕ

=
3µ0

8πR3
êz

∫ R

0

1

r
dr

∫ π

0

(2 cos2 θ − sin2 θ) sin θdθ =
3µ0

8πR3
êz ∞ · 0 .

If we integrate over any lower limit ϵ > 0 out to R, the problem goes away and the

integral is a well-behaved zero, 0 ·
∫ R
ϵ

1
rdr = 0. We know however that average field of

a charge distribution within a sphere is,

¯⃗E = − p

4πε0R3
=
− p

3ε0

∫
R3 δ

3(r)d3r
4π
3 R

3
.
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We may thus write (although it is not really correct),

E⃗dip(r) =
1

4πε0r3
[3(p · êr)êr − p]− p

3ε0
δ3(r) ,

understanding that the first term doesn’t apply at r = 0.
b. The vector potential and field of a magnetic dipoles are given by,

Adip(r) =
µ0

4π

m sin θ

r2
êθ =

µ0

4π

m× êr
r2

B⃗dip(r) = ∇×Adip =
µ0m

4πr3
(2êr cos θ + êθ sin θ) =

µ0m

4πr3
[3(m · êr)êr −m] ,

where r is the vector between the position of the dipole to the position where the
field is measured. It is exactly the field of a point-like dipole, just the dipolar term
in the multipole expansion of an arbitrary field, and roughly the field of an arbitrary
dipolar configuration at long distance. The average is, by symmetry, in the z-direction.
Hence, using êz · êr = cos θ and êz · êθ = − sin θ,

¯⃗B =

∫ R
0

∫ π
0

∫ 2π

0
(B⃗dip · êz)êzr2 sin θdθdrdϕ∫ R

0

∫ π
0

∫ 2π

0
r2 sin θdθdrdϕ

=
3µ0

8πR3
êz

∫ R

0

1

r
dr

∫ π

0

(2 cos2 θ − sin2 θ) sin θdθ =
3µ0

8πR3
êz ∞ · 0 .

If we integrate over any lower limit ϵ > 0 out to R, the problem goes away and the

integral is a well-behaved zero, 0 ·
∫ R
ϵ

1
rdr = 0. We know however that average field of

a charge distribution within a sphere is,

¯⃗B =
2µ0m

4πR3
=

2
3µ0m

∫
R3 δ

3(r)d3r
4π
3 R

3
.

We may thus write (although it is not really correct),

B⃗dip(r) =
µ0m

4πr3
[3(m · êr)êr −m] +

2

3
µ0mδ3(r) ,

understanding that the first term doesn’t apply at r = 0.
In cylindrical coordinates the distant field of a magnetic dipole is given by,

B(m, r, λ) = µ0

4π

m

r3

√
1 + 3 sin2 λ ,

where r is the distance from the center, λ is the magnetic latitude (equal to 0◦ − θ,
where θ is measured from the dipole axis. We convert to cylindrical coordinates using
r2 = z2 + ρ2 and λ = arcsin z√

z2+ρ2
, where ρ is the perpendicular distance from the

z-axis. So,

B(ρ, z) = µ0m

4π(z2 + ρ2)3/2

√
1 +

3z2

z2 + ρ2
.
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15.4.2.10 Ex: Magnetic dipole moment of a rectangular conducting loop

A (ideal) rectangular conducting loop with edge lengths a and b carries a current I.
a. Give the current density distribution j.
b. Calculate the corresponding dipolar magnetic moment M⃗.

Solution: a. We place the conducting loop symmetrically around the origin within
the xy-plane. The current density distribution is then,

j(r) = Iδ(z)

[
(δ(x− a

2 )− δ(x+ a
2 ))Θ( b2 − |y|)êy − (δ(y− b

2 )− δ(x+ b
2 ))Θ(a2 − |x|)êx

]
.

b. We have,

r× j(r) = Iδ(z)
[
(δ(x− a

2 )− δ(x+ a
2 ))Θ( b2 − |y|)xêz + (δ(y − b

2 )− δ(y + b
2 ))Θ(a2 − |x|)yêz

−(δ(x− a
2 )− δ(x+ a

2 ))Θ( b2 − |y|)zêx − (δ(y − b
2 )− δ(y + b

2 ))Θ(a2 − |x|)zêy
]
.

We use now that,
∫
dyΘ( b2 − |y|) =

+b/2∫

−b/2

dy = b .

and we immediately get,

M⃗ =
1

2c

∫
d3r′ (r′ × j(r′)) =

Iab

c
êz .

15.4.2.11 Ex: Dipolar magnetic moment of a rectangular loop

The rectangular conducting loop of Exc. 15.4.2.10 is deformed in the middle of the
edges (length a) to form a right angle (see figure). It is traversed by a current I.
Calculate the dipolar magnetic moment of this geometry.

Solution: We first want to solve the exercise ’by hand’. For the current density
distribution holds,

j(r) = I
{
δ(z)δ(x− a

2
Θ( b

2
− |y|)êy − δ(x)δ(z − a

2
)Θ( b

2
− |y|)êy

−δ(z)(δ(y − b
2
)− δ(y + b

2
))Θ(a

2
− x)Θ(x)êx + δ(x)(δ(y − b

2
)− δ(y + b

2
))Θ(a

2
− z)Θ(z)êz

}
.

This gives,

r× j(r) = I
{
δ(z)δ(x− a

2
)Θ( b

2
− |y|)(xêz − zêx)− δ(x)δ(z − a

2
)Θ( b

2
− |y|)(xêz − zêx)

δ(z)(δ(y − b
2
)− δ(y + b

2
))Θ(a

2
− x)Θ(x)(zêy − yêz)

+δ(x)(δ(y − b
2
)− δ(y + b

2
))Θ(a

2
− z)Θ(z)(yêx − xêy)

}
.

Integration provides immediately,

M⃗ =
I

2c

(
ba

2
êz +

ba

2
êx +

ba

2
êz +

ba

2
êx

)
=
Iab

2c
(êz + êx) .
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However, we can solve the exercise much more elegantly by letting the same current I
run in the directions +z and −z, as well. The total current then disappears. Now, we
are considering two independent rectangular loops (edge lengths b and a/2). Exc. ??
then provides for the loop in the xy-plane,

M⃗xy =
Iab

2c
êz .

and for the loop in the yz-plane,

M⃗yz =
Iab

2c
êx .

therefore,

M⃗ = M⃗xy + M⃗yz =
Iab

2c
(êz + êx) .

15.4.2.12 Ex: Force on the walls of a hollow cylinder

Consider an infinitely long cylindrical shell of radius a in which flows a current. The
magnetic force on this hollow cylinder is such that it tries to compress the cylinder.
To counteract this force, we can fill the inside of the cylinder with a gas of pressure
P . What is the pressure required to balance the magnetic force?

Solution: We let the current flow in +z-direction and choose cylindrical coordinates.
So,

j =
I

2πa
δ(ρ− a)êz .

With the Ampère’s law we have,

∇× B⃗ = µ0j = µ0
I

2πa
δ(ρ− a)êz .

As the integration area we chose a circular area perpendicular to the symmetry axis
of the cylinder with radius ρ and centered at the origin. Application of Stokes’s law
then gives for ρ ≥ a,

2πρB(ρ) = µ0I .

that is,

B⃗ =
µ0I

2πρ
êϕ ,

while inside the cylinder the magnetic field obviously zeroes. Now, we calculate the
force acting on an infinitesimal area ∆S = ρ∆ϕ∆z of the conductor by,

F =

∫

∆V
j× B⃗dV =

I

2πa

µ0I

2π

∫

∆V

δ(ρ− a)
ρ

êz × êϕρdρdzdϕ

=
µ0I

2

4π2a

∫ ∆z

0

∫ ∆ϕ

0

(−êρ)dzdϕ = −µ0I
2

4π2a
∆z∆ϕêρ .
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Obviously, the direction of the force depends on where we choose the integration vol-
ume. To compensate for the force, we need gas exerting the opposite pressure,

P =
F

a∆ϕ∆z
=

µ0I
2

4π2a2
.

15.4.2.13 Ex: Infinitely dense coil

A coil with N ’infinitely dense’ windings carries a current I. It forms with respect
to the z-axis a torus with rotational symmetry with an inner radius b − a and an
outer radius b + a. The figure shows the cross-sectional area of a cut in the plane
perpendicular to the xy-plane.
a. Calculate by exploiting the symmetric geometry of this device in cylindrical coor-
dinates (ρ, ϕ, z) a ϕ-component of the magnetic B⃗-field in the xy-plane (that is, for
z = 0) as a function of the distance ρ from the origin of the coordinate system. Help:
Use Stokes’ law.
b. What is the value of the ϕ-component of B⃗ in the entire space outside of the torus
(that is, also for z ̸= 0).
c. Draw the profile of Bϕ(ρ) in the z = 0 plane as a function of ρ.
d. Let a = 1 cm. What should be the value of b in first approximation, so that Bϕ in
the torus is constant within 1%? Help: (1± ϵ)−1 ≈ 1∓ ϵ.

Solution: a. Because of the symmetry of the device, B⃗ is independent of the an-
gle ϕ. We chose as integration area a circular area in the xy (z = 0) plane centered
at the origin and having the radius ρ. Thus the area element is, dS ∼ êz and the
border element is dl ∼ êϕ. With Stokes’ law we get for Bϕ(ρ) in the z = 0 plane,

∫

S(ρ)

(∇× B⃗) · dS =

∫

∂S(ρ)

B⃗ · dl = 2πρBϕ(ρ) =
4π

c

∫

S(ρ)

j · dl .

With that we get,

Für 0 < ρ < b− a : 2πρBϕ(ρ) = 0

Für b− a ≤ ρ < b+ a : 2πρBϕ(ρ) =
4π

c
NI

Für b+ a ≤ ρ <∞ : 2πρBϕ(ρ) =
4π

c
(NI −NI) = 0 .

b. Outside the torus Bϕ is zero everywhere, because each circular area symmetrically
centered around the z-axis and parallel to the xy-plane with ρ < b− a or ρ > b+ a is
always traversed by the total current

∫
S(ρ) j · dS = 0.

c. Following part (a) the field Bϕ(ρ) zeroes for ρ < b− a and ρ > b+ a. At ρ = b− a
it adopts the value 2NI

c(b−a) and then drops proportionally ( 1ρ) down to the value 2NI
c(b+a)

at ρ = b+ a.
d. An approximately constant magnetic field in the toroid can be, based on part (c),
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only obtained for the case b≫ a. We need,

1

b− a −
1

b+ a
≈ 1

100(b+ a)
resp.

1

1− a
b

− 1

1 + a
b

≈ 1

100(1 + a
b )

.

From this follows in first approximation,

1 +
a

b
− 1 +

a

b
≈ 1

100
hence b ≈ 200a .

For a = 1 cm, therefore we need b = 2m.

15.4.2.14 Ex: Magnetic field in a cylindrical hollow space

Parallel to the axis of an infinitely long massive conducting cylinder of radius a at a
distance d from it, there is a hollow cylindrical space of radius b (d + b < a). The
current density within this perforated metal cylinder is homogeneous and oriented
parallel to the symmetry axis. Using Ampère’s law and the linear superposition prin-
ciple, determine the absolute value and orientation of the magnetic field inside the
hollow space.

Solution: To start with we use the known solution for the solid cylinder, replac-
ing the (constant) current density I/(πa2) with j and noting that B⃗ only has the
ϕ-component. In addition, we focus on the region r < a,

B⃗a = Ba(r)êϕ =
2πj

c
rêϕ

Now we use êϕ = − sinϕêx + cosϕêy and θ = 90◦. with this,

B⃗a =
2πj

c
(−yêx + xêy)

In the same way we get for the field of a solid cylinder with radius b, whose center is,
as indicated, displaced by d along the x-axis in its interior region,

B⃗b =
2πj

c
(−yêx + (x− d)êy)

For the field inside and outside the cavity we get simply by subtraction,

B⃗int =
2πj

c
dêy

resp., letting the total current be I = π(a2 − b2)j,

B⃗int =
2Id

(a2 − b2)c êy .

Inside the cavity the field is therefore constant and oriented toward y. It disappears
for d = 0, i.e. when the empty space is centered.
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15.4.2.15 Ex: Torque of a conducting cylinder

Determine the torque (per unit length) felt by a massive conducting cylinder of radius

R that slowly rotates with constant angular velocity ω inside a homogeneous B⃗-field
around its symmetry axis. B⃗ be oriented orthogonal to the axis of the cylinder.

Solution: We place the axis of the cylinder (same as the rotation axis) in direc-

tion 3 and the B⃗-field in direction 2. For the torque per unit length l we get,

τ⃗

l
=

1

c

∫

V (l=1)

d3rr× (j× B⃗) .

where V (l = 1) is the volume of the cylinder with unit length. Denoting the conduc-
tivity by σ, the current is given by,

j = σE⃗ ′ = σ

(
v⃗

c
× B⃗

)
.

where E⃗ ′ is the induced field in the coordinate system rotating together with the cylin-
der. Now we use v = ω⃗ × r and let r be within the xy-plane (because we want to
determine the torque per unit length). We obtain,

j =
σωB
c

[(ê3 × r)× ê2] = −
σωB
c

yê3 .

Follows,

j× B⃗ = −σωB
2

c
yê3 × ê2 =

σωB2
c

yê1 .

as well as,

r× (j× B⃗) = σωB
c

y(xê1 + yê2)× ê1 = −σωB
2

c
y2ê3 .

In cylindrical coordinates we have y2 = r2 sin2 ϕ and hence,

τ⃗

l
= −σωB

2

c2

R∫

0

drr3
2π∫

0

dϕ sin2 ϕê3 = −πσωB
2a4

4c2
ê3 .

15.4.2.16 Ex: Rotating rings

Consider two ’infinitely thin’ concentric rings with radii a and b (a < b). The rings are
in the xy-plane and their common center is at the origin. On the inner ring there is a
homogeneously distributed charge +q (that is, the linear charge density is constant),
and the outer ring carries the homogeneously distributed charge −q.
a. Write down the charge density ρ(r) = ρ(r, ϕ, z) in cylindrical coordinates.
b. Now the entire device rotates with constant angular velocity ω around the sym-
metry axis z. Determine the resulting current density j(r) = j(r, ϕ, z) in cylindrical
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coordinates, as well.
c. What are the Cartesian components of current density j?
d. Calculate the magnetic dipole moment m of the rotating device.

Solution: We do the following ansatz ρ(r) = Cδ(z)δ(r − a) − Cδ(z)δ(r − b). The
normalization is q =

∫
ρ(r)dV . a. In cylindrical coordinates the current density is,

ρ(r, ϕ, z) =
q

2π
δ(z)

[
1

a
δ(r − a)− 1

b
δ(r − b)

]
.

b. v(r, ϕ, z) = rωêϕ and therefore, (since Idl = Qdv, such that I = Qrω),

j(r, ϕ, z) =
qω

2π
δ(z)[δ(r − a)− δ(r − b)]êϕ .

c. With this we get for the Cartesian coordinates,

jx = −qω
2π
δ(z)[δ(r − a)− δ(r − b)] sinϕ

jy = +
qω

2π
δ(z)[δ(r − a)− δ(r − b)] cosϕ

jz = 0 .

d. We have,

r× j = det




êx êy êz

x y z

jx jy 0


 = −zjyêx + zjxêy + (xjy − yjx)êz .

Hence,

m =
1

2

qω

2π

∫ 2π

0

dϕ′
∫ ∞

0

dr′r′
∫ ∞

−∞
dz′δ(z′)[δ(r′ − a)− δ(r′ − b)] ·

·
[
−z′ cosϕ′êx − z′ sinϕ′êy + (r′ cos2 ϕ′ + r′ sin2 ϕ′)êz

]
=
qω

2
[a2 − b2]êz .

d. Alternatively,

r× j = (rêr + zêz)× j = êzrj =
qω

2π
(aδ(r − a)− bδ(r − b))δ(z) .

Hence,

m =
1

2

∫

V

r′×j(r′)d3r′ = 1

2

qω

2π
2πêz

[∫
aδ(r − a)rdr −

∫
bδ(r − b)rdr

]
=
qω

2
êz(a

2−b2) .



752 CHAPTER 15. MAGNETOSTATICS

15.4.2.17 Ex: Magnetic field inside a current tube

A thin hollow conducting tube is traversed by a current along its symmetry axis. The
current is homogeneously distributed. Calculate the magnetic field inside and outside
a. from Ampère’s law,
b. from the Biot-Savart law.

Solution: To find the parametrization for the current density j(r′) we consider the
normalization condition,

I =

∫

S

j(r′) · dS′ = η

∫

S

Iδ(ρ′ −R)êz · dS′ = ηI

∫

S

δ(ρ′ −R)ρ′dρ′dϕ′ = ηI2πR ,

giving η = 1
2πR , such that,

j(r′) =
I

2πR
δ(ρ′ −R)êz .

The potential vector is now,

A(r) =
µ0

4π

∫
j(r′)dV ′

|r− r′| =
µ0

4π

I

2πR

∫
δ(ρ′ −R)êz

|r− ρ′êρ′ − z′êz|
ρ′dρ′dϕ′dz′

=
µ0

4π

I

2πR

∫
δ(ρ′ −R)êz√

(ρ cosϕ− ρ′ cosϕ′)2 + (ρ sinϕ− ρ′ sinϕ′)2 + (z − z′)2
ρ′dρ′dϕ′dz′

=
µ0I

8π2
êz

∫
1√

ρ2 +R2 − 2Rρ cos(ϕ+ ϕ′) + (z − z′)2
dϕ′dz′ ,

as the result cannot depend on z nor on ϕ, we can set z = 0 and ϕ = 0,

A(r) =
µ0I

8π2
êz

∫ 2π

0

∫ ∞

−∞

1√
ρ2 +R2 − 2Rρ cosϕ′ + z′2

dz′dϕ′ =???

Maybe the magnetic field is easier to calculate,

B⃗(r) = µ0

4π

∫
j(r′)× (r− r′)dV ′

|r− r′|3

=
µ0

4π

I

2πR

∫
δ(ρ′ −R)êz × (r− r′)

√
(ρ cosϕ− ρ′ cosϕ′)2 + (ρ sinϕ− ρ′ sinϕ′)2 + (z − z′)23

ρ′dρ′dϕ′dz′

=
µ0I

8π2

∫
ρêϕ − ρ′êϕ′

√
ρ2 +R2 − 2Rρ cos(ϕ+ ϕ′) + (z − z′)23

dϕ′dz′ .

Since the result cannot depend on z nor on ϕ, we can set z = 0 and ϕ = 0. For this
choice the x-component vanishes,

Bx(r) =
µ0I

8π2

∫ ∞

−∞

∫ 2π

0

R sinϕ′
√
ρ2 +R2 − 2Rρ cosϕ′ + z′2

3 dϕ
′dz′ = 0

and the y-component

By(r) =
µ0I

8π2

∫ ∞

−∞

∫ 2π

0

ρ−R cosϕ′
√
ρ2 +R2 − 2Rρ cosϕ′ + z′2

3 dϕ
′dz′ =???

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_.pdf
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15.4.2.18 Ex: Magnetic induction in a hollow conductor

A conductor (ideal and infinitely thin) be on the z-axis and carries a current I flowing
in +z-direction. This conductor is enclosed by a conductive hollow cylinder with ra-
dius R, within which a homogeneously distributed total current I runs in the opposite
direction −z (coaxial cable). Calculate the magnetic induction inside and outside this
device.

Solution: In cylindrical coordinates we have,

j(r) =

[
I

ρ
δ(ρ)δ(ϕ)− I

2πR
δ(ρ−R)

]
êz .

We now use for the integration a circular area with radius ρ in +z-direction. So,
df⃗ = ρ′dρ′dϕ′êz and hence,

∫

F (ρ)

(∇× B⃗) · df = 4π

c

∫

F (ρ

j · df = 4π

c
I

{
1 forρ < R

0 else

=

∫

R(ρ

B⃗ · ds⃗ = 2πρB(ρ)

With that we immediately get,

B⃗ =
2I

cρ

{
1 forρ < R

0 else
.

15.4.2.19 Ex: Current ring

A (ideal) current ring in the xy-plane with radius a and centered at the origin is
traversed by a current I. In spherical coordinates the current density is given by,

j(r) = j(r, θ, ϕ) =
I

a
δ(cos θ)δ(r − a)êϕ .

For |r| ≫ a the corresponding potential then has the form,

A(r) = A(r, θ, ϕ) =
Iπa2

cr2
sin θêϕ .

and for magnetic field holds,

B⃗(r) = B⃗(r, θ, ϕ) = Iπa2

cr3
(2 cos θêr + sin θêθ) .

where êr, êθ, and êϕ are the unit vectors in r, θ, and ϕ-direction.
a. Calculate the Cartesian components of j(r).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebT14.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH19.pdf
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b. Calculate the Cartesian components of the dipolar magnetic moment M⃗ using the
formula,

M⃗ =
1

2c

∫
d3r′(r′ × j(r′)) .

c. What are the components of M⃗ in r, θ, and ϕ-direction.
d. Show with the help of (c) that the magnetic field at a point r of the arbitrary
surface can be written,

B⃗(r) = 3êr(M⃗ · êr)− M⃗
r3

.

e. Calculate the Cartesian components of magnetic field and check, with the help of
(b), that also in Cartesian coordinates holds,

B⃗(r) = 3r(M⃗ · r)− r2M⃗
r5

.

Solution: a. We have,

êr = sin θ cosϕêx + sin θ sinϕêy + cos θêz

êθ = cos θ cosϕêx + cos θ sinϕêy − sin θêz

êϕ = − sinϕêx + cosϕêy .

From this follows,

j(r) = jx(r, θ, ϕ)êx + jy(r, θ, ϕ)êy =
I

a
δ(r − a)δ(cosθ)




− sinϕ

cosϕ

0


 .

b. With the result of (a) we get,

r× j(r) = det




êx êy êz

x y z

jx jy 0


 = −zjyêx + zjxêy + (xjy − yjx)êz .

Now,
x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ ,

and therefore we get,

r× j(r) = −I
a
δ(r − a)δ(cos θ)r[ cos θ cosϕêx + cos θ sinϕêy

− (sin θ cos2 ϕ+ sin θ sin2 ϕ)êz] .

that is,

r× j(r) = −I
a
δ(r − a)δ(cos θ)r[cos θ cosϕêx + cos θ sinϕêy − sin θêz] .
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With that we get,

M⃗ =
1

2c

∫
d3r′r′ × j(r′)

= − I

2ac

∫
dr′d(cos θ′)dϕ′r′

3
δ(cos θ′)δ(r′ − a)[cos θ′ cosϕ′êx + cos θ′ sinϕ′êy − sin θ′êz] .

Due to δ(cos θ′) only the last term survives, and we get,

M⃗ =
Ia2π

c
êz .

c. Here we need to express Cartesian unit vectors by spherical coordinates. A simple
calculation [see (a)] gives,

êx = cosϕ sin θêr + cosϕ cos θêθ − sinϕêϕ

êy = sinϕ sin θêr + sinϕ cos θêθ + cosϕêϕ

êz = cos θêr − sin θêθ .

With that we get immediately,

Mr =
Ia2π

c
cos θ , Mθ = −

Ia2π

c
sin θ , Mϕ = 0 .

d. We obtain,

3êr(M⃗ · êr)− M⃗
r3

=
Ia2π

cr3
(3 cos θêr−cos θêr+sin θêθ) =

Ia2π

cr3
[2 cos θêr+sin θêθ] = B⃗(r) .

e. With part (c) follows,

2 cos θêr + sin θêθ = 2 cos θ sin θ cosϕêx + 2 cos θ sin θ sinϕêy + 2 cos2 θêz

+ sin θ cos θ cosϕêx + sin θ cos θ sinϕêy − sin2 θêz

= 3 sin θ cos θ cosϕêx + 3 sin θ cos θ sinϕêy + (3 cos2 θ − 1)êz .

Therefore, we get,

B⃗ =
3Ia2π

cr3




cos θ sin θ cosϕ

cos θ sin θ sinϕ

cos2 θ − 1
3


 .

With

Mx =My = 0 , Mz =
Ia2π

c
,

follows immediately,

3r(M⃗ · r)
r5

− M⃗
r3

=
Ia2π

cr3

[
3rz

r2
− êz

]

=
Ia2π

cr3

[
3xz

r2
êx +

3yz

r2
êy +

3z2

r2
êz − êz

]

=
Ia2π

cr3
[
3 cos θ sin θ cosϕêx + 3 cos θ sin θ sinϕêy + (3 cos2 θ − 1)êz

]
= B⃗(r) .
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15.4.2.20 Ex: Magnetic field of a long coil

Determine the magnetic H⃗-field inside a very long current-carrying coil. The number
of turns is n, the length of the coil l, its radius a, and the amplitude of the current I.
How does the magnetic field change, if the coil has an iron core with the permeability
µ?

Solution: We place the symmetry axis of the coil on the x-axis and choose as integra-
tion path a rectangle in the xz-plane defined by the points. (0, 0, 0), (s, 0, 0), (s, 0, b),

and (0,0,b). Here we choose b > a so big that H⃗ will vanish there. With that, we get
immediately, by applying Stokes’ law,

∫

S

(∇× H⃗(r)) · dS =

∫

∂S

H⃗(r) · dr =
4π

c

∫

S

j(r) · dS = Hs = 4π

c

n

l
sI .

Inserting the iron core into the coil changes the magnetic B⃗-field, but not the H⃗-field
inside the coil. So we get for the interior,

H =
4π

c

n

l
I , B = µ

4π

c

n

l
I .

15.4.2.21 Ex: Shielded dipolar field

The magnetic field of a dipole is shielded by a hollow sphere (inner radius a, outer

radius b) made of a material with permeability µ. The dipole P⃗M is in the center of
the sphere and points towards z.
a. Show that the magnetic field H⃗ in the entire space can be written as the negative
gradient of a potential ΦM (r).
b. Show that this magnetic potential satisfies the Laplace equation in whole space,
△ΦM (r) = 0.
c. To solve this Laplace equation, do the following ansatz of variable separation,

Φ
(i)
M (r, θϕ) =

∞∑

l=0

+l∑

m=−l

4π

2l + 1

[
β
(i)
lmr

l + γ
(i)
lm

1

rl+1

]
Ylm(θ, ϕ) .

where the β
(i)
lm and γ

(i)
lm be constant and i = I, II, II denote the different regions

(I : 0 ≤ r < a , II : a ≤ r ≤ b , III : b < r). What are the consequences for β
(i)
lm and

γ
(i)
lm due to the fact that ΦM

i. is, in the origin, the potential of a pure dipolar field P⃗M?
ii. is cylindrically symmetrical about the z-axis?
iii. disappears at infinity?
d. At the interfaces between the different regions the normal component of the mag-
netic B⃗-field and the tangential component of the H⃗-field are discontinuous. Use these

conditions to establish a system of equations for the coefficients β
(i)
lm and γ

(i)
lm, using

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebT18.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Magnetostatics_TuebH23.pdf
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gradrΦM = ∂ΦM

∂r , gradθΦM = 1
r
∂ΦM

∂θ , ∂Y10

∂θ =
√

2l+1
4π P 1

l (cos θ), as well as the orthog-

onality relations
∫
dΩY ∗l0(Ω)Yl′0(Ω) = δll′ and

∫ +1

−1 dxP
1
l (x)P

1
l′(x) = δll′

2
2l+1

(l+1)!
(l−1)! .

e. Solve the equation system first for the case l ̸= 1.
f. Solve the system of equations for l = 1.
g. What does the magnetic field look like outside the sphere for µ≫ 1?

Solution: a. For the current density holds in the entire space,

j(r) = 0 .

From this immediately follows,

∇× H⃗ =
4π

c
j = 0 .

Therefore we have,
H⃗ = −∇ΦM (r) .

b. Since
∇ · B⃗ = 0 and B⃗ = µH⃗ .

and with (a) we get in the entire space,

∇ · H⃗ = −∇ · ∇ΦM = 0 .

hence the Laplace equation,
△ΦM = 0 .

c. We separated the variables,

Φ
(i)
M r, θϕ) =

∞∑

l=0

+l∑

m=−l

4π

2l + 1

[
β
(i)
lmr

l + γ
(i)
lm

1

rl+1

]
Ylm(θ, ϕ) .

(1) For r → 0 we have a pure dipolar field towards z:

ΦDipol =
4π

3
q10

Y10
r2

=

√
4π

3
PM

Y10
r2

.

From this follows,

γ
(I)
lm =

√
3

4π
PMδl1δm0 .

(2) Because of the cylindrical symmetry of the problem, ΦM cannot depend on the
angle ϕ. From this follows for all three regions (i = I, II, III),

β
(i)
lm = β

(i)
l δm0

γ
(i)
lm = γ

(i)
l δm0 .

(3) H⃗ must disappear in the infinite. So we normalize our potential in such a way
that ΦM disappears (becomes constant) at infinity. This means that for all l,

β
(III)
l = 0 .
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d. Be a± ≡ a ± ϵ and b± ≡ b ± ϵ. The continuity of the normal component of B⃗
provides the boundary conditions,

(∇ΦM (a−, θ))r = µ(∇ΦM (a+, θ))r

µ(∇ΦM (b−, θ))r = (∇ΦM (b+, θ))r .

the one of the tangential component of H⃗ provides,

(∇ΦM (a−, θ))θ = (∇ΦM (a+, θ))θ

(∇ΦM (b−, θ))θ = (∇ΦM (b+, θ))θ .

If we now use,

(∇ΦM )r =
∂ΦM
∂r

and (∇ΦM )θ =
1

r

∂ΦM
∂θ

.

as well as,

∂Y10
∂θ

=

√
2l + 1

4π
P 1
l (cos θ) .

we get consecutively,

∑

l

4π

2l + 1
Yl0

[
β
(I)
l lal−1 − γ(I)l

l + 1

al+2
δl1

]
= µ

∑

l

4π

2l + 1
Yl0

[
β
(II)
l lal−1 − γ(II)l

l + 1

al+2

]

µ
∑

l

4π

2l + 1
Yl0

[
β
(II)
l lbl−1 − γ(II)l

l + 1

bl+2

]
= −

∑

l

4π

2l + 1
Yl0γ

(III)
l

l + 1

bl+2

∑

l

√
4π

2l + 1
P 1
l

[
β
(I)
l al +

γ
(I)
l

al+1
δl1

]
=
∑

l

√
4π

2l + 1
P 1
l

[
β
(II)
l al +

γ
(II)
l

al+1

]

∑

l

√
4π

2l + 1
P 1
l

[
β
(II)
l bl +

γ
(II)
l

bl+1

]
=
∑

l

√
4π

2l + 1
P 1
l

γ
(III)
l

bl+1
.

We now multiply the first two equations with Y ∗l0 (l is fixed) and integrate over Ω; we
multiply the last two equations with P 1

l and we integrate over x = cos θ. This gives,
exploiting the given orthogonalaty relations, the following system of equations,




lal−1 −µlal−1 µ l+1
al+2 0

0 µlbl−1 −µ l+1
bl+2

l+1
bl+2

al −al − 1
al+1 0

0 bl 1
bl+1 − 1

bl+1







β
(I)
l

β
(II)
l

γ
(II)
l

γ
(III)
l




=




γ
(I)
l

l+1
al+2 δl1

0

−γ(I)l
1

al+1 δl1

0




.
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e. For l ̸= 1 the above system of equations is homogeneous. The determinant of the
matrix of coefficients is,

detA ≡ det




lal−1 −µlal−1 µ l+1
al+2 0

0 µlbl−1 −µ l+1
bl+2

l+1
bl+2

al −al − 1
al+1 0

0 bl 1
bl+1 − 1

bl+1




= det




lal−1 (1− µ)lal−1 µ l+1
al+2 0

0 µlbl−1 (1− µ) l+1
bl+2

l+1
bl+2

al 0 − 1
al+1 0

0 bl 0 − 1
bl+1




= lal−1det




µlbl−1 (1− µ) l+1
bl+2

l+1
bl+2

0 − 1
al+1 0

bl 0 − 1
bl+1


+ aldet




(1− µ)lal−1 µ l+1
al+2 0

µlbl−1 (1− µ) l+1
bl+2

l+1
b1l+2

bl 0 − 1
bl+1




= lal−1
[
µlbl−1

al+1bl+1
+

(l + 1)bl

al+1bl+2

]

+ al
[
−(1− µ)2 l(l + 1)al−1

bl+1bl+2
+
µ(l + 1)2bl

al+2bl+2
+
µ2l(l + 1)bl−1

al+2bl+1

]

=
a2l−1

b2

[
µl2

a2l+1
+
l(l + 1)

a2l+1
− (1− µ)2 l(l + 1)

b2l+1
+
µ(l + 1)2

a2l+1
+
µ2l(l + 1)

a2l+1

]

=
a2l−1

b2

[
(1− µ)2

{
1

a2l+1
− 1

b2l+1

}
+ µ

(2l + 1)2

a2l+1

]
.

where we have used that

l2 + (l + 1)2 + 2l(l + 1) = 4l2 + 4l + 1 = (2l + 1)2 .

Now 0 < a < b and µ ≥ 1. So we always have,

detA > 0 .

and therefore for l ̸= 1 only exist trivial solutions,

β
(I)
l = β

(II)
l = γ

(II)
l = γ

(III)
l = 0 .

Since moreover for l ̸= 1 we know,

β
(III)
l = γ

(I)
l = 0 .

we get as a result that the magnetic potential has only a l = 1 (dipolar) component.
f. For l = 1 we have the following system of equations (for simplicity, we suppress the
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index l = 1 in the following),

β(I) − µβ(II) +
2µ

a3
γ(II) =

2

a3
γ(I)

µβ(II) − 2µ

b3
γ(II) +

2

b3
γ(III) = 0

aβ(I) − aβ(II) − 1

a2
γ(II) = − 1

a2
γ(I)

bβ(II) +
1

b2
γ(II) − 1

b2
γ(III) = 0 .

We now multiply the last of these equations with 2/b and add it to the second, which
gives,

(2 + µ)β(II) − 2(µ− 1)

b3
γ(II) = 0 .

resp.

γ(II) =
b3(µ+ 2)

2(µ− 1)
β(II) .

We now divide the third equation by a and subtract it from the first, which gives,

−(µ− 1)β(II) +
1

a3
(2µ+ 1)γ(II) =

3

a3
γ(I) .

Hence,

−(µ− 1)β(II) +
1

a3
(2µ+ 1)

b3(µ+ 2)

2(µ− 1)
β(II) =

3

a3
γ(I) .

and therefore,

β(II)

(
b3(2µ+ 1)(µ+ 2)− 2a3(µ− 1)2

2(µ− 1)

)
= 3γ(I) .

Therefore we get,

β(II) =
6(µ− 1)γ(I)

b3(2µ+ 1)(µ+ 2)− 2a3(µ− 1)2

γ(II) =
3b3(µ+ 2)γ(I)

b3(2µ+ 1)(µ+ 2)− 2a3(µ− 1)2

γ(III) =
9b3µγ(I)

b3(2µ+ 1)(µ+ 2)− 2a3(µ− 1)2

β(I) = −
2(µ− 1)(µ+ 2)

[
b3

a3 − 1
]
γ(I)

b3(2µ+ 1)(µ+ 2)− 2a3(µ− 1)2
.

Moreover, we had,

β(III) ≡ 0 and γ(I) =

√
3

4π
PM .
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The result can be verified by letting µ = 1. In this case,

β(I) = β(II) = β(III) and γ(II) = γ(III) = γ(I) =

√
3

4π
PM ,

giving the dipolar field in vacuum.
g. In region III we have,

β(III) = 0 ; γ(III) =
9

2
γ(I)

1
(2µ+1)(µ+2)

2µ − a3

b3
(µ−1)2
µ

.

Para µ≫ 1 segue,

γ(III) ∼ 9

2
γ(I)

1

1− a3

b3

1

µ
.

15.5 Further reading

T. Bergeman et al., Magnetostatic trapping fields for neutral atoms [127]DOI

http://doi.org/10.1103/PhysRevA.35.1535
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Chapter 16

Magnetic properties of matter

The most common manifestations of magnetism are certainly magnets, compass nee-
dles, and the Earth’s magnetic field, and it is not obvious how they are related to the
magnetic fields produced by currents, discussed in the previous chapter. Nevertheless,
all magnetic phenomena are ultimately due to currents, even if they are microscopic,
for example, electrons orbiting atomic nuclei or spinning around their own axis. From
the macroscopic point of view we can treat these circular currents as magnetic dipoles.
Generally, the dipoles of a medium have random orientations, such that the generated
magnetic fields cancel out. However, when we apply a external magnetic field, the
dipoles can realign and magnetize the medium.

16.1 Magnetization

There are several macroscopic manifestations of microscopic dipole moments known
as para-, dia-, and ferromagnetism. We will discuss these in the following sections.

16.1.1 Energy of permanent dipoles and paramagnetism

Figure 16.1: (a) Illustration of the torque exerted by a magnetic field on a magnetic dipole.
(b) An electron spinning around a nucleus may have orbital and intrinsic angular momentum.
(c) Dipole moments are added as vectors.

We consider current loops of rectangular shape 1. In the case of the geometry
shown in Fig. 16.1(a) the Lorentz forces acting on the wire sections a being parallel
to the z-y-plane compensate each other, because the forces and the points on which
they act are all on a straight line. On the other side, the forces acting on the wire
sections b,

F± = ±Ib× B⃗ = ±IbBêy , (16.1)

1Arbitrary shapes can be constructed by two-dimensional arrays of rectangular loops.
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both contribute to create a torque,

τ⃗ = a
2 × F+ + −a2 −×F− = IBba× êy = IabBêx sin θ , (16.2)

With the definition of the magnetic moment (15.42) we find,

τ⃗ = m× B⃗ . (16.3)

We can also calculate the energy of a dipole in a magnetic field by the work
required to rotate it out of its equilibrium position,

Hint =

∫ θ

0

τ⃗ · dθ =
∫ θ

0

m× B⃗dθ =
∫ θ

0

mB sin θdθ = −mB cos θ , (16.4)

such that,

Hint = −m · B⃗ . (16.5)

The formula (16.3) holds for homogeneous magnetic fields or, alternatively, for almost
point-like dipoles in inhomogeneous fields. It represents the magnetic equivalent of
the torque on electric dipoles (14.4). The torque is oriented so as to align the dipole
moment to the direction of the magnetic field. This mechanism is used to explain the
phenomenon of paramagnetism [see Fig. 16.3(a)].

In atomic physics we learn that electrons bound to atoms may have, besides an
orbital angular momentum due to the planetary motion around the atomic nucleus,
an intrinsic angular momentum called spin as if the electron were a small electrically
charged sphere rotating about its own axis [see illustration of Fig. 16.1(b)]. The spins
of the various electrons in the electron layer of an atom generally couple to form a
total dipole moment, which then interacts with external magnetic fields. This is called
Zeeman effect. The spins may pair and add up or compensate pairwise such as to
zero the magnetic dipole moment of the atom [see illustration of Fig. 16.1(c)]. Note
that a strong external magnetic field can break the angular momentum coupling and
interact with the electron spins separately. This is called Paschen-Back effect.

The phenomenon of paramagnetism is observed in materials whose molecules have
permanent magnetic dipole moments, that is, in chemical elements with unpaired
valence electrons. It is not observed in noble gases, covalent crystals, etc..

Unlike the torque, the force exerted by a homogeneous field on a dipole vanishes,

F = I

∮
dl× B⃗ = I

(∮
dl

)
× B⃗ = 0 . (16.6)

For inhomogeneous fields we need to calculate the force from the energy gradient as,

F = −∇Hint = ∇(m · B⃗) = m× (∇× B⃗) + (m · ∇)B⃗ = (m · ∇)B⃗ . (16.7)

This formula can be obtained by Taylor expansion of the magnetic field (see Exc. 16.1.7.1).

16.1.2 Impact of magnetic fields on electronic orbits and dia-
magnetism

A magnetic field can have another effect on the motion of electrons. Let us consider
an electron rotating on a circular orbit of radius R. If the motion of the electron is
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Figure 16.2: Illustration of the force exerted by an inhomogeneous magnetic field on a
magnetic dipole: A dipole oriented in the same direction as the magnetic field will be drawn
to the field maximum, if it is oriented anti-parallel, it is repelled from the field maximum.

fast, it will generate a current,

I =
−e
T

=
−ev
2πR

, (16.8)

creating a dipole moment,

m = IA =
−e
T
πR2êz =

−e
2
vRêz . (16.9)

Now, the orbit of the electron can be, for example, an atomic orbital or a trajectory
of a free electron in a conductor. The magnetism of a free electron gas in a metal is
treated by the theory of Landau diamagnetism. This theory considers the trajectories
of electrons as being curved by the Lorentz force which, because of the rule of Lenz,
generates a field contrary to the applied magnetic field. That is, the magnetic flux
is expelled from the material. Hence, in inhomogeneous magnetic fields, diamagnetic
materials are repelled from high field regions 2.

Figure 16.3: Classical interpretation of paramagnetism (a) and diamagnetism (b): In para-
magnetic materials the permanent dipoles reorient in the direction of the external field.
Exposed to inhomogeneous fields, the dipoles are thus attracted to field maxima. In dia-
magnetism, currents are forced into circular orbits, and the so-formed dipoles are oriented
in a direction opposite the external external. Exposed to inhomogeneous fields, the dipoles
are thus repelled from the field maxima.

The case of electronic orbitals in atoms is treated by the theory of Langevin dia-
magnetism. In this theory we consider Bohr orbitals of electrons bound to a nucleus
by the Coulomb force. In the presence of an external magnetic field the dipole feels a
torque, but in addition, the field has the effect of accelerating or decelerating the elec-
tron depending on its orientation. To estimate this effect we consider the equilibrium
condition for an electronic orbit,

FC =
1

4πε0

e2

R2
= me

v2

R
= Fcentrifugal . (16.10)

2Note that some metals may be weakly paramagnetic due to an effect called Pauli paramagnetism.
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Adding a magnetic field oriented along the rotation axis 3,

FC + FL =
1

4πε0

e2

R2
+ ev′∆B = me

v′2

R
= Fcentrifugal . (16.11)

Subtracting these equations,

ev′∆B =
me

R
(v′2 − v2) = me

R
(v′ − v)(v′ + v) ≃ 2me

R
v′∆v , (16.12)

such that,

∆v =
eR∆B
2me

. (16.13)

The acceleration of the electron, when we switch on the magnetic field, increases the
value of the dipole moment because, with the formula (16.9),

∆m =
−e
2
∆vRêz = −

e2R2

4me
∆B⃗ . (16.14)

But the variation is always contrary to the direction of the magnetic field, even if
the dipole moment was initially aligned to the field [see Fig. 16.3(b)] 4. Therefore,
the dipole is repelled by an inhomogeneous magnetic field. Note that changing the
sign of the charge does not affect ∆m.

Diamagnetism is a property of all materials, but is often hidden by the presence of
permanent magnetic moments. Therefore, to observe diamagnetism, one must choose
materials with no permanent magnetic moment, such as atoms with completely filled
electron shells. Many amorphous materials (such as wood, glass, rubber, etc.) and
many metals as diamagnets.

It is worth mentioning that the magnetic behavior of a macroscopic body is not
necessarily the same as the one of its elementary components. For example, metallic
sodium is diamagnetic, while gaseous sodium is paramagnetic.

paramagnetism diamagnetism

atoms with unpaired e− atoms with paired e−

m robust and independent of B⃗ m weak and m ∝ B⃗
M⃗ ∥ B⃗ ↷ attractive force M⃗ ∥ −B⃗ ↷ repulsive force

µ > 1 ↷ χ > 0 µ < 1 ↷ χ < 0

It is also important to note that essential aspects of para- and atomic diamagnetism
are quantum. That is, quantitative theories must be formulated within quantum
mechanics. A classical theory can only give an qualitative picture of the effect.

3In Exc. 16.1.7.2 we have shown, that the radius of the electronic orbit does not change under
the influence of an external magnetic field.

4If the charge distribution is spherically symmetric, we can assume ⟨x2⟩ = ⟨y2⟩ = ⟨z2⟩ = 1
3
⟨r2⟩,

where ⟨r2⟩ is the average distance between the electron and the nucleus. Therefore, ⟨R2⟩ = ⟨x2⟩ +
⟨y2⟩ = 2

3
⟨r2⟩. If N is the number of atoms per unit volume, we have χ = µ0Nm

B = −µ0NZe
2

6m
⟨r2⟩.
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16.1.3 Macroscopic magnetization

In the presence of a magnetic field, matter becomes magnetized, that is, the atomic
or molecular dipoles align in a particular direction. We have already discussed two
possible mechanisms causing this reorientation, the para- and the diamagnetism. Re-
gardless of the mechanism we measure the degree of alignment by the vector quantity,

M⃗ =
Nm

V
(16.15)

called magnetization. It plays the same role as the polarization in electrostatics. In
the following section we will calculate for a given magnetization M⃗ the field that it
produces.

In most materials diamagnetism and paramagnetism are very weak effects and
can only be detected by sensitive measurements and strong magnetic fields. In non-
ferromagnetic materials, the weakness of the magnetization allows us to neglect the
magnetic field produced by magnetization. In contrast, in iron, nickel or cobalt the
forces are between 104 and 105 greater.

16.1.4 Magnetostatic field of a magnetized material

We consider a sample of magnetic dipoles. According to the formula (15.42), the
vector potential is given by,

A(r) =
µ0

4π

∑

k

m× (r− r′)
|r− r′|3 −→ µ0

4π

∫

V
dV ′
M⃗ × (r− r′)
|r− r′|3 , (16.16)

where we introduced the dipole moment distribution M⃗(r′) via mk → M⃗dV ′. As in
the electrostatic case, we can rewrite the integral in the form,

A(r) =
µ0

4π

∫

V
M⃗(r′)×∇′ 1

|r− r′|dV
′ (16.17)

=
µ0

4π

[
−
∫

V
∇′ × M⃗(r′)

|r− r′|dV
′ +
∫

V

1

|r− r′|∇
′ × M⃗(r′)dV ′

]

=
µ0

4π

∮

∂V

M⃗(r′)× dS′
|r− r′| +

µ0

4π

∫

V

1

|r− r′|∇
′ × M⃗(r′)dV ′ .

Comparing these terms with the formula (15.27), we find that the first term looks like
the potential of a surface current, while the second term looks like the potential of a
volume current. Defining,

κ⃗b ≡ M⃗ × nS and jb ≡ ∇× M⃗ , (16.18)

we obtain,

A(r) =
µ0

4π

∮

∂V

κ⃗b
|r− r′|dS

′ +
µ0

4π

∫

V

jb
|r− r′|dV

′ . (16.19)

The meaning of this result is that the potential (and therefore the field) of a
magnetized object is the same as the one produced by a volume current distribution
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jb plus a surface current distribution κ⃗b. Instead of integrating the contributions of
all individual infinitesimal dipoles, as in Eq. (16.17), we can try to find these bound
currents, and then calculate the fields they produce, as we did in the previous chapter.

16.1.5 The H-field

In the previous section we found that the phenomenon of magnetization of a body
can be understood as being due to localized currents inside the material, jb = ∇×M⃗,
and on the surface of the body, κ⃗b = M⃗× n̂S . The magnetization field is the magnetic
field produced by these currents. In addition, there are obviously free currents, such
as those generated by the motion of free electrons in a metal.

16.1.5.1 Ampère’s law in magnetized materials

Ampère’s law can now be generalized for arbitrary media,

1
µ0
∇× B⃗ = j = jb + jf = ∇× M⃗+ jf , (16.20)

where B⃗ is the total magnetic field. Defining a new field H⃗, sometimes called magnetic
excitation,

H⃗ ≡ µ−10 B⃗ − M⃗ , (16.21)

we can now write,

∇× H⃗ = jf . (16.22)

The field H⃗ is that part of the magnetic field, which comes only from free currents.
We can also define the magnetic susceptibility χµ via 5,

M⃗ = χµH⃗ , (16.23)

or the permeability µ via,

B⃗ = µH⃗ = µ0(1 + χµ)H⃗ . (16.24)

Note, that the divergence of the magnetization does not necessarily vanish, since
the susceptibility may depend on position, χµ = χµ(r),

∇ · H⃗ = µ−10 ∇ · B⃗ − ∇ · M⃗ = −∇ · (χµH⃗) ̸= 0 . (16.25)

Hence, H⃗ generally can not be derived from a vector potential, and Biot-Savart’s
law is not valid for H⃗. In anisotropic materials the susceptibility and the permeability
must be understood as tensors.

5Note, that this definition is not symmetric with that of the electric susceptibility (14.20).
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16.1.5.2 Boundary conditions involving magnetic materials

The integral version of Eq. (16.25),
∮
H⃗ ·dS = −

∮
M⃗ ·dS, allows us to determine the

behavior of the magnetic excitation near interfaces,

H⊥top −H⊥bottom = −M⊥top +M⊥bottom . (16.26)

On the other hand Ampère’s law, ∇× H⃗ = jf , yields,

H⃗∥top − H⃗∥bottom = κ⃗f × n̂ . (16.27)

This is in contrast to the behavior of the magnetic B⃗ field at interfaces described by
Eqs. (15.30), (15.32), and (15.34). Do the Excs. 16.1.7.7 to 16.1.7.9.

16.1.6 Magnetic susceptibility and permeability

Materials respond to applied magnetic fields H⃗ generating a magnetization M⃗, such
that the total magnetic field is B⃗ = µ0H⃗+µ0M⃗. The behavior of a material depends
on the value of its susceptibility. In vacuum χµ = 0, for typical diamagnets χµ ≲ 0,
for superconductors χµ = −1, for paramagnets χµ ≳ 0, and for ferromagnets χµ ≫ 1.

Typical values are listed in the following table:

material χµ[10
−5] type of magnetism

superconductor −105 dia-

carbon −2.1 Langevin dia-

copper −1 Landau dia-

water −0.9 Langevin dia-

hydrogen −0.00022 Langevin dia-

oxygen (gas) 0.2 para-

sodium (metal) 0.7 Pauli para-

magnesium 1.2 Pauli para-

lithium 1.4 Pauli para-

cesium 5.1 Pauli para-

platinum 28

oxygen(liquid) 390

gadolinium 48000 ferro-

iron ferro-

16.1.6.1 Linear media

In many materials, as long as the applied magnetic field is not too strong, the magne-
tization is proportional to the field, M⃗ ∝ B⃗, i.e. the magnetic susceptibility depends
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on the material’s microscopic properties and external factors, such as temperature,
but not on the applied field, χµ ̸= χµ(B⃗). Hence, linear media can be characterized
by a constant,

µr ≡
µ

µ0
, (16.28)

called relative permeability.

16.1.6.2 The role of temperature in paramagnetism

Experiments show, that in inhomogeneous magnetic fields, paramagnetic materials
are attracted toward high field regions, but with a force that decreases with tempera-
ture. This is understood by the Zeeman effect: The dipole moment can only adopt a
few possible (quantized) values corresponding to levels of well-defined positive or neg-
ative energy (called Zeeman sub-levels). At high temperature all Zeeman sub-levels
are equally populated, such that the total force cancels. At low temperature the pop-
ulations are distributed according to Boltzmann’s law, nk/nl = e−(Ek−El)/kBT , that
is, the lower levels (which are precisely the high-field seekers) dominate.

Example 76 (Paramagnetism of hot samples): As an example, we consider
atoms with two possible orientations for the permanent magnetic moment, m ·
B⃗ = ±mB. The magnetization produced by n = n+ + n− atoms is then M⃗ =
n+m+ + n−m−. The two orientations are populated according to Boltzmann’s
law n+/n− = e−2mB/kBT , such that,

M⃗
n

=
emB/kBT − e−mB/kBT
emB/kBT + e−mB/kBT

m ≃ mB
kBT

m .

For weak fields, we obtain the Curie law,

χµ =
M

H
≃ nm2B
kBTH

≃ µ0nm
2

kBT
∼ T−1 .

For strong fields, the magnetization saturates. Assumingm ≃ µB (see Exc. 16.1.7.4),

we estimate for a metal with n ≈ 1022 cm-3 at room temperature, χµ ≈ 2.6 ×
10−4 6.

16.1.6.3 Ferromagnetism

In a linear medium the alignment of the magnetic dipoles is maintained by the ap-
plication of an external field. There are, however, magnetic materials that do not
depend on applied fields. This phenomenon of ’frozen’ magnetization is called ferro-
magnetism. As in the case of paramagnetism, ferromagnets develop dipoles associated
with the spins of unpaired electrons, but in addition, the dipoles strongly interact with

6In metals free electrons contribute to paramagnetism. In metals the Curie law does not apply,
but χ is found to be almost constant. The reason is, that the Boltzmann distribution is inappropriate
for electrons, so we need to use the Fermi-Dirac distribution. The energy distribution ρ(ϵ)nFD(ϵ)
of the electrons depends on the orientation of their spin with respect to the applied magnetic field:
electrons with (anti-)parallel spin see their energy increased (reduced). To maintain a uniform EF ,
electrons with parallel spin will flip it to antiparallel spin, such that the entire system is slightly high-
field seeking. This is called Pauli paramagnetism. This effect always competes with diamagnetism,
which involves all electrons and has opposite sign.



16.1. MAGNETIZATION 771

each other and, for reasons that can only be understood within a quantum theory,
like to orient themselves in parallel 7.

The correlation is so strong that within regions called Weiss domains almost 100%
of the dipoles are aligned. On the other hand, a block of ferromagnetic material
consists of many spatially separated domains, each domain having a magnetization
pointing in a random direction, such that the block as a whole does not exhibit
macroscopic magnetization. Inside a Weiss domain the magnetization is so strong that
even a strong external magnetic field can not influence the alignment. On the other
hand, at the boundaries between Weiss domains the alignment is not well defined,
such that the external field can exert a torque τ = m×B⃗ shifting the boundaries in a
way to favor those domains, which are already aligned. For a sufficiently strong field
one domain will prevail and the ferromagnetic material saturate.

Experiments show that the alignment is not fully reversible, that is, not all Weiss
domains return to their initial orientation (before the external magnetic field was
applied). Consequently, the material remains permanently magnetized. This effect is
called remanescence.

Figure 16.4: Hysteresis curve of magnetization. To allow for a comparison of the scales
we plot in real units (Tesla) the applied field (H⃗ ∝ I in the case of a solenoid) versus the
obtained field (B⃗ ≃ M⃗).

To compensate for remanescence, it is necessary to apply a compensation field
oriented in the opposite direction (see Fig. 16.4) 8 Beyond the compensation field we
observe saturation in the opposite direction. Finally, returning to the initial situation,
we draw a curve called hysteresis curve, which indicates that magnetization does not
only depend on the applied magnetic field, but also on the ’history’ of applied fields.
Fig. 16.4 shows how an applied field can be dramatically amplified by ferromagnetism.

As already discussed, temperature tends to randomize the alignment of atomic
dipoles. At low temperature the heat will not be sufficient to misalign the dipoles
within the Weiss domains. But interestingly, beyond a well-defined temperature (the
Curie temperature of iron is 770 C), the iron undergoes an abrupt phase transition to
a paramagnetic state.

7The survival of domains in thermal reservoirs can not be understood by classical interactions
between dipoles, but we need to contemplate band structure models. In particular, the 3d orbital
bands provide electrons to the ferromagnetic elements Fe, Co, Ni. These bands are so close that
the exchange interaction influences the orientation of spins in neighboring bands, which induces
correlations between the spins of neighboring atoms.

8In practice, to demagnetize an iron block, we apply an alternating voltage gradually reducing
its amplitude.
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Note, that there are also antiferromagnetic materials (MnO2), where neighboring
atoms have antiparallel spins.

Example 77 (Microscopic theory of induced dipoles): The permittivity
and relative permeability of a dense gas can be connected to the microscopic
quantities through the Clausius-Mossotti formula,

εr =
1 + 2

3
N
V
αpol,e

1− 1
3
N
V
αpol,e

, µr =
1 + 2

3
N
V
αpol,m

1− 1
3
N
V
αpol,m

, (16.29)

that is, to the susceptibilities,

χε = εr − 1 =
N
V
αpol,e

1− 1
3
N
V
αpol,e

, χµ = µr − 1 =
N
V
αpol,m

1− 1
3
N
V
αpol,m

, (16.30)

where the induced electric and magnetic polarizabilities are,

αpol,e =
2dfi

|E⃗p|
ρif , αpol,m =

2mfi

|B⃗p|
ρif . (16.31)

dfi and mfi are the dipole moments for electric and magnetic transitions and
ρif the coherences excited in these transitions, which can be calculated from
the Bloch equations. The relative strength between magnetic and electrical
transitions is,

2µB
ceaB

= α . (16.32)

16.1.7 Exercises

16.1.7.1 Ex: Dipole in an inhomogeneous field

Derive the formula for the force on a dipole in an inhomogeneous field.

Solution: An inhomogeneous magnetic field can be approximated by,

B⃗(r) = B⃗(r′) + [(r− r′) · ∇′]B⃗(r′) .

We need to show,

F = I

∮
dl× [(r · ∇′)B⃗(r′)] = ... = (m · ∇)B⃗ .

We know, ∮
(c · r)dl = S× c ,

where

S =

∫

S
dS =

1

2

∮
r× dl .

Thereby,

(S× c)k = ϵkgjSgcj =

∮
cmrmdlk .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_ForcaInhomogenea01.pdf
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Now using
ϵiknϵkgj = ϵiknϵjkg = δijδng − δigδnj ,

we calculate,

Fi = Iϵikn(

∮
rmdlk)[∇′mBn(r′)] = IϵiknϵkgjSg[∇′jBn(r′)] = (δijδng − δigδnj)mg[∇′jBn(r′)]

= mn[∇′iBn(r′)]−mi[∇′nBn(r′)] = mn[∇′iBn(r′)]−mi(∇′ · B⃗) = mn[∇′iBn(r′)] .

16.1.7.2 Ex: Langevin diamagnetism

An electron circulates around its atomic nucleus on an orbit of radius R.
a. Calculate the magnetic dipole moment generated by this movement as a function
of velocity.
b. Now a weak magnetic field B⃗ is slowly turned on perpendicular to the orbital plane.
Calculate the increase of the electron’s velocity due to the electric field induced by
turning on the magnetic field using Faraday’s law.
c. Show that the increase in kinetic energy, ∆Ekin, corresponds to the interaction
energy between the electronic dipole moment and the magnetic field.
d. Does the turning on of the magnetic field change the radius of the electronic orbit?
Justify your answer!

Solution: a. The current corresponding to the motion being I = −e/T , we obtain,

m = IS = − ev

2πR
πR2n̂ = −e

2
R× v .

b. We assume that the magnetic field ranges from 0 to B within a period of time t.
This variation produces a rotation of an electric field given by ∇ × E⃗ = ∂tB⃗. With
Stokes law, ∮

∂S
E⃗ · dl =

∫

S
∇× E⃗ · dS = − ∂

∂t

∫

S
B⃗ · dS ,

or E2πR = πR2Ḃ. Thus, the variation of the electron velocity is,

∆v =

∫ t

0

F

me
dt =

∫ t

0

−eE
me

dt =

∫ t

0

−eRḂ
2me

dt =
−eR
2me

∫ B

0

dB =
−eR
2me

B .

(This is the same formula derived from Langevin’s discussion of diamagnetism under
the premise that the radius of the orbit is constant.)
c. The increase in kinetic energy is,

∆Ekin =
me

2
(v+∆v)2−me

2
v2 ≃ mev∆v = me

(
−2|m|
eR

) −eR
2me

B = −m·B⃗ = ∆Ezee .

d. The fact that all energy added goes to kinetic energy and nothing is left for the
Coulomb energy shows, that the assumption of a fixed radius used in the discussion
of Langevin’s diamagnetism is justified.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_DiaMagnetismo01.pdf
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16.1.7.3 Ex: Magnetic susceptibility

By molecular magnetism it is possible to lift any objects in a sufficiently strong mag-
netic field. Estimate the magnetic field |B⃗| and the field gradient ∇|B⃗|2 (one may

estimate ∇|B⃗|2 = 2|B⃗|∇|B⃗| ≃ |B⃗|2/l with l ≃ 10 cm as the typical length for such
strong magnetic fields), needed to lift a frog. Water is predominantly diamagnetic
with χµ ≃ −0.9 · 10−5 is the magnetic susceptibility of water.
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Figure 16.5: Magnetic susceptibility.

Solution: The condition for frog levitation is,

Flev = (
∑

k
mk · ∇)B⃗ > mfrogg = Fpeso ,

taking the sum over all diamagnetic moments of the frog,

∑

k

mk = M⃗V = χµH⃗V =
χµ
µ
B⃗V .

For the vertical axis we get,

Flev =
χµ
µ
BV dB

dz
> mfrogg = ρwaterV g ,

giving the necessary condition for diamagnetic levitation,

BdB
dz

= µ0ρ
g

χmu
,

Water levitates at B dBdz ≈ 1370T2/m. To levitate a frog, however, we need very strong

magnetic fields of the order of B =
√
lµ0ρ

g
χmu

≈ 12T.

16.1.7.4 Ex: Larmor precession of a Bohr atom in a magnetic field

As a model of the Larmor precession, consider the Bohr’s atom model: An electron
flying on circular orbits around a proton. Only certain discrete orbits with the radii

rn = n2aB , where aB = 4πε0
ℏ2

mee2
, are allowed. The movement of the electron on

these orbits is not accompanied by radiative emission.
a. Calculate the velocity of the electron in its ground state n = 1 and compare the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_MagnetizaMedia01.pdf
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result with the speed of light in vacuum c.
b. What is the orbital momentum L of the electron in a hydrogen atom in this state?
c. Relate the magnetic moment mL due to the circular current generated by the elec-
tron to the orbital momentum L.
d. Placed in a magnetic field of B = 1T the atom suffers a torque, which creates
a precession of the angular momentum vector L around the direction of the B⃗-
field. Determine the frequency of this Larmor precession from ωL = L̇/(L sin θ),

where θ is the angle between mL and B⃗. (ℏ = 1.034 · 10−34 Js, e = 1.602 · 10−19 C,
ε0 = 8.854 · 10−8 As/Vm.

Solution: a. In the ground state the equilibrium of the electron orbit is given by,

FC =
1

4πε0

e2

a2B
= me

v2

aB
= Fcentrifug .

Therefore, the velocity is,

v =

√
1

4πε0

e2

meaB
=

e2

4πε0ℏ
= 2.2 · 106 m/s = αc .

b. The orbital momentum is,

L = r× p = meaBvL̂ = me4πε0
ℏ2

mee2
e2

4πε0ℏ
L̂ = ℏL̂ .

c. The rotation of the electron on its orbit produces a current, I = −ev/2πR, which
produces a magnetic moment,

mL = IA =
−evaBL̂

2
=
−e
2me

L .

d. We have, dL = L sin θ · ωLdt. Thus, the frequency of Larmor is,

ωL =
L̇

L sin θ
=

τ

L sin θ
=
mLB sin θ
L sin θ

=
mLB
L

=
−e
2me
B .

Note, that,

µB =
eℏ
2me

It’s called Bohr’s magneton.

16.1.7.5 Ex: H-field of a cylindrical current wire

A cylindrical wire with radius a and permeability µ is traversed by a constant current
density j.
a. Calculate the absolute values and the directions of the H⃗ and B⃗-fields in- and out-
side the wire using Stokes law.
b. The electric field E⃗ within the wire and the current j are connected by Ohm’s law

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_MagnetizaMedia03.pdf
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j = σE⃗ , where σ is the electrical conductivity. What is the value and direction of the
Poynting vector s on the wire surface?
c. Calculate the total energy flow across the surface of a piece of wire of length L.
Show that the energy flow corresponds exactly to the power converted, in this piece
of wire, to ohmic heat.
Help: The energy conservation law of electrodynamics is given by: −∂u∂t = ∇·s+j · E⃗ ,
where u = 1

2 (E⃗ · D⃗ + B⃗ · H⃗) is the total energy density, s = E⃗ × H⃗ the flow of energy,

and j · E⃗ the work done by the field on the electric current density.

Solution: a. Assuming an isotropic wire medium we know B⃗ = µH⃗ inside the wire
and B⃗ = µ0H⃗ outside, which means that both fields are parallel everywhere and that
there is a magnetization inside the wire M⃗ = (µ−10 − µ−1)B⃗. The wire of length L
carries a current I generated by a voltage U . Hence, the electric field inside the wire
is,

E⃗ =
U

L
êz .

Imagining an Ampèrian loop inside and outside the wire we find, using the Ampère-
Maxwell equation,

∮
H · dr = 2πrB(r) =

∫
∇× H⃗ · dS =

∫
j · dS =




I r

3

R3 for r < R

I for r > R
.

Hence,

H⃗(r) =





I
2π

r2

R3 êϕ for r < R

I
2π

1
r êϕ for r > R

,

and we see that the parallel component of the H⃗-field is continuous at the wire surface,
but this cannot be the case for B⃗, which will have a discontinuity corresponding to the
magnetization.
b. The Poynting vector

s = E⃗ × H⃗ =
U

L
êz ×

µ

2π
I
r2

R3
êϕ =




−UL

µI
2π

r2

R3 êρ for r < R

−UL
µI
2π

1
r êρ for r > R

is perpendicular to the wire surface.
c. The total energy flow across the surface is,

∫
s · dS = s(2πaL) = UI = Rheat .

16.1.7.6 Ex: Ferromagnetism

a. Make a scheme of the dependence of the magnetizationM of a ferromagnetic ma-
terial on the magnetic ’excitation’ H with the initial condition M = H = 0 and

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_MagnetizaMedia04.pdf
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letting H(t) cycle through 0 → Hmax → −Hmax → Hmax. Indicate the remaining
magnetization in the scheme.
b. How does the magnetization of a ferromagnet change when we heat it up above
the Curie temperature TC? How does the magnetic susceptibility behave in this case
χm?
c. It explains the order of the atomic magnetic moments in ferro-, antiferro- and fer-
rimagnets and its influence on their magnetization.

Solution: a. The ’virgin curve’ shows the magnetization of an initially non-magnetized
ferromagnet, when it is exposed to an external magnetic excitation field rising from 0
to Hmax.
b. When heat above TC , the ferromagnetic order is lost, and the ferromagnet be-
comes a paramagnet. The magnetic susceptibility behaves at temperatures T > TC as
χm ∝ 1/(T − TC).
c. Within ordered areas (Weiss domains) for ferromagnets all magnetic dipolar mo-
ments are equal and oriented in parallel. For antiferromagnets the magnetic dipole
moments are also equal, but oriented antiparallel. For ferrimagnets the magnetic
dipolar moments of neighboring atoms are different and antiparallel. The resulting
magnetization is large for ferromagnets, lower for ferrimagnet and zero for antiferro-
magnet (see Fig. 16.4).

16.1.7.7 Ex: Rectangular toroidal coil

A circular coil is made of a core with rectangular cross-sectional area, A = h(r2− r1),
on which two coils are densely wound on top of each other, one with the number of
turns N1 and the other with N2. Establishes a relationship for the mutual inductance
L of the two coils.
Help: To calculate the mutual inductance, invoke the flux equation for the case that
the coil N1 is traversed by the current I1, that is,

∮
H · ds = N1I1 and calculate the

induced flux Φ.

Figure 16.6: Rectangular toroidal coil.

Solution: The first coil produces a magnetic flux,

Φ =
L1

N1
I1 .

This flux produces in the second coil the current,

I2 =
N2

L2
Φ =

N2

N1

L1

L2
I1 .
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16.1.7.8 Ex: Toroidal coil

Consider a toroidal coil with the average radius R, which consists of N turns carrying
the current I. The coil is filled with an iron core of permeability µ.
a. Calculate the amplitude of the fields H and B inside the coil.
b. Now consider a core with an air gap d with d≪ R interrupting the torus. Calculate
once again the fields H and B within the slot.

Solution: a. Let the coil be in the xy-plane. With the Ampère’s law,

∮
H⃗ · dl = 2πRH =

∫
j · dS = NI .

With this follows,

H =
NI

2πR
and B = µµ0H = µµ0

NI

2πR
.

b. At the transition between iron and air the normal component of B⃗ and the parallel
component of H⃗ are continuous. Therefore, since in our geometry (d≪ R) the fields

B⃗ and H⃗ are approximately uniform, we only have normal components, such that:
BFe = Bar and µHFe = Har. Now, we have,

∮
H⃗ · dl = (2πR− d)HFe + dHar = (2πR− d)Har

µ
+ dHar =

∫
j · dS = NI .

Hence,

Har =
NIµ

2πR− d+ µd
,

and

Bar = µ0Har =
NIµµ0

2πR+ (µ− 1)d
.

For a very narrow gap with µ ≃ 2000 we get a big amplification of the field:

Bar ≃
NIµµ0

2πR
.

16.1.7.9 Ex: Toroidal coil

A slotted steel ring has the dimensions: b = 20mm, r = 80mm, a = 15mm, and
d = 1mm (see the figure).
a. Calculate, first without air gap, for a magnetic flux density B the total magnetic
flux ΨM and the corresponding H field. What is the amount of current I required
generate this flux in a coil of N turns?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_BobiToroide02.pdf
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d

a

b R

Figure 16.7: Toroidal coil.

b. How must H and I be modified, if the ring is interrupted by a 1 mm wide air gap,
to reach the same flux? Use B = 1.2T, N = 300, µr = 650.

Solution: a. The magnetic field of a long coil is H = B/µ0µr and is related to
the current by H = NI/l. It follows for the current,

I =
lB

µ0µrN
=

2πrB
µ0µrN

≃ 1.5385A .

The flux is,

Φ =

∫
B⃗ · dS = BS ≃ 3.6 · 10−4 Vs .

b. The magnetic fields in the core and the slot are,

Hfe =
B

µ0µr
≃ 1470 and Har =

B
µ0
≃ 955 000A/m .

The current is,

I =
1

N

∫
H⃗ · dl = Hfe

N
(2πr −∆s) +

Har
N

∆s ≃ 4.72A .

16.2 Induction of currents and inductance

We have already seen that the fundamental cause of current j is a motion of charges
Q [see Eq. (14.38)]. To incite charges to move we need a force,

j = ς
F

Q
, (16.33)

where ς is a proportionality factor called conductivity and F is the Coulomb-Lorentz
force, such that,

j = ς(E⃗ + v × B⃗) . (16.34)
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The first part, j = ς E⃗ , is Ohm’s law already discussed in Sec. 14.3. Now, in addition
to taking into account the Coulomb force acting on electrons traveling in conductors,
let us also consider the Lorentz force.

16.2.1 The electromotive force

When we consider a closed electric circuit with a current source and a consumer, know-
ing the slow average velocity of the electrons carrying the current (see Exc. 14.3.3.3),
it is not immediately obvious why the current starts to flow simultaneously in all
parts of the circuit. The explanation is that if this were not the case, charges would
accumulate in parts of the circuit creating local imbalances. The consequence of this
would be the creation of electric fields working to eliminate the imbalances. These
fields E⃗ are superposed to the electromotive force f0 exerted by the current source.
If the source has an internal resistance, as schematized in Fig. 16.8(a), part of the
electromotive force fi is spent on it,

fi = f0 + E⃗ . (16.35)

Figure 16.8: (a) Illustration of the electromotive force f0 exerted by an arbitrary voltage
source, the force fi spent on the internal resistance of the source, and the electrostatic force
E⃗ on the circuit. (b) Electromotive force f0 generated by the motion of a part of the circuit
inside a magnetic field.

In the case of an ideal source, fi = 0, the path integral along the circuit,

E ≡
∫ −

+

f0 · dl = −
∫ −

+

E⃗ · dl = U , (16.36)

yields exactly the voltage.
The electromotive force can be caused by batteries, photocells, generators, etc.

In the case of a generator, the electromotive force is the Lorentz force acting on the
free charges of a conductor moved within an applied magnetic field. Let us consider
the setup schematized in Fig. 16.8(b). When the part of the conductor between the
points A and B (length h) is moved to the right with velocity v within the magnetic

field B⃗, positive charges are accelerated upwards, as in the case of the Hall effect. We
obtain an electromotive force,

E ≡
∮

fL · dl = hvB , (16.37)

which acts as a source of voltage. Of course, it is not the magnetic field which does
the work through the Lorentz force, but the person pushing the conductor: Calling
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u the velocity along the conductor acquired by the accelerated charges, this velocity
creates inside the magnetic field an electromotive force u × B⃗ against the motion of
the conductor exerting per unit of charge the work,

∫
fpull · dlw = −

∫
(u× B⃗) · dlw =

∫
uBêx · dlw (16.38)

=

∫ h

0

v

tan θ
B cos(90◦ − θ) dh

cos θ
= hvB = E .

We find that the work exerted per unit of charge exactly compensates the electromo-
tive force.

Applying the definition of the magnetic flux (15.12), to the situation illustrated
in Fig. 16.8(b),

ΨM =

∫
B⃗ · dS = Bhx , (16.39)

we can reshape the Eq. (16.37),

hBv = −hBẋ = −dΨM
dt

= E . (16.40)

Hence, the temporal variation of the magnetic flux induces a counteracting electro-
motive force. This is known as Lenz’s rule.

16.2.2 The Faraday-Lenz law

In a series of experiments Michael Faraday demonstrated that the relationship (16.40)
can be generalized to any geometry of the circuit immersed in a magnetic field, to
any velocity of the motion, and even to time-varying geometries. The applications of
this effect are innumerable, see Exc. 16.2.3.1 to 16.2.3.23. Relating the electromotive
force on one side to the generation of a voltage (16.36), E =

∮
E⃗ · dl, and on the other

side to the variation of the flux (16.40), E = −dΨM

dt , we can write,

∮
E⃗ · dl = − ∂

∂t

∫
B⃗ · dS . (16.41)

In the differential version we get,

∇× E⃗ = −∂B⃗
∂t

. (16.42)

Note that, without temporal variations of the magnetic field, we recover electrostatics,
∇× E⃗ = 0.

16.2.2.1 Mutual inductance

Here, we consider two loops of arbitrary shapes. The first loop carries the current I1
and produces a magnetic field, which we can calculate, for example, by Biot-Savart’s
law,

B⃗1 =
µ0I1
4π

∮
dl1 × (r− r′)
|r− r′|3 . (16.43)
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Figure 16.9: Indução.

The part of the magnetic flux passing through the second loop is,

ΨM2 =

∫
B⃗1 · dS2 ≡M21I1 , (16.44)

where M21 is a constant that depends only on the geometry of the two loops. It is
called mutual inductance and can be expressed as,

M21 =
1

I1

∫
∇×A1 · dS2 =

1

I1

∮
A1 · dl2 (16.45)

=
1

I1

∮ (
µ0I1
4π

∮
dl1
|r− r′|

)
· dl2 =

µ0

4π

∮ ∮
dl1 · dl2
|r− r′| .

The symmetry of this formula suggests,

M21 =M12 =M . (16.46)

We can drop the indices and call both constants M . The conclusion of this is that,
regardless of the shapes and positions of the loops, the flux through loop 2 when we
throw a current I into the loop 1 is identical to the flux through 1 when we throw
the same current I into 2,

I1 = I2 = I =⇒
∫
B⃗1 · dS2 =

∫
B⃗2 · dS1 . (16.47)

Example 78 (Dynamo): We consider a rotating coil set in motion by a crank
inside a magnetic field, as shown in the figure. The voltage wasted by the resistor
is,

U =

∮
E⃗ · dl = − d

dt
ΨM = − d

dt

∫
B⃗ · dA = − d

dt
BA cosωt = ωBA sinωt .

16.2.2.2 Self-inductance

The magnetic flux produced by the current in loop 1 not only traverses the second
loop, but also the first loop itself. Therefore, any variation of the flux will also induce
an electromotive force in this loop 1,

ΨM1 =M11I1 ≡ LI1 , (16.48)
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Figure 16.10: Schematic of a generator of alternating voltage (or dynamo).

where the constant L is called self-inductance. With the law of Lenz-Faraday,

E = −dΨM
dt

= −Lİ . (16.49)

Example 79 (Self-inductance of a solenoid): Consider the solenoid shown
in Fig. 16.11. With the formula of the example 72 we calculate the magnetic
flux,

ΨM =

∫
B⃗ · dA = µI

N

l
NπR2 .

Comparing with the formula (16.48), we find self-inductance,

L = µ
N2

l
πR2

Figure 16.11: Scheme of a solenoid characterized by a self-inductance L.

16.2.3 Exercises

16.2.3.1 Ex: Application of the Faraday-Lenz law

The current in a coil characterized by the inductance L = 1mH is linearly reduced in
one second from 1A to 0. Calculate the induced voltage.

Solution: The induced voltage is,

UL = −Lİ = 1mV .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz01.pdf
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16.2.3.2 Ex: Breathing charge distribution

A radially symmetric charge distribution varies over time as λ(t) in a ’breathing
oscillation’,

ϱ(r, t) = ϱ0λ(t)
1

r2
e−aλ(t)r ,

where ϱ0 = const. and a = const.
a. What is the value of the total charge?
b. Calculate the current density j(r, t), which corresponds to ϱ(r, t) from the continu-
ity equation.
c. Determine E⃗(r, t) from the ansatz E⃗(r, t) = E(r, t) rr (radial symmetry).

d. Calculate the corresponding magnetic field B⃗.
e. Show that the solutions for E⃗ and B⃗ satisfy Maxwell’s equations.

Solution: a. The total charge is,

Q =

∫

V

ϱ(r, t)dV = 4πϱ0λ(t)

∫ ∞

0

1

r2
e−aλ(t)rr2dr = 4πϱ0λ(t)

[
e−aλ(t)r

−aλ(t)

]∞

0

=
4πϱ0
a

.

b. From the continuity equation we calculate,

4πr2jr =

∮

∂V
j · dS = −∂t

∫

V
ϱdV = −4πϱ0∂tλ(t)

∫ r

0

e−aλ(t)r
′
dr′

=
4πϱ0
a

∂t[e
−aλ(t)r − 1] = −4πϱ0rλ̇(t)e−aλ(t)r ,

giving,

jr = −
ϱ0λ̇(t)

r
e−aλ(t)r .

c. From the Gauß law,

4πr2Er =
∮

∂V
E⃗ · dS =

∫

V

ϱ

ε0
dV =

1

ε0
4πϱ0λ(t)

[
e−aλ(t)r

−aλ(t)

]r

0

=
4πϱ0
ε0a

(1− e−aλ(t)r) ,

giving,

Er =
ϱ0

ε0ar2
(1− e−aλ(t)r) .

d. The magnetic field is zero, because by symmetry it could only be radial. However,
the rotational radial field is zero, ∇× B⃗ = 0. As the divergent also zeroes, ∇ · B⃗ = 0,
we conclude B⃗ = 0.
e. Maxwell’s first equation then gets,

∇× B⃗ = µ0j+ ε0µ0∂tE⃗ = 0 ,

what we verified with the results of (b) and (c).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_.pdf
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16.2.3.3 Ex: Law of induction

a. Explain the concept of magnetic flux across an area F . How does magnetic flux
depend on the choice of surface?
b. What is the form of Faraday’s induction law? What are the experimental observa-
tions underlying this law?
c. What is the physical content of Lenz’s law?
d. What is Maxwell’s displacement current? Give a physical justification for this cur-
rent.
e. Write down Maxwell’s equations.
f. What is the motivation for introducing the electromagnetic potentials Φ and A?
g. What is the allowed gauge transformation for electromagnetic potentials?
h. What is the meaning of the Lorentz gauge? What advantages does it offer?
i. Formulate the energy conservation law of electrodynamics.
j. What is the physical meaning of the Poynting vector?

Solution: a. The magnetic flux is Ψ =
∫
F
B⃗ · dS. For a given field B⃗ the flux

across two different surfaces with the same edge is the same.
b. Uind =

∮
E⃗ · dS = −dΨ/dt. Temporally varying magnetic fields induce voltages in

conductive loops.
c. The voltage induced by a variable magnetic field generates a current and therefore
a magnetic field oriented opposite to the variation of the original magnetic field.
d. A temporal variation of the electric displacement field ∂D⃗/∂t can be interpreted via
a displacement current. This is the only way current can be transported through a
capacitor, once there is no charge flow possible between the plates.

e. rot H⃗ =
˙⃗D + j, rot E⃗ = − ˙⃗B, div D⃗ = ρ, and div B⃗ = 0.

f. The potentials are introduced by B⃗ = ∇×A = 0 and E⃗ = −∇Φ− dA/dt.
g. Allowed is A′ = A+∇Λ and Φ′ = Φ− dΛ/dt.
h. With ∇·A′/µ0 + ε0dΦ/dt = 0 follows −∆Φ+µ0ε0Φ̈ = ρ/ε0 and −∆A+µ0ε0Ä =
µ0j.
i. du/dt = ∇ · S+ j · E⃗ with u = 1

2 (E⃗ · D⃗ + B⃗ · H⃗).
j. The Poynting vector describes the flow of energy: S = E⃗ × H⃗.

16.2.3.4 Ex: Induction and Lorentz force

Two parallel metal rods are tilted by an angle φ with respect to the ground (see
diagram). Between the rods a third movable rod of mass m and length L placed at

right angles glides without friction. A homogeneous magnetic field B⃗ crosses perpen-
dicularly the plane defined by the three rods. The parallel rods are connected at the
top end by a capacitor C, such that a closed current circuit is formed together with
the transverse rod.
a. Set up the equation of motion for the transverse rod.
b. Determine the solution x(t) of the equation of motion for the initial condition
x(0) = v(0) = 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz03.pdf
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Figure 16.12: Induction.

Solution: a. The equation of motion is,

mẍ = mg sinφ+BIL .

By definition,

I = −dq
dt

and

q = CUind = C(−dΦ
dt

) = −CBdS
dt

= −CBLdx
dt

.

Now we get,

mẍ = mg sinφ+ CB2L2ẍ

or

ẍ =
mg sinφ

m− CB2L2
.

b. The trivial solution of the differential equation is,

x(t) =
mg sinφ

m− CB2L2
t2 .

16.2.3.5 Ex: Magnetic flux and induction

Consider the conductive ring of radius l and negligible electrical resistance shown in
the figure. Perpendicular to the plane of the ring there is a homogeneous magnetic
field B⃗. A rod 2 rotates with angular frequency ω. Calculate the current I across the
resistance R of another resting rod 1.

Figure 16.13: Induction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz04.pdf
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Solution: The voltage induced by the decrease of the left area is,

Uind,e = −
dΦ

dt
= −B⃗ ·∆Se

∆t
,

where

∆Se =
l(ldϕ)

2
êz ,

with dϕ the angle of variation of the rotary motion. Therefore, the induced voltage is,

Uind,e = −
Bl2
2

dϕ

dt
= −−Bωl

2

2
.

At the same time, the right area grows by an area,

∆Sdêz = −∆Se(−êz) .

inducing a voltage,

Uind,d =
Bωl2
2

.

Hence, the two voltages produce a current going through the resistor,

I = −|Uind,e|
R

− |Uind,d|
R

=
ωBl2
R

.

The directions of the currents must be the same, since following Lenz’s law, Ie must
generate a magnetic field supporting the diminishing flux in the area Se and Id must
generate a field preventing the increasing flux in the area Sd. Alternatively we calcu-
late:

E =

∫
E⃗ ·dl = 1

q

∫
F ·dl =

∫ l

0

vtot×B⃗dl =
∫ l

0

(−ωlêϕ−viêρ)×B⃗dl =
ωl2B

2
−viBlêϕ .

16.2.3.6 Ex: Induction

Consider the conductive loop at right angle shown in the figure. There is a homoge-
neous magnetic field given by,

B⃗(r) = B0êy .
The conductive loop rotates around the bending axis (z-axis) with constant angular
frequency.ω.
a. What is the voltage induced in the loop as a function of time?
b. Calculate the time average of the induced voltage.

Solution: a. We calculate the flux Φ as a function of the rotation angle ϕ by sep-
arately considering the areas A1 and A2 defined by the two parts of the loop. The

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz05.pdf
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Figure 16.14: Induction.

flux through the area A1 is Φ1 = B0 · h · a · cosϕ, and the flux through the area A2 is
Φ2 = B0 · h · a · sinϕ. So the total flux is,

Φtot = Φ1 +Φ2 .

The derivative of the total flux is,

d

dt
(B0ha(cosϕ+ sinϕ)) = B0ha(−ϕ̇ sinϕ+ ϕ̇ cosϕ) ,

and with ϕ = ωt resp. ω = ϕ̇ follows,

Φ̇tot = B0haω[cos(ωt)− sin(ωt)] = B0ha
√
2 sin(π4 − ωt) .

The induced voltage now follows via,

Uind = −Φ̇tot = −ωB0ha
√
2 cos(π4 − ωt) .

b. Also,
2π/ω∫

0

dt[cos(ωt)− sin(ωt)] = 0→ Ūind = 0 .

16.2.3.7 Ex: Induction

A circular ring with radius R rotates with constant angular velocity ω around a di-
ameter. Perpendicular to the rotation axis there is a magnetic field B⃗.
a. Calculate the voltage induced in the ring as a function of time.
b. The ring consists of a metallic wire with conductivity σ. What current I(t) flows
through the ring, assuming the current is evenly distributed across the cross section
of the wire?

Solution: We call ên the normal vector perpendicular to the area spanned by the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz06.pdf
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wire. So the surface element is, dS = dSên, and for the angle ϕ(t) that the B⃗-field
forms with ên, holds ϕ(t) = ω(t− t0).
a. For the induced voltage,

Uind = −
∂

∂t
Φ(t) ,

and

Φ(t) =

∫

circular area

dF · B⃗ =

∫

circular area

df ên · B⃗

= B cos[ω(t− t0)]
∫

circular area

df = BπR2 cos[ω(t− t0)]

hence,

Uind = BπR2ω sin[ω(t− t0)] .

b. For the conductive ring holds,

Uind =

∫

circularborder

E⃗ · dr =
1

σ

∫

circular border

j · dr =
I

σA

∫

circular border

dr =
2πR

σA
I .

From this, and using (a) follows immediately,

I(t) =
1

2
σBARω sin[ω(t− t0)] .

16.2.3.8 Ex: Induction

An equidistant triangle-shaped conductive loop (edge length S) in the xy-plane is
’immersed’ with constant velocity v = vêx starting at the tip into a homogeneous
magnetic field B⃗ = Bêz (B is constant) (see diagram) until being completely inside
the magnetic field.
a. Calculate the maximum voltage induced in the loop.
b. Make a scheme of the time evolution of the induced voltage.

 
a) Geben Sie zuerst die Ladungsdichte ),,()( zrr ϕρρ =

r  in Zylinderkoordinaten an. 
Lassen Sie nun die gesamte Anordnung mit konstanter Winkelgeschwindigkeit ω um ihre 
Symmetrieachse (d. h. die z-Achse) rotieren. Geben Sie die resultierende Stromdichte 
ebenfalls in Zylinderkoordinaten an.  
(Hinweis: , wobei )()()( rvrrj rrrrr

⋅= ρ )(rv rr  die Geschwindigkeit am Ort rr  ist.) 
 
b) Bestimmen Sie durch explizite Rechnung das magnetische Dipolmoment 

∫ ×= )(
2
1 3 rjrrdm rrrr  der rotierenden Anordnung. 

 
 
Aufgabe 5: Potenziale      (5 Punkte) 
 
Es seien je ein Skalar- und ein Vektorpotenzial gegeben: 
 

tiz e
r
erbtr ω
3

ˆ
),(

r
r

=Φ    und z
ti

ikr

ee
r

eikbtrA ˆ),( ω=
rr , 

 
wobei ck=ω und rr r

=  gelten soll. 

Berechnen Sie das zugehörige elektrische Feld ),( trE rr
und die magnetische Induktion ),( trB rr

. 
 
 
Aufgabe 6: Induktion       (5 Punkte) 
 
Eine Leiterschleife in Form eines gleichseitigen Dreiecks 
(Seitenlänge S)  in der xy – Ebene wird mit konstanter 
Geschwindigkeit xevv rr

=       (v ist konstant) und Spitze voran in ein 

homogenes Magnetfeld zeBB rr
=  (B nt) „getaucht“ (siehe 

Abbildung), bis sie sich vollständig im Magnetfeld befindet. 
 

ist konsta

) Berechnen Sie die maximale Spannung, die in der Leiterschleife induziert wird (4 Punkte). 

Aufgabe 7: zirkulare Polarisation     (6 Punkte) 

Das elektrische Feld einer zirkular polarisierten el.magn. Welle im Vakuum ist durch 

 
a
b) Skizzieren Sie den zeitlichen Verlauf der induzierten Spannung (1 Punkt). 

 
 
 

 

[ ])cos(ˆ)sin(ˆ),( 0 tkzetkzeEtrE yx ωω −+−=
rr

 
gegeben. 

n Sie den zugehörigen Wellenzahlvektor k
r

a) Gebe  an (1 Punkt). 
b) Berechnen Sie die zugehörige magnetische Induktion ),( trB rr

(2 Punkte). 
c) Berechnen Sie den Poyntingvektor ),( trS rr (2 Punkte). 
d) Der Energiefluss der el.magn. Welle betrage 10 W/m². Berechnen Sie die Amplituden 

des elektrischen Feldes und der magnetischen Induktion (1 Punkt). 

 2

Figure 16.15: Induction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz07.pdf
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Solution: Calculation of the induced voltage,

Uind =

∮
E⃗ · dl =

∫
(∇× E⃗) · dS = − d

dt

∫
B⃗ · dS = −dΨ

dt
.

Hence,

Ψ(t) =

∫

A

B⃗ · df = B
∫

A

df = BA(t) ,

since B⃗∥dS and B = const. Now,

A(t) =
1

2
s(t)v(t) =

1√
3
v2t2

since h2 + s2

4 = s2 resp. h(t) =
√
3
2 s(t) = vt. With that we get for the flux and the

induced voltage,

Ψ(t) =
1√
3
Bv2t2 and Uind(t) = −

2√
3
Bv2t .

The maximum voltage is finally,

Umax
ind = Uind(t = T )

with T = H
v =

√
3

2v s.

16.2.3.9 Ex: Induction

A rectangular conducting loop with height 2a and width 2b rotates with angular ve-
locity ω around the z-axis. At time t = 0 the conducting loop is in the xz-plane.
In addition, the loop is exposed to the inhomogeneous time-varying magnetic field
B⃗(r, t) = B0tz2êx.
a. Show, ∇ · B⃗(r, t) = 0.

b. Calculate the magnetic flux Ψ(r, t) =
∫
B⃗ · dF through the rotating loop as a func-

tion of time.
c. What is the value of the voltage Uind(t) induced in the loop as a function of time?

Solution: a. Obvious.
b. The normal vector of the area is time-dependent dS = êxdS sinωt + êydS cosωt.
Therefore, the magnetic flux is,

Φ(r, t) =

∫
B⃗ · dS =

∫
B0tz2êx · (êxdx sinωt+ êydy cosωt) dz

= B0t sinωt
∫ a

−a

∫ b

−b
z2 dxdz = B0t sinωt [x]b−b

[
z3

3

]a

−a
=

4a3b

3
B0t sinωt .

c. The induced voltage is,

Uind(t) = −Ψ̇(t) = −4

3
ba3B0[sinωt+ ωt cosωt] .
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Figure 16.16: Induction.

16.2.3.10 Ex: Induction in a coil

Calculate the magnetic B-field in the middle and at the end of a coil of length L = 1m.
The number of turns is N = 2000, the radius r = 2 cm, and the current through the
coil I = 5A. To do this first calculate, using the Biot-Savart law, the magnetic field
B1(0, 0, z) of a single circular conductor with radius r located at a point z1 of the
coil’s symmetry axis. Use the formula obtained for B1 to describe the magnetic field
generated by a coil element dz.

Solution: The magnetic field of a conductive loop about its symmetry axis has already
been calculated,

B⃗loop(z) =
µ0I

2

r2
√
r2 + z2

3 êz .

For the whole coil holds,

B⃗(z) =
2000∑

n=1

µ0I

2

r2
√
r2 + (z − nL/N)2

3 êz =
µ0NI

L

r2

2
êz

∫ L

0

1
√
r2 + (z − z′)23

dz′

=
µ0NI

L

r2

2
êz

√
r2 + z2(L− z) + z

√
r2 + (z − L)2

r2
√
r2 + z2

√
r2 + (z − L)2

=
µ0NI

2L
êz

√
r2 + z2(L− z) + z

√
r2 + (z − L)2√

r2 + z2
√
r2 + (z − L)2

.

At the given positions we have,

B⃗(L/2) = µ0NIêz
1√

4r2 + L2
≃ µ0NIêz

1

L
,

B⃗(0) = µ0NIêz
1

2
√
r2 + L2

≃ µ0NIêz
1

2L
.

16.2.3.11 Ex: Induction in a rectangular mesh

A rectangular conducting loop has the length a and the width b. In the same plane
defined by the loop, parallel to a distance d is a straight conductor traversed by a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_FaradayLenz09.pdf
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current I, as shown in the figure.
a. Calculate the magnetic field produced by the current.
b. Calculate the flux through the loop.
c. Calculate the self-inductance imposed on the current circuit by the existence of the
loop.
d. Linearize the expression of self-inductance for b/d≪ 1.

⋆ Hausaufgabe 4 (Induktion auf Rechteckschleife)

Eine rechteckige Leiterschleife hat die Länge a und die Breite b.
In einer Ebene mit ihr verläuft im Abstand d parallel ein gerader
Leiter. Sein Strom I erzeugt das Magnetfeld

~B =
mu0

2π

I

ρ
êφ .

Die Induktion ist definiert durch

Uind = −Lİ ,

B( )f

I

d b

a

und die in der Leiterschleife induzierte Spannung Uind hängt mit dem magnetischen Fluss
Φ durch sie über das Faradaysche Induktionsgesetz

Φ̇ = −Uind

zusammen.
a) Zeigen Sie, dass die Induktion

L =
mu0

2π
a ln

(
1 +

b

d

)
(1)

ist.
b) Für Abstände d = 10 m, Länge a = 1 m und Breite b = 1 cm ist b/d ≪ 1 und der
Logarithmus kann linearisiert werden. Führen Sie die entsprechende Taylor-Entwicklung
durch und geben Sie für diesen Fall den Zahlenwert für 2πL/µ0 an.

Abgabe: Montag, 30.7.2008 um 12h, Kasten im Eingangsbereich D-Bau.
Bitte Namen und Übungsgruppe deutlich auf dem Blatt vermerken!!
http://www.pit.physik.uni-tuebingen.de/Courteille/Uebungen.htm

Figure 16.17: Induction.

Solution: a. By the law of Ampère, 2πρBρ =
∮
B⃗ · l = µ0I, we find,

B⃗ =
µ0I

2πρ
êϕ .

b. The flux is,

ΨM =

∫
B⃗ · dS =

∫ d+b

d

∫ a

0

µ0I

2πρ
êϕ · êϕdzdρ =

µ0Ia

2π
ln

(
1 +

b

d

)
.

c. The self-inductance L is defined by,

Uind = −Lİ .
On the other hand, the voltage induced in the loop, Uind, depends on the magnetic
flux ΨM through Faraday’s induction law,

Ψ̇M = −Uind .
The variable varying in time is the current I ≡ I(t), which leads to a temporal vari-
ation of the flux Φ ≡ Φ(t). Comparing the two equations we get,

L =
µ0

2π
a ln

(
1 +

b

d

)
.

d. With the linearization ln(1+x) ≈ x (truncation of the Taylor expansion for |x| ≪ 1
very small) we get,

L =
µ0

2π

ab

d
.
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16.2.3.12 Ex: Falling rod

A metal rod of L = 1m length falls in the gravitational field of the Earth. At time
t = 0 the initial velocity is 0. The rod is oriented parallel to the ground. Perpendicu-
lar to the rod and parallel to the ground there is a magnetic field B⃗ with the absolute
value 2 · 10−5 T.
a. What voltage is induced between the ends of the rod as a function of the distance
traveled h?
b. What value is obtained for the voltage after a fall of 5m?

Probeklausur im Integrierten Kurs Physik II, SS 2008, 30.06.2008 
besprochen in den Präsenzstunden 11 und 12 

 
 
Aufgabe 1: Schaltung mit zwei Batterien    (8 Punkte)  
 
Zwei Batterien 1 und 2 (Spannungen 
U1=2 V und U2 = 0.5 V, sowie drei 
Widerstände R1 = R2 = R3 = 1 Ω sind wie 
in der Abbildung geschaltet.  
a) Welche Ströme fließen durch die 
Widerstände R1, R2 bzw. R3? 
b) Wie groß ist der Spannungsabfall 
zwischen den Punkten A und B? 
 

R1

R2

U1

U2

R3

A B

 
 
Aufgabe 2: Induktiver Schaltkreis          (8 Punkte) 
 
Wir betrachten eine Reihenschaltung aus einer langen 
Spule, einer Spannungsquelle (Spannung U) und einem 
ohmschen Widerstand R = 100 Ω. Die Spule hat 50 
Windungen pro cm und eine Induktivität von 200 mH. 
Für Zeiten t < 0 fließe kein Strom durch die Spule. Zur 
Zeit t = 0 werde die Spannung schlagartig von 0 auf 10 V 
erhöht.  
Nach welcher Zeit erreicht das Magnetfeld in der Spule 
π⋅10-4 T?  
 

 

R

LU

 
 
Aufgabe 3: Fallender Stab       (6 Punkte) 
 
Ein metallischer Stab (Länge L = 1 m) fällt im 
Gravitationsfeld der Erde (Bei t = 0 sei die 
Anfangsgeschwindigkeit 0). Der Stab sei parallel zum 
Erdboden orientiert, senkrecht zum Stab und parallel zum 
Erdboden herrsche das Magnetfeld B

r
 (Betrag: 2⋅10-5 T).  

 

v

B

Welche Spannung wird zwischen den Enden des Drahtes in Abhängigkeit von der Fallstrecke 
h induziert?  
Welchen Spannungswert erhalten Sie nach einem Fall von 5 m? 
 
 
Aufgabe 4: Leitende Kreisringe     (8 Punkte) 
 
Gegeben seien zwei "unendlich dünne", leitende, konzentrische Ringe mit Radien a und b (a 
< b). Die Ringe sollen in der xy-Ebene liegen und ihren gemeinsamen Schwerpunkt im 
Ursprung haben. Auf dem inneren Ring möge sich homogen verteilt (d. h. mit konstanter 
Streckenladungsdichte) die Ladung +q, auf dem äußeren homogen verteilt die Ladung -q 
befinden. 

 1

Figure 16.18: Induction.

Solution: a. Following Faraday’s law we have,

Uind =

∮

C

E⃗ · dℓ⃗ = − d

dt

∫
B⃗ · dS = − d

dt
[BL(x0 +

g

2
t2)] = BLgt = BL

√
2gh .

Alternatively, we consider the rod as a Hall probe. The condition for an equilibrium
of charges,

FC = qE = q
Uind
L

= qgtB = qvB = FL .

Hence we get the same result.
b. Entering the distance of 5m, we get,

Uind = BL
√

2gh ≈ 1.98 · 10−4 V .

16.2.3.13 Ex: Sliding rod

We consider two parallel metal rails (distance d = 10 cm) inclined by an angle ϕ with
respect to the ground. Between the rails slides a frictionless rod (mass M = 100 g).
At a right angle to the plane defined by the rails there is a homogeneous magnetic
field B (amplitude: 0.1T). We sent a current of I = 9.8A through the rails and
through the rod. What is the maximum allowable value of ϕ necessary to let the rod
move upward along the rails?

Solution: With Ampère we know dF = Idl× B⃗. Therefore, the force on the moving
rod is given by FI = IdB; it goes in the direction of the rails. It should point upward,
but for this, either B⃗ or I must be opposite.
In z-direction downward acts the force of the weight FG = Mg, which has a compo-
nent −Mg sinϕ along the rails. In order for the transverse rod to slide up, we need
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Universität Tübingen SoSe 2008
Hausaufgaben zum Integrierten Kurs Physik II Blatt 10
23.7.2008

⋆ Hausaufgabe 1 (Gleitender Stab)

Gegeben Seien zwei parallele metallische Stangen (Ab-
stand d = 10 cm), die einen Winkel φ zum Erdboden
einnehmen. Zwischen den Stangen gleite reibungsfrei
ein beweglicher Stab (Masse M = 100 g). Im rechten
Winkel zu den Stangen liege ein homogenes Magnetfeld
~B (Betrag: 0.1 T) an. Wir schicken jetzt einen Strom
I = 9.8 A über den Stab von einer Stange zur anderen.
Wie groß darf φ höchstens sein, damit der Stab entlang
der Stangen nach oben gleitet?

I I

I

v

d

x

z

B
v

g

f

Hausaufgabe 2 (Koaxialkabel)
Ein Koaxialkabel besteht aus einem geraden zylindrischen Leiter vom Radius a und einem
dünnen zylindrischen Hohlleiter vom Radius b > a. Zwischen den Leitern bestehe eine
Spannungsdifferenz U , und in ihnen fließen entgegengesetzte Ströme I. Berechnen Sie den
Poyntingvektor im Hohlraum und die durch den Kabelquerschnitt transportierte Leistung.
Hinweis: Berechnen Sie das elektrische Feld zwischen den Leitern mit dem Gaussgesetz
(siehe auch Hausaufgabe 1 in Blatt 6) und das Magnetfeld zwischen den Leitern mit dem
Amperschen Durchflutungsgesetz.

⋆ Hausaufgabe 3 (Mathe: komplexe Zahlen)
Lösen Sie folgende Gleichungen für z = a + ib eine komplexe Zahl:

z

1 + i
− z

1 − i
= 1 + (z − z̄) sin(π + i ln 3) , − 2iz =

1 + z̄

1 + i
.

Berechnen Sie Betrag, Real- und Imaginärteil von

2i − 1

i − 2
, (1 + 2i)3 ,

3i

i −
√

3
.

Figure 16.19: Sliding rod.

IdB > Mg sinϕ, that is, ϕ < arcsin(IdB/Mg) ≈ 5.6◦.

16.2.3.14 Ex: Conductive ring in oscillating magnetic field

A circular conductive loop (inductance L, resistance R) is traversed by an oscillating
magnetic flux, Ψ = Ψ0e

ıωt.
a. Calculate the amplitude of the current in the conductor as well as its phase relative
to Ψ.
b. What is the average power dissipated in the conductor? Also discuss the limiting
cases ω → 0 and ω →∞.
Help: Start setting up an equivalent circuit incorporating a voltage source, a resis-
tance, and an inductance.

Solution: a. The equivalent circuit consist of a voltage source U , a resistance R,
and an inductance L in series. The induced voltage Uind = −Ψ̇ = −ıωΨ0e

ıωt corre-
sponds to the voltage source U . With this we have U = (R + ıωL)I or I = U

R+ıωL =
−ıωΦ0

R+ıωLe
ıωt = I0e

ıωt. Holds,

I0 =
−ıω

R+ ıωL
Ψ0 =

−ıω(R− ıωL)
R2 + ω2L2

Ψ0 =
ω2L− ıωR
R2 + ω2L2

Ψ0 ,

with the absolute value,

|I0| =
√
I0I∗0 =

−ıωΨ0

R+ ıωL
=

ωΨ0√
R2 + ω2L2

and the phase,

δ = arctan
−ωRΨ0

ω2LΨ0
= arctan

−R
ωL

.

b. The power is,

P = UI∗ = −ıωΦ0
ıωΨ0

R− ıωL =
ω2Ψ2

0R+ ıω3Ψ2
0L

R2 + ω2L2
= PW + ıPB .
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The average active power is,

PW =
Ψ2

0

2

Rω2

R2 + ω2L2
.

In the limiting case ω → 0 we have PW → 0. In the limiting case ω → ∞ we have

PW → Ψ2
0

2
R
L2 .

16.2.3.15 Ex: Self-inductance of a current loop

Calculate the self-inductance of a current loop.

Solution: The current density can be parametrized as j(r) = Iδ(ρ − R)δ(z)êϕ. The
potential vector is,

A(r) =
µ0

4π

∫
j(r′)
|r− r′|d

3r′ .

According to Biot-Savart law the magnetic field is,

B⃗(r) = µ0

4π

∫
∇× j(r′)

|r− r′|d
3r′ =

µ0

4π

∫
d3r′

(r− r′)× j(r′)
|r− r′|3

=
µ0I

4π

∫
ρ′dρ′dϕ′dz′

δ(ρ′ −R)δ(z′)(r− r′)× êϕ′

|r− r′|3

=
µ0I

4π

∫
ρ′dρ′dϕ1dz′

δ(ρ′ −R)δ(z′)




ρ cosϕ− ρ′ cosϕ′

ρ sinϕ− ρ′ sinϕ′

z − z′


×




− sinϕ′

cosϕ′

0




√
(ρ cosϕ− ρ′ cosϕ′)2 + (ρ sinϕ− ρ′ sinϕ′)2 + (z − z′)23

=
µ0I

4π

∫
Rdϕ′




−z cosϕ′

−z sinϕ′

(ρ cosϕ−R cosϕ′) cosϕ′ + (ρ sinϕ−R sinϕ′) sinϕ′




√
(ρ cosϕ−R cosϕ′)2 + (ρ sinϕ−R sinϕ′)2 + z2

3 .

The field through z = 0 plane is,

Bz(x, y) =
µ0IR

4π

∫ 2π

0

dϕ′
(ρ cosϕ−R cosϕ′) cosϕ′ + (ρ sinϕ−R sinϕ′) sinϕ′
√
(ρ cosϕ−R cosϕ′)2 + (ρ sinϕ−R sinϕ′)2

3

=
µ0IR

4π

∫ 2π

0

dϕ′
ρ cosϕ cosϕ′ + ρ sinϕ sinϕ′ −R

√
ρ2 +R2 − 2ρR cosϕ cosϕ′ − 2ρR sinϕ sinϕ′

3

=
µ0IR

4π

∫ 2π

0

dϕ′
ρ cos(ϕ− ϕ′)−R

√
ρ2 +R2 − 2ρR cos(ϕ− ϕ′)3

=
µ0IR

4π

∫ 2π

0

dα
ρ cosα−R

√
ρ2 +R2 − 2ρR cosα

3 ,
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and the flux through the z = 0 plane is,

Ψ =

∫
A

Bz(x, y)dA =
µ0IR

4π

∫ 2π

0

dϕ

∫ R

0

ρdρ

∫ 2π

0

dα
ρ cosα−R√

ρ2 +R2 − 2ρR cosα
3

=
µ0IR

4π
2π

∫ R

0

ρdρ

∫ 2π

0

dα
ρ cosα−R√

ρ2 +R2 − 2ρR cosα
3 =

µ0IR

4π
2π

∫ 2π

0

dα

∫ 1

0

ζdζ
ζ cosα− 1√

ζ2 + 1− 2ζ cosα
3

=
µ0IR

4π
2π

∫ 2π

0

dα
−2 cosα+

(
cosα ln(− cosα+ 1 +

√
2− 2 cosα)

)√
2− 2 cosα+ 1− (cosα ln(− cosα+ 1))

√
2− 2 cosα−

√
2− 2 cosα√

2− 2 cosα

=
µ0IR

4π
2π

∫ 2π

0

dα
−2 cosα+

(
cosα ln

(
− cosα+ 1 + 2 sin α

2

))
2 sin α

2
+ 1− (cosα ln(− cosα+ 1))2 sin α

2
− 2 sin α

2

2 sin α
2

=
µ0IR

4π
2π4 = 2µ0IR .

Finally, self-inductivity becomes,

L =
Φ

I
= 2µ0R .

When there are N windings, we have,

LN = N2L .

16.2.3.16 Ex: Potentials

Be given are scalar potential and vector potential:

Φ(r, t) = b
rêz
r3

eıωt and A(r, t) = ıkb
eıkr

r3
eıωtêz ,

where ω = ck and r = |r|. Calculate the corresponding electric field E⃗(r, t) and the

magnetic field B⃗(r, t).

Solution: With the given potentials,

∇ϕ = beıωt∇ z

r3
= beıωt




d
dx

z
(x2+y2+z2)3/2

d
dy

z
(x2+y2+z2)3/2

d
dz

z
(x2+y2+z2)3/2


 =

beıωt

r5




−3xz
−3yz
r2 − 3z2


 ,

and
∂

∂t
A =

∂

∂t
ıkbeıωt

eıkr

r
êz = −kωbeıωt

eıkr

r
êz .

With this the E⃗-field becomes,

E⃗ = −∇ϕ− ∂A
∂t

= −be
ıωt

r5




−3xz
−3yz
r2 − 3z2


+kωbeıωt

eıkr

r
êz = beıωt




3xz
r5

3yz
r5

3z2−r2
r5 + kω e

ıkr

r


 .
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The B⃗-field becomes,

B⃗ = ∇×A = ∇×




0

0

ıkb e
ıkr

r3 e
ıωt


 = eıωtbk(kr + 3ı)

eıkr

r5




−y
x

0


 .

16.2.3.17 Ex: Motion-induced electromotive force

In the figure a conductive rod of mass m and negligible resistance is free to slide
without friction along two parallel rails that have negligible resistances, are separated
by a distance ℓ, and connected by a resistance R. The rails are attached to a long
plane inclined by an angle θ from the horizontal. There is a magnetic field pointing
upwards as shown.
a. Show that there is a retarding force directed upward on the inclined plane given
by F = (B2ℓ2v cos2 θ)/R.
b. Show that the terminal velocity of the stick is vt = mgR sin θ/(B2ℓ2 cos2 θ).

Figure 16.20: Motion-induced electromotive force.

Solution: a. The induced voltage is,

Uind = −Ψ̇ = −B⃗ · Ȧ = −B d
dt

(ℓvt cos θ) = −Bℓv cos θ ,

creating a current,

I =
Uind
R

,

creating a Lorentz force,

FL = IℓB = −Bℓv cos θ
R

ℓB .

The projection of the force onto the plane of the rails is,

Fθ = FL cos θ = −B
2ℓ2v cos2 θ

R
.
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b. This force is in equilibrium with the gravitational acceleration force, Fg = mg sin θ,
when,

−B
2ℓ2vt cos

2 θ

R
= mg sin θ ,

giving the final velocity,

vt =
mgR sin θ

B2ℓ2 cos2 θ .

16.2.3.18 Ex: Induction

An insulated wire with resistance of 18.0Ω/m and length of 9.0m will be used to
build a resistor. First the wire is bent in half and doubled, and then the double wire
is wound into a cylindrical shape (see figure) to create a 25 cm long, 2.0 cm diameter
helix. Determine the resistance and inductance of this twisted wire resistor.

Figure 16.21: Induction.

Solution: L = 0, R = 162Ω.

16.2.3.19 Ex: R-L-circuit

In the circuit shown in the figure the inductor has negligible internal resistance, and
the switch S has been left open for a long time. Now, the switch is closed.
a. Determine the current in the battery, the current in the 100Ω resistor, and the
current in the inductance immediately after the switch has been closed.
b. Determine the current in the battery, the current in the 100Ω resistor, and the
current in the inductance a long time after the switch has been closed.
c. After being closed for a long time, the key is now opened again. Determine the
current in the battery, the current in the 100Ω resistor, and the current in the induc-
tance immediately after the switch has been opened.
d. Determine the current in the battery, the current in the 100Ω resistor, and the
current in the inductance a long time after the key has been reopened.

Solution: a. Immediately after the switch has been closed the inductor has an in-
finite resistance such that all current flows through the 100Ω,

IL = 0 and IR =
U

R100 +R10
=

10

110
A .
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100 �2 H

10 V

10 �

S

Figure 16.22: Circuit.

b. A long time after the key has been closed the inductor has zero resistance such that
all current flows through the inductance,

IR = 0 and IL =
U

R10
= 1A .

c. Immediately after the switch has been opened the inductance produces an induced
voltage trying to preserve the magnetic field, i.e. the current. This is only possible if
the current is deviated to the 100Ω resistor,

IL = IR =
U

R10
= 1A .

d. A long time after the switch has been reopened all magnetostatic energy stored in
the inductance is spent in the resistor, and the current disappears,

IR = 0 and IL = 0 .

16.2.3.20 Ex: Low pass filter

The circuit shown in the figure is an example of a low-pass filter. (Consider that the
output is connected to a load that conducts negligible current.)
a. If the input voltage is given by Vin = Vin,pico cosωt, shows that the output voltage

is Vout = VL cos(ωt− ϕ), where VL = Vin,pico/
√
1 + (ωRC)−2.

b. Discuss the trend in the limiting cases ω → 0 and ω →∞.

C

R

Ventrada Vsaida

Figure 16.23: Low pass filter.

Solution: a. We have,

Vout = Vin

1
iCω

R+ 1
iCω

.

With this,

|Vout| = |Vin|
√

1

1 + (ωRC)2
.
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b. For ω → 0 we get,
Vout = Vin ,

and for ω →∞ we get,
Vout = 0 .

Gabartite: b. VL
→0−→ Vin,pico and VL

→∞−→ 0.

16.2.3.21 Ex: Notch filter

The circuit shown in the figure is a cutoff filter. (Consider that the output is con-
nected to a load carrying a negligible current.)
a. Show that the cutoff filter rejects signals in a frequency band centered in ω =
1/
√
LC.

How does the width of the rejected frequency band depend on R?

C

R

Ventrada Vsaida
L

Figure 16.24: Notch filter.

Solution: a. We have,

Vsaida = Vent
iLω + 1

iCω

R+ iLω + 1
iCω

.

With this,

|Vsaida| = |Vent|
Lω − 1

Cω√
R2 +

(
Lω − 1

Cω

)2 .

b. ∆ω = R
L .

16.2.3.22 Ex: Effective power

Show that the expression Pmed = RE2rms/Z2 provides the correct result for a circuit
containing only one ideal ac-generator and
a. one resistor R,
b. one capacitor C and
c. one inductance L. In the given expression, Pmed is the average power supplied by
the generator, Erms is the average quadratic value of the emf-generator.

Solution: We have,

Pmed =
1

T

∫ T

0

UIdt = .
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16.2.3.23 Ex: R-L-C-circuit

In the circuit shown in the figure the ideal generator produces a voltage of 115V when
operated at 60Hz. What is the rms-voltage between the points
a. A and B, b. B and C, c. C and D, d. A and C, and e. B and D?

50W

A B

D C

137mH

25mF

115V

60Hz

Figure 16.25: Circuit.

Solution: a. 80V, b. 78V, c. 170V, d. 110V, e. 180V.

16.3 Magnetostatic energy

To calculate the magnetostatic energy stored in a magnetic field we will proceed as
follows: We will look for a general expression guessed by analogy with the electro-
static energy, W = 1

2

∫
ϱΦdV , and show that, applied to a current-carrying loop, this

expression gives the correct result. The analogous formula is,

W = 1
2

∫
j ·AdV . (16.50)

16.3.1 Energy density of a magnetostatic field

The energy of a current distribution can be rewritten using Ampere’s law,

W = 1
2µ0

∫
(∇× B⃗) ·AdV . (16.51)

Integration by parts allows transferring the derivative from B⃗ to A,

W = 1
2µ0

[
−
∮
(A× B⃗) · dS+

∫
B⃗ · (∇×A)dV

]
. (16.52)

The surface integral can be neglected because we can choose the integration volume
V to be arbitrarily large. Expressing the rotation by the field,

W = 1
2µ0

∫
B⃗2dV = 1

2µ0

∫
udV , (16.53)
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and introducing the energy density,

u ≡ 1
2µ0
B⃗2 . (16.54)

It may seem strange, that we need energy to build up a magnetic field which in
turn can not exert work. On the other hand, to create this magnetic field, we have to
ramp it up from zero which, according to Faraday’s law induces an electric field. This
field, in turn, can work. Initially there is no E⃗ and at the end of the process there is
no E⃗ neither; but in between, while B⃗ is being constructed, there is. The work has to
be exerted against the E⃗-field.

16.3.2 Inductors and storage of magnetostatic energy

Using the magnetostatic energy formula,

W = 1
2

∫
j ·AdV = 1

2

∮
I ·Adl = I

2

∮
A ·dl = I

2

∫
(∇×A) ·dS = I

2

∫
B⃗ ·dS = I

2ΨM .

(16.55)
Finally, considering a coil and using the formula (16.48),

W = 1
2LI

2 , (16.56)

which corresponds to the power,

dW

dt
= −EI = LI

dI

dt
. (16.57)

16.3.3 Exercises

16.3.3.1 Ex: Switching processes

Consider the RL-circuit show in the figure, where the ohmic resistor R = R(t) varies
over time. Let τ be the length of the switching-on process starting at time t = 0. The
resistance be,

R(t) =





∞ for t < 0

R0τ/t for 0 ≤ t ≤ τ
R0for τ ≤ t

.

a. Set up for the time intervals t ∈ [0, τ ] and t ∈ [τ,∞] separate differential equations
for the current I(t).
b. Solve the differential equations (using a simple ansatz or a method of variable sep-
aration) and connect the solutions continuously at t = τ . What is the condition for
fast or slow switching?

Solution: a. The differential equation to solve Lİ(t) + R(t)I(t) = U becomes for
0 ≤ t ≤ τ

Lİ<(t) +
R0τ

t
I<(t) = U .
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Figure 16.26: Circuit.

For t ≥ τ the equation is,
Lİ>(t) +R0I>(t) = U .

b. For 0 ≤ t ≤ τ with the ansatz I<(t) = αt we obtain α = U
L+R0τ

, hence,

I<(t) =
U

L+R0τ
t .

For t ≥ τ with the ansatz I>(t) = βe−κt+γ we obtain −κLβe−κt+R0 (βe
−κt + γ) =

U , hence,

γ =
U

R0
and κ =

R0

L
,

and finally,

I>(t) = βe−
R0
L t +

U

R0
.

The continuity of the current requires I<(τ) = I>(τ), which means,

β = −e
R0
L τ

(
U

R0
− U

L+R0τ
τ

)
.

With this,

I>(t) =
U

R0

(
1− L/R0

L/R0 + τ
e−

R0
L (t−τ)

)
.

The final value U/R0 is reached exponentially. The temporal constant of the switching
is L/R0. For τ ≪ L/R0 the switching is fast I(τ)≪ U/R0. For τ ≫ L/R0 it is slow
I(τ) ≈ U/R0.

16.3.3.2 Ex: Current density of a rotating charge

The surface of a hollow sphere with radius R carries a uniformly distributed charge Q.
The sphere rotates with the constant angular velocity ω around one of its diameters.
a. Determine the current density j(r) generated by this movement.
b. Calculate the magnetic moment produced by j.
c. Derive the components of the potential vector A(r) and the magnetic field B⃗(r).

Solution: The charge density is, ρ(r) = Q
4πR2 δ(r−R). The current density is j(r) =

ρ(r)v(r) = ρ(r)(ω⃗ × r). In the coordinate system defined by ω⃗ = ωêz = ω(0, 0, 1) the
surface normal is given by r = Rêr = R(sin θ cosϕ, sin θ sinϕ, cos θ). With that we
get, êz × êr = sin θêϕ and finally the current density,

j(r) =
Qω

4πR
sin θδ(r −R)êϕ .
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16.3.3.3 Ex: Train track

The two iron rails of a toy train have a thickness of d = 5mm and a reciprocal dis-
tance of a = 50mm They are connected by a metal rod of mass m = 0.5 g, which is
movable without friction in a direction perpendicular to the rails. A current applied
to the rails, which also runs through the metal rod, causes the rod to accelerate along
the rails.
a. Calculate the magnetic field between the two rails, if through them runs the same
current I but in inverse directions. Neglect inhomogeneities at the ends of the rails
and the magnetic field generated by the current passing through the rod.
b. How strong is the force accelerating the rod along the rails?
c. What current would be needed to accelerate the rod over a distance of l = 5m, up
to a speed of 10m/s? Ignore all friction effects.

Hausaufgaben (Abgabe: 26.06.2007)

16) Eisenstabbahn

5

Zwei parallele Modelleisenbahnschienen haben eine Dicke von d = 5mm und einen lichten Abstand
a = 50mm. Sie sind durch einen senkrecht zu den Schienen liegenden, beweglichen Metallstab der
Masse m = 0.5g leitend verbunden. Ein an die Schienen angelegter Strom, der auch durch den Me-
tallstab fließt, bewirkt die Beschleunigung des Stabes entlang der Schienen.

(a) Berechnen Sie das Magnetfeld zwischen den beiden Schienen, wenn durch beide der gleiche (aber
unterschiedlich gerichtete) Strom I fließt. Vernachlässigen Sie dabei Inhomogenitäten am Beginn
der Schienen und das vom Strom durch den Stab erzeugte Magnetfeld.

(b) Wie groß ist die Kraft in Schienenrichtung, die den Stab beschleunigt?

(c) Welcher Strom wäre notwendig, um den Stab bei einer Schienenlänge von l = 5m auf eine Ge-
schwindigkeit von 10m/s zu beschleunigen? Vernachlässigen Sie alle Reibungseffekte.

17) Massenspektrometer

3

Ein Massenspektrometer bestehe wie im Bild skiz-
ziert aus einem Kondensator mit Plattenabstabd
D = 5mm, der sich in einem homogenen Magnet-
feld der Stärke B = 0.4T befinde. Ein Isotopenge-
misch aus einfach positiv geladenen Kohlenstoffio-
nen 12C und 14C tritt durch eine Lochblende in den
Kondensator ein. Nach Durchlaufen des Konden-
sators bewegen sich die Ionen im Magnetfeld auf
einer Halbkreisbahn und werden von einem Detek-
tor gezählt, dessen Abstand y zur Lochblende vari-
iert werden kann.

U

D

y

v

B

(a) Welche Spannung muss an die Kondensatorplatten angelegt werden, damit nur Ionen einer Ge-
schwindigkeit von v = 105 m/s den Kondensator durch die zweite Blende verlassen können?

(b) In welchen Abständen y werden die beiden Kohlenstoffisotope jeweils detektiert?

18) Kirchhoffsche Regel

4

Der im Bild gezeigte Stromkreis besteht aus den
Spannungsquellen U1 = 20V und U2 = 10V so-
wie den Widerständen R1 = 150Ω, R2 = R3 =

R5 = 100Ω und R4 = 50Ω. Welcher Strom
wird am Ampèremeter A gemessen?

+
-

U
1

R
4

R
1

A

R
3

R
5

+
-

U
2

R
2

Figure 16.27: Circuit.

Solution:

16.3.3.4 Ex: Mass spectrometer

A mass spectrometer consists, as shown in the figure, of a plate capacitor with
D = 5mm distance between the electrodes, placed within a magnetic field B = 0.4T
with homogeneous amplitude. A mixture of isotopes of carbon ion 12C+ and 14C+

penetrates the capacitor through a circular slot. After transit through the capacitor
the ions move in the magnetic field on a semicircular path and are counted by a de-
tector, whose distance y from the slot can be varied.
a. What voltage should be applied to the plates of the capacitor to ensure that only
ions with the velocity v = 105 m/s can exit the capacitor through the second slot?
b. At what distances y can the two isotopes be detected respectively?
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Solution:

16.3.3.5 Ex: Transformer

Consider two similar coils with number of turns N1 and N2 connected by an iron yoke.
In the first coil we apply a time-varying voltage U1. Therefore, in this coil (called
primary) runs a current I1, producing a magnetic flux Ψ, which is transmitted entirely
through the iron yoke to the second (second) coil. Here, a voltage U2 is induced.
a. Calculate the ratio U2/U1 as a function of the number of turns. What is the be-
havior of the phase between U1 and U2.
b. What are the phases of the currents I1 and I2 running through the coils with respect
to phases of the voltages? What is the consequence for the average power in the coils?

Solution: a. The voltage in the primary coil U1 belongs to a flux through the coil
induced by U1 = −N1Ψ̇1. Since the entire flux also flows through the second coil, we
have Ψ2 = Ψ1. For the voltage in the second coil we have analogously: U2 = −N2Ψ̇2.
Hence,

U2 = −N2Ψ̇2 = −N2Ψ̇1 =
N2

N1
U1 .

The ratio between voltages, therefore, is equal to the ratio of the number of turns.
Both voltages oscillate synchronously with the same phase.
b. The currents are proportional to the magnetic fields that, in turn, are proportional
to the magnetic flux:

I1,2 ∝ B1,2 ∝ Ψ1,2 = Ψ .

Due to,

Ψ̇ ∝ U1,2 ∝ cosωt

we have after integration,

I1,2 ∝ Ψ ∝ sinωt .

For the power P = UI we get,

P ∝ sinωt cosωt .

In the time average (integration of P over a period of oscillation) the oscillatory part
cancels out in P , so we have P̄ = 0.
b. Presence of a consumer on the secondary side: We have for the primary
and the secondary mesh,

U01e
iωt = L1İ1 +Mİ2

−RI2 = L2İ2 +Mİ1 .

Eliminating I1 gives us a differential equation for I2:

İ2 +
L1R

L1L2 −M2
I2 = − MU01e

ıωt

L1L2 −M2
,
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that can be solved by the ansatz I2 = I02e
ıωt+ıϕ, giving,

ıωI02e
ıϕ +

L1R

L1L2 −M2
I02e

ıϕ = − MU01

L1L2 −M2
.

I02e
ıϕ = − MU01

(L1L2 −M2)
(
ıω + L1R

L1L2−M2

) .

The absolute value and phase of the current, therefore, are:

I02 =

∣∣∣∣∣∣
− MU01

(L1L2 −M2)
(
iω + L1R

L1L2−M2

)

∣∣∣∣∣∣
=

MU01

(L1L2 −M2)

√
ω2 +

(
L1R

L1L2 −M2

)2

tanϕ =
Im

(
ıω + L1R

L1L2−M2

)−1

Re
(
ıω + L1R

L1L2−M2

)−1 =
−ω(L1L2 −M2)

L1R
.

16.3.3.6 Ex: Resonant L-R-C-circuit

Consider an excited LRC serial circuit. The components of the oscillating circuit
have the values R = 5Ω, C = 10µF, L = 1H, and U = 30V.
a. At what excitation frequency ωa does the amplitude of the current have its maxi-
mum value? Give the value of the current?
b. At what angular frequencies ωa1 and ωa2 does the amplitude of the current have
exactly half the maximum value? What is therefore the FWHM width of the reso-
nance curve for this oscillating circuit? Show that the width of the resonance curve
is given by,

ωa1 − ωa2
ωa

= R

√
3C

L
.

c. Make a scheme of some resonance curves for various values of R.

Solution: Error, because α also depends on ω: a. After transient oscillations
the current is given by,

Is(t) = |A|eı(ωt+ϕ)

with
A = − α

ω2 − ω2
0 − i2βω

where

|A| = α√
(ω2 − ω2

0)
2 + 4β2ω2

and tanϕ =
Im A

Re A
=

2βω

ω2 − ω2
0

.

Here, we have,

ω2
0 =

1

LC
and 2β =

R

L
and α =

U0ω

L
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_.pdf


16.3. MAGNETOSTATIC ENERGY 807

The amplitude |A| is maximum when,

0 =
d|A|
dω

=
d

dω

α√
(ω2 − ω2

0)
2 + 4β2ω2

= 2αω
−ω2 + ω2

0 − 2β2

√
(ω2 − ω2

0)
2 + 4β2ω2

3 ,

which means,

ωa =
√
ω2
0 − 2β2 =

√
1

LC
− R2

2L2
.

With the given values we get, ωa = 2π · 50.326Hz, during ω0 = 2π · 50.329Hz. The
amplitude of the current here is,

|A| = α√
4β4 + 4β2(ω2

0 − 2β2)
=

α

2βω0
=
U0ωa
L

L

R

1

ω0
≃ U0

R
.

With the given values we get, |A| = 6A.

b. From |A(ωa)|
2 = |A(ωa1)| we obtain,

1

2
√
4β4 + 4β2(ω2

0 − 2β2)
=

1√
(ω2
a1 − ω2

0)
2 + 4β2ω2

a1

=⇒ ω4
a1 + (4β2 − 2ω2

0)ω
2
a1 = 16β2ω2

0 − 16β4 − ω4
0

=⇒ ω2
a1 = ω2

0 − 2β2 ± 2
√
3β2(ω2

0 − β2) ≃ ω2
0 ± 2βω0

√
3 .

With the given values we get, ωa1 = 2π ·51.41Hz and ωa1 = 2π ·49.22Hz. For ω0 ≫ β
follows,

ω2
a1 ≃ ω2

0 ± 2βω0

√
3

=⇒ ωa1 − ωa2
ω0

=
1

ω0

ω2
a1 − ω2

a2

ωa1 + ωa2
≃ 4βω0

√
3

2ω2
0

=
2β
√
3

ω0
=
R
√
3CL

L
= R

√
3C

L
.

Correction:
a. After the transient process the current is given by,

Is(t) = |A|eı(ωt+ϕ)

which

A = −U0

L

ω

ω2 − ω2
0 − i2βω

,

where

|A| = U0

L

ω√
(ω2 − ω2

0)
2 + 4β2ω2

and tanϕ =
Im A

Re A
=

2βω

ω2 − ω2
0

.

Here, we have,

ω2
0 =

1

LC
and 2β =

R

L
and α =

U0ω

L
.
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The amplitude |A| is maximum when,

0 =
d|A|
dω

=
U0

L

d

dω

ω√
(ω2 − ω2

0)
2 + 4β2ω2

=
U0

L

−ω4 + ω4
0√

(ω2 − ω2
0)

2 + 4β2ω2
3 ,

which means,

ωa = ω0 =

√
1

LC
.

With the given values we get, ωa = 2π · 50.326Hz. The amplitude of the current here
is,

|A| = U0

L

ω√
(ω2 − ω2

0)
2 + 4β2ω2

=
U0

L

1

2β
=
U0

L

L

R
≃ U0

R
.

With the given values we get, |A| = 6A.

b. From |A(ωa)|
2 = |A(ωa1)| we obtain for ω0 ≫ β

ωa

2
√
(ω2
a − ω2

0)
2 + 4β2ω2

a

=
ωh√

(ω2
h − ω2

0)
2 + 4β2ω2

h

=⇒
√
(ω2
h − ω2

0)
2 + 4β2ω2

h = 4βωh

=⇒ ω2
h = (ω2

0 + 6β2)±
√
(ω2

0 + 3β2)12β2 ≃ ω2
0 ±
√
12βω0 .

With the given values we get, ωa1 = 2π · 51.41Hz and ωa1 = 2π · 49.22Hz. Follows,

ωa1 − ωa2
ω0

=
1

ω0

ω2
a1 − ω2

a2

ωa1 + ωa2
≃ 4βω0

√
3

2ω2
0

=
2β
√
3

ω0
=
R
√
3CL

L
= R

√
3C

L
.

16.3.3.7 Ex: Inductive circuit

Consider the circuit shown in the figure, which consists of a coil L, a voltage source
U , and an ohmic resistor R = 100Ω. The coil is a long solenoid with 50 turns per cm
and an inductance of 200mH. For times t < 0 there is no current flow through the
solenoid. At time t = 0, the voltage is suddenly increased from 0 to 10V. How long
does it take the magnetic field in the solenoid to reach the value π · 10−4 T?

Probeklausur im Integrierten Kurs Physik II, SS 2008, 30.06.2008 
besprochen in den Präsenzstunden 11 und 12 

 
 
Aufgabe 1: Schaltung mit zwei Batterien    (8 Punkte)  
 
Zwei Batterien 1 und 2 (Spannungen 
U1=2 V und U2 = 0.5 V, sowie drei 
Widerstände R1 = R2 = R3 = 1 Ω sind wie 
in der Abbildung geschaltet.  
a) Welche Ströme fließen durch die 
Widerstände R1, R2 bzw. R3? 
b) Wie groß ist der Spannungsabfall 
zwischen den Punkten A und B? 
 

R1

R2

U1

U2

R3

A B

 
 
Aufgabe 2: Induktiver Schaltkreis          (8 Punkte) 
 
Wir betrachten eine Reihenschaltung aus einer langen 
Spule, einer Spannungsquelle (Spannung U) und einem 
ohmschen Widerstand R = 100 Ω. Die Spule hat 50 
Windungen pro cm und eine Induktivität von 200 mH. 
Für Zeiten t < 0 fließe kein Strom durch die Spule. Zur 
Zeit t = 0 werde die Spannung schlagartig von 0 auf 10 V 
erhöht.  
Nach welcher Zeit erreicht das Magnetfeld in der Spule 
π⋅10-4 T?  
 

 

R

LU

 
 
Aufgabe 3: Fallender Stab       (6 Punkte) 
 
Ein metallischer Stab (Länge L = 1 m) fällt im 
Gravitationsfeld der Erde (Bei t = 0 sei die 
Anfangsgeschwindigkeit 0). Der Stab sei parallel zum 
Erdboden orientiert, senkrecht zum Stab und parallel zum 
Erdboden herrsche das Magnetfeld B

r
 (Betrag: 2⋅10-5 T).  

 

v

B

Welche Spannung wird zwischen den Enden des Drahtes in Abhängigkeit von der Fallstrecke 
h induziert?  
Welchen Spannungswert erhalten Sie nach einem Fall von 5 m? 
 
 
Aufgabe 4: Leitende Kreisringe     (8 Punkte) 
 
Gegeben seien zwei "unendlich dünne", leitende, konzentrische Ringe mit Radien a und b (a 
< b). Die Ringe sollen in der xy-Ebene liegen und ihren gemeinsamen Schwerpunkt im 
Ursprung haben. Auf dem inneren Ring möge sich homogen verteilt (d. h. mit konstanter 
Streckenladungsdichte) die Ladung +q, auf dem äußeren homogen verteilt die Ladung -q 
befinden. 

 1

Figure 16.28: Circuit.
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Solution: By Kirchhoff laws,

U(t) = Lİ +RI .

The homogeneous differential equation is,

dI

I
= −R

L
dt

The general solution of the inhomogeneous differential equation is I(t) = I0e
−Rt/L +

Iinh with Iinh = U0/R. With the initial condition I(0) = 0 follows I0 = −U0/R.
The induced voltage, therefore, is Uind(t) = −Lİ = U0e

−Rt/L and the current after
switching on is,

I(t) =
U0

R
(1− e−Rt/L) .

The magnetic field in the long coil is now,

Bz(t) = µ0
N

l
I(t) = µ0

N

l

U0

R

(
1− e−Rt/L

)
.

The given value for the field is reached after a time,

t = −L
R

ln

(
1− lRBz

µ0NU0

)
≃ 1.39ms .

16.3.3.8 Ex: Inductive circuit

Consider the circuit shown in the figure, which consists of a coil L, a voltage source
U0 = 10V, and three ohmic resistors R = 100Ω. The coil is a long solenoid with 50
turns per cm and an inductance of 200mH. Initially, the switch is open for a long
time. Then at time t = 0, it is closed.
a. What is the initial value of the magnetic field in the solenoid while the switch is
still open?
b. Using Kirchhoff’s laws, derive the formula describing the temporal evolution of the
field after the switch has been closed.
c. Determine the field for long times after the switch has been closed.

Figure 16.29: Circuit.

Solution: a. While the switch is open, current only flows through the branch of
the solenoid. We have by Kirchhoff’s laws,

U0 = Lİ +RI +RI = 2RI ,
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because at long times, İ = 0. Therefore, the current is,

I =
U0

2R
,

giving I = 50mA. The field of the solenoid is now,

B = µ0
N

ℓ
I = µ0

N

ℓ

U0

2R
,

giving B = 3.14 · 10−4 T.
b. After the switch is closed, the current flows in both branches. We have by Kirch-
hoff’s laws,

U0 = LİL +RIL +RI , U0 = RIR +RI , I = IL + IR .

Eliminating I

U0 = LİL +RIL +R(IL + IR) , U0 = RIR +R(IL + IR) ,

and eliminating IR,

U0 = LİL +RIL +RIL + 1
2 (U0 −RIL) = LİL + 3

2RIL + 1
2U0 = 2LİL + 3RIL .

We get the differential equation,

∫ I

I0

dIL
IL − U0/3R

= −3R

2L

∫ t

0

dt ,

with the solution,

ln

(
IL −

U0

3R

)∣∣∣∣
I

I0

= −3R

2L
t .

Finally,

IL(t) =
2U0

3R
+

(
I0 −

2U0

3R

)
e−3Rt/2L =

2U0

3R
− U0

6R
e−3Rt/2L .

The magnetic field in the solenoid is now,

B(t) = µ0
N

ℓ
I(t) = µ0

N

ℓ

U0

3R

(
1 +

1

2

)
e−3Rt/2L .

c. For long times we get,

B(t) = µ0
N

ℓ

U0

3R
,

giving B(∞) = 2.09 · 10−4 V/m.
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16.3.3.9 Ex: Conductive circular rings

Consider two infinitely thin conducting rings. They are concentric with radii a and b
(a < b) and arranged in the xy-plane with a common center at the coordinate origin.
The inner ring carries a homogeneously distributed charge +q (that is, with linear
constant charge density), the outer ring carries the homogeneously distributed charge
−q.
a. First, write the charge density ρ(r) = ρ(r, ϕ, z) in cylindrical coordinates. Now, let
the inner ring rotate with the constant angular velocity ω about the symmetry axis
(that is, the z-axis). Write the resulting current density also in cylindrical coordinates.
Help: j(r) = ρ(r) · v(r) where v(r) is the velocity at the position r. b. Determine
by an explicit calculation the dipolar magnetic moment m = 1

2

∫
d3r r × j(r) of the

rotating ring.

Solution:

16.4 Alternating current

16.4.1 Electromagnetic oscillations

We have already met the plate capacitor as the most basic device for storing electro-
static energy in an (homogeneous) electric field. Similarly, the solenoid is the most
basic device for storing magnetostatic energy in a (homogeneous) magnetic field.
Placing a solenoid with inductance L and a capacitor with capacitance C in an elec-
tric circuit we find that electric energy can be converted into magnetic energy (and
vice versa) in an analogous way as potential energy can be converted into kinetic
energy (and vice versa) in a mass-spring system. This can generate (electromagnetic)
oscillations.

Example 80 (Oscillating circuits): Let us first consider a circuit with a
coil and a capacitor connected in series. Kirchhoff’s law of meshes requires,
Uind = UC , which gives,

−LdI
dt

=
Q

C
or

LÏ + C−1I = 0 .

We now consider a circuit with a battery, a switch, a coil, and a resistor in series.
Kirchhoff’s law of meshes requires, U0 = −Uind + UR = Lİ +RI, which gives,

dI

I − U0/R
= −R

L
dt

with the solution

I(t) =
U0

R
+

(
I0 − U0

R

)
e−Rt/L ,

where we choose the initial current I0 = 0.
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16.4.2 Alternating current circuits

To discuss alternating voltages, we consider the circuit shown in Fig. 16.30 fed by a
voltage source, U(t) = U0e

ıωt. To simplify the mathematical expressions we adopt
a complex notation. The objective is to calculate the current for the various types
of consumers Z that we already got to know. In the case of an ohmic resistance we
have,

I =
U0

R
eıωt =

U

R
. (16.58)

Hence,

Z =
U

I
= R . (16.59)

In the case of a capacitance we have,

I = Q̇ = CU0
d

dt
eıωt = ıωCU . (16.60)

Hence,

Z =
U

I
=

1

ıωC
. (16.61)

In the case of an inductance we have,

I =

∫ t

0

LU0e
ıωtdt =

U

ıωL
. (16.62)

Hence,

Z =
U

I
= ıωL . (16.63)

U 0

L R C

Figure 16.30: L-R-C circuit powered by an alternating voltage.

These results can be interpreted graphically (plotting Im U versus Re U) or ana-
lytically substituting ı = eıπ/2. For the above three cases we obtain,

R =
U0e

ıωt

I0eıωt+π/2
, Lω =

U0e
ıωt

I0eıωt+ıπ/2
,

1

Cω
=

U0e
ıωt

I0eıωt−ıπ/2
. (16.64)

This means that in the case of an inductance or capacitance, the voltage is not in
phase with the current but has, respectively, an advance or a delay of 90◦.

In cases of combinations of resistors and reactants the expression to calculate this
phase shift becomes more complicated and may vary with the frequency imposed by
the alternating source. Let us see how to calculate it at the example of the L-R-C
circuit in series, writing in the same way as before,

Z =
U

I
= ıLω +R+

1

ıCω
= |Z|eıϕ . (16.65)
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Hence,

|Z| = ZZ∗ =

√
R2 +

(
Lω − 1

ıCω

)2

and tanϕ =
sinϕ

cosϕ
=
Lω − 1

Cω

R
. (16.66)

A resonance is met when ω = 1/
√
LC. Other combinations of components are treated

in the same way.

16.4.3 Exercises

16.4.3.1 Ex: High-pass filter

The circuits shown in the figure are called (a) first-order and (b) second-order high-
pass filter. Calculate for both cases the ratio of output voltage Ua and input voltage
Ue. Suppose that Ue(t) = Ue cosωt and Ua(t) = Ua cos(ωt + ϕ). Plot the result as
a function of frequency on a logarithmic graph with the y-axis log(Ua/Ue) and the
x-axis logω. (This graph is called ’Bode diagram’.) What is the phase shift ϕ as a
function of frequency?

Universität Tübingen SoSe 2008
Hausaufgaben zum Integrierten Kurs Physik II Blatt 11
30.6.2008

⋆ Hausaufgabe 1 (Leiterschleife im oszillierenden Magnetfeld)

Durch eine kreisförmige Leiterschleife (Induktivität L, Widerstand R) tritt ein oszillieren-
der magnetischer Fluss Φ = Φ0 cos ωt.

(a) Berechnen Sie die Amplitude des Stroms, der im Leiter fließt, sowie dessen Phasenlage
relativ zu Φ.

(b) Welche mittlere Leistung wird im Leiter dissipiert? Diskutieren Sie auch die Grenzfälle
ω → 0 und ω → ∞.

Hinweis: Konstruieren Sie zunächst eine Ersatzschaltung aus einer Spannungsquelle,
einem Widerstand und einer Induktivität.

Hausaufgabe 2 (Differentialgleichung für einen Schwingkreis)

Der nebenstehende L-R-C Schwingkreis wird von einer
Wechselspannungsquelle U(t) = U0 cos ωt getrieben.

(a) Berechnen Sie die Gesamtimpedanz Z als Funktion von
ω und stellen Sie Amplitudengang |Z(ω)| und Phasengang

φ(ω) = arctan ImZ(ω)
ReZ(ω)

graphisch dar.

(b) Stellen Sie die Differentialgleichung für den Strom auf.
Lösen Sie zunächst die homogene Differentialgleichung und
dann die inhomogene.

U 0

L R C

⋆ Hausaufgabe 3 (Hochpassfilter)

Nebenstehende Schaltungen werden als Hochpassfilter 1. Ord-
nung (a) und 2. Ordnung (b) bezeichnet. Berechnen Sie
in beiden Fällen das Verhältnis der Ausgangsspannung Ua

zur Eingangsspannung Ue . Nehmen Sie hierbei an, dass
Ue(t) = Ue cos (ωt) und Ua(t) = Ua cos (ωt + φ). Stellen Sie
das Ergebnis als Funktion der Frequenz in logarithmischer
Darstellung graphisch dar: y-Achse: log(Ua

Ue
) und x-Achse:

(log(ω)). (Diese Darstellung wird als Bode-Diagramm beze-
ichnet.) Wie groß ist die Phasenverschiebung φ als Funktion
der Frequenz?

U

U

U

U

e

e

a

a

C

C

R

R

L

(a)

(b)

Figure 16.31: High pass.

Solution: a. First order high-pass filter: We start with the (complex) impedance
Z,

Z =
1

ıωC
+R .

With this we calculate the current I,

I(t) =
Ue
Z

=
U0e

ıωt

1/ıCω +R
.

The output voltage Ua equals the voltage drop at this impedance.,

Ua(t) = UR = RI(t) =
U0e

ıωt

1/ıCRω + 1
= U0

1
ıCRω − 1

(
1

ıCRω

)2
+ 1

eıωt

= U0
ωCR√

1 + (ωCR)2
eı[ωt+arctan(ωCR)] = Ũ0(ω)e

ı[ωt+ϕ] .

b. Second order high-pass filter: Same procedure as above, the output voltage is mea-
sured in the coil,

Z =
1

ıωC
+R+ ıLω .
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Current,

I(t) =
Ue
Z

=
U0e

ıωt

1
ıCω +R+ ıωL

Voltage,

Ua(t) = UL = −Lİ(t) = ıωLU0e
ıωt

1
ıCω +R+ ıωL

= U0
1

− 1
LCω2 + R

ıωL + 1
eıωt

= U0

1− 1
LCω2 − R

ıωL(
1− 1

LCω2

)2
+
(
R
ωL

)2 eıωt =
U0e

ı[ωt+arctan( R
ωL−1/ωC )]

√(
1− 1

LCω2

)2
+
(
R
ωL

)2 .

16.4.3.2 Ex: Band and notch filter

The circuits shown in the figure are called (a) bandpass and (b) notch filter. Calculate

Figure 16.32: Filter.

for both cases the output voltage Ua(t) under the condition that the input voltage is
a sinusoidal oscillation, Ue(t) = U0 cosωt. Draw the amplitude of the output voltages
as a function of frequency.
a. How do the amplitudes behave in the resonant case?
b. Discuss the limiting cases (i) L→ 0 resp., (ii) C →∞ based on transfer functions.

Solution: a. For the bandpass filter we have the impedance, resistance, and phase
shift,

Z(ω) =
Ua(ω)

Ue(ω)
=

R

R+ ıLω + 1
ıCω

=
R2 − ı

(
LRω − R

Cω

)

R2 +
(
Lω − 1

Cω

)2

|Z(ω)|2 =
R2

R2 +
(
Lω − 1

Cω

)2

ϕ(ω) = arctan
Im Z(ω)

Re Z(ω)
= − 1

R

(
Lω − 1

Cω

)
.
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In resonance, |Ua| = |Ue|.
b. For the notch filter we have the impedance, resistance, and phase shift,

Z(ω) =
Ua(ω)

Ue(ω)
=

ıLω + 1
ıCω

R+ ıLω + 1
ıCω

=

(
Lω − 1

Cω

)2
+ ı
(
LRω − R

Cω

)

R2 +
(
Lω − 1

Cω

)2

|Z(ω)|2 =

(
Lω − 1

Cω

)2

R2 +
(
Lω − 1

Cω

)2

ϕ(ω) = arctan
Im Z(ω)

Re Z(ω)
=

R

Lω − 1
Cω

.

In resonance, |Ua| = 0.
c. Cases (a.i) and (b.ii) make high-pass filters, cases (a.ii) and (b.i) make low-pass
filters.

16.4.3.3 Ex: Coaxial cable

A coaxial cable consists of a cylindrical conductor of radius a and a thin cylindrical
waveguide of radius b > a. Between the conductors there is a voltage difference of U ,
and inside them flow currents in opposite directions I. Calculate the Poynting vector
in the empty space and the power carried through the cable.
Help: Calculate the electric field between the conductors using Gauß’ law and the
magnetic field between the conductors using Ampere law.

Solution: The z-axis is chosen as the rotational symmetry axis of the coaxial ca-
ble.
Calculations of the E⃗-field: Over the inner cable is distributed the charge Q per
length L. As always, because of symmetry reasons, the absolute value of the E⃗ field
only depends on the distance ρ =

√
x2 + y2 from the z-axis of the cylinder. Including

the direction we have therefore,
E⃗ = Eρêρ(r)

for all r = (x, y, z) ∈ R3 with ρ ̸= 0. We now consider a cylindrical volume Zρ of
length L and radius a ≤ ρ < b, with the z-axis as the axis of rotational symmetry.
Now with the law of Gauß and div E⃗ = ρ/ε0, we get,

Q

ε0
=

∫

∂Zρ

E⃗ · dF = 2πρLEρ .

Hence, Eρ = Q
2πε0Lρ

for all the ρ ∈ [a, b[. This leads to the potential,

Φ(r) ≡ Φ(ρ) = − Q

2πε0L
ln ρ ,

for all ρ ∈ [a, b]. (Note that the potential must be continuous, that is, it can be
continued to the point ρ = b.) The voltage U between the inner and outer conductor
is given by the potential difference,

U = Φ(a)− Φ(b) =
Q

2πε0L
ln(b/a) .
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Follows,

Q =
2πε0LU

ln(b/a)
.

Inserting the last expression in the formula for Eρ, we obtain,

Eρ =
U

ln(b/a)ρ
,

for all ρ ∈ [a, b].

Calculations of the B⃗-field: In the inner cable the direction of positive current is
chosen to be the z-direction. For symmetry reasons the absolute value of the B-field
only depends on the distance ρ =

√
x2 + y2 from the z-axis of the cylinder, that is,

B⃗(r) = Bρêϕ(r)

for all r = (x, y, z) ∈ R3 without the z-axis. We consider the area of a disk Kρ with
radius ρ > 0 and the z-axis as the axis of symmetry. Then, using Ampere’s law,

2πρBρ =
∫

∂Kρ

B⃗ · dS = µ0I(Kρ) = µ0I

for a ≤ ρ < b and 2πρBρ = 0 else. Here, I(Kρ) means the entire current going
through the disk Kρ. Hence,

Bρ =
µ0I

2πρ

for ρ ∈ [a, b[.
Calculation of the Poynting vector = Energy flow: We have êρ(r)×êϕ(r) = êz
para cada ponto r ∈ R except on the z-axis, where êρ and êϕ are not defined. With
that, the Poynting vector gets,

S(r) =
1

µ0
E⃗(r)× B⃗(r) = 1

µ0
EρBρêz = êz

IU

2π ln(b/a)ρ2

for ρ ∈ [a, b[ and S = 0 else, for each point of space r ∈ R3 which is not on the z-axis.
As a result, energy flow only occurs in the space between the inner conductor and the
outer conductor, in the direction along the coaxial cable.

16.4.3.4 Ex: ac-resistance

Calculate the work performed by an alternating current I = I0 sinωt on a conductor
with ohmic resistance R over a time period T . Make a scheme of the evolution in a
diagram power versus time.

Solution:
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16.4.3.5 Ex: ac-motor

An alternating voltage motor provides with an alternating voltage of U = 220V at
f = 50Hz with the power P = UI cosϕ = 2.2 kW. The power factor of the engine is
cosϕ = 0.6 and the efficiency η = Pout/Pin = 0.89.
a. What current does the motor receive?
b. Which capacitor must be connected in parallel to the terminals of the motor in
order to increase the power factor to a value of cosϕ = 0.9? Sketch the current pointer
in the U − I-plane.

Solution:

16.4.3.6 Ex: Displacement current

a. Explain the significance of the continuity equation,

∮
j · dS+

d

dt

∫
ρdV = 0 .

b. Consider an enclosed area S1 + S2, because here the continuity equation has the
form, ∮

j · dS− d

dt

∫
D⃗ · dD⃗V = 0 .

Show that holds, ∮

C

H⃗ · dl =
∫

S2

d

dt

∫
D⃗ · dS .

Help: No field lines penetrate through the area S1, and no current flows through the
area S2.

Solution:

16.4.3.7 Ex: Resonant LC-circuit

The capacitor of an undamped oscillating electromagnetic circuit has the capacity
C = 22 nF. The eigenfrequency of the circuit is f0 = 5735Hz. At time t = 0 the
capacitor has its maximum charge: Q0 = 0.33µC.
a. Derive for the undamped oscillating circuit the differential equation for Q(t) from
the energy conservation law and determine the solution. Write down the equation for
eigenfrequency f .
b. Calculate inductance of the coil.
c. Set up equations for the energy content of the coil and and the capacitor as a
function of time t.
d. Calculate the instant of time t2, at which the energy content of the coil is, for the
second time, half the energy content of the capacitor.
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Solution: a. The total energy is, EG = EC(t) + EL(t) =
1
2CU

2
C(t) +

1
2LI

2
L(t). With

this follows,

0 =
d

dt
EG = CUC(t)U̇C(t) + LIL(t)İC(t)

0 =
1

C
Q(t)Q̇(t) + LQ̇(t)Q̈(t)

0 = Q̈(t) + LCQ(t) .

The trial of a possible solution Q(t) = Q0 sin(ωt + ϕ) leads us, with Q(0) = Q0 to
ϕ = π/2 and,

f =
1

2π
√
LC

.

b. With this the inductance of the coil becomes,

L =
1

4π2Cf
= 35mH .

c. Energy of the capacitor,

EC(t) =
1

2

Q2

C
=

1

2

Q2
0 cos

2 ωt

C
.

Energy of the coil,

EL(t) =
1

2
LI2(t) =

1

2
ω2LQ2

0 sin
2 ωt .

d. From,

2 =
EC(t)

EL(t)
=

1
2
Q2

0

C cos2 ωt
1
2ω

2Q2
0 sin

2 ωt
=

1

ω2C tan2 ωt

t =
1

ω
arctan

1√
2Cω

.

follows ∆t =.

16.4.3.8 Ex: Resonant LRC-circuit

The oscillating LRC-circuit shown in 16.30 is excited by the alternating voltage source
U(t) = U0 cosωt.
a. Calculate the total impedance Z as a function of ω and prepare graphs of the

amplitude response |Z(ω)| and the phase response ϕ(ω) = arctan Im Z(ω)
Re Z(ω) .

b. Establish the differential equation for the current. Start by solving the homoge-
neous differential equation and then the inhomogeneous one.
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Solution: a. Total impedance and square of absolute value are,

Z(ω) = ıωL+R+
1

ıCω

= R+ ı

(
ωL− 1

Cω

)

|Z|2 = R2 + (ωL)2 +

(
1

ωC

)2

− 2L

C
.

b. U(T ) defines a voltage. The coil, resistance and capacitor are opposite. The dif-
ferential equation, therefore, is,

U0e
ıΩt = UL + UR + UC

= Lİ +RI +
Q

C
.

Drifting once again with Q̇ = I, we obtain,

U0ıΩ

L
eıΩt = Ï +

R

L
İ +

1

CL
I .

With the respective definitions for the damping term and the eigenfrequency, the equa-
tion is equivalent to that of the harmonic, damped and forced pendulum:

αeıΩt = Ï + 2βİ + ω2
0I .

With the trial solution for the homogeneous differential equation I(t) = I0e
λt we get

the characteristic equation,
0 = λ2 + 2βλ+ ω2

0

hence, λ1,2 = −β± ı
√
ω2
0 − β2 ≡ −β± ıω. That is, the homogeneous general form is,

Ia(t) = e−βt
(
B1e

ıωt +B2e
−ıωt) .

This solution decays exponentially with the damping constant β = R/2L. In the
general solution, which represents the sum of this homogeneous solution and a par-
ticular solution, the homogeneous contribution may be neglected after a characteristic
transient phase,

I(t) = Ia(t) + Is(t)

with Ia(t)→ 0 for t≫ β−1. We are now looking for another particular solution. The
ansatz Is(t) = AeıΩt in the initial equation gives,

α = A
(
−Ω2 + ı2βΩ+ ω2

0

)
.

Since A is complex the solution can also be written,

A = − α

Ω2 − ω2
0 − ı2βΩ

= −α Ω2 − ω2
0 + ı2βΩ

(Ω2 − ω2
0)

2
+ 4β2Ω2

= |A|eıϕ

with

|A| = α√
(Ω2 − ω2

0)
2 + 4β2Ω2

and tanϕ =
Im A

Re A
=

2βΩ

Ω2 − ω2
0

.
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Hence, we have the particular solution,

Is(t) = |A|eı(Ωt+ϕ) .

16.4.3.9 Ex: Resonant LRC-circuit

The components of an RLC-circuit (see 16.30) have the values R = 5 Ω, C = 10µF,
L = 1H, and U = 30V.
a. At what angular frequency ωa does the current amplitude have its maximum value?
What is the corresponding current?
b. At what angular frequencies ωa1 and ωa2 does the amplitude of the current have
half the maximum value? What is the relative half-width of the resonance curve for
this resonant circuit?
c. Show with the help of the formulas of (b) that the relative half-width of each
resonance curve is given by,

∆a

ω
= R

√
3C

L
,

where ∆a is the width of the resonance profile at half the maximum amplitude.
d. Prepare schemes of the resonance profile for various values of R. When is the
current circuit predominantly capacitive and when inductive?
e. Show that the damping term e−Rt/2L (containing L but not C!) can be written in
a more symmetrical form in L and C as follows,

e−πR
t
T

√
C
L .

Here, T is the period of oscillation when we neglect resistance. What is the SI-unit
of the term

√
C/L?

f. Show, based on the result (e), that the condition for a smaller relative energy loss
per oscillation cycle is: R≪

√
L/C.

Solution:

16.4.3.10 Ex: Resonant LRC-circuit

Consider a dampened oscillating RLC-circuit. The charge q̄ on the capacitor is de-
scribed by the differential equation,

L
d2q̄

dt2
+R

dq̄

dt
+

1

C
q̄ = 0 .

a. Use the ansatz q̄ = q0e
ıωt and show that,

ω1,2 = ı
R

2L
± ω′ where ω′ = ω0

√
1− R2C

4L
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with ω0 = 1/
√
LC solves the differential equation.

b. Since this is a second order differential equation, we need two boundary conditions
to determine the general solution of the form,

q̄(t) = aq̄1(t) + bq̄(t) with q̄1,2 = q̄0e
− R

2L te±ıω
′t .

Use the conditions q̄(0) = 0 and ˙̄q(0) = I0 and determine the coefficients a and b.
What is the solution for the charge q̄(t) in this case, and for the current I(t) = ˙̄q(t)?
c. Sketch the evolution of the charge and the current on the capacitor for the following
set of parameters and interpret the curves. What is the respective duration T of an
oscillation period? Give for each of the following parameter sets the respective general
solution before entering the values:
i. I0 = 1mA, R = 10Ω, L = 1mH, C = 0.1µF
ii. I0 = 1mA, R = 200Ω, L = 1mH, C = 0.1µF
iii. I0 = 1mA, R = 500Ω, L = 1mH, C = 0.1µF
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Figure 16.33: Resonant LRC-circuit.

Solution:

16.4.3.11 Ex: Magnetized sphere

We consider a sphere with radius R magnetized such that, inside the sphere, the
magnetic field density is given by B⃗ = B0êz. The outer space is empty, that is, there
are no currents, such that rot B⃗ = 0 and div B⃗ = 0. Therefore, we can let for the
outer space,

B⃗ = −gradΨ and Ψ(r, ϑ, φ) =

∞∑

l=0

αl
Pl(cosϑ)

rl+1
,

with Pl the Legendre polynomials and r, ϑ and φ the usual spherical coordinates. Con-
sider the boundary conditions for Br, Bθ as well as for Hr and Hθ at the transition
between the inner and outer space of the sphere. Determine from this the expan-
sion coefficients αl as well as the magnetization M⃗ inside the sphere. With this we
finally get the magnetic field density B⃗ magnetic H⃗-field in the inner and outer space.

Solution:

16.4.3.12 Ex: Magnetic dipole moving through a conductive loop

What is the current signal produced by a 87Rb Bose-Einstein condensate with its spin
being polarized in the state |F,mF ⟩ = |2, 2⟩ when it falls through a SQUID? Assume
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that the SQUID has the diameter 2a = 3 cm, the condensate consists of N = 100000
atoms and has a constant velocity of vz = 10 cm/s.

Solution: In the specified state each atom has a dipolar magnetic moment µ = µB.
This moment creates, at the point r = (x, y, z), a magnetic field,

B⃗ =
µ0

4πr5




3xz

3yz

3z2 − r2


 .

The magnetic flux through the SQUID enclosing an area A = πa2n in the x = y = 0
plane then is,

Ψ =

∫

A

B⃗ · êndF =

∫ a

0

2πρBzdρ =
µ0

2

∫ a

0

3z2 − r2
r5

ρdρ =
µ0

2

a2

(a2 + z2)3/2
.

For a point dipole we can suppose, z = żt. The induced current in the SQUID is now,

Uind(t) = −Ψ̇ =
3a2µ0

2

zż

(a2 + z2)5/2
.

With the specified numerical values we get voltages on the order of 10−17 V and cur-
rents in the SQUID of the order of pA.

16.4.3.13 Ex: Electric current and magnetism

a. How are current and current density defined? What is a ’current line’?
b. What conditions should charge and current densities meet in magnetostatics?
c. How is the magnetic field B⃗ defined empirically?
d. Writes the general form of Ampère’s law. How is Ampère’s law expressed in the
case of two parallel conductors carrying currents I1 and I2?
e. What does the Ampère’s law say?
f. What is the magnetic moment of an arbitrary, flat, closed current circuit?
g. What are the force and thye torque on a magnetic dipole in an external field B⃗(r).
h. Explain the term ’magnetization current density’.
i. What are the macroscopic equations of the magnetostatic field?
j. What is diamagnetism and paramagnetism? What differentiates these two phe-
nomena? What is ferromagnetism?

Solution: a. The current is defined by I = Q̇; the current density is j = I/A; a
current wire is an idealization of current flow to 1 dimension.
b. The current and current density must satisfy the continuity equation ∂ρ

∂t = ∇·j = 0.

c. Empirically the magnetic field B⃗ is defined by Lorentz forces acting on currents.
Currents are the cause of the field, but simultaneously subject to their action.
d. Ampère’s law on forces is dA = Idl × B⃗. In the case of two parallel conductors
with currents I1 and I2 the law predicts a force of mutual attraction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_.pdf
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e. Ampère’s law on fluxes
∮
B⃗ · ds = µ0I says, that magnetic field lines are always

closed (unlike electrostatic ones). Magnetic fields have no start or end points. Cur-
rents produce closed field lines around them. Here, the line integral over the magnetic
field density on the edge of a surface is proportional to the total current crossing this
surface.
f. The magnetic moment of an arbitrary, flat and closed current circuit is, m =
1
2

∫
r′ × j(r′)d3r′ = 1

2

∮
∂S r

′ × dl = I
∫
F
dA = IA.

g. The force on a magnetic dipole in an external field is F = −∇U with U = −m · B⃗.
The torque is, D⃗ = m× B⃗.
h. In matter with magnetization (density of magnetic dipoles) M⃗ the magnetization

current density m = ∇× M⃗ adds to the macroscopic current density.
i. The macroscopic field equations of magnetostatics are, rot B⃗ = µ0j and div B⃗ = 0
respectively, with Stokes and Gauß laws,

∫
s
B⃗ · dr = µ0

∫
j · dA = I and

∮
f
B⃗ · dA = 0.

j. Diamagnetism is generated by induced dipoles. In the material, due to an applied
magnetic field, an opposite magnetization is formed. Diamagnetic bodies are repelled
by a permanent magnet in the direction opposite to the field gradient. Paramagnetism
is generated by permanent dipoles located within the material. Paramagnetic bodies
are attracted to a magnet. For diamagnetism, χm < 0, for paramagnetism, χm > 0.
In the case of ferromagnetism, the permanent dipole moments align within the so-
called Weiß domains and therefore amplify.

16.4.3.14 Ex: Electro-motor

Consider the electromotor of the scheme. Two pairs of Helmholtz coils aligned
along the x- and y-axes are powered by alternating currents, Ix(t) = I0 cosωt and
Iy(t) = I0 sinωt, respectively. In the field there is a rotating rectangular coil traversed
by a constant current I. The inertial moment of the coil is I.
a. Show that the field in the center is given by Bx(0) = −8

5
√
5

µ0Ixêx

R .

b. Describes the temporal behavior of the magnetic field.
c. Relate the torque with the angular acceleration of the coil.
d. Calculate the instantaneous torque acting on the coil.
e. Suppose that the coil initially rotates with an angular velocity Ω such that, θ(t) =
θ0+Ωt. How you should choose Ω and the initial angle θ0 to ensure an always positive
torque? Help: sinα cosβ + cosα sinβ = sin(α+ β)
f. Calculate the voltage induced in the coil. Help: sinα sinβ+cosα cosβ = cos(α−β)
g. Suppose the coil has an ohmic resistance ...

Solution: a.
b. The coils generate a rotating magnetic field, B⃗(t) = B0(êx cosωt+ êy sinωt).
c. The torque is,

τ⃗ = I θ̈ .

d. The Lorentz force is,

F(t) = Il× B⃗(t) = IB0(l× êx cosωt+ l× êy sinωt) = IlB0(−êy cosωt+ êx sinωt) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_EletroMotor01.pdf
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Figure 16.34: Electro-motor.

we write the vector, a = a[êx cos(θ − 90◦) + êy sin(θ − 90◦)] = aêx sin θ − aêy cos θ.
With this the torque becomes,

τ⃗ = a× F(t) = aIlB0(êx sin θ − êy cos θ)× (−êy cosωt+ êx sinωt)

= aIlB0êz(− sin θ cosωt+ cos θ sinωt) = sin(ωt− θ) .

e. The initial angle should be,

sin[ωt− (Ωt+ θ0)] = − sin θ0 > 0 .

That is, we need Ω = Ω and θ0 ∈ [−180◦, 0].
f. Expressing the surface as A = la(−êx sin θ + êy cos θ), the induced voltage is,

Uind = −
d

dt
B⃗ ·A = −laB0

d

dt
(êx cosωt+ êy sinωt) · (−êx sin θ + êy cos θ)

= −laB0(−êx sinωt+ êy cosωt) · (−êx sin θ + êy cos θ)

= −laB0(sinωt sin θ + cosωt cos θ)

= cos(ωt− θ) = cos θ0 .

g.

16.4.3.15 Ex: Magnetism

A given magnetic material is composed of N non-interacting atoms, whose magnetic
moments µ can point in three possible directions, as shown in the figure, µx, µy,
and −µx. The system is in thermal equilibrium at temperature T and subject to a
uniform magnetic field oriented along the y-direction, H⃗ = Hêy, so the energy levels
corresponding to a single atom are ε0 = −µH, ε1 = 0, and ε2 = 0.
a. Get the canonical partition function z for one atom, the canonical partition func-
tion Z of the system, and the Helmholtz free energy f per atom.
b. Determine the mean energy u ≡ ⟨εn⟩ and the entropy s/kB per atom.
c. Get magnetization per atom m ≡ ⟨µ⃗n⟩ = mxx̂+my ŷ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Induction_.pdf
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Figure 16.35:

d. Verify that the isothermal susceptibility χT ≡ (∂my/∂H)T ∝ 1/T at zero field
obeys Curie’s law of paramagnetism, χT (H → 0) ∝ 1/T .

Solution: a. We have ε0 = −µH and ε1 = ε2 = 0. Now,

z =

2∑

n=0

e−βεn = eβµH + 2

Z =
∑

n

e−βEn = zN = (eβµH + 2)N

f = − 1
β ln z = − 1

β
ln(eβµH + 2) .

b. Firstly,

u ≡ ⟨εn⟩ =
2∑

n=0

εne
−βεn

z
= − 1

z

2∑

n=0

∂e−βεn

∂β
= −1

z

∂z

∂β
= −∂ ln z

∂β
= − µHe

βµH

eβµH + 2
.

From the definition f = u− Ts, we get,

s

kB
= β(u− f) = −βµHe

βµH

eβµH − 2
+ ln(eβµH + 2) .

c. We have,

m = ⟨µn⟩ = 1
z

2∑

n=0

µne
−βεn = 1

z (µŷe
βµH + µx̂− µx̂) = µŷeβµH

eβµH + 2
.

d. We already know my = µ/(1 + 2e−βµH). Thereby,

χT ≡
(
∂my

∂H

)

T

=
2βµ2e−βµH

(1 + 2e−βµH)2
.

Thereby, χT (H → 0) = 2
9βν

2 = 2
9µ

2/kBT .
Alternative solution:
Expanding

my = 1
3

µ

(1− 2
3βµH)

+O(βµH)2 = 1
3 (1 +

2
3βµH) +O(βµH)2 .
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Now,

χT ≡
∂my

∂H T
= 2

9βµ
2 +O(βµH) ,

and
χT (H → 0) = 2

9βµ
2 = 2

9µ
2kBT .

16.5 Further reading

D.J. Griffiths, Introduction to Electrodynamics [545]ISBN

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics [577]ISBN

H.M. Nussenzveig, Curso de F́ısica Básica: Eletromagnetismo (Volume 3) [963]ISBN

http://isbnsearch.org/isbn/978-1-108-42041-9
http://isbnsearch.org/isbn/978-0-471-21643-8
http://isbnsearch.org/isbn/978-8-521-20801-3


Chapter 17

Maxwell’s equations

In the first part of the course, we derived the laws of electromagnetism from experi-
mental observations related to the Coulomb force on electric charges and the Lorentz
force on electric currents. We have found that these forces can be understood by intro-
ducing electric fields E⃗ and magnetic fields B⃗, to which the laws of electromagnetism
apply. These laws were all known before Maxwell. These are,

∇× B⃗ = µ0j Ampère’s law leading to Biot-Savart’s law

∇× E⃗ = −∂tB⃗ Faraday’s law

∇ · E⃗ = ε−10 ϱ Gauß’ law leading to Poisson’s law and Coulomb’s law

∇ · B⃗ = 0 absence of magnetic monopoles

.

(17.1)
As we will show shortly, well-behaved vector fields are entirely defined by their diver-
gences and rotations, so that we can expect that the set of laws (17.1) be complete,
that is, it should be able to describe all electromagnetic phenomena.

However, by comparing the laws of Faraday and Ampère, we perceive an incon-
sistency: taking the divergences of the rotations, we expect them to zero:

0 = ∇ · (∇× E⃗) = ∇ ·
(
−∂B⃗
∂t

)
= − ∂

∂t
(∇ · B⃗) (17.2)

0 = ∇ · (∇× B⃗) = µ0(∇ · j) = −µ0
∂ϱ

∂t
̸= 0 ,

where the last step makes use of the continuity equation (14.39). For temporal vari-
ations of the charge distribution the second equation can not be correct.

Maxwell’s idea for solving the problem was to simply subtract from Ampère’s law
the term that prevents the second equation (17.2) from zeroing. With

∇× B⃗ = µ0j+ ε0µ0
∂E⃗
∂t

, (17.3)

we verify,

∇ · (∇× B⃗) = µ0∇ · j+ ε0µ0
∂∇ · E⃗
∂t

= µ0

(
∇ · j+ ∂ϱ

∂t

)
= 0 , (17.4)

827
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where, once more, we used the continuity equation. The Eq. (17.3) could be called
Maxwell’s law and the surface integral of the additional term,

ε0
∂

∂t

∮

S
E⃗ · dS ≡

∮

S
jd · dS = Id . (17.5)

is named displacement current. We will study consequences of this law in the Excs. 17.1.5.1
and 17.1.5.2.

Example 81 (Necessity of a displacement current): We consider the circuit
shown in Fig. 17.1. On the one hand, the current passing through the Ampèrian
loop must be independent of the shape of the enclosed area,

I =

∫
S
j · dS = 1

µ0

∮
∂S
B⃗ · dl .

On the other hand, we know that the current can not cross the capacitor and
must accumulate on one of the electrodes.
The problem is solved by identifying the electric field, which is developing due
to the accumulated charge,

∂Q

∂t
= ε0

∂

∂t

∫
V
∇ · E⃗dV = ε0

∂

∂t

∫
∂V
E⃗ · dS ≡ Id ,

with a displacement current Id.

Figure 17.1: Necessity for a displacement current: The magnetic field at the edge of the
loops 1 and 2 can not depend on the shape of the chosen surface.

17.1 The fundamental laws of electrodynamics

With these results we can finally summarize the Maxwell equations as,

(i) ∇× B⃗ − ε0µ0∂tE⃗ = µ0j

(ii) ∇× E⃗ + ∂tB⃗ = 0

(iii) ∇ · E⃗ = ε−10 ϱ

(iv) ∇ · B⃗ = 0

. (17.6)

These equations form the complete basis of the electrodynamical theory initially
motivated by the empirical observation of forces acting on features of matter identified
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as charges and currents, that is, the electric (Coulomb) force and magnetic (Lorentz)
force,

FLor = Q(E⃗ + v × B⃗) , (17.7)

where E⃗ is a polar vector (E⃗ = −E⃗mirrored) 1 and B⃗ is an axial vector (B⃗ = B⃗mirrored).
The electric field E⃗ and the magnetic field B⃗ and their field equations were ’invented’ to
explain the Coulomb-Lorentz force. They are only observable through their action on
charged particles. According to the Helmholtz theorem discussed in the next section,
arbitrary (but well-behaved) field vectors are fully defined by their divergence and
rotation properties. That is exactly what Maxwell’s equations do with the electric
and magnetic fields.

Figure 17.2: Construction and application of the theory of electrodynamics.

Once we know the fundamental laws of electromagnetism 2, we can reverse the
reasoning by placing them as postulates and deriving the observable phenomena from
them. This will be the procedure of this second part of the course of electromagnetism.

Example 82 (Derivation of electro- and magnetostatics from Maxwell’s
equations): For static systems we can let Ė = Ḃ = 0. In particular for the
electrostatic case, we ignore currents, j = 0, and for the magnetostatic case we
ignore charges, ϱ = 0. Maxwell’s equations then simplify considerably and can
often be replaced by the Poisson equations,

−∇ · E⃗ = ∇ · (∇Φ) = ∇2Φ = −ε−1
0 ϱ

−∇× B⃗ = −∇× (∇×A) = ∇2A−∇(∇ ·A 0
) = −j ,

where the divergence of A is set to zero in the Coulomb gauge.

We will apply Maxwell’s equations to solve the Excs. 17.1.5.3 to Excs. 17.1.5.5. In
the Excs. 17.1.5.6, 17.1.5.7, and 17.1.5.8 we study implications of a supposed existence
of magnetic charges or magnetic monopoles.

1Mirroring means inversion of the dynamic quantities v → −v, FLor → −FLor. Examples for
polar vectors are r, p, E⃗. Examples for axial vectors are L, ω, B⃗. We have for axial vectors ai and
polar vectors pi, the following relations,

a1 × a2 = a3 , p1 × p2 = a3 , p1 × a2 = p3 .

2We note, that Maxwell’s laws can be deduced from more fundamental principles, including the
conservation laws for energy, momentum, angular momentum, and charge and the relativistic Lorentz
transform.
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17.1.1 Helmholtz’s theorem

The Helmholtz theorem says that, knowing the divergence and the rotation of an
unknown vector field F, we can reconstruct this field under the condition that the
divergence and the rotation disappear sufficiently fast in the infinity 3 and that |F|
disappears at least as fast as 1/r2. That is, knowing the scalar field,

D(r) ≡ ∇ · F(r) (17.8)

and the vectorial field,
C(r) ≡ ∇× F(r) , (17.9)

the field F is completely defined. Note that obviously, ∇ ·C = 0.
To prove this, we show that,

F = −∇Φ+∇×A , (17.10)

where

Φ(r) ≡ 1

4π

∫

R3

D(r′)
|r− r′|dV

′ and A(r) ≡ 1

4π

∫

R3

C(r′)
|r− r′|dV

′ , (17.11)

meets the requirements (17.8) and (17.9). The divergence is,

∇r · F = −∇2
rΦ+ ∇r · ∇r ×A

0
(17.12)

= − 1

4π

∫
D(r′)∇2

r

(
1

|r− r′|

)
dV ′ =

∫
D(r′)δ3(r− r′)dV ′ = D(r) .

We verify,

4π∇r ·A =

∫
C(r′) · ∇r

1

|r− r′|dV
′ = −

∫
C(r′) · ∇r′

1

|r− r′|dV
′ (17.13)

= −
∫

1

|r− r′| ∇r′ ·C(r′)
∇ · ∇ × F = 0

dV ′ −
∮

1

|r− r′|C(r′) · dS′ −→ 0 ,

because the surface integral can be arbitrarily reduced by choosing very distant sur-
faces r′ →∞. Finally, the rotation is,

∇r × F = −∇r ×∇rΦ
0
+∇r ×∇r ×A = −∇2

rA+∇r(∇r ·A
0
) (17.14)

= − 1

4π

∫
C(r′)∇2

r

(
1

|r− r′|

)
dV ′ =

∫
C(r′)δ3(r− r′)dV ′ = C(r) ,

using rules of vector analysis summarized in (21.111).

17.1.2 Potentials in electrodynamics

In electrodynamics, two fields are required to describe the Coulomb and Lorentz
forces, the electric and the magnetic field. With Helmholtz’s theorem we can now

3Faster than 1/r in order to guarantee that the integrals (17.8) and (17.9) converge.
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declare that four equations are necessary and sufficient to completely characterize
these fields through the following rotations and divergences,

rot B⃗ = ... , rot E⃗ = ... , div E⃗ = ... , div B⃗ = ... . (17.15)

These equations are precisely those of Maxwell. In addition, the derivation of the
preceding section showed that

each vector field which disappears fast enough at long distances can be
expressed as the sum of the gradient of a scalar function and rotation of
a vector function,

since,

F = −∇Φ+∇×A = −∇ 1

4π

∫

R3

D(r′)
|r− r′|dV

′ +∇× 1

4π

∫

R3

C(r′)
|r− r′|dV

′ . (17.16)

The functions Φ and A are called scalar potential and vector potential, respectively.
Irrotational fields, that is, fields without vortices are conservative and can be

expressed by the gradient of a scalar field,

∇×F = 0 ⇐⇒ A = 0 ⇐⇒ F = −∇Φ ⇐⇒
∮

F ·dl = 0 . (17.17)

Example 83 (Potentials in electrostatics): Electrostatics is an example

for an irrotational field, since Maxwell’s electrostatic equations are precisely,

∇ × E⃗ = 0 and ∇ · E⃗ = D = ϱ/ε0. Therefore, there is an electric potential Φ,

such that −∇Φ = E⃗ .

Fields without divergences, that is, without sources or sinks, can be expressed by
the rotation of a vector field,

∇·F = 0 ⇐⇒ Φ = 0 ⇐⇒ F = ∇×A ⇐⇒
∮

F ·dS = 0 . (17.18)

Example 84 (Potentials in magnetostatics): Magnetostatics is an example

for a field without divergences, since Maxwell’s magnetostatic equations are

precisely, ∇×B⃗ = C = µ0j and ∇· B⃗ = 0. Therefore, there is a vector potential

A, such that ∇×A = B⃗.

We will train the calculation with potentials in Excs. 17.1.5.9 and 17.1.5.10.

17.1.3 The macroscopic Maxwell equations

Electric and magnetic fields and electromagnetic waves survive in vacuum. Maxwell’s
equations (17.6) are formulated for this environment. On the other hand, we saw in
the first part of the course, that charges (14.17) and currents (16.20) that are free
or localized in a medium generate a polarization and a magnetization of the medium
which can influence the fields.

In this section, we will repeat the derivation of the equations (14.18), respectively,
(16.21) in a more stringent way from a microscopic model of matter. We suppose
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matter to be made of molecules, each one being constructed from atoms composed of
positively charged nuclei orbited by negatively charged electrons. On each of these
elementary particles considered as point-like, the electromagnetic field diverges. But
doing this statement, we are talking about microscopic electromagnetic fields, which
can not be measured by macroscopic probes which, are composed of atoms themselves.
We can not directly measure microscopic quantities with a macroscopic apparatus.

According to the model of matter already formulated by Democritus 300 years
before Christ, we suppose the space between the elementary particles to be empty,
such that we can assume the validity of Maxwell’s equations for vacuum in a micro-
scopic environment, that is, we believe in the equations (17.6) for the fields E⃗mic and
B⃗mic, where the subscript mic indicates the presence of localized or moving point-like
charges. A macroscopic measurement apparatus will always deliver an effective mean
value, averaged in space and time, of electromagnetic quantities. We will show in
the following [659] how, via spatial averaging of Maxwell’s microscopic equations, it
is possible to deduce Maxwell’s macroscopic equations taking account of polarization
and magnetization (14.18), respectively, (16.21).

We obtain the spatial average by smearing out the microscopic quantities within
a characteristic volume defined by a spherically symmetric function f(r), chosen to
cancel out exponentially at sufficiently large distances 4. The reach of this function
must be adapted to the resolution of the macroscopic device. For example, the resolu-
tion limit for devices based on optics will limit the reach of the function f(r) to some

100 nm 5. The spatial average of the electromagnetic quantities E⃗mic(r, t), B⃗mic(r, t),
ϱmic(r, t), and jmic(r, t) is then,

⟨Xmic(r, t)⟩ ≡
∫

R3

d3r′f(r′)Xmic(r− r′, t) . (17.19)

The macroscopic fields are defined as the averages of the respective microscopic fields:

E⃗(r, t) ≡ ⟨E⃗mic(r, t)⟩ and B⃗(r, t) ≡ ⟨B⃗mic(r, t)⟩ , (17.20)

where macroscopic quantities do not have the subscript mic.
Now, taking the averages of the microscopic Maxwell equations, we obtain,

(i) ⟨∇ × B⃗mic(r, t)⟩ − ε0µ0

〈
∂E⃗mic(r,t)

∂t

〉
= µ0⟨jmic(r, t)⟩

(ii) ⟨∇ × E⃗mic(r, t)⟩+
〈
∂B⃗mic(r,t)

∂t

〉
= 0

(iii) ⟨∇ · E⃗mic(r, t)⟩ = 1
ε0
⟨ϱmic(r, t)⟩

(iv) ⟨∇ · B⃗mic(r, t)⟩ = 0

. (17.21)

However,

⟨∇ · E⃗mic(r, t)⟩ = ∇ · ⟨E⃗mic(r, t)⟩ = ∇ · E⃗(r, t) (17.22)

⟨∇ × E⃗mic(r, t)⟩ = ∇× ⟨E⃗mic(r, t)⟩ = ∇× E⃗(r, t) ,
4An example for a normalized smoothing function is f(r′) ≡ (a/π)3/2e−ar

′2
, as it satisfies∫

R3 f(r
′)d3r′ = 1.

5In contrast, X-rays with a resolution of about 10 nm allow for an analysis of the microscopic
structure of matter.
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and analogously for B⃗mic, since ∇ acts only on r and not on the integration variable
r′. On the other hand, the partial time-derivative also does not act on r nor on r′,

〈
∂E⃗mic(r, t)

∂t

〉
=

∂

∂t
⟨E⃗mic(r, t)⟩ =

∂E⃗(r, t)
∂t

, (17.23)

and analogously for B⃗mic. Thus, we already deduced the two homogeneous macro-
scopic Maxwell equations (ii) and (iv), and the set of equations (17.21) simplifies
to:

(i) ∇× B⃗(r, t)− ε0µ0∂tE⃗(r, t) = µ⟨jmic(r, t)⟩

(ii) ∇× E⃗(r, t) + ∂tB⃗(r, t) = 0

(iii) ∇ · E⃗(r, t) = 1
ε0
⟨ϱmic(r, t)⟩

(iv) ∇ · B⃗(r, t) = 0

, (17.24)

but we still need to calculate ⟨ϱmic(r, t)⟩ and ⟨jmic(r, t)⟩.

Figure 17.3: Charges localized in molecules and free charges.

To do so we imagine that, as illustrated in Fig. 17.3, there are N charges in each
molecule of the material and, for simplicity, we also assume the material to be a pure
substance, that is to say, composed of identical molecules. Be S⃗n the position of the
n-th molecule, measured from an arbitrary origin of the coordinate system. Thus,
the k-th charge qkn of the n-th molecule is at the point S⃗kn, with respect to the
position vector of the molecule S⃗n. This means that, with respect to the origin of
the coordinate system, the position of the charge qkn is given by S⃗kn + S⃗n. We will
also allow for free charges, qm, at positions rm. As all the charges can move, all their
positions rm(t), S⃗n(t), and S⃗kn(t) must be considered as functions of time.

First, we will calculate the charge density,

ϱmic(r, t) =
∑

m

qmδ
(3)(r− rm) +

∑

n,k

qknδ
(3)(r− S⃗kn − S⃗n) , (17.25)

and using the definition of the spatial average (17.19),

⟨ϱmic(r, t)⟩ =
∑

m

qmf(r− rm)

ϱ(r, t)

+
∑

n,k

qknf(r− S⃗kn − S⃗n) , (17.26)
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where we recall, that the first term represents the macroscopic density of free charges
ϱ(r, t). Typically, |S⃗kn| is on the order of some Angströms only, and therefore the

’smoothing’ function f(r−S⃗kn−S⃗n) does not appreciably differ from f(r−S⃗n), such
that we can approximate:

f(r− S⃗kn − S⃗n) ≃ f(r− S⃗n)− S⃗kn · ∇f(r− S⃗n) + 1
2 (S⃗kn · ∇)2f(r− S⃗n) , (17.27)

and, with this approximation, obtain,

⟨ϱmic(r, t)⟩ ≃ ϱ(r, t) +
∑

n,k

qknf(r− S⃗n)−
∑

n,k

qknS⃗kn · ∇f(r− S⃗n) (17.28)

+
∑

n,k

qkn
1
2 (S⃗kn · ∇)2f(r− S⃗n)

= ϱ(r, t) +
∑

n,k

qkn
0

f(r− S⃗n)−∇ ·
∑

n

(∑

k

qknS⃗kn
)
f(r− S⃗n)

+ 1
6

∑

n

∇ ·



(
3
∑

k

qknS⃗knS⃗kn
) 0

· ∇f(r− S⃗n)




= ϱ(r, t)−∇ ·
∑

n

dnf(r− S⃗n) .

In the last line we assumed that each molecule is neutral,

∑

k

qkn = 0 , (17.29)

we use the definition of the electric dipole moment of the n-th molecule,

dn =
∑

k

qknS⃗kn , (17.30)

and we suppose, to simplify our calculations below, that the electric quadrupole mo-
mentum of the n-th molecule,

↔
Qn ≡ 3

∑

k

qknS⃗knS⃗kn !
=
↔
0 , (17.31)

is zero, that is, that the molecules of the material have zero electric quadrupolar
momentum. As shown in the discussion of the relationship (??), the polarization of a
medium is the sum of the individual instantaneous dipole moments of each molecule,

P⃗mic(r, t) =
∑

n

dnδ
(3)(r− S⃗n) , (17.32)

With these observations, we conclude that,

⟨P⃗mic(r, t)⟩ =
∑

n

dnf(r− S⃗n) , (17.33)
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and, identifying this quantity in the expression (17.28), we get,

⟨ϱmic(r, t)⟩ ≃ ϱ(r, t)−∇ · P⃗(r, t) , (17.34)

where we introduced the abbreviation, P⃗(r, t) ≡ ⟨P⃗mic(r, t)⟩, analogously to the elec-
trostatic case. The macroscopic Gauß law (17.21)(iii) becomes then,

∇ · E⃗(r, t) = 1
ε0
[ϱ(r, t)−∇ · P⃗(r, t)] , (17.35)

that is,
∇ · D⃗(r, t) = ϱ(r, t) , (17.36)

where we defined the field of electric displacement as,

D⃗(r, t) ≡ ε0E⃗(r, t) + P⃗(r, t) . (17.37)

Let us now calculate, ⟨jmic(r, t)⟩. From the very definition of the microscopic
current we have,

jmic(r, t) ≡ ϱmic(r, t)vmic(r, t) , (17.38)

where vmic(r, t) is the velocity field of the charges of the material medium. By
inserting the expression (17.25) for the charge density,

jmic(r, t) =
∑

m

qmδ
(3)(r− rm)vmic(r, t) +

∑

n,k

qknδ
(3)(r− S⃗kn − S⃗n)vmic(r, t)

(17.39)

=
∑

m

qmṙmδ
(3)(r− rm) +

∑

n,k

qkn(ṡkn + ṡn)δ
(3)(r− S⃗kn − S⃗n) ,

where the field of charge velocities calculated exactly at the location of the m-th
charge gives the value of its velocity,

δ(3)(r− x)vmic(r, t) = δ(3)(r− x)ẋ .

We can now evaluate the average (17.19),

⟨jmic(r, t)⟩ =
∑

m

qmṙmf(r− rm)

j(r, t)

+
∑

n,k

qkn(ṡkn + ṡn)f(r− S⃗kn − S⃗n) , (17.40)

where we recall, that the first term represents the macroscopic density of free current
j(r, t). Approximating again,

f(r− S⃗kn − S⃗n) ≃ f(r− S⃗n)− S⃗kn · ∇f(r− S⃗n) , (17.41)

and, with this approximation, we obtain,

⟨jmic(r, t)⟩ ≃ j(r, t)+
∑

n,k

qkn(ṡkn+ ṡn)f(r−S⃗n)−
∑

k,n

qkn(ṡkn+ ṡn)S⃗kn ·∇f(r−S⃗n) .

(17.42)
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As we are now working to obtain the macroscopic Ampère-Maxwell equation, we need
to let appear in the above results the rotation of the magnetization, in addition to
the time derivative of the polarization. Recalling that the magnetic dipole moment
of the n-th molecule µ⃗n is defined by equation (15.43) as,

µ⃗n ≡ 1
2

∑

k

qknS⃗kn × ṡkn , (17.43)

based on the relationship (16.15), we can write magnetization as the sum of the
instantaneous magnetic dipole moments of every molecule,

M⃗mic(r, t) =
∑

n

µ⃗nδ
(3)(r− S⃗n) , (17.44)

Thus, we want to identify, in the expression for ⟨jmic(r, t)⟩, the rotation of ⟨M⃗mic(r, t)⟩:

∇× ⟨M⃗mic(r, t)⟩ = ∇×
∑

n

µ⃗nf(r− S⃗n) = −
∑

n

µ⃗n ×∇f(r− S⃗n) (17.45)

= − 1
2

∑

n,k

qkn(S⃗kn × ṡkn)×∇f(r− S⃗n)

= − 1
2

∑

n,k

qknṡkn[S⃗kn · ∇f(r− S⃗n)] + 1
2

∑

n,k

qknS⃗kn[ṡkn · ∇f(r− S⃗n)] ,

using the BAC-CAB rule (21.110)(v), and continuing,

∇× ⟨M⃗mic(r, t)⟩ = −
∑

n,k

qknṡknS⃗kn · ∇f(r− S⃗n) + 1
2

∑

n

[∑

k

qkn
d

dt
(S⃗knS⃗kn)

]
· ∇f(r− S⃗n)

= −
∑

n,k

qknṡknS⃗kn · ∇f(r− S⃗n) + 1
6

∑

n


 d
dt


3

∑

k

qknS⃗knS⃗kn
0




 · ∇f(r− S⃗n) .

(17.46)

The second term is zero again because, as in (17.31), we are assuming that
↔
Qn

!
=
↔
0 .

Continuing the calculation (17.42),

⟨jmic(r, t)⟩ = j(r, t) +
∑

n,k

qknṡknf(r− S⃗n) +
∑

n,k

qkn
0

ṡnf(r− S⃗n) (17.47)

+∇× ⟨M⃗mic(r, t)⟩ −
∑

n,k

qknṡnS⃗kn · ∇f(r− S⃗n) .

The third term disappears, because again we are assuming that the total charge of
every molecule is zero,

∑
k qkn = 0. The partial temporal derivative of the polarization

is given by the expression (17.33),

∂P⃗(r, t)
∂t

=
∂

∂t

∑

n,k

qknS⃗knf(r− S⃗n) =
∑

n,k

qkn
∂S⃗kn
∂t

f(r− S⃗n) +
∑

n,k

qknS⃗kn
∂

∂t
f(r− S⃗n)

=
∑

n,k

qknṡknf(r− S⃗n)−
∑

n,k

qknS⃗knṡn · ∇f(r− S⃗n) . (17.48)
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We can use this result to replace the second term in equation (17.47),

⟨jmic(r, t)⟩ ≃ j(r, t) +∇× ⟨M⃗mic(r, t)⟩+
∂P⃗(r, t)
∂t

(17.49)

+
∑

n,k

qkn[S⃗knṡn · ∇f(r− S⃗n)− ṡnS⃗kn · ∇f(r− S⃗n)] .

Note, that the last term of this expression is identical to (17.45) with the difference,
that the electronic velocities ṡkn of that expression or now replaced by the molecular
velocities ṡn.

Now let us suppose that the material itself is not in motion, so that the (averaged
absolute) velocities of the molecules, ṡn, are much smaller than the (averaged abso-
lute) velocities of the charges in every molecule, ṡkn. With this, we can neglect the
last term of the above equation in comparison to the first,

µ0⟨jmic(r, t)⟩ ≃ µ0j(r, t) + µ0
∂P⃗(r, t)
∂t

+ µ0∇× ⟨M⃗mic(r, t)⟩ . (17.50)

The Ampère-Maxwell equation, then reads in its spatial average (17.21)(i),

∇× B⃗(r, t) = µ0⟨jmic(r, t)⟩+ ε0µ0

〈
∂E⃗mic(r, t)

∂t

〉
(17.51)

= µ0j(r, t) + µ0
∂P⃗(r, t)
∂t

+ µ0∇× ⟨M⃗mic(r, t)⟩+ ε0µ0
∂E⃗(r, t)
∂t

,

or,

∇× [B⃗(r, t)− µ0∇× ⟨M⃗mic(r, t)⟩] = µ0j(r, t) + µ0
∂

∂t
[εE⃗(r, t) + P⃗(r, t)] , (17.52)

Introducing the abbreviation,

M⃗(r, t) ≡ ⟨M⃗mic(r, t)⟩ , (17.53)

defining magnetic excitation field,

H⃗(r, t) ≡ 1
µ0
B⃗(r, t)− M⃗(r, t) , (17.54)

and recognizing the electric displacement field, D⃗(r, t) = ε0E⃗(r, t)+P⃗(r, t), we obtain,

∇× H⃗(r, t) = ∂D⃗(r, t)
∂t

+ j(r, t) , (17.55)

which is the macroscopic Ampère-Maxwell equation.
The above derivations show that P⃗ and M⃗ do not exist as exact physical quan-

tities in the microscopic sense. They are artifacts of a process of smearing out the
microscopic charges and currents over smooth macroscopic distributions, with the aim
of facilitating the calculation with macroscopic quantities.
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17.1.4 The fundamental laws in polarizable and magnetizable
materials

The derivations made in the previous chapter led to Maxwell’s macroscopic equations,
which correspond to the Maxwell equations for vacuum complemented by material
equations characterizing the medium. In short,

(i) ∇× H⃗ = ∂tD⃗ + j

(ii) ∇× E⃗ = −∂tB⃗

(iii) ∇ · D⃗ = ϱ

(iv) ∇ · B⃗ = 0

. (17.56)

The fields are related by the macroscopic polarization and magnetization,

P⃗ = D⃗ − ε0E⃗ and M⃗ = µ−10 B⃗ − H⃗ . (17.57)

For a given free charge density distribution ϱ(r, t) and a free current density distri-
bution j(r, t), the above six equations (17.56) and (17.57) define the six components

of the fields unambiguously. In vacuum ε0E⃗ = D⃗ and µ−10 B⃗ = H⃗ Maxwell’s equations

simplify. In material media, however, the secondary quantities D⃗ and H⃗ are not equal
to the fields.

Depending on its structure, a medium may have (or not) bound or free charges and
currents, responding in a specific way to applied electric and magnetic fields and giving
rise to a wide variety of features. For example, a medium is non-conductive when, even
in the presence of electric fields applied to the medium, there is no flux of current.
A medium is linear when the polarization and the magnetization depend linearly
on the electric and magnetic fields, respectively. A medium is homogeneous when
the susceptibilities do not vary across the medium. When the directions of induced
polarization and magnetization are parallel, respectively, to the electric and magnetic
fields, the medium is said to be isotropic, otherwise it is said to be anisotropic.

Depending on the type of material and its properties the equations do sometimes
simplify. For example, we have for a
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medium condition

dielectric D⃗ = εE⃗ , P⃗ = χεε0E⃗ , ε = 1 + χε

non-linear dielectric D⃗ = D⃗(E⃗) ≁ E⃗

dia- and paramagnetic B⃗ = µH⃗, M⃗ = χµH⃗, µ = 1 + χµ

non-linear magnetic B⃗ = B⃗(H⃗) ≁ B⃗

neutral ρ = 0

isolating j = 0

ohmic j = σE⃗

non ohmic j = j(E⃗) ≁ E⃗

The material equations define the material constants, that is, the permittivity ε,
the permeability µ, and the conductivity σ. These quantities are scalar for isotropic
media and tensors for anisotropic media. Resolve the Exc. 17.1.5.11.

17.1.5 Exercises

17.1.5.1 Ex: Displacement current

Consider a straight big conducting wire of radius a with a small transverse gap of
width w ≪ a carrying a constant current I. Find the magnetic field in the gap for
distances of the symmetry axis r < a as a function of the current.

Solution: The two surfaces on either side of the gap act as a plate capacitor as
the charges build up on these surfaces. Consequently, the electric field between the
plates increases, which generates a magnetic field. Neglecting boundary effects at the
edges of the plates, the temporal variation of the electric field between the plates is,

∂E
∂t

=
∂

∂t

σ

ε0
=

∂

∂t

Q

πa2ε0
=

I

πa2ε0
.

Taking a circular path of radius r between the plates (there is no current here, so that
j = 0), we have,

2πrB =

∮

∂S
B⃗·dl =

∫

S
∇×B⃗·dS = ε0µ0

∫

S

∂E⃗
∂t
·dS = ε0µ0

∫

S

I

πa2ε0
dS = ε0µ0

I

πa2ε0
πr2 .

Hence,

B⃗ = µ0
Ir

2πa2
êϕ ,

by symmetry and using the right hand rule, and taking the z-direction as showing from
the positive plate towards the negative plate.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica01.pdf
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17.1.5.2 Ex: Plate capacitor

A disk-shaped plate capacitor with radius R, distance d, and ε = 1 is charged by a
constant current I.
a. Calculate from the continuity equation, neglecting edge effects, the temporal vari-
ation of the charges on the plates q(t), respectively, −q(t).
b. Calculate the temporal variation of the electric field between the plates and Maxwell’s
displacement current density.
c. Calculate the magnetic field B⃗ between the plates along a circular path Γ inside
(ρ < R) and outside (ρ > R) the capacitor.

d. Show that the B⃗-field between the plates is, for ρ > R, equal to the B⃗-field pro-
duced by the charging current I around the conductors feeding the capacitor.

Figure 17.4: Plate capacitor.

Solution: a. The surface integral over a closed area S surrounding the upper plate
of the capacitor is, ∮

j · dS = −I .

With the law of Gauß and the continuity equation,

∮
j · dS =

∫

V

∇ · jdV = − ∂

∂t

∫
ρdV = − ∂

∂t
q(t) .

Follows,
q(t) = It+ q(0) .

b. Maxwell’s third equation,
∇ · D⃗ = ρ ,

where D⃗ = ε0E⃗ ≡ −ε0E êz without dielectric. Thereby,

∮
D⃗ · dS = DπR2 = q .

Hence, ε0Ė = Ḋ = q̇(t)
πR2 . According to (17.5) Maxwell’s displacement current density

is defined as,

jd ≡ ε0
∂E⃗
∂t

= − q̇

πR2
êz = −

I

πR2
êz .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica02.pdf
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c. Between the plates we have no free charges, j = 0. The line integral along the circle
Γ between the capacitor plates around the z-axis is,

∮

Γ

B⃗ · dl = µ0

∫
jd · dS .

For a radius of the circle less than the radius of the plates, ρ < R, we have Bρ2πρ =
µ0

(
− I
πR2

)
êz · êzπρ2. Hence,

B⃗ρ = −
µ0I

2πR2
ρêϕ .

For ρ > R, we have Bρ2πρ = −µ0
I

πR2πR
2. Hence,

B⃗ρ = −
µ0I

2πρ
êϕ .

d. Above the capacitor the field Bρ is, due to jdispl = 0,
∮
B⃗ · dS = µ0

∫
j · dS

Hence, B2πρ = −µ0I, that is,

B⃗ρ = −
µ0I

2πρ
êϕ .

17.1.5.3 Ex: Maxwell’s equations for a particular charge and current
density distribution

Determine the charge and current density distributions producing the fields,

E⃗(r, t) = − 1

4πε0

q

r2
Θ(vt− r)êr and B⃗(r, t) = 0 ,

where Θ is the Heavyside function and v is a constant. Show that the fields satisfy
all Maxwell equations. Describe the physical situation producing these fields.

Solution: It is easy to show,

∇ · B⃗ = ∇× B⃗ = ∇× E⃗ = 0 ,

because the electric field is radial. The third Maxwell equation gives,

ϱ = ε0∇ · E⃗ = − q

4π
∇ · Θ(vt− r)êr

r2

= − q

4π

(
Θ(vt− r)∇ · êr

r2
+

êr
r2
· ∇Θ(vt− r)

)

= − q

4π

(
Θ(vt− r)4πδ3(r) + êr

r2
· [−δ(vt− r)êr]

)

= − q

4π

(
4πδ3(r) +

êr
r2
· [−δ(vt− r)êr]

)
= −qδ3(r) + q

4πr2
δ(vt− r) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica03.pdf
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Also, we obtain from Maxwell’s first equation,

j = −ε0
∂E⃗
∂t

=
qv

4πr2
δ(vt− r)êr .

With the temporal variation of the charge density,

∂ϱ

∂t
=

q

4πr2
∂δ3(ct− r)

∂t
,

and the divergence of the current density,

∇ · j(r, t) = qv

4πr2
δ(vt− r)∇ · r

r3
+

qv

4πr2
∇δ(vt− r)

=
qv

4πr2
δ(vt− r)(−4π)δ3(r)

0
− qv

4πr2
∂δ3(vt− r)

∂r
,

we see that the continuity equation is satisfied. The situation corresponds to a point
charge +q at the origin and a spherical shell charge distribution (with the total charge
−q) expanding with velocity v). The electric field inside the shell is entirely due to the
charge at the origin, and the field outside the sphere is zero, since the total enclosed
charge is zero. Only the expanding sphere contributes to the current density.

17.1.5.4 Ex: Atomic diamagnetism

An electron (charge q) orbits a nucleus (charge Q) at a distance r, the centripetal
acceleration being provided by the Coulomb attraction. Now, a small magnetic field
dB is slowly ramped up, perpendicular to the plane of the orbit. Show that the in-
crease of the kinetic energy, dT , transferred to the electron via the induced electric
field, is exactly the one necessary to keep the circular motion on the original radius r.
(This allows us, in the discussion of diamagnetism, to assume a fixed electron radius.)

Solution: The atom is stable if,

mv2

r
=

Qq

4πε0r2
.

In the presence of a magnetic field the force balance is modified by the Lorentz force,

mv21
r

=
Qq

4πε0r2
− qv1dB .

That is, we observe a variation of the kinetic energy which, assuming that the radius
stays unchanged, is given by,

dT = m
2 v

2
1 − m

2 v
2 = − 1

2qrvdB .

This may seem surprising knowing that magnetic fields do not work. The solution is
that the increase of the kinetic energy must come from the electric field induced by the
temporal variation of the magnetic field,

πr2
∂B
∂t

=

∫
∂B⃗
∂t
· dS = −

∫

S
∇× E⃗dS = −

∮

∂S
E⃗ · dl = −2πrE .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiEdinamica04.pdf
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The force on the electron is now a Coulomb force,

FE = qE êϕ = −qr
2

∂B
∂t

êϕ .

Therefore, the kinetic energy varies by,

dT = FEdl = −
qr

2

∂B
∂t
dl = −qr

2

∂B
∂t
vdt = −qr

2
vdB ,

which corresponds to the value determined above by assuming an invariable radius 6.

17.1.5.5 Ex: Variable charge with constant current

Suppose that j(r) is constant over time, but not ϱ(r, t). Such conditions can prevail,
for example, during the charging process of a capacitor.
a. Show that the charge density at any point is a linear function of time: ϱ(r, t) =
ϱ(r, 0) + ϱ̇(r, 0)t.
b. Despite the fact that this configuration is not electrostatic or magnetostatic, both
the Coulomb law and the Biot-Savart law remain valid, since they satisfy Maxwell’s
equations. Show in particular that,

B⃗(r) = µ0

4π

∫
j(r′)× êR

R2
d3r′

with R ≡ |r− r′| obeys Ampère’s law including Maxwell’s displacement term.

Solution: a. From the continuity equation,

ϱ̇(r, t) = −∇ · j(r) = const = ϱ̇(r, 0)

we check,

ϱ(r, t)− ϱ(r, 0) = ϱ̇(r, 0)

∫ t

0

dτ = ϱ̇(r, 0)t .

b. Inserting the given magnetic field into the first Maxwell equation we calculate, using
the rule ∇× (A×B) = (B · ∇)A− (A · ∇)B+A(∇ ·B)−B(∇ ·A),

∇× B⃗(r) = µ0

4π

∫
∇× j(r′)× êR

R2
d3r′ =

µ0

4π

∫ (
− [j(r′) · ∇] êR

R2
+ j(r′)

[
∇ · êR

R2

])
d3r′

= −µ0

4π

∫
[j(r′) · ∇′] êR

R2
d3r′ +

µ0

4π

∫
j(r′)4πδ3(r)d3r′ ,

6We note that in quantum mechanics, we also calculate the Zeeman effect assuming in first order,
that the electronic orbitals |n⟩ remain unchanged, E(1) = ⟨n|Ĥ(1)|n⟩.
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where in the second line we replaced ∇ with ∇′. Now, we consider the coordinate x,

[
∇× B⃗(r)

]
x
= −µ0

4π

∫
[j(r′) · ∇′] x− x

′

R3
d3r′ + µ0jx(r)

= −µ0

4π

∫ {
∇′ ·

[
j(r′)

x− x′
R3

]
− x− x′

R3
∇′ · j(r′)

}
d3r′ + µ0jx(r)

= −µ0

4π

∮
j(r′)

x− x′
R3

· dS′ + µ0

4π

∫
x− x′
R3

(−ϱ̇)d3r′ + µ0jx(r)

= −µ0

4π

d

dt

∫
x− x′
R3

ϱd3r′ + µ0jx(r) = −
µ0

4π

d

dt
4πε0Ex + µ0jx(r) ,

neglecting surface terms. Hence,

∇× B⃗ = ∇× µ0

4π

∫
j(r′)× êR

R2
d3r′

= µ0ε0
d

dt

1

4πε0

∫
ϱ(r′, t)êR

R2
d3r′ + µ0j(r) = µ0ε0

dE⃗
dt

+ µ0j(r) .

17.1.5.6 Ex: Force on magnetic monopoles

In free space Maxwell’s equations are perfectly symmetric under the operation E⃗ →
B⃗ → −ε0µ0E⃗ . But the existence of charges and electric currents breaks this symmetry.
The introduction of ’magnetic charges’ and ’magnetic currents’ would restore the
symmetry, but they were never observed 7. In this exercise we assume the existence
of a ’Coulomb law’ for ’magnetic charges’ qm,

F =
µ0

4π

qm1
qm2

|r− r′|3 (r− r′) .

a. Find the force law for a magnetic charge moving with velocity v through electric
and magnetic fields E⃗ and B⃗ [1097].
b. One of the methods used to search for magnetic monopoles in laboratory [227] con-
sists of passing them through a wire loop with the self-inductance L. What current
would be induced in the circuit by the passage of a magnetic monopole?

Solution: a. It is sufficient to look at the symmetry of Maxwell’s equations to find,

F = qmB⃗ −
qm
c2

v × E⃗ .

b. One of the experiments trying to discover magnetic monopoles [227] consisted of
a superconducting ring (i.e. without resistance) with a magnet aligned to attract the
monopoles (if they exist) through the ring. Assuming that a single ’magnetic charge’
qm produces a Coulomb magnetic field,

B⃗ =
µ0

4π

qm
r2

êr ,

7Dirac showed that the existence of magnetic charges would explain the quantization of charge.
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we can estimate the flux through the ring (radius b) upon passage of the monopole
along the symmetry axis. Let v be the velocity of the monopole. We place the origin
in the center of the ring and choose z as the axis of symmetry. We must integrate
the magnetic field over the disk-shaped area enclosed by the ring to obtain the flux,

Φm =

∫

disco

B⃗ · da .

When the monopole is at position dêz, the magnetic field observed at a point on the
disk with distance ρ from the z-axis is,

B⃗ =
µ0

4π

qm
|ρêρ − dêz|2

(ρêρ − dêz) .

The surface element is,
da = êzρdρdϕ ,

such that the flux is,

Φm =
µ0qm
4π

∫ 2π

0

∫ b

0

ρêρ − dêz
d2 + ρ2

· êzρdρdϕ

=
µ0qmd

2

∫ b

0

ρdρ
√
d2 + ρ2

3 =
µ0qm
2

(
1− d√

d2 + b2

)
.

We take t = 0 as the time when the monopole crosses the plane of the ring, so that
d = −vt and B⃗ · da > 0 for t < 0 and d = +vt and B⃗ · da < 0 for t > 0. Hence,

Φm =
µ0qm
2

(
1− 2Θ(t) +

vt√
(vt)2 + b2

)
.

Now, we consider the generalized Maxwell equation for magnetic monopoles,

∇× E⃗ = −∂B⃗
∂t
− µ0jm ,

where jm is the density of ’magnetic current’. Applying Stokes’ theorem, we integrate
the electric field along the ring and the terms on the right-hand side over the area
enclosed by the ring,

U ≡
∮

anel

E⃗ · dl = −∂Φm
∂t
− µ0

∫

disco

jm · da ≡ −
∂Φm
∂t
− µ0Im,enc ,

where U is the retro-induced electromotive force, which can be written in terms of the
self-inductance L of the ring:

U = −LdI(t)
dt

,

and Im,enc is the magnetic current flowing through the ring. Considering that we have
only a single monopole to make the ’magnetic current’, we write it as a δ-function:

Im,enc = qmδ(t) .
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That is, there is a current consisting of a single ’magnetic charge’ passing through the
area enclosed by the ring only at time t = 0. Since the δ-function is the derivative of
the Heaviside Θ-function, we can integrate Faraday’s law to obtain,

LI(t) =

∫ t

−∞
µ0Im,encdt

′ +Φm(t) = µ0qmΘ(t) + Φm(t) .

With this,

I(t) =
µ0qm
L

Θ(t)+
µ0qm
2L

(
1− 2Θ(t) +

vt√
(vt)2 + b2

)
=
µ0qm
2L

(
1 +

vt√
(vt)2 + b2

)
.

For t → −∞ we have I → 0, while for t → ∞ we have I → µ0qm/L. This means,
that when monopole is approaching but still distant, there is no induced current. The
current increases, when the monopole is closer, but since the superconducting ring has
no resistance, the generated current never dissipates and tends to a finite value when
the monopole moves away on the other side of the ring.

17.1.5.7 Ex: Duality transform

a. In the case of existing magnetic charges and currents, Maxwell’s equations would
take the form,

(i) ∇× B⃗ − ε0µ0∂tE⃗ = µ0je

(ii) ∇× E⃗ + ∂tB⃗ = −µ0jm

(iii) ∇ · E⃗ = ε−10 ϱe

(iv) ∇ · B⃗ = µ0ϱm .

Show that these equations are invariant under the duality transform given by,


 E⃗

′

cB⃗′


 =


 cosα sinα

− sinα cosα




 E⃗
cB⃗


 ,


cq

′
e

q′m


 =


 cosα sinα

− sinα cosα




cqe
qm


 ,

where α is an arbitrary rotation angle in the E-B space. Densities of charges and
currents transform in the same way as qe and qm. This means, in particular, that
if you would know the fields produced by an electric charge configuration, you could
immediately (using α = 90◦) deduce the fields produced by a corresponding arrange-
ment of the magnetic charge.
b. Show that the force law derived in Exc. 17.1.5.6,

F = qe(E⃗ + v × B⃗) + qm(B⃗ − 1
c2v × E⃗)

is also invariant under duality transformation.
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Solution: a. Inserting the transformation into the given extended Maxwell equations,

∇×
(
B⃗ cosα− 1

c E⃗ sinα
)
− ε0µ0

∂
(
E⃗ cosα+ cB⃗ sinα

)

∂t
= µ0

(
je cosα+ 1

c jm sinα
)

∇×
(
E⃗ cosα+ cB⃗ sinα

)
−
∂
(
B⃗ cosα− 1

c E⃗ sinα
)

∂t
= −µ0 (jm cosα− cje sinα)

∇ ·
(
E⃗ cosα+ cB⃗ sinα

)
=
ϱe cosα+ 1

cϱm sinα

ε0

∇ ·
(
B⃗ cosα− 1

c E⃗ sinα
)
= µ0 (ϱm cosα− cϱe sinα) .

Obviously, the terms in cos and sin satisfy the Maxwell equations separately.
b. Inserting the transformation into given expression for the Lorentz force,

F =
(
qe cosα+ qm

c
sinα

) [
E⃗ cosα+ cB⃗ sinα+ v ×

(
B⃗ cosα− 1

c
E⃗ sinα

)]
+ (qm cosα− cqe sinα)

[
B⃗ cosα− 1

c
E⃗ sinα− 1

c2
v × (E⃗ cosα+ cB⃗ sinα)

]
= qe(E⃗ + v × B⃗) cos2 α+

[
qe
(
cB⃗ − 1

c
v × E⃗

)
+ qm

c

(
E⃗ + v × B⃗

)]
cosα sinα

+ qm
(
B⃗ − 1

c2
v × E⃗

)
sin2 α+ qm

(
B⃗ − 1

c2
v × E⃗

)
cos2 α

+
[
−qe

(
cB⃗ − 1

c
v × E⃗

)
− qm

c
(E⃗ + v × B⃗)

]
cosα sinα

+ qe(E⃗ + v × B⃗) sin2 α

= qe(E⃗ + v × B⃗) + qm
(
B⃗ − 1

c2
v × E⃗

)
.

17.1.5.8 Ex: Quantization of magnetic monopoles

a. Show that the vector potential,

A =
g(1− cos θ)

r sin θ
êϕ

produces a Coulomb-type magnetic field [1053].
b. Calculate the magnetic flux across the solid angle delimited by the polar angle θ.
c. Calculate the vector potential A′ obtained by a gauge transformation with the
gauge field χ = 2gϕ.
d. Now consider the vector potential defined by A′′ ≡ A for θ ≤ π

2 and A′′ ≡ A′ for
θ ≥ π

2 . This potential has no more singularity. Derive, from the condition that the

transformation Ucl = e−ıeχ/ℏ be unique, the value of the magnetic charge.

Solution: a. With the rotation operator expressed in spherical coordinates we easily
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calculate,

B⃗mon = ∇×A

=
êr

r sin θ

[
∂

∂θ
(sin θaϕ)−

∂

∂ϕ
(aθ)

]
+

êθ
r sin θ

[
∂

∂ϕ
(ar)− sin θ

∂

∂r
(raϕ)

]

+
êϕ
r

[
∂

∂r
(raθ)−

∂

∂θ
(ar)

]
=

g

r2
êr .

b. The flux is,

Figure 17.5: Magnetic monopole.

Φm =

∫ 2π

0

∫ θ

0

B⃗mon · dS =

∮
A · dl =

∮
g(1− cos θ)

r sin θ
êϕ · dl

=

∮
g(1− cos θ)

r sin θ
r sin θdϕ = 2πg(1− cos θ) .

However, we must look more carefully at this result, because for θ → π we obtain
Φm = 4πg. But that can not be right, since the integration path converges to 0.
The singular line 4πgΘ(−z)δ(x)δ(y)êz is called the Dirac string. We can correct by
subtracting the singularity,

∇×ADir = ∇×A− 4πgΘ(−z)δ(x)δ(y)êz =
g

r2
êr − 4πgΘ(−z)δ(x)δ(y)êz ,

such that,

Φm =

∫
∇×ADir·dS =

{
2πg(1− cos θ) for θ < π

0 for θ = π
.

c. The gradient in spherical coordinates is,

∇χ = êr
∂χ

∂r
+ êθ

1

r

∂χ

∂θ
+ êϕ

1

r sin θ

∂χ

∂ϕ
=

2g

r sin θ
êϕ ,

such that the new vector potential is,

A′ = A−∇χ = −g(1 + cos θ)

r sin θ
êϕ .

d. For the transformation to be unequivocal, we need,

e−ıeχ(ϕ=0)/ℏ = e0 = e−ıe2g2π/ℏ = e−ıeχ(ϕ=2π)/ℏ .
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That is,

n =
2eg

ℏ
= 0,±1,±2, ... .

17.1.5.9 Ex: Green’s identities

Be ϕ and ψ two continuously differentiable functions and V a volume with the border
∂V . Show with the help of Gauß’ theorem,
a. ∫

V

[
ϕ∇2ψ + (∇ϕ) · (∇ψ)

]
dV =

∫

∂V

ϕ(∇ψ) dS ,

b. ∫

V

[
ϕ∇2ψ − ψ∇2ϕ

]
dV =

∫

∂V

[ϕ∇ψ − ψ∇ϕ] dS .

Solution: a. Green’s first identity is solved by Gauß’ theorem and the chain rule:
∫

∂V

ϕ(∇ψ) dS =

∫

V

∇ · [ϕ(∇ψ)] dV =

∫

V

[
ϕ∇2ψ + (∇ϕ) · (∇ψ)

]
dV .

b. Green’s second identity follows from the first:
∫

V

[
ϕ∇2ψ + (∇ϕ) · (∇ψ)

]
dV =

∫

∂V

ϕ(∇ψ) dS

∫

V

[
ψ∇2ϕ+ (∇ψ) · (∇ϕ)

]
dV =

∫

∂V

ψ(∇ϕ) dS .

Subtracting the second equation from the first, we obtain the second Green identity.

17.1.5.10 Ex: Decomposition of vector fields

Be F(r, t) an arbitrary vector field defined on R, which tends (along with its deriva-
tives) to zero in sufficiently high order, when |r| → ∞. This field can be decomposed
into a sum of a longitudinal and a transverse component, F = Fl+Ft with ∇×Fl = 0
and ∇ · Ft = 0.
a. Prove,

Fl(r, t) = −
1

4π
∇
∫ ∇′ · F(r′, t)

|r− r′| d3r′ and Ft(r, t) = +
1

4π
∇×∇×

∫
F(r′, t)
|r− r′|d

3r′ .

Help: Begin showing that,

F(r, t) = − 1

4π
△
∫

F(r′, t)
|r− r′|d

3r′

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_PotenciaisHelmholtz01.pdf
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and use the vector identity,

∇×∇×A = ∇(∇ ·A)−△A .

b. Show that the vector field F(r) is unequivocally given by its sources, ∇ ·F(r), and
vertices, ∇× F(r).

Solution: We have,

△r

∫
d3r′

F(r′, t)
|r− r′| =

∫
d3r′F(r′, t)△r

1

|r− r′|

=

∫
d3r′F(r′, t)[−4πδ(r− r′)] = −4πF(r, t) ,

and hence,

F(r, t) = − 1

4π
△
∫
d3r′

F(r′, t)
|r− r′| (∗) .

Now, △A = ∇(∇ ·A)−∇×∇×A and hence,

△
∫
d3r′

F(r′, t)
|r− r′| = ∇

(
∇ ·
∫
d3r′

F(r′, t)
|r− r′|

)
−∇×

(
∇×

∫
d3r′

F(r′, t)
|r− r′|

)
.

For the first term we obtain by partial integration,

∇ ·
∫
d3r′

F(r′, t)
|r− r′| = +

∫
d3r′F(r′, t) · ∇r′

1

|r− r′|

= −
∫
d3r′F(r′, t) · ∇r′

1

|r− r′|

= +

∫
d3r′

1

|r− r′|∇r′ · F(r′, t) .

With (∗) follows,

F(r, t) = − 1

4π
∇r

(∫
d3r′
∇r′ · F(r′, t)
|r− r′|

)
= +

1

4π
∇r ×

(
∇r

∫
d3r′

F(r′, t)
|r− r′|

)
.

The rotation of a gradient disappears, as well as the divergent of a rotation. Therefore,

Fl(r, t) = −
1

4π
∇
∫
d3r′
∇′ · F(r′, t)
|r− r′| with ∇× Fl = 0

Ft(r, t) = +
1

4π
∇×∇

∫
d3r′

F(r′, t)
|r− r′| with ∇ · Ft = 0 ,

and obviously holds,

F = Fl + Ft .
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17.1.5.11 Ex: Conductivity of seawater

Sea water has at the frequency v = 4 · 108 Hz the permittivity ε = 81ε0, the per-
meability µ = µ0, and the resistivity ρ = 0.23Ωm. What is the ratio between the
conduction current and the displacement current? Help: Consider a parallel-plate
capacitor immersed in seawater and driven by a voltage V0 cos(2πνt).

Solution: The conduction current density is,

jcond =
E
ρ
=
dV0 cos(2πνt)

ρ
.

The displacement current density is,

jdisp =
∂D

∂t
=
∂εdV0 cos(2πνt)

∂t
= −2πνεdV0 sin(2πνt) .

The ratio of their amplitudes is,

jcond
jdisp

= − dV0
2πνεdV0ρ

=
1

2πνερ
≈ 2.4 .

17.2 Conservation laws in electromagnetism

The importance of conservation laws and symmetries lies in their universal validity
and their independence of a particular theory (mechanics, electrodynamics, ..). They
often allow the derivation of laws, which are specific for a theory and of equations
of motion for particular systems. For example, in classical mechanics, we can derive
Newtonian axioms from the conservation of linear momentum, and in electrodynam-
ics, as we shall see later, we can derive Maxwell’s equations from the principles of
Lorentz invariance, gauge invariance, and electric charge conservation, as expressed
by the continuity equation. The question which we will elucidate in the following
sections will be that of the validity of other mechanical conservation laws in elec-
trodynamics, that is, the laws of energy, linear momentum, and angular momentum
conservation.

In the context of preparing the deductions, let us defined some important quanti-
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ties 8,

(i) u = 1
2 (E⃗ · D⃗ + B⃗ · H⃗) energy density (17.58)

(ii) S⃗ = E⃗ × H⃗ energy flux or Poynting vector

(iii) f = ϱE⃗ + j× B⃗ Lorentz force density

(iv) ℘⃗A = ε0µ0S⃗ = 1
c2 E⃗ × H⃗ Abraham momentum density

(iv) ℘⃗M = D⃗ × B⃗ Minkowski momentum density

(v) ℓ⃗ = r× ℘⃗ angular momentum density

(vi)
←→
T = D⃗ ⊗ E⃗ + H⃗ ⊗ B⃗ − 1

2uI Maxwell stress tensor .

All fields are time-dependent. From Maxwell’s equations we derive the electrodynam-
ical continuity equation, the Poynting theorem, and the conservation of linear and
angular momentum. Resolve the Exc. 17.2.5.1.

17.2.1 Charge conservation and continuity equation

Calculating the divergence of Maxwell’s first equation and using the third,

∇ · (∇× H⃗) = ∂t∇ · D⃗ +∇ · j = ∂tϱ+∇ · j = 0 . (17.59)

This law describes charge conservation in electrodynamics.

17.2.2 Energy conservation and Poynting’s theorem

The time derivative of the energy density (17.58)(i) is,

∂tu = 1
2 (E⃗ · ∂tD⃗ + D⃗ · ∂tE⃗ + B⃗ · ∂tH⃗+ H⃗ · ∂tB⃗) = E⃗ · ∂tD⃗ + H⃗ · ∂tB⃗ , (17.60)

supposing D⃗ = εE⃗ and H⃗ = B⃗/µ with time- and space-independent ε, µ = const. The
divergence of the Poynting vector is,

∇ · S⃗ = ∇ · (E⃗ × H⃗) = H⃗ · (∇× E⃗)− E⃗ · (∇× H⃗) = −H⃗ · ∂tB⃗ − E⃗ · (∂tD⃗+ j) . (17.61)

With this we immediately see,

∂tu+∇ · S⃗ = −j · E⃗ . (17.62)

To better understand this theorem, we calculate the work exerted by the Coulomb-
Lorentz force per unit time on a test charge q,

dW

dt
=

d

dt

∫

C
F · dl = d

dt

∫
q(E⃗ + v × B⃗

0

) · vdt = qv · E⃗ . (17.63)

8The question of the correct expression for the momentum density is difficult and will be dealt
with later.
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The current generated by the charge can be derived from the parametrization j(r) =
qvδ3(r− r′). Thus, we derive the Poynting theorem,

dW

dt
=

∫

V
E⃗ · jdV = − d

dt

∫

V
udV −

∫

V
∇ · S⃗dV = −dUerg

dt
−
∮

∂V
S⃗ · dS . (17.64)

This theorem postulates energy conservation. That is, the electromagnetic energy
Uerg within a volume V can only change 1. by diffusion out of the volume via a flux∫
S⃗ ·dS of the Poynting vector, or 2. when mechanical work W is done on the volume

or when the electromagnetic energy in the volume is dissipated into other forms of
energy, for example heat. We apply the Poynting theorem to a current-carrying wire
in Exc. 17.2.5.2.

Example 85 (Derivation of Ohm’s law by the Poynting vector): The
current flux through a wire exerts work, because the wire heats up. We calculate
the energy transferred to the wire per unit time via the Poynting vector. The
electric field (assumed to be uniform) along the wire (length L and radius a) is,

E =
U

L
,

where U is the voltage between the ends of the wire. The magnetic field at the
surface of the wire is,

B =
µ0I

2πa
.

Therefore, the absolute value of the Poynting vector is,

s =
1

µ0
EB =

UI

2πaL
.

pointing into the wire, S⃗ ∝ −êr. The energy per unit of time passing through
the surface of the wire is therefore,∫

S⃗ · dS = s(2πaL) = UI ,

confirming previously obtained results. As the fields are stationary, the electro-

magnetic energy does not vary with time, neither, ∂tUerg = 0.

Figure 17.6: Energy flux into the wire causes heating.

17.2.3 Conservation of linear momentum and Maxwell’s stress
tensor

The interaction between two charges is described by the Coulomb-Lorentz force. How-
ever, when these charges accelerate each other mutually, they generate non-stationary
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fields, so that the force laws of Coulomb and Biot-Savart do not apply. We will see
later, how to generalize these laws.

Nevertheless, at first glance, the Coulomb force seems compatible with the third
Newton law: actio = reactio, but not with the Lorentz force.

Example 86 (Linear momentum of the electromagnetic field): To see
this, we consider two charged particles with trajectories,

l1(t) = vtêy , l2(t) = vtêx .

Charge 1 produces a field B⃗1 at the position of charge 2 and vice versa. At time
t = 0, when they collide, the forces become orthogonal:

F12 = qv2 × B⃗1 ⊥ qv1 × B⃗2 = F21 .

Figure 17.7: The Lorentz forces exerted by approaching charges are mutually orthogonal.

Obviously, in electrodynamics, the Lorentz force flagrantly violates Newton’s third
law in way to raise questions about the validity of momentum conservation. The so-
lution is that in electrodynamics, the electromagnetic field itself may lose or gain
momentum and should be included in the formulation of a law of momentum con-
servation. Moreover, the field does not move instantaneously, but propagates at the
speed of light and is subject to retardation effects. The law actio = reactio postu-
lates the existence of forces acting at a distance that, as we nowadays know, do not
exist 9. We shall return to this problem in the discussion of the relativistic Lorentz
transformation.

17.2.3.1 Maxwell’s tress tensor

We now consider the Lorentz force density, which we will try to express totally in
terms of fields, eliminating the charge and current densities [898],

f = ϱE⃗ + j× B⃗ = E⃗(∇ · D⃗) +
(
∇× H⃗ − ∂D⃗

∂t

)
× B⃗ . (17.65)

We reformulate the last term,

−∂D⃗
∂t
× B⃗ = D⃗ × ∂B⃗

∂t
− ∂

∂t
(D⃗ × B⃗) = −D⃗ × (∇× E⃗)− ∂

∂t
(D⃗ × B⃗) . (17.66)

9One of the important changes of paradigm in the history of physics is from interaction at a
distance to local interaction. Newton was a supporter of non-local interaction for gravity. Ironically
he argued against waves in favor of particles for light. Today the opinion thinks the other way round:
Particles are mediators of local interactions, while only waves can mediate non-local features.
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Knowing H⃗(∇ · B⃗) = 0, we can add this term to the force without cost,

f = E⃗(∇ · D⃗)− D⃗ × (∇× E⃗) + H⃗(∇ · B⃗)− B⃗ × (∇× H⃗)− ∂

∂t
(D⃗ × B⃗) . (17.67)

We use the rule from vector analysis,

∇(E⃗ · D⃗) = E⃗ × (∇× D⃗) + D⃗ × (∇× E⃗) + (E⃗ · ∇)D⃗ + (D⃗ · ∇)E⃗ (17.68)

= 2D⃗ × (∇× E⃗) + 2(E⃗ · ∇)D⃗ ,

and analogously for B⃗ · H⃗. The second equation holds, because for D⃗ = εE⃗ with
ε = const, we can arbitrarily exchange the order of products between D⃗ and E⃗ . We
also assume µ = const, which allows us to exchange the order of products between H⃗
and B⃗. We use the rule (17.68) to replace the terms with vector products in equation
(17.67),

f = E⃗(∇ · D⃗)− 1
2∇(E⃗ · D⃗) + (E⃗ · ∇)D⃗ (17.69)

+ H⃗(∇ · B⃗)− 1
2∇(H⃗ · B⃗) + (H⃗ · ∇)B⃗ − ∂tD⃗ × B⃗ .

The last term is nothing more than the time derivative of the Minkowski momentum
density of the electromagnetic field defined in (17.58), ℘⃗M ≡ D⃗×B⃗, which still awaits
interpretation.

Now we introduce the Maxwell stress tensor (in Minkowski’s form) by 10,

TMij ≡ DiEj +HiBj − δij
2 (E⃗ · D⃗ + H⃗ · B⃗) . (17.70)

Defining the divergent of a matrix, we obtain using Einstein’s sum convention,

(∇ ·
↔
T)j ≡ (∂iTij)j =

(
∂i(DiEj) + ∂i(HiBj)− ∂i δij2 (E⃗ · D⃗ + H⃗ · B⃗)

)
j

(17.71)

=
(
Ej∇ · D⃗ + D⃗ · ∇Ej + Bj∇ · H⃗+ H⃗ · ∇Bj − 1

2∂j(E⃗ · D⃗ + H⃗ · B⃗)
)
j
.

These terms coincide with those of the equation (17.69) except for the last one. Now,
we can reshape the Lorentz force,

−∂t℘⃗M +∇ ·
↔
T = f . (17.72)

The mechanical force acting on a volume V,

F =

∮

∂V

↔
T · dS− d

dt

∫

V
℘⃗MdV , (17.73)

can be expressed by a momentum flux escaping the volume plus a ’stress’ acting on
its surface in every direction. The diagonal components Tii represent ’pressures’ and
the non-diagonal ’shear stresses’. In static situations only the stress results in forces.

10In matrix notation,

∇ ·
↔
T =

(
d
dx

d
dy

d
dz

)
Txx Txy Txz

Tyx Tyy Txz

Tzx Tzy Tzz

 .
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Example 87 (Force on a charged body): As an example of application of
the stress tensor we calculate the force exerted by a solid uniformly charged
(charge Q) sphere of radius R on its own upper part. The volume of the upper
hemisphere is enclosed by two surfaces: one hemispheric surface and a flat one.
In Cartesian coordinates,

êr = êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ ,

for the hemispherical surface, we write the electric field and the surface element
as,

E⃗ =
1

4πε0

Q

R2
êr and da = êrR

2 sin θdθdϕ .

We calculate the stress tensor,

↔
T = ε0


E2x − 1

2
E2 ExEy ExEz

ExEy E2y − 1
2
E2 EyEz

ExEz EyEz E2z − 1
2
E2



= ε0

(
1

4πε0

Q

R2

)2


sin2 θ cos2 ϕ− 1

2
sin2 θ cosϕ sinϕ cos θ sin θ cosϕ

sin2 θ cosϕ sinϕ sin2 θ sin2 ϕ− 1
2

cos θ sin θ sinϕ

cos θ sin θ cosϕ cos θ sin θ sinϕ cos2 θ − 1
2

 .

The integral of the tensor over the surface can be evaluated by Maple,∫
↔
Tda =

∫ 2π

0

∫ π/2

0

↔
TêrR

2 sin θdθdϕ =
Q2

32πε0R2
êz .

For the flat surface we write,

E⃗ =
1

4πε0

Q

R3
rêr and da = −êzrdrdϕ .

Now we calculate with θ = π/2,

↔
T = ε0

1

(4πε0)2
Q2

R6


r2 cos2 ϕ− 1

2
r2 cosϕ sinϕ 0

r2 cosϕ sinϕ r2 sin2 ϕ− 1
2

0

0 0 − 1
2
r2

 .

The integral over the surface gives,∫
↔
Tda = −

∫ 2π

0

∫ R

0

↔
Têzrdrdϕ =

Q2

64πε0R2
êz .

Combining the results we obtain the force by the equation (17.73),

F =

∮
hemisphere

↔
Tda =

3Q2

64πε0R2
êz .

The result of this example demonstrates, how we can reduce the calculation of a
force acting on a volume to an integral over the surface enclosing the volume. We will
calculate other examples in Excs. 17.2.5.3 to 17.2.5.6.
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Figure 17.8: Electrostatic forces inside a charged sphere.

17.2.3.2 Conservation of linear momentum

According to Newton’s second law, F = ∂tpmec or f = ∂t℘⃗mec, the Lorentz force
produces a variation of the mechanical momentum. In addition, there is a momentum
pM =

∫
V ℘⃗

MdV , which must be attributed to the electromagnetic field, since it only
exists in the presence of both electric and magnetic fields. pmec and pM can be
interconverted, as in the example of the photonic recoil received by an atom upon an
absorption process. But the sum of the mechanical momentum and the momentum of

the field can only change through the term ∇·
↔
T. This is the law of linear momentum

conservation. Evidently, −
↔
T is the momentum flux density, playing a role similar

to the one of the current density j in the continuity equation or of the energy flux
density S⃗ in Poynting’s theorem. −Tij is the momentum per unit area and time in
the direction i passing a surface oriented in j-direction.

We note two very different roles of the Poynting vector: In the energy conservation
equation S⃗ is the energy per unit area and time carried by electromagnetic fields, while
in the momentum conservation equation, ℘⃗M = ε0µ0S⃗ is the momentum per unit

volume stored in these fields. Similarly,
↔
T plays two roles:

↔
T is the electromagnetic

stress (i.e. a force per unit area or pressure) acting on a surface, while −
↔
T describes

the momentum flux (momentum current density) carried by these fields.

Figure 17.9: The laws of energy and momentum conservation connect the theories of elec-
trodynamics with classical mechanics and thermodynamics.

Forces exerted by (non-radiating) fields on particles can be interpreted as being
due to a scattering of ’virtual particles’. For example, the electrostatic force between
charged particles and the magnetostatic force between magnetic dipoles are caused
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by an exchange of virtual photons. These photons carry momentum that is trans-
ferred via recoil in a scattering event. Since the photon has no mass, the electric
(respectively, magnetic) potential has infinite range.

The photonic concept can be extended to electromagnetic fields, as demonstrated
by Max Planck in his discussion of the blackbody radiation. The spontaneous emis-
sion of a photon during the decay of an excited atom, postulated by Albert Einstein,
is forbidden in ’classical’ quantum mechanics, and requires quantization of the elec-
tromagnetic field for its explanation. The quantized energy packets, called (real)
photons, also carry momentum, which can be transferred to bodies absorbing the ra-
diation. The fact that light beams can exert forces is nowadays commonly exploited
in techniques for cooling atomic gases. This process is called radiation pressure and
will be discussed in the next chapter.

Example 88 (The Abraham-Minkowski dilemma): The expression ℘⃗A =
1
c2
E⃗ × H⃗ for the momentum flux in dielectric media was proposed by Abraham

in 1909, but it is not obvious that this expression is correct. In fact, in the same
year 1909 Minkowski proposed the expression ℘⃗M = D⃗× B⃗, and until today this
Abraham-Minkowski dilemma is not satisfactorily solved [98, 1358]. See also
(watch talk).
In an (over-)simplified way, we may illustrate the dilemma by the fact that even
the correct expression for the photonic momentum within a dielectric is un-
known. For, knowing that the phase velocity is reduced in a dielectric medium,
c → c/n, we could derive from the kinetic momentum in vacuum, p = m c

n
,

where the mass follows from Einstein’s formula, m = ℏω
c2

. That is, the photonic
momentum within a dielectric medium should be,

p =
ℏω
nc

.

This is Abraham’s conclusion, which emphasizes the corpuscular aspect of the
photon. On the other side, starting with de Broglie’s expression, p = h

λ
, using

the dispersion relation, λ = c
nν

, we would conclude that the photonic momentum
within a dielectric medium must be,

p =
nℏω
c

,

which is Minkowski’s result emphasizing the undulating features of the photon.
In fact, the dilemma arises because, a priori, it is not clear whether the correct
expression for the momentum carried by an electromagnetic wave is,

℘⃗A = 1
c2
S = 1

c2
E⃗ × H⃗ or ℘⃗M = D⃗ × B⃗ .

In vacuum there is no difference, but in the case of a plane wave inside a dielectric
medium, E⃗(r, t) = E0êx cosω(t− n

c
z) and B⃗(r, t) = n

c
êz × E⃗(r, t), we calculate,

℘A ≡ 1
c2
E⃗ × H⃗ = 1

µ0c2
E⃗ × B⃗ = 1

µ0c2
E20 êz nc cos2 ω(t− n

c
z)

= 1
µ0c2
E20 êz nc 1

2
= 1

ε0µ0c2
− êz

u
nc

= êz
u
nc

℘M ≡ D⃗ × B⃗ = ε0E⃗ × B⃗ = ε0µ0c
2℘⃗A = n2℘⃗A .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AbrahamMinkowski
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17.2.4 Conservation of angular momentum of the electromag-
netic field

The angular momentum conservation (17.58) is also ruled by Maxwell’s equations.
But its derivation is complicated [545, 659] and will not be reproduced here. In
Exc. 17.2.5.7 we calculate the angular momentum stored in a static combination of
electric and magnetic fields. In Exc. 17.2.5.8 we calculate the torque acting on charges
due to a temporal variation of electromagnetic fields. Finally, in Exc. 17.2.5.9 we try
classical discussion of the intrinsic angular momentum (spin) of the electron.

Example 89 (Angular momentum of electromagnetic fields): Imagine a
very long solenoid with radius R, n windings per unit length, and carrying the
current I. Coaxially to the solenoid there are two long cylindrical layers of
length d. The first one, of radius a, lies inside the solenoid and carries a charge
+Q evenly distributed over the surface; the other one, of radius b, is outside the
solenoid and carries the charge −Q, as shown in Fig. 17.10. We suppose d≫ b.
When the current in the solenoid is gradually reduced, the cylinders begin to
rotate. The question is, where does the angular momentum come from?

Figure 17.10: Device with a solenoid and charged cylinders illustrating the conservation of
angular momentum.

Let us first calculate the angular momentum stored in the electric and magnetic
field before we started to reduce the current. In the region between the cylinders,
a < ρ < b, we had the electric field E⃗ = Q

2πε0d

êρ
ρ
, and in the inner region of

the solenoid, ρ < R, the magnetic field, B⃗ = µ0nIêz. Therefore, in the region
a < ρ < R, the momentum density (17.58) was,

℘⃗ = ε0E⃗ × B⃗ = −µ0QnI

2πρd
êϕ

The angular momentum density,

ℓ⃗ = r× ℘⃗ = −µ0nIQ

2πd
êz ,

was constant, which facilitates the calculation of the total orbital angular mo-
mentum,

L =

∫
ℓ⃗dV = ℓ⃗π(R2 − a2)d = − 1

2
µ0nIQ(R2 − a2)êz .
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Apparently, the existence of an orbital angular momentum is conditioned to the
presence of both, a charge and a current.
Now, when the current is turned off, the variation of the magnetic field induces
a circumferential electric field, given by Faraday’s law:

E⃗ = − 1
2
µ0n

dI

dt
êϕ

{
ρ for ρ < R
R2

ρ
for ρ > R

.

The Coulomb force exerted by the electric field on the charged outer cylinder
produces a torque on the cylinder,

Nb = r× (−QE⃗) = 1
2
µ0nQR

2 dI

dt
êz ,

so that it receives the angular momentum,

Lb =

∫ ∞
0

Nbdt =
1
2
µ0nQR

2êz

∫ 0

I

dI

dt
dt = − 1

2
µ0nIQR

2êz .

In the same way, we obtain for the inner cylinder,

Na = − 1
2
µ0nQa

2 dI

dt
êz , La = 1

2
µ0nIQa

2êz .

Hence, we verify that L = La + Lb. The angular momentum lost by the fields

is precisely equal to the angular momentum acquired by the cylinders, that is,

the total angular momentum is conserved.

17.2.5 Exercises

17.2.5.1 Ex: Poynting vector for free charges and currents

Write down the Poynting vector and the momentum density for the case, that there
are only free charges and currents.

Solution: We suppose, ϱ = ϱl and j = jl. We then deduce that the polarization
is −∇ · P⃗ = ϱb = 0 and the magnetization ∇× M⃗ = jb. Hence,

S⃗ = E⃗ × H⃗ = 1
µ0
E⃗ × B⃗ ,

and
℘ = D⃗ × B⃗ = ε0E⃗ × B⃗ .

17.2.5.2 Ex: Energy flux in a current-carrying wire

A cylindrical wire with radius a and permeability µ is traversed by a constant current
density j. The electric field E⃗ inside the wire and the current density j are connected
by Ohm’s law j = ς E⃗ , where ς is the electrical conductivity.
a. What absolute value and which direction does the Poynting vector S⃗ have in the
wire and on the wire surface?
b. Calculate the total energy flux running through the surface of a piece of wire of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiConservacao00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LeiConservacao01.pdf
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length l. Show that this flux of energy is precisely the power dissipated within this
piece for the production of ohmic heat.
Help: The law of energy conservation in electrodynamics is given by −dudt = ∇S⃗+j·E⃗ ,
where u = 1

2 (E⃗ · D⃗+ B⃗ · H⃗) is the total energy density, S⃗ = E⃗ × H⃗ the energy flux and

j · E⃗ the work exerted on the electric current density.

Solution: a. We calculate,

2πρH =

∮
H⃗ · dl = I = jπρ2 =

∫
j · dS .

We replace E⃗ = 1
ς j and H⃗ = j

2ρêϕ in the Poynting vector,

S⃗ = E⃗ × H⃗ = 1
ς j×

j
2ρêϕ = − 1

2ς j
2ρêz × êϕ = − 1

2ς j
2ρêρ .

S⃗ points in radial direction towards the interior of the cylinder, energy flows from the
outside into the cylinder. On the surface the Poynting vector is,

S⃗ = − 1
2ς j

2aêr .

b. The energy flow from outside to the inside of the wire is (note, that S⃗ and dS have
opposite signs), ∫

cyl.surf

S⃗ · dS = −s 2πal = − 1
2ς j

2a 2πal .

The ohmic power is, ∫
j · E⃗ dV =

j2

ς
πa2l .

The time dependence of the energy density disappears, since E⃗ and H⃗ are constants,

∫

wire.piece

du

dt
dV = 0 .

Hence,

∫

wire.piece

∇ · S⃗ dV =

∫

cyl.surf

S⃗ · dS = −
∫

wire.piece

j · E⃗ dV = 0 ,

as calculated above.

17.2.5.3 Ex: Intrinsic force in a rotating charged shell via Maxwell’s
tensor

Calculate the attractive magnetic force between the north and south hemispheres
of a uniformly charged spherical shell (radius R and surface charge density Q) rotat-
ing with the angular velocity ω. Use the result of Exc. 15.3.3.1 (clicking on the title).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell02.pdf
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Solution: We use the result of Exc. 15.3.3.1,

B⃗ =
µ0Qω

6πR

{
êz for r < R
R3

r3 (êr cos θ +
1
2 êθ sin θ) for r > R

.

We chose an arbitrary volume enclosing the northern hemisphere. Choosing this very
large volume, we only need to integrate the stress tensor in the equatorial plane (θ =
π/2, êθ = −êz),

da = −êzrdrdϕ ,

where the magnetic field is,

B⃗ =
µ0Qω

6πR
êz

{
1 for r < R

− R3

2r3 for r > R
.

We calculate the stress tensor by,

↔
T =

1

µ0




B2x − 1
2B2 BxBy BxBz

BxBy B2y − 1
2B2 ByBz

BxBz ByBz B2z − 1
2B2


 =

1

2µ0
B2z




−1 0 0

0 −1 0

0 0 1




=
1

2µ0

(
µ0Qω

6πR

)2




−1 0 0

0 −1 0

0 0 1




{
1 for r < R
R6

4r6 for r > R
.

The force on the upper equatorial plane is,

Fz =

∫
T r<Rzz êz · êzda+

∫
T r>Rzz êz · êzda

=

(
µ0Qω

6πR

)2
1

2µ0

∫ R

0

∫ 2π

0

rdrdϕ+

(
µ0Qω

6πR

)2
1

2µ0

∫ ∞

R

∫ 2π

0

R6

4r6
rdrdϕ =

µ0Q
2ω2

64π
.

17.2.5.4 Ex: Coulomb force via Maxwell’s tensor

Consider two equal (or opposite) point charges q, separated by distance 2a. Con-
struct the plane which is equidistant from the two charges. Determine the mutual
force between the charges.

Solution: The electric field,

E⃗ =
1

4πε0

Q

|r− a|3 (r− a)± 1

4πε0

Q

|r+ a|3 (r+ a)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell03.pdf
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lies in the symmetry plane,

E⃗plane =
1

4πε0

Q
√
ρ2 + a2

3 [(r− a)± (r+ a)] ,

with ρ2 ≡ x2 + y2. With this, Maxwell’s stress tensor,

↔
T±,plane = ε0




− 1
2E2z 0 0

0 − 1
2E2z 0

0 0 1
2E2z




lies in the plane in the case of equal (or opposite) charges,

↔
T−,plane =

1

32π2ε0

Q24a2

(ρ2 + a2)3




−1 0 0

0 −1 0

0 0 1




and
↔
T+,plane =

1

32π2ε0

Q24ρ2

(ρ2 + a2)3




−1 0 0

0 −1 0

0 0 1


 .

With the surface element in the plane da = êzrdrdϕ, the force follows as the integral
of the tensor, ∫ ↔

T±,planeda =

∫ 2π

0

∫ ∞

0

↔
T−,planeêzρdρdϕ

for the case of equal (or opposite) charges,

∫ ↔
T−,planeda =

∫ 2π

0

∫ ∞

0

1

32π2ε0

Q24a2

(ρ2 + a2)3
êzρdρdϕ =

1

4πε0

Q2

(2a)2
êz

∫ ↔
T+,planeda =

∫ 2π

0

∫ ∞

0

1

32π2ε0

Q24ρ2

(ρ2 + a2)3
êzρdρdϕ =

1

4πε0

Q2

(2a)2
êz .

17.2.5.5 Ex: Force on a current distribution in a magnetic field

The force felt by a current distribution j(r) in an external magnetic field is,

F =

∫

V

d3r′j(r′)× B⃗(r′) .

Show that this force can also be written as an integral over the surface S ≡ ∂V
enclosing the volume V:

Fj =

∮

S

3∑

i=1

dSi Tij with Tij =
1
µ0

(
BiBj − 1

2B2δij
)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell04.pdf
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Solution: We have,

F =

∫

V

d3r′j(r′)× B⃗(r′) = 1
µ0

∫

V

d3r′(∇× B⃗)× B⃗ .

and hence,

Fi =
1
µ0

∫

V

d3r′
{
(∇× B⃗)× B⃗

}
i
.

Now,

{
(∇× B⃗)× B⃗

}
i
= ϵijk(∇× B⃗)jBk
= ϵijkϵjmn(∂mBn)Bk = −ϵikjϵmnj(∂mBn)Bk
= −(δimδkn − δinδkm)(∂mBn)Bk
= (∂kBi)Bk − (∂iBk)Bk .

We now use,
Bk(∂kBi) = ∂k(BiBk)− Bi(∂kBk) = ∂k(BiBk) .

since ∇ · B⃗ = 0, as well as,

Bk(∂iBk) = 1
2∂i(BkBk) = 1

2∂iB2 .

Hence, {
(∇× B⃗)× B⃗

}
i
=

∂

∂xk

(
BiBk − 1

2δikB2
)
= µ0

∂

∂xk
Tki .

This is the divergence of a vector field (k indexes). Applying Gauß’ law immediately
follows the statement.

17.2.5.6 Ex: Force on the plates of a capacitor

Consider an infinite parallel-plate capacitor, with the lower plate (at z = −d/2) car-
rying the charge density −σ and the upper plate (at z = +d/2) carrying the charge
density σ. Determine the stress tensor in the region between the plates.

Solution: The electric field is,

Ez =
σ

ε0
.

Therefore, the stress tensor is,

↔
T = ε0




− 1
2E2z 0 0

0 − 1
2E2z 0

0 0 1
2E2z


 =

σ2

2ε0




−1 0 0

0 −1 0

0 0 1


 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_TensorMaxwell05.pdf
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So the pressure is,

P =
F

A
= −Tzzêz = −

σ2

2ε0
êz .

This force corresponds to a momentum flux per unit area and per unit time, crossing
the x-y-plane. On the plates this momentum is absorbed, and the plates recoil (unless
there is some non-electric force holding them in position).

17.2.5.7 Ex: Angular momentum of an electromagnetic field

Assuming the existence of an electric charge qe and a magnetic monopole qm, calculate
the total angular momentum stored in the fields,

E⃗ =
qe

4πε0

êr
R2

and B⃗ =
µ0qm
4π

êr
R2

,

when the two charges are separated by a distance d.

Solution: We place the origin at the position of the electric charge, such that the
magnetic charge is at the position d = dêz. Then,

L =

∫
ε0r× (E⃗ × B⃗)d3r =

∫
ε0r×

(
qe

4πε0

r

r3
× µ0qm

4π

r− dêz
|r− dêz|3

)
d3r

=
µ0qeqm
(4π)2

∫
r× (r× dêz)
r3|r− dêz|3

d3r .

Using,

r× (r× dêz) = r(r · dêz)− dêz(r · r)
= dr2(êr cos θ − êz)

= dr2(sin θ cos θ cosϕêx + sin θ cos θ sinϕêy + cos2 θêz − êz)

= dr(sin θ cos θ cosϕêx + sin θ cos θ sinϕêy − sin2 θêz) ,

we conclude the calculation,

L =
µ0qeqm
(4π)2

∫
dr2( sin θ cos θ cosϕêx

0
+ sin θ cos θ sinϕêy

0− sin2 θêz)

r3|r− dêz|3
r2 sin θdθdϕdr

= −µ0qeqm
(4π)2

2πdêz

∫ π

0

∫ ∞

0

r sin3 θ
√
r2 + d2 − 2rd cos θ

3 drdθ

= −µ0qeqm
(4π)2

2πdêz

(
2

d

)
= −µ0qeqm

4π
êz .
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17.2.5.8 Ex: Torque on a demagnetized or discharged iron sphere

We imagine an iron sphere of radius R carrying a charge Q and a uniform magneti-
zation M⃗ =Mêz. The sphere is initially at rest.
a. Calculate the angular momentum stored in the electromagnetic fields.
b. Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by heating
it beyond the Curie point). Use Faraday’s law to determine the induced electric field
and find the torque that this field exerts on the sphere. Calculate the total angular
momentum transferred to the sphere during demagnetization.
c. Suppose that, instead of demagnetizing the sphere, we discharge it by connecting
the north pole of the sphere via a wire to Earth. Suppose that the current flows on the
surface in such a way, that the charge density remains uniform. Use the Lorentz force
law to determine the torque on the sphere and calculate the total angular momentum
given to the sphere during the discharge. (The magnetic field is discontinuous on the
surface ... does this matter?)

Solution: a. We start from the known magnetic field of a uniformly magnetized
iron sphere,

B⃗ =

{
2
3µ0Mêz =

2
3µ0M(êr cos θ − êθ sin θ) for r < R

µ0MR3

3r3 (2êr cos θ + êθ sin θ) for r > R
.

The electric field is,

E⃗ =

{
0 for r < R
Q

4πε0r2
for r > R

.

The linear momentum density is then,

℘⃗ = ε0E⃗ × B⃗ =
µ0MQR3

12πr5
êϕ sin θ ,

for r > R, such that the angular momentum density is,

ℓ = r× ℘⃗ = −µ0MQR3

12πr4
êθ sin θ .

The total angular momentum is,

L = −µ0MQR3

12π

∫ ∞

R

∫ π

0

∫ 2π

0

êθ
sin θ

r4
r2dr sin θdθdϕ .

Since the unit vector êθ varies in space, we must express it in spherical coordinates,

êθ = êx cos θ cosϕ+ cos θ sinϕ− êz sin θ .

The integrals over ϕ vanish, such that,

L = −µ0MQR3

12π
2πêz

∫ ∞

R

êθ
dr

r2

∫ π

0

sin3 θdθ = 2
9µ0MQR2êz .
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b. Now the magnetic field is turned off, which, according to Faraday’s law, generates
a rotational electric field,

∮
E⃗ · l = −dΦ

dt
=

∫
∂B⃗
∂t
· da .

Choosing as the integration path a circle on the surface of the sphere perpendicular to
the symmetry axis, we get the radius R ∈ θ for the circle as a function of z. Then
the last relation gives,

E2πR sin θ = −π(R sin θ)
∂B
∂t

,

that is,

E⃗ = −R sin θ

2

∂B

∂t
êϕ .

Now, we imagine the circle as a circular ribbon with circumference 2πR sin θ and
width Rdθ. With the surface charge density σ = Q/4πR2 we find the charge on this
ribbon,

dq =
Q

4πR2
(2πR sin θ)Rdθ = 1

2Q sin θdθ .

The force on this ribbon is,

dF = E⃗dq = −1

4
RQ sin2 θdθ

∂B
∂t

êϕ ,

and the torque,

dN = r× dF = −(R sin θ)
1

4
RQ sin2 θdθ

∂B
∂t

êz = −
R2Q sin3 θ)

4
dθ
∂B
∂t

êz .

The total torque on the sphere is,

N =

∫ π

0

dN(θ) = −QR
2

3

∂B
∂t

êz .

We obtain the final angular momentum by integrating the torque over time,

L = −QR
2

3
êz

∫ ∞

0

∂B
∂t
dt = 2

9µ0MQR2êz ,

which agrees with the angular momentum initially stored in the fields.
c. Now the charge is removed in a way as to let the charge density be always uniform.
The drainage current inside the field of the magnetization will generate a force. To
calculate the current we consider the same ribbon of item (b). The current I(θ) passing
through a ribbon located at the position θ should be composed of the drainage current
passing through the lower ribbon I(θ + dθ) and the draining of the ribbon itself,

I(θ) = I(θ + dθ) +
∂σ

∂t
(2πR sin θ)(Rdθ) ,

that is,
dI

dθ
= −∂σ

∂t
2πR2 sin θ ,
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with the solution,

I(θ) =
∂σ

∂t
2πR2 cos θ + α .

The integration constant α can be determined by the boundary condition, I(π) = 0,

I(θ) =
∂σ

∂t
2πR2(1 + cos θ) .

For the discharging process we can make a capacitor model,

σ(t) = σ(0)e−t/τ =
Q

4πR2
e−t/τ .

Now we can calculate the Lorentz force on a ribbon,

dF = I(θ)(Rdθ)êθ × B⃗ =
∂σ

∂t
2πR2(1 + cos θ)(Rdθ)êθ × 2

3µ0M(êr cos θ − êθ sin θ)

= −1

τ

Q

4πR2
e−t/τ2πR2(1 + cos θ)(Rdθ) 23µ0M cos θ(−êϕ) .

The torque on the ribbon is,

dN = r× dF =
µ0MQR2

3τ
e−t/τ êz sin θ cos θ(1 + cos θ) .

The total torque, therefore, is,

N =

∫ π

0

dF =
2µ0MQR2

9τ
e−t/τ êz .

Finally, we integrate over time,

L =

∫ ∞

0

N = 2
9µ0MQR2êz .

The discontinuity of the magnetic field does not matter, since the angular momentum
is stored in the zone outside the sphere, where the fields superpose.

17.2.5.9 Ex: Magnetic moment of the electron

In relativistic quantum mechanics the magnetic moment of the electron has the value,

µ = gµB
1

2
=

eℏ
2mc

= 9.28 · 10−25 T m3 .

This exercise aims to show that the classical interpretation of this magnetic moment,
as being due to a rotating charge distribution, leads to intrinsic contradictions. Let
us regard the electron as a sphere of mass me with radius re carrying the charge
e homogeneously distributed over its surface. It rotates around its z-axis with the
angular velocity ω. Classically, the movement of the surface charge causes a magnetic
moment.
a. Calculate the total energy contained in the electromagnetic fields.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_ConservaAngular03.pdf
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b. Calculate the total angular momentum contained in the fields.
c. According to Einstein’s formula, WED = mec

2, the energy in the fields must con-
tribute to the mass of the electron. Lorentz and other scientists have speculated that
the entire mass of the electron could be understood in this way. Suppose, furthermore,
that the rotational angular momentum (spin) of the electron is entirely attributable
to the electromagnetic fields: LED = ℏ/2. From these two premisses, determine the
radius and the angular velocity of the electron, as well as the product ωre. Does this
classical model make sense?
d. Determine the magnetic moment of the rotating electron.

Solution: a. The electric field produced by a spherical surface charge density,

ρ(r) =
e

4πr2e
δ(r − re) ,

has already been calculated in other exercises, e.g. 13.2.4.4,

E⃗(r) =
{
0 for r < re

e
4πε0r2

êr for r > re
.

For the electrostatic energy we obtain, then,

We =
ε0
2

∫
E2dV =

e2

32π2ε20
4π

∫

r>re

dr
1

r2
=

e2

8πε0re
.

The magnetic field produced by a surface current distribution,

j(r) = jϕêϕ = ρ(r)vϕêϕ =
e

4πre
δ(r − re)ω sin θêϕ ,

was also calculated in other exercises, e.g. 15.3.3.1,

B⃗(r) = µ0eω

6πre

{
êz for r < re
r2e
r3 (êr cos θ +

1
2 êθ sin θ) for r > re

.

For the magnetostatic energy we obtain, then,

Wm =
1

2µ0

∫
B2dV

=
1

2µ0

[∫
r<re

(µ0eω

6πR

)2
d3r +

∫
r>re

(
1

4πε0

)2(
eωr2e
3cr3

)2

(4 cos2 y + sin2 y) sin ydydϕ

]

=
1

2µ0

4πR3

3

(µ0eω

6πR

)2
+

(
1

4πε0

)2
1

2µ0

(
eωr2e
3c

)2 ∫ ∞
a

1

r6
r2dr

∫ 2π

0

dϕ

∫ π

0

(4 cos2 y + sin2 y) sin ydy

=
µ0e

2ω2rec
2

54π
+

1

2µ0

(
eωr2e
3c

)2
1

3r3e
2π4

(
1

4πε0

)2

=
µ0e

2ω2rec
2

36π
.

b. Only in the outer region the momentum density does not vanish ,

℘⃗ = ε0E⃗ × B⃗ = ε0
e

4πε0r2
êr ×

µ0eω

6πre

r2e
r3

êθ
2

sin θ =
µ0e

2ωr2e
48π2

sin θ

r5
êϕ ,
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and the angular momentum density,

ℓ⃗ = r× ℘⃗ = −µ0e
2ωre

48π2

sin θ

r4
êθ .

The total angular momentum of the field is obtained by inserting êθ = êx cos θ cosϕ+
êy cos θ sinϕ− êz sin θ,

LED = −µ0e
2ωr2e

48π2

∫

r>re

sin θ

r4
êθd

3r =
µ0e

2ωr2e
24π

êz

∫ ∞

re

∫ π

0

sin3 θ

r2
dθdr =

µ0e
2ωre

18π
êz .

c. Equalizing the energy of the electromagnetic field with the rest mass of the electron,
mec

2, and the angular momentum with 1
2ℏ, we obtain,

e2

8πε0re
+
µ0e

2ω2rec
2

36π
= mec

2 ,
µ0e

2ωre
18π

=
ℏ
2
.

Resolving by re and ω,

re =
1

8

18ℏ2π2ε0 + e4µ0

meπe2
=

9πε0ℏ2

4me2
+

e2

8πε0mec2
≈ 2.98 · 10−11 m+1.41 · 10−15 m ,

and

ω = 72
ℏπ2mec

2ε0
18ℏ2π2ε0 + e4µ0

≈ 3.105 · 1021 s−1 .

This gives a ridiculously high orbital velocity in the equatorial plane,

ωre = 9.246 · 1010 m/s .

d. Using −êr × êϕ = êθ = êx cos θ cosϕ+ êy cos θ sinϕ− êz sin θ we calculate,

M⃗e =
1
2

∫
r′ × j(r′, t)d3r′ =

1

2

∫
r′ × eω

4πε0
δ(r′ − re) sin θ′ê′ϕd3r′

=
1

2

eω

4πε0

∫ 2π

0

∫ π

0

∫ ∞
0

δ(r′ − re) sin θ′êr′ × êϕ′r′3 sin θ′dθ′dr′dϕ′

= −1

2

eω

4πε0

∫ 2π

0

∫ π

0

∫ ∞
0

δ(r′ − re) sin θ′(êx cos θ′ cosϕ′ + êy cos θ
′ sinϕ′ − êz sin θ

′)r′3 sin θ′dθ′dr′dϕ′

=
êz
2

eω

4πε0

r4e
4

∫ π

0

sin3 θ′dθ′ =
eωr4e
24πε0

êz ≈ 3.7 · 10−12 T m3 .

We note, that the classical electron radius is defined by,

rcl =
e2

4πε0mec2
.
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17.3 Potential formulation of electrodynamics

17.3.1 The vector and the scalar potential

All quantities involved in Maxwell’s equations for vacuum, the fields E⃗(r, t) and B⃗(r, t)
as well as charge (ρ(r, t)) and current (j(r, t)) distributions they depend on space and

time. Knowing that the divergence of a field is zero everywhere, ∇·B⃗ = 0, we conclude
that this field must be the rotation of another field. That is, there is a vector field
A(r, t), such that,

B⃗(r, t) = ∇×A(r, t) . (17.74)

Substituting the so-called vector potential A(r, t) in Faraday’s law, ∇× E⃗ = −∂B⃗∂t ,
we obtain,

∇× E⃗ = − ∂

∂t
(∇×A) = −∇× ∂A

∂t
. (17.75)

Hence,

∇×
(
E⃗ + ∂A

∂t

)
= 0 . (17.76)

Now, since the rotational field within the parentheses is null everywhere, it follows
that there exists a scalar field Φ(r, t), called scalar potential, such that,

E⃗ + ∂A

∂t
= −∇Φ . (17.77)

The minus sign in front of the gradient of Φ(r, t), is introduced to recover the elec-
trostatic case when A(r, t) does not depend on time. In summary, if we know the

vector and scalar potentials, we can calculate the fields E⃗(r, t) and B⃗(r, t) following
the prescription expressed by the equations:

E⃗(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
and B⃗(r, t) = ∇×A(r, t) . (17.78)

17.3.2 Gauge transformation

Substituting the expression for the electric field by the vector and scalar potentials in
Gauß’ law, ∇ · E⃗ = ϱ

ε0
,

ϱ

ε0
= ∇ ·

(
−∇Φ− ∂A

∂t

)
= −∇2Φ− ∂∇ ·A

∂t
. (17.79)

Replacing the fields E⃗(r, t) and B⃗(r, t) by the potentials defined in (17.78), within the

law of Ampère-Maxwell, ∇× B⃗ = µ0j+ ε0µ0
∂E⃗
∂t , we obtain,

∇× (∇×A) = ∇(∇ ·A)−∇2A = µ0j−
1

c2
∂

∂t

(
−∇Φ− ∂A

∂t

)
. (17.80)

that is,

∇2A− 1

c2
∂A2

∂t2
−∇

(
∇ ·A+

1

c2
∂Φ

∂t

)
= −µ0j . (17.81)
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The coupled differential equations (17.79) and (17.81) allow us, in principle, to
derive a set of potentials Φ and A, generated by a charge and current distribution ϱ
and j, from which the fields E⃗ and B⃗ can be calculated. However, these potentials are
not unique. To see this, let us suppose new potentials,

Φ1 ≡ Φ− ∂χ

∂t
and A1 ≡ A+∇χ . (17.82)

Obviously, these potentials produce the same fields, since,

B⃗1 = ∇× (A+∇χ) = B⃗ , (17.83)

using the expressions (17.78) and,

E⃗1 = −∇
(
Φ− ∂χ

∂t

)
− ∂

∂t
(A+∇χ) = −∇Φ− ∂

∂t
A = E⃗ . (17.84)

Thus, it is clear that the fields are the same for an infinite number of different poten-
tials, provided they follow from each other by a so-called gauge transform,

A −→ A+∇χ and Φ −→ Φ− ∂tχ . (17.85)

This gauge invariance leaves the observable fields E⃗ and B⃗ invariant.
The freedom of choosing an appropriate gauge field can be employed to simplify

the set of equations (17.79) and (17.81) for particular problems, as we will discuss in
the following sections.

17.3.2.1 Lorentz gauge

We note that if the expression within the brackets of Eq. (17.81) were zero,

∇ ·A+
1

c2
∂Φ

∂t

!
= 0 (17.86)

we would have from the equations (17.79) and (17.81) ’wave’ type equations for the
potentials,

∇2Φ− 1

c2
∂2Φ

∂t2
= − ϱ

ε0
and ∇2A− 1

c2
∂2A

∂t2
= −µ0j . (17.87)

To analyze the viability of the expression (17.86), we apply a gauge transformation,

∇ · (A+∇χ) + 1

c2
∂(Φ− ∂tχ)

∂t
= ∇2χ− 1

c2
∂2χ

∂t2
= 0 . (17.88)

Hence, imposing the additional condition (17.86) is legal, because it can always be
satisfied by a simple gauge transformation with a field χ satisfying the wave equation
(17.88).

The equation (17.86) is known as the Lorentz gauge. We emphasize that it is not
necessary to postulate the equation, but it is always possible to find a scalar function χ,
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which allows the use of new potentials, giving the same E⃗ and B⃗ fields and satisfying
this equation 11.

Introducing the notation of the d’Alembert operator,

□ ≡ ∇2 − ε0µ0
∂2

∂t2
, (17.89)

the wave equations (17.87) become,

□Φ = −ε−10 ϱ and □A = −µ0j . (17.90)

They generalize the electro- and magnetostatic equations (17.6) to include temporal
variations simply by replacing the Laplacian with a d’Alembertian. The democratic
treatment of Φ and A by a Poisson-like equation in four space-time dimensions is
particularly interesting in the context of special relativity. We study examples of the
Lorentz gauge in Excs. 15.3.3.6 to 15.3.3.8 and 17.3.8.1 to 17.3.8.7.

17.3.2.2 Coulomb gauge, transverse and longitudinal currents

Another condition that can be applied to the potentials in order to simplify the
differential equations (17.86) and (17.88) consists in setting,

∇ ·A !
= 0 . (17.91)

This is called the Coulomb gauge. With this condition we obtain from (17.79) the
Poisson equation as well as an equation for the vector potential,

−∇2Φ =
ϱ

ε0
(17.92)

−∇2A+
1

c2

(
∂2A

∂t2
+
∂

∂t
∇Φ
)

= µ0j .

These two equations determine the vector and scalar potentials if the current and
charge density distributions are specified 12. The first Eq. (17.92) is solved by
Coulomb’s law, letting Φ(∞) = 0,

Φ(r, t) =
1

4πε0

∫
ϱ(r′, t)
|r− r′|d

3r′ . (17.93)

It is important to be aware that, unlike in electrostatics, we need to know also A(r, t)

to be able to calculate the field E⃗(r, t) through the formula (17.78).
It may seem strange that the scalar potential in Coulomb’s gauge is determined by

the instantaneous charge distribution: Moving an electron at a point r′, the potential
at a distant point, Φ(r), immediately captures this change, not being limited by the
speed limit for the transmission of information postulated by special relativity. The
explanation is, that Φ is not an observable physical quantity. To infer a change of ϱ,
we must measure E⃗ , which depends on A as well. Somehow it is encoded into the

11E.g. choosing χ such that ∇χ = −A and c−1∂tχ = ϕ.
12The determination still leaves the freedom to add fields satisfying ∇2Θ = 0.
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Coulomb gauge that, while Φ(r) instantly reflects all variations of ϱ(r′), the vector
potential depends in a much more complicated way on these variations, such that the
combination −∇Φ− ∂A/∂t only responds to the variations after a long enough time
for information to arrive.

The advantage of the Coulomb gauge is that the scalar potential is simple to
calculate. The disadvantage is that, in addition to the non-causal appearance of Φ, it
is particularly difficult to calculate A: The differential equation for A in the Coulomb
gauge is (17.81).

In order to obtain an equation involving only the vector field and the current den-
sity, we use Helmholtz’s theorem to write the current density as the sum of transverse
and longitudinal components,

j = jT + jL , (17.94)

where the terms ’transverse’ and ’longitudinal’ are defined by the following two con-
ditions,

∇ · jT = 0 and ∇× jL = 0 . (17.95)

Calculating the rotation of the second equation (17.92) we see that the term
containing the gradient of the scalar potential vanishes. Hence,

−∇2A+
1

c2
∂2A

∂t2
= µ0jT , (17.96)

which shows that the transverse component of j is fully associated only with the vector
potential. Now, substituting this result into the second equation (17.92) we are left
with,

ε0
∂

∂t
∇Φ = jL . (17.97)

That is, the longitudinal component of j is fully associated to the scalar potential. The
solution of Eq. (17.96) requires some preparation and will be given in the following
sections.

17.3.3 Green’s function

A useful tool for solving Laplace equations, such as derived in Eq. (17.87) or (17.96),
is the Green’s function. The dynamics of physical systems are often described by
differential equations of the type,

Lu(r) = ϱ(r) , (17.98)

where L = L(r) is a linear differential operator. While this operator has a very generic
form, the behavior of a particular system depends on the choice of the function ϱ.
The Laplace equation, where L(r) ≡ ∇2 and ϱ is a particular charge distribution is
an example.

One method of solving this differential equation is to first solve the following
equation,

LG(r,x) = δ3(r− x) , (17.99)
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where G(r,x) is called the Green function of the operator. In general, the Green
function is not unique. However, in practice, some combination of symmetry, bound-
ary conditions and/or other externally imposed criteria can make the Green function
unique.

Green functions are useful tools for solving wave and diffusion equations. In
quantum mechanics, the Green function of the Hamiltonian is intrinsically connected
to the concept of density of states. If the operator is invariant under translations,
that is, if L has constant coefficients with respect to r, then the Green function can
be taken as the convolution 13,

G(r,x) = G(r− x) . (17.100)

If such a function G can be found for the operator L, then multiplying Eq. (17.99) for
the Green function by ϱ(x), and then integrating by the variable x, we obtain:

∫
LG(r,x)ϱ(x)d3x =

∫
δ3(r− x)ϱ(x)d3x = ϱ(r) = Lu(r) , (17.101)

comparing the result with the Eq. (17.98). As we assume, that the operator L = L(r)
is linear and acts only on the variable r (and not on the integration variable x), we
can put L out of the integral on the right side. We conclude,

u(r) =

∫
G(r,x)ϱ(x)d3x . (17.102)

Hence, we can obtain the function u(r) from the Green function G(r,x), determined
by Eq. (17.99), and the source term ϱ(x).

The Green function, also called the fundamental solution associated with the op-
erator L, can be considered as the inversion of L ≡ G−1. Not every operator L admits
a Green function. In practice, not only calculating the Green function can be diffi-
cult for a particular operator, but also evaluating the integral in Eq. (17.102). In
Exc. 17.3.8.8 we will get to know a Green function of the wave equation.

Example 90 (Solving the Laplace equation by Green’s method): The
Laplace equation is,

∇2Φ(r) = −ε−1
0 ϱ(r) .

The Green function,

G(r, r′) = G(r− r′) = − 1

4π|r− r′| ,

resolves the Poisson equation,

∇2G(r− r′) = δ3(r− r′) .

Therefore, the solution of the Laplace equation is,

Φ(r) =
1

4πε0

∫
ϱ(r′)d3r′

|r− r′| .

To solve the wave equations (17.90), we need to find the Green function for a
spatio-temporal differential operator L(r, t) = □. We will do this in the example 91,
but for now, in the following section, we will adopt more empirical arguments.

13In this case, the Green function is the same as the pulse response in the theory of time-
independent linear systems.
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17.3.4 Retarded potentials of continuous charge distributions

In the Lorentz gauge Φ and A satisfy the inhomogeneous wave equations (17.90)
incorporating a ’source’ term. We will use in the following exclusively the Lorentz
gauge within which the entire electrodynamics comes down to solving (17.90).

But before that, let us take a look at the static situation, where the equations
(17.90) reduce to Poisson equations,

∇2Φ = −ε−10 ϱ and ∇2A = −µ0j , (17.103)

with the known solutions,

Φ(r) =
1

4πε0

∫
ϱ(r′)
|r− r′|d

3r′ and A(r) =
µ0

4π

∫
j(r′)
|r− r′|d

3r′ . (17.104)

x

y

z

R

r'

rdV

Figure 17.11: Geometry of source and the observation point.

In the dynamic case, the charge confined in the volume dV ′ (see Fig. 17.11) can
move, but for the information on this movement to reach the point of observation
r it takes a time determined by the propagation velocity of the light: |r − r′|/c.
Introducing the distance R between the position of the charge and the observation
point and the time retardation tr by,

R ≡ r− r′ and tr ≡ t− R
c , (17.105)

we expect the following generalization of the equation (17.104),

Φ(r, t) =
1

4πε0

∫
ϱ(r′, tr)
R

d3r′ and A(r) =
µ0

4π

∫
j(r′, tr)
R

d3r′ , (17.106)

called retarded potential.

The argument given above seems reasonable, but does not represent a stringent
derivation, which will be given in the following. In fact, the same argument applied
to the fields E⃗ and B⃗ would give false results, as we shall see later.

To verify the correctness of the assertion (17.106) we can simply show that it
satisfies the wave equation (17.90) and the Lorentz gauge (17.89). However, this is
not trivial, since the integral expressions depend on r explicitly (via the distance R
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in the denominator) and implicitly (via the retarded time td). Here, we present the
calculation for the scalar potential,

∇rΦ(r) =
1

4πε0

∫
∇r

ϱ(r′, t− |r−r
′|

c )

|r− r′| d3r′ (17.107)

=
1

4πε0

∫ [
1

R
∇rϱ+ ϱ∇r

1

R

]
d3r′ =

1

4πε0

∫ [
1

R

−ϱ̇
c

R

R
+ ϱ
−R
R3

]
d3r′ .

The divergence of the gradient,

∇2
rΦ(r) =

1

4πε0

∫ [−ϱ̇
c

(
∇r ·

R

R2

)
− R

R2
·
(∇rϱ̇

c

)
− (∇rϱ) ·

R

R3
− ϱ

(
∇r ·

R

R3

)]
d3r′

=
1

4πε0

∫ [

�
�
��−ϱ̇

c

1

R2
− R

R2
·
(−ϱ̈R
c2R

)
−
�������
(
− ϱ̇R
cR

)
· R
R3
− ϱ4πδ3(R)

]
d3r′

=
1

4πε0

∫ [
ϱ̈

c2R
− 4πϱδ3(R)

]
d3r′ =

1

c2
∂2Φ

∂t2
− ϱ(r, t)

ε0
, (17.108)

where we replaced in the last line the integral of ϱ̈/c2R by the expression (17.106),
reproduces the wave equation. In Exc. 17.3.8.9 we verify that the retarded potentials
(17.106) satisfy the Lorentz gauge.

It is interesting to note that the same calculation can be made for advanced times,
where the potential would be affected by a future movement of the charge, ta = t+ R

c .
But this would violate causality.

Example 91 (Resolution of the wave equation by the Greens func-
tion): We showed in the previous section that in the Lorentz gauge, given
the sources ϱ and j, all we have to do to find the scalar and vector potentials is
to solve wave type differential equations (17.87),

∇2ψ(r, t)− 1

c2
∂2ψ(r, t)

∂t2
= f(r, t) ,

where ψ is a variable to denote the fields Φ or A and f to denote the sources ϱ
or j. First, we want to find a particular solution of this equation. To this end,
we use the Green function G(r, t, r′, t′), which by definition satisfies,

∇2G(r, t, r′, t′)− 1

c2
∂2

∂t2
G(r, t, r′, t′) = δ(3)(r− r′)δ(t− t′) .

We can perform the Fourier transform with respect to the variable t and obtain,

∇2g(r, ω, r′, t′) +
ω2

c2
g(r, ω, r′, t′) = δ(3)(r− r′)

eıωt
′

2π
,

where we used the integral representation of the Dirac delta function, i.e.,

δ(t− t′) = 1

2π

∫ ∞
−∞

e−ıω(t−t
′)dω

and we defined,

G(r, t, r′, t′) ≡
∫ ∞
−∞

e−ıωtg(r, ω, r′, t′)dω .
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As we will explain later, instead of solving the above differential equation, we
will modify it:

∇2gη(r, ω, r
′, t′) + (k0 + ıη)2gη(r, ω, r

′, t′) = δ(3)(r− r′)
eıωt

′

2π
,

with k0 ≡ ω/c assuming positive and negative values for ω: We can now take
the Fourier transform with respect to the variable r and obtain,

−k2ḡη(k, ω, r′, t′) + (k0 + ıη)2ḡη(k, ω, r
′, t′) =

e−ık·r
′+ıωt′

(2π)4
,

where we used,

δ(3)(r− r′) =
1

(2π)3

∫
R3

eık·(r−r′)d3k ,

and defined,

gη(r, ω, r
′, t′) ≡

∫
eık·rḡη(k, ω, r

′, t′)d3k .

Hence,

ḡη(k, ω, r
′, t′) =

e−ık·r
′+ıωt′

(2π)4[−k2 + (k0 + ıη)2]
,

and therefore,

gη(r, ω, r
′, t′) =

∫
e−ık·(r−r′)+ıωt′

(2π)4[−k2 + (k0 + ıη)2]
d3k .

Note that, if we had not modified the original equation (i.e. set η = 0), the
integral above would not converge, and we could not find a Green function by
the present method. Now, however, the Green function is,

Gη(r−r′, t−t′) =
∫ ∞
−∞

e−ıωtgη(r, ω, r
′, t′)dω =

∫
d3k

∫ ∞
−∞

dω
eık·(r−r′)−ıω(t−t′)

(2π)4[−k2 + (k0 + ıη)2]
,

or yet,

Gη(r, t) =
∫
d3k

∫ ∞
−∞

dω eık·r−ıωt

(2π)4[−k2 + (k0 + ıη)2]
=

1

(2π)4

∫ ∞
−∞

dωe−ıωt
∫

d3k eık·r

[k2 − (k0 + ıη)2]
.

In polar coordinates, choosing the orientation of the k-vector space such that
kz is parallel to the vector r,∫
d3k

eık·r

[k2 − (k0 + ıη)2]
=

∫ ∞
0

k2dk
1

[k2 − (k0 + ıη)2]

∫ 2π

0

dϕk

∫ π

0

dθk sin θke
ık·r

=

∫ ∞
0

dk
k2

[k2 − (k0 + ıη)2]

∫ 2π

0

dϕk

∫ π

0

dθk sin θke
ıkr cos θk

=

∫ ∞
0

dk
2πk2

[k2 − (k0 + ıη)2]

∫ 1

−1

dueıkru

=
2π

ır

∫ ∞
0

dk
k

[k2 − (k0 + ıη)2]
(eıkr − e−ıkr) ,

where we used the substitution u ≡ cos θk. Since,∫ ∞
0

dk
ke−ıkr

[k2 − (k0 + ıη)2]
= −

∫ 0

−∞
dk

keıkr

[k2 − (k0 + ıη)2]
,
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we can write,∫
d3k

eık·r

[k2 − (k0 + ıη)2]
=

2π

ır

∫ ∞
−∞

dk
keıkr

[k2 − (k0 + ıη)2]
.

The poles of this integral are given by,

Z± = ±(k0 + ıη) .

We consider the integral in the complex plane:∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ ,

where the contour is closed over the upper complex half-plane. When η → 0+

[see Fig. 17.12(a)], we get,∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ = 2πı

Z+e
ırZ+

Z − Z+
= ıπeık0r .

When η → 0− [see Fig. 17.12(b)], we get,

Im Z

Re Z

Z-
R

C

-ih

ih
- 0k k0

h<0

Z+R

C

- hi

ih

-k0 k0

h>0

Im Z

Re Z

Z+ Z-

Figure 17.12: Illustration of the integration path.

∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ = ıπe−ık0r .

But, with the closed contour over the upper complex half-plane,∫ ∞
−∞

dk
keıkr

[k2 − (k0 + ıη)2]
=

∮
C

ZeırZ

(Z − Z+)(Z − Z−)
dZ = ıπe±ık0r .

With these results, we can conclude that,∫
d3k

eık·r

[k2 − (k0 + ıη)2]
=

2π2

r
e±ık0r ,

and hence,

G±(r, t) = − 1

(2π)4

∫ ∞
−∞

dωe−ıωt
2π2

r
e±ık0r = − 1

8π2r

∫ ∞
−∞

dωe−ıω(t∓
r
c
) = − 1

4πr
δ(t∓ r

c
) .

Thus, we also have,

G±(r− r′, t− t′) = − 1

4π

1

|r− r′|δ(t− t
′ ∓ |r−r′|

c
) .
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There are, therefore, two possible solutions to the problem:

ψ(r, t) =

∫
d3r′

∫ ∞
−∞

dt′G±(r− r′, t− t′)f(r′, t′)

= − 1

4π

∫
d3r′

|r− r′|

∫ ∞
−∞

dt′δ(t′ − t± |r−r′|
c

)f(r′, t′) = − 1

4π

∫
d3r′

f(r′, t∓ |r−r′|
c

)

|r− r′| .

In this case, we will use retarded rather than advanced solutions, i.e.,

Φ(r, t) =
1

4πε0

∫
ϱ(r′, t− |r−r′|

c
)

|r− r′| d3r′ and A(r, t) =
µ0

4π

∫
j(r′, t− |r−r′|

c
)

|r− r′| d3r′ .

17.3.5 Retarded fields in electrodynamics and Jefimenko’s equa-
tions

From the retarded potentials (17.106) we can determine the fields through equations
(17.78),

E⃗(r, t) = −∇rΦ−
∂A

∂t
= − 1

4πε0

∫ [
1

R

−ϱ̇
c

R

R
+ ϱ
−R
R3

]
d3r′ − µ0

4π

∫
j̇(r′, tr)
R

d3r′ ,

using the result (17.107). With c2 = 1/ε0µ0 we obtain the time-dependent general-
ization of Coulomb’s law,

E⃗(r, t) = 1

4πε0

∫ [
ϱ(r′, tr)
R2

êR +
ϱ̇(r′, tr)
cR

êR −
j̇(r′, tr)
c2R

]
d3r′ . (17.109)

In static situations the second and third term cancel, ϱ(r′, t′) = ϱ(r′) becomes inde-
pendent of time, and we recover the electrostatic Coulomb law.

We now calculate the magnetic field via the rotation,

B⃗(r, t) = ∇r ×A =
µ0

4π

∫ [
1

R
(∇r × j)− j×∇r

(
1

R

)]
d3r′ . (17.110)

With,

[∇r × j(r′, t− R
c )]x =

∂jz
∂y
− ∂jy

∂z
= j̇z

∂tr
∂y
− j̇y

∂tr
∂z

(17.111)

= −1

c

(
j̇z
∂R

∂y
− j̇y

∂R

∂z

)
=

[
1

c
j̇×∇rR

]

x

=

[
1

c
j̇× R

R

]

x

.

Thus, the time-dependent generalization of the Biot-Savart law is,

B⃗(r, t) = µ0

4π

∫ [
j(r′, tr)
R2

+
j̇(r′, tr)
cR

]
× R

R
d3r′ . (17.112)

The equations (17.109) and (17.112) are the (causal) solutions of Maxwell’s equa-
tions published by Jefimenko in 1966. In practice, these equations are of limited
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utility, since it is usually easier to calculate the retarded potentials, instead of going
directly to the fields. However, they provide the satisfying sensation of a closed the-
ory. We note that the simple replacement of the times t by tr made for the potentials
in (17.106) does not apply to the fields, as it would only produce the first terms of
Jefimenko’s expressions.

In the Excs. 17.3.8.10 and 17.3.8.11 we evaluate the fields for slow current varia-
tions.

17.3.6 The Liénard-Wiechert potentials

The goal now is to calculate the retarded electromagnetic potentials produced by a
moving point charge q along a predefined path w(t). The presence of the charge at a
time tr at a point w(tr), called the retarded position of this trajectory, has an impact
on an arbitrary point of space r at a time t given by,

t = tr +
|r−w(tr)|

c . (17.113)

At a given instant of time t, the potentials Φ(r, t) and A(r, t) evaluated at the point

Figure 17.13: Retardation of potentials.

r depend only on a single point of the trajectory w(tr) occupied by the charge in the
past. The equation (17.106) now allows you to calculate the potentials. For a given
trajectory w(t′) the charge and current densities are parametrized by,

ϱ(r′, t′) = qδ3(r′ −w(t′)) and j(r′, t′) = vϱ(r′, t′) . (17.114)

However, we need the density at the retarded time tr
14,

ϱ(r′, tr) = q

∫
δ3(r′ −w(t′))δ(t′ − tr)dt′ . (17.115)

We obtain,

Φ(r, t) =
q

4πε0

∫
ϱ(r′, tr)
|r− r′| d

3r′ =
q

4πε0

∫ ∫
δ3(r′ −w(t′))
|r− r′| δ(t′ − tr)d3r′dt′ (17.116)

=
q

4πε0

∫
1

|r−w(t′)|δ(t
′ − (t− |r−w(t′)|

c ))dt′ ,

14Can not simply replace t′ → tr in the argument of w(t′), because tr implicitly depends on w(t′)
via the expression (17.113).
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where spatial integration replaced r′ = w(t′).
To evaluate a function δ(g(x)) which depends on another function g(x), we make

the substitution,
u ≡ g(x) with du = dg

dxdx , (17.117)

such that, ∫
δ(g(x))dx =

∫
δ(u)

|dg/dx|du =
1∣∣∣dg(x0)
dx

∣∣∣
, (17.118)

where x0 is defined by u = g(x0) = 0. Applied to our problem, we identify,

u = g(t′) = t′ −
(
t− |r−w(t′)|

c

)
= t′ − tr . (17.119)

That is, the time when u = g(t′) = 0 is simply t′ = tr. Now, the time derivative is,

dg

dt′
= 1 +

1

c

d

dt′
|r−w(t′)| = 1− v(t′)

c
· r−w(t′)
|r−w(t′)| , (17.120)

with v ≡ ẇ. With this, the expression (17.116) becomes,

Φ =
q

4πε0

∫
1

|r−w(t′)|
δ(u)∣∣∣ dgdt′
∣∣∣
du =

q

4πε0

1

|r−w(tr)|
1

|1− v(tr)
c · r−w(tr)

|r−w(tr)| |
, (17.121)

where the application of the δ(u) function comes down to replacing t′ by tr. Finally,
recalling the abbreviation R ≡ r−w(tr),

Φ(r, t) =
1

4πε0

qc

Rc−R · v and A(r, t) =
µ0

4π

qcv

Rc−R · v =
v

c2
Φ(r, t) ,

(17.122)
where the vector potential is obtained in an analogous way. These are the so-called
Liénard-Wiechert potentials 15. In Exc. 17.3.8.12 we calculate the potentials of a point
charge in uniform motion.

17.3.7 The fields of a moving point charge

Fields produced by a moving point charge are calculated from the potentials (17.122)
using (17.78). The calculation is complicated, because we must evaluate both, dis-
tance and speed,

R = r−w(tr) and v = ẇ(tr) (17.123)

at the retarded time, which is implicitly defined by the equation,

R = |r−w(tr)| = c(t− tr) . (17.124)

We start with the gradient of the scalar potential (17.122),

∇Φ =
qc

4πε0

−1
(Rc−R · v)2∇(Rc−R · v) , (17.125)

15We get the same result from the argument, that light needs a finite time to cross the volume of
the charge distribution d3r′ = dV ′, such that the volume appears stretched at the time instant tr,

dV ′ −→ dV ′

1−êr·v/c
.
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and evaluate both terms separately. Using (17.124) we find,

∇(Rc) = −c2∇tr , (17.126)

where we leave the calculation of the gradient of retarded time for later. Also, using
the rule (21.111)(ix), we find,

∇(R · v) = (R · ∇)v + (v · ∇)R+R× (∇× v) + v × (∇×R) . (17.127)

The first term of this expression gives,

(R · ∇)v(tr) = Rx
∂tr
∂x

dv

dtr
+Ry

∂tr
∂y

dv

dtr
+Rz

∂tr
∂z

dv

dtr
= a(R · ∇tr) , (17.128)

where a ≡ v̇ is the acceleration at the retarded time. The second term is,

(v · ∇)R = (v · ∇)r− (v · ∇)w = v − v(v · ∇tr) . (17.129)

Now, using,

∇× v =

(
∂tr
∂y

dvz
dtr
− ∂tr
∂z

dvy
dtr

)
êx + ... = −a×∇tr , (17.130)

the third term becomes,

R× (∇× v) = −R× (a×∇tr) . (17.131)

Finally, using,

∇×R = ∇× r
0−∇×w = v ×∇tr , (17.132)

the fourth term is,
v × (∇×R) = v × (v ×∇tr) . (17.133)

With these results the expression (17.127) becomes,

∇(R · v) = a(R · ∇tr) + v − v(v · ∇tr)−R× (a×∇tr) + v × (v ×∇tr) (17.134)

= v + (R · a− v2)∇tr ,

using in the last step the rule A× (B×C) = B(A ·C)−C(A ·B). Now, we calculate
∇tr,

∇tr = − 1
c∇R = − 1

c∇
√
R ·R = − 1

2c
√
R ·R

∇(R ·R) (17.135)

= − 1

cR
[(R · ∇)R + R× (∇×R)]

= − 1

cR
[(R · ∇)r− (R · ∇)w + R× (∇×R)]

= − 1

cR
[R− v(R · ∇tr) + R× (v ×∇tr)] = −

1

cR
[R− (R · v)∇tr)] .

To get (R · ∇)w we did a calculation similar to (17.128) and ∇ × R was already
calculated in (17.132). Solving the result (17.135) by ∇tr,

∇tr = −
R

cR−R · v . (17.136)
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Finally, the gradient of the scalar potential (17.125) is,

∇Φ =
1

4πε0

qc

(cR−R · v)3
[
(cR−R · v)v − (c2 − v2 +R · a)R

]
. (17.137)

A similar calculation for the temporal derivative of the vector potential gives the
result,

∂A

∂t
=

1

4πε0

qc

(cR−R · v)3
[
(cR−R · v)(−v +

R

c
a) +

R

c
(c2 − v2 +R · a)v

]
.

(17.138)
The rotation of the vector potential yields,

∇×A =
1

c2
∇× (Φv) =

1

c2
[Φ(∇× v)− v(∇Φ)] (17.139)

= −1

c

q

4πε0

1

(R · u)3R× [(c2 − v2)v + (R · a)v + (R · u)a] ,

using the expressions (17.130) and (17.137) and introducing the abbreviation u ≡
cêR − v.

Combining these results with equations (17.78), we find the fields,

E⃗(r, t) = q

4πε0

R

(R · u)3 [(c
2 − v2)u+R× (u× a) , (17.140)

and,

B⃗(r, t) = 1
c êR × E⃗(r, t) . (17.141)

Obviously, the magnetic field of a point charge is always perpendicular to the electric
field and to the vector of the retarded point. The first term in E⃗ (involving (c2−v2)·u)
falls off like 1/R2. If the velocity v and the acceleration a were zero, this term survives
and reduces to the old electrostatic result (13.3). For this reason, this term is called
the generalized Coulomb field. The second term (involving R× (u× a)) falls off like
1/R and thus becomes dominant at large distances. As we will see in Sec. 19.4, this
is the term responsible for electromagnetic radiation.

Knowing the fields generated by the moving charge q we can, by the laws of the
Coulomb force and the Lorentz force, determine the force acting on a test particle Q
located at r and moving with velocity V,

F(r, t) =
qQ

4πε0

R

(R · u)3
{
[(c2 − v2)u+R× (u× a)] (17.142)

+
V

c
×
[
êR × [(c2 − v2)u+R× (u× a)]

]}
,

where r, u, v, and a are all evaluated at the retarded time. The entire classical
electrodynamics is contained in this equation because, since the charge is quantized,
we can apply the superposition principle and calculate the impact of any charge
distribution on a test particle Q. However, in view of the complexity of (17.142), the
necessary effort seems huge. The scheme 17.14 summarizes the fundamental laws of
electrodynamics.

Resolve the Excs. 17.3.8.13 to 17.3.8.16.
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Figure 17.14: Organization chart of the fundamental laws of electrodynamics. Compare with
the corresponding charts in electrostatics Fig. 13.11 and magnetostatics Fig. 15.16.

Example 92 (Electric and magnetic fields generated by a uniformly
moving charge): Letting a = 0 in (17.140),

E⃗(r, t) = q

4πε0

R

(R · u)3 (c
2 − v2)u ,

we can express the position of the charge at the retarded time by its constant
velocity, ẇ = v. We calculate using the definition of u,

Ru = cR−Rv = cR−Rẇ = c(r− vtr)− c(t− tr)v = c(r− vt) .

The square of the relationship |r− vtr| = c(t− tr) resolved by tr gives,

tr =
(c2t− r · v)±

√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

c2 − v2 ,

where we only consider the sign −. With this we calculate,

R · u = Rc−R · v = c2(t− tr)− (r− vtr) · v = c2t− r · v − (c2 − v2)tr
=
√

(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)
=
√

(c2 − v2)(r− vt)2 + [(r− vt) · v]2

=
√

(c2 − v2)d2 + (d · v)2 = d
√
c2 − v2 + v2 cos2 θ = dc

√
1− v2

c2
sin2 θ ,

where the abbreviation d ≡ r−vt is the vector between r and the actual position
of the particle and θ is the angle between d and v. Then,

E⃗(r, t) = q

4πε0

1− v2/c2

(1− v2

c2
sin2 θ)3/2

êd
d2

.

Note that E⃗ points along the distance d. This is an extraordinary coincidence;
after all, the ’message’ came from the retarded position. Because of the sin2 θ
in the denominator, the field of a charge moving fast is flattened like a pancake
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in the direction perpendicular to the motion (see Fig. 17.15). In the forward
and backward directions E⃗ is reduced by a factor (1−v2/c2) with respect to the
field of a charge at rest; in the perpendicular direction is amplified by a factor
1/
√

1− v2/c2.
To get B⃗ we calculate,

êR =
r− vtr
R

=
(r− vt) + (t− tr)v

R
=

d

R
+

v

c
,

and hence,
B⃗ = 1

c
(êR × E⃗) = 1

c2
(v × E⃗) .

The B⃗-field lines form circles around the charge, as shown in Fig. 17.15. At low
velocities, v ≪ c,

E⃗(r, t) = q

4πε0

d

d2
, B⃗ =

µ0q

4π

v × êd
d2

.

we recover the laws of Coulomb and Biot-Savart for point charges.

Figure 17.15: (a) Electric and magnetic field generated by of a point charge in uniform
motion. (b) Electric field seen from an observation point r fixed in space.

17.3.8 Exercises

17.3.8.1 Ex: Potentials, fields and the Lorentz gauge

Consider a scalar field and a vector field of the form,

Φ(r, t) = cd
r · êz
r3

eıωt and A(r, t) = ıkd
eıkr

r
eıωt êz .

where k = ω/c.

a. Calculate the corresponding fields B⃗ and E⃗ .
b. Show that for small r the given potentials satisfy the Lorentz gauge.

Solution: a. We have for the B⃗-field,

B⃗ = ∇×A =




∂yAz

−∂xAz
0


 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz01.pdf
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Now,

∂i

(
eıkr

r

)
=
ıkreıkr∂ir − eıkr∂ir

r2
=
eıkr

r

(
ık
xi
r
− xi
r2

)
.

Hence,

B⃗ = ıkd
eıkr

r

(
ık − 1

r

)
eıωt




y/r

−x/r
0


 = −k2deıωt e

ıkr

r

(
1− 1

ıkr

)
(êr × êz) .

For the E⃗-field we have,

E⃗ = −∇Φ− 1

c

∂A

∂t
= −∇Φ− k2de

ıkr

r
eıωtêz .

Now,

∂i

( z
r3

)
=
δiz
r3
− 3zxi

r5
.

Hence,

−∇Φ = −cdeıωt∇ z

r3
= cdeıωt

3r(r · êz)− r2êz
r5

.

and so,

E⃗ = deıωt
[
c
3(r · êz)r

r5
− êz

(
c
1

r3
− k2 e

ıkr

r

)]
.

b. We have,

∇ ·A = ∂zAz = ıkdeıωt∂z
eıkr

r
= −k2deıωt e

ıkr

r

(
1− 1

ıkr

)
z

r
.

and
1

c2
∂Φ

∂t
=
d

c

r · êz
r3

ıωeıωt = ıkdeıωt
z

r3
.

For small r now holds eıkr ≃ 1 and the term 1/r3 dominates. For this case,

∇ ·A = −ıkdeıωt z
r3

.

With this, the Lorentz gauge is satisfied.

17.3.8.2 Ex: Fields, potentials, and the gauge transformation

Find the charge and current distributions producing the following potential,

Φ(r, t) = 0 and A(r, t) =
µ0k

4c
(ct− |x|)2êz Θ(|x| − ct) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz02.pdf
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where k = const.

Solution: We calculate the fields,

E⃗ = −∇Φ− ∂A

∂t
= −µ0k

2
(ct− |x|)êzΘ(ct− |x|) ,

and

B⃗ = ∇×A =
µ0k

4c
Θ(ct−|x|)êy

∂

∂x
(ct−|x|)2 =

µ0k

4c
Θ(ct−|x|)E⃗y2(ct−|x|)[1−2Θ(x)] .

With this we calculate the charge densities,

ϱ = ε0∇ · E⃗ = −ε0
µ0k

2
Θ(ct− |x|) ∂

∂z
(ct− |x|) = 0 ,

and the current densities,

j = 1
µ0
∇× B⃗ − ε0

∂E⃗
∂t

=
1

µ0

µ0k

4c
2Θ(ct− |x|)[1− 2Θ(x)]êz

∂

∂x
(ct− |x|) + ε0µ0ck

2
êzΘ(ct− |x|)

= − 1

µ0
êz
µ0k

2c
Θ(ct− |x|)[1− 2Θ(x)]2 +

ε0µ0ck

2
êzΘ(ct− |x|) = 0 .

Of course, here we have a uniform surface current flowing in z-direction on the x = 0-
plane. It starts at t = 0 and increases proportionally with t. Notice that the perturba-
tion travels (in both directions) at the speed of light: for points |x| > ct the perturbation
(the notice that the current is now flowing) has not yet arrived, hence, the fields must
be zero.

17.3.8.3 Ex: Fields derived from potentials

Show that the differential equations for Φ and A can be written in a more symmetric
form as,

□Φ+
∂L

∂t
= − ϱ

ε0
and □A−∇L = −µ0j ,

where L ≡ ∇ ·A+ ε0µ0
∂Φ
∂t .

Solution: We calculate,

□Φ+
∂L

∂t
= ∇2Φ− ε0µ0

∂2Φ

∂t2
+
∂

∂t

(
∇ ·A+ ε0µ0

∂Φ

∂t

)

= ∇2Φ+
∂

∂t
∇ ·A = ∇ ·

(
∇Φ+

∂A

∂t

)
= −∇ · E⃗ = − ϱ

ε0
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz03.pdf
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and,

□A−∇L = ∇2A− ε0µ0
∂2A

∂t2
−∇

(
∇ ·A+ ε0µ0

∂Φ

∂t

)

= ∇2A−∇(∇ ·A)− ε0µ0
∂2A

∂t2
− ε0µ0

∂∇Φ
∂t

= −∇× (∇×A)− ε0µ0
∂2A

∂t2
− ε0µ0

∂∇Φ
∂t

= −∇× B⃗ + ε0µ0
∂E⃗
∂t

= −µ0j .

17.3.8.4 Ex: Fields derived from potentials

a. Find the fields and the charge and current distributions corresponding to,

Φ(r, t) = 0 and A(r, t) = − 1

4πε0

qt

r2
êr .

b. Use the gauge function χ = − 1
4πε0

qt
r to transform the potentials in (a), and com-

ment the result.
c. Check whether the potentials are in the Lorentz or in the Coulomb gauge.

Solution: a. We find with the relationships (17.78),

E⃗ = −∇Φ− ∂A

∂t
=

1

4πε0

q

r2
êr ,

and,
B⃗ = ∇×A = 0 .

b. The transformed potentials are,

Φ′ = Φ− ∂χ

∂t
= 0 +

∂

∂t

qt

4πε0r
=

q

4πε0r

A′ = A+∇χ = − qt

4πε0r2
êr −∇

qt

4πε0r
= − qt

4πε0r2
êr −

qt

4πε0

−r
r3

= 0 .

Thus, we see that this is a Colombian potential.
c. For the original potentials we find,

∂Φ

∂t
=

∂

∂t
0 = 0 and ∇ ·A = −∇ ·

(
1

4πε0

qt

r2
êr

)
= − qt

ε0
δ(3)r ,

such that they are neither in the Lorentz nor in the Coulomb gauge. For the trans-
formed potentials we find,

∂Φ′

∂t
=

∂

∂t

q

4πε0r
= 0 and ∇ ·A′ = ∇ · 0 = 0 ,

such that they satisfy simultaneously both gauges.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz04.pdf
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17.3.8.5 Ex: Fields derived from potentials

a. Suppose Φ = 0 and A = A0 sin(kx − ωt)êy, where A0, ω, and k are constants.

Find E⃗ and B⃗, and verify, that they satisfy Maxwell’s equations in vacuum. What
conditions should be imposed to ω and k?
b. Check whether the potentials are in the Lorentz or in the Coulomb gauge.

Solution: We find with the relationships (17.78),

E⃗ = −∇Φ− ∂A

∂t
= ωA0 cos(kx− ωt)êy ,

and,
B⃗ = ∇×A = kA0 cos(kx− ωt)êz .

We calculate,

∇× E⃗ = −ωkA0 sin(kx− ωt)êz = −
∂B⃗
∂t

∇× B⃗ = k2A0 sin(kx− ωt)êy =
k2

ω2

∂E⃗
∂t

∇ · E⃗ = 0 = ∇ · B⃗ .
The condition to satisfy Maxwell’s law (second equation) is,

k2

ω2
= ε0µ0 =

1

c2
.

b. For the potentials we find,

∂Φ

∂t
=

∂

∂t
0 = 0 and ∇ ·A = ∇ ·A0 sin(kx− ωt)êy = 0 ,

such that they satisfy simultaneously both gauges.

17.3.8.6 Ex: Other gauges

Check the viability of a gauge defined by Φ ≡ 0 and a gauge defined by A ≡ 0.

Solution: Allowed gauges χ transform the potentials as,

A′ = A+∇χ and Φ′ = Φ− c−1∂tχ .

Choosing ∂tχ = cΦ we can design a scalar potential Φ′ = 0 yielding the electric and
magnetic fields,

E⃗ = −∂A
′

∂t
− ∇Φ′

0
= −∂(A+∇χ)

∂t
= −∂A

∂t
− cΦ

B⃗ = ∇×A′ = ∇× (A+ ∇χ 0
) = ∇×A .

On the other hand, the choice A = −∇χ does not produce a magnetic field because
B⃗ = −∇× (∇χ) = 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz05.pdf
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17.3.8.7 Ex: Coulomb gauge

a. Show that the vector potential can be expressed by the magnetic field as,

A(r, t) = ∇×
∫ B⃗(r′, t)

4π|r− r′|d
3r′ .

Show that, given by this expression, the potential vector satisfies the Coulomb gauge.
b. Show that for uniform and constant magnetic fields,

A(r, t) = − 1
2r× B⃗ .

Why can’t you use the formula in (a) to solve the problem?

Solution: a. The ∇ operator does not act on the integration coordinate r′. Therefore,
the vector potential can be written,

A(r, t) = ∇×
∫ B⃗(r′, t)

4πR
d3r′ =

∫ (
∇ 1

4πR

)
×B⃗(r′, t)d3r′ = −

∫
r

4πR3
×B⃗(r′, t)d3r′ .

With this, the rotation becomes,

∇×A(r, t) = −
∫
∇×

[ r

4πR3
× B⃗(r′, t)

]
d3r′

=
1

4π

∫ [
B⃗(r′, t)

(
∇ · r

R3

)
−
(
B⃗(r′, t) · ∇

) r

R3

]
d3r′

=
1

4π

∫
B⃗(r′, t)4πδ(r)d3r′ + 1

4π

∫ [
∇
( r

R3
· B⃗(r′, t)

)
− B⃗(r′, t)×

(
∇× r

R3

0
)]
d3r′

= B⃗(r, t) + 1

4π

∮
r

R3
· B⃗(r′, t)dS′ = B⃗(r, t) .

The vector potential satisfies the Coulomb gauge, since its divergence is,

∇ ·A(r, t) = ∇ · ∇× 0
∫ B⃗(r′, t)

4πR
d3r′ = 0 .

b. For uniform magnetic fields,

∇×A(r, t) = ∇×
(
− 1

2r× B⃗
)
= − 1

2

(
B⃗ · ∇

)
r+ 1

2 B⃗(∇ · r) = − 1
2 B⃗ + 3

2 B⃗ = B⃗ .

The vector potential satisfies the Coulomb gauge, since,

∇ ·A(r, t) = −∇ · 12 (r× B⃗) = − 1
2 (∇× r) · B⃗ + 1

2r · (∇× B⃗) = 0 .

To solve the problem, we also could try to use formula in (a) inserting B⃗(r′, t) = B⃗.
However, the integral diverges at r′ = r.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_CalibreLorentz07.pdf
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17.3.8.8 Ex: Green function

Show that G(r, r′) = eık|r−r′|

4π|r−r′| is the Green function of the operator L = ∇2 + k2.

Solution: We calculate,

∇2
r

eık|r−r
′|

4π|r− r′| = ∇
2
R

eıkR

4πR
=

1

R2

∂

∂R

(
R2 ∂

∂R

eıkR

4πR

)
= −k2 e

ıkR

4πR
= −k2 eık|r−r

′|

4π|r− r′|
.

17.3.8.9 Ex: Gauge of retarded potentials

Confirm, that retarded potentials (17.106) are in the Lorentz gauge.

Solution: From the retarded potentials,

Φ(r, t) =
1

4πε0

∫
ϱ(r′, tr)
R

d3r′ and A(r, t) =
µ0

4π

∫
j(r′, tr)
R

d3r′

we calculate the derivatives,

d

dt
Φ(r, t) =

1

4πε0

∫
ϱ̇(r′, tr)
R

d3r′ and ∇ ·A(r, t) =
µ0

4π

∫
∇ · j(r

′, tr)
R

d3r′ .

To evaluate the divergence of the vector potential we first calculate,

∇ · j
R
− 1

R
∇ · j = j · ∇ 1

R
= −j · ∇′ 1

R
= −∇′ · j(r

′, t−R/c)
R

+
1

R
∇′ · j .

We now calculate the divergence of the current,

∇′ · j(r′,t−R/c) = ∂j

∂r′
+

∂j

∂tr
· ∇′tr =

∂j

∂r′
− ∂j

∂tr
· ∇tr =

∂j

∂r′
−∇ · j(r′,t−R/c) ,

where we defined the explicit spatial derivative, ∂j
∂r′ . We conclude,

∇ ·A(r, t) =
µ0

4π

∫
∇ · j(r

′, tr)
R

d3r′

=
µ0

4π

∫ [
−∇′ · j(r

′, t−R/c)
R

+
1

R
∇′ · j+ 1

R
∇ · j

]
d3r′

=
µ0

4π

∮
j(r′, t−R/c)

R
· dS

0

+
µ0

4π

∫
1

R

∂j

∂r′

−ϱ̇

d3r′ = −ε0µ0
d

dt
Φ(r, t) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_FuncaoDeGreen01.pdf
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17.3.8.10 Ex: Jefimenko with constant current

Suppose that j(r) is constant in time, such that ϱ(r, t) = ϱ(r, 0) + ϱ̇(r, 0)t. Demon-
strate the validity of Coulomb’s law with the charge density evaluated at the non-
retarded time.

Solution: Jefimenko’s expression for the electric field is,

E⃗(r, t) = 1

4πε0

∫ 
ϱ(r

′, tr)
R2

êr +
ϱ̇(r′, tr)
cR

êr −
j̇(r′, tr)

0

c2R


 d3r′

=
1

4πε0

∫
ϱ(r′, tr) + R

c ϱ̇(r
′, tr)

R2
êrd

3r′ .

Now,

ϱ(r′, tr) + R
c ϱ̇(r

′, tr) =
[
ϱ(r′, 0) + ϱ̇(r′, 0)(t− R

c )
]
+ R

c ϱ̇(r
′, 0) = ϱ(r′, t) .

17.3.8.11 Ex: Jefimenko with slowly varying current

Suppose a current density varying sufficiently slowly so that we can ignore all higher
derivatives of the Taylor expansion j(r, tr) = j(r, t) + (tr − t)j̇(r, tr) + .... Demon-
strate the validity of the Biot-Savart law with the charge density evaluated at the
non-retarded time. This means that the quasi-static approximation is much better
than could have expected.

Solution: Jefimenko’s expression for the magnetic field is,

B⃗(r, t) = µ0

4π

∫ [
j(r′, tr)
R2

+
j̇(r′, tr)
cR

]
× êrd

3r′ =
µ0

4π

∫
j(r′, tr) + R

c j̇(r
′, tr)

R2
× êrd

3r′ .

Now,
j(r′, tr) + R

c j̇(r
′, tr) = j(r′, t) .

This looks like an adiabaticity condition: either the variation is slow, or nearby.

17.3.8.12 Ex: Potentials of a point charge in uniform motion

a. Calculate the potentials (17.122) produced by the uniform motion, w(t) = vt, of a
charge q.
b. Verify that these potentials satisfy the Lorentz gauge.

Solution: a. For this, we need to express the retarded time given by |r − vtr| =
c(t− tr), that is,

r2 − 2r · vtr + v2t2r = c2(t2 − 2ttr + t2r) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert01.pdf
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Resolving by tr,

tr =
c2t− r · v ±

√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

c2 − v2 .

As this formula, for the case v = 0, simplifies to tr = t ± r
c , we can eliminate the

positive sign. Now we calculate,

D ≡ Rc−R · v = c(t− tr)c− (r− vtr) · v
= c2t− r · v − (c2 − v2)tr =

√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2) ,

where we replaced tr in the last step. Therefore,

Φ(r, t) =
1

4πε0

qc

D and A(r, t) =
µ0

4π

qcv

D .

Using the substitution r = r − vt and the angle θ between r and v we can simplify
the expressions. We calculate r · v = v2t+Rv cos θ and r2 = R2 + v2t2 + 2Rvt cos θ.
Thereby,

D =
√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

=
√
(c2t−v2t−Rv cos θ)2 + (c2 − v2)(R2 + v2t2 + 2Rvt cos θ − c2t2)

= R

√
1− v2 sin2 θ/c2 .

Finally,

Φ(r, t) =
1

4πε0

q

R
√
1− β2 sin2 θ

and A(r, t) =
µ0

4π

qv

R
√

1− β2 sin2 θ
.

Of course, for low velocities, we recover the laws of Coulomb and Biot-Savart.
b. The potentials of a point charge passing through the origin at time t = 0 are,

Φ(r, t) =
1

4πε0

qc√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

, A(r, t) = ε0µ0vΦ(r, t) .

We calculate the time derivative of the scalar potential,

∂Φ

∂t
=

qc

4πε0

−1
2
√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)3

d

dt

[
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

]

=
qc3

4πε0

r · v − tv2
√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)3

,

and the divergence of the vector potential,

∇ ·A =
µ0qc

4π
v · ∇ 1√

(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)

= −µ0qc

4π
vx

−vx(c2t− r · v) + (c2 − v2)x
√
(c2t− xvx − yvy − zvz)2 + (c2 − v2)(x2 + y2 + z2 − c2t2)3

+ ...

= −µ0qc
3

4π

−v2t+ r · v
√
(c2t− r · v)2 + (c2 − v2)(r2 − c2t2)3

.
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17.3.8.13 Ex: Liénard-Wiechert potentials for a rotating charge

A particle of charge q moves circularly with constant angular velocity ω in the center
of the x-y-plane. At time t = 0 the charge is at the position (a, 0). Find the Liénard-
Wiechert potentials for the points of the z-axis.

Solution: We parametrize the position and the velocity of the motion by,

w(t) = aêx cosωt+ aêy sinωt and v(t) = ẇ = −aωêx sinωt+ aωêy cosωt .

For the observation point r = zêz the retarded time,

tr = t− |r−w(t)|
c

= t−
√
z2 + a2

c

is independent of the position of the charge. Thus, the potentials are,

Φ(r, t) =
1

4πε0

qc

Rc− R · v 0 =
1

4πε0

q√
z2 + a2

and A(r, t) =
v

c2
Φ(r, t) .

17.3.8.14 Ex: Point charge moving on a straight line

Assume that a point charge q is constrained to move along the x-axis. Calculate the
fields at points on the axis in front of and behind the charge.

Solution: The fields generated by a fast moving charge are given by,

E⃗(r, t) = q

4πε0

R

(r · u)3 [(c
2 − v2)u+ r× (u× a)] and B⃗(r, t) = 1

c
r× E⃗(r, t) .

The confinement of the charge on the x-axis results in,

w(tr) = w(tr)êx , v(tr) = v(tr)êx , a(tr) = a(tr)êx , u(tr) ≡ cêr−v = cêr−vêx .

The observer be also on the x-axis, r = rêx, in front of the charge,

R = r−w(tr) = (r − w)êx = Rêx with r > w .

With this, we deduce,

êr = êx , u(tr) = (c− v)êx , u× a = 0 .

Under these conditions, the fields simplify to,

E⃗(r, t) = q

4πε0

R

(r · u)3 (c
2−v2)u =

q

4πε0

c+ v

c− v
êx
R2

and B⃗(r, t) = 1

c
r×E⃗(r, t) = 0 .

When is the charge behind, r < w, we must replace v → −v in the equations.
Alternatively, we may use the Liénard-Wiechert potentials (17.122),

Φ =
1

4πε0

qc

Rc−R · v , A =
v

c2
Φ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert05.pdf
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For a motion on a straight line, r = rêx, v = vêx, R = Rêx, we simplify,

Φ =
1

4πε0

qc

R(c− v) , A =
1

4πε0

qvêx
cR(c− v) .

Using (17.136), we calculate the derivatives of R,

∇R = −c∇tr = −c
−R

cR−R · v =
c

c− v êx

∂R

∂t
=
∂(r − vtr)

∂t
= −v ∂tr

∂t
= −v ∂(t−

R
c )

∂t
= −v

(
1− ∂R

∂ct

)
=
−v

1− v
c

,

using R = r − vtr and tr = t− R
c . This yields the derivatives of the potentials,

∇Φ =
qc

4πε0(c− v)
∇ 1

R
=

qc

4πε0(c− v)
−1
R2
∇R =

−qc2
4πε0R2(c− v)2 êx ,

using,

∂A

∂t
=

1

4πε0

qvêx
c(c− v)

∂

∂t

1

R
=

1

4πε0

qvêx
c(c− v)

−1
R2

∂

∂t
R =

1

4πε0

qv2

R2(c− v)2 êx .

Finally,

E⃗ = −∇Φ− ∂A

∂t
=

q(c+ v)êx
4πε0R2(c− v) .

17.3.8.15 Ex: Charge on a hyperbolic motion

Determine the Liénard-Wiechert potentials for a charge on a hyperbolic motion,
i.e. w(t) = êx

√
b2 + c2t2.

Solution: The motion corresponds to a reflection of a charge coming from and going
back to +∞ with the velocity,

v(t) =
dw

dt
=

c2têx√
b2 + c2t2

.

We derive the retarded time from,

|r−w(tr)| = c(t− tr) .

We are only considering observation points on the axis r = xêx to the right side of
the charge, that is for x > w. Then,

x−
√
b2 + c2t2r = c(t− tr) ,

that is,

tr =
b2 − (x− ct)2
2c(x− ct) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert06.pdf
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Note that for t = 0 and when x → ∞ we have tr → ∞, which makes sense, since
further on the x-axis we place the observer, further we must go to the past to get a
signal of the charge. We can substitute this in the trajectory of the charge,

w(tr) = êx
√
b2 + c2t2r = êx

√
1

4

(x2 − 2xct+ c2t2 + b2)2

(ct− x)2 = ±êx
(x− ct)2 + b2

2(ct− x) .

To determine the correct signal, we consider the point t = 0, where w(tr) must be
positive. We see that we should choose the negative sign,

r = r−w(tr) = êx(x−
(x− ct)2 + b2

2(x− ct) ) =
êx
2

x2 − c2t2 − b2
x− ct .

The velocity at the retarded time is,

v(tr) =
c2trêx√
b2 + c2t2r

=
c2√

b2 + c2
(
b2−(x−ct)2
2c(x−ct)

)2

(
b2 − (x− ct)2
2c(x− ct)

)
êx = ±cb

2 − (x− ct)2
(x− ct)2 + b2

êx .

To determine the correct sign, we consider the point t = 0. For large x, the signal
from the charge comes at a distant past, while it was moving toward the origin. Then
we must have a negative velocity using the negative sign. Finally, we were able to
calculate the potential,

Φ(r, t) =
1

4πε0

qc

Rc− r · v =
1

4πε0

qc
c
2
x2−c2t2−b2

x−ct − x2−c2t2−b2
2(x−ct) c b

2−(x−ct)2
(x−ct)2+b2

=
q

4πε0

(x− ct)2 + b2

(x− ct)(x2 − c2t2 − b2) .

17.3.8.16 Ex: Actio=reactio with the Lorentz force

Suppose that two charges in uniform motion, the first one along the x-axis and the
second along the y-axis, are at the origin at time t = 0. Calculate the reciprocal
Coulomb-Lorentz forces.

Solution: The force exerted by a charge q in accelerated motion on another test
charge Q with instantaneous velocity V has been derived in (17.142) and in exam-
ple 92. If the source charge q is not accelerated, the expression simplifies to,

F(r, t) =
qQ

4πε0

(c2 − v2)R
(R · u)3

{
u+

V

c
× (êR × u)

}

=
qQ

4πε0

1− β2

d2
√
1− β2 sin2 θ

3

{
êd +

V

c
×
(v
c
× êd

)}
,

with the abbreviations u ≡ cêR − v, the distance between the position of the test
charge and the retarded position of the source charge, R ≡ r−w(tr), and the distance

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Maxwell_LienardWiechert07.pdf
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between the position of the test charge and the actual position of the source charge,
d ≡ r−w(t).
Now consider the following situation: The test charge Q, located at position r where
the fields and the Coulomb-Lorentz force have to be evaluated, moves along the x-axis,
such that r = V têx and V = V êx. The charge q producing the field moves uniformly
along the y-axis, such that a = 0 and v = vêy and w(t) = vtêy. Then,

d = V têx − vtêy and êd =
V têx − vtêy
|V têx − vtêy|

=
V êx − vêy√
V 2 + v2

.

With that, the force is,

F(x, t) =
qQ

4πε0

1− β2

d2
√
1− β2 sin2 θ

3

{
V êx − vêy√
V 2 + v2

+
V êx
c
×
(
vêy
c
× V êx − vêy√

V 2 + v2

)}

=
qQ

4πε0

1− β2

t2
√
1− β2 sin2 θ

3√
V 2 + v2

3

{
V êx − vêy +

vV 2

c2
êy

}
.

Assuming equal velocities, v = V ,

F(x, t) =
qQ

4πε0

1− β2

t2
√
1− β2 sin2 θ

3√
2
3
{êx − (1− β2)êy} .

Assuming low velocities,

F(x, t) =
qQ

4πε0

1

t2
√
V 2 + v2

3 {V êx − vêy} .

17.4 Further reading

J.D. Jackson, Classical Electrodynamics [659]ISBN

D.J. Griffiths, Introduction to Electrodynamics [545]ISBN

http://isbnsearch.org/isbn/978-0-471-30932-1
http://isbnsearch.org/isbn/978-1-108-42041-9


Chapter 18

Electromagnetic waves

The phenomenon of waves is usually introduced in undergraduate Physics courses.
We already discussed that, unlike classical longitudinal or transverse waves, electro-
magnetic waves do not require a propagation medium, but move through the vacuum
with the speed of light. And we showed that the wave equation is form-invariant to
the Lorentz, but not to the Galilei transform 1.

The electromagnetic waves are generated when charges change their positions.
Therefore, the theory of electromagnetic waves is also a consequence of electrodynamic
theory, which is summarized in theMaxwell equations. In this chapter we will consider
these equations as given and deduce from them the properties of electromagnetic
waves.

18.1 Wave propagation

By wave we mean the propagation of a perturbation f(r, t), which can be a scalar or
vector quantity. When it propagates in one dimension, the wave is described by the
wave equation,

∂2f

∂z2
=

1

v2
∂2f

∂t2
, (18.1)

where v is the propagation velocity of the wave. The most common waveform is the
sine wave,

f(z, t) = A cos(kz − ωt+ δ) = Re [Ãeı(kz−ωt)] = Re f̃(z, t) , (18.2)

in complex notation (often ornamented by a tilde) introducing the complex amplitude
Ã ≡ Aeıδ. The wave equation satisfies the superposition principle allowing for the
expansion of any wave type according to,

f̃(z, t) =

∫ ∞

−∞
Ã(k)eı(kz−ωt)dk . (18.3)

We will show in Exc. 18.1.8.1, that all functions satisfying f(z, t) = g(z ± vt) auto-
matically obey the wave equation. The most general solution of the wave equation is
given by,

f(z, t) = g1(z − vt) + g2(z + vt) . (18.4)

We show this in the following example directly generalizing to three dimensions.

1See script on Vibrations and waves (2020), Sec. 2.2.3.
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900 CHAPTER 18. ELECTROMAGNETIC WAVES

Example 93 (General solution of the wave equation): The three-dimensional
wave equation is,

1

c2
∂2f

∂t2
−∇2f = 0 .

Using for the Dirac function the representation, δ(3)(r−r′) = 1
(2π)3

∫
d3keık·(r−r′),

we can write,

f(r, t) =

∫
V∞

d3r′δ(3)(r− r′)f(r′, t)

=

∫
d3keık·r

∫
V∞

d3r′ e
−ık·r′

(2π)3
f(r′, t) =

∫
d3keık·rA(k, t) ,

where A(k, t) ≡
∫
V∞

d3r′ 1
(2π)3

e−ık·r
′
f(r′, t) is the Fourier transform of f . Ap-

plying the operator ∇2 − 1
c2

∂2

∂t2
to the expression for f gives,

0 =
1

c2
∂2f

∂t2
−∇2f =

1

c2

∫
d3keık·r

∂2A(k, t)

∂t2
−
∫
d3kA(k, t)∇2eık·r

=

∫
d3keık·r

[
1

c2
∂2A(k, t)

∂t2
+ k2A(k, t)

]
.

Hence,
1

c2
∂2A(k, t)

∂t2
+ k2A(k, t) = 0 .

The general solution of this equation can be written as,

A(k, t) = a(k)eıkct + b(k)e−ıkct ,

where a(k) and b(k) are arbitrary functions of k. Thus, the general solution for
f is given by,

f(r, t) =

∫
a(k)eık·r+ıkctd3k +

∫
b(k)eık·r−ıkctd3k .

Since f is a real quantity, f(r, t)∗ = f(r, t), we must have,

a(−k)∗ = b(k) ,

and,

f(r, t) = Re

[∫
2b(k)eık·r−ıkctd3k

]
.

The scalar functions eık·r−ıkct satisfy the wave equation for all k.

Waves of vector quantities must be characterized by a polarization vector ϵ̂ ≡ b/b.
Therefore, we define,

E⃗ = Re ⃗̃E with ⃗̃E(r, t) = ϵ̂E0eık·r−ıkct , (18.5)

where E0 is real and ω ≡ kc, as the vector functions forming the functional basis for
the fields. These functions represent plane waves, because on a wavefront, the value

of ⃗̃E(r, t) is fixed, and this occurs only when eık·r−ıkct is constant 2.

2We shall see later that, when a wave passes through zones with different propagation velocities
v, the amplitude A and the polarization ϵ̂ may change. However, any change must be such that
F̃(z0, t) and the derivative F̃′(z0, t) are continuous at the transition point z0.
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To calculate the magnetic field from the complex representation of the electric
field, we write first,

B⃗ = Re ⃗̃B with ⃗̃B(r, t) = ϵ̂′B0eık
′·r−ık′ct , (18.6)

where ⃗̃B is the magnetic plane wave, since both ⃗̃E as well as ⃗̃B satisfy the same wave
equation. With Maxwell’s equations in the absence of sources, it is obvious that,

k = k′ , (18.7)

because the equations that couple ⃗̃E and ⃗̃B must be satisfied at every point of space
and at every instant of time.

18.1.1 Helmholtz’s equation

Electromagnetic waves differ from classical longitudinal or transverse waves in several
aspects. For example, they do not require a propagation medium, but move through
the vacuum at extremely high speed. Being exactly c = 299792458 m/s the speed of
light is so high, that the laws of classical mechanics are no longer valid. And because
there is no propagation medium, in vacuum all inertial systems are equivalent, and
this will have important consequences for the Doppler effect. We will show that the
electromagnetic wave equation almost comes out as a corollary of the theory of special
relativity.

We have shown in Sec. 5.1 how the periodic conversion between kinetic and po-
tential energy in a pendulum can propagate in space, when the pendulum is coupled
to other pendulums hung in an array, and that this model explains the propagation
of a pulse along a string. We also discussed, how electric and magnetic energy can be
interconverted in an electronic L-C circuit constiting of a capacitor (storing electrical
energy) and an inductance (a coil storing magnetic energy). The law of electrodynam-
ics describing the transformation of electric field variations into magnetic energy is
Ampère’s law, and the law describing the transformation of magnetic field variations
into electric energy is Faraday’s law,

∂E⃗
∂t

↷ B⃗(t) ,
∂B⃗
∂t

↷ −E⃗(t) . (18.8)

Extending the L-C circuit to an array, it is possible to show that the electromagnetic
oscillation propagates along the array. This model describes well the propagation of
electromagnetic energy along a coaxial cable or the propagation of light in free space.

The electrical energy stored in the capacitor and the magnetic energy stored in
the coil are given by,

Eele =
ε0
2 |E⃗ |2 , Emag =

1
2µ0
|B⃗|2 , (18.9)

where the constants ε0 = 8.854 · 10−12 As/Vm and µ0 = 4π · 10−7 Vs/Am are called
vacuum permittivity and vacuum permeability. The constant Z0 ≡

√
µ0/ε0 is called

vacuum impedance.
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Figure 18.1: Analogy between propagation of mechanical waves (above) and electromagnetic
waves (below).

From Maxwell’s equations in free space,

∇× B⃗ − ε0µ0∂tE⃗ = 0 and ∇× E⃗ + ∂tB⃗ = 0 , (18.10)

deriving the first and inserting this into the second, and using the fact that the
divergences vanish,

1

c2
∂2E⃗
∂t2

=
1

ε0µ0c2
∂

∂t
∇× B⃗ = −∇× (∇× E⃗) = −∇(∇ · E⃗) +∇2E⃗ = ∇2E⃗ (18.11)

1

c2
∂2B⃗
∂t2

= − 1

c2
∂

∂t
∇× E⃗ = − 1

ε0µ0c2
∇× (∇× B⃗) = −∇(∇ · B⃗) +∇2B⃗ = ∇2B⃗ .

These are the homogeneous Helmholtz equations. We will check in Exc. 18.1.8.2, that

• electromagnetic waves (in free space) are transverse;

• the amplitude of the electric field, the magnetic field, and the direction of prop-
agation are orthogonal;

• the propagation velocity is the speed of light, because c2 = 1/ε0µ0.

18.1.2 The polarization of light

A consequence of the requirement, ∇ · E⃗ = 0 = ∇ · B⃗, following from Maxwell’s
equations in vacuum is, that the electromagnetic waves are transverse with orthogonal
electric and magnetic fields. This is easy to see in the case of plane wave:

0 = ∇ · E⃗ = E⃗0 · ∇eı(k·r−ωt) = ıE⃗0 · keı(k·r−ωt) , (18.12)

and analogously for B⃗. We conclude,

k · E⃗ = 0 = k · B⃗ . (18.13)

In addition, from Faraday’s law,

B⃗0 ıωeı(k·r−ωt) = −
∂B⃗
∂t

= ∇× E⃗ = −E⃗0 ×∇eı(k·r−ωt) = −E⃗0 × ıkeı(k·r−ωt) . (18.14)

together with an analogous result obtained from Ampère-Maxwell’s law, we can sum-
marize,

B⃗ = k
ω × E⃗ and E⃗ = − c2kω × B⃗ . (18.15)
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We conclude that the fields E⃗ and B⃗ and the propagation wavevector are all mutually
orthogonal for waves in free space. In the Excs. 18.1.8.3 and 18.1.8.4 we study the
polarization of light.

Example 94 (Circular polarization): Let us study the example of polarized
light,

⃗̃E = (Exêx + ıEyêy)eıkzz−ıωt .
If Ex = Ey, we have circular polarization. If Ex ̸= Ey, the polarization is said to
be elliptical. The reason is easily seen by taking the real part of the plane wave:

E⃗ = Re ⃗̃E = Exêx cos(kzz − ωt)− Eyêy sin(kzz − ωt) .

In the plane defined by z = z0, with z0 constant, the electric field vector describes
an ellipse as time passes; the ellipse is a circle if Ex = Ey.
Other polarizations are possible in free space although sometimes a bit more
difficult to realize in practice, for example, radial polarization,

⃗̃E = E0êreıkzz−ıωt and ⃗̃B = B0êθe
ıkzz−ıωt .

18.1.2.1 Polarization optics

A laser generally has a well-defined polarization, for example, linear or circular. The
polarizations can be transformed into each other through birefringent optical elements,
such as birefringent waveplates, Fresnel rhombs, or electro-optical modulators. Su-
perpositions of different polarizations can be separated with polarizing beam splitters.

It is important to distinguish between the polarization, which is always specified
in relation to a fixed coordinate system, and helicity, i.e. the rotation direction of the
polarization vector with respect to the propagation direction of the light beam. The
polarization of a beam propagating in z-direction can easily be expressed by a vector
of complex amplitude,

E⃗(r, t) =




a

b

0


 eık·r−ıωt =




1

e−ıϕ|b|/|a|
0


 |a|e

ık·r−ıωt . (18.16)

The angle ϕ = arctan Im ab∗

Re ab∗ determines the polarization of the light beam. The
polarization is linear for ϕ = 0 and circular for ϕ = π/2. |b|/|a| then gives the
degree of ellipticity. A device rotating the (linear) polarization of a light beam (e.g. a
sugar solution) is described by the so-called Jones matrix (we restrict ourselves to the
xy-plane orthogonal to the propagation direction),

Mrotator(ϕ) =


 cosϕ sinϕ

− sinϕ cosϕ


 , (18.17)

where ϕ is the angle of rotation. For birefringent half-waveplates the rotation angle
is independent on the propagation direction. In devices called Faraday rotators, in
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contrast, the sign of the rotation angle depends on the propagation direction of the
laser beam,

MFaraday(ϕ) =


 cosϕ k · êz sinϕ
−k · êz sinϕ cosϕ


 , (18.18)

A polarizer projects the polarization to a specific axis. In case of a polarizer aligned
to the x-axis the Jones matrix is,

Mpolarizer =


1 0

0 0


 , (18.19)

while for an arbitrary axis given by the angle ϕ, it is,

Mpolarizer(ϕ) =


 cosϕ sinϕ

− sinϕ cosϕ




1 0

0 0




 cosϕ sinϕ

− sinϕ cosϕ



−1

. (18.20)

A birefringent crystal acts only on one of the two optical axes. Assuming that only
the y-axis is optically active, its Jones’s matrix is,

Mθ-waveplate =


1 0

0 eıθ


 . (18.21)

For θ = 2π/n we obtain a so-called λ/n-waveplate. When we rotate the waveplate
(and therefore the optically active about the inactive axis) by an angle ϕ, the Jones
matrix becomes 3,

Mθ-waveplate(ϕ) =


 cosϕ sinϕ

− sinϕ cosϕ




1 0

0 eıθ




 cosϕ sinϕ

− sinϕ cosϕ



−1

(18.22)

=


 cos2 ϕ+ eıθ sin2 ϕ − sinϕ cosϕ+ eıθ sinϕ cosϕ

− sinϕ cosϕ+ eıθ sinϕ cosϕ sin2 ϕ+ eıθ cos2 ϕ


 .

We use in most cases λ/4-waveplates,

Mλ/4(ϕ) =


 cos2 ϕ+ ı sin2 ϕ (−1 + ı) sinϕ cosϕ

(−1 + ı) sinϕ cosϕ sin2 ϕ+ ı cos2 ϕ


 (18.23)

or λ/2-waveplates,

Mλ/2(ϕ) =


 cos 2ϕ − sin 2ϕ

− sin 2ϕ − cos 2ϕ


 . (18.24)

Note that interestingly Mλ/2(ϕ)
2 = I.

3See script on Optical spectroscopy (2020), Sec. 2.3.1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumOpticsLab.pdf
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Example 95 (Generating circular polarization): We can use λ/4-waveplates
to create, from linearly polarized light, circularly polarized light. Choosing an
angle θ = 45◦ we get from (18.23),

Mλ/4(±π/4)

1

0

 =

 1
2
+ 1

2
ı ∓ 1

2
± 1

2
ı

∓ 1
2
± 1

2
ı 1

2
+ 1

2
ı

1

0

 =
eıπ/4√

2

 1

±ı

 .

Example 96 (Polarization behavior of upon reflection from a mirror): A

light beam reflected from a mirror under normal incidence does not changes

its polarization vector, but only its wavevector. This can be interpreted as

conservation of the angular momentum of light upon reflection. One consequence

of this is, that σ± light turns into σ± light upon reflection.

Example 97 (Action of birefringent waveplates as a function of prop-
agation direction): The Jones matrices for λ/n-waveplates do not depend on
the propagation direction, simply because the wavevector does not appear in
the expressions. That is, the polarization ϵ̂ = êx of a beam propagating to-
wards ±kêz is transformed by a Mλ/4(π/4) waveplate into σ+-polarized light
regardless of the propagation direction. A consequence of this is that a beam
traversing the waveplate Mλ/4(π/4) twice in the round-trip (e.g. being reflected
by a mirror) will undergo a rotation of amplitude by 90◦,

Mλ/4(
π
2
)

1

0

 =

ı
0


Mλ/4(

π
4
)Mλ/4(

π
4
) =

 0 −1
−1 0

 .

This feature is often used to separate counterpropagating light fields via a po-
larizing beamsplitter.
On the other hand, for λ/2-waveplates, it is easy to check the following results,

Mλ/2(
π
4
)

1

0

 =

 0

−1


Mλ/2(

π
8
)

1

0

 = 1√
2

 1

−1

 .

In addition, for any ϕ,

Mλ/2(ϕ)Mλ/2(ϕ) =

1 0

0 1

 .

Thus, the double passage through a λ/2-waveplate cancels its effect.
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18.1.3 The energy density and flow in plane waves

The energy densities stored in the electric field and the magnetic field are given by,

uele =
ε0
2 |E⃗ |2 , umag =

1
2µ0
|B⃗|2 . (18.25)

In the case of a monochromatic wave parametrized by E⃗(r, t) = E⃗0 cos(k · r− ωt) the
calculus (18.15) shows that |B⃗| = k

ω |E⃗ | = 1
c |E⃗ |, such that the average energy density

is,

⟨u(r)⟩ =
〈
|ε0E⃗0 cos(k · r− ωt)|2

〉
= 1

2ε0|E⃗0|2 = 1
2µ0
|B⃗0|2 , (18.26)

consistent with the expressions (17.58). When the wave propagates, it carries with it
this amount of energy. The energy flux density is calculated by the Poynting vector,

⟨S⃗(r)⟩ = 1
µ0

〈
E⃗(r, t)× B⃗(r, t)

〉
= 1

2cε0|E⃗0|2êk . (18.27)

The absolute value is the intensity of the light field,

⟨I(r, t)⟩ = ⟨|S⃗(r, t)|⟩ . (18.28)

In addition, a radiation field can have linear momentum. In vacuum, the momentum
is connected to the Poynting vector,

⟨℘⟩ =
〈
cε0|E⃗(r, t)|2êk

〉
= cε0|E⃗0|2êk . (18.29)

but in dielectric media things are different, as we will see later. Themomentum density
is responsible for the radiation pressure. When light hits the surface A of a perfect
absorber, it transfers, during the time interval ∆t, the momentum ∆p = ⟨℘⟩Ac∆t to
the body. Thus, the pressure is,

P =
1

A

∆p

∆t
=
ε0E20
2

=
I

c
. (18.30)

Note that for a perfect reflector the pressure is doubled.
In Exc. 18.1.8.5 we show a trick how to quickly calculate the temporal average

of expressions containing products of oscillating field. We solve problems about the
radiative pressure in Excs. 18.1.8.6 to 18.1.8.8. In the Excs. 18.1.8.10 to 18.1.8.12 we
calculate u and S⃗ for various types of waves.

18.1.3.1 Spherical waves

Other wave geometries are possible (see Exc. 18.1.8.13). For example, it is easy to

show that spherical scalar fields of the type Φ(r, t) = Φ0
eı(kr−ωt)

r and spherical vector

fields of the type A(r, t) = A0
eı(kr−ωt)

r satisfy the wave equation,

0 = ∇2Φ− 1

c2
∂2Φ

∂t2
(18.31)

=
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

) 0

+
1

r2 sin2 θ

∂2Φ

∂ϕ2

0

− 1

c2
∂2Φ

∂t2

= −k2Φ+
ω2

c2
Φ .
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This also applies to electric and magnetic fields,

E⃗(r, t) ?
= E⃗0

eı(kr−ωt)

r
and B⃗(r, t) ?

= B⃗0
eı(kr−ωt)

r
. (18.32)

But it does not mean that these fields obey Maxwell’s equations. In fact, the simplest
possible spherical wave corresponds a the dipole radiation, which will be discussed
in the next chapter. We will find in Exc. 19.1.6.3 that the expressions for electric
dipole radiation satisfy Maxwell’s equations and in Exc. 18.1.8.14, that the expressions
(18.32) do not satisfy them. In Excs. 18.1.8.15 and 18.1.8.16 we will deepen this
discussion.

18.1.4 Slowly varying envelope approximation

The slowly varying envelope approximation [42] (SVEA) is the assumption that the
envelope of a forward-traveling wave pulse varies slowly in time and space compared
to a period or wavelength. This requires the spectrum of the signal to be narrow-
banded. The SVEA is often used because the resulting equations are in many cases
easier to solve than the original equations, reducing the order of all (or some) of the
highest-order partial derivatives. But the validity of the assumptions which are made
need to be justified.

For example, consider the electromagnetic wave equation:

∇2E − µ0ε0
∂2E
∂t2

= 0 . (18.33)

If k0 and ω0 are the wave number and angular frequency of the (characteristic) carrier
wave for the signal E(r, t), the following representation is useful:

E(r, t) = Re [E0(r, t)eı(k0·r−ω0t)] . (18.34)

In the SVEA it is assumed that the complex amplitude E0(r, t) only varies slowly with
r and t. This inherently implies that E0(r, t) represents waves propagating forward,
predominantly in the k0 direction. As a result of the slow variation of E0(r, t), when
taking derivatives, the highest-order derivatives may be neglected [220]:

|∇2E0| ≪ |k0 · ∇E0| and

∣∣∣∣
∂2E0
∂t2

∣∣∣∣≪
∣∣∣∣ω0

∂E0
∂t

∣∣∣∣ . (18.35)

Consequently, the wave equation is approximated in the SVEA as,

2ık0 · ∇E0 + 2ıω0µ0ε0
∂E0
∂t
− (k20 − ω2

0µ0ε0)E0 = 0 . (18.36)

It is convenient to choose k0 and ω0 such that they satisfy the dispersion relation,
k20 − ω2

0µ0ε0 = 0. This gives the following approximation to the wave equation,

k0 · ∇E0 + ω0µ0ε0
∂E0
∂t

= 0 . (18.37)

This is a hyperbolic partial differential equation, like the original wave equation, but
now of first-order instead of second-order. It is valid for coherent forward-propagating



908 CHAPTER 18. ELECTROMAGNETIC WAVES

waves in directions near the k0-direction. The space and time scales over which E0
varies are generally much longer than the spatial wavelength and temporal period of
the carrier wave. A numerical solution of the envelope equation thus can use much
larger space and time steps, resulting in significantly less computational effort.

Example 98 (Parabolic SVEA approximation): Assuming that the wave
propagation is dominantly in z-direction, and k0 is taken in this direction. The
SVEA is only applied to the second-order spatial derivatives in the z-direction
and time. If ∇⊥ = êx∂/∂x+ êy∂/∂y is the gradient in the x-y plane, the result
is [1281],

k0
∂E0
∂z

+ ω0µ0ε0
∂E0
∂t
− 1

2
ı∇2
⊥E0 = 0 .

This is a parabolic partial differential equation. This equation has enhanced

validity as compared to the full SVEA: it represents waves propagating in direc-

tions significantly different from the z-direction. It is the starting point of the

theory of Gaussian beams, which will be studied in Sec. 18.4.1.

18.1.5 Plane waves in linear dielectrics and the refractive in-
dex

In dielectric (non-conducting) media we have ϱ = 0 and j = 0 but
˙⃗E , ˙⃗B ≠ 0. If the

medium is linear and homogeneous, the permittivity ε and the permeability µ are
constant, and we can substitute D⃗ = εE⃗ and H⃗ = µ−1B⃗. Thus, Maxwell’s equations
(17.56) become equal to those holding for vacuum (17.6) but with the generalizations
ε0 → ε and µ0 → µ. Therefore, the wave equations remain valid,

(
1

c2n

∂2

∂t2
−∇2

)
E⃗ = 0 =

(
1

c2n

∂2

∂t2
−∇2

)
B⃗ , (18.38)

with the propagation velocity now reading,

cn =
1√
εµ

=
c

n
, (18.39)

where we defined the index of refraction,

n ≡
√

εµ

ε0µ0
. (18.40)

In dielectric media, we must use the original definitions for the energy and momen-
tum densities and flows (17.58). The polarization and magnetization of the medium
may cause new phenomena. For example, in anisotropic optical media the Poynting
vector is not necessarily parallel to the wave vector. Resolve the Excs. 18.1.8.17 to
18.1.8.22.

18.1.6 Reflection and transmission by interfaces and Fresnel’s
formulas

So far we have considered homogenous media. An interesting question is, what hap-
pens when a field traverses regions characterized by different ε and µ. The boundary
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conditions can be discussed from the integral form of the Maxwell equations, which
follow immediately from the differential form via the theorems of Gauss and Stokes:

(i)
∮
∂S H⃗ · dl = d

dt

∫
S D⃗ · dS+ Ienc

(ii)
∮
∂S E⃗ · dl = − d

dt

∫
S B⃗ · dS

(iii)
∮
∂V D⃗ · dS = Qenc

(iv)
∮
∂V B⃗ · dS = 0

. (18.41)

Let us consider two media with different permittivities ε1,2 and permeabilities µ1,2

joined together at an interface. The closed path ∂S around a surface S and the closed
surface ∂V around a volume V are chosen such as to cross the interface, as illustrated
in Figs. 13.12 and 15.17. The surface integrals in equations (i) and (ii) vanish in the
limit, where we choose the path ∂S very close to the interface.

From these equations, and as already shown in the derivations of the static equa-
tions (13.37), (13.39), (15.30), and (15.32), we have for linear media and in the absence
of free surface charges σf and free surface currents kf ,

(i) 1
µ1
B⃗∥1 − 1

µ2
B⃗∥2 = |kf × ên| −→ 0

(ii) E⃗∥1 − E⃗
∥
2 = 0

(iii) ε1E⃗⊥1 − ε2E⃗⊥2 = σf −→ 0

(iv) B⃗⊥1 − B⃗⊥2 = 0

. (18.42)

We will use these equations to establish the theory of reflection and refraction.

18.1.6.1 Normal incidence

Electromagnetic waves can be guided by interfaces (waveguides). From Maxwell’s
equations we can deduce useful rules for the behavior of waves near interfaces. First,
we consider a plane wave propagating in the direction z within a dielectric medium
characterized by the refraction index n1,

E⃗i(z, t) = êxEieı(kz1z−ωt) , B⃗i(z, t) = êy
n1Ei
c
eı(kz1z−ωt) . (18.43)

At position z = 0 there be a partially reflecting interface, as shown in Fig. 18.2(a).
The reflected part is,

E⃗r(z, t) = êxEreı(−kz1z−ωt) , B⃗r(z, t) = −êy
n1Er
c

eı(−kz1z−ωt) . (18.44)

The negative sign comes from the relation B⃗(r, t) = 1
ck × E⃗(r, t). The transmitted

part is,

E⃗t(z, t) = êxEteı(kz2z−ωt) , B⃗r(z, t) = êy
n2Et
c
eı(kz2z−ωt) . (18.45)
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Figure 18.2: Electric and magnetic fields reflected and transmitted at an interface under (a)
normal and (b) inclined incidence.

At the position z = 0 the total radiation must satisfy the boundary conditions.
Since under normal incidence, there are only parallel components,

E⃗i(0, t) + E⃗r(0, t) = E⃗t(0, t) , 1
µ1
[B⃗i(0, t) + B⃗r(0, t)] = 1

µ2
B⃗t(0, t) . (18.46)

Dividing all terms by e−ıωt,

Ei + Er = Et , n1

µ1c
[Ei − Er] = n2

µ2c
Et . (18.47)

Solving the system of equations,

Er
Ei

=
1− β
1 + β

,
Et
Ei

=
2

1 + β
, (18.48)

defining

β ≡ µ1n2
µ2n1

. (18.49)

Example 99 (Reflection on an air-glass interface): We consider an air-
glass interface, n1 = 1 and n2 = 1.5. Taking µ1 = µ2 = µ0 we have β = 1.5,
and we calculate that the interface reflects the energy,

R ≡ Ir
Ii

=
ε1c1|E⃗r|2
ε1c1|E⃗i|2

=

(
1− β
1 + β

)2

= 0.04 ,

and transmits the energy,

T ≡ It
Ii

=
ε2c2|E⃗t|2
ε1c1|E⃗i|2

=
ε2c2
ε1c1

(
2

1 + β

)2

= 0.96 .

We check R+ T = 1.

18.1.6.2 Inclined incidence and geometric optics

When the wave strikes perpendicular to the interface, the polarization of the light is
irrelevant. This is no longer true for inclined incidence, as shown in Fig. 18.2(b). In
this case the Eqs. (18.43)-(18.45) must be generalized,

E⃗m(r, t) = E⃗0meı(km·r−ωt) , B⃗m(r, t) =
nm
c

k̂m × E⃗m(r, t) , (18.50)
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form = i, r, t. Obviously the frequency is the same for all waves, such that by inserting
each wave into the wave equation we find,

kici = krcr = ktct = ω , (18.51)

with cm ≡ c/nm and ci = cr ≡ c1 and ct ≡ c2. We now need to join the fields E⃗i + E⃗r
and B⃗i+B⃗r of one side of the interface with the fields E⃗t and B⃗t of the other side at the
plane z = 0, respecting the boundary conditions (18.42). We get generic expressions,

(·)eı(ki·r−ωt) + (·)eı(kr·r−ωt) = (·)eı(kt·r−ωt) at z = 0 (18.52)

at all times t, where (·) ≡ εmE⃗⊥m, E⃗∥m, B⃗⊥m, 1
µm
B⃗∥m. Since the equation (18.52) must be

valid at any point (x, y) of the plane z = 0, the exponential factors must be equal,

eıki·r = eıkr·r = eıkt·r , (18.53)

that is,

ki · êx = kr · êx = kt · êx and ki · êy = kr · êy = kt · êy , (18.54)

that is, the wavevectors ki, kr, kt and the normal vector êz of the interface are in the
same plane. We can orient the coordinate system such that ki · êy ≡ 0 (see Fig. 18.2).
Defining the angles of incidence, reflection and refraction, we find,

km · êx = ki sin θi = kr sin θr = kt sin θt . (18.55)

With (18.51) we deduce the law of reflection:

θi = θr , (18.56)

and the law of refraction or Snell’s law:

sin θt
sin θi

=
n1
n2

. (18.57)

The equations (18.54), (18.56), and (18.57) form the basis of geometric optics.

18.1.6.3 Polarization behavior and Fresnel’s formulas

Going back to the condition (18.52) and eliminating the exponentials, we get,

for B⃗∥m : 1
µ1
B⃗i · êx,y + 1

µ1
B⃗r · êx,y = 1

µ2
B⃗t · êx,y

for E⃗∥m : E⃗i · êx,y + E⃗r · êx,y = E⃗t · êx,y
for E⃗⊥m : ε1E⃗i · êz + ε1E⃗r · êz = ε2E⃗t · êz
for B⃗⊥m : B⃗i · êz + B⃗r · êz = B⃗t · êz .

(18.58)

We again orient the coordinate system such that ki · êy ≡ 0. We first assume,
that the polarization of the incident field is within the plane of incidence (that is, the
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plane spanned by the vectors ki and kr), that is, E⃗i · êy = 0 = B⃗i · êx. This is called
p-polarization. In this case, the conditions (18.58) become,

1
µ1
B⃗i · êy + 1

µ1
B⃗r · êy = 1

µ1
Bi + 1

µ1
Br = 1

µ1c1
(Ei − Er) !

= 1
µ2c2
Et = 1

µ2
Bt = 1

µ2
B⃗t · êy

E⃗i · êx + E⃗r · êx = Ei cos θi + Er cos θr = (Ei + Er) cos θr !
= Et cos θt = E⃗t · êx

ε1Ei sin θi + ε1Er sin θr = ε1(Ei − Er) sin θi !
= ε2Et sin θt

0
!
= 0 . (18.59)

Using the abbreviation (18.49) and introducing another abbreviation,

α ≡ cos θt
cos θi

=

√
1− (n1/n2)2 sin

2 θi

cos θi
, (18.60)

and solving the system of equations (18.59), we find Fresnel’s formula for p-polarization 4,

rp ≡
Er
Ei

∣∣∣∣
p

=
α− β
α+ β

=
n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

and tp ≡
Et
Ei

∣∣∣∣
p

=
2

α+ β
. (18.61)

We now assume that the polarization of the incident field is perpendicular to the
plane of incidence, E⃗i · êx = 0 = B⃗i · êy. This is called s-polarization. In this case the
equations (18.58) yield,

1
µ1
B⃗i · êx + 1

µ1
B⃗r · êx = 1

µ1c1
(Ei cos θi − Er cos θr) !

= 1
µ2c2
Et cos θt = 1

µ2
B⃗t · êx

E⃗i · êy + E⃗r · êy = Ei + Er !
= Et = E⃗t · êy

0
!
= 0 (18.62)

Bi sin θi + Br sin θr = 1
c1
(Ei − Er) sin θi !

= 1
c2
Et sin θt = Bt sin θt .

Similar to the case of p-polarization we obtain the Fresnel formulas for s-polarization,

rs ≡
Er
Ei

∣∣∣∣
s

= −1− αβ
1 + αβ

= −n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

and ts ≡
Et
Ei

∣∣∣∣
s

=

√
αβ

1 + αβ
.

(18.63)
See also Exc. 18.1.8.23.

The power flux density incident on the interface is the projection of the intensity,
S⃗ · êz. Therefore the intensities are,

Im = 1
2ε1cmE2m cos θm , (18.64)

4Using Snell’s law (18.57) the Fresnel formulas can also be written as,

r2p =
tan2(θi − θt)

tan2(θiθt)
and r2s =

sin2(θi − θt)

sin2(θi + θt)

t2p =
sin 2θi sin 2θt

sin2(θi + θt) cos2(θi − θt)
and t2s =

sin 2θi sin 2θt

sin2(θi + θt)
.
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with m = i, r, t. Thus the reflection and the transmission are for p-polarization,

Rp =

(Er
Ei

)2

p

=

(
α− β
α+ β

)2

and Tp =
ε2c2
ε1c1

cos θt
cos θi

(Et
Ei

)2

p

= αβ

(
2

α+ β

)2

= 1−Rp .

(18.65)
For s-polarization we have,

Rs =

(Er
Ei

)2

s

=

(
1− αβ
1 + αβ

)2

and Ts =
ε2c2
ε1c1

cos θt
cos θi

(Et
Ei

)2

s

= αβ

(
2

1 + αβ

)2

= 1−Rs .
(18.66)

18.1.6.4 The Brewster angle

For an angle of incidence of θi = 0◦ (α = 1) we recover the expressions (18.48).
For θi = 90◦ (α → ∞), all light is reflected. Looking at the formula (18.61) it is
interesting to note the existence of an angle, where the reflection vanishes for the case
of the s-polarization. It is given by α = β, that is,

sin2 θi,B ≡ sin2 θi =
1− β2

(n1/n2)2 − β2
. (18.67)

θB is the Brewster angle. When µ1 ≃ µ2 we can simplify to,

θi,B = arcsin
1− β2

(n1/n2)2 − β2
≃ arctan

n2
n1

. (18.68)

That is, a p-polarized beam of light traveling in a vacuum and encountering a dielectric
with refractive index n2 = 1.5 under the angle of θi,B ≈ 56.3◦ is fully transmitted.
This is seen in Fig. 18.3(right), where the reflected intensity Ir/I0 of p-polarized light
vanishes at a specific angle, and illustrated in Fig. 18.4(a).

18.1.6.5 Internal total reflection and the Goos-Hänchen shift

We now consider a light beam traveling in a dielectric with refractive index n1 and
encountering an interface to an optically less dense medium, n2 < n1, as illustrated

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_FresnelFormulae.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_FresnelFormulae.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_FresnelFormulae.m
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in Fig. 18.4(b). Increasing the angle of incidence θi, according to Snell’s law (18.57)
we will come to a point, where the outgoing angle reaches θt = 90◦. Snell’s law gives
the critical angle for this to happen,

θi,tot = arcsin
n2
n1

. (18.69)

For an index of refraction n1 = 1.5 this angle is θi,tot ≈ 41.8◦. Above this angle,
θi > θi,tot, all energy is reflected by the optically denser medium. This phenomenon
of total internal reflection is used e.g. to guide light in optical fibers. Nevertheless, the
fields do not completely disappear in the medium 2 but form, a so-called evanescent
wave, which is exponentially attenuated and does not carry energy into the medium
2. A quick way to construct the evanescent wave consists in simply extending to the
complex domain the formulas obtained for inclined incidence of light on interfaces.
For θi > θi,tot,

sin θt =
n1
n2

sin θi >
n1
n2

sin θi,tot = sin θt,tot = 1 , (18.70)

Obviously θt can no longer be interpreted as an angle! We will show in Exc. 18.1.8.24
that, for the geometry illustrated in Fig. 18.4(b), the electric field generated in region
2 is given by,

⃗̃Et(r, t) = ⃗̃E0e−κzeı(kx−ωt) , (18.71)

where

κ ≡ ω
c

√
(n1 sin θi)2 − n22 and k ≡ ωn1

c sin θi . (18.72)

(18.71) is a wave propagating in x-direction, parallel to the interface, and being

Figure 18.4: (a) Illustration of the effect of the Brewster angle on the polarization of light.
(b) Illustration of the Goos-Hänchen shift.

attenuated in z-direction. The penetration depth of is κ−1. Also in Exc. 18.1.8.24
we will show that for both polarizations p and s the reflection coefficient is 1, which
confirms that there is no energy transported into the medium 2.

Example 100 (The Goos-Hänchen shift): The fact that the light wave

penetrates region 2 up to a depth of κ−1 causes a transverse displacement of

the wave known as Goos-Hänchen shift named after Gustav Goos and Hilda

Hänchen. From Fig. 18.4 it is easy to verify that this displacement is of the

order of magnitude D ≃ 2
κ
sin θi. It can be measured taking a beam of light

with finite radial extent.
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18.1.7 Transfer matrix formalism

For a propagating wave the amplitude of the field at a point z = 0 can be related to
another point z via E⃗z =M E⃗0, whereM is a phase factor of the type eıkz. A counter-
propagating wave (e.g. generated by partial reflection at an interface) suffers, over the
same distance, a phase shift of e−ıkz. Since both waves interfere, it is useful to set up
a model describing in a compact manner the amplitude and phase variations of the
two counterpropagating waves along the optical axis. The transfer matrix formalism
represents such a model.

Figure 18.5: Illustration of the transfer matrix formalism.

18.1.7.1 The T -matrix

Let us consider a beam of light propagating along the z-axis toward +∞ through an
inhomogeneous dielectric medium described by the refractive index n(z). Each inter-
face where the refractive index varies causes a partial reflection of the beam into the
opposite direction. The fields reflected at different positions z interfere constructively
or destructively depending on the accumulated phase. To address the problem math-
ematically, we divide the medium into layers treated as homogeneous and delimited
by interfaces located at positions z, as shown in Fig. 18.5. We define the complex
transfer matrix T12 describing the transition between from medium 1 to medium 2
by, 

E
+
2

E−2


 = T12


E

+
1

E−1


 . (18.73)

Here, the fields E± propagate toward ±∞. That is, the fields E+1 and E−2 move toward
the interface and the fields E−1 and E+2 move away from the interface. In (18.48) we
showed that the reflectivity and the transmissivity of the interface for a transition
from region 1 to region 2 are given by,

r12 =
n1 − n2
n1 + n2

and t12 =
2n1

n1 + n2
. (18.74)

Obviously, we have r21 = −r12 and t21 = n2

n1
t12. Therefore,

E+2 = t12E+1 + r21E−2 and E−1 = t21E−2 + r12E+1 , (18.75)

that is,

E+2 =
(
t12 − r12r21

t21

)
E+1 + r21

t21
E−1 and E−2 = − r12t21 E

+
1 + 1

t21
E−1 . (18.76)
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The matrix, therefore, is,

T12 =


t12 −

r12r21
t21

r21
t21

− r12t21
1
t21


 =

1

2n2


n2 + n1 n2 − n1
n2 − n1 n2 + n1


 . (18.77)

The determinant is det T = t12
t21

= n1

n2
.

The simple propagation over a distance ∆z through a homogeneous medium simply
causes a phase shift, since E+z = eıkzE+0 and E−0 = eıkzE−z . The corresponding transfer
matrix is,

T∆z =


e

ık∆z 0

0 e−ık∆z


 . (18.78)

Absorption losses can attenuate the beam. This can be taken into account via an
absorption coefficient α in the matrix,

Tabs =


e
−α 0

0 eα


 . (18.79)

satisfying det T = 1.

18.1.7.2 AR and HR coating

Concatenating the matrices (18.77) and (18.78), M = T∆zT12Tabs, we can now de-
scribe the transmission of a light beam through a dielectric layer with refractive index
n2 and thickness ∆z.

Example 101 (Anti-reflection coating): Here we consider the transition
between a medium n0 through a thin layer n1 of thickness λ/4 to a medium n2.
The transition is described by the concatenation of three matrices,E+2

0

 = T12Tλ/4T01

E+0
E−0

 =

M11 M12

M21 M22

E+0
E−0

 =

M11 − M12M21
M22

0

 E+0 .

The total matrix is,

M =
1

2n2

n2 + n1 n2 − n1

n2 − n1 n2 + n1

eıπ/2 0

0 e−ıπ/2

 1

2n1

n1 + n0 n1 − n0

n1 − n0 n1 + n0


=

ı

2n1n2

 n2
1 + n0n2 n2

1 − n0n2

−n2
1 + n0n2 −n2

1 − n0n2

 .

Finally, we obtain the fields,

E+2 =M11 − M12M21

M22
E+0 =

2ın0n1

n2
1 + n0n2

E+0
n2
1≡n0n2−→ ın0

n1
E+0

E−0 = −M21

M22
E+0 =

n2
1 − n0n2

n2
1 + n0n2

E+0
n2
1≡n0n2−→ 0 .
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Choosing n2
1 ≡ n0n2 we can cancel out the reflection and maximize the trans-

mission. We check,

T =
It
Ii

=
ε2c2|E+2 |2
ε0c0|E+0 |2

=

n2
2
c2

c
n2

∣∣∣ 2ın0n1

n2
1+n0n2

∣∣∣2
n2
0
c2

c
n0

=
4n0n

2
1n2

(n2
1 + n0n2)2

R =
Ir
Ii

=
ε0c0|E−0 |2
ε0c0|E+0 |2

=

∣∣∣∣n2
1 − n0n2

n2
1 + n0n2

∣∣∣∣2 = 1− T .

Fig. 18.6 shows the transmission through a stack of dielectric layers. The transfer
matrix is,

M = (T21T∆z2TabsT12T∆z1Tabs)NT01 . (18.80)

We observe a large reflection band (600..660 nm) called one-dimensional photonic band
gap. Dielectric mirrors can, nowadays, achieve reflections up to R = 99.9995%, while
the reflectivity of metal mirrors is always limited by losses.

500 600 700 800
λ (nm)

0

0.5

1

R

Figure 18.6: (code) Reflection by a high reflecting mirror made of 10 layers with
n1 = 2.4 and ∆z1 = 80nm alternating with 10 layers with n2 = 1.5 and ∆z2 = 500 nm.
The absorption coefficient for each layer is supposed to be α = 0.2%. The beam
impinges from vacuum, n0 = 1.

Example 102 (Use of transfer matrices in cavities): The transfer matrix
formalism can be used for impedance matching the reflection of optical cavities 5.
In order to deserve the label mode, a geometric configuration of a cavity must
be self-consistent, that is, any field E±(z) wanting to fill the mode must be the
same after a round-trip around the cavity.
We proceed to calculating the real and imaginary parts of the transfer matrices,E+z + E−z

E+z − E−z

 =M

E+0 + E−0
E+0 − E−0

 .

For example, the phase shift due to free space propagation is described by the
matrix,

Mphase =

 cos kz ı sin kz

ı sin kz cos kz

 .

5Not to be confused with phase matching of optical cavities, which is an important requirement
for coupling light efficiently into a cavity, but must be treated within the theory of Gaussian optics.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_MultiHR.m
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Reflection and transmission from a classical object with can be written as, E⃗+z =
taE+0 + raE⃗−z and E−0 = taE⃗−z − raE+0 , where r2a + t2a = 1. Transforming to the
basis E+j ± E−j , we obtain,

Mpump =

 1+ra
ta

0

0 1−ra
ta

 .

Let us assume that the cavity is pumped from one side by the field Ein. We get
after a round-trip,E+ + E−

E+ − E−

 =M

E+ + E−

E+ − E−

+tin

E+in + E−in
E+in − E−in

 = tin(1−M)−1

E+in + E−in
E+in − E−in

 .

The phase minimum of the determinant det(1−M) determines the eigenvalues
of the cavity. For a round-trip with losses in the mirrors the determinant is
det(1−MphaseMloss) = 2− (tc + t−1

c ) cosϕ, where tc is the total transmission
coefficient of the cavity. Phase minima always occur when ϕ = 2πn. The
amplification of the intensity at theses phases is given by,

Icav
Iin

=
|E+ + E−|2
|E+in + E−in|2

=
t2in

(1− tc)2
.

Exc. 18.1.8.25 can be solved using transfer matrices.

The transfer matrix formalism can also be applied to modeling the passage of a
laser beam through a gas of two levels atoms periodically organized in one dimension
like a stack of pancakes [1220, 1158]. One only has to consider that the variation of
the density of the gas along the optical axis generates a spatial modulation of the
refractive index 6.

18.1.8 Exercises

18.1.8.1 Ex: Wave equation and Galilei transform

Show that any function of the form y(x, t) = f(x− vt) or y(x, t) = g(x+ vt) satisfies
the wave equation.

Solution: We have,

1

v2
∂2y

∂t2
+
∂2y

∂x2
=

1

v2
∂2f(x− vt)

∂t2
+
∂2f(x− vt)

∂x2
=

1

v2
∂

∂t
(−v)f ′+ ∂

∂x
f ′ =

1

v2
(−v)2f ′′+f ′′ = 0 .

6We will discuss this system in Sec. 39.4.2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_EquacaoOnda01.pdf
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18.1.8.2 Ex: Plane waves

Consider a set of solutions for plane electromagnetic waves in vacuum, whose fields
(electric or magnetic) are described by the real part of the functions u(r, t) = Aeı(k·r−ωt),
with constant phase (k·r−ωt). In these expressions, k is the wavevector (determining
the propagation direction of the wave) and ω = vk is the angular frequency, where
v = 1/

√
εµ is the propagation velocity of the waves.

a. Show that the divergent u(x, t) satisfies: ∇ · u = ık · u;
b. Show that the rotation u(x, t) satisfies: ∇× u = ık× u;

c. Show that the waves are transverse and that the vectors E⃗ , B⃗, and k are mutually
perpendicular.

Solution: a. First, we note that u(r, t) = Aeı(kxx+kyy+kzz−ωt). Hence,

∂

∂x
u(r, t) = ıkxAe

ı(kxx+kyy+kzz−ωt)

∂

∂y
u(r, t) = ıkyAe

ı(kxx+kyy+kzz−ωt)

∂

∂z
u(r, t) = ıkzAe

ı(kxx+kyy+kzz−ωt) ,

which can be generalized in the form:

∂

∂xj
u(r, t) = ıkjAe

ı(
∑

j kjxj−ωt) .

thus, the divergent is:

∇·u =
∑

j

∂

∂xj
uj(r, t) = ıkxAxe

ı(k·r−ωt)+ ıkyAye
ı(k·r−ωt)+ ıkzAze

ı(k·r−ωt) = ık ·u .

Therefore,

∇ · u = ık · u .

b. This can be proved analogously by calculating the determinant or the properties of
the Levi-Civita tensor:

(∇×u)i = ϵijk
∂

∂xj
uk = ϵijk

∂

∂xj
Ake

ı(k·r−ωt) = ϵijk(ıkj)Ake
ı(k·r−ωt) = ıϵijkkjuk = ı(k×u)i .

If it holds for the component i, it holds for every component:

∇× u = ık× u .

c. Since E⃗(r, t) and B⃗(r, t) are described by the real part of u(r, t), we get,

E⃗(r, t) = Re [ê0e
ı(k·x−ωt)]

B⃗(r, t) = Re [B⃗0eı(k·x−ωt)] .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_EquacaoOnda02.pdf
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Thus, using the result of item (a) and the divergence equations, we have:

∇ · E⃗(r, t) = 0 =⇒ k · E⃗ = 0

∇ · B⃗(r, t) = 0 =⇒ k · B⃗ = 0 .

from what we conclude, that the waves are transverse, that is, E⃗ and B⃗ are perpendic-
ular to k. We also verify that the time derivative of u(r, t) satisfies:

∂

∂t
u(r, t) = −ıωAeı(kxx+kyy+kzz−ωt) = −ıωu(r, t) .

(Just do one of the following options:)
And, similarly, using the result of item (b) and Ampère’s equation, we have:

∇× B⃗(r, t) = µε
∂

∂t
E⃗(r, t) =⇒ ık× B⃗ = −ıωµεE⃗ =⇒ E⃗ = −k× B⃗

k
√
µε

.

And, similarly, using the result of item (b) and Faraday’s equation, we have:

∇× E⃗(r, t) = − ∂

∂t
B⃗(r, t) =⇒ ık× E⃗ = ıωB⃗ =⇒ B⃗ =

k× E⃗
k/
√
µε

.

which demonstrates that the vectors E⃗, B⃗, and k are mutually perpendicular.

18.1.8.3 Ex: Polarization of a wave in vacuum

A transverse electromagnetic wave propagates through an isotropic, non-conducting
medium without charges (vacuum) in positive z-direction. The projection of the
vector of the electric field on the plane x-y has the form,

E⃗ = E⃗0 sin(kz − ωt) = (E0x, E0y, 0) sin(kz − ωt) .

a. Illustrate the motion of the electric field vector by a scheme. How is the wave
polarized?
b. Show from Maxwell’s equations, that the magnetic field vector can be written as,

B⃗(r, t) = 1

ω
(k× E⃗)

with the wavevector k = kêz.
c. Calculate the energy flux of the wave (Poynting vector) S⃗(r, t) as a function of the
(phase) velocity of the wave c0. How does the phase change in other media (µ ̸= µ0

and ε ̸= ε0)? What does this mean for S⃗(r, t).

Solution: a. The wave is linearly polarized in the plane E⃗0 = E⃗0xêx + E⃗0yêy.
b. We insert the electric field into Maxwell’s second law,

∇× E⃗ =




−∂z E⃗y
∂z E⃗x
0


 =




−kE⃗0y
kE⃗0x
0


 cos(kz − ωt) = kêz × E⃗0 cos(kz − ωt) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PolarisaOnda01.pdf
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Integrated in time we obtain the magnetic field,

B⃗ = −
∫ t

0

∇×E⃗dt′ = −kêz×E⃗0
∫ t

0

cos(kz−ωt)dt′ = k

ω
êz×E⃗0 sin(kz−ωt) =

k

ω
êz×E⃗ .

c. The Poynting vector then becomes,

S⃗ =
1

µ
E⃗ × B⃗ =

1

µ
E⃗ × 1

c
(êz × E⃗) =

√
ε

µ
E⃗2êk .

The intensity is,

I = |S⃗| =
√
εµ0

ε0µ
Ivac .

Apparently, part of the energy transported by an electromagnetic wave through a di-
electric is due to a polarization wave P⃗(r, t).

18.1.8.4 Ex: Jones matrices for a three-beam MOT

A three-beam magneto-optical trap (MOT) is characterized by the fact that each of
three linearly polarized laser beams passes through a λ/4-waveplate rotated in a way
to leave them circularly polarized. Then the beam traverses the MOT a first time,
behind the MOT it passes through a second waveplate, and being finally reflected by
a mirror, it makes all the way back, as shown in the figure. Show that the polarization
of the laser beam at the position of the mirror is always linear independently of the
rotation angle of the second waveplate.

Figure 18.7: One of three retroreflected beams of a MOT.

Solution: We use the Jones matrices for the λ/4 and λ/2-waveplates. To obtain
the polarizations σ∓, the λ/4-waveplate must be rotated by ±45◦:

Mλ/4(±π4 )


1

0


 =

eıπ/4√
2


 1

e∓ıπ/2


 ∝


 1

∓ı


 .

Now, passing through two λ/4-waveplates, we get,

Mλ/4(ϕ)Mλ/4(
π
4
)

1

0

 =

 − 1
2
+ ı

2
+ cos2 ϕ− ı sinϕ cosϕ

−ı
(
− 1

2
− ı

2
+ cos2 ϕ− ı sinϕ cosϕ

)
 = − 1

2
(ı+e−2ıϕ)

 1

1+sin 2ϕ
cos 2ϕ

 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PolarisaOnda02.pdf
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That is, the light is linearly polarized independently on the rotation angle ϕ. After
the second passage through the second λ/4-waveplate, we get,

Mλ/4(ϕ)
2Mλ/4(

π
4
)

1

0

 =

( 12 + ı
2

)
cos 2ϕ+

(
1
2
− ı

2

)
sin 2ϕ(

1
2
− ı

2

)
cos 2ϕ−

(
1
2
+ ı

2

)
sin 2ϕ

 = 1√
2
(eıπ/4 cos 2ϕ+e−ıπ/4 sin 2ϕ)

 1

−ı

 .

That is, the light is circularly polarized independently on the rotation angle ϕ. Finally,
after the second passage through the first λ/4-waveplate, we get,

Mλ/4(
π
4
)Mλ/4(ϕ)Mλ/4(ϕ)Mλ/4

(
π
4

)1

0

 =

ıe−2ıϕ

0

 .

Hence, after the fourth transmission, we always have linearly polarized light with the
same polarization as the incident beam, and we see that the norm is preserved.

18.1.8.5 Ex: Temporal average of waves in complex notation

In complex notation there is a practical recipe for finding the temporal average of a
product of waves. Consider f(r, t) = cos(k·r−ωt+δa) and g(r, t) = cos(k·r−ωt+δb).
Show fg = 1

2Re (f̃ g̃∗). Note, that this only works, when the two waves have the same
wavevector k and the same frequency ω, but they may have arbitrary amplitudes and
phases. For example,

⟨u⟩ = 1
4Re (ε0

⃗̃E · ⃗̃E∗ + 1
µ0

⃗̃B · ⃗̃B∗) and ⟨S⃗⟩ = 1
2µ0

Re ( ⃗̃E × ⃗̃B∗) .

Solution: In complex notation,

f̃(r, t) = eı(k·r−ωt+δa) and g̃(r, t) = eı(k·r−ωt+δb) ,

we calculate on one hand,

fg =
ω

2π

∫ 2π/ω

0

cos(k · r− ωt+ δa) cos(k · r− ωt+ δb)dt

=
ω

2π

∫ 2π/ω

0

[
1
2 cos(δa − δb) + 1

2 cos(2k · r− 2ωt+ δa + δb)
]
dt = 1

2 cos(δa − δb) .

On the other hand, we have,

1
2Re (f̃ g̃∗) = 1

2Re
[
eı(k·r−ωt+δa)e−ı(k·r−ωt+δb)

]
= 1

2Re eı(δa−δb) = 1
2 cos(δa − δb) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_NotaComplexa01.pdf
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18.1.8.6 Ex: Radiation pressure of a plane wave

A plane electromagnetic wave impinges vertically on a plane.
a. Show that the radiation pressure exerted on a surface is equal to the energy density
in the incident beam. Does this ratio depend on the reflected part of the radiation?
b. Now consider a beam of small massive balls of mass m incident on a plane. What
is the relationship between the mean pressure on the surface and the kinetic energy
in this case?

Solution: a. We calculate the radiative pressure as,

P =
1

A

∆p

∆t
=
ε0
2
E20 =

I

c
= u ,

when light is fully absorbed.
b. Let N be the number of balls beating the plane per unit time. In the case of inelastic
collisions,

P =
Nmv

A
=
Nm

A

√
2

m
Ekin =

N

A

√
2mEkin .

For elastically reflected collisions, the pressure will double. Unlike the radiative pres-
sure of light, the pressure exerted by the balls goes with the root of the energy of the
beam. This is due to the different dispersion relations for photons and massive parti-
cles.

18.1.8.7 Ex: Radiation pressure of solar light

Estimate the radiation pressure force exerted by the Sun on the Earth, and compare
this force to the gravitational force on Earth and at the atmospheric pressure. (The
intensity of sunlight at the Earth’s orbit is I = 1.37 kW/m2).
b. Repeat part (a) for Mars, which has an average distance of 2.28 · 108 km from the
Sun and has a radius of 3400 km.
c. What is the exerted radiation pressure when light strikes a perfect absorber (re-
flector)?

Solution: a. The radiation pressure of the sun on the Earth is,

Iearth

c = 4.5 · 10−6 Pa ,

which is small compared to the atmospheric pressure of 1013 hPa. The total force of
the solar radiation on the Earth is,

Frad,earth =

∫

earth

I
c · da = I

cπr
2
earth = 5.83 · 108 N .

In comparison, Fg,earth = 1.65 · 10−14Frad,earth.
b. The intensity decreases with the square of the distance of the source, such that,

Imars
c
∝ d2sun−earth

d2sol−mars

Iearth
c

=

(
149 600 000

249 200 000

)2
Iearth

c ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PressaoRadiativa01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PressaoRadiativa02.pdf
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which is still small compared to the atmospheric pressure on Mars, which is 0.6% ·
1013 hPa. Also,

Frad,mars
Frad,earth

=
d2sun−earthr

2
mars

d2sun−marsr
2
earth

.

c. The radiative pressure hitting a perfect reflector is twice the pressure when hitting
a perfect absorber of the same size.
Gabarite: Frad,mars = 7.18 · 107 N, Fg,mars = 4.27 · 10−14 Frad,mars.

18.1.8.8 Ex: Radiation pressure of a point-like emitter onto a plane

A punctual and intense source of light isotropically radiates 1.0MW. The source is
located 1.0m above an infinite and perfectly reflecting plane. Determine the force
that the radiation pressure exerts on the plane.

Solution: The force is

F =

∫
p · dA =

∫ ∞

0

∫ 2π

0

I(
√
a2 + r2)

c
cos θrdrdϕ =

∫ ∞

0

∫ 2π

0

P

c4π(a2 + r2)

a√
r2 + a2

rdrdϕ

=
aP

2c

∫ ∞

0

rdr

(a2 + r2)3/2
=
aP

2c

−1√
a2 + r2

∣∣∣∣
∞

0

=
P

2c
= 3.3mN .

18.1.8.9 Ex: Maxwell’s tensor for a plane wave

Find all the elements of Maxwell’s stress tensor for a monochromatic plane wave trav-
eling in z-direction and being linearly polarized in y-direction. Interpret the result

remembering that
←→
T represents a momentum flux density. How is

←→
T related to the

energy density in this case?

Solution: With the electric field,

E⃗ = E0êx sin(kz − ωt) ,
the magnetic field is,

B⃗ = 1
cE0êy sin(kz − ωt) .

For the tensor we calculate,

Tij = ε0(EiEj − 1
2δijE2) + 1

µ0
(BiBj − 1

2δijB2)
= ε0

2 (E2δix − E2δiy − E2δiz)δij + 1
µ0c2

(−E2δix + E2δiy − E2δiz)
= −ε0E2δizδjz = −uδizδjz .

For the Poynting vector we calculate,

S⃗ = 1
µ0
E⃗ × B⃗ = ε0E2êz ,

concluding that s = Tzz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PressaoRadiativa03.pdf
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18.1.8.10 Ex: Superposition of waves

Suppose Aeıax +Beıbx = Ceıcx ∀x. Prove that a = b = c and A+B = C.

Solution: Obviously, the relation must also be valid at x = 0, which proves im-
mediately,

A+B = C .

Evaluating the derivative of the equation, ıaAeıax + ıbBeıbx = ıc(A+ B)eıcx, also at
the point x = 0, we conclude,

aA+ bB = c(A+B) ,

and evaluating the second derivative, −a2Aeıax − b2Beıbx = −c2(A+ B)eıcx, also at
the point x = 0, we conclude,

a2A+ b2B = c2(A+B) .

Solving the second relation by c and substituting into the third,

a2A+ b2B =

(
aA+ bB

A+B

)2

(A+B) ,

which simplifies to,
a2 + b2 = 2ab ,

which requires a = b. Then a = c is obvious.

18.1.8.11 Ex: Poynting vector of a superposition of two waves

The electric fields of two harmonic electromagnetic waves of angular frequencies ω1

and ω2 are given by E⃗1 = E10 cos(k1x− ω1t)êy and by E⃗2 = E20 cos(k2x− ω2t+ δ)êy.
For the superposition of these two waves, determine
a. the instantaneous Poynting vector and
b. the temporal average of the Poynting vector.
c. Repeat parts (a) and (b) for an inverted propagation direction of the second wave,

i.e. E⃗2 = E20 cos(k2x+ ω2t+ δ)êy.

Solution: a. The instantaneous Poynting vector is,

S⃗ = 1
µ0
E⃗ × B⃗ = 1

µ0
(E⃗1 + E⃗2)× (B⃗1 + B⃗2)

= 1
µ0
êx[E10B10 cos2(k1x− ω1t)

+ E20B20 cos2(k2x− ω2t+ δ) + (E10B20 + E20B10) cos(k1x− ω1t) cos(k2x− ω2t+ δ)] .

b. Using the trigonometric formula cos a cos b = 1
2 [cos(a−b)+cos(a+b)], we calculate

the temporal average of the Poynting vector,

⟨S⃗⟩ = 1
µ0
êx
〈
E10B10 cos2(k1x− ω1t) + E20B20 cos2(k2x− ω2t+ δ)

+E10B20+E20B10

2 [cos(∆kx−∆ωt− δ) + cos(Kx− Ωt+ δ)]
〉

= 1
µ0
êx
[E10B10+E20B20

2 + E10B20+E20B10

2 ⟨cos(∆kx−∆ωt− δ)⟩
]

T→∞−→ 1
µ0
êx
[E10B10+E20B20

2 + E10B20+E20B10

2 cos δ δk1 ̸=k2
]
.
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c. In the case of counterpropagating beams,

S⃗ = 1
µ0
êx[E210 cos2(k1x− ω1t)− E220 cos2(k2x+ ω2t+ δ)] ,

and

⟨S⃗⟩ = 1
2µ0

êx
E210+E220

2 .

18.1.8.12 Ex: Poynting vector of a standing wave

The electric field E⃗(r, t) of a standing electromagnetic wave in vacuum be given by,

E⃗(r, t) = Re
(
E0êxeı(kz−ωt) − E0êxeı(−kz−ωt)

)
= 2E0 sin kz sinωtêx

with E0 ∈ R.
a. Determine the corresponding magnetic field B⃗(r, t).
b. Calculate the Poynting vector S⃗(r, t). What follows for the energy flow s̄ of the
standing electromagnetic wave in the temporal average, that is, calculate

s̄ =

∫
dt s∫
dt

,

where both integrals should be evaluated between t = 0 and t = 2π/ω.

Solution: a. With ∇× E⃗ = − ∂
∂t B⃗ follows,

êy
∂

∂z
E⃗x = − ∂

∂t
B⃗yêy .

With −2E0k cos kz sinωt = ∂
∂t B⃗y we obtain,

B⃗ = êyB0 cos kz cosωt

with B0 = 2E0k
ω = 2E0

c .
b. The Poynting vector is,

S⃗ = E⃗ × H⃗ = ε0c
2E⃗ × B⃗ = ε0cêz4E20 sin kz cos kz sinωt cosωt

= ε0cêzE20 sin 2kz sin 2ωt .

In the temporal average,

∫ 2π/ω

0

sin 2ωt dt = − 1

2ω
cos 2ωt

∣∣∣∣
2π/ω

0

= − 1

2ω
[cos 4π − cos 0] = 0 .

Hence, s̄ = 0.
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18.1.8.13 Ex: Phase fronts of planar and spherical waves

Describes the phase front for (a) a plane wave and (b) a spherical wave.

Solution: a. A plane wave is defined by,

ψ(r, t) = A0e
ı(k·r−ωt) .

Inserting into the wave equation (18.1) yields |k| = ω/c when A0 is constant. The
phase front is given by,

k · r− ωt = const.

That is, for a given time t, all points r satisfying the above equation form a surface
perpendicular to k. Since ϕ = k · r, we have ∇ϕ = k and the phase velocity is
c ≡ ω/|∇ϕ|. Along the direction k, the wave is periodic in space. The periodicity,
called wavelength λ, is given by |k| = 2π/λ.
b. A spherical wave is defined by,

ψ(r, t) =
A0

r
eı(kr−ωt) .

We notice that the expression is in spherical coordinates, and ϕ = kr is not a scalar
product of two vectors, but a product of two scalar quantities. Once again, k = ω/c =
2π/λ, but ∇ϕ = kr̂. The inverse dependence of the amplitude of r is a result of energy
conservation.

18.1.8.14 Ex: Fake spherical wave

We verified in class, that spherical waves of the form

E⃗±(r, t) = E⃗0
1

r
eı(kr±ωt) and B⃗±(r, t) = B⃗0

1

r
eı(kr±ωt)

with ω = ck, c2 = 1/(ε0µ0) satisfy the Helmholtz equation. Argue, why nevertheless,
they can not be electromagnetic waves. Check whether such waves satisfy the homo-
geneous Maxwell equations.

Solution: A spherical wave can not have homogeneous polarization.
To verify Maxwell’s equations in vacuum, we first calculate the gradient,

∇e
ı(kr±ωt)

r
=
eı(kr±ωt)

r3
(−1 + ıkr)r .

With this the third equation gives the result,

0 = ∇ · E⃗± = E⃗0 · r
eı(kr±ωt)

r3
(−1 + ıkr) = E⃗0 · r

eı(kr±ωt)

r3
(−1 + ıkr) =

−1 + ıkr

r2
E⃗± · r ,

and the forth,

0 = ∇ · B⃗± =
−1 + ıkr

r2
B⃗± · r .
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Thus, the equations for the divergences confirm that the polarizations of the fields must
be perpendicular to the radial propagation direction. But this contradicts the fixed
polarization assumed in the ansatz. Now, we check the first homogeneous Maxwell
equation:

0 = ∇× B⃗± −
∂E⃗±
c2∂t

=
eı(kr±ωt)

r
∇× B⃗0 +

(
∇e

ı(kr±ωt)

r

)
× B⃗0 −

∂

∂t

eı(kr±ωt)

c2r
E⃗0

=
eı(kr±ωt)

r3
(−1 + ıkr)r× B⃗0 ∓

ıω

c2
eı(kr±ωt)

r
E⃗0 =

−1 + ıkr

r
êr × B⃗ ∓

ıω

c2
E⃗ .

The second one gives,

0 = ∇× E⃗± +
∂B⃗±
∂t

=
−1 + ıkr

r
êr × E⃗ ± ıωB⃗ ,

which must be satisfied for all r. Thus, the equations for the rotations also violate
Maxwell’s equations.

18.1.8.15 Ex: Spherical wave

Consider a spherical electromagnetic wave,

E⃗(r, t) = E⃗0(r, θ)eı(kr−ωt) and B⃗(r, t) = B⃗0(r, θ)eı(kr−ωt) .

Show that the validity of Maxwell’s equations for ∇ · E⃗ = 0 = ∇ · B⃗ for the case of
vanishing charge and current densities implies that E⃗ , B⃗, and êr are mutually orthog-
onal (transversality).

Solution: Inserting the electric field into Maxwell’s equations,

∇ · E⃗(r, t) = eı(kr−ωt)[∇ · E⃗0(r, θ) + ıkêr · E⃗0(r, θ)] = 0

∇× E⃗(r, t) = eı(kr−ωt)[∇× E⃗0(r, θ) + ıkêr × E⃗0(r, θ)] = ıωB⃗0(r, θ)eı(kr−ωt) = −
∂B⃗
∂t

.

Now, we divide by eı(kr−ωt) and separate the real and imaginary parts,

∇ · E⃗0(r, θ) = 0 and êr · E⃗0(r, θ) = 0

∇× E⃗0(r, θ) = 0 and kêr × E⃗0(r, θ) = ωB⃗0(r, θ)
∇ · B⃗0(r, θ) = 0 and êr · B⃗0(r, θ) = 0

∇× B⃗0(r, θ) = 0 and kêr × B⃗0(r, θ) = − ω
c2 E⃗0(r, θ) .

where we included the results of similar calculations for the magnetic field. We con-
clude that E⃗, B⃗, and êr are mutually orthogonal.
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18.1.8.16 Ex: Spherical wave in a neutral dielectric medium

a. Show that spherical waves E⃗(r, t) = E⃗0
r e

ı(kr−ωt) solve the wave equation in a vac-
uum, when ω = ck. The Laplace operator in spherical coordinates is,

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∆θ,ϕ .

The second term only acts on the parts that depend on the angles. Verify that
∆θ,ϕE⃗ ≡ 0.
b. Show that the wave equations have the form,

∇2E⃗ − 1

c2
∂2E⃗
∂t2

=
1

ε0c2
∂2P⃗
∂t2

,

when the wave does not propagate in a vacuum, but in a neutral dielectric medium
(i.e. without free charges). Assume the simple case that the dielectric displacement

D⃗ = ε0E⃗ + P⃗ has the form,
P⃗ = ε0χE⃗ .

What is the form of the wave equations in this case? How do you change the phase
velocity c of the wave? You can identify the meaning of the quantity n ≡ √1 + χ?

Solution: a. Inserting the ansatz for the spherical wave into the differential equation,

1

r2
∂

∂r

(
r2
∂E⃗
∂r

)
− 1

c2
∂2E⃗
∂t2

= 0 ,

we find,
ω = ck .

b. From the Maxwell equations for a dielectric (ϱ = 0, j = 0, ε ̸= ε0, µ = µ0),

∇× B⃗ = ε0µ0∂tE⃗ + µ0∂tP⃗ , ∇ · B⃗ = 0

∇× E⃗ = −∂tB⃗ , ∇ · E⃗ = − 1
ε0
∇ · P⃗ .

Hence,

∇2E⃗ = ∇2E⃗ + 1
ε0
∇(−∇ · D⃗ +∇ · P⃗) = ∇2E⃗ − ∇(∇ · E⃗) = −∇× (∇× E⃗)

= ∇× ∂tB⃗ = ∂t(ε0µ0∂tE⃗ + µ0∂tP⃗) .

This is only valid when P⃗ ∝ E⃗, such that we can use ∇ · P⃗ = 0. (We note,

that generally P⃗(r, t) = χ(1)E⃗(r, t) + P⃗nl(r, t).) Now inserting the ansatz, E⃗(r, t) =

E⃗0eı(k·r−ωt) + c.c., and separating the susceptibility into a real part and an imaginary
part, χ(1) = Re χ(1) + ıIm χ(1), we obtain,

∂2E⃗(z, t)
∂z2

+ k2(1 +Re χ(1))E⃗(z, t) + ık2Im χ(1)E⃗(z, t) = 0 .

Thus, we find that n =
√

1 +Re χ(1) is the refractive index. With this, the wave is,

E⃗(z, t) = E⃗0e−(k/2)Im χ(1)zeı(knz−ωt)ê(θ, ε) + c.c. .
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18.1.8.17 Ex: Refraction in a bath of water

An observer stands at the edge of a basin filled with water down to a depth of
h = 2.81 m. He looks at an object lying on the bottom. At what depth h′ appears
the image of the object, if the direction of observation in which the observer perceives
the image forms with the normal direction to the water surface an angle of α = 60◦?
Prepare a scheme.

Solution: According to the scheme we have,

h′ tanα = h tanβ .

Thus, using Snell’s law, nwater =
sinα
sin β = 1.3325,

h′ = h
tanβ

tanα
= h

cosα sinβ

sinα
√
1− sin2 β

= h
cosα√

n2water − sin2 α
≈ 0.49h .

Figure 18.8: Refraction in a bath of water.

18.1.8.18 Ex: Poynting vector of a partially reflected wave

A plane wave E⃗in(z, t) which is linearly polarized in x-direction runs along the z-axis
from −∞ towards an interface (z = 0-plane). At the interface, a part r of the wave
is reflected without phase shift.
a. Give the amplitudes of the electric and the magnetic field in the half-space z < 0
in real numbers.
b. Give the Poynting vector S⃗(z, t) and its time average.

Solution: a. The total amplitude of the electric field follows as a superposition,

E⃗(z, t) = E⃗in(z, t) + rE⃗in(−z, t) = E0êxeı(ωt−kz) + rE0êxeı(ωt+kz)

= E0êxeıωt[(1− r)e−ıkz + 2r cos kz] .
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Magnetic field follows from ∇× E⃗ = −∂tB⃗ and is,

B⃗in(z, t) = −
∫
dt ∇× E0êxeı(ωt−kz) = −E0

∫
dt ∇× êxe

ı(ωt−kz) = E0
∫
dt ıkeı(ωt−kz)êy

= E0ık
1

ıω
eı(ωt−kz)êy =

1

c
E0êyeı(ωt−kz)

hence,

B⃗(z, t) = B⃗in(z, t) + rB⃗in(−z, t) =
1

c
E0êyeı(ωt−kz) −

1

c
rE0êyeı(ωt+kz)

=
1

c
E0êyeıωt[(1− r)e−ıkz − 2ır sin kz] .

b. The Poynting vector is now,

S⃗(z, t) = ε0c
2(Re E⃗ ×Re B⃗)

= ε0c
2 ([E0êx cos(ωt− kz) + rE0êx cos(ωt+ kz)] ×

× [ 1cE0êy cos(ωt− kz)− 1
c rE0êy cos(ωt+ kz)]

)

= ε0c2E20 êz[cos(ωt− kz) + r cos(ωt+ kz)][cos(ωt− kz)− r cos(ωt+ kz)]

= ε0c
2 1
cE20 êz[cos2(ωt− kz)− r2 cos2(ωt+ kz)] .

The temporal average of the Poynting vector is,

I(z) =
ω

2π

∫ 2π/ω

0

S⃗(z, t)dt = ε0cE20 êz
ω

2π

∫ 2π/ω

0

[cos2(ωt− kz)− r2 cos2(ωt+ kz)]dt

= ε0cE20 êz
ω

2π

[π
ω
− r2 π

ω

]
=

1

2
ε0cE20 êz(1− r2) .

18.1.8.19 Ex: Energy flow upon refraction

Two infinitely extended media with relative dielectric constants ϵ1 and ϵ2 and per-
meabilities µ1 = µ2 = µ0, that is, with refraction indices n1 =

√
ϵ1 and n2 =

√
ϵ2, be

separated by the z = 0-plane. Coming from the medium n1 traveling in x-direction a
linearly polarized plane wave with frequency ω and wavenumber k1 hits the interface
perpendicularly. The amplitude is E0.
a. Use the continuity of the normal components of D⃗ and B⃗, as well as of the tangen-
tial components of E⃗ and H⃗, at the interface to calculate the amplitudes of refracted
part and the reflected part of the incident wave.
b. The energy flux is defined by the temporal average of the real part of the Poynting
vector S⃗: φ⃗ ≡ Re [E⃗ × H⃗∗]. Calculate the incident, reflected, and refracted energy
fluxes. What is the total flux in front and behind of the interface?
c. Determine the reflection coefficient r (the ratio between the absolute values of the
reflected and incident fluxes) and the transmission coefficient t (the ratio between the
absolute values of the transmitted and incident fluxes).
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Solution: a. Because of µ1 = µ2 = µ0 we have B⃗i = µ0H⃗i and ni =
√
ϵi for

i = 1, 2. Therefore, in front of the interface,

E⃗1 = êxE0e−ıωt
[
eık1z + c1e

−ık1z]

B⃗1 = êy
E0
c e
−ıωtn1

[
eık1z − c1e−ık1z

]
,

where the terms proportional to eık1z represent the incident part of the wave and the
terms e−ık1z the reflected part. Behind the interface there is only a transmitted part,
which is given by,

E⃗2 = êxE0e−ıωtc2eık2z

B⃗2 = êy
E0
c e
−ıωtn2c2e

ık2z .

Now, in the interface (that is, at z = 0) the tangential component of E⃗ (and hence,

because of the linear polarization E⃗ as well) and the tangential component of H⃗ (and

hence B⃗ as well) are continuous. From this follows,

1 + c1 = c2 continuity of E⃗t
n1(1− c1) = n2c2 continuity of H⃗t .

We obtain thus,
n1(1− c1) = n2c2 = n2(1 + c1)

and hence,

c1 =
n1 − n2
n1 + n2

and c2 =
2n1

n1 + n2
.

For the amplitudes of the reflected (E0r) and refracted (E0g) parts we obtain thus,

E0r =
n1 − n2
n1 + n2

E0 and E0g =
2n1

n1 + n2
E0 .

Upon reflection from an optically denser medium (n2 > n1) the wave exhibits a phase
jump with respect to the incident wave (n1−n2 < 0). This is not the case for reflection
by a less dense medium (n2 < n1).
b. We get,

φ⃗e = Re S⃗e = 1
µ0
Re (E⃗e × B⃗∗e) = 1

µ0
E20n1êz

φ⃗g = Re S⃗g = 1
µ0
Re (E⃗g × B⃗∗g) = 1

µ0
E20n2

(
2n1

n1 + n2

)2

êz

φ⃗r = Re S⃗r = 1
µ0
Re (E⃗r × B⃗∗r ) = 1

µ0
E20n1

(
n1 − n2
n1 + n2

)2

êz .

For the total flux in front of the interface we have,

φ⃗1 = 1
µ0
Re (E⃗1 × B⃗∗1) = 1

µ0
Re

(
(E⃗e + E⃗r)× (B⃗e + B⃗r)∗

)

= 1
µ0
Re

(
(E⃗e × B⃗∗e) + (E⃗r × B⃗∗r ) + (E⃗r × B⃗∗e + E⃗e × B⃗∗r )

)

= φ⃗e + φ⃗r +
1
µ0
E20n1

n1 − n2
n1 + n2

Re
[
e−ı2k1z − eı2k1z

]
= φ⃗e + φ⃗r .
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Behind the interface, obviously, we get,

φ⃗2 = φ⃗g .

Now,

φ⃗e + φ⃗r =
1
µ0
E20n1

[
1−

(
n1 − n2
n1 + n2

)2
]
êz

= 1
µ0
E20n1

n21 + n22 + 2n1n2 − n21 − n22 + 2n1n2
(n1 + n2)2

êz =
1
µ0
E20n2

(
2n1

n1 + n2

)2

êz = φ⃗g .

Therefore, the flow of energy is continuous,

φ⃗1 = φ⃗e + φ⃗r = φ⃗g = φ⃗2 .

c. The coefficients for reflection and transmissions are,

R ≡ |φ⃗r||φ⃗e|
=

(
n1 − n2
n1 + n2

)2

and T ≡ |φ⃗g||φ⃗e|
=
n2
n1

(
2n1

n1 + n2

)2

.

It is easy to check,
R+ T = 1 .

18.1.8.20 Ex: Birefringent crystal

An optically anisotropic crystal has in the x-direction the dielectric constant ε1 (that
is, the refractive index n1 = c

√
ε1µ1) and in the y-direction ε2, respectively, n2. A

linearly polarized plane wave with frequency ω propagating in z-direction impinges,
coming from the vacuum, at normal incidence on a disc of thickness d of this material
in such a way, that the plane of the polarization forms with the x and y-axes an angle
of 45◦. What is the polarization of the plane wave after the transition through the
disk? How should we choose d, so that the wave is circularly polarized? Express this
thickness in terms of the vacuum wavelength.

Solution: For the incident wave we have,

E⃗ = E0eı(kz−ωt)(êx + êy) .

Furthermore, we have for the wavevector in transmission through the medium,

k =
ω

v
= ω
√
εµ = n

ω

c
=

2π

λ
.

After the transmission through the disc, we obtain,

E⃗x = E0eı(kz+k1d−ωt) with k1 = n1
ω

c

E⃗y = E0eı(kz+k2d−ωt) with k2 = n2
ω

c

= eı(k2d−k1d)E⃗x .
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The components, therefore, have a phase difference of k2d − k1d after transmission
through the disk. In general, the wave is elliptically polarized. For circular polariza-
tion, the phase difference must be π/2 (depending on whether we want the light to be
circularly polarized to the left or to the right). With this follows,

d = ±π
2

1

k2 − k1
= ±π

2

c

ω

1

n2 − n1
.

or with the wavelength in vacuum λ = 2πc/ω

d(n2 − n1) = ±
λ

4
,

where the left-hand side gives the optical path difference. Therefore, we also speak of
λ/4-waveplates.

18.1.8.21 Ex: Glass cube

At the center of a glass cube of length d = 10mm with the refractive index n = 1.5
there is a small spot. Which parts should the surfaces be covered so that the spot is
invisible from outside the cube regardless of the direction of vision? Neglect the light
refracted out of the cube after a first reflection inside the cube.

Solution: The total internal reflection angle is θi,tot = arcsin 1/n = 41.8◦. Thus,
covering a centered area of,

A = π
(
d
2 sin θi,tot

)2
= π

(
d
2n

)2 ≈ 0.35 cm2 .

18.1.8.22 Ex: Total internal reflection

a. We consider the transition of a beam of light from an optically dense medium (1)
to a more dilute medium (2). Extending the theory of light refraction at interfaces
beyond the angle of total internal reflection (18.70), derive the expression for the
electric field in the medium (2).
b. Noting that α [from Eq. (18.60)] is now imaginary, use the equation (18.61) to cal-
culate the reflection coefficient for the polarization parallel to the plane of incidence 7.
c. Do the same for polarization that is perpendicular to the plane of incidence.
d. In case of perpendicular polarization, show that the (real) evanescent fields are,

E⃗(r, t) = E0e−κz cos(kx−ωt)êy , B⃗(r, t) = E0e−κz[κ sin(kx−ωt)êx+k cos(kx−ωt)êz] .

e. Verify that the fields in (d) satisfy all Maxwell equations without sources.
f. For the fields in (d), construct the Poynting vector and show that, on average, no
energy is transmitted in z-direction.

7We observe 100% reflection, which is better than on a conductive surface.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_{Refracao05}.pdf
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Solution: a. We choose the geometry such that the interface is in the z = 0 plane
and all the beams lie within the y = 0 plane, that is,

kt = kt(êx sin θt + êz cos θt) with kt = ωn2/c .

We now assume that θi > θi,total. In this case,

cos θt =

√
1− sin2 θt = ı

√
sin2 θt − 1 = ı

√
n2
1

n2
2
sin2 θi − 1 ,

applying Snell’s law. Inserting this into the equation for kt,

kt = kt

(
n1
n2

êx sin θi + ıêz

√
n21
n22

sin2 θi − 1

)
≡ kêx + ıκêz ,

where

k ≡ ωn1
c

sin θi and κ =
ω

c

√
n21 sin

2 θi − n22 .

That is, we venture into the realm of complex variables, where θt can no longer be
interpreted as a geometric angle. Nevertheless, we will continue with the analysis and
see what happens. First, we look at the electric field, which has the general form,

⃗̃Et(r, t) = ⃗̃E0teı(kt·r−ωt) .

Replacing the wavevector, we obtain,

⃗̃Et(r, t) = ⃗̃E0te−κzeı(kx−ωt) .

That is, the transmitted wave propagates in x-direction (parallel to the interface) and
is attenuated in z-direction.
b. How much of the wave is reflected in this case? For a wave polarized parallel to the
incident plane (i.e. E⃗ has only a x-component), we previously found that the reflected
amplitude is,

Er =
α− β
α+ β

Ei ,

where,

α ≡ cos θt
cos θi

, β ≡ µ1ν1
µ2ν2

=
µ1n2
µ2n1

.

In this case, α is purely imaginary and β is real, so the reflection coefficient is,

R =

∣∣∣∣
Er
Ei

∣∣∣∣
2

=

∣∣∣∣
α− β
α+ β

∣∣∣∣
2

= 1 ,

since,
|α− β|2 = |α|2 + β2 = |α+ β|2 .

c. For perpendicular polarization, we have,

Er =
1− αβ
1 + αβ

Ei ,
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and once again, since 1 is real and αβ is purely imaginary,

R =

∣∣∣∣
1− αβ
1 + αβ

∣∣∣∣
2

= 1 .

Thus, the reflection is, in fact, total for both polarizations.
d. Still with perpendicular polarization, the electric field lies entirely in y-direction,
so,

⃗̃Et = ⃗̃E0e−κzeı(kx−ωt)êy .
The magnetic field is (replacing the wavevector and with kt =

ωn2

c êkt and ν2 = c/n2),

⃗̃Bt =
1

ν2
kt× ⃗̃Et =

1

ν2

c

ωn2
Ẽ0e−κzeı(kx−ωt)(kêz− ıκêx) =

Ẽ0
ω
e−κzeı(kx−ωt)(kêz− ıκêx) .

Taking the real parts to get the real fields, we have,

E⃗t = E0e−κz cos(kx−ωt)êy , ⃗̃Bt =
E0
ω
e−κz[k cos(kx−ωt)êz+κ sin(kx−ωt)êx] .

e. To verify whether these fields satisfy the Maxwell equations, we first calculate the
divergences,

∇ · E⃗t = 0 = ∇ · B⃗t .
The rotations yield,

∇× E⃗t = E0e−κz[−k sin(kx− ωt)êz + κ cos(kx− ωt)êx = −∂B⃗t
∂t

∇× B⃗t =
E0
ω
e−κz sin(kx− ωt)êy(k2 − κ2) =

n22
c2
ωE0e−κz sin(kx− ωt)êy =

1

ν22

∂E⃗t
∂t

.

Thus, all four Maxwell equations are satisfied.
f. The Poynting vector is,

S⃗ = 1
µ0
E⃗t × B⃗t =

E20e−2κz
µ0ω

[k cos2(kx− ωt)êx − κ sin(kx− ωt) cos(kx− ωt)êz] .

Integrating this over a cycle (t = 0 to 2π/ω) Gives zero for the component z, so
no energy is transmitted perpendicular to the interface, and all energy flows in x-
direction, parallel to the interface.

18.1.8.23 Ex: Fresnel formulae

Rewrite the Fresnel formulae (18.61) and (18.63) in terms of the wavevectors of the
incident, reflected and transmitted waves.

Solution: Exploiting,
k2
k1

=
c1
c2

=
n2
n1

=

√
ε2µ2

ε1µ1
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and with kzm = km cos θm for m = i, r, t, Eq. (18.61) for p-polarization can be rewrit-
ten as,

rp =
ε1µ1kzt − ε2µ2kzi
ε1µ1kzt + ε2µ2kzi

,

and Eq. (18.63) for s-polarization as,

rs =
kzt − kzi
kzi + kzt

.

18.1.8.24 Ex: The Goos-Hänchen effect

The Goos-Hänchen shift is an optical phenomenon in which a linearly polarized light
beam with finite transverse extension suffers, under total internal reflection from a
plane interface, a small lateral displacement within the plane of incidence. The ef-
fect is due to an interference of the partial waves composing the finite-sized beam,
hitting the interface under different angles and thus undergoing different phase shifts
upon reflection. The sum of the reflected waves with different phase shifts form an
interference pattern transverse to the mean propagation direction leading to a lateral
displacement of the beam. Thus, the Goos-Hänchen effect is a coherence phenomenon
[522, 523, 659].
To describe this phenomenon quantitatively, we consider a linearly polarized light
beam of wavelength λ, with finite transverse size. This beam is fully internally re-
flected at the interface between two non-permeable media with refractive indices n1
and n2 < n1. The relationship between the reflected and incident amplitudes is a
complex number, which can be expressed by E ′′0 /E0 = eıϕ(θi,θi,total) for the angle of
incidence θi > θi,total, where sin θi,total =

n2

n1
.

a. Show that for a beam of ’monochromatic’ radiation in z-direction with an electric
field amplitude of E(x)eıkz−ıωt, where E(x) is smooth and finite in transverse direction
(albeit extending over many wavelengths), the first approximation in terms of plane
waves is,

E⃗(x, z, t) = ϵ̂

∫
A(κ)eıκx+ıkz−ıωtdκ ,

where ϵ̂ is a polarization vector and A(κ) is the Fourier transform of E(x) with respect
to κ around κ = 0 small compared to k. The finite-sized beam consists of plane waves
with a small range of angles of incidence centered around the valor predicted by
geometric optics.
b. Consider the reflected beam and show that for θi > θi,total the electric field can be
expressed approximately as,

E⃗r(x, z, t) = ϵ̂rE(ξ − δξ)eıkr·r−ıωt+ıϕ(θi) ,

where ϵ̂r is a polarization vector, ξ is the coordinate perpendicular to kr, which is the

reflected wavevector and δξ = − 1
k
dϕ(θi)
dθi

.
c. With the Fresnel expressions for the phases ϕ(θi) and for the two polarization states

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_Refracao08.pdf
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of the plane, show that the lateral displacements of the beams with respect to the
position predicted by geometric optics are,

Ds =
λ

π

sin θi√
sin2 θi − sin2 θi,total

and Dp = Ds
sin2 θi,total

sin2 θi − cos2 θi sin
2 θi,total

.

Solution: a. The purpose of this part is to show that, when a light beam has a
finite diameter, it can be expanded into a superposition of partial planes wave of in-
finite radial extent. We therefore write the finite beam as, E⃗(x, z, t) = ϵ̂E(x)eıkz−ıωt

with k = ω
c n1, and we insert this ansatz into the wavefunction,

−ω
2

c2
E⃗ =

1

c2
∂2E⃗
∂t2

= ∇2E⃗ = −k2ϵ̂E(x)eıkz−ıωt + ϵ̂
d2E(x)
dx2

eıkz−ıωt

= ϵ̂eıkz−ıωt
(
−k2E(x) + d2E(x)

dx2

)
.

Now, we express E(x) by its Fourier transform, A(κ) = 1
2π

∫
E(x)e−ıκxdx. Thus 8,

−ω
2

c2
E⃗ = ϵ̂eıkz−ıωtF

[
−k2Ẽ(x) + d̃2E(x)

dx2

]
= ϵ̂eıkz−ıωtF

[
−k2A(κ) + (ıκ)nA(κ)

]

= ϵ̂eıkz−ıωt
∫
(−k2 − κ2)A(κ)eıκxdκ

= ϵ̂∇2

∫
A(κ)eıκx+ıkz−ıωtdκ = ϵ̂∇2

[
E(x)eıkz−ıωt

]
= ∇2E⃗ .

That is, the wave equation is satisfied under the condition E(x) =
∫
A(κ)eıκxdx, that

is, E(x) can be understood as a distribution of partial wave amplitudes with wavevec-
tors κ.
b. Taking into account the angular distribution of the partial waves composing the
light beam, the incident wave can be written as,

E⃗i(x, z, t) = ϵ̂

∫
A(κ)eı(ki+κ⃗i)·r−ıωtdκ with

{
ki = k(êx sin θi + êz cos θi)

κ⃗i = κ(êx cos θi − êz sin θi)

= ϵ̂

∫
A(κ)eıkζ+ıκξ−ıωtdκ with

{
ζ = x sin θi + z cos θi

ξ = x cos θi − z sin θi
.

For a narrow distribution of partial waves we can approximate κ ≃ kδθ. Consequently,
taking account of a phase shift ϕi ≡ ϕ(θi+δθ), which depends on the angle of incidence,

8A property of the Fourier transform defined by f̃(κ) = 1√
2π

∫
f(x)e−ıκxdx is,

[̃
dnf

dxn

]
(κ) =

1√
2π

∫
dnf(x)

dxn
e−ıκxdx =

(ıκ)n√
2π

∫
f(x)e−ıκxdx = (ıκ)nf̃(κ) .
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the reflected wave can be written as,

E⃗r(x, z, t) = ϵ̂

∫
A(κ)eı(kr+κ⃗r)·r−ıωt+ıϕidκ with

{
kr = k(êx sin θi − êz cos θi)

κ⃗r = κ(êx cos θi + êz sin θi)

= ϵ̂

∫
A(κ)eıκξ+ıkζ−ıωt+ıϕidκ with

{
ζ = x sin θi − z cos θi
ξ = x cos θi + z sin θi

= ϵ̂eık(x sin θi−z cos θi)−ıωt+ıϕi

∫
A(κ)eıκ(x cos θi+z sin θi)dκ

= ϵ̂eıkζ−ıωt
∫
A(κ)eıκξ+ıϕidκ .

We expand the phase shift 9,

ϕi = ϕ(θi + δθ) = ϕ(θi) + δθ
dϕ(θi)

dθi
= ϕ(θi)− κδξ with δξ ≡ −1

k

dϕ(θi)

dθi
,

and insert it into the expression for the reflected field,

E⃗r(x, z, t) = ϵ̂eıkζ−ıωt+ϕ(θi)
∫
A(κ)eıκξ−ıκδξdκ = ϵ̂eıkζ−ıωtE(ξ − δξ) .

c. Now we just need to calculate the transverse displacements,

Ds,p ≡ dξs,p = −
1

k

dϕs,p(θi)

dθi
.

To do this, using the definitions,

α ≡ cos θt
cos θi

with cos θt = ı

√
n21
n22

sin2 θi − 1 and β ≡ n2
n1

,

we first calculate the reflection coefficient for s-polarization,

rs =
1− αβ
1− αβ =

1− ı sin θi,total

cos θi

√
n2
1

n2
2
sin2 θi − 1

1 +
ı sin θi,total

cos θi

√
n2
1

n2
2
sin2 θi − 1

=
cos θi − ı

√
sin2 θi − sin2 θi,total

cos θi + ı
√
sin2 θi − sin2 θi,total

.

The imaginary and real parts are,

Im rs =
−2 cos θi

√
sin2 θi − sin2 θi,total

1− sin2 θi,total
, Re rp =

cos2 θi − sin2 θi + sin2 θi,total

1− sin2 θi,total
,

9Other properties of the Fourier transform are,

[̃fg](κ) = 1√
2π

∫
f(x)g(x)e−ıκxdx = 1

2π

∫ ∫ ∫
f(x′)e−ıκ

′x′g(x)e−ı(κ−κ
′)xdκ′dxdx′ = 1√

2π
[f̃ ⋆ g̃](κ)

[̃eiqx](κ) = 1√
2π

∫
eiqxe−ıκxdx =

√
2πδ(q − κ)

˜[feiqx](κ) = 1√
2π

∫
f(x)eiqxe−ıκxdx = 1√

2π

∫
f(x)eı(q−κ)xdx = f(q − κ) .



940 CHAPTER 18. ELECTROMAGNETIC WAVES

and the phase shift,

ϕs = arctan
Im rs
Re rs

= arctan
−2 cos θi

√
sin2 θi − sin2 θi,total

cos2 θi − sin2 θi + sin2 θi,total
.

Finally, the transverse displacement is,

Ds = −
1

k

dϕs
dθi

=
2

k

sin θ√
sin2 θ − sin2 θi,total

.

An analogous calculation for p-polarization gives the reflection coefficient,

rp =
α− β
α+ β

=
cos θt
cos θi

− n2

n1

cos θt
cos θi

+ n2

n1

=
ı
√
sin2 θi − sin2 θi,total − cos θi sin

2 θi,total

ı
√
sin2 θi − sin2 θi,total + cos θi sin

2 θi,total

.

The imaginary and real parts are,

Im rp =
2 cos θi sin

2 θi,total

√
sin2 θi − sin2 θi,total

sin2 θi − sin2 θi,total + cos2 θi sin
4 θi,total

,

Re rp =
sin2 θi − sin2 θi,total − cos2 θi sin

4 θi,total

sin2 θi − sin2 θi,total + cos2 θi sin
4 θi,total

,

and the phase shift,

ϕp = arctan
Im rp
Re rp

= arctan
2 cos θi sin

2 θi,total

√
sin2 θi − sin2 θi,total

sin2 θi − sin2 θi,total − cos2 θi sin
4 θi,total

.

Finally, the transverse displacement is,

Dp = −
1

k

dϕp
dθi

= −1

k

2 sin θ sin2 θi,total
(
cos2 θ sin2 θi,total − sin2 θ

)√
sin2 θ − sin2 θi,total

=
Ds sin2 θi,total

sin2 θ − cos2 θ sin2 θi,total
.

18.1.8.25 Ex: Interfaces

A light field of angular frequency ω passes from a medium (1), through a slab of
thickness d representing a medium (2), to a medium (3). All three media are linear
and homogeneous. Calculate the transmission coefficient between the media 1 and 3
for normal incidence.
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Solution: The transfer of the electric field through a system characterized by a matrix
M13 is given by,


E

+
3

0


 =M13


E

+
1

E−1


 =M23MdM12


E

+
1

E−1


 ,

or equivalently,

E

+
1

E−1


 =M−113


E

+
3

0


 =M−112 M

−1
d M−123


E

+
3

0


 =M21MdM32


E

+
3

0


 ,

exploiting the simple fact that M−112 =M21. Now, we find,

E

+
1

E−1


 =

1

2n1


n1 + n2 n1 − n2
n1 − n2 n1 + n2




e
−ık2d 0

0 eık2d


 1

2n2


n2 + n3 n2 − n3
n2 − n3 n2 + n3




E

+
3

0




=
1

4n2n1


(n2 + n1)e

−ık2d(n2 + n3) + (n1 − n2)eık2d(n2 − n3)
(n1 − n2)e−ık2d(n2 + n3) + (n2 + n1)e

ık2d(n2 − n3)


 E+3 ,

such that the transmission becomes,

T =
I3
I1

=
ε3c3|E+3 |2
ε1c1|E+1 |2

=
n3
n1

|E+3 |2
|E+1 |2

=
n3
n1

(4n2n1)
2

|(n2 + n1)e−ık2d(n2 + n3) + (n1 − n2)eık2d(n2 − n3)|2

=
4n1n

2
2n3

n22(n1 + n3)2 + (n21 − n22)(n23 − n22) sin2 k2d
.

18.2 Optical dispersion in material media

18.2.1 Plane waves in conductive media

When there are free charges in the propagation medium, we can not neglect neither
ϱf nor jf in the Maxwell equations used to describe the wave propagation, because

the electric field of the wave will itself generate a current jf = ς E⃗ , where ς is the
conductivity introduced in Eq. (14.42). Thus, for linear media we must use the
complete equations (17.6).

For a homogeneous and linear medium, the continuity equation gives,

∂ϱf
∂t

= −∇ · jf = −ς∇ · E⃗ = − ς
ε
ϱf , (18.81)

with the solution
ϱf (t) = e−(ς/ε)tϱf (0) . (18.82)
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Therefore, every initial free charge density ϱf (0) diffuses within a characteristic time
τ = ε/ς. This reflects the familiar fact that free charges in a conductor migrate to
its edges with a speed that depends on the conductivity ς. For a good conductor, the
relaxation time is much shorter than other characteristic times of the system, e.g. for
oscillatory systems τ ≪ ω−1. In stationary situations we can assume, ϱ = 0, such
that the relevant Maxwell equations,

(i) ∇× B⃗ − εµ∂tE⃗ = µς E⃗
(ii) ∇× E⃗ + ∂tB⃗ = 0

(iii) ∇ · E⃗ = 0

(iv) ∇ · B⃗ = 0

, (18.83)

only differ from the Maxwell equations for dielectric media by the existence of the
term µς E⃗ .

Letting the rotation operator act on equations (i) and (ii) and exploiting the
disappearance of the field divergences we obtain generalized wave equations,

∇2E⃗ = εµ
∂2E⃗
∂t2

+ ςµ
∂E⃗
∂t

and ∇2B⃗ = εµ
∂2B⃗
∂t2

+ ςµ
∂B⃗
∂t

. (18.84)

These equations still accept plane wave solutions,

E⃗(z, t) = E⃗0eı(k̃z−ωt) and B⃗(z, t) = B⃗0eı(k̃z−ωt) , (18.85)

but this time the wavevector is complex,

k̃2 = εµω2 + ıςµω , (18.86)

which can easily be verified by inserting a plane wave into the wave equations (18.84).
The root of this expression gives,

k̃ = k + ıκ with k ≡ ω
√
εµ

2

(√
1 +

( ς

εω

)2
+ 1

)1/2

and κ ≡ ω
√
εµ

2

(√
1 +

( ς

εω

)2
− 1

)1/2
. (18.87)

The imaginary part results in an attenuation of the wave in z-direction:

⃗̃E(z, t) = ⃗̃E0e−κzeı(kz−ωt) and ⃗̃B(z, t) = ⃗̃B0e−κzeı(kz−ωt) . (18.88)

The typical attenuation distance, κ−1, called skin depth, measures the penetration
depth of the wave in a conductor, while the real part k determines the propagation of
the wave. As before, the equations (18.83)(iii) and (iv) exclude components perpen-
dicular to the interface. The wave only has transverse components, that is, parallel
to the interface, so that we can let the electric field be along êx,

⃗̃E(z, t) = Ẽ0êxe−κzeı(kz−ωt) and ⃗̃B(z, t) = B̃0êye−κzeı(kz−ωt) . (18.89)
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By the equation (18.83)(ii) we verify,

B̃0 =
k̃

ω
Ẽ0 . (18.90)

Expressing the wavevector and the complex amplitudes by phase factors,

k̃ = Keıϕ , Ẽ0 = E0eıδE , B̃0 = B0eıδB , (18.91)

with K, E0,B0 ∈ R, we finally find,

B0eıδB =
Keıϕ

ω
E0eıδE , (18.92)

that is,

B0
E0

=
K

ω
=

√
k2 + κ2

ω
=

√

εµ

√
1 +

( ς

εω

)2
(18.93)

and

E⃗(z, t) = E0êxe−κz cos(kz − ωt+ δE) (18.94)

B⃗(z, t) = B0êye−κz cos(kz − ωt+ δE + ϕ) ,

as illustrated in Fig. 18.9. Such a wave is called evanescent wave. From Eqs. (18.93)
and (18.87) we immediately deduce,

K
ς→0−→ ω

cn
and ϕ = arctan

κ

k

ς→0−→ 0 (18.95)

K
ς→∞−→ ∞ and ϕ

ς→∞−→ π
4 .

Do the Exc. 18.2.7.1 and 18.2.7.2.

Figure 18.9: Attenuation of a wave by a conducting medium.
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18.2.1.1 Reflection by a conductive surface

In the presence of free charges and currents the boundary conditions derived in (18.42)
must be generalized,

(i) 1
µ1
B⃗∥1 − 1

µ2
B⃗∥2 = kf × ên

(ii) E⃗∥1 − E⃗
∥
2 = 0

(iii) ε1E⃗⊥1 − ε2E⃗⊥2 = σf

(iv) B⃗⊥1 − B⃗⊥1 = 0

, (18.96)

where σf is the density of free surface charges, kf is the density of free surface currents,
and ên the normal vector of the surface pointing into the direction of medium 1
(compare with Fig. 15.17).

We now assume that the interface at z = 0 separates the dielectric medium 1 from
the conductive medium 2. A monochromatic plane wave is partially reflected and
transmitted, as discussed above,

⃗̃Ei(z, t) = Ẽ0iêxeı(k1z−ωt) , ⃗̃Bi(z, t) = − 1
c1
Ẽ0iêyeı(k1z−ωt)

⃗̃Er(z, t) = Ẽ0rêxeı(−k1z−ωt) , ⃗̃Br(z, t) = 1
c1
Ẽ0rêyeı(k1z−ωt)

⃗̃Et(z, t) = Ẽ0têxeı(k̃2z−ωt) , ⃗̃Bt(z, t) = k̃2
ω Ẽ0têyeı(k̃2z−ωt)

, (18.97)

Obviously, the transmitted wave penetrating the conductive medium is attenuated.
The boundary conditions at z = 0 become, for the considered case (E⃗⊥ = 0 = B⃗⊥)

and with kf = 0,

(i) 1
µ1c1

(E0i − E0r) = k̃2
µ2ω
E0t

(ii) Ẽ0i + Ẽ0r = Ẽ0t
(iii) 0 = σf

(iv) 0 = 0 .

, (18.98)

Defining,

β̃ ≡ µ1k̃2
µ2k1

, (18.99)

we derive,
Ẽ0r
Ẽ0i

=
1− β̃
1 + β̃

and
Ẽ0t
Ẽ0i

=
2

1 + β̃
. (18.100)

The formulas are formally similar to (18.48), but they are complex. For a bad
conductor (ς = 0 → κ = 0) we recover the equation (18.48). For a perfect
conductor (ς =∞ → κ =∞ → β̃ = ı∞) we find Ẽ0r = −Ẽ0i and Ẽ0t = 0. That
is, the wave is fully reflected with a phase change of 180◦ 10.

10The ’skin depth’ in silver (for optical frequencies) is in the order of 10 nm. For this reason, thin
layers of good conductors already represent good mirrors.
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18.2.2 Linear and quadratic dispersion

The refractive index may depend on the wavelength. Even the refractive index of air
exhibits dispersion, as shown in Fig. 18.10 11.

400 600 800 1000

λ (nm)

2.7

2.75

2.8

2.85

n
r
−
1

×10−4

Figure 18.10: (code) Refractive index of air. The crosses were calculated by the Cauchy

formula (18.146), with A = 0.0002725 and B = 0.0059.

We consider a superposition of two waves,

Y1(x, t) + Y2(x, t) = a cos(k1x− ω1t) + a cos(k2x− ω2t) (18.101)

= 2a cos
[
(k1−k2)x

2 − (ω1−ω2)t
2

]
cos
[
(k1+k2)x

2 − (ω1+ω2)t
2

]
.

The resulting wave can be seen as a wave of frequency 1
2 (ω1 + ω2)t and wavelength

1
2 (k1 + k2) whose amplitude is modulated by an envelope of frequency 1

2 (ω1 − ω2)t
and wavelength 1

2 (k1 − k2)x.
In the absence of dispersion the phase velocities of the two waves and the propa-

gation velocity of the envelope, called group velocity, are equal,

c =
ω1

k1
=
ω2

k2
=
ω1 − ω2

k1 − k2
=

∆ω

∆k
= vg . (18.102)

But the phase velocities of the two harmonic waves may be different, c = c(k), such
that the frequency depends on the wavelength, ω = ω(k). In this case, the group
velocity also varies with the wavelength,

vg =
dω

dk
=

d

dk
(kc) = c+ k

dc

dk
. (18.103)

Often, this variation is not very strong, such that it is possible to expand around an
average value ω0 of the spectral region of interest,

ω(k) = ω0 +
dω

dk

∣∣∣∣
k0

· (k − k0) +
1

2

d2ω

dk2

∣∣∣∣
k0

· (k − k0)2

≡ ω0 + vg(k − k0) + β(k − k0)2
. (18.104)

11The refractive index of air can be calculated by the formula n = 1 + (ns − 1) 0.00185097 P
1+0.003661 T

with

ns =
√

1 + 4.334446·10−4λ2

λ2−3.470339·10−3 + 1.118728·10−4λ2

λ2−1.394001·10−2 , where T is the temperature in Celsius and P the

atmospheric pressure in mbar.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AirRefractionindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AirRefractionindex.m
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Generally, vg < c, in which situation we speak of normal dispersion. But there
are situations of anomalous dispersion, where vg > c, e.g. close to resonances or when
the wave under study is a matter wave characterized by quadratic dispersion 12,
ℏω = (ℏk)2/2m.
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Figure 18.11: (code) Gaussian amplitude distribution (a,b) and rectangular distribution

(c,d) in momentum space (a,c) and in position space (b,d).

Example 103 (Rectangular wave packet with linear dispersion): As an
example we determine the shape of the wavepacket for a rectangular amplitude
distribution, A(k) = A0χ[k0−∆k/2,k0+∆k/2], subject to linear dispersion (expan-
sion up to the linear term in Eq. (18.104)). Via the Fourier theorem,

Y (x, t) =

∫ ∞
−∞

A(k)eı(kx−ωt)dk = A0

∫ k0+∆k/2

k0−∆k/2

eı(kx−ω0t+vg(k−k0)t)dk

= A0e
ı(k0x−ω0t)

∫ k0+∆k/2

k0−∆k/2

eı(k−k0)(x−vgt)dk

= A0e
ı(k0x−ω0t)

∫ ∆k/2

−∆k/2

e
ık(x− vgt u

)
dk

= A0
eıu∆k/2 − e−ıu∆k/2

ıu
eı(k0x−ω0t) = 2A0

sin u∆k
2

u
eı(k0x−ω0t) ≡ A(x, t)eı(k0x−ω0t) .

The envelope A(x, t) has the shape of a ’sinc’ function, such that the wave
intensity is,

|Y (x, t)|2 = A2
0∆k

2 sinc2
[
∆k
2
(x− vgt)

]
.

Obviously, the wave packet is at any time t localized in space, as illustrated by

the lower graphs of Figs. 18.11. It moves with group velocity, vg, but it does not

spread.

12Since c = ω
c
= ℏk

2m
< ℏk

m
= vg .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_TeoremaFourier.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_TeoremaFourier.m
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The last example showed, that linear dispersion does not lead to spreading (or
diffusion) of a wavepacket, as opposed to quadratic dispersion, which we will show in
the following example.

Example 104 (Dispersion of a Gaussian wavepacket subject to quadratic
dispersion): Quadratic dispersion causes spreading of wavepackets. We show

this at the example of the Gaussian wavepacket, A(k) = A0e
−α(k−k0)2 , expand-

ing the dispersion relation (18.104) up to the quadratic term. Via the Fourier
theorem,

Y (x, t) =

∫ ∞
−∞

A(k)eı(kx−ωt)dk = A0e
ı(k0x−ω0t)

∫ ∞
−∞

eı(k−k0)(x−vgt)−(α+ıβt)(k−k0)2dk

= A0e
ı(k0x−ω0t)

∫ ∞
−∞

e
ık(x− vgt u

)−(α+ ıβt
v
)k2
dk

≡ A0e
ı(k0x−ω0t)

∫ ∞
−∞

eıku−vk
2

dk = A0

√
π
v
eı(k0x−ω0t)e−u

2/4v .

The absolute square of the solution describes the spatial energy distribution of
the packet,

|Y (x, t)|2 = A2
0

π√
vv∗

e−u
2/4v−u2/4v∗ = A2

0
π

x0
√
α/2

e−(x−vgt)2/x20 ,

with x0 ≡
√
2α

√
1 + β2

α2 t2. Obviously, for long times the pulse spreads with

constant velocity. Since the constant α gives the initial width of the pulse, we

realize that an initially compressed pulse spreads faster. Therefore, the angular

coefficient of the dispersion relation determines the group velocity, while the

curvature determines the spreading velocity. See upper graphs of Figs. 18.11.

Resolve the Excs. 18.2.7.3 to 18.2.7.5.

18.2.3 Microscopic dispersion and the Lorentz model

Obviously, the structure that we assume for the matter also influences its reaction
to electromagnetic waves, which interact differently with the charged components of
the matter. The planetary model proposed by E. Rutherford considers matter to
be made of atoms, which in turn are composed of bound electrons orbiting small
positively charged nuclei. On the other side, metals have free electrons. The inertia
of the charged particles (free or bound electrons, ions) being accelerated by incident
electromagnetic waves is the reason for the dispersion phenomena that we will treat
in the following sections.

Thomson scattering is the elastic scattering of light (photons) by free or quasi-free
electrically charged particles (that is, weakly bound as compared to photon energies).
A charged particle is prompted by the field of an electromagnetic wave to perform
harmonic oscillations within the plane spanned by the electric and the magnetic field
vectors. As the oscillation is an accelerated motion, the particle simultaneously re-
emits energy in the form of an electromagnetic wave with the same frequency (dipole
radiation). Thomson scattering does not consider photonic recoil, that is, there is
no transfer of momentum from the photon to the electron, which is only a good
assumption when the energy of the incident photons is small enough, that is, ℏω ≪
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mec
2, so that the wavelength of the electromagnetic radiation is much longer than

the Compton wavelength λ≫ λC = h/mc ≃ 2.4 pm of the electron (which is the case
for optical wavelengths). For higher energies, it is necessary to take the recoil of the
electron into consideration (as done in the case of Compton scattering) 13.

18.2.3.1 Lorentz model

In classical physics the scattering of light by charges is described by the Lorentz model
[547]. Assuming a harmonic electric field, E⃗(t) = E⃗0e−ıωt, we derive a force acting on
an electron harmonically bound to a potential 14,

F = −eE⃗(t) (18.105)

with e the elementary charge. The equation of motion is that of a damped harmonic
oscillator:

mer̈+meγω ṙ+meω
2
0r = −eE⃗(t) (18.106)

with the mass me of the electron, the damping γω (by collisions, radiative losses,
etc.), and a resonance frequency ω0. We note, that the damping may depend on the
excitation frequency.

After some time, when the transient processes are damped out, the electrons
oscillate with the angular frequency ω of the external field. For this inhomogeneous
solution we make the ansatz:

r(t) = ree
−ıωt (18.107)

with the constant complex amplitude re. Inserting this into the equation of motion,
we obtain for the atomic dipole moment induced by the electromagnetic field 15:

d(t) ≡ −er(t) = e2/me

ω2
0 − ω2 − ıγωω

E⃗(t) ≡ αpol(ω)E⃗(t) , (18.108)

where we used the electric polarizability αpol introduced in (14.6) and relating the am-
plitudes of the field and the dipole moment. The imaginary term in the denominator
means that the oscillation of d is out of phase with E⃗ being delayed by an angle

φ = arctan
γωω

ω2
0 − ω2

, (18.109)

which is very small when ω ≪ ω0 and approaches π when ω ≫ ω0 [1219]. This is
illustrated in Fig. 18.14(left).

13Thomson scattering can be considered the limiting case of Compton scattering for small photon
energies. The Thomson model holds for free electrons in a metal, whose resonant frequency tends,
due to the absence of restoring forces, to zero. Scattering by bound electrons is called Rayleigh
scattering.
In practice, Thomson scattering is used to determine the electron density through the intensity and
temperature of the spectral distribution of scattered radiation assuming a Maxwell distribution for
the electron velocities.

14Let us imagine for the sake of illustration that the displacement of the electron from its equilib-
rium position generates (to first order) an elastic restoring force with resonances at certain frequen-
cies.

15See Sec. 4.3.
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The temporal average of the dipole moment is,
√
d2 = αpolE0

√
1
T

∫ T
0
cos2 ωtdt = αpolE0

√
1
2 ≡ d0

√
1
2 . (18.110)

To calculate the emitted radiation we must borrow a result from future lessons: From
the electromagnetic fields (19.40) of an oscillating dipole we will derive the expression
for the Poynting vector (19.44),

⟨S⃗⟩ = 1
µ0
⟨E⃗ × B⃗⟩ = µ0d

2
0ω

4

16π2c

sin2 θ

r2
êr =

d20ω
4

32π2ε0c3
sin2 θ

r2
êr . (18.111)

Obviously, the radiation is not isotropic, but concentrated in directions perpendicular
to the dipole moment. In fact, the spherical harmonic function (sin θ), responsible for
this toroidal angular distribution, is precisely the p-wave 16. The total power radiated
by the dipole can be derived from the Poynting vector,

P =

∫ 2π

0

∫ π

0

⟨S⃗⟩ · êrr2 sin θdθdϕ =
µ0d

2
0ω

4

32π2c
2π

∫ π

0

sin3 θdθ =
µ0ω

4d20
12πc

, (18.112)

knowing
∫ π
0
sin3 xdx = 4

3 . This result is known as the Larmor formula.

18.2.3.2 Thompson and Rayleigh scattering

We now imagine that the dipole is excited by an incident wave of intensity,

I = 1
2ε0cE⃗20 , (18.113)

and scatters the radiation to a solid angle dΩ, such that the angular distribution of
scattered power is,

dP

dΩ
= |⟨S⃗⟩|r2 . (18.114)

We can now calculate the differential scattering cross section inserting the polariz-
ability (18.108),

dσ

dΩ
=
dP/dΩ

I
=
d20ω

4 sin2 θ

32π2ε0c3r2
r2

1
1
2ε0cE20

=
|αpol|2E20ω4 sin2 θ

16π2ε20c
4E20

(18.115)

=

∣∣∣∣
e2/me

ω2
0 − ω2 − ıγωω

∣∣∣∣
2
ω4 sin2 θ

16π2ε20c
4
=

r2eω
4 sin2 θ

(ω2
0 − ω2)2 + γ2ωω

2
,

where we defined the abbreviation,

re ≡
1

4πε0

e2

mec2
≈ 2.8 · 10−15 m (18.116)

being the classical electron radius. The total cross section,

σ(ω) =

∫

R2

dσ

dΩ
dΩ =

8π

3
r2e

ω4

(ω2
0 − ω2)2 + γ2ωω

2
, (18.117)

describes a resonance of Lorentzian profile.
We have the following limiting cases:

16Y ±1
1 (θ, ϕ) = ∓ 1

2

√
3
2π
e±ıϕ sin θ.
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• ω ≫ ω0 Thomson scattering ,

• ω = ω0 resonance fluorescence ,

• ω ≪ ω0 Rayleigh scattering .

A Thomson cross section follows in the limit of high energies in comparison with
the eigenfrequency, ω ≫ ω0 ≫ γω from the Lorentz model 17,

σThom =
8π

3
r2e ≈ 6.65 · 10−29 m2 . (18.118)

Example 105 (Rayleigh scattering and the blue sky): We consider the scat-

tering cross section (18.117). For ω → ω0 we obtain a resonant amplification of

the cross session of ω2/γ2
ω. The resonances of the particles in the atmosphere

are in the blue region of the electromagnetic spectrum. Therefore, the visible

frequencies are ω ≪ ω0, and the cross session is ∝ ω4. For this reason, the blue

region dominates. The sky just does not look violet, because the eyes are not

sensitive for these colors.

The dependence on the observation angle ∝ sin2 θ, where θ = ∠(ϵ̂,ks) is only

valid for polarized light. For non-polarized light, which can be understood as

a superposition of two waves with orthogonal polarization, the dependence is

∝ 1 + cos2 ϑ, where ϑ = ∠(k,ks).

Figure 18.12: Dependence of the Rayleigh and Mie scattering on the observation angle.

Rayleigh scattering dominates for molecules and small scattering objects, <

λ/10. Mie scattering is more important for > λ/10, e.g. water drops. This

type of scattering is governed by boundary conditions defined by the surfaces

of objects. The angular distributions are strongly oriented in forward direction,

particularly when the objects are large. Therefore, this type of scattering only

dominates at small angles with respect to the sun, where we observe a bleaching

of the blue color of the sky).

18.2.3.3 Atomic polarizability

In atoms, the damping rate γω is due to the radiative energy loss (given by Larmor’s
formula). It is calculated as the ratio between the classically radiated power and the

17A better approximation for small energies is obtained by expansion of the Klein-Nishina formula,

σ(ν) = σThom
(
1− 2α+ 56

5
α2 + . . .

)
with the factor α = hν

mec2
.
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kinetic energy of the electron orbiting the nucleus,

γω =
P

Ekin
=
µ0e

2a2/12πc

meω2r2/2
, (18.119)

where a = ω2r is the acceleration of the electron. We get [547] 18,

γω =
e2ω2

6πε0mec3
. (18.120)

Defining Γ ≡ γω0 and inserting into equation (18.108), we can calculate the polariz-
ability within the Lorentz model,

αpol = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − ı(ω3/ω2

0)Γ
. (18.121)

Close to narrow resonances we can approximate (ω0+ω)→ 2ω0 and (ω3/ω2
0)Γ→ ω0Γ

in the denominator of the formula (18.121). Hence, the polarizability simplifies to,

αpol
ε0
≃ 6π

k30

−1
ı+ 2∆/Γ

, (18.122)

defining the detuning ∆ ≡ ω − ω0. Resolve the Excs. 18.2.7.6 to 18.2.7.9.

18.2.4 Classical theory of radiative forces

The Lorentz model permits a classical calculation of the forces exerted by a radiation
wave on an electric dipole moment oscillating with the excitation frequency ω [659,
547] 19. With the dipole moment given by equation (18.108) and the polarizability
given by equation (18.121) we can write the dipolar interaction potential as the time-
average,

Udip(r) = −
1

2
d · E⃗ = − 1

2ε0c
I(r)Re αpol , (18.123)

with the field intensity I = 2ε0c| ⃗̃E|2. The factor 1
2 takes into account the fact, that

the dipole moment is induced rather than permanent, as shown in equation (14.10).
Therefore, the potential energy of the atom in the field is proportional to the

intensity I(r) and the real part of the polarizability, which describes the in-phase
component of the dipolar oscillation, being responsible for the dispersive properties of
the interaction. The dipole force comes from the gradient of the interaction potential,

Fdip(r) = −∇Udip(r) =
1

ε0c
∇I(r)Re αpol . (18.124)

18In quantum mechanics we learn, that the rate for spontaneous emission is, Γ = d2k3/3πε0ℏ.
This rate coincides with Eq. (18.120) when we assume an amplitude for the electron’s oscillation
equal to the size of the ground state of a harmonic oscillator,

d0 = er = e

√
ℏ

meω
= d2

√
2 .

19In principle, we could also use Maxwell’s stress tensor.
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Figure 18.13: (a) Lorentz force on electric dipoles in an electrostatic field gradient. (b)
Orientation of induced dipoles in an electromagnetic field. (c) Phase-shift of a harmonic
oscillator with a resonance frequency at ω0 driven at frequency ω.

It is a conservative force proportional to the intensity gradient of the light field. As
illustrated in Fig. 18.13, below resonance (ω < ω0) the induced electric dipole will be
oriented parallel to the electric field such as to minimize its energy by seeking strong
field regions. Above resonance (ω > ω0) the orientation is reversed so that the dipole
can minimize its energy by seeking low field regions.

The power of the field absorbed by the dipolar oscillator (and reemitted as dipolar
radiation) is given by,

Pabs = ḋ · E⃗ = 2ωIm d̃ · ⃗̃E = − ω

ε0c
I(r)Im αpol . (18.125)

The absorption results from the imaginary part of the polarizability, which describes
the out of phase component of the dipolar oscillation. Considering the light as a
stream of photons with energy ℏω, the absorptive part can be interpreted in terms of
photon absorption processes followed by spontaneous reemission. The corresponding
scattering rate is,

Γsct(r) =
Pabs
ℏω

=
1

ℏε0c
I(r)Im αpol . (18.126)

We emphasize that these expressions are valid for any polarizable neutral par-
ticle exposed to an oscillating electric field, provided that saturation effects can be
neglected. That it, the expressions hold for atoms and molecules excited near or far
from resonances, as well as for a classical antenna 20.

Inserting the polarizability (18.121) in the expressions (18.123) for the dipolar
potential and (18.126) for the (Rayleigh) scattering rate we obtain, for the case of
large detunings in comparison to the transition linewidth, ∆ ≫ Γ, and negligible
saturation,

Udip(r) = −
1

2ε0c
I(r)Re

6πε0c
3Γ/ω2

0

ω2
0 − ω2 − ı(ω3/ω2

0)Γ
(18.127)

≃ −3πc2

ω2
0

I(r)
Γ

ω2
0 − ω2

= −3πc2

2ω3
0

I(r)

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
,

20An important difference between quantum and classical oscillators is the possible occurrence of
saturation. When the intensity of the driving field is too high, the excited state becomes strongly
populated and the derived results are no longer valid. However, for large detunings we are far below
the saturation, such that the expressions can be used even for quantum oscillators.
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and

ℏΓsct(r) =
1

ε0c
I(r)Im

6πε0c
3Γ/ω2

0

ω2
0 − ω2 − ı(ω3/ω2

0)Γ
(18.128)

≃ −6πc
2Γ2ω3

ω4
0

I(r)
1

(ω2
0 − ω2)2

=
−3πc2
2ω3

0

(
ω

ω0

)3

I(r)

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

.

These expressions exhibit two resonant contributions: In addition to the usual reso-
nance at ω = ω0, there is a so-called counter-rotating term resonant at ω = −ω0. In
most applications the radiation source is tuned relatively close to the resonance at ω0,
such that the counter-rotating term can be neglected, which simplifies the expressions
to,

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r) and ℏΓsct(r) =

3πc2

2ω3
0

Γ2

∆2
I(r) . (18.129)

The obvious relationship between the scattering rate and the dipolar potential,

ℏΓsct =
Γ

∆
Udip , (18.130)

is a direct consequence of the profound relationship between the absorptive and dis-
persive responses of the oscillator. We furthermore emphasize the following relevant
points:

• The sign of the detuning: Below an atomic resonance (’red detuning’, ∆ < 0) the
dipolar potential is negative and the interaction attracts the atom to regions of
high intensity, e.g. toward the optical axis of a Gaussian light beam or towards
the anti-nodes of a standing light wave. Above the atomic resonance (’blue
detuning’, ∆ > 0) is the opposite; the atom is repelled out of high-intensity
regions.

• Intensity and detuning-dependence: The dipolar potential is ∝ I/∆, while the
scattering rate is ∝ I/∆2. Therefore, dipolar optical traps are generally realized
at large detunings and high intensities in order to reduce the scattering rate
while maintaining the potential depth.

18.2.4.1 Microscopic model of the susceptibility, anomalous dispersion

Until now we considered a single valence electron bound to a nucleus. If there are
several electrons, the relationship (18.108) must be generalized. Electrons located at
different orbitals of a molecule feel different spring constants fj , natural frequencies
ωj , and damping coefficients γj . In the presence of several electrons per molecule and

N molecules per volume unit, the polarization P⃗ is given by the real part of (14.12),

⃗̃P =
Nq2

m


∑

j

fj
ω2
j − ω2 − ıγjω


 ⃗̃E . (18.131)

In equation (14.20) we defined the electric susceptibility χε as proportionality constant

between the electric field and the polarization. In the case considered here, P⃗ is not
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proportional to E⃗ (strictly speaking, it is not a linear medium), because there is a

phase shift between P⃗ and E⃗ . But at least the complex polarization ⃗̃P is proportional

to the complex field ⃗̃E , which suggests the introduction of a complex susceptibility χ̃ε,

⃗̃P = ε0χ̃ε
⃗̃E . (18.132)

All manipulations made so far remain valid, if we assume that the physical polarization

is the real part of ⃗̃P, in the same way as the physical field is the real part of ⃗̃E . In

particular, the proportionality between ⃗̃D and ⃗̃E is the complex permittivity ε̃ =
ε0(1 + χ̃ε), and the complex dielectric constant (in this model) is,

ϵ̃ ≡ ε̃

ε0
= 1 +

Nq2

mε0

∑

j

fj
ω2
j − ω2 − ıγjω

. (18.133)

Generally, the imaginary part is despicable; however, when ω is very close to one of
the resonant frequencies ωj , it will play a crucial role, as we shall see later.

In a dispersive medium the wave equation for a given frequency is,

∇2 ⃗̃E = ε̃µ0
∂2 ⃗̃E
∂t2

. (18.134)

It admits plane wave solutions as before,

⃗̃E(z, t) = ⃗̃E0eı(k̃z−ωt) , (18.135)

with the complex wavenumber,

k̃ = ω
√
ε̃µ0 = ω

c

√
ϵ̃ . (18.136)

Writing k̃ in terms of its real and imaginary parts, k̃ = k+ıκ, the plane wave becomes,

⃗̃E(z, t) = ⃗̃E0e−κzeı(kz−ωt) . (18.137)

Obviously, the wave is attenuated (this is not surprising, since the damping absorbs

energy). Since the intensity is proportional to E⃗2 (and consequently to e−2κz), the
quantity,

α ≡ 2κ (18.138)

is called absorption coefficient. The relationship,

I ∝ e−αz (18.139)

is called the Lambert-Beer law. However, the velocity of the wave is ω/k, and the
refraction index is,

n =
ck

ω
. (18.140)

In the present case k and κ have nothing to do with conductivity, as in the case
of Eq. (18.87); but they are determined by the parameters of our damped harmonic
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oscillator. For gases, the second term in (18.133) is small, and we can approximate the
square root (18.136) by the first term of the binomial expansion

√
1 + χ̃ε ≃ 1 + 1

2 χ̃ε.
Hence,

k̃ =
ω

c

√
ϵ̃ ≃ ω

c

(
1 +

χ̃ε
2

)
=
ω

c


1 +

Nq2

2mε0

∑

j

fj
ω2
j − ω2 − ıγjω


 . (18.141)

therefore,

n = Re
√
ϵ ≃ 1 +

Nq2

2mε0

∑

j

fj(ω
2
j − ω2)

(ω2
j − ω2)2 + γ2jω

2

α =
2ω

c
Im
√
ϵ ≃ Nq2ω2

mε0c

∑

j

fjγj
(ω2
j − ω2)2 + γ2jω

2

. (18.142)

In Fig. 18.14 we plot the refractive index and the absorption coefficient in the
neighborhood of one of the resonances ω0 = ωj . In most cases the refractive index
gradually increases with frequency, which is consistent with our experience in optics
(Fig. 18.10). However, near a resonance the refraction index drops abruptly. Being
atypical, this behavior is called anomalous dispersion. We observe that the region
of anomalous dispersion (ω1 < ω < ω2 in the figure) coincides with the region of
maximum absorption. In fact, the material can be almost opaque in this spectral
region. The reason is, we now excite the electrons on their ’preferred’ frequency;
the amplitude of their oscillation is relatively large, and therefore much energy is
dissipated by the damping mechanism.

-5 0 5

(ω − ω0)/γ

0

0.5

1

p
ol
a
ri
z
a
bi
li
ty (a)

-5 0 5

(ω − ω0)/γ

-1

0

1

n
−

1
,

α

×10−3

ω2ω1

(b)

Figure 18.14: (code) (a) Profile of the polarizability |αpol| (blue curve) and of the phase

shift arctan
Im αpol

πRe αpol
(red curve). (b) Refractive index (blue curve) and the absorption (red

curve). In the spectral region between ω1 and ω2 we have anomalous dispersion.

The refractive index n plotted in Fig. 18.14 may be below 1 above the resonance,
suggesting that the velocity of the wave exceeds c. But we must remember that
energy propagates at the group velocity, which is always below c. The graph does
not include the contributions of other terms in the sum, because they are negligible
when the resonances are narrow or distant from each other. Out of the resonances,
the damping can be ignored, and the formula for the refractive index simplifies:

n = 1 +
Nq2

2mε0

∑

j

fj
ω2
j − ω2

. (18.143)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AnomalousDispersion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AnomalousDispersion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AnomalousDispersion.m
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For most substances the natural frequencies ωj are distributed across the spectrum in
a chaotic way. In transparent materials, the resonances are in the ultraviolet regime,
such that the visible frequencies ω are far below the resonances, ω ≪ ωj . In this case,

1

ω2
j − ω2

≃ 1

ω2
j

(
1 +

ω2

ω2
j

)
. (18.144)

and (18.143) adopts the form,

n = 1 +
Nq2

2mε0

∑

j

fj
ω2
j

+ ω2 Nq
2

2mε0

∑

j

fj
ω4
j

. (18.145)

Or, in terms of vacuum wavelengths (λ = 2πc/ω):

n = 1 +A

(
1 +

B

λ2

)
. (18.146)

This is the Cauchy formula; the constant A is called the refraction coefficient and B
is called dispersion coefficient. The Cauchy equation applies reasonably well to most
gases in the optical regime. Fig. 18.10 shows the example of the refractive index of
air.

The Lorentz model certainly does not account for all dispersion phenomena in
non-conductive media. But at least, it indicates how the damped harmonic motion
of electrons can generate a dispersive refractive index, and it also explains why n is
usually a slowly increasing function of ω with occasional ’anomalous’ regions.

Example 106 (Energy density and Poynting vector in a dielectric medium): The
energy density in vacuum, ū = ε0

4
|E⃗ |2+ 1

4µ0
|B⃗|2, becomes in a dielectric medium,

ū(χ) =
1

4
Re (εE⃗ · E⃗∗ + 1

µ0
B⃗ · B⃗∗) = Re ε

4
|E⃗ |2 + 1

4µ0

∣∣∣∣k + ıκ

ω
E⃗
∣∣∣∣2

=
ε0
4
(1 + χ′e)E20 +

ε0
4ω2
|k + ıκ|2E20 = (k2 − κ2 + k2 + κ2)

ε0
4
E20 =

ε0
2

k2

ω2
E20 ,

where we only consider the real part of the susceptibility χε. On the other hand,
the Poynting vector is,

Ī =
1

2µ0
Re [E⃗ × B⃗∗] = ε0c

2

2
E20
[
e−2ωκz/cRe

k + ıκ

ω

]
=
ε0c

2

2

k

ω
E20 e−2ωκz/c .

18.2.4.2 The Fresnel-Fizeau effect

Naively, the index of refraction is due to a finite time lag between photon absorption
and emission. The time spend in an excited state slows down the light propagation
velocity. If during this time the atom travels, the atomic velocity adds to (or reduces)
the light propagation velocity. This effect which is known as Fresnel-Fizeau effect is an
internal degrees of freedom effect. Consider a medium with the index of refraction n
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(measured in the moving frame) which is moving with velocity v. The copropagation
velocity of light is for v ≪ c,

cv =
c

nrf

c+ nrfv

c+ v/nrf
≈ c

nrf
+ v

(
1− 1

n2rf

)
. (18.147)

This is the Fresnel ’drag’ coefficient. In particular, it is easy to show that,

c−v < c/nrf < cv < c . (18.148)

Expressing the refraction index by the susceptibility, nrf =
√
1 + χε ≈ 1 + 1

2χε, we
get,

cv − c−v
2v

= 1− 1

n2rf
=

χε
1 + χε

. (18.149)

Knowing that,

χε =
2nd2

3ε0ℏ
∆+ ıΓ

4∆2 + 2Ω2 + Γ2
and d =

√
3πε0ℏΓ
k3

(18.150)

Re χε =
2πΓn

k3
∆

4∆2 + 2Ω2 + Γ2

it follows,
cv − c−v

2v
=

1

1 +
(

2πΓn
k3

∆
4∆2+2Ω2+Γ2

)−1 . (18.151)

For small detunings within the natural linewidth,

cv − c−v
2v

≈ 1

1 + k3

2πn
Γ
∆

, (18.152)

a long excited state lifetime is advantageous. For very large detunings and Ω→ 0,

cv − c−v
2v

≈ 1

1 + 2k3

πn
∆
Γ

. (18.153)

This shows that (far from resonance) the effect increases for large densities, broad
linewidths and smaller detunings. For example, the Rb D1 line for typical conditions

the coefficient is 2k3

πn ≈ 1000 21.

18.2.5 Light interaction with metals and the Drude model

The Drude model is based on a classical kinetic theory of non-interacting electrons in a
metal. Since the conduction electrons are considered to be free, the Drude oscillator is

21For the high-finesse ring-cavity CARL experiment this means that the Fresnel-Fizeau effect is
negligible. Far from resonance the atoms do not spend time in the excited state. The adiabatic
elimination of the internal degrees of freedom removes the effect from the theoretical model. It
also means that the counter-propagating modes of the ring-cavity do not split because of the atomic
velocity, nrf+ = nrf−. The calculation shows that the back-scattered light is not perfectly resonant,
but that this shift is negligibly small.
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Figure 18.15: (code) Real (red) and imaginary (green) parts of the dielectric function as a

function of the excitation frequency.

an extension of the Lorentz model of a single oscillator to the case, when the restoring
force and the atomic resonance frequency are zero, Γ0 = ω0 = 0. The equation of
motion is,

m
dv

dt
+mΓdv = −eE⃗ , (18.154)

where mdv
dt is the force accelerating the electron, mΓdv is the friction due to collisions

with ions of the crystalline lattice and −eE⃗ = −eE⃗0eıωt is the Coulomb force exerted
by the oscillating field. We find,

v = v0e
ıωt = − e

m

E⃗0
ıω + Γd

eıωt . (18.155)

The current density corresponding to the motion of n electrons per unit volume is,

jc(ω) = −nev =
ne2

m(Γd + ıω)
E⃗ . (18.156)

In addition we have the current that corresponds to the electric displacement in
vacuum,

jd(ω) =
∂D⃗
∂t

= ıωε0E⃗ , (18.157)

where D⃗ = ε0E⃗ . The total current density is given by,

j(ω) = jc(ω) + jd(ω) =

[
ne2

m(Γd + ıω)
+ ıωε0

]
E⃗ . (18.158)

Assuming the total current as being created by a total electric displacement, D⃗tot =
ε̃E⃗ , where again the electric field and the displacement are related by a complex
permittivity, we find,

j(ω) =
∂D⃗tot
∂t

= ıωε̃E⃗ , (18.159)

and comparing the last two expressions,

[
ne2

m(Γd + ıω)
+ ıωε0

]
E⃗ = ıωε̃(ω)E⃗ . (18.160)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_DrudeDispersion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_DrudeDispersion.m
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Resolving by ε̃,

ϵ̃(ω) = 1− ω2
p

ıωΓd − ω2
, (18.161)

where

ωp ≡
√
ne2

mε0
(18.162)

is called the plasma frequency, which corresponds to the energy, where ϵ(ωp) ≃ 0.
Separated into real and imaginary parts,

ϵ′(ω) = 1− ω2
p

Γ2
d + ω2

, ϵ′′(ω) =
ω2
pΓd

ω(Γ2
d + ω2)

(18.163)

For ω < ωp and small Γd, the real part ϵ′ is negative. No electric field can penetrate
the metal, which therefore becomes fully reflecting.
For ω = ωp, the real part ϵ′ is zero. That is, the electrons oscillate in phase with the
field along the propagation distance in the metal.
For ω ≫ ωp, the imaginary (absorptive) part ε′′ disappears at high frequencies.

For metals, usually we have ωp = (2π) 1000...4000THz and Γd ≈ 100 s-1. Note
that the model can not describe semiconductors.
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Figure 18.16: (code) Examples of frequency-dependent permittivities for (a) sapphire [444,

?], (b) silver [1070], and (c) amorphous glas [375].

18.2.6 Causality connecting D⃗ with E⃗ and the Kramers-Kronig
relations

A consequence of the dispersion of ε(ω) is the temporarily nonlocal connection be-

tween the displacement D⃗ and the electric field E⃗ . Calculating the Fourier transform
of,

D⃗(r, ω) = ε(ω)E⃗(r, ω) = ε0[1 + χε(ω)]E⃗(r, ω) , (18.164)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_Permittivities.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_Permittivities.m
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we obtain, using the convolution theorem,

D⃗(r, t) = 1√
2π

∫ ∞

−∞
ε(ω)E⃗(r, ω)e−ıωtdω (18.165)

= ε0E⃗(r, t) +
ε0√
2π

∫ ∞

−∞
χε(ω)E⃗(r, ω)e−ıωtdω

= ε0E⃗(r, t) +
ε0√
2π

∫ ∞

−∞
χε(τ)E⃗(r, t− τ)dτ ,

where χε(τ) is the Fourier transform of the electric susceptibility. This results shows

that the displacement field D⃗ depends on all values the incident electric field E⃗ had
at all times. Only if χε(ω) were independent of ω would we have χε(τ) ∝ δ(τ).

Example 107 (Simple model of the susceptibility): To illustrate the impli-
cations of equation (18.165) we consider a permittivity of the following form,

ε(ω)

ε0
=

ωp
ω2
0 − ω2 − ıγω . (18.166)

The kernel related to the susceptibility,

χε(τ) =
ω2
p

2π

∫ ∞
−∞

e−ıωτdτ

ω2
0 − ω2 − ıγω , (18.167)

can be evaluated by contour integration, the result being,

χε(τ) = ω2
pe
−γτ/2 sin τ

√
ω2
0 − (γ/2)2√

ω2
0 − (γ/2)2

Θ(τ) , (18.168)

where Θ(τ) is the Heaviside function.

This example shows that the displacement field D⃗ only depends on the electric
field at past times, which is fortunate as it allows causality to be respected.

18.2.6.1 The Kramers-Kronig relations

The Kramers-Kronig relations are bidirectional mathematical relations, connecting
the real and imaginary parts of any complex function that is an analytic function on
the upper half-plane 22. These relationships are often used to calculate the real part of
response functions in physical systems from the imaginary part (or vice versa). This
works because, in stable physical systems, causality and analyticity are equivalent
conditions. Be χ(ω) a complex function of the complex variable ω. We assume this
function to be analytic in the upper closed half-plane of ω and to disappear as 1/|ω|
or faster for |ω| → ∞. The Kramers-Kronig relations are given by,

Re χ(ω) =
1

π
P
∫ ∞

−∞

Im χ(ω′)
ω′ − ω dω′ and Im χ(ω) = − 1

π
P
∫ ∞

−∞

Re χ(ω′)
ω′ − ω dω′ ,

(18.169)
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Figure 18.17: Path of the contour integral illustrating Cauchy’s theorem.

where P denotes the Cauchy principal value. Thus, the real and imaginary parts of
such a function are not independent, and the complete function can be reconstructed
from only one of its parts.

For any analytic function χ defined on the upper closed half-plane, the function
ω′ → χ(ω′)/(ω′ − ω) where ω ∈ R, will also be analytic in the upper half-plane. The
Cauchy’s residue theorem for integration consequently says, that

∮
χ(ω′)
ω′ − ωdω

′ = 0 . (18.170)

We chose the contour to follow the real axis, making a loop around the pole at
ω′ = ω, and a large semicircle in the upper half-plane, as shown in Fig. 18.17. We now
decompose the integral into its contributions along each one of these three paths and
then evaluate the limits. The length of the semicircular path increases proportionally
to |ω′|, but the integral along it disappears in this limit, since χ(ω′) disappears at
least as fast as 1/|ω′|. Letting the size of the semicircle go to zero we get,

0 =

∮
χ(ω′)
ω′ − ωdω

′ = P
∫ ∞

−∞

χ(ω′)
ω′ − ωdω

′ − ıπχ(ω) . (18.171)

The second term in the last expression is obtained using the Sokhotski-Plemelj theo-
rem of residues. After rearrangement we arrive at the compact form of the Kramers-
Kronig relations,

χ(ω) =
1

ıπ
P
∫ ∞

−∞

χ(ω′)
ω′ − ωdω

′ . (18.172)

The imaginary unit in the denominator makes the connection between the real and
the imaginary components. Finally, we separate χ(ω) and the equation (18.172) into
their real and imaginary parts, and we get the expressions from above (18.169).

18.2.6.2 Physical interpretation in terms of causality

We can apply the Kramers-Kronig formalism to response functions. In certain linear
and time-invariant physical systems or signal processing applications, the response
function h(t) describes, how some time-dependent property of the system, responds
to a force F (t′) pulsed during a time t′. For example, the property of the system can
be the angle of a pendulum and the force applied by a motor kicking the pendulum.

22A function is analytic if and only if its Taylor series about a point r0 converges to the function
in some neighborhood for every r0 in its domain. Hence, analytic functions must be infinitely
differentiable.
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Figure 18.18: (code) Real (blue) and imaginary (red) parts of the susceptibility. The dashed

curves are calculated by the Kramers-Kronig formulas.

The response function must be zero for t < 0, since the system can not respond to
the force before it has been applied. It can be shown that this request for causal-
ity in time domain implies in frequency domain, that the Fourier transform χ(ω) of
h(t) is analytical inside the upper half-plane. Furthermore, if we subject the system
to an oscillating force with a frequency much higher than its highest resonance fre-
quency, there will be almost no time for the system to respond before the forcing has
alternated the direction, and hence the frequency response χ(ω) converges to zero,
when ω becomes very large. From these physical considerations, we see that χ(ω) will
normally satisfy the conditions necessary for the Kramers-Kronig relations to apply.

The frequency response of a system forced to generate an impulse response h(t)
is given by the Fourier-transform,

χ(ω) = 1√
2π

∫ ∞

−∞
h(t)e−ıωtdt = F [h(t)] , (18.173)

which for an electrical system corresponds to its impedance. Now, the boundary
condition of causality can be implemented with the use of the Heaviside step function
Θ(t),

χ(ω) = 1√
2π

∫ ∞

−∞
h(t)Θ(t)e−ıωtdt = F [h(t)Θ(t)] = F [h(t)Θ(t)Θ(t)] . (18.174)

Note that the implementation of causality via the Heaviside step function is directly
implemented when replacing the Fourier transform by the Laplace transform. Apply-
ing the convolution theorem to the Fourier transform and using the Fourier transform
of the Heaviside function we get 23,

χ(ω) = F [h(t)Θ(t)] ⋆ F [Θ(t)] = χ(ω) ⋆ (FΘ)(ω) = χ(ω) ⋆
(

1
2πıω + 1

2δ(ω)
)
.

(18.175)
This equality can be considered an early or raw form of the Kramers-Kronig relations
and will turn out to be equivalent to them. To see this, we carry out the convolution
explicitly,

χ(ω) =
1

2π

∫ ∞

−∞

χ(ω′)dω′

ı(ω − ω′) +
1

2
χ(ω) , (18.176)

23F [Θ(t)] = 1
ı
√
2πω

+
√
π
2
δ(ω)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_KramersKronigTest.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_KramersKronigTest.m
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or isolating χ(ω),

χ(ω) =
1

π

∫ ∞

−∞

χ(ω′)dω′

ı(ω − ω′) . (18.177)

This is the frequency response of causal systems being invariant under a Hilbert-
transform. It is equivalent to the Kramers-Kronig relations (18.169). Rewriting it for
only positive integration limits, the integral splits up like,

χ(ω) =
1

π

∫ ∞

0

χ(ω′)dω′

ı(ω − ω′) +
1

π

∫ ∞

0

χ(−ω′)dω′
ı(ω + ω′)

. (18.178)

From the definition of the Fourier integral of the real quantity h(t) follows directly
χ(−ω) = χ∗(ω), that is, the positive frequency response determines the negative
frequency response. Therefore,

χ(ω) =
1

π

∫ ∞

0

χ(ω′)(ω + ω′) + χ∗(ω′)(ω − ω′)
ı(ω2 − ω′2) dω′ (18.179)

=
1

π

∫ ∞

0

ω′Im χ(ω′)− ıωRe χ∗(ω′)
ω2 − ω′2 dω′ .

from which we obtain the Kramers-Kronig relations for the real and imaginary parts
in a format, where they are useful for physically realistic response functions,

Re χ(ω) =
2

π

∫ ∞

0

ω′Im χ(ω′)
ω2 − ω′2 dω′ and Im χ(ω) =

−2
π

∫ ∞

0

ωRe χ(ω′)
ω2 − ω′2 dω′ .

(18.180)
The imaginary part of a response function describes, being out of phase with the driv-
ing force, how a system dissipates energy. The Kramers-Kronig relations imply that
observing the dissipative response of a system is sufficient to determine its (reactive)
in-phase response, and vice versa.

18.2.7 Exercises

18.2.7.1 Ex: Skin depth

a. Consider a piece of glass containing some free charges. How long does it take for
the charges to migrate to the surface?
b. Suppose you were designing a microwave experiment at a frequency of 1010 Hz.
How thick would you make a silver coating?
c. Find the wavelength and propagation velocity in copper for radio waves at 1MHz.
Compare with the corresponding values in air (or vacuum).

Solution: a. The continuity equation tells us that in a conductor,

∂ϱf
∂t

= −∇ · jf = −∇ · σE⃗ = −σϱf
ε0

.

The solution of the differential equation is,

ϱf (t) = ϱf (0)e
−σt/ε0 .
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With a conductivity of glass of σ = 10−11 Sm-1 and a permittivity of ε = 4.7ε0 we find
a time constant for the drift of τ ≈ 4.16 s.
b. Skin depth was derived in class,

d =
1

κ
=

1

ω

[
µε

2

√
1 +

( σ
εω

)2
]−1/2

.

The conductivity of silver is σ ≈ 6.30 · 107 Sm-1. Since it represents an excellent
conductor, ε ≃ ε0. Also, we have µ ≃ µ0. Thus, at the given microwave frequency,

d ≃
√

2

ωµ0σ
≈ 634 nm .

c. For copper (σ ≈ 5.96 · 107 Sm-1) we evaluate, at the given radiofrequency, the
wavelength from the real part of k̃,

λ = 2π/k ≃ 2π

√
2

ωµ0σ
≈ 4.1 · 10−4 m ,

which is much shorter than radiofrequency wavelengths in free space. The propagation
velocity,

v = ω/k =
ωλ

2π
≈ 410m/s

and obviously much slower than the speed of light in free space, which points to large
refraction index, n = ck/ω.

18.2.7.2 Ex: Complex refractive index

A light wave described by the electric field Ei = E0eık0z comes from the vacuum and
impinges on a metal surface characterized by the complex refractive index n = n′+ın′′.
Determine from the relation n =

√
ϵ the relative dielectric constant ϵ.

a. At what depth the field falls to e−1, if Emet ≃ 0.05E0 and kmet = nk0.
b. Now despise the penetrating field, |Emet| ≃ 0, and consider the reflected field
Er = E0e−ıkx+ı∆ϕ. Calculate the intensity resulting from the superposition of Ei and
Er.

Solution: a. The wavefunction on the metal is,

Emeteınk0x = Emete−n
′′k0xeın

′k0x .

Hence, l1/2 = 1/(n′′k0).
b. Factorizing eı∆ϕ/2 we obtain,

I = ε0c|Ei + Er|2 = ε0c|E0eık0x + E0eık0x+ı∆ϕ|2

= ε0c|eı∆ϕ/2| · |E0eık0x−ı∆ϕ/2 + E0eık0x+ı∆ϕ/2|2 = cos2(kx−∆/2) .
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18.2.7.3 Ex: Fourier expansion

The Fourier inversion theorem says that,

f(z) =

∫ ∞

−∞
A(k)eıkzdk ⇐⇒ A(k) = 1

2π

∫ ∞

−∞
f(z)e−ıkzdz .

Use the theorem to determineA(k) for the wavepacket given by f(z, t) =
∫∞
−∞A(k)eı[kz−ω(k)t]dk

as a function of the real parts Re f(z, 0) and Re ḟ(z, 0).

Solution: The time derivative of the packet is,

ḟ(z, t) = −ı
∫ ∞

−∞
ωA(k)eı(kz−ωt)dk .

With this we calculate,

f(z, 0) =

∫ ∞

−∞
A(k)eıkzdk and ḟ(z, 0) = −ı

∫ ∞

−∞
ωA(k)eıkzdk ,

that is,

A(k) = 1
2π

∫ ∞

−∞
f(z, 0)e−ıkzdz and − ıωA(k) = 1

2π

∫ ∞

−∞
ḟ(z, 0)e−ıkzdz .

Now, we decompose, f = fr + ıfi, to get,

A(k) = 1
2π

∫ ∞

−∞
f(z, 0)e−ıkzdz =

1

2π

∫ ∞

−∞
(fr+ıfi)e

−ıkzdz
!
= 1

2π

∫ ∞

−∞

ḟr + ıḟi
−ıω e−ıkzdz .

Since obviously fr = −ḟi/ω and fi = ḟr/ω, we obtain,

A(k) = 1
2π

∫ ∞

−∞

[
fr(z, 0) +

ıḟr(z,0)
ω

]
e−ıkzdz .

18.2.7.4 Ex: Electromagnetic wave

In a dispersionless medium (ε = ε0 and µ = µ0) we have for a component u(x, t) of
an electromagnetic wave (here without dimension),

u(x, t) =
1√
2π

∞∫

−∞

dkA(k)eıkx−ıω(k)t with ω(k) = ck ,

and

A(k) =
1√
2π

∞∫

−∞

dxu(x, 0)e−ıkx .
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a. Show that u(x, t) satisfies the one-dimensional wave equation for vacuum.
b. Calculate the spectral distribution A(k) for u(x, t) = eık0x−ıω0t.
c. Calculate the spectral distribution A(k) for {u(x, t) = eık0x−ıω0t for −L < x −
(ω0/k0)t < L and 0 else}.
d. Calculate u(x, t), when u(x, 0) =

∫ +a

−a δ(x− a)da.
e. Try to understand in an elementary way the relation of part (c) between the band-
width and the length of the wavepacket. Perform the transition to the limit L→∞
explicitly. For the case (d) discuss the propagation of the wavepacket in space.
Formulas:

δ(k0 − k) =
1

2π

∞∫

−∞

dxeı(k0−k)x =
1

π
lim
L→∞

sin(k0 − k)
k0 − k

Θ(a) =
1

2πı

∞∫

−∞

dk
eıka

k
=

{
1 for a > 0

0 else
.

Solution: a. Integration and differentiation are interchangeable. u(x, t) therefore
satisfies the one-dimensional wave equation,

(
∂2

∂x2
− 1

c2
∂2

∂t2

)
u(x, t) = 0

provided, as requested in the problem, ω(k) = ck.
b. With the given formula we find,

A(k) =
1√
2π

∞∫

−∞

dx eı(k0−k)x =
√
2πδ(k0 − k) .

c. We obtain,

A(k) =
1√
2π

+L∫

−L

dx eı(k0−k)x =
1√
2π

1

ı(k0 − k)
[eı(k0−k)L − e−ı(k0−k)L]

=
2L√
2π

sin([k0 − k]L)
[k0 − k]L

.

d. We derive,

A(k) =
1√
2π

∞∫

−∞

dx

+a∫

−a

da δ(x− a)e−ıkx =
1√
2π

+a∫

−a

dx e−ıkx

=
1√
2π

1

ık
[eıka − e−ıkx] = 2√

2π

sin ka

k
,
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and hence,

u(x, t) =
1

2πı

+∞∫

−∞

dk
eıka − e−ıka

k
eık(x−ct)

=
1

2πı

+∞∫

−∞

dk
1

k
(eık(a+x) − eık(x−a))e−ıkct

=
1

2πı

+∞∫

−∞

dk

(
eık(x+a−ct)

k
− eık(x−a−ct)

k

)
= Θ(x+ a− ct)−Θ(x− a− ct) .

From this follows that u(x, t) = 1 within the range ct− a < x < ct+ a and u(x, t) = 0
outside.
e. We had in part (c),

A(k) =
2L√
2π

sin([k0 − k]L)
[k0 − k]L

.

The main maximum is in k = k0. Here, A(k0) = 2L/
√
2π. It follows immediately,

∥A
(
k0 ± 2nπ

L ± π
2L

)
∥ = 2L√

2π(2nπ ± π/2)

The bandwidth of the spectral distribution is twice the distance between two consecutive
maxima, i.e. here, ∆k = 2π/L. The spatial extent of the wavepacket is ∆x = 2L.
From this immediately follows a kind of ’uncertainty relationship’ ∆k∆x = 4π > 1.
In the limit L→∞ follows immediately,

lim
L→∞

A(k) =
√
2π

1

π
lim
L→∞

sin([k0 − k)]L
[k0 − k]L

=
√
2πδ(k0 − k)

18.2.7.5 Ex: Phase and group velocity

Let us study the one-dimensional motion of a wavepacket in x-direction, which spreads
in infinite space. The law of dispersion is given by ω = ω(k). The motion of a
wavepacket is then described by,

u(x, t) =
1√
2π

∫ ∞

−∞
dkA(k)eıkx−ıω(k)t ,

where the spectral distribution A(k) is given by shape of the wavepacket at time t = 0:

A(k) =
1√
2π

∫ ∞

−∞
dxu(x, 0)e−ıkx .

The maximum of A(k) be at k = k0. We call vph = ω(k)/k the phase velocity
and vgr = [dω(k)/dk]k0 the group velocity, because in specific idealized situations a
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wavepacket propagates precisely at this speed. In the following we consider a propa-
gation of the wavepacket given by,

u(x, 0) = c exp

{
− x2

2a2
+ ık0x

}

for a medium characterized by the dispersion relation ω(k) = b2k2 (for a de Broglie
matter wave).
a. Plot the shape of the wavepacket at time t = 0 via the intensity distribution
|u(x, 0)|2. The ’width’ of a Gaussian profile is given by the points, where the profile
fell to (1/e) of the maximum value. Calculate the width △x(t = 0) of the intensity
distribution.
b. Calculate the spectral distribution A(k) and the width △k of the corresponding
intensity distribution |A(k)|2.
c. Now calculate u(x, t) at a later time t. Express u(x, t) in the form

u(x, t) = αe−(x−βt)
2/γeı(k0x−ω(k0)t)eıϕ, where α, β, γ, and ϕ are real quantities which,

nevertheless, may depend on t and x.
d. Calculate the intensity distribution |u(x, t)|2 at time t. At what speed does the
maximum move? Calculate the width △x(t) of the intensity distribution. What is
the temporal evolution of △x(t)△k?
e. Compare |u(x, t)|2 width |u(x, 0)|2.
Help: ∫ +∞

−∞
dx e−ax

2+bx+c =
√

π
a exp

[
b2+4ac

4a

]
.

Solution: a. We have,

u(x, 0) = e−x
2/2a2eık0x and hence |u(x, 0)|2 = c2e−x

2/a2 .

The intensity distribution reaches the fraction (1/e) of the maximum value (at x = 0),
when x2/a2 = 1, that is, x = ±a. Therefore, its width is precisely given by ∆x(t =
0) = 2a. It describes the spatial extent of the wavepacket at time t = 0.
b. With the help of the given formula we obtain immediately,

A(k) =
1√
2π

∫ +∞

−∞
dxu(x, 0) exp[−ıkx] = c√

2π

∫ +∞

−∞
dx exp

{
− x2

2a2
+ ı(k0 − k)x

}

=
c√
2π

√
2πa2 exp

{
−a

2

2
(k0 − k)2

}
= ac exp

{
−a

2

2
(k0 − k)2

}
.

With this, we obtain for the corresponding intensity distribution,

|A(k)|2 = a2c2e−a
2(k0−k)2 .

It is independent of time, has its maximum value at k = k0 and reaches at k0 − k =
±1/a the fraction (1/e) of this value. Its width, therefore, is ∆k(t = 0) = 2/a. The
larger the spatial extent, the narrower the momentum distribution, and vice versa.
c. We have,

u(x, t) =
1√
2π

∫ +∞

−∞
dkA(k)eıkx−ıω(k)t .
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With A(k) of part (b) and ω(k) = b2k2 we consecutively get,

u(x, t) =
ac√
2π

∫ +∞

−∞
dk exp

{
−
[
a2

2
+ ıb2t

]
k2 + [a2k0 + ıx]k − a2

2
k20

}
=

ac√
2π

√
π√

a2

2
+ ıb2t

exp

{
a4k20 + ı2a2k0x− x2 − a2k20(a2 + 2ıb2t)

2a2 + 4ıb2t

}

=
c√

1 + ı2 b
2

a2
t
exp

 ı2a2k0x− ı2a2b2k20t− x2

2a2
(
1 + ı2 b

2

a2
t
)


=

c√
1 + ı2 b

2

a2
t
exp

−
(x2 − ı2a2[k0x− b2k20t])

(
1− ı2 b2

a2
t
)

2a2
(
1 +

(
2 b

2

a2
t
)2)


=

c√
1 + ı2 b

2

a2
t
exp

−
x2 − 4b2t[k0x− b2k20t]− 2a2ı[k0x− b2k20t]− ı2 b

2

a2
tx2

2a2
(
1 +

(
2 b

2

a2
t
)2)

 .

Regrouping provides,

u(x, t) =
c√

1 + ı2 b
2

a2
t
exp

−
(x− 2b2k0t)

2

2a2
(
1 +

(
2 b

2

a2
t
)2)

 ·

· exp

ı
2a2[k0x− b2k20t] + 2 b

2

a2
t+ 2a2

(
2 b

2

a2
t
)2

[k0x− b2k20t]− 2a2
(
2 b

2

a2
t
)2

[k0x− b2k20t]

2a2
(
1 +

(
2 b

2

a2
t
)2)


=

c√
1 + ı2 b

2

a2
t
exp

−
(x− 2b2k0t)

2

2a2
(
1 +

(
2 b

2

a2
t
)2)

 eı(k0x−b
2k20t) · exp

ı
2 b

2

a2
t(x2 − 4b2k0xt+ 4b4k20t

2)

2a2
(
1 +

(
2 b

2

a2
t
)2)


=

c√
1 + ı2 b

2

a2
t
exp

−
(x− 2b2k0t)

2

2a2
(
1 +

(
2 b

2

a2
t
)2)

 eı(k0x−b
2k20t) · exp

ı
2 b

2

a2
t(x− 2b2kt0)

2

2a2
(
1 +

(
2 b

2

a2
t
)2)

 .

Now,

1 + ı2
b2

a2
t =

√
1 +

(
2
b2

a2
t

)2

exp

{
ıarctg

[
2b2

a2
t

]}
,

and hence,

u(x, t) =
c

[
1 +

(
2 b

2

a2 t
)2]−1/4 exp



−

(x− 2b2k0t)
2

2a2
(
1 +

(
2 b

2

a2 t
)2)



 exp

{
ı[k0x− b2k20t]

}
·

· exp



ı


 2 b

2

a2 t(x− 2b2k0t)
2

2a2
(
1 +

(
2 b

2

a2 t
)2) −

1

2
arcctg

(
2b2

a2
t

)
+ nπ





 .
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where the additional phase ınπ was introduced to remove the phase ambiguity of the
arctan.
d. With part (c) immediately follows,

|u(x, t)|2 =
c2√

1 +
(
2 b

2

a2 t
)2 exp



−

(x− 2b2k0t)
2

a2
(
1 +

(
2 b

2

a2 t
)2)



 .

The spatial intensity distribution has its maximum at,

xm(t) = 2b2k0t .

This maximum propagates with the speed,

2b2k0 =

[
dω(k)

dk

]

k0

≡ vgr .

The decay to (1/e) happens, when

(x− vgrt)2 = a2

(
1 +

(
2
b2

a2
t

)2
)

.

This follows the width (spatial extent) at time t,

∆x(t) = 2a

√
1 +

(
2
b2

a2
t

)2

.

Since, on the other hand, ∆k = 2
a is independent of time, we get an ’uncertainty

relation’ of the form,

∆x(t)∆k = 4

√
1 +

(
2
b2

a2
t

)2

≥ 4 .

e. The maximum of the spatial intensity distribution moves at group velocity, the width
increases in the manner calculated in (d). The wave packet ’spreads’. For long t we
obtain,

∆x(t)→ 4b2

a
t ∼ t .

Width increases linearly over time.

18.2.7.6 Ex: Radiation force acting on a small dielectric particle

The polarizability of a small (a≪ λ) dielectric particle with complex refraction index
np = Re np − ıαλ4π immersed in a medium of refraction index nm is given by,

αrad =
4πa3

n2
p−n2

m

n2
p+2n2

m
n2mε0

1− n2
p−n2

m

n2
p+2n2

m

[(
nmω0

c a
)2 − 2

3 ı
(
nmω0

c a
)3] .
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Calculate the total force acting on it when subject to an electromagnetic field.

Solution: Let us assume the particle to be in the Rayleigh regime of dipolar ap-
proximation, a≪ λ, where a small dielectric particle behaves like an induced electric
dipole,

P⃗(r, t) = αradE⃗(r, t) .
The Lorentz force is,

F(r) = [P⃗(r) · ∇]E⃗(r) + ı
nmω0

c
P⃗(r)× B⃗(r)

= αrad

{
[E⃗(r) · ∇]E⃗(r) + E⃗(r)× [∇× E⃗(r)]

}
= 1

2αrad∇E⃗2(r) .

Time-averaged,

⟨F(r)⟩ = 1
2Re

[
αrad

{
[E⃗(r) · ∇]E⃗∗(r) + E⃗(r)×

[
∇× E⃗∗(r)

]}]

⟨Fi⟩ = 1
2Re

[
αradEj∂

i(Ej)∗
]
.

18.2.7.7 Ex: Lorentz model

Based on the Lorentz model, derive the differential equation for the oscillation ampli-
tude of the electrons and calculate the response of the matter reacting via a polariza-
tion P = Nex, where N is the number of electrons and x their oscillation amplitude.
Calculate the absorptive part Im χ and the dispersive part Re χ of the susceptibility
χ ≡ P/ε0E .
With this calculate the index of refraction n and the coefficient of absorption α in the
Lorentz model.

Solution: Differently from the Thomson model, the Lorentz model considers elec-
trons bound to an atom. Of course, this bond influences the electronic motion. Let
the light wave be E = E0eıωt. The differential equation is,

ẍ+ γωẋ+ ω2
0 =

e

me
E0eıωt .

The ansatz x ≡ x0eıωt leads to the oscillation amplitude,

x0 =
eE0
me

1

ω2
0 − ω2 − ıγωω

.

For small detunings ∆ = ω − ω0 ≪ ω we get,

x0 ≃
1

2ω

−∆+ ıγω/2

∆2 + (γω/2)2
.

Hence,

χ =
Ne2

ε0me2ω

−∆+ ıγω/2

∆2 + (γω/2)2
.
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Writing the intensity as I = I0e
ıαz, we find the refraction index and the absorption

coefficient,
n = 1 + Im χ and α = Re χ .

We also have,

ϕ(ω) =
Im α

Re α
=
−γωω2

ω2 − ω2
0

ω→ω0→ γω
2∆

.

18.2.7.8 Ex: Lorentz force on a single atomic dipole

Calculate the Lorentz force on a single atom within the dipole approximation from
the expression [619],

F =

∫
d3r[ϱ(r)E⃗(r) + j(r)× B⃗(r)] .

Solution: With the given formula, understanding the atom as a permanent dipole,
d = −e(r1 − r2), we find the parametrization,

ϱ(r) ≡ −eδ(r− r1) + eδr− r2) and j(r) ≡ −eṙδ(r− r1) + eṙδ(r− r2) .

The force then becomes,

F = −eE⃗(r1) + eE⃗(r2)− eṙ1 × B⃗(r1) + eṙ2 × B⃗(r2)
= (d · ∇)E⃗ + ḋ× B⃗

= (d · ∇)E⃗ + d

dt
(d× B⃗)− d× ˙⃗B

= (d · ∇)E⃗ + d

dt
(d× B⃗) + d× (∇× Ẽ) .

Use a plane wave E⃗(r, t) = E(kz − ωt) cos(kz − ωt)ê. Then, ∇× E⃗ = 0.

18.2.7.9 Ex: The Faraday effect

Derive the Faraday effect from the Lorentz model using the following procedure:
a. Formulate the equation of motion for the position s of a bound electron according
to (18.106) in the presence of a homogeneous magnetic field B⃗ = Bêz and an elec-

tromagnetic wave characterized by E⃗(z, t) = E(z)ϵ̂e−ıωt and assumed to be initially
linearly polarized in x-direction.
b. Express the motion of the electron in the xy-plane in a new basis given by ê± =
1√
2
(êx ± ıêy).

c. Solve the equations of motion for the decoupled components s±(z, t) ≡ sx ∓ ısy
and determine the susceptibility.
d. Calculate the electric field and the angle by which the linear polarization vector is
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rotated as a function of z.

Solution: a. We write the equations for an electron at position s bound to a molecule
in a dielectric medium subject to an electric and a magnetic field as,

mes̈+meγω ṡ+meω
2
0S⃗ = −e(E⃗ + ṡ× B⃗) . (18.181)

Now, we describe the electric field as a plane wave propagating in z-direction and
being, at z = 0, linearly polarized in x-direction, E⃗(0, t) = E(0)êxe−ıωt. In the internal
region of the dielectric, the electric field will acquire components along êx and êy. Thus
we have to allow for a general ansatz,

E⃗(z, t) = Ex(z)êx + Ey(z)êy . (18.182)

In the equation of motion (18.181), due to the construction of the plane wave, the
force applied to the electron is contained in the xy-plane, thus leading to a harmonic
motion confined to this plane. Thus, the evolution of the components Ex,y under the

action of the fields E⃗ and B⃗ must be determined.

Figure 18.19: Scheme of the Faraday effect.

b. The position of the electron s is obtained as the response of the medium to the action
of the wave’s electric field. That is, the wave induces a movement of the electron, so
we can write s(z, t) = sx(z, t)êx + sy(z, t)êy. Replacing s(z, t), E⃗(z, t), and B⃗ in
Eq. (18.181) we obtain,

me(s̈xêx + s̈yêy) +meγω(ṡxêx + ṡyêy) +meω
2
0(sxêx + syêy) (18.183)

= −e(Exêx + Eyêy) + e(ṡxBêy − ṡyBêx) .

Eq. (18.182) represents a system of coupled equations. We now replace the base
formed by êx and êy with the base formed by the circular polarization vectors ê± =
1√
2
(êx ± ıêy). Separating the terms of this equation by components we get,

(s̈x + ıs̈y) + (γω − ıΩ)(ṡx + ıṡy) + ω2
0(sx + ısy) = − e

me
(Ex + ıEy) (18.184)

(s̈x − ıs̈y) + (γω + ıΩ)(ṡx − ıṡy) + ω2
0(sx − ısy) = − e

me
(Ex − ıEy) ,
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where Ω = eB/me is the cyclotron frequency. Defining new variables,

s±(z, t) ≡ sx(z, t)∓ ısy(z, t) , E±(z, t) = [Ex(z)∓ ıEy(z)]e−ıωt = E0eı(k±z−ωt) ,
(18.185)

a new system of equations is obtained from (18.184),

s̈+ + (γω + ıΩ)ṡ+ + ω2
0s+ = − e

me
E0eı(k+z−ωt) (18.186)

s̈− + (γω − ıΩ)ṡ− + ω2
0s− = − e

me
E0eı(k−z−ωt) .

In doing so, we allowed for the possibility that the two circularly polarized plane waves
may have different propagation velocities and thus phase shifts.
c. Neglecting γω the solutions for s± are as follows:

s±(z, t) =
−eE0

me(ω2
0 − ω2 ± ωΩ)e

ı(k±z−ωt) =
−eE±(z, t)

me(ω2
0 − ω2 ± ωΩ) . (18.187)

With these equations, the components of the electric dipole moment, d±(z, t) = −es±(z, t)
and the total polarization vector, P±(z, t) = Nd±(z, t) are, in the case of a linear di-
electric,

P±(z, t) = ε0χεE±(z, t) =
−Ne2E±(z, t)

me(ω2
0 − ω2 ± ωΩ) . (18.188)

Thus the susceptibility in the circular basis is,

χε± =
Ne2

meε0(ω2
0 − ω2 ± ωΩ) (18.189)

d. Physically, this result represents the difference between the refraction indices n+ and
n− obtained through the application of the magnetic field. The electric field (18.185)
at a position z inside the dielectric becomes in the Cartesian basis, making the sub-
stitutions k± = n±k0, n̄ = (n+ + n−)/2, and δn = n+ − n−,

E⃗(z, t) = E0eı(n̄k0z−ωt)[êx cos δn k0z
2 − êy sin

δn k0z
2 ] . (18.190)

The angular rotation of the polarization is,

ϕ(z) = − 1
2δn k0z . (18.191)

Since n2± = 1+χε± for a linear dielectric, expanding in Ω up to first order, we obtain,

δn = − Ne2ωΩ

meε0(ω2
0 − ω2)

and n̄ =

√
1 +

Ne2

meε0(ω2
0 − ω2)

. (18.192)

Substituting k0 = ω/c,

ϕ(z) = − Ne3ω2

m2
eε02c(ω

2
0 − ω2)2

Bz ≡ V Bz . (18.193)

V it is called Verdet constant and is characteristic for the medium and also depends
on the wavelength on the incident light [132, 767].
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18.2.7.10 Ex: Complex refraction index and extinction coefficient

a. Derive the relations n′2 − n′′2 = 1 + χ′ε and 2n′n′′ = χε. Note: In a transparent
dielectric medium there is no absorption, such that, n′2 = 1 + χ′ε =

ε
ε0
.

b. Calculate the absorption coefficient for a light field traversing a dielectric medium.

Solution: a. From,

n′ = Re
√
ϵ = Re

√
1 + χ̃ε = Re

√
1 + χ′ε + ıχ′′ε =

√
1
2

√√
(1 + χ′ε)2 + χ′′2

ε + (1 + χ′ε)

n′′ = Im
√
ϵ = Im

√
1 + χ̃ε = Im

√
1 + χ′ε + ıχ′′ε =

√
1
2

√√
(1 + χ′ε)2 + χ′′2

ε − (1 + χ′ε) ,

we calculate,

n′2 − n′′2 =
(
Re

√
1 + χ′ε + ıχ′′ε

)2
−
(
Im

√
1 + χ′ε + ıχ′′ε

)2
= 1 + χ′ε

2n′n′′ = 2Re
√
1 + χ′ε + ıχ′′εIm

√
1 + χ′ε + ıχ′′ε = χ′′ε .

b. Within a dielectric medium, we obtain the propagating wave solutions of Maxwell’s
equations by substituting k with k̃,

E⃗ = E⃗0eıω(
n′z
c −t)−ω n′′

c z .

The relationship between the amplitudes of the electric and magnetic fields is 24,

B(χ)0 =
√
εµE0 =

√
ε0µ0

√
1 + χ̃ε E0 =

1

c
(n′ + ın′′)E0 = (n′ + ın′′)B0 .

We use the subscript (χ) to mark quantities within the dielectric medium. The average
energy density is,

ū(χ) = 1
2ε0n

′2|E⃗ |2 = n′2ū .

Now, the intensity of the light beam in a dielectric medium is attenuated,

Ī(χ) = 1
µ0
|E⃗ × B⃗| = 1

2ε0cn
′|E⃗ |2 = 1

2ε0cn
′E⃗20e−2ωn

′′z/c = Ī
(χ)
0 e−Kz ,

where
Ī
(χ)
0 = 1

2ε0cn
′E⃗20

is the intensity at the point, where the light enters the medium, and

K = 2
ωn′′

c
=

ω

n′c
χ′′ε

is called absorption coefficient. Note, that the energy flow Ī(χ) in the dielectric medium
is always the product of energy density and propagation velocity c/n′. Note also, since
the frequency ω of the light propagating through the dielectric remains the same, the

wavelength shrinks like λ = c/n′

ν [816].

24In a dielectric medium, µ ≃ µ0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_.pdf
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18.3 Plasmons, waveguides and resonant cavities

18.3.1 Green’s tensor for wave propagation in dielectric media

The electromagnetic field in the presence of macroscopic dielectrics is governed by
an inhomogeneous vector Helmholtz equation. Defining the permittivity and the
permeability as tensor fields D⃗(r, ω) = ϵ(r, ω)ε0E⃗(r, ω) and B⃗(r, ω) = µ(r, ω)µ0H⃗(r, ω)
the Maxwell equations (17.6), become after a temporal Fourier transform,

∇× H⃗ = −ıωϵε0E⃗ + j (18.194)

∇× E⃗ = ıωµµ0H⃗
∇ · ϵε0E⃗ = ϱ

∇ · µµ0H⃗ = 0 .

It is easy to see, that the inhomogeneous Helmholtz equation [786, 946, 210],

[
∇× 1

µ(r, ω)
∇×−ω

2

c2
ϵ(r, ω)

]
E⃗(r, ω) = ıωµ0j(r, ω) (18.195)

satisfies the above Maxwell equations with E⃗(r, ω)→ 0 for r →∞. Using the Green’s
function formalism, the solution to the Helmholtz equation can be given by,

E⃗(r, ω) = ıωµ0

∫

V

d3r′G(r, r′, ω) · j(r′, ω) , (18.196)

where the Green’s tensor is the solution to

[
∇r ×

1

µ(r, ω)
∇r ×−

ω2

c2
ϵ(r, ω)

]
G(r, r′, ω) = δ(3)(r− r′)I (18.197)

together with the boundary condition G(r, r′, ω) → 0 for |r − r′| → ∞. The volume
of integration V is a small volume surrounding the point r = r′ in order to avoid the
singularity.

The Green’s tensor represents the electric field radiated at position r by three
orthogonal dipoles located at r′.

18.3.1.1 Bulk medium

Let us now consider the simplest case of a bulk medium, i.e. an infinitely extended,
homogeneous dielectric independent of r, that is, ϵ(r, ω) = ϵ(ω) and µ(r, ω) = µ(ω).
In this case, the Helmholtz equation further simplifies to,

[∇r ×∇r ×−k(ω)2]E⃗b(r, ω) = ıωµ0j(r, ω) (18.198)

with k(ω)2 = ω2

c2 µ(ω)ϵ(ω) defined at r. The Green tensor is then the solution to,

∇r ×∇r × Gb(r, r′, ω)− k2Gb(r, r′, ω) = δ(3)(r− r′)I . (18.199)
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18.3.1.2 The scalar Helmholtz equation

The bulk medium vector Helmholtz equation (18.199) can be reduced to a scalar
Helmholtz equation. To that end, we take its divergence and find,

∇ · Gb(r, r′, ω) = − 1
k2∇δ(3)(r− r′) . (18.200)

Using this identity and expanding,

∇r×∇r×Gb =




∂2
x −△ ∂x∂y ∂x∂z

∂x∂y ∂2
y −△ ∂y∂z

∂x∂z ∂y∂z ∂2
z −△







Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz


 = (∇⊗∇− I△)Gb ,

(18.201)
we may write,

[∆ + k2]Gb(r, r′, ω) = ∇∇ · Gb(r, r′, ω)−∇×∇× Gb(r, r′, ω) + k2Gb(r, r′, ω)
= ∇∇ · Gb(r, r′, ω)− δ(3)(r− r′)I

= − 1
k2∇∇δ(3)(r− r′)− δ(3)(r− r′)I = −

[
I+ 1

k2∇∇
]
δ(3)(r− r′) . (18.202)

The vector Helmholtz equation can hence be solved by writing,

Gb(r, r′, ω) =
[
I+ 1

k2∇∇
]
g(r, r′, ω) , (18.203)

where the scalar Green function g obeys the scalar Helmholtz equation,

[△+ k2]g(r, r′, ω) = −δ(3)(r− r′) , (18.204)

the solution of which is simply,

g(r, r′, ω) =
eık|r−r

′|

4π|r− r′| , (18.205)

where the boundary condition at infinity implies that k must have a positive imaginary
part, k =

√
ε(ω)ωc with Im k > 0. Combining these results, we obtain the Green

tensor of a bulk medium [994, 210],

Gb(r, r′, ω) =
[
I+ 1

k2∇∇
] eık|r−r

′|

4π|r− r′| (18.206)

=
δ(3)(R)I

3k2
− eıkR

4πk2R3

{
[1− ıkR− (kR)2]I− [3− 3ıkR− (kR)2]êR ⊗ êR

}
,

with R ≡ r− r′, as will be shown in Exc. 18.3.7.1. The real and imaginary part are
(for R ̸= 0),

4π
k Re Gb(r, r′, ω0) = (I− êR ⊗ êR)

cos kR

kR
− (I− 3êR ⊗ êR)

(
sin kR

k2R2
− cos kR

k3R3

)

4π
k Im Gb(r, r′, ω0) = (I− êR ⊗ êR)

sin kR

kR
+ (I− 3êR ⊗ êR)

(
cos kR

k2R2
− sin kR

k3R3

)
.

(18.207)
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Furthermore is is possible to show [210],

Re Gb(r, r, ω) = 0 and Im Gb(r, r, ω) =
k

6π
I . (18.208)

Example 108 (Electric field of a point dipole in an inhomogeneous di-
electric): Parametrizing the current generated by a point dipole located at
r = rs by

j(r, ω) = −ıωdsδ(3)(r− rs) , (18.209)

the generated electric field in an environment characterized by the Green func-
tion G(r, rs, ω) can be evaluated from Eq. (18.196),

E⃗(r, rs, ω) = ω2µ0G(r, rs) · ds . (18.210)

Using the solution (18.206) for bulk media we find,

E⃗b(r, rs, ω) = ω2µ0

[
− eıkR

4πk2R3

{
[1− ıkR− (kR)2]I− [3− 3ıkR− (kR)2]êR ⊗ êR

}]
·ds .

(18.211)

with k = k(ω).

18.3.1.3 Bulk medium Green tensor projected on particular orientations

The Green tensor can be used to relate two dipoles êd and ê′d respectively located at
r and r′. Using the identity,

R2ê′∗d (êR ⊗ êR)êd =
(
d′x d′y d′z

)



x2 xy xz

xy y2 yz

xz yz z2







dx

dy

dz


 = (ê′d · êR)(êd · êR) ,

(18.212)
we calculate from (18.207),

4π
k
ê′∗d Re Gb(r, r′, ω) êd (18.213)

= [ê′d · êd − (ê′d · êR)(êR · êd)]
cos kR

kR
− [ê′d · êd − 3(ê′d · êR)(êR · êd)]

(
sin kR

k2R2
− cos kR

k3R3

)
4π
k
ê′∗d Im Gb(r, r′, ω) êd

= [ê′d · êd − (ê′d · êR)(êR · êd)]
sin kR

kR
+ [ê′d · êd − 3(ê′d · êR)(êR · êd)]

(
cos kR

k2R2
− sin kR

k3R3

)
.

Note that dipole moment is complex in the case of circular polarization. The formula
(18.213) simplifies when the dipoles are parallel,

4π
k
ê∗d Re Gb(r, r′, ω) êd = [1− (êd · êR)2] cos kR

kR
− [1− 3(êd · êR)2]

(
sin kR

k2R2
+

cos kR

k3R3

)
4π
k
ê∗d Im Gb(r, r′, ω) êd = [1− (êd · êR)2] sin kR

kR
+ [1− 3(êd · êR)2]

(
cos kR

k2R2
− sin kR

k3R3

)
.

(18.214)
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Figure 18.20: (code) Real and imaginary part of the bulk Green tensor for various orienta-

tions of the dipoles: ê′∗d = êx and êd as indicated in the legend.

18.3.1.4 Dispersion relation in anisotropic media

A homogeneous medium can still be anisotropic if,

ϵ(r, ω) = ϵ(ω) although ϵ(ω) · êr ̸= const . (18.215)

Then, ϵ(ω) and µ(ω) still need to be represented by tensors, which however do not
depend on coordinates. The Helmholtz equation then simplifies to,

[
∇r ×∇r ×−

ω2

c2
µ(ω)ϵ(ω)

]
E⃗b(r, ω) = ıωµ0j(r, ω) , (18.216)

in analogy to (18.198). Assuming no currents, j(r, ω) = 0, and plane electromagnetic

waves, E⃗b(r, ω) = E⃗0(ω)eık·(r−r
′), we obtain with the identity (18.201),

0 =

[
∇r ⊗∇r − I△− ω2

c2
µϵ

]
E⃗0eık·(r−r

′) (18.217)

=

[
−k⊗ k+ k2 − ω2

c2
µϵ

]
E⃗0eık·(r−r

′) ,

where µϵ is to be understood as a product between two matrices. From this we derive
the dispersion relation,

0 =

∣∣∣∣−kikj + k2δij −
ω2

c2
(µ)il(ϵ)lj

∣∣∣∣ , (18.218)

for i, j = x, y, z.
We will discuss anisotropic homogeneous media in the context of hyperbolic meta-

materials in Sec. 18.3.3.

18.3.1.5 Interaction between dipoles near dielectric media

The vector Green tensor describes the interaction between two points in space via an
electromagnetic field. It can be used to solve a variety of problems, for example,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_BulkGreenTensor.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_BulkGreenTensor.m


980 CHAPTER 18. ELECTROMAGNETIC WAVES

• the interaction between dipoles in free space;

• the modification of a dipole due to the presence of a dielectric boundary (Purcell
effect);

• the modification of the interaction between dipoles due to the presence of a
dielectric boundary.

The linearity of Maxwell’s equations allows us to exploit the superposition prin-
ciple applying it to the Green tensor. For example, we can express the interaction
between two point dipoles r1 and r2 near a dielectric boundary by simply adding to
the bulk tensor for their interaction in free space Gb(r1, r2, ω) a tensor Gd(r1, r2, ω)
accounting for the presence of the dielectric,

G = Gb + Gd . (18.219)

18.3.2 Plasmons at metal-dielectric interfaces

A surface plasmon polariton (SPP) or simply plasmon is an electromagnetic wave in
the infrared or visible spectral regime, which propagates along a metal-dielectric or
metal-air interface. The term SPP explains that the wave involves both, the motion
of charges in the metal and electromagnetic waves in the air or the dielectric.

SPPs are a type surface waves, guided along the interface in a similar way as
light can be guided by an optical fiber. The wavelengths of SPPs are shorter than
that of the incident light, which created them. Thus, they can be more localized and
more intense. Perpendicularly to the interface, they are confined to the scale of a
wavelength. The propagation of SPPs along the interface is limited by absorption
losses in the metal or by photon scattering into other directions, e.g. into free space.

SPPs can be excited by electronic or photonic bombardment. For a photon to ex-
cite an SPP, both must have the same frequency and the same momentum. However,
at a given frequency, a free space photon has less momentum than an SPP because
the two have different dispersion relations (see below). Therefore, a photon coming
from free space can not directly couple to an SPP. For the same reason, an SPP
(on a perfectly smooth metal surface) can not emit photons into free space (assumed
uniform). This incompatibility is analogous to the absence of transmission at total
internal reflection.

However, the coupling of photons to SPPs can be achieved using a coupling
medium, such as a dielectric or a grating, designed to match the wavevectors of
photons and SPPs, until their momenta coincide. For example, a glass prism may
be positioned against a thin metal film in Kretschmann configuration, as shown in
Fig. 18.21(a). Single insulated surface defects, such as isolated or periodic grooves,
slits or elevations, provide a mechanism coupling free space radiation and SPPs, which
then can exchange energy.

18.3.2.1 Fields and plasmonic dispersion relation

The properties of a SPP can be derived from Maxwell’s equations. Let z > 0 be the
space occupied by the dielectric and z < 0 the space occupied by the metal. The
electric and magnetic fields must obey Maxwell’s equations and, in particular, the
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Figure 18.21: (code) (a) Kretschmann configuration of attenuated total reflection for
the coupling of surface plasmons. The component of the scattered wavevector parallel
to the surface forms SPPs, which then propagate along the metal-dielectric interface.
(b) Dispersion curve for a SPP (blue). At low kx it approaches the photonic dispersion
curve (red).

boundary conditions (18.42)(i-iv) at the interface. We will show in Exc. 18.3.7.2, that
the fields must have the following form:

H⃗n(r, t) =




0

1

0


H0e

ıkxx+ıkz,n|z|−ıωt , E⃗n(r, t) =




±kz,n
0

−kx



H0

ωεn
eıkxx+ıkz,n|z|−ıωt ,

(18.220)
under the condition that,

kz,m
εm

= −kz,d
εd

, (18.221)

where n indicates the material (n = m for the metal and n = d for the dielectric).
This condition guarantees the continuity of the electric field parallel to the boundary.
Upper signs apply to the dielectric region (z > 0) and lower signs to the metallic
region (z < 0). That is, SPPs are always transverse magnetic waves (TM). The
wavevector k is complex. In case of a lossless SPP, the kx component is real and the
kz component imaginary,

kz,m = ıκz,m , (18.222)

such that the wave propagates along the x-direction and decays exponentially toward
±z. While kx is always the same in both materials, kz,m is generally different from
kz,d. Entering the fields (18.220) in the wave equation,

∇2H⃗n = εnµn
∂2H⃗n
∂t2

, (18.223)

we easily verify that,

k2x + k2z,n = ω2εnµn = ϵn

(ω
c

)2
, (18.224)

where we assume µn = µ0 and εn = ε0ϵn, where the ’breve’ denotes relative permittiv-
ities. Solving the two equations (18.224) for n = m,d together with the relationship

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_PlasmonDispersion.m
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(18.221), we obtain the dispersion relation for a plasmon wave propagating on the
surface,

kx =
ω

c

√
ϵdϵm
ϵd + ϵm

. (18.225)

To apply this relation in practice, we must specify the two permittivities ϵn. For
simplicity, we assume ϵd = 1, and for ϵm we resort to the Drude model using (18.161),
where for now we despise the attenuation Γd = 0,

ϵm(ω) = 1− ω2
p

ω2
, (18.226)

where ωp is the plasma frequency (18.162). Joining the expressions (18.225) and
(18.226) we obtain,

ckx =

√
ω2 − ω2

p

2ω2 − ω2
p

. (18.227)

This relationship is plotted in Fig. 18.21(b).

At low kx, the SPP behaves like a photon, but as kx increases, the dispersion
relation becomes flatter and reaches an asymptotic limit ωsp called ’surface plasma
frequency’. If ω < ωsp, the SPP has a shorter wavelength than the radiation in the
free space, such that the components kz,m are purely imaginary and exhibit evanescent
decay. The plasma frequency at the surface (ϵd = 1) is,

ωsp = lim
kx→∞

ω =
ωp√
2
. (18.228)

18.3.2.2 Absorption of plasmons

The formula (18.226) predicts εm < 0 below the plasmon frequency. Electromagnetic
waves propagating in metals suffer damping due to ohmic losses and interactions
between the electrons and the atoms of the metallic lattice. These effects appear as
an imaginary component of the dielectric function. To take this into account, we
express the dielectric function of a metal in the complex plane,

ϵm = ϵ′m + ıϵ′′m . (18.229)

Generally, we have, |ϵ′m| ≫ ϵ′′m, such that the wavevector can be expressed in terms
of its real and imaginary components as (see Exc. 18.3.7.3),

kx = k′x + ık′′x =
ω

c

√
ϵdϵ′m
ϵd + ϵ′m

+ ı
ω

c

√
ϵdϵ′m
ϵd + ϵ′m

3

ϵ′′m
2(ϵ′m)2

. (18.230)

The wavevector gives us insight into the physically significant properties of the
electromagnetic wave, such as its spatial extent and mode matching conditions.
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18.3.2.3 Distance of propagation and depth of penetration

As an SPP propagates along the surface, it loses energy to the metal due to absorp-
tion. The intensity of the surface plasmon decays with the square of the electric field,
therefore, over a distance x, the intensity decreases by a factor of e−2kxx. The prop-
agation length is defined as the distance, where the SPP intensity has decreased by a
factor of 1/e. This condition is satisfied at a length L = 1

2k′′x
.

Likewise, the electric field decays perpendicular to the surface of the metal. At
low frequencies, the penetration depth of the SPP into the metal is commonly approx-
imated using the skin depth formula. In a dielectric, the field will decay much more
slowly. The decay depth in the metal and the dielectric medium can be expressed as

zn =
λ

2π

( |ϵ′m|+ ϵd
ϵ2n

)1/2

, (18.231)

where n indicates the propagation medium. SPPs are very sensitive to small pertur-
bations within the skin depth and, therefore, are often used to probe surface inhomo-
geneities. Resolve the Exc. 18.3.7.4.

18.3.3 Negative refraction and metamaterials

The general dispersion relation for anisotropic media has been derived in (18.218),

∣∣∣ω2

c2 ϵilµlj − k2δij + kikj

∣∣∣ = 0 , (18.232)

which, for isotropic media simplifies to ω2

c2 n
2 = k2, where n2 = ϵµ. Apparently,

inverting the signs of both, the permittivity and the permeability, ε, µ < 0 has no
effect on the equations. However, one can show [1335], that inserting into the first
and second Maxwell equations,

∇× H⃗ = ∂tD⃗ , ∇× E⃗ = −∂tB⃗ (18.233)

with D⃗ = εE⃗ , B⃗ = µH⃗

a plane wave, E⃗ , D⃗, B⃗, H⃗ ∝ eı(k·r−ωt),

k× H⃗0 = −ωεE⃗0 , k× E⃗0 = ωµH⃗0 , (18.234)

one obtains for ε, µ > 0, a right-handed triplet of vectors k, E⃗ , H⃗, whereas for ε, µ < 0
one obtains a left-handed triplet. Defining the handedness via,

p ≡ (k× E⃗) · H⃗
|(k× E⃗) · H⃗|

, (18.235)

if p = ±1, we call the material is right(left)-handed. The energy flux,

S⃗ = E⃗ × H⃗ (18.236)

is parallel to k for right-handed materials and anti-parallel for left-handed, which
means that phase and group velocities are reversed. Also, in left-handed materials we
expect a reversed Doppler effect.
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At the interface between two materials with different handednesses, ε1, µ1 > 0 and
ε2, µ2 < 0, the equations (18.42) must still hold,

(i) H⃗∥1 = H⃗∥2
(ii) E⃗∥1 = E⃗∥2
(iii) ε1E⃗⊥1 = ε2E⃗⊥2
(iv) µ1H⃗⊥1 = µ2H⃗⊥2

. (18.237)

but now, the signs of E⊥2 and H⊥2 are inverted. We calculate,

E⃗0 × H⃗0 =
1

ωµ
E⃗0 × (k× E⃗0) =

1

ωµ
[k(E⃗0 · E⃗0)− E⃗0(k · E⃗0)] =

E20
ωµ

k ⇈ −S⃗ . (18.238)

As a consequence Snell’s law (18.57) must be corrected,

sin θt
sin θi

=
n1
n2

=
p2
p1

∣∣∣∣
√
ε2µ2

ε1µ1

∣∣∣∣ . (18.239)

The complex refractive index,

n = n′ + ın′′ = c
√
εµ = c

√
(ε′ + ıε′′)(µ′ + ıµ′′) = c

√
|εµ|eıϕ/2 (18.240)

can have negative real part, Re n < 0, if the angle is ϕ > π, that is, if,

sinϕ =
Im εµ

|εµ| =
ε′′µ′ + ε′µ′′

|εµ| < 0 . (18.241)

Since the absorption is necessarily ε′′, µ′′ > 0, the condition (18.241) is satisfied
if ε′, µ′ < 0. More generally, a sufficient but not necessary condition for negative
refraction is,

ε′|µ′ + ıµ′′|+ µ′|ε′ + ıε′′| < 0 . (18.242)

The direction of the phase velocity is k, while the energy flows along S⃗ = E⃗ × H⃗.
For n′ > 0 the dispersive medium is called right-handed, because k, E⃗ and H⃗ form a
tripod. For n′ < 0 the medium is called left-handed, because −k, E⃗ and H⃗ form a
tripod, that is, k and S⃗ are contrary. We will check this in Exc. 18.3.7.5. Such media
are always very dispersive.

Left-handed media have attracted much attention, because of the theoretical pos-
sibility of performing perfect lenses with a focusing power not being limited by diffrac-
tion. Left-handed media are studied in non-homogeneous and non-isotropic metama-
terials 25, but there are also ideas on how to design them in homogeneous and isotropic
atomic gases 26

25See [1010, 1011, 1193, 824, 825, 827, 826, 1013, 62, 1291, 252, 211, 820, 1187, 790].
26See Sec. 34.7 and Excs. 34.8.4.11 and 34.8.4.12 .
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Figure 18.22: Refraction at the interface between ’right-handed’ and ’left-handed’ media.

18.3.3.1 Hyperbolic metamaterials

Hyperbolic metamaterials (HMM) are artificial media with sub-optical-wavelength
nano-structuring, which exhibit unusual optical properties. In particular, they are
characterized by extreme anisotropy, behaving like dielectrics when illuminated from
one side and like metals when illuminated from another. As already mentioned in
Sec. 18.3.1, in a hyperbolic metamaterial the dispersion relation is anisotropic, corre-
sponding to permittivity and permeability tensors of the form,

ε =




ε⊥

ε⊥

εq


 and µ =




µ⊥

µ⊥

µq


 . (18.243)

In the case ε⊥εq < 0 or µ⊥µq < 0 the dispersion relation,

k2x + k2y
εq

+
k2z
ε⊥

=
(ω/c)2

ε0
, (18.244)

becomes hyperbolic 27. In Exc. 18.3.7.7 we derive from the Maxwell equations, allow-
ing for an anisotropic (but homogeneous) permittivity tensor, the hyperbolic disper-
sion relation.

Example 109 (Interest of hyperbolic metamaterials): Hyperbolic meta-

materials are investigated for their potential interest in engineering the decay

routes of quantum emitters by manipulating the local density-of-states. The

reason is, that HMMs allow for the propagation of modes with wavevectors

(known as high-k modes) much higher than the free-space wavevector. Thus,

the evanescent waves (also with high-k) of an emitter couple more easily to a

sufficiently close HMM, and thus emitting their photons faster.

The elementary cells of a metamaterial are often complicated, and a stratifi-

cation is helpful to describe its response to incident light. For example, many

features of an HMM can be grasped by frequency-dependent effective permit-

tivity and permeability tensors.

27Note that a more correct treatment would need to account for the polarizations of the electric
and magnetic fields. We leave this to an upcoming version of the script.
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Figure 18.23: Isofrequency surfaces of hyperbolic dispersion relations. (a) Isotropic dielectric
(ε⊥ = εq); (b) two-sheeted hyperboloid (ε⊥ < 0 and εq > 0); (c) one-sheeted hyperboloid
(ε⊥ > 0 and εq < 0). (d-f) Projection of the two-dimensional isofrequency surfaces shown in
(a-c) on the ky = 0 plane. The yellow-shaded areas correspond to lossy regions (real parts).

In Exc. 18.3.7.8 we show, that the effective permittivity of a nanostructure having
the shape of a stack of alternating intrinsically homogeneous layers with permittivities
εd and εm and thicknesses dd, dm ≪ λ [see Fig. 18.24(b)] is given by [1123],

εq =
εddd + εmdm
dd + dm

and
1

ε⊥
=
dd/εd + dm/εm

dd + dm
. (18.245)

Figure 18.24: Hyperbolic dispersion materials. In order to achieve a negative permittivity
in a given direction, the electrons must move freely along it, like in a metal.

Example 110 (Anisotropy of a metamaterial): For example, choosing dm =

dd, εd = 1 and εm = −2, we obtain εq =
1
4
and ε⊥ = − 1

2
.

In Exc. 18.3.7.9 we discuss, whether it is possible to realize a hyperbolic dispersion
relation in an atomic gas.



18.3. PLASMONS, WAVEGUIDES AND RESONANT CAVITIES 987

18.3.4 Wave guides

The presence of conductive interfaces influences the propagation of electromagnetic
waves. Interfaces, which influence the propagation direction of electromagnetic waves
are called waveguides. Let us consider a waveguide such as the one illustrated in
Figs. 18.25. In the volume enclosed by the waveguide, supposedly perfectly conductive
(E⃗ = 0 = B⃗ inside the wave guide material), every electromagnetic field must satisfy
the boundary conditions (18.42), that is, we have,

E⃗∥ = 0 and B⃗⊥ = 0 (18.246)

on all interior surfaces of the waveguide. Free surface charges and currents will auto-
matically be generated in such a way as to endorse these conditions, and all conclusions
derived in the following sections are basically corollaries of these boundary conditions.

Figure 18.25: Waveguides of arbitrarily (i) and rectangular (ii) shape.

Let us now consider monochromatic waves propagating along a tube oriented in
z-direction,

E⃗(x, y, z, t) = E⃗(x, y)eı(kzz−ωt) and B⃗(x, y, z, t) = B⃗(x, y)eı(kzz−ωt) . (18.247)

Obviously, the E⃗ and B⃗ fields must simultaneously satisfy the vacuum Maxwell equa-
tions (17.6) inside the guide and the boundary conditions (18.246). To implement
these conditions, we reformulate Maxwell’s equations. We insert (18.247) and the

expansions E⃗(x, y) =
∑
k=x,y,z Ek(x, y)êk and B⃗(x, y) =

∑
k=x,y,z Bk(x, y)êk in the

Maxwell equations (17.6)(i) and (ii) and obtain,

(i) ∂yEz − ıkzEy = ıωBx (ii) ∂yBz − ıkzBy = −ı ωc2 Ex
(iii) ıkzEx − ∂xEz = ıωBy (iv) ıkzBx − ∂xBz = −ı ωc2 Ey
(v) ∂xEy − ∂yEx = ıωBz (vi) ∂xBy − ∂yBx = −ı ωc2 Ez .

(18.248)
Inserting the component By of the third into the second equation, the Bx of the first
into the fourth equation, the Ey of the fourth into the first equation, and the Ex of
the second in the third equation, we arrive at,

(i) Ex = ı
(ω/c)2−k2z (kz∂xEz + ω∂yBz)

(ii) Ey = ı
(ω/c)2−k2z (kz∂yEz − ω∂xBz)

(iii) Bx = ı
(ω/c)2−k2z (kz∂xBz −

ω
c2 ∂yEz)

(iv) By = ı
(ω/c)2−k2z (kz∂yBz +

ω
c2 ∂xEz) .

(18.249)
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And inserting these equations into Maxwell’s equations (iii) and (iv), we arrive at,

[
∂2

∂x2
+

∂2

∂y2
+ (ω/c)2 − k2z

]
Ez = 0 =

[
∂2

∂x2
+

∂2

∂y2
+ (ω/c)2 − k2z

]
Bz . (18.250)

Hence, we can solve the waveguide problem by first solving the wave equations for the
components Ez and Bz and then inserting the solutions into Eqs. (18.249) in order to
obtain the other field components.

When Ez = 0 we call these waves transverse electric waves (TE), when Bz =
0 we call them transverse magnetic waves (TM), and when Ez = 0 = Bz we call
them transverse electro-magnetic waves (TEM). TEM waves can not exist in a hollow
waveguide, as we will show in Exc. 18.3.7.10.

18.3.4.1 Waveguide with constant rectangular cross section

Here, we consider the transmission of TE waves through a waveguide of constant
rectangular cross-section, as shown in Fig. 18.25(ii). Similarly to the procedure for
solving the Laplace equation in electrostatics, we make a separation ansatz for the
variables in a way suggested by the symmetry of the problem, that is, we assume the
existence of two functions X and Y , such that inserting the ansatz

Ez = 0 and Bz = X(x)Y (y) , (18.251)

in the wave equation,

Y
d2X

dx2
+X

d2Y

dy2
+ [(ω/c)2 − k2z ] = 0 , (18.252)

leaves us with,

1

X

d2X

dx2
= −k2x and

1

Y

d2Y

dy2
= −k2y with −k2x−k2y+(ω/c)2−k2z = 0 . (18.253)

Bx must vanish on the surfaces at x = 0, a and, because of (18.249)(iii) ∂xBz as well,
such that dX/dx = 0, that is, X is a cosine. In the same way, By must vanish on the
surfaces at y = 0, b, such that Y is a cosine. Therefore, the solution is,

Bz = B0 cos kxx cos kyy with kx = mπ
a and ky = nπ

b . (18.254)

With this, the wavevector becomes,

kz =
√
(ω/c)2 − π2[(m/a)2 + (n/b)2] . (18.255)

Consequently, the frequency must be higher than,

ω > cπ
√
(m/a)2 + (n/b)2 ≡ ωmn , (18.256)



18.3. PLASMONS, WAVEGUIDES AND RESONANT CAVITIES 989

to avoid exponentially attenuated fields. The frequency ωmn is called cut-off fre-
quency. The components Bx and By can be determined from (18.249)(iii) and (iv),

E⃗ = E0




ıωky
k2x+k

2
y
cos kxx sin kyy

−ıωkx
k2x+k

2
y
sin kxx cos kyy

0


 eı(kzz−ωt)

B⃗ = B0




ıkzkx
k2x+k

2
y
sin kxx cos kyy

ıkzky
k2x+k

2
y
cos kxx sin kyy

cos kxx cos kyy


 eı(kzz−ωt)

. (18.257)

Inserting ωmn in the dispersion relation (18.255), we notice that the formula for
the phase propagation velocity,

c =
ω

kz
=

c√
1− (ωmn/ω)2

> c , (18.258)

predicts a velocity above the speed of light. However, the group velocity,

vg =
1

dkz/dω
= c
√

1− (ωmn/ω)2 < c , (18.259)

is slower. Resolve Exc. 18.3.7.11 and 18.3.7.12 28.

18.3.5 The coaxial line

We have already mentioned the possibility of TEM waves in a coaxial waveguide, as
shown in Fig. 18.26. Inserting Ez = 0 = Bz in the equations (18.248) we obtain,

cBy = Ex and cBx = −Ey
∂xEy − ∂yEx = 0 = ∂xBy − ∂yBx
∂xEx + ∂yEy = 0 = ∂xBx + ∂yBy

, (18.260)

where we join the Maxwell equations (iii) and (iv) in the last line. In Exc. 18.3.7.13
we will show that,

E⃗(ρ, ϕ, z, t) = A cos(kzz − ωt)
ρ

êρ and B⃗(ρ, ϕ, z, t) = A cos(kzz − ωt)
cρ

êϕ ,

(18.261)
satisfies Maxwell’s equations. Solve Exc. 18.3.7.14.

28Rectangular waveguides are used, for example, in radio detection and ranging (RADAR) systems
to guide microwave signals from a synthesizer to an antenna.
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a

b

Figure 18.26: Guia de onda coaxial.

18.3.6 Cavities

An optical resonator consists of an arrangement of mirrors reflecting light beams
in such a way as to form a closed path. Light which entered the cavity carries
out many round-trips before it is transmitted again through a (partially reflecting)
mirror, scattered out of the cavity mode or absorbed by impurities in the mirrors.
Thus, the light power is considerably increased. That is, cavities can store light. Do
Exc. 18.3.7.15 to 18.3.7.17.

In order to resonate in a cavity, a light beam must satisfy the boundary condition,
that the mirror surfaces coincide with nodes of the standing light wave formed by the
beam and its reflections at the mirrors. Therefore, in a cavity of length L, only a
discrete spectrum of wavelengths Nλ/2 = L can be resonantly amplified, where N is
a natural number. Because of this property, cavities are often used as frequency filters
or optical spectrum analyzers: Only frequencies close to ν = Nδfsr are transmitted,
where δfsr = c/2L is the called the free spectral range of the cavity.

A cavity is characterized on one hand by its geometry, that is, the curvature and
the distance of its mirrors, and on the other hand by its finesse, which is given by the
reflectivity of its mirrors. Let us first study the finesse and postpone the discussion
of its geometry to Sec. 18.4.1. Treating the cavity as a multiple path interferometer
(or Fabry-Perot cavity), we can derive an expression for the reflected and transmitted
intensity as a function of frequency,

(k +∆k)L =
(ωc +∆)L

c
=
ωc +∆

2δfsr
= πN +

∆

2δfsr .
(18.262)

Figure 18.27: Multiple interference in an optical cavity of two mirrors characterized by
reflectivities r1,2.
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The so-called Airy formulas for reflection and transmission are,

Irefl = Iin
(2F/π)2 sin2(∆/2δfsr)

1 + (2F/π)2 sin2(∆/2δfsr)

Itrns = Iin
1

1 + (2F/π)2 sin2(∆/2δfsr)

, (18.263)

where R = |r|2 is the reflectivity of a mirror and ∆ the detuning between the laser
and the cavity (in radians/s). We will derive the formulas in Exc. 18.3.7.18. The
transmission curve of the cavity has a finite bandwidth κint, which depends on the
reflectivity of the mirrors. The finesse of the cavity is defined by,

F ≡ 2πδfsr
κint

=
π
√
R

1−R . (18.264)

Note that δfsr is given in terms of a real frequency, while κint is a radiant 29.
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Figure 18.28: (code) Transmission and reflection of a resonator. The chosen mirror reflectiv-

ities are R = 70%, the absorption losses S = 1%. The red dash-dotted line is the Lorentzian

approximation. Apparently, it fails off resonance.

The Airy formula was derived under the assumption of plane waves, but this
assumption is not always realistic. Indeed, as we will show in Sec. 18.4.1, light prop-
agates in transversely delimited modes and is subject to diffraction. We will see, that
the resonance of a cavity not only depends on the order number N of the longitudi-
nal mode, but also on the order of the transverse mode. The free space modes are
TEM-modes.

18.3.6.1 Damping of the cavity

The decay time τ of the cavity is defined by the number of ’round-trips’ with reflections
at both mirrors R1 and R2, that a light beam can do before its intensity falls to e−1

of its original value [1407](p.148):

I(τ) = I0
√
R1R2

cτ/2L !
= e−1I0 . (18.265)

29Note, that κint is defined as the FWHM of the intensity transmission curve.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AiryFormel.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AiryFormel.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_AiryFormel.m
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Letting R1 = R2 = 1− T , this yields,

τ =
2L

c

ln e−1

lnR1R2
=

1

δfsr

−1
ln(1− T )2 ≃

1

δfsr

1

2T
(18.266)

=
1

2δfsr

1

1−√R1R2

≃ F

2πδfsr
=

1

κint
,

approximating
√
R ≃ 1. Hence, κint has also the meaning of a intensity decay con-

stant 30.

18.3.7 Exercises

18.3.7.1 Ex: Green function for vector Helmholtz equation

Derive the expression (18.206) in Cartesian coordinates.

Solution: To evaluate,

[
I+ 1

k2∇∇⊺
] eıkR
4πkR

,

we first calculate the first and second derivatives in Cartesian coordinates,

∂

∂x

eıkR

4πkR
= (−1 + ıkR)x

eıkR

4πkR3

∂

∂x

(
(−1 + ıkR)x

eıkR

4πkR3

)
= [(−3 + ıkR)x2 +R2](−1 + ıkR)

eıkR

4πkR5

∂

∂y

(
(−1 + ıkR)x

eıkR

4πkR3

)
= (−3 + ıkR)xy(−1 + ıkR)

eıkR

4πkR5
.

With this,

[
I+ 1

k2
∇∇

]
eıkR

4πkR
=


1 0 0

0 1 0

0 0 1

 eıkR

4πkR
+


∂2
x ∂x∂y ∂x∂z

∂y∂x ∂2
y ∂y∂z

∂z∂x ∂z∂y ∂2
z

 (−1 + ıkR)eıkR

4πk3R5

=
eıkRI
4πkR

+


(−3 + ıkR)x2 +R2 (−3 + ıkR)xy (−3 + ıkR)xz

(−3 + ıkR)xy (−3 + ıkR)y2 +R2 (−3 + ıkR)yz

(−3 + ıkR)xz (−3 + ıkR)yz (−3 + ıkR)z2 +R2

 (−1 + ıkR)eıkR

4πk3R5

= − eıkR

4πk3R3

{
[1− ıkR− (kR)2]I+ (3− 4ıkR− (kR)2)êR ⊗ êR

}
.

See also [210].

30It should not be confused with the electric field amplitude decay rate defined as κ = κint/2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PlasmonField00.pdf
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18.3.7.2 Ex: The fields of a plasmon

From the ansatz,

H⃗n(r, t) =




0

Hy,n
0


 eıkxx+ıkz,n|z|−ıωt

for a plasmonic wave, with n = m in the metallic region (z < 0) and n = d in the
dielectric region (z > 0), construct the electric and magnetic fields on both sides of a
metal-dielectric interface.

Solution: From Maxwell’s first equation we know, E⃗n ∝ ∇ × H⃗n, such that the
fields have the generic form,

H⃗n(r, t) =




0

Hy,n
0


 eıkxx+ıkz,n|z|−ıωt , E⃗n(r, t) =




Ex,n
0

Ez,n


 eıkxx+ıkz,n|z|−ıωt .

In the interface, the fields must meet the conditions (18.98)(i-iv), giving,

Hy,m = Hy,d ≡ H0 , Ex,m = Ex,d ≡ E0 , εmEz,m = εdEz,d .

Inserting H⃗n(r, t) in Maxwell’s first equation,

∇× H⃗n =




−∂zH0

0

∂xH0


 =




∓ıkz,n
0

ıkx


H0e

ıkxx+ıkz,n|z|−ıωt

= εn




E0
0

Ez,n


 ∂te

ıkxx+ıkz,n|z|−ıωt = ∂tεnE⃗n ,

where the upper signs hold for the dielectric region (z > 0), we can determine,

∓ıkz,nH0 = −ıωεnE0 and ıkxH0 = −ıωεnEz,n ,

such that,

H⃗n(r, t) =




0

1

0


H0e

ıkxx+ıkz,n|z|−ıωt , E⃗n(r, t) =




±kz,n
0

−kx



H0

ωεn
eıkxx+ıkz,n|z|−ıωt ,

under the condition that,
kz,m
εm

= −kz,d
εd

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PlasmonField01.pdf
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For metals, as we know from Eqs. (18.87) and (18.161), the wavevector and the per-
mittivity can be complex. For lossless plasmons, according to (18.222) the wavevector
in z-direction is purely imaginary, such that fields stick to the surface and propagate
along it.

18.3.7.3 Ex: Absorption of plasmons

Derive the expression (18.230).

Solution: The complex dispersion relation is,

ckx = c(k′x + ık′′x) = ω

√
ε̂d(ε̂′m + ıε̂′′m)

ε̂d + ε̂′m + ıε̂′′m

= ω
√
ε̂d

√
ε̂′m(ε̂d + ε̂′m) + (ε̂′′m)2

(ε̂d + ε̂′m)2 + (ε̂′′m)2
+ ı

ε̂′′m(ε̂d + ε̂′m)− (ε̂′′m)2

(ε̂d + ε̂′m)2 + (ε̂′′m)2
.

neglecting quadratic terms and expanding for small ε̂′′m,

ckx ≃ ω
√

ε̂d
ε̂d + ε̂′m

√
ε̂′m + ıε̂′′m = ω

√
ε̂dε̂′m
ε̂d + ε̂′m

(
1 +

ıε̂′′m
2ε̂′m

+ ..

)
= ckx

(
1 +

ıε̂′′m
2ε̂′m

+ ..

)
.

18.3.7.4 Ex: Poynting vector of plasmons

At the interface between the vacuum and a metal surface there live solutions of the
Maxwell equations, which decay exponentially in z-direction. We consider in this
exercise only those parts of the waves, which live on the vacuum side z > 0, as
illustrated in Fig. 18.21(a). The magnetic field, in this scheme, takes the following
form:

H⃗(r, t) =




0

H0

0


 cos(kx− ωt)e−κz (z > 0) .

a. Derive with the help of Maxwell’s equation ∇ × H⃗ − ∂D⃗
∂t = j the corresponding

electric field E⃗(r, t) in the half-space z > 0.

b. Calculate the Poynting vector S⃗(r, t) in the half-space z > 0.
c. Calculate the total energy flow in x-direction. To do this, calculate the average
over an oscillation period and integrate over the half-space z > 0.

Solution: a. The electric field follows with j = 0 and D⃗ = ε0E⃗ from,

∇× H⃗ =




−∂zHy
0

∂xHy


 =




H0κ cos(kx− ωt)e−κz

0

−H0k sin(kx− ωt)e−κz


 = ∂tε0E .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_PlasmonField02.pdf
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We now integrate the result by t:

∫
dt




H0κ cos(kx− ωt)e−κz

0

−H0k sin(kx− ωt)e−κz


 =




−H0κ
ω sin(kx− ωt)e−κz

0

−H0k
ω cos(kx− ωt)e−κz


 .

With this, we obtain:

E⃗ =
−H0

ωε0
e−κz




κ sin(kx− ωt)
0

k cos(kx− ωt)


 .

b. The Poynting vector is,

S⃗ = E⃗ × H⃗ = − H
2
0

ωε0
e−2κz




κ sin(kx− ωt)
0

k cos(kx− ωt)


×




0

cos(kx− ωt)
0




= − H
2
0

ωε0
e−2κz




−k cos2(kx− ωt)
0

κ sin(kx− ωt) cos(kx− ωt)


 .

c. In x-direction we must take the time average of cos2, which gives the factor 1/2.
The integral over z gives:

∞∫

0

dze−2κz =
1

2κ
e−2κz

∣∣∣∣
∞

0

=
1

2κ
.

Therefore, the total energy flux is,

s̄tot1 =
H2

0k

4ωε0κ
.

18.3.7.5 Ex: Negative refraction

Show that a medium with negative refractive index is left-handed and allows for per-
fect focusing.

Solution: Let us look more closely at the reasons for limitation in performance [1011].
Consider an infinitesimal dipole of frequency ω in front of a lens. The electric com-
ponent of the field will be given by some 2D Fourier expansion,

E(r, t) =
∑

σ,kx,ky

Eσ(kx, ky)eıkz+ıkx+ıky−ıωt ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_HyperbolicRefraction11.pdf
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where we choose the axis of the lens to be the z axis. Maxwell’s equations tell us that,

kz =
√
ω2/c2 − k2x − k2y

the lens is to apply a phase correction to each of the Fourier components, so that
at some distance beyond the lens the fields reassemble to a focus, and an image of
the dipole source appears. However, for larger values of the transverse wave vector,
ω2/c2 < k2x + k2y, kz turns imaginary. These evanescent waves decay exponentially
with z and no phase correction will restore them to their proper amplitude. They are
effectively removed from the image, which generally comprises only the propagating
waves. Since the propagating waves are limited to,

ω2/c2 > k2x + k2y

the maximum resolution in the image can never be greater than

res =
2π

kmax
=

2πc

ω
= λ ,

and this is true however perfect the lens and however large the aperture.
There is an unconventional alternative to a lens. Material with negative refractive
index (ε, µ < 0) will focus light even when the lens consists of a parallel-sided dielectric
slab. Fig. 18.22 sketches the focusing of such a slab, assuming that the refractive
index is n = −1. Still the propagation of light at the interfaces obeys Snell’s laws of
refraction, as light inside the medium makes a negative angle with the surface normal.
The other characteristic of the system is the double focusing effect revealed by a simple
ray diagram. Light transmitted through a slab of thickness d2 located a distance d1
from the source comes to a second focus when, z = d2 − d1.

18.3.7.6 Ex: Negative refraction in chiral media

In a chiral medium the electric polarization P⃗ couples to the magnetic field H⃗ of an
electromagnetic wave and the magnetization M⃗ couples to the electric field E⃗ like,

P⃗ = ε0χεE⃗ + 1
c ξEHH⃗ and M⃗ = 1

c ξHE E⃗ + χmH⃗ ,

where ξEH and ξHE are the complex chirality coefficients. Show that a chiral medium
allows for a negative refraction coefficient.

Solution: The chirality coefficients lead to additional contributions to the refractive
index for one circular polarization,

n =
√
εµ− 1

4 (ξEH + ξHE)2 +
ı
2 (ξEH − ξHE) .

Such a chiral medium allows n < 0 without requiring µ < 0 if there is a positive
imaginary part of ξEH − ξHE of sufficiently large magnitude. For example, choosing
the phases of the complex chirality coefficients such that ξEH = −ξHE = ıξ, with
ξ, ε, µ > 0, the index of refraction becomes n =

√
εµ − ξ, and n < 0 when ξ >

√
εµ

[1012].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_HyperbolicRefraction12.pdf
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18.3.7.7 Ex: Hyperbolic metamaterials

Hyperbolic metamaterials are artificial media with sub-wavelength nanostructuring
below exhibiting uncommon optical properties, such as an extreme anisotropy giving
rise to permittivity and permeability tensors of the form,

ϵ =




ε⊥

ε⊥

εq


 and µ =




µ⊥

µ⊥

µq


 .

In the case ε⊥εq < 0 or µ⊥µq < 0 the dispersion relation,

k2x + k2y
εq

+
k2z
ε⊥

=
(ω/c)2

ε0
,

becomes hyperbolic.
Derive from the Maxwell equations, allowing for an anisotropic (but homogeneous)
permittivity tensor, the hyperbolic dispersion relation.

Solution: Inserting the first into the second Maxwell equation, we derive, accounting
for the anisotropy of the permittivity tensor, the equation,

∂2ϵE⃗
∂t2

=
∂2D⃗
∂t2

=
∂

∂t
∇× H⃗ = ∇× ∂

∂t

B⃗
µ

= − 1

µ
∇× (∇× E⃗) = − 1

µ
[∇(∇ · E⃗)−∇2E⃗ ] .

Inserting plane waves, E⃗ = E⃗0eı(k·r−ωt), we calculate,

−ω2




ε⊥E0x
ε⊥E0y
εqE0z


 eı(k·r−ωt) = − 1

µ
∇(ıkxE0x + ıkyE0y + ıkzE0zeı(k·r−ωt) +

1

µ
k2




E0x
E0y
E0z


 eı(k·r−ωt)

= − 1

µ




−k2xE0x − kxkyE0y − kxkzE0z
−kxkyE0x − k2yE0y − kykzE0z
−kxkzE0x − kykzE0y − k2zE0z


 eı(k·r−ωt) +

1

µ
k2




E0x
E0y
E0z


 eı(k·r−ωt) .

That is,

0 =




ω2µε⊥ − k2y − k2z kxky kxkz

kxky ω2µε⊥ − k2z − k2x kykz

kxkz kykz ω2µεq − k2x − k2y







E0x
E0y
E0z


 .

The determinant must vanish in order to obtain non-trivial solutions,

0 = µ3ε2⊥εqω
6 − µ2ε⊥εqk

2
xω

4 − µ2ε⊥εqk
2
yω

4 − 2µ2ε⊥εqk
2
zω

4 − µ2ε2⊥k
2
xω

4 − µ2ε2⊥k
2
yω

4

+ µε⊥k
4
xω

2 + µε⊥k
4
yω

2 + µεqk
4
zω

2 + µε⊥k
2
xk

2
zω

2 + µε⊥k
2
yk

2
zω

2 + 2µε⊥k
2
xk

2
yω

2

+ µεqk
2
xk

2
zω

2 + µεqk
2
yk

2
zω

2 .
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Apart from the trivial solution ω = 0, we get,

0 = ω4 −
(
k2x
εq

+
k2y
εq

+
k2z
ε⊥

+
k2

ε⊥

)
ω2

µ
+

k2

µ2ε⊥

(
k2x
εq

+
k2y
εq

+
k2z
ε⊥

)
.

Which is satisfied provided the dispersion relation is, c2 = 1
ε0µ

.

18.3.7.8 Ex: Stacked layer metamaterial

Show that the effective permittivity of a nanostructure having the shape of an alter-
nating stack of two different but intrinsically homogenous layers with the permittivity
εd and εm and thicknesses dd, dm ≪ λ is given by,

ε⊥ =
εddd + εmdm
dd + dm

and εq =
dd/εd + dm/εm

dd + dm
.

Solution: Apply the Fresnel equations and calculate the T -matrix of an infinite stack
as done in [1123].

18.3.7.9 Ex: Hyperbolic dispersion relation in gases

Discuss, whether it is possible to realize a hyperbolic dispersion relation in an atomic
gas.

Solution: How to induce anisotropy on the atomic level? Via electric or magnetic
fields? Dispersion relation of a gas which can only do π transitions along a predefined
axis?
For hyperbolic, we need negative ε, i.e. EIT.
What are the signatures of negative ε.

18.3.7.10 Ex: TEM waves in a hollow wave guide

Verify that TEM waves can not occur in hollow waveguides. Do not use the already
derived results (18.249).

Solution: We define the TEM wave with respect to the z-axis, such that E⃗z = 0
and E⃗ = E⃗x(x, y)êx+ E⃗y(x, y)êy and analogously for B⃗. The third and second Maxwell
equations then require,

∂E⃗x
∂x

+
∂E⃗y
∂y

= 0 =
∂E⃗y
∂x
− ∂E⃗x

∂y
,

that is, ∇ · E⃗ = 0 = ∇ × E⃗. Since the rotation is zero, there exists a gradient, such
that E⃗ = −∇Φ, e

0 = ∇ · E⃗ = −∇ · (∇Φ) = −∇2Φ .
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Figure 18.29: Hyperbolic dispersion materials.

The boundary condition of a waveguide is an equipotential surface, but since the
Laplace equation does not admit local maximums or minimums, the potential has
to be Φ = const, that is E⃗ = 0.
Note that this argument only applies to a completely empty waveguide. Placing an-
other conductor in the middle of the guide, the potential on its inner surface does not
have to be the same as on the outer surface, and therefore a non-trivial potential is
possible.

18.3.7.11 Ex: The TE00 mode in the rectangular waveguide

Show that the TE00 mode can not occur in a rectangular waveguide.

Solution: For a hollow waveguide the dispersion relation simplifies to ω/c = k.
For TE00 modes we have Ez = 0. Maxwell’s equations then yield,

∂xEy − ∂yEx = ıωBz and ∂xBy − ∂yBx = 0

−ıkEy = ıωBx and ∂yBz − ıkBy = − ıωc2 Ex
ıkEx = ıωBy and ıkBx − ∂xBz = − ıωc2 Ey .

Solving the third equation by Ey and substituting it into the last equation,

ıkBx − ∂xBz = − ıωc2 −ωk Bx ,

we find ∂xBz = 0. Solving the fifth equation by Ex and substituting it into the fourth
equation,

∂yBz − ıkBy = − ıωc2 ωkBy ,
we find ∂yBz = 0, that is, the field Bz(x, y) = B0 is constant, that is,

B⃗ = B⃗0eı(kz−ωt) and
∂B⃗
∂t

= −ıωB⃗0eı(kz−ωt) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda02.pdf
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Applying Faraday’s law in the integral form to the cross-section of the waveguide
(S = ab),

∮
E⃗∥dl =

∮
E⃗ · dl = −

∫
∂B⃗
∂t
· dS =

∫
ıωB⃗0eı(kz−ωt) · dS = ıωB0eı(kz−ωt)ab .

The integration path follows the inner edges of the waveguide, where E∥ = 0,
∮
E⃗ · dl =

∮
E⃗∥dl = 0 .

such that B0 = 0. Then it would be a TEM00 mode, for which we already have shown
in class that it does not exist in a hollow waveguide.

18.3.7.12 Ex: Cut-off frequency

Calculate the radial size of a hollow rectangular wave guide capable of guiding a
(i) 60 Hz signal, (ii) a 10 MHz signal, and (iii) a 9.1 GHz signal.

Solution: The frequency of the guided signal must be higher than the cut-off fre-
quency. For a TE10 mode we get from Eq. (18.256) the condition ω > cπ/a, or
a > λ/2. Hence, λi = 2.5km, λii = 15m, and λiii = 1.65cm.

18.3.7.13 Ex: Cylindrical waveguide

Show that the fields (18.261) satisfy the Maxwell equations with the boundary con-
ditions (18.246) [545](p.411).

Solution: The fields are,

E⃗ =
A cos(kz − ωt)

ρ
êρ ≡ Aρêρ and B⃗ =

A cos(kz − ωt)
cρ

êϕ ≡ Aϕêϕ .

Obviously they satisfy the boundary conditions on the surface of the waveguide,

E⃗∥ = 0 and B⃗⊥ = 0 .

By inserting them into the second Maxwell equation with the rotational written in
cylindrical coordinates (12.72),

∇× E⃗ + ∂B⃗
∂t

= êϕ
∂

∂z
Aρ − êz

1

ρ

∂

∂ϕ
Aρ + êρ

∂

∂t
Aρ

= êϕ
∂

∂z

A cos(kz − ωt)
ρ

+ êϕ
∂

∂t

A cos(kz − ωt)
cρ

= êϕ
A sin(kz − ωt)

ρ

(
−k + ω

c

)
= 0 .

The third Maxwell equation with the divergence written in cylindrical coordinates
(12.71) gives,

∇ · E⃗ =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂

∂ρ
Aϕ +

∂

∂z
Az =

1

ρ

∂

∂ρ
(ρAρ) =

1

ρ
A
∂

∂ρ
cos(kz − ωt) = 0 .

The calculations for Maxwell’s first and fourth equations are analogous.
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18.3.7.14 Ex: Propagation of a TEM mode along a coaxial cable

A transmission line made of two concentric circular metallic cylinders with conduc-
tivity ρ and skin depth δ is filled with a lossless uniform dielectric (ε, µ). A TEM
mode propagates along this line.
a. Show that the time averaged energy flux along the line is,

P =

√
µ

ε
πa2|H0|2 ln

b

a
,

where H0 is the maximum value of the azimuthal magnetic field on the surface of the
inner conductor.
b. Show that the transmitted power is attenuated along the line like,

P (z) = P0e
−2γz ,

where,

γ =
1

2σδ

√
ε

µ

a−1 + b−1

ln(b/a)
.

c. The characteristic impedance Z0 of the line is defined as the ratio between the
voltage between the cylinders and the current flowing in axial direction inside one of
the cylinders at any position z. Show that for this line,

Z0 =
1

2π

√
µ

ε
ln
b

a
.

d. Show that the resistance and the serial inductance per unit length of the line are,

R =
1

2πσδ

(
1

a
+

1

b

)
, L =

µ

2π
ln
b

a
+
µcδ

4π

(
1

a
+

1

b

)
,

where µc is the permeability of the conductor. The correction for the inductance
comes from the penetration of the flux into the conductors by the distance of the
order δ.

Solution:

18.3.7.15 Ex: Resonant cavity

Consider a perfectly conducting resonant cavity having the shape of a 3D rectan-
gular box with the volume defined by x ∈ [0, Lx], y ∈ [0, Ly], and z ∈ [0, Lz].
Show that the resonant frequencies for both the TE and TM modes are given by
ωnx,ny,nz = cπ

√
(nx/Lx)2 + (ny/Ly)2 + (nz/Lz)2 for integers ni. Find the associ-

ated electric and magnetic fields.

Solution: The rectangular symmetry of the problem allows us to separate the Carte-
sian variables, as shown in equation (13.76). For every component of the vector E⃗,
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda05.pdf


1002 CHAPTER 18. ELECTROMAGNETIC WAVES

e.g. the Ex component, we can make an ansatz Ex = Xx(x)Yx(y)Zx(z) which, inserted
in the wave equation gives,

Xx(x) = Axx sin kxxx+ Cxx cos kxxx

Yx(y) = Axy sin kxyy + Cxy cos kxyy

Zx(z) = Axz sin kxzz + Cxz cos kxzz ,

and similarly for the components Ey and Ez. The lengths being fixed by the boundary
conditions,

E⃗∥ = 0 and B⃗⊥ = 0 ,

for the Ex component we get on the surfaces y = 0, Ly and z = 0, Lz,

Cxy = Cxz = 0 and kxy = π
ny

Ly
, kxz = π nz

Lz
.

We let Axy = 1 = Axz and obtain, extending the procedure to the other components,

Ex = (Axx sin kxxx+ Cxx cos kxxx) sin
πnyy
Ly

sin πnzz
Lz

Ey = (Ayy sin kyyy + Cyy cos kyyy) sin
πnxy
Lx

sin πnzz
Lz

Ez = (Azz sin kzzz + Czz cos kzzz) sin
πnxy
Lx

sin
πnyy
Ly

.

Now, we invoke Gauss’s law,

0 = ∇ · E⃗ = kxx(Axx cos kxxx− Cxx sin kxxx) sin πnyy
Ly

sin πnzz
Lz

+ kyy(Ayy cos kyyy − Cyy sin kyyy) sin πnxy
Lx

sin πnzz
Lz

+ kzz(Azz cos kzzz − Czz sin kzzz) sin πnxy
Lx

sin
πnyy
Ly

.

This equation must be valid in every point (x, y, z), hence also at x = 0, which is only
possible when Axx = 0. By symmetry, we must also set Ayy = 0 = Azz, yielding,

0 = ∇ · E⃗ =− kxxCxx sin kxxx sin πnyy
Ly

sin πnzz
Lz

− kyyCyy sin kyyy sin πnxy
Lx

sin πnzz
Lz

− kzzCzz sin kzzz sin πnxy
Lx

sin
πnyy
Ly

.

Finally, introducing the abbreviations kj = πnj/Lj, we get the electric field,

⃗̃E = Cxxe
−ıωtêx cos kxx sin kyy sin kzz

+ Cyye
−ıωtêy sin kxx cos kyy sin kzz

+ Czze
−ıωtêz sin kxx sin kyy cos kzz .

The magnetic field is obtained by Maxwell’s equation,

−ıω ⃗̃B =
∂ ⃗̃B
∂t

= −∇× ⃗̃E =− (Czzky − Cyykz)e−ıωtêx sin kxx cos kyy cos kzz
− (Cxxkz − Czzkx)e−ıωtêy cos kxx sin kyy cos kzz
− (Cyykx − Cxxky)e−ıωtêz cos kxx cos kyy sin kzz .
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The resonant frequency for the mode (nx, ny, nz) is,

ωnx,ny,nz = cπ
√
k2x + k2y + k2z .

18.3.7.16 Ex: Spherical holes in conductors such as cavities

A spherical hole of radius a in a conductive medium may serve as an electromagnetic
resonant cavity.
a. Assuming infinite conductivity, determine the transcendental equations for the
characteristic frequencies ωℓm of the cavity for TE and TM modes.
b. Calculate numerical values for the wavelength λℓm in units of the radius a for the
four lowest modes for TE and TM waves.
c. Explicitly calculate the electric and magnetic fields inside the cavity for the lowest
TE mode and the lowest TM mode.

Solution:

18.3.7.17 Ex: Schumann resonances

A resonant cavity consists of the void space between two perfectly conducting and
concentric spherical layers. The smaller one has the external radius a, the larger one
the internal radius b. The azimuthal magnetic field has a radial dependence given by
spherical Bessel functions, jℓ(kr) and nℓ(kr), where k = ω/c.
a. Write the transcendental equation for the characteristic frequencies of the cavity
for arbitrary ℓ.
b. For ℓ = 1 use the explicit forms of the spherical Bessel functions to show that the
characteristic frequencies are given by,

tan kh

kh
=

k2 + (ab)−1

k2 + ab(k2 − a−2)(k2 − b−2) ,

where h = b− a.
c. For h/a ≪ 1, verify that the result of part (b) reproduces the frequency found in
[659], Sec. 8.9, and determine the first-order corrections in h/a.
Now, we apply this cavity as a model for the atmosphere enclosed by the Earth’s
surface and its ionosphere.
d. For the Schumann resonances of Sec. 8.9 calculate the values Q under the assump-
tion that the Earth has the conductivity σe and the ionosphere the conductivity σi
with corresponding skin depths δe and δi. Show that in the lowest order in h/a the
value Q is given by Q = Nh/(δe+ δi) and determine the numerical factor N for all ℓ.
e. For the lowest Schumann resonance evaluate the valueQ assuming σe = 0.1 (Ωm)−1,
σe = 10−5 (Ωm)−1, h = 100 km.
f. Discuss the validity of the approximations used in part (a) for the parameter regime
used in part (b).
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Solution:

18.3.7.18 Ex: Airy formula

To derive the Airy formulas, consider a light field described by Ein incident on a
Fabry-Pérot cavity of length L. The cavity mirrors are glass substrates having a
surface with dielectric coating. The surfaces of the two mirrors are characterized by
the transmission rates t1, t2 and reflection rates r1, r2. Note, that the reflected wave
suffers a phase shift of π, when the reflection occurs at a denser medium n > 1. Dis-
regard energy losses by absorption.

Solution: The wave is reflected several times. For the field inside the cavity we
find,

Ecav(z) = Eint1
∑

n

[
(r1r2)

neık[2nL+z] − r2(r1r2)neık[(2n+2)L−z]
]

(18.267)

= Eint1
eıkz − r2eık(2L−z)
1− r1r2eık2L

,

using the Fourier expansion of (1−s)−1 =
∑
n s

n. The reflected and transmitted fields
are,

Erfl = r1Ein + Ein
∞∑

n=0

t1(−r2)(r1r2)nt1eık2(n+1)L = Ein
(
r1 −

eık2Lt21r2
1− r1r2e2ıkL

)

Etrns = Ein
∞∑

n=0

t1(r1r2)
nt2e

ık(2n+1)L = Ein
t1t2e

ıkL

1− r1r2e2ıkL
. (18.268)

Assuming r1 = r2, t1 = t2 and T +R = 1, the formulas simplify to,

Ecav(z)
Ein

= t1
eıkz − r2eık(2L−z)
1− r1r2eık2L

(18.269)

Erfl
Ein

=
√
R

1− eık2L
1−Re2ıkL

Etrns
Ein

=
(1−R)eıkL
1−Re2ıkL ,

The intensities are,

Icav = Iin(1−R)
(1−

√
R)2 + 4

√
R sin2 k(L− z)

(1−R)2 + 4R sin2 kL
(18.270)

Irefl = IinR
4 sin2 kL

(1−R)2 + 4R sin2 kL

Itrns = Iin
(1−R)2

(1−R)2 + 4R sin2 kL
= 1− Irefl .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_GuiaOnda09.pdf
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These are the Airy formulas. Using the free spectral range, we can write,

ω = N2πδfsr +∆ (18.271)

kL = kc/2δfsr = ω/2δfsr = πN +
∆

2δfsr
,

and we obtain the form (18.263). Note that the free spectral range δfsr is given in
terms of real frequencies.
Let us investigate the transmission spectrum close to resonance, that is kL = Nπ or
|∆| ≪ 2πδfsr. We can expand the sine,

Itrns = Iin
(1−R)2

(1−R)2 + 4R sin2 ∆
2δfsr

= Iin
(1−R)2

(1−R)2 + 4R
(

∆
2δfsr

)2
+ ...

(18.272)

≃ Iin
δ2fsr

(1−R)2

R

δ2fsr
(1−R)2

R +∆2
≡ Iin

(
κint

2

)2
(
κint

2

)2
+∆2

,

utilizing

F =
2πδfsr
κint

=
π
√
R

1−R ≃
π

1−R . (18.273)

We obtain a Lorentzian function.
Repeating the procedure for the intracavity field at the location of an antinode, z = λ/4,

Icav
Iin

= (1−R)
(1−

√
R)2 + 4

√
R sin2

(
∆

2δfsr
− π

2

)

(1−R)2 + 4R sin2 ∆
2δfsr

=

(1+
√
R)2

1−R − 4
√
R

1−R sin2 ∆
2δfsr

1 +
(

2
√
R

1−R

)2
sin2 ∆

2δfsr

.

(18.274)
For large finesse, 1 +

√
R ≃ 2

√
R, we find,

Icav
Iin
≃ 4F

π

cos2 ∆
2δfsr

1 +
(
2F
π

)2
sin2 ∆

2δfsr

<
4F

π
. (18.275)

Expanding the trigonometric functions,

Icav
Iin
≃ 4F

π

1

1 + (∆/κ)2
<

4F

π
. (18.276)

Alternatively, we can derive the Airy formulas from a self-consistency condition. The
field at position x is,

Ecav(x) = eıkxt1Ein + eık(L−x)(−r2)eıkLt1Ein + r1r2e
2ıkLEcav(x) (18.277)

= Eint1
eıkx − r2eık(2L−x)
1− r1r2e2ıkL

,

giving the same result as in (18.267).
Repeating the procedure for the intracavity field, but now averaging over the cavity
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mode volume, 1
2π

∫ 2π

0
sin2 xdx = 1

2 , the intracavity intensity from Eq. (18.270) yields,

Icav
Iin
→

1+R
1−R

1 + 4R
(1−R)2 sin

2 ∆
2δfsr

=

√
1 +

(
2F
π

)2

1 +
(
2F
π

)2
sin2 ∆

2δfsr

(18.278)

≃

√
1 +

(
2F
π

)2

1 + (∆/κ)2
≃ 2F

π

1

1 + (∆/κ)2
<

2F

π
.

The result can be generalized to cavities with more than two mirrors having the re-
flection coefficients Ri = r2i , the transmission coefficients Ti = t2i , and the absorption
coefficients Si = 1−Ri − Ti. In resonance we expect:

Icav(δ = 0) = Iin
4t1 (1− Sin −

∑
i(Si + Ti))

(t1 + Sin +
∑
i(Si + Ti))

2 , (18.279)

giving the factor of power amplification of the cavity. The optimization of Icav as a
function of R is called impedance matching.

18.4 Beam and wave optics

While the propagation of high wavelength radiation is dominated by diffraction effects,
we observe that visible light tends to form bundles that apparently propagate (in
homogeneous media) in a straight line. With the invention of the laser, the optical
regime has become the preferred spectral regime for many spectroscopic applications.
Therefore, we will dedicate the following section to the propagation of laser beams,
which is understood within the theory of Gaussian optics.

18.4.1 Gaussian optics

At first glance, one might think that the propagation of laser light is well described by
the laws of geometrical optics. Closer inspection, however, shows that a laser beam
in many ways behaves more like a wave, although its energy is concentrated near
an optical axis. The fields satisfy the wave equation. By inserting the propagating
wave u = ψz(x, y)e

ı(kz−ωt), we obtain an equation similar to the Schrödinger equation
[734],

0 =

[
1

c2
∂2

∂t2
−∇2

]
ψeı(kz−ωt) = eı(kz−ωt)

(
2ık

∂ψ

∂z
−∇2ψ

)
. (18.280)

Neglecting the second derivative for z, we obtain,

[
2ık

∂

∂z
−
(
∂2

∂x2
+

∂2

∂y2

)]
ψ = 0 . (18.281)

To describe a Gaussian beam, we choose an exponential ansatz and introduce two
parameters that may vary along the propagation axis z: φ(z) is a complex phase shift



18.4. BEAM AND WAVE OPTICS 1007

and q(z) a complex parameter, whose imaginary part describes the diameter of the
beam. Inserting the ansatz

ψ = e−ı[φ(z)+k(x
2+y2)/2q(z)] (18.282)

into the Schrödinger equation, we obtain,

0 = 2ıke−ı[φ+k(x
2+y2)/2q]

(
−ı∂φ
∂z

+
ık(x2 + y2)

2q2
∂q

∂z

)
− 2e−ı[φ+k(x

2+y2)/2q]−ık
q

− e−ı[φ+k(x2+y2)/2q]

(−ıkx
q

)2

− e−ı[φ+k(x2+y2)/2q]

(−ıky
q

)2

. (18.283)

This leads directly to the equation,

0 = (q′ − 1)
ık(x2 + y2)

q2
− 2ıφ′ +

2

q
. (18.284)

For Eq. (18.284) to be valid at all x and y, we need q′ = 1 and φ′ = −ı
q . Integrating

q′, we find,
q(z) = q0 + z . (18.285)

It is practical to introduce real beam parameters

1

q
≡ 1

R
− ı λ

πw2
. (18.286)

Inserting this into the ansatz (18.282),

ψ = e−ıφ−ı
k(x2+y2)

2R2 − (x2+y2)

w2 , (18.287)

it becomes clear that R(z) is the radius of curvature and w(z) is the diameter of the
beam. Evaluating q0 at the position of the focus (beam waist), where R =∞, we get
from (18.285) along with the definition (18.286),

1
1
Rz
− ı λ

πw2
z

= q(z) = q0 + z =
1

1
∞ − ı λ

πw2
0

+ z = ı
πw2

0

λ
+ z , (18.288)

The separation of this result into a real part and an imaginary part gives,

z

R
+
w2

0

w2
= 1 and

πw2

λR
=

λz

πw2
0

. (18.289)

Solving the second equation for 1/R and replacing this in the first equation gives an
equation for w,

w2 = w2
0

[
1 +

(
λz

πw2
0

)2
]
. (18.290)

This expression can now be replaced in the second equation,

R = z

[
1 +

(
πw2

0

λz

)2
]
. (18.291)
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We call zR ≡ q0 the Rayleigh length. Now we integrate φ′,

φ =

∫ z

0

−ı
q
dz =

∫ z

0

−ıdz
ızR + z

= −ı
∫ z

0

zdz

z2R + z2
−
∫ z

0

zRdz

z2R + z2
(18.292)

= − ı
2
ln
z2R + z2

z2R
− arctan

z

zR
= −ı ln w

w0
− arctan

λz

πw2
0

.

Hence,

ψ(r) =
w0

w
eı arctan(−z/q0)−ık(x

2+y2)/2q . (18.293)

We note that the function |ψ|2 is normalized by the radial integral,

∫
|ψ|2dxdy =

w2
0

w2

∫
|e−k(x2+y2)/2q(z)|2dxdy (18.294)

=
w2

w2
0

(∫ ∞

−∞
e−2x

2/w2

dx

)2

=
πw2

0

2
,

which is independent of z and thus ensures conservation of energy along the beam.
The intensity profile of a Gaussian beam is proportional to |ψ|2 and normalized to
the total power P , that is,

I(r) =
2P

πw2
0

|ψ(r)|2 =
2P

πw(z)2
e−2(x

2+y2)/w(z)2 . (18.295)

Figure 18.30: (Left) Propagation of the beam along the optical axis. (Right) Cross section
of the Gaussian beam.

The above treatment shows that modes do not only exist in cavities but also in
free space. In Excs. 18.4.4.1 and 18.4.4.2 we are dealing with modes of Gaussian light
beams that are often used in laser beam optics.

Example 111 (Gaussian optics): The expansion of the Gaussian beam E(r) =
E0e−(x2+y2)/w(z)2−z2/z2R into plane waves simply is,

E(k) =
∫
E(r)eık·rd3r = E0e−(k2x+k2y)w(z)2−k2zz

2
R .
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18.4.1.1 Optical components

In geometrical optics (or ray optics) we work a lot with transfer matricesM defined by
their feature of transforming the two-component vector, which consists of the distance
of a ray from the optical axis y(z) and its divergence y′(z) 31:


y(z)

y′(z)


 =M


y(0)

y′(0)


 . (18.296)

Figure 18.31: (a) Image formation through a lens with ray optics. (b) Focusing a laser beam
with Gaussian optics.

Now, it is possible to show that the same matrixM can describe the transforma-
tion of a Gaussian beam through optical components along the optical axis, provided
that we apply the transformation to the beam parameter q in the following way:

q(z) =
M11q(0) +M12

M21q(0) +M22
. (18.297)

Hence, the transfer matrices allow us to calculate, how the parameters R and w
transform along the optical axis through optical elements or in free propagation. The
most common optical elements are lenses, crystals, prisms, mirrors, and cavities. For
example, the matrix for free propagation of a beam over a distance d is,

Mdist =


1 d

0 1


 , (18.298)

and the matrix describing the passage through a thin lens with focal length f ,

Mlens =


 1 0

−1/f 1


 . (18.299)

In Exc. 18.4.4.3 we use these matrices to derive the lens equations in ray optics and
Gaussian optics.

31Note that these matrices have nothing to do with the matrices describing the transmission and
reflection of electric and magnetic fields by interfaces.
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18.4.1.2 Modes of a linear cavity

We will now apply the formalism of the transfer matrices to calculate the modal
structure of a linear cavity. LetM be the matrix describing the round-trip of a beam
of light in the cavity. For the cavity to be stable, the fields must be stationary. This
is only possible if the mode geometry is self-consistent. That is, at any position z,
the beam parameter q(z) = qz must satisfy [734],

qz =
M11qz +M12

M21qz +M22
. (18.300)

Using, M11M22 −M12M21 = 1, the condition (18.300) can be solved by,

1

qz
=
M22 −M11

2M12
± ı

2M12

√
4− (M11 +M22)2 , (18.301)

or separating the real part from the imaginary part according to the definition (18.286)
of the beam parameter,

w2
z =

2λM12

π
√
4− (M11 +M22)2

and Rz =
2M12

M22 −M11
. (18.302)

Figure 18.32: (code) (Left) Scheme of a linear cavity. (Right) Radial profiles of the
lowest order transverse Hermite-Gaussian modes TEMmn of a linear cavity.

We now consider the cavity of length L schematized in Fig. 18.32. It consists of
two mirrors with radii of curvature ρa and ρb. The transfer matrix for a round-trip
beginning and ending at the position of mirror ’a’ is,

M =


 1 0

−1/fa 1




1 L

0 1




 1 0

−1/fb 1




1 L

0 1


 (18.303)

=
1

fafb


 fa(fb − L) faL(2fb − L)
L− fb − fa L(L− 2fb) + fa(fb − L)


 ,

where fk = −ρk/2 are the focal lengths of the mirrors. With (18.302) we obtain the
diameter wa and the radius of curvature Ra of the beam at the position of the mirror
’a’,

w2
a =

2λfaL(2fb − L)
π
√
4f2af

2
b − (L2 − 2faL− 2fbL+ 2fafb)2

and Ra = −2fa . (18.304)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Propagation_CavityModes.m
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Applying the second equation (18.289), we find,

λa

πw2
0

=
πw2

a

λRa
=

L(2fb − L)√
4f2af

2
b − (L2 − 2faL− 2fbL+ 2fafb)2

, (18.305)

and analogously for λb/πw2
0. We replace fk = ρk/2 and introduce the abbreviation,

xa ≡
πw2

a

λRa
=

2L
ρa

(
1− L

ρb

)

√
1−

(
1− 2L

ρa
− 2L

ρb
+ 2L2

ρaρb

)2 , (18.306)

and analogously for xb. With the help of MAPLE we calculate,

xaxb − 1√
(1 + x2a)(1 + x2b)

=

√
1− L

ρa

√
1− L

ρb
. (18.307)

The phase shift between the waist of the beam and mirror ’a’ is given by the real part
of the formula (18.292). The phase shift accumulated between the mirrors ’a’ and ’b’
is,

φ = φa + φb = arctanxa + arctanxb (18.308)

= π − arccos
xaxb − 1√

1 + x2a
√
1 + x2b

= π − arccos

√
1− L

ρa

√
1− L

ρb
,

where we used tabulated trigonometric relationships to convert the arctan into a
arccos.

The spectrum of transverse modes follows from the condition, that the total phase
is a multiple of π, i.e.,

N =
kL+ φ

π
=

2Lν

c
+
φ

π
, (18.309)

that is,

ν

δfsr
= N − 1 +

1

π
arccos

√(
1− L

ρa

)(
1− L

ρb

)
, (18.310)

where we used the free spectral range δfsr ≡ c/2L. This formula represents a gener-
alization of the previously derived formula (18.262), which only holds in the limit of
plane waves, ρk →∞.

The diameter of the beam waist in the cavity is,

w0 =
4

√(
λ

π

)2
L(ρa − L)(ρb − L)(ρa + ρb − L)

(ρa + ρb − 2L)2
. (18.311)

For optimum coupling, the geometries of the Gaussian light beam and of the cavity
must be matched, i.e. the diameter and divergence of the laser beam must be adjusted
to the cavity mode, e.g. using a suitable arrangement of lenses. In Exc. 18.4.4.4, we
will extend the calculation to ring cavities.
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18.4.1.3 Hermite-Gaussian transverse modes

We can generalize the ansatz (18.282) to allow for more complicated radial intensity
distributions described by the functions g and h,

ψ = g
( x
w

)
h
( y
w

)
e−ı[φ(z)+k(x

2+y2)/2q(z)] . (18.312)

Inserting the ansatz into the equation (18.281), we will show in Exc. 18.4.4.5, that
the solution is given by,

ψ(x, y, z) =
w0

w
Hm

(√
2x
w

)
Hn

(√
2y
w

)
e
ı(m+n+1) arctan 2z

kw2
0
−r2( 1

w2 + ık
2R ) . (18.313)

Fig. 18.32(right) shows radial profiles of the lowest order transverse Hermite-Gaussian
modes TEMmn of a linear cavity.

In the presence of higher-order transverse modes TEMmn the cavity spectrum
becomes,

ν

δfsr
= N − 1 +

m+ n+ 1

π
arccos

√(
1− L

ρa

)(
1− L

ρb

)
. (18.314)

This formula can be derived using the self-consistency requirement for the light beam
circulating inside the cavity. It represents yet another generalization of the formula
(18.262) and lifts the degeneracy of the longitudinal modes described by the Airy
formula and exhibited in Fig. 18.28. On the other hand, a confocal cavity with de-
generate transverse modes, ρa = ρb = L, is particularly suited to work as a spectrum
analyzer, as we will show in Exc. 53.1.10.8.

18.4.1.4 Splitting of TEMmn modes having the same m+ n

In a cylindrically symmetric mode, all modes TEMmn with the same m+n are degen-
erate. If however cylindrical symmetry is broken, e.g. due to alignment imperfection
or in the case of a ring cavity, the degeneracy is lifted [1203]. If the problem of
tilted incidence of the beams onto a mirror surface can be boiled down to assuming
elliptically shaped mirrors, i.e. mirrors having different radii of curvatures in two or-
thogonal axis, the different phase shifts for the two axis can be calculated, as discussed
in Exc. 18.4.4.4 and in Ref. [430]:

ν/δfsr = (q + 1) + 2
2m+ 1

2π
ϕh + 2

2n+ 1

2π
ϕv . (18.315)

where ϕk = arccos

√(
1− 2a

ρk

)(
1− b

ρk

)
for k = h, v. The splitting between the

TEM01 and TEM10 modes is,

2
π arccos

√(
1− 2a

ρh

)(
1− b

ρh

)
− 2

π arccos

√(
1− 2a

ρv

)(
1− b

ρv

)
. (18.316)

The splitting observed for ring cavities is on the same order as the free spectra range.
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Furthermore, different phase shifts in the dielectric surfaces lead to different reso-
nance conditions [800]. Since, according to Fresnel’s formulas, s and p-polarized light
fields have different reflectivities under inclined incidence on mirrors, they also suffer
different phase shifts and, hence, exhibit different eigenfrequencies of the cavity. In
high-finesse ring cavities this leads to a dramatic splitting of s and p-polarized modes,
which can be on the order of the free spectral range itself.

18.4.2 Non-Gaussian beams

The Hermite-Gaussian ansatz (18.312) to solve the wave equation represents only one
possibility. But we nowadays know a large variety of beams with different transverse
distributions of intensity, polarization and angular momentum. Examples are trans-
verse Gaussian modes with Cartesian or circular symmetry, Bessel modes, Laguerre-
Gaussian modes with angular momentum, and modes with radial or azimuthal polar-
ization.

18.4.2.1 Bessel beams

Ideally, a Bessel beam (BB) is a non-diffracting monochromatic solution to the scalar
wave equation in cylindrical coordinates carrying an infinite amount of energy [401,
863]. Inserting into the wave equation,

(
1

c2
∂2

∂t2
−∇2

)
ψ(r, t) = 0 (18.317)

the ansatz,

ψ(r, t) = eı(βz−ωt)
∫ 2π

0

A(ϕ)eıα(x cosϕ+y sinϕ)dϕ , (18.318)

we get the dispersion relation,

α2 + β2 =
ω2

c2
. (18.319)

For β real the intensity profile does not vary along the z-axis,

|ψ(r, t)|2 =

∣∣∣∣
∫ 2π

0

A(ϕ)eıα(x cosϕ+y sinϕ)dϕ

∣∣∣∣
2

= |ψ(x, y, z = 0, t)|2 . (18.320)

For axial symmetry A(ϕ) = A, we get what is called the 2st type 0-order Bessel beam,

ψ(r, t) = Aeı(βz−ωt)
∫ 2π

0

eıα(x cosϕ+y sinϕ)dϕ = Aeı(βz−ωt)J0(αρ) . (18.321)

For 0 < α ≤ ω/c we get a non-trivial solution decaying like (αρ)−1.
In its simplest form, the electric field of an arbitrary ν-th order BB with wavelength

λ can be written as,

E(ρ, ϕ, z) = A0 exp(ıkzz)Jν(kρρ) exp(ıνϕ) , (18.322)
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where A0 is the electric field strength and Jν is the ν-th order Bessel function of the
first kind. In Eq. (18.322), kz and kρ are the longitudinal and transverse wave numbers
satisfying the dispersion relation k2 = k2z + k2ρ = (2π/λ)2, such that kz = k cos θ and
kρ = k sin θ, being θ the axicon angle associated to the tilted plane of waves propagat-
ing along the surface of a cone of half-angle θ in the angular spectrum decomposition.
Cylindrical coordinates (ρ, ϕ, z) have been adopted, and a time harmonic factor eıωt

has been omitted for brevity. For our purposes, the Rayleigh range is an essential
parameter to be considered since the non-diffracting beam must propagate through a
20 cm long differential vacuum tube to minimize losses of atoms during their guidance
to the science chamber. The maximum propagation distance up to which a BB can
overcome diffraction is given by Zmax = 2πRr̄/λ, where R is the aperture radius and
r̄ is the beam radius [401]. It should be noticed that, in general, Zmax is much greater
than the Rayleigh range of a Gaussian beam with an equivalent beam waist radius
wg = r̄.

Example 112 (Frozen Bessel beams): Certain superposition of these non-
diffracting Bessel beams have interesting properties,

ψ(r, t) = e−ıωt
N∑

n=−N

AnJ0(kρnρ)e
ıβnz . (18.323)

A frozen Bessel beam can be constructed by a continuous superposition of 0th-
order scalar BBs over the longitudinal wavenumber kz, as given by the following
integral solution of the scalar Helmholtz equation with azimuthal symmetry,

Ψ0(ρ, z, t) = e−ıωt
∫ k

−k
S(kz)J0(ρ

√
k2 − k2z)e−ıkzzdkz , (18.324)

where k ≡ ω/c and k2ρ ≡ ω2/c2−kz is the transverse wave number. The quantity
k2ρ must be positive since evanescent waves do come into play.
Higher-order Bessel beams can be constructed via [1422, 1421],

Ψ1(ρ, ϕ, z) = UΨ0(ρ, z) with U ≡ eıϕ
(
∂

∂ρ
+
ı

ρ

∂

∂ϕ

)
, (18.325)

Apparently, they can carry angular orbital momentum.

18.4.3 Fourier optics

We have derived in Sec. 5.3.5 the Fresnel integral for the description of the propagation
of phase fronts. In the following sections we will show that the expression can also
be derived from the more general Huygens principle, and how they can be used for
numerical calculations of phase front propagation. We will also show how it can be
used for numerical calculations of phase front propagation.

18.4.3.1 Rayleigh-Sommerfeld solution

We consider the propagation of monochromatic light from a 2D planar source of
area Σ indicated by the coordinates ξ and η, as illustrated in Fig. 18.33. The field
distribution in the source plane is given by ψ0(ξ, η), and the field ψz(x, y) in a distant
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observation plane can be predicted using the first Rayleigh-Sommerfeld diffraction
solution [521, 1338],

ψz(x, y) =
1

ıλ

x
Σ

z

r12

eıkr12

r12
ψ0(ξ, η)dξdη . (18.326)

The formula will be derived from the wave equation in Exc. 18.4.4.6. Here, z is the
distance between the centers of the source and observation coordinate systems and

r12 =
√
z2 + (x− ξ)2 + (y − η)2 (18.327)

is the distance between a position on the source plane and a position in the observation
plane, with the planes assumed to be parallel.

Figure 18.33: Propagation geometry for parallel source and observation planes. Every point
of the source plane generates a spherical wave ∝ eıkr12/r12. The projection of the field
within a solid angle element onto the xy-plane, which is proportional to z/r12 generates a
new spherical wave propagating further along the z optical axis.

Expression (18.326) is a statement of the Huygens-Fresnel principle, which sup-
poses that the source acts as an infinite collection of fictitious point sources located
at (ξ,η), each one producing a spherical wave. The interference of the spherical waves
at any observation position (x,y), expressed by the projection onto the propagation
axis z in (18.326), can be written as a two-dimensional convolution integral,

ψz(x, y) =
x
Σ

hz(x− ξ, y − η)ψ0(ξ, η)dξdη = (hz ∗ ψ0)(x, y) , (18.328)

where the general form of the Rayleigh-Sommerfeld impulse response,

hz(x, y) =
z

ıλ

eıkr

r2
, (18.329)

where r =
√
z2 + x2 + y2 is simply the field distribution ψz(x, y) observed in case of

a point-like source ψ0(ξ, η) = δ(ξ)δ(η).
The Fourier convolution theorem allows to write Eq. (18.328) as,

ψz(x, y) = F−1{F [hz ∗ ψ0](x, y)} = F−1{F [hz(x, y)]F [ψ0(x, y)]} , (18.330)

where F denotes the two-dimensional Fourier transform. Introducing the Rayleigh-
Sommerfeld transfer function Hz, we may also write,

ψz(x, y) = F−1{Hz(fx, fy) · F [ψ0(x, y)]}

where Hz(fx, fy) = eıkz
√

1−(λfx)2−(λfy)2
. (18.331)
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Strictly speaking,
√
f2x + f2y < λ−1 must be satisfied for propagating field compo-

nents. The Rayleigh-Sommerfeld expression is the most accurate diffraction solution
as, other than the assumption of scalar diffraction, this solution only requires that
r ≫ λ, the distance between the source and the observation position, be much greater
than a wavelength.

18.4.3.2 Fresnel approximation

Let us simplify the transfer function by expanding the distance (18.327),

r12 ≃ z + 1
2
(x−ξ)2
z + 1

2
(y−η)2
z , (18.332)

which amounts to assuming a parabolic radiation wave rather than a spherical wave
for the fictitious point sources. Furthermore, we use the approximation r12 ≃ z in the
denominator of Eq. (18.326) to arrive at the Fresnel diffraction expression:

ψz(x, y) =
eıkz

ıλz

x
Σ

eık[(x−ξ)
2+(y−η)2]/2zψ0(ξ, η)dξdη . (18.333)

This expression is also a convolution of the form in Eq. (18.328), where the impulse
response is,

hz(x, y) =
eıkz

ıλz
eıkρ

2/2z , (18.334)

and the transfer function is,

Hz(fx, fy) = eıkze−ıπzλ(f
2
x+f

2
y ) . (18.335)

The expressions in Eqs. (18.331) are again applicable in this case for computing diffrac-
tion results.

Another useful form of the Fresnel diffraction expression is obtained by moving
the quadratic phase term in x and y outside the integrals:

ψz(x, y) =
eıkz

ıλz
eık(x

2+y2)/2z
x
Σ

eık(ξ
2+η2)/2ze−ık(xξ+yη)/zψ0(ξ, η)dξdη . (18.336)

18.4.3.3 Fraunhofer approximation

Fraunhofer diffraction, which refers to diffraction patterns in a regime that is com-
monly known as the ’far field’, is arrived at by approximating the chirp term multi-
plying the initial field within the integrals of Eq. (18.336) as unity. The assumption
involved is,

z ≫ max[k2 (ξ
2 + η2)] (18.337)

and results in the Fraunhofer diffraction expression:

ψz(x, y) =
eıkz

ıλz
eıkρ

2/2z
x
Σ

e−ık(xξ+yη)/zψ0(ξ, η)dξdη

=
eıkz

ıλz
eı

k
2z ρ

2

(Fψ0)(
kx
z ,

ky
z )

. (18.338)
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Along with multiplicative factors out front, the Fraunhofer expression can be recog-
nized simply as a Fourier transform of the source field. The condition of Eq. (18.337),
typically, requires very long propagation distances relative to the source support size.
However, a form of the Fraunhofer pattern also appears in the propagation anal-
ysis involving lenses. The Fraunhofer diffraction expression is a powerful tool and
finds use in many applications such as laser beam propagation, image analysis, and
spectroscopy.

The Fraunhofer expression cannot be written as a convolution integral, so there
is no impulse response or transfer function. But, since it is a scaled version of the
Fourier transform of the initial field, it can be relatively easy to calculate, and as
with the Fresnel expression, the Fraunhofer approximation is often used with success
in situations where Eq. (18.337) is not satisfied. For simple source structures such
as a plane-wave illuminated aperture, the Fraunhofer result can be useful even when
Eq. (18.337) is violated by more than a factor of 10, particularly if the main quantity
of interest is the irradiance pattern at the receiving plane. Using the Fresnel number
defined as,

NF =
max(ξ2 + η2)

zλ
, (18.339)

the commonly accepted requirement for the Fraunhofer region is NF ≪ 1.

18.4.3.4 Propagation of phase fronts across optical elements

To propagate an optical phase front located at z0, we conveniently start from a Gaus-
sian laser beam,

ψGauss(ρ) = e−ρ
2/w2

0 . (18.340)

with ρ =
√
x2 + y2 the distance from the optical axis. For a given total power the

electric field is obtained via normalization,

E0 =

√
P

1
2ε0c

∫
|u|2d2ρ , (18.341)

where η ≡
√
µ0/ε0 = 1/(ε0c) is the vacuum impedance.

Optical elements can shape the phase front of a light beam by phase shift or
absorption. If the element can be assumed to be thin we may neglect the axial
displacement, ∆z ≃ 0, and simply multiply the phase front with an xy-matrix,

ψ′z(x, y) = e−αcomponent(x,y)ψz(x, y) , (18.342)

where α(x, y) = σ(x, y)+ıδ(x, y). For instance, a pinhole with radius R will transform
a phase front like,

αpinhole(ρ) =∞Θ(ρ−R) , (18.343)

where Θ is the Heavyside function. A thin lens with focal distance f will transform
a phase front like,

αlens(ρ) = ı kRρ
2 = ı k2f ρ

2 , (18.344)
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where R is the radius of the spherical lens. For an axicon of base angle α made of
material with refractive index nrefr,

αaxicon(ρ) = ık(nrefr − 1)ρ tanα . (18.345)

In Exc. 18.4.4.9 we will derive the phase front transformation matrices for other
interesting optical components. We will do a numerical simulation in 18.4.4.10.

18.4.4 Exercises

18.4.4.1 Ex: Gaussian light mode

The light of a laser propagates in light modes called Gaussian. A beam propagat-
ing along êz and linearly polarized along êx is described by the potential vector,
A(r, t) = êxu(r)e

ı(ωt−kz), where u(r) = u0

w(z)e
−(x2+y2)/w(z)2 is the energy density and

w(z) = w0

√
1 + (λz/πw2

0)
2 the diameter of the beam at the position z. Calculate the

Poynting vector in the Lorentz gauge, Φ = − c2

ıω∇ ·A.

Solution: First, we define as an abbreviation the Rayleigh length, zR ≡ πw2
0/λ.

With this, we calculate the derivative of the waist w = w(z),

∂w

∂z
= w0

∂

∂z

√
1 + (z/zR)

2
=

w0√
1 + (z/zR)2

z

z2R
=
w2

0z

wz2R
=

2z

kwzR
≡ D .

The gradient of the mode u = u(x, y, z) now is,

∇u =




∂x

∂y

∂z



u0
w
e−(x

2+y2)/w2

=




−2x
w2

u0

w e
−ρ2/w2

−2y
w2

u0

w e
−ρ2/w2

u0e
−ρ2/w2 −1

w2D + u0

w e
−ρ2/w2

ρ2 2
w3D


 = −




2x̃ũ

2ỹũ

D(1− 2ρ̃2)ũ


 ,

where we defined normalized coordinates ρ̃ ≡ ρ/w, ũ ≡ u/w and z̃ ≡ z/zR. Within
the Lorentz gauge we can calculate the scalar potential,

Φ = − c
2

ıω
∇ ·A = − c

2

ıω
∇ · [êxueı(ωt−kz)] = −

c2

ıω
eı(ωt−kz)

∂u

∂x
=
c2

ıω
2x̃ũeı(ωt−kz) .

The magnetic field is,

B⃗ = ∇×A =




0

∂
∂z [ue

ı(ωt−kz)]

− ∂
∂y [ue

ı(ωt−kz)]


 =




0

−ıkw −D(1− 2ρ̃2)

2ỹ


 ũeı(ωt−kz) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana01.pdf
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The electric field is,

E⃗ = −∇Φ = − c
2

ıω




∂x

∂y

∂z




2xu

w2
eı(ωt−kz)

= − c
2

ıω




eı(ωt−kz)

w2

(
2u+ 2x∂u∂x

)

eı(ωt−kz)

w2 2x∂u∂y

2x
(

1
w2u

∂
∂z e

ı(ωt−kz) + eı(ωt−kz)

w2
∂u
∂z + ueı(ωt−kz) ∂∂z

1
w2

)




= − c
2

ıω

2ũeı(ωt−kz)

w




1− 2x̃2

−2x̃ỹ
−ıkx− x̃(3− 2ρ̃2)D


 .

Finally, we can derive the vector of Poynting,

S⃗ = 1
µ0
E⃗ ×B⃗∗ = − 1

µ0

c2

ıω
2ũ2




−4xy2 − [−ıkx− x(3− 2ρ2)D][−ıkw −D(1− 2ρ2)]

−2(1− 2x2)y

(1− 2x2)[−ıkw −D(1− 2ρ2)]


 .

On the optical axis,

S⃗ = −êz
1

µ0

c2

ıω
2ũ2ıkw

z=0−→ −êz
c

µ0
2ũ2w .

In the focal plane,

S⃗ = − 1

µ0

c2

ıω
2ũ2




−4xy2 + k2xw

−2(1− 2x2)y

(1− 2x2)(−ıkw)


 .

We integrate radially,

P =

∫

R2

S⃗ · dA = xxx .

18.4.4.2 Ex: Volume and power of a Gaussian beam mode

a. Derive the expression for the mode volume Vm of a Gaussian beam of length L
from the definition I(0)Vm =

∫
I(r)dV .

b. In quantum mechanics we learn, that the zero point energy of the harmonic oscilla-
tor is ℏω/2. Use this notion to calculate the maximum electric field amplitude E1(0)
created by a single photon in terms of the mode volume.
c. A linear cavity of length L has the free spectral range δfsr = c/2L. Express the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana02.pdf
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power of the beam in terms of the number of photons contained in the cavity.

Solution: a. The intensity distribution in a Gaussian mode is,

I(r) =
2P

πw2(z)
e−2ρ

2/w2(z) with w(z) = w0

√
1 +

(
λz

πw2
0

)2

.

With this, we calculate,

Vm =
1

I(0)

∫
I(r)dV =

∫ L

0

∫ ∞

0

w2
0

w2(z)
e−2ρ

2/w2(z)2πρdρdz =
π

2
Lw2

0 .

b. The intensity is related to the electric field E⃗1 generated by a single photon and to
the number of photons n by,

I(r) = nε0cE⃗21 (r) .
With this, we calculate the zero point energy,

ℏω
2

=

∫
u1(r)dV =

∫
I1(r)

c
dV =

1

c
I1(0)Vm .

Hence,

E1(0) =
√
I1(0)

ε0c
=

√
1

ε0c

ℏω
2

c

Vm
=

√
ℏω

2ε0Vm
.

c. We get,

P =
πw2

0I(0)

2
=
πw2

0

2
nε0cE1(0)2 =

πw2
0

2
nε0c

ℏω
2ε0Vm

=
πw2

0

2
nε0c

ℏω
2ε0

2

Lπw2
0

= nℏωδfsr .

18.4.4.3 Ex: The lens in ray and wave optics

a. Use the transfer matrices (18.298) and (18.299) to derive the lens equations of ge-
ometric optics from the relation (18.296).
b. Now, use the transfer matrices (18.298) and (18.299) to derive, from the relation
(18.296), the transformation of a Gaussian beam. How do the waists behave upon
transformation?
c. You have a laser of λ = 632 nm wavelength producing a Gaussian beam of diameter
w1 = 1mm in its waist. Now, you want to match the beam into a cavity, whose mode
(defined by the radii of curvature of the mirrors) has a waist of diameter w2 = 100µm.
To do this, you have at your disposal a lens of f = 500mm focal distance. Using the
formulas derived in (b), determine, how the distances d1 (between the location of the
waist of the laser beam and the lens) and d2 (between the lens and the location of
the waist of the cavity) must be chosen.

Solution: a. We concatenate the matrices for free propagation by a distance d1,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana03.pdf
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for the transformation of the beam by a lens with focal distance f , and another free
propagation by a distance d2,

M =


1 d2

0 1




 1 0

−1/f 1




1 d1

0 1


 =


1− d2/f d1 + d2 − d1d2/f
−1/f 1− d1/f


 .

An image forms when the element M12 vanishes,

M =


−d2/d1 0

−1/f −d1/d2


 ,

implying,

1

f
=

1

d1
+

1

d2
and

y2
y1

= −d2
d1

.

b. We concatenate the same matrices as in (a), but now we consider the beam param-
eter, which transforms like,

q2 =
M11q1 +M12

M21q1 +M22
=

(1− d2/f)q1 + d1 + d2 − d1d2/f
−q1/f + 1− d1/f

.

We assume that at the positions d1,2 the beam has waists, such that R1,2 =∞,

q1,2 =
ıπw2

1,2

λ
.

With this we obtain the condition,

ıπw2
2

λ

(
− ıπw

2
1

λf
+ 1− d1

f

)
=

(
1− d2

f

)
ıπw2

1

λ
+ d1 + d2 −

d1d2
f

,

or separating the real and imaginary parts,

k2w2
1w

2
2

4fd1d2
=

1

d1
+

1

d2
− 1

f
and

w2
2

w2
1

=
d2 − f
d1 − f

.

c. Solving the two formulas derived in (b) by d2,

d2 =
k2w2

1w
2
2 − 4fd1

4f − 4d1
and d2 = f + (d1 − f)

w2
2

w2
1

.

Solving the difference between the two formulas by d1 and inserting this in the first
formula,

(d1 − f)2
w2

2

w2
1

= f2 − k2w2
1w

2
2

4
= (d2 − f)2

w2
1

w2
2

.

For the given values we calculate,

d1 = 1039mm and d2 = 505mm .
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18.4.4.4 Ex: Transverse modes of a ring cavity

In this exercise we consider a ring cavity made of a plane input coupler and two
identical curved high-reflectors (radius of curvature ρ = 2f) forming an isosceles
triangle. Let a = L/(2+

√
2) be the two short distances and b = L/(1+

√
2) the long

one, so that L = 2a+ b.
a. How many waists does the cavity modes have, and where are they located?
b. Derive the round-trip matrix starting from the location of any one of the waists.
c. Calculate the waists.
d. Calculate the transverse mode spectrum, and prepare a plot for ρ = 30 cm and
L = 8.7 cm.
e. The above results presume cylindrical symmetry. However, incidence on curved
mirrors under a tilted angle θ produces astigmatism. This can be accounted for by
assuming different radii of curvature for the horizontal and vertical axis:

Rh = R cos θ and Rv = R/ cos θ . (18.346)

Calculate the impact waist sizes in the horizontal and vertical axis.

Solution: a. The cavity has two waists, one at the input coupler, wa, the other
in free space, wb.
b. When we start from the input coupler, the round-trip matrix is,


1 a

0 1




 1 0

−1/f 1




1 b

0 1




 1 0

−1/f 1




1 a

0 1


 . (18.347)

From it we determine the beam radius and the radius of curvature at the input coupler,

w2
a =

2λB

π
√
4− (A+D)2

=
λ(2af2 − 2abf − 2a2f + ba2 + bf2)

π
√
f4 − (f2 − bf − 2af + ba)2

and R =
2B

D −A =∞ .

(18.348)
One the other hand, when we start from the free space waist, the round-trip matrix is


1 b/2

0 1




 1 0

−1/f 1




1 2a

0 1




 1 0

−1/f 1




1 b/2

0 1


 . (18.349)

c. The beam radius and the radius of curvature in free space is given by

w2
b =

2λB

π
√
4− (A+D)2

=
λ(2bf2 − b2f − 4abf + b2a+ 4af2)

2π
√
f4 − (f2 − bf − 2af + ba)2

and R =
2B

D −A =∞ .

(18.350)
d. The round-trip phase shift is given by twice the phase shift between the input coupler
and the free space waist,

ν/δfsr = (q + 1) + 2ϕmn(a)/π + 2ϕmn(b)/π (18.351)

= (q + 1) +
m+ n+ 1

π

(
2 arctan

λa

πw2
a

+ 2arctan
λb/2

πw2
b

)
,
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Using the identity

arctanx+ arctan y = arccos
1− xy√

(1 + x2)(1 + y2)
, (18.352)

after some algebraic manipulations aided by MAPLE be arrive at

ν/δfsr = (q + 1) + 2
m+ n+ 1

π
arccos

√(
1− 2a

R

)(
1− b

R

)
. (18.353)

For R = 30 cm and L = 8.7 cm the transverse mode splitting in terms of the free

0 1 2 3
ν (GHz)

0

0.5

1

U
(V

)

0 1 2 3
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0.5
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(m
+
n
+
1)

−
1

Figure 18.34: Transverse modes of a ring cavity. Top: high finesse, bottom: low finesse. The
lifting of the m+ n degeneracy is indicated by a small (underestimated splitting).

spectral range is

2

π
arccos

√(
1− 2a

R

)(
1− b

R

)
= 0.34 . (18.354)

e.

18.4.4.5 Ex: Transverse Hermite-Gauss modes

Derive the spectrum of Hermite-Gauss transverse modes.

Solution: We choose the ansatz,

ψ = g

(
x

w(z)

)
h

(
y

w(z)

)
e−ı[φ(z)+k(x

2+y2)/2q(z)] .

First, we note that the solution should work for g = h = 1, a case which has already
been studied. The obtained results,

q′ = 1 and φ′ =
−ı
q
,
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can not depend on the choice of g and h and therefore can be used in the following.
Inserting the ansatz into the equation (18.281) we calculate the derivatives,

2ık
∂ψ

∂z
=

[
2ık

(
−xg

′

g
− yh

′

h

)
w′

w2
− 2ık

q
− k2(x2+y2)

q2

]
ghe−ı[.]

∂

∂x
ψ =

(
1

w
g′ − ıkx

q
g

)
he−ı[.]

∂2

∂x2
ψ =

[
1

w2

g′′

g
− 2ıkx

qw

g′

g
− k2x2

q2
− ık

q

]
ghe−ı[.] .

Now,

0 = 2ık
∂ψ

∂z
− ∂2

∂x2
ψ − ∂2

∂y2
ψ

=

[
2ık

(
−xg

′

g
− yh

′

h

)
w′

w2
− 2ık

q
− k2(x2 + y2)

q2

]
−
[
1

w2

g′′

g
− 2ıkx

qw

g′

g
− k2x2

q2
− ık

q

]
− [...]

= − 1

w2

g′′

g
+

2ıkx

w

(
1

q
− w′

w

)
g′

g
− [...] .

hence we stay with,

C = − 1

w2

g′′

g
+

2ıkx

w

(
1

q
− w′

w

)
g′

g
= − dg

gdx
+ 2ıkx

(
1

q
− w′

w

)
dg

gdx
,

which must be valid for z = 0, where w = w0 and w′ = 0,

d2g

dx2
− ık

q0
2x
dg

dx
+ gC =

d2g

dx2
− 2

w2
0

2x
dg

dx
+ Cg = 0 .

This is already (almost) the differential equation of the Hermite polynomials,

d2Hm(u)

du2
− 2u

dHm(u)

du
+ 2mHm(u) = 0 ,

with gh = Hm(
√
2x/w)Hm(

√
2y/w).

18.4.4.6 Ex: Derivation of the Rayleigh-Sommerfeld formula

Derive the Rayleigh-Sommerfeld formula (18.326).

Solution: For any point r of an aperture we know that the function ψ(r) satisfies the
Helmholtz equation,

(∇2 + k2)ψ(r) = 0 .

There will also be a Green function that in a region V = {(x, y, z)|z > 0} which
satisfies the equation:

(∇2 + k2)G(r− r′) = δ3(r− r′) ,
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where r′ is an observation point in V . The solution of the latter equation is given by,

G(r− r′) = − 1

4π

eık|r−r
′|

|r− r′| . (18.355)

Know we can write,

ψ(r′) =
∫

V

ψ(r)δ3(r− r′)d3r =
∫

V

ψ(r)(∇2 + k2)G(r− r′)d3r .

We integrate the first term of the sum by parts,
∫

V

ψ(r)∇2Gd3r =

∫

∂V

ψ(r)∇G · dS−
∫

V

∇ψ(r) · ∇Gd3r

=

∫

∂V

ψ(r)∇G · dS−
[∫

∂V

∇ψ(r) ·GdS−
∫

V

∇2ψ(r)Gd3r

]
.

Substituting this integral in the previous equation, we are left with,

ψ(r′) =
∫

∂V

[ψ(r)∇G−∇ψ(r)] · dS+
∫
V
(∇2 + k2)ψ(r)Gd3r

0
.

Since ∇ψ is unknown and the integral is not null except at z = 0, we look out for a
Green function that is zero for z ̸= 0, so that there is no need to worry about ∇ψ, and
the second term in the above equation vanishes. Defining a vector r̃′ = (x′, y′,−z′)
outside the region V , we can write G(r− r′):

G(r− r′) = − 1

4π

eık|r−r
′|

|r− r′| +
1

4π

eık|r−r̃
′|

|r− r̃′| .

Which is also a solution of the Eq. (18.355). Hence, at z = 0, we get |r−r′| = |r− r̃′|,
and therefore G = 0 at z = 0. The integral at the aperture Σ at z = 0 becomes,

ψ(r′) =
∫

Σ

ψ(r)∂zGdS .

Knowing that the derivative is given by,

∂G

∂z
= − 1

2π

(
ık − 1

R

)( z
R

) eıkR
R

.

We finally find the wave ψ(r′),

ψ(r′) = − ık
2π

∫

Σ

ψz=0

(
ık − 1

R

)
z

R

eıkR

R
dS .

Using the approximation that R≫ k,

ψ(r′) ≃ − ık
2π

∫

Σ

ψ0
z

R

eıkR

R
dS ,

and so we managed to propagate the beam given the initial beam for the entire V
region.
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18.4.4.7 Ex: Phasefront distorsion by an axicon and a thin lens

Calculate the phasefront distorsion suffered by a plane wave upon traversing (a) an
axicon with base angle α and (b) a thin lens with focal length f .

Solution: a. We consider an axicon with base angle α made of glas with refrac-
tion index nrfr illuminated by a phase front of light with wavelength λ. The width w
of the axicon depends on the distance r from the symmetry axis as,

w = wmax − r tanα .

In a given time interval ∆t the phase front travels by a distance depending on where

Figure 18.35: (a) Phase shift of a phase front passing through an axicon. (b) Top view of
an axicon lens.

the beam hits the lens surface,

∆z = c∆t1 + cn(∆t−∆t1) ,

with ∆t1 ≡ w/cn. Choosing the time long enough for the phase front to cross the lens,
∆t = wmax/cn, the phase shift is,

∆ϕ(r) =
2π∆z

λ
= 2π

(nrfr − 1)w + wmax
λ

.

That is,

∆ϕ(r) = −(nrfr − 1)kr tanα = −2π r

r2π
,

where r2π is the distance from the optical axis, where the phase shift is just 2π.
b. Thin lenses with focal length f have spherical surfaces with radius of curvature,

R =
f

2
.

The width ∆w of a spherical segment depends on the distance r from the symmetry
axis as,

∆w = R−
√
R2 − r2 .

Hence, the width of the lens is,

w = wmax −
(
R−

√
R2 − r2

)
≃ wmax −

r2

2R
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana06.pdf
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In a given time interval ∆t the phase front travels by a distance depending on where
the beam hits the lens surface,

∆z = c∆t1 + cn(∆t−∆t1) ,

with ∆t1 = w/cn. Choosing the time long enough for the phase front to cross the lens,
∆t = wmax/cn, the phase shift is,

∆ϕ(r) = 2π
∆z

λ
= 2π

(nrfr − 1)w + wmax
λ

.

That is,

∆ϕ(r) = −(nrfr − 1)k
r2

f
= −2π r

2

r22π
,

where r2π is the distance from the optical axis, where the phase shift is just 2π.

18.4.4.8 Ex: Transmission through a pinhole

Calculate the light field distribution after a circular pinhole of radius a.

Solution: We now calculate the light field distribution after a pinhole. Conveniently
switching to polar coordinates,

kx = k cos θ , ky = k sin θ

x = r cosϕ , y = r sinϕ

kxx+ kyy = kr(cosϕ cos θ + sinϕ sin θ) = kr cos(ϕ− θ)
1− (λkx)

2 − (λky)
2 = 1− λ2k2 ,

we expect

uprop = F−1{H · F{[min(a,
√
x2 + y2)]}

=

∫
dkxdkye

−ıkxx−ıkyy
(
eıkz
√

1−(λkx)2−(λky)2
∫
dxdyeıkxx+ıkyymin(a,

√
x2 + y2)

)

=

∫ (
e−ıkr cos(ϕ−θ)eıkz

√
1−λ2k2

∫ a

0

∫ 2π

0

r′eıkr
′ cos(ϕ′−θ)dϕ′dr′

)
kdkdθ .

Introducing the Bessel function via Jn(z) = 1
2π

∫ π
−π e

ı(z sin τ−nτ)dτ , it is possible to
show that,

I(θ)

I0
=

(
2J1(ka sin θ)

ka sin θ

)2

.

The first ring of destructive interference is expected for J1(ka sin θ) = 0 = J1(3.83205..),

θ0 ≃ sin θ0 = 1.22
λ

2a
≃ 3.83

λ

2πa
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana07.pdf
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The angle under which the intensity is reduced to its rms-value,

I(θe)

I0
=

1√
e
= 0.6065..

is given by J1(ka sin θe) = 0.6065 = J1(1.3845..) and has the value,

θe ≃ sin θe = 1.3845
λ

2πa
.

This is similar to a Gaussian beam with waist w0, since according to formula (18.290)
we have,

w2 − w2
0

z2
=
w2

0

z2R
,

hence, for large distances from the pinhole,

θ ≃ w

z
≃ w0

zR
=

λ

πw0
.

This means, that the beam transmitted through a pinhole approximately behaves like
a Gaussian beam with waist w0 = 2a/1.3845.

18.4.4.9 Ex: Transmission through a various optical components

Calculate the phase front transformation matrix
a. for a Fresnel zone plate
b. for a Laguerre-Gauss zone plate.

Solution: a. For a Fresnel zone plate we have,

αFresnel = cos

(
π

2
+
kρ2z1
2z2R

)
.

where zR is the Rayleigh lens.
b. For a Laguerre-Gauss zone plate we have,

βLG ≡ αFresnel−l arctan
Y

X + ε
, βLG = sign[βLG(X < 0)+(−1)lβLG(X < 0)] .

18.4.4.10 Ex: Numerical phasefront propagation

Numerical phasefront propagation through a thin lens.

Solution: The result of the simulation is exhibited in the figure.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Propagation_OpticaGaussiana09.pdf
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Figure 18.36: (code) Numerical phasefront propagation.
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Chapter 19

Radiation

In the previous sections we discussed the propagation of electromagnetic waves, but
we do not say how these waves were produced in the first place. For now, we only
know, that it need’s accelerated charges or varying currents. Now, we will show how
such ’sources’ can emit energy by ’radiating’ electromagnetic waves.

To begin with, let us consider sources located near the origin and confined within
a sphere of radius r. The total power crossing the sphere’s surface is the integral of
the Poynting vector,

P (r) =

∮
S⃗ · da = 1

µ0

∮
(E⃗ × B⃗) · da . (19.1)

The radiated power is then the energy per unit area transported to infinity without
ever returning,

Prad = lim
r→∞

P (r) . (19.2)

Now, the area of the sphere’s surface is 4πr2 such that, in order to have non-
vanishing radiation, the Poynting vector must decrease (for large r) no faster than
as 1/r2. Following the Coulomb law, electrostatic fields decrease like 1/r2 or faster,
when the total enclosed charge is zero. And Biot-Savart’s law states that magneto-
static fields decrease at least as fast as 1/r2, such that |S⃗| ∝ 1/r4, for static con-
figurations. Hence, static sources do not radiate. On the other hand, Jefimenko’s
equations (17.109) and (17.112) indicate the existence of time-dependent terms (in-
volving ϱ̇ and j̇), which are proportional to 1/r. These are the terms responsible for

electromagnetic radiation. To study the radiation we choose the parts of E⃗ and B⃗
going as 1/r at large distances from the source, combine them to terms going as 1/r2

in the Poynting vector S⃗, and integrate S⃗ on a large spherical surface taking the limit
r →∞.

19.1 Multipolar expansion of the radiation

19.1.1 The radiation of an arbitrary charge distribution

In this section we will calculate the radiation emitted by arbitrary time-dependent
variations of charge and current distributions, but which are confined within a small
volume near the origin. The retarded scalar potential is according to (17.106),

Φ(r, t) =
1

4πε0

∫
ϱ(r′, t−R/c)

R
d3r′ , (19.3)

1031
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where R =
√
r2 + r′2 − 2r · r′, as illustrated in Fig. 17.11. Within the small source

approximation, r′ ≪ r, we have,

R ≃ r
(
1− r · r′

r2

)
and

1

R
≃ 1

r

(
1 +

r · r′
r2

)
, (19.4)

such that, defining,

t0 ≡ t− r
c , (19.5)

we obtain,

ϱ(r′, t−R/c) ≃ ϱ(r′, t− r
c +

êr·r′
c ) ≡ ϱ(r′, t0 + êr·r′

c ) . (19.6)

Expanding ϱ in a Taylor series around the retarded time at the origin t0, we get,

ϱ(r′, t−R/c) ≃ ϱ(r′, t0) + ϱ̇(r′, t0)
êr·r′
c + ... . (19.7)

Substituting the numerator and denominator in the formula (19.3) by the expansions
(19.4) and (19.7) we get up to the first order,

Φ(r, t) =
1

4πε0r

[∫
ϱ(r′, t0)d

3r′ +
êr
r
·
∫

r′ϱ(r′, t0)d
3r′ +

êr
c
· d
dt

∫
r′ϱ(r′, t0)d

3r′
]
.

(19.8)
The first integral is simply the charge 1, the other two represent the electric dipole at
time t0,

Φ(r, t) =
1

4πε0

[
Q

r
+

êr · d(t0)
r2

+
êr · ḋ(t0)

cr

]
. (19.9)

In the static case, the first two terms are the contributions of the monopole and dipole
to the multipolar expansion of Φ, the third term would not be present.

The vector potential,

A(r, t) =
µ0

4π

∫
j(r′, t−R/c)

R
d3r′ , (19.10)

is easily expanded up to first order by,

A(r, t) ≃ µ0

4πr

∫
j(r′, t0)d

3r′ , (19.11)

since, as we will show in Exc. 19.1.6.1,

A(r, t) ≃ µ0

4π

ḋ(t0)

r
, (19.12)

that is, d ∼ r′ is already of first order in r′.
Now we must calculate the fields. Again, we are interested in the radiation zone

(that is, in fields surviving great distances from the source), discarding all terms in E⃗
and B⃗ which decrease like 1/r2 or faster, which will not be the case for the first term

1The charge is evaluated at time t0, but since it is conserved, it stays the same at all times.
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(Coulomb) and the second term in (19.9). Therefore, considering the abbreviation
(19.5), we obtain,

∇Φ ≃ 1

4πε0
∇ êr · ḋ(t0)

rc
=

1

4πε0


 ḋ(t0)

cr2

0

+
êr · d̈(t0)

cr
∇t0 −

2êr · ḋ(t0)
cr2

êr

0


≃ 1

4πε0

êr · d̈(t0)
cr

(
− êr
c

)
. (19.13)

Similarly,

∇×A = ∇× µ0

4π

ḋ(t0)

r
=
µ0

4π

[
1

r
∇× ḋ(t0) +

(
∇1

r

)
× ḋ(t0)

]
(19.14)

=
µ0

4π


− d̈(t0)

r
×∇t0 −

êr × ḋ(t0)

r2

0
 = −µ0

4π

d̈(t0)

r
×
(−êr

c

)
= −µ0

4π

êr × d̈(t0)

cr
.

and,

∂A

∂t
≃ µ0

4π

d̈(t0)

r
. (19.15)

Hence, the Eqs. (17.78) tell us,

E⃗(r, t) ≃ µ0

4πr
[(êr · d̈(t0))êr − d̈(t0)] =

µ0

4πr
[êr × (êr × d̈(t0)] (19.16)

B⃗(r, t) ≃ − µ0

4πcr
[êr × d̈(t0)] .

In spherical coordinates,

E⃗(r, θ, ϕ, t) ≃ µ0d̈(t0)

4π

sin θ

r
êθ and B⃗(r, θ, ϕ, t) ≃ µ0d̈(t0)

4πc

sin θ

r
êϕ . (19.17)

The Poynting vector is,

S⃗ ≃ 1
µ0
E⃗ × B⃗ =

µ0d̈(t0)
2

16π2c

sin2 θ

r2
êr , (19.18)

which is a result that we already used in (18.111). And for total radiated power we
get the Larmor formula,

P ≃
∮
S⃗ · da =

µ0d̈(t0)

6πc
. (19.19)

The calculation is equivalent to a multipolar expansion of the retarded potentials
up to the lowest order in r′ which can still radiate, and which turns out to be an
electric dipole radiation. Multipolar orders of radiation usually only come into play,
when for some reason (e.g. a selection rule) the electric dipole radiation cancels. The
next multipolar order will be, as we will soon see, a combination of magnetic dipole
and quadrupolar electric radiation.
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19.1.2 Multipolar expansion of retarded potentials

In order to simplify the multipolar treatment, we use the superposition principle, al-
lowing us to decompose any temporal oscillation of a charge distribution into harmonic
oscillations,

ϱ(r, tr) = ϱ(r)e−ıωtr and j(r, tr) = j(r)e−ıωtr . (19.20)

By inserting these dependencies into the retarded potentials (17.106), we obtain with
tr = t− |r− r′|/c,

Φ(r) =
1

4πε0

∫
ϱ(rr)

eık|r−r
′|

|r− r′| d
3r′ and A(r) =

µ0

4π

∫
j(r′)

eık|r−r
′|

|r− r′| d
3r′ , (19.21)

with k = ω/c and implying Φ(r, t) = Φ(r)e−ıωt and A(r, t) = A(r)e−ıωt.
From these expressions we can, knowing the sources (19.20), calculate the fields

via the expressions (17.78) or alternatively (based only on the vector potential) via,

B⃗ = ∇×A and E⃗ = ıc2

ω ∇× B⃗ and B⃗ = −ı
ω ∇× E⃗ , (19.22)

where E⃗ is evaluated outside the source. We will consider sources which are small
(size d) compared to the wavelength λ and distinguish three regions characterized by
fields with very different properties:

• near-field (or static) zone r′ < d≪ r ≪ λ

• intermediate (or inductive) zone r′ < d≪ r ∼ λ
• far-field (or radiative) zone r′ < d≪ λ≪ r

Figure 19.1: Geometry of source (r′ < d) and observer (r > d) coordinates.

To handle the expression (19.21) we expand the Green function into spherical
harmonics,

eık|r−r
′|

4π|r− r′| = ık

∞∑

ℓ=0

h
(1)
ℓ (kr>)jℓ(kr<)

ℓ∑

m=−ℓ
Y ∗ℓm(θ′, ϕ′)Yℓm(θ, ϕ) , (19.23)

where (placing the observer out of the source region) r< ≡ min(r, r′) = r′ and r> ≡
max(r, r′) = r. jℓ and h

(1)
ℓ are the Bessel functions and Hankel functions of the first

type. This formula can be simplified by the sum rule,

ℓ∑

m=−ℓ
Y ∗ℓm(êr′)Yℓm(êr) =

2ℓ+ 1

4π
Pℓ(êr′ · êr) , (19.24)
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where Pℓ are Legendre polynomials. We write,

eık|r−r
′|

|r− r′| = ık

∞∑

ℓ=0

(2ℓ+ 1)h
(1)
ℓ (kr)jℓ(kr

′)Pℓ(êr′ · êr) . (19.25)

For observation points r out of the source (which is certainly satisfied in the limit
r′ ≪ r) the Eq. (19.21) becomes,

A(r) =
µ0

4π
(2ℓ+ 1)ık

∞∑

ℓ=0

h
(1)
ℓ (kr)

∫
j(r′)jℓ(kr

′)Pℓ(êr′ · êr)d3r′ . (19.26)

Since we will always be considering the limit kr′ ≪ 1, we can expand the Bessel
function for small arguments,

jℓ(x)
x→0−→ xℓ

(2ℓ+ 1)!!

(
1− x2

2(2ℓ+ 3)
+ ...

)
. (19.27)

We obtain for the vector potential,

A(r) ≃ µ0

4π
ık

∞∑

ℓ=0

1

(2ℓ− 1)!!
h
(1)
ℓ (kr)

∫
j(r′)(kr′)ℓPℓ(êr′ · êr)d3r′ . (19.28)

Now, let us discuss the limiting cases by comparing the observation distance r
with the wavelength. In the near-field zone, where kr ≪ 1, we can also expand the
Bessel function for small arguments,

nℓ(x)
x→0−→ − (2ℓ− 1)!!

xℓ+1

(
1− x2

2(1− 2ℓ)
+ ...

)
(19.29)

and h
(1)
ℓ (x) = jℓ(x) + ınℓ(x)

x→0−→ ınℓ(x) ,

resulting in the vector potential,

A(r)
kr→0−→ µ0

4π
k

∞∑

ℓ=0

1

(kr)ℓ+1

∫
j(r′)(kr′)ℓPℓ(êr′ · êr)d3r′ . (19.30)

This formula could already have been derived by approximating the exponential of
the formula (19.21) by eık|r−r

′| ≃ 1 and expanding the following Green function into
spherical harmonics 2,

1

4π|r− r′| =
∞∑

ℓ=0

ℓ∑

m=−ℓ

1

2ℓ+ 1

rℓ<
rℓ+1
>

Y ∗ℓm(θ′, ϕ′)Yℓm(θ, ϕ) . (19.31)

2This expansion is obtained by expanding the Legendre polynomials in the expansion (13.91),

1

|r− r′| =
1

r

∞∑
ℓ=0

rℓ<

rℓ+1
>

Pℓ(cos θ
′) with Pℓ(cos θ

′) =
4π

2ℓ+ 1

ℓ∑
m=ℓ

Y ∗ℓm(θ′, ϕ′)Yℓm(θ, ϕ) ,

.
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The absence of propagating terms in the expression (19.30) (the wave vector k can
be eliminated from the expression (19.30)) demonstrates the quasi-static character
of the fields within the near zone, that is, apart from a uniform and harmonic os-
cillation described by e−ıωt. The radial components depend on the details of the
source’s geometry. The scalar and vector potentials are of the form already derived
in electrostatics (13.92) and magnetostatics (15.39).

On the other hand, in far-field zone, where kr ≫ 1, the exponential in (19.21)
oscillates rapidly and determines the behavior of vector potential. Here, we must
resort to the complete expression (19.28), but we can expand the Hankel functions
like,

h
(1)
ℓ (x) = (−ı)ℓ+1 e

ıx

x

ℓ∑

m=0

ım

m!(2x)m
(ℓ+m)!

(ℓ−m)!
. (19.32)

Knowing,

h
(1)
0 (x) = −ı eıxx , P0(x) = 1

h
(1)
1 (x) = − eıxx

(
1− 1

ıx

)
, P1(x) = x .

(19.33)

we calculate the potentials,

Aℓ=0(r) ≃
µ0

4π

eıkr

r

∫
j(r′)d3r′ (19.34)

Aℓ=1(r) ≃ −
µ0

4π
ık
eıkr

r

(
1− 1

ıkr

)∫
j(r′)r′ · êrd3r′ ,

We will see in the following sections that Aℓ=0 is the potential for electric dipole radi-
ation and Aℓ=1 the potential for magnetic dipole radiation and electric quadrupolar
radiation.

Example 113 (The far-field limit): Assuming that the spatial extent of the
radiation source is small, r′ ≲ d ≪ r, it is sufficient to approximate directly in
the expression (19.21),

|r− r′| ≃ r − êr · r′ .
Moreover, if only the principal term in kr is desired 3, the inverse distance in
(19.21) can be replaced by r. Then, the vector potential is,

lim
kr→∞

A(r) =
µ0

4π

eıkr

r

∫
j(r′)e−ıkêr·r

′
d3r′ .

This shows that, in the far-field zone, the vector potential behaves like a spher-
ically expanding wave modulated by an angular coefficient. It is easy to show,
that the fields calculated from (19.22) are transverse to the radius vector and fall
off as 1/r. They correspond thus to the radiation fields. If the size of the source

3The expansion by 1
kr

gives,

e−ıkêr·r
′

kr − kêr · r′
=
e−ıkêr·r

′

kr

[
êr · r′
r

+

(
êr · r′
r

)2

+ ...

]
≃ e−ıkêr·r

′

kr
.



19.1. MULTIPOLAR EXPANSION OF THE RADIATION 1037

is small compared to a wavelength, it is appropriate to expand the exponential
in the integral in (19.25) in powers of k,

lim
kr→∞

A(r) =
µ0k

4π

∑
n

(−ı)n
n!

eıkr

kr

∫
j(r′)(êr · kr′)nd3r′ .

The magnitude of the n-th term is given by 1
n!

∫
j(r′)(êr · kr′)nd3r′. Since the

order of magnitude of r′ is d, and since we assumed kr′ ≪ 1, consecutive terms

decrease rapidly with n. Consequently, the radiation emitted from the source

comes mainly from the first terms of the expansion (19.26).

19.1.2.1 The electric monopole

We notice that the lowest order radiation found in the expansion of A is dipolar. How
about monopolar fields? Let us examine the issue of electric monopole fields, when
the sources vary in time. The contribution of the electric monopole is obtained by
substituting |r− r′| → |r| = r in the integral (19.21) for the potential Φ. The result
is,

Φmonopole(r, t) =
1

4πε0

eıkr

r

∫
ρ(r′)d3r′ =

Q

4πε0

eıkr

r
. (19.35)

where q(t) is the total charge of the source. Since the charge is localized in the
source (and therefore conserved), the total charge q is independent of time. Thus,
the electrical monopole part of the potential of a localized source is necessarily static.
Radiation with harmonic temporal dependence, e−ıωt, does not have monopolar terms
in the fields.

Now let us go back to multipolar fields. Since these fields can be calculated from
the vector potential via (19.23), we omit explicit references to the scalar potential in
the following.

19.1.3 Radiation of an oscillating electric dipole

Keeping only the first term in (19.30) we get the potential vector (19.33),

A(r) =
µ0

4π

eıkr

r

∫
j(r′)d3r′ . (19.36)

which is valid everywhere outside the source. Using the continuity equation we can
rewrite it, using a result from Exc. 19.1.6.1,

A(r) = −µ0

4π

eıkr

r

∫
r′(∇′ · j)d3r′ = −µ0

4π

eıkr

r
ıω

∫
r′ϱ(r′)d3r′ . (19.37)

With the electric dipole moment,

d ≡
∫

r′ϱ(r′)d3r′ , (19.38)

defined in electrostatics we write,

A(r) = −µ0

4π

eıkr

r
ıωd . (19.39)
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We obtain the fields via the equations (19.22),

B⃗ = −ck
3µ0

4π
(êr × d)

eıkr

kr

(
1− 1

ıkr

)

E⃗ =
k3

4πε0

{
(êr × d)× êr

eıkr

kr
+ [3êr(êr · d)− d]

(
1

(kr)3
− ı

(kr)2

)
eıkr

} .

(19.40)
We observe that the magnetic field is transverse to the radius vector êr at all dis-
tances, but that the electric field has components parallel and perpendicular to êr.
In Exc. 19.1.6.2 we will derive the fields (19.40) directly from the potentials.

In the radiation zone kr ≫ 1 the fields adopt the typical behavior,

B⃗ = −ck
3µ0

4π
(êr × d)

eıkr

kr
and E⃗ =

k3

4πε0
(êr × d)× êr

eıkr

kr
. (19.41)

In the near-field zone kr ≪ 1,

B⃗ =
ıωµ0

4π
(êr × d)

1

r2
and E⃗ =

1

4πε0
[3êr(êr · d)− d]

1

r3
, (19.42)

does not have the propagation term eıkr. The electric field, apart from its temporal
oscillations, is just a static electric dipole. The magnetic field is, apart from a constant
Z0 ≡

√
µ0/ε0 called vacuum impedance, smaller by a factor kr than the electric field in

the region where kr ≪ 1. Thus, the fields in the near-field zone are of predominantly
electrical nature. The magnetic field disappears, obviously, in the static limit k → 0.
In this case, the near-field zone extends to infinity.

The Poynting vector in the far-field due to the oscillation of the dipole moment d
is, inserting (19.41),

S⃗ =
1

2µ0
E⃗ × B⃗∗ = − ck4

32π2ε0r2
{[êr × d)× êr]× (êr × d)} (19.43)

= − ck4

32π2ε0r2
(d2 − d2r)êr = −

ck4

32π2ε0r2
êrd

2 sin2 θ .

The radiated power is given by the absolute value of (19.43) per solid angle element 4.
If the components of d all have the same phase, the angular distribution is a typical
dipole pattern,

dP

dΩ
=

c

32π2ε0
k4|d|2 sin2 θ . (19.44)

where the angle θ is measured from the direction of d. The total radiated power,
regardless of the relative phases of the components of d, is,

P =
cZ0

12πε0
|d|2 =

µ0

12πc
|d|2 , (19.45)

4When writing angular distributions of radiation, we will always exhibit the polarization explicitly
by writing the absolute square of a vector that is proportional to the electric field. If the angular
distribution of a particular polarization is desired, it can then be obtained by taking the scalar
product of the vector with the appropriate polarization vector before the square.
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which is half of the value calculated in the derivation of the Larmor formula (19.19),
because in (19.43) we choose to calculate directly the temporal average of the Poynting
vector.

Resolve the 19.1.6.3. In Exc. 19.1.6.4 we will verify the gauge of the dipolar
potential and in Exc. 19.1.6.5 we calculate the fields of a linear antenna.

x

(a)

B
φ

z

E
r

x

(b)

z

x

y

(c)

x

z

(d)

Figure 19.2: (code) Electric dipole radiation patterns. (a) Cut through B⃗ϕ, (b) cut through
E⃗r, (c) field lines of B⃗ in the xy-plane, and (d) field lines of E⃗ in the xz-plane. A movie can

be seen at (watch movie).

Example 114 (Linear antenna): As an example, we calculate the power
radiated by an oscillating charge ϱ(r, t) = Qδ(x)δ(y)δ(z − z0e−ıωt). The dipole
moment is,

d =

∫
r′ϱ(r′, t)dV ′ = Qêzz0e

−ıωt .

Inserted into the formula (19.45),

P =
cZ0Q

2z20
12πε0

.

Example 115 (Linear antenna): As another example we calculate the power
radiated by a simple linear antenna, characterized by a current distribution
j(r, t) = I0êzδ(x)δ(y)(1− 2|z|/a)e−ıωt. The dipole moment is,

d =
ı

ω

∫
jdV ′ =

ı

ω
I0êze

−ıωt
∫ a/2

−a/2
jdV ′

(
1− 2|z′|

a

)
dz′ =

ıI0a

2ω
êze
−ıωt .

Inserted into the formula (19.45),

P =
Z0I

2
0 (ka)

2

48π
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_DipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_DipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_DipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/ED_Radiation_DipoleRadiation_Movie.mp4
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19.1.4 Magnetic dipole and electric quadrupole radiation

The term ℓ = 1 in the expansion (19.28) leads to the second vector potential (19.34),

A(r) = −ı µ0

4π
ıkh

(1)
1

∫
j(r′)(êr · r′)d3r′ =

µ0

4π

eıkr

r

(
1

r
− ık

)∫
j(r′)(êr · r′)d3r′ .

(19.46)
This vector potential can be written as the sum of two terms: one gives a transverse
magnetic field and the other gives a transverse electric field. These physically distinct
contributions can be separated by rewriting the integrand in (19.46) as the sum of a
part, which is symmetric about an exchange of j and r′, and an antisymmetric part.
Therefore,

(êr · r′)j = 1
2 [(êr · r′)j+ (êr · j)r′]− êr × 1

2 (r
′ × j) , (19.47)

using the rule B(AC)− C(AB). The second (antisymmetric) part is recognizable as
the magnetization due to the current j:

M⃗ = 1
2 (r
′ × j) . (19.48)

We will see, that the first (symmetric) term is related to the electric quadrupole
moment density.

19.1.4.1 Magnetic dipole radiation

Considering, for the moment, only the magnetization term, we get the vector poten-
tial,

A(r) =
ıkµ0

4π
(êr ×m)

eıkr

r

(
1− 1

ıkr

)
, (19.49)

where m is the magnetic dipole moment,

m =

∫
M⃗d3r = 1

2

∫
(r× j)d3r . (19.50)

The fields can be determined by observing that the vector potential (19.49) is pro-
portional to the magnetic field (19.40) of an electric dipole (except that we have to
exchange the electric by the magnetic dipole moment). Thus, we can use the calcula-
tions we already made and transfer the results to the fields of a magnetic dipole via
Eqs. (19.22):

B⃗ =
k3µ0

4π

{
(êr ×m)× êr

eıkr

kr
+ [3êr(êr ·m)−m]

(
1

(kr)3
− ı

(kr)2

)
eıkr

}

E⃗ = −ck
3µ0

4π
(êr ×m)

eıkr

kr

(
1− 1

ıkr

) .

(19.51)
In Exc. 19.1.6.6 we will derive the fields (19.51) directly from the potentials.
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All arguments concerning the behavior of the fields in the near-field and far-field
regions are the same as those proposed for the electric dipole radiation with the
modifications,

E⃗(M1) m↔cd←→ cB⃗(E1) (19.52)

cB⃗(M1) m↔cd←→ E⃗(E1) .

Likewise, the radiation pattern and the total radiated power are the same for the two
types of dipole. The only difference in the radiation fields are their polarizations.
For an electric dipole, the electric field vector lies in the plane defined by êr and d,
whereas for a magnetic dipole, it is perpendicular to the plane defined by êr and m.

19.1.4.2 Electric quadrupole radiation

The integral of the symmetric term in (19.47) can be transformed using the continuity
equation and integrating by parts:

1
2

∫
[(êr · r′)j+ (êr · j)r′]d3r′ = − ıω2

∫
r′(êr · r′)ϱ(r′)d3r′ . (19.53)

This will be demonstrated in Exc. 19.1.6.1. Since this integral involves the second
moments of charge density, it corresponds to a quadrupolar electric radiation source.
The potential vector is,

A(r) = −µ0ck
2

8π

eıkr

r

(
1− 1

ıkr

)∫
r′(êr · r′)ϱ(r′)d3r′ . (19.54)

The expressions for the fields are a bit complicated, such that we focus on the radiation
zone, where it is easy to verify that,

B⃗ = ∇×A = ıkêr ×A , E⃗ = ıck(êr ×A)× êr . (19.55)

Consequently, the magnetic field is,

B⃗ = − ıck
3µ0

8π

eıkr

r

∫
(êr × r′)(êr · r′)ϱ(r′)d3re′ . (19.56)

With the definition of the tensor of the quadrupolar moment,

Qαβ ≡
∫
(3xαxβ − r2δαβ)ϱ(r′)d3r′ , (19.57)

the integral (19.56) can be written as,

êr ×
∫

r′(êr · r′)ϱ(r′)d3r′ = 1
3 êr ×Q(êr) , (19.58)

where the vector Q(êr) is defined via its components,

Qα =
∑

αβ

Qαβ êβ . (19.59)
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We note that its magnitude and direction depend on the direction of observation as
well as on the properties of the source. With these definitions, we get the magnetic
field,

B⃗ = − ıck
3µ0

24π

eıkr

r
êr ×Q(êr) , (19.60)

and the time-averaged power radiated into a solid angle,

dP

dΩ
=

c2Z0

1152π2
k6|[êr ×Q(êr)]× êr|2 . (19.61)

The final expressions are complicated [659], but for the example of a ellipsoidal
charge distribution periodically changing its ’aspect ratio’, it is possible to show that
the angular distribution of the radiation pattern exhibits four lobes,

dP

dΩ
=
c2Z0k

6

512π2
Q2

0 sin
2 θ cos2 θ , (19.62)

and the total radiated power is,

P =
c2Z0k

6

960π
Q2

0 . (19.63)

For multipoles of higher order the formulas become more and more complicated.
Other techniques based on the multipolar expansion of the wave equation, rather
than deriving the radiation patterns directly from the retarded potentials, are more
suitable. Resolve the Exc. 19.1.6.7.

19.1.5 Multipolar expansion of the wave equation

The radiation from sources which are small in comparison with the observation dis-
tance exhibits a symmetry suggesting a reformulation of the wave equation in spherical
coordinates, as we have already done in Sec. 13.6.3. In short, we consider a scalar
field ψ(r, t) satisfying the wave equation,

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 . (19.64)

The temporal dependency is separated by a Fourier transform,

ψ(r, t) =

∫ ∞

−∞
ϕ(r, ω)e−ıωtdω , (19.65)

yielding a distribution of the amplitudes which satisfying the Poisson equation,

(∇2 + k2)ϕ(r, ω) = 0 , (19.66)

with ω2 = c2k2. Expanding into spherical harmonics by the ansatz,

ϕ(r, ω) =
∑

ℓ,m

fℓ(r)Yℓ,m(θ, ϕ) , (19.67)
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we transform (19.66), where the Laplacian is expressed in spherical coordinates, into
a differential equation which is independent of m,

[
d2

dr2
+

2

r

d

dr
+ k2 − ℓ(ℓ+ 1)

r2

]
fℓ(r) = 0 . (19.68)

This equation is precisely the spherical Bessel equation, whose solutions are linear
combinations of spherical Bessel and von Neumann functions,

Aℓjℓ(kr) +Bℓnℓ(kr) . (19.69)

With respect to the spherical part, we note that the spherical harmonics are the
eigenfunctions of the square of an angular momentum operator L̂, which can be
identified with the angular part of the Laplacian in spherical coordinates,

L̂2 = −
[

1

sin θ

∂

∂ sin θ

(
sin θ

∂

∂ sin θ

)
+

1

sin2 θ

∂

∂ϕ

]
, (19.70)

and has as eigenvalues the integer numbers ℓ(ℓ+ 1),

L̂2Yℓm = ℓ(ℓ+ 1)Yℓm . (19.71)

The Lie algebra ruling the calculation with angular momentum operators will not be
reproduced here 5.

Clearly, the simplicity of the multipolar expansion of the wave equation (19.64)
into spherical coordinates is due to its scalar nature, and a similar procedure is used to
solve the scalar Schrödinger equation for the hydrogen atom. Electromagnetic fields,
however, are vectorial which complicates the calculus, as we will see in the following.

19.1.5.1 Multipolar expansion of the fields

Assuming a time dependence as e−ıωt and combining the Maxwell equations for the
field rotations to derive the Helmholtz equation, we obtain a set of equations, which
is equivalent to the Maxwell equations,

(∇2 + k2)B⃗ = 0 and ∇ · B⃗ = 0 with E⃗ = ı
c

k
∇× B⃗ , (19.72)

or alternatively,

(∇2 + k2)E⃗ = 0 and ∇ · E⃗ = 0 with B⃗ = ı
1

ck
∇× E⃗ . (19.73)

Now, we have for any well-behaved vector field X,

∇2(r ·X) = r · (∇2X) + 2∇ ·X . (19.74)

Applying this relation to the electromagnetic fields, we find,

(∇2 + k2)(r · B⃗) = 0 and (∇2 + k2)(r · E⃗) = 0 . (19.75)

5See the treatment of spherical potentials in Sec. 23.3.1 .
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The transverse magnetic field and the transverse electric field can be rewritten by
the rotation of the equations (19.72) respectively (19.73),

r · B⃗ = ı
ckr · (∇× E⃗) = ı

ck (r×∇) · E⃗ ≡ 1
ckL · E⃗

r · E⃗ = ıc
k r · (∇× B⃗) = ıc

k (r×∇) · B⃗ ≡ c
kL · B⃗

, (19.76)

defining in this way the operator for the orbital angular momentum L.
These scalar fields can now be expanded as demonstrated in (19.67) and (19.69).

That is, we can expand the transverse parts of electric and magnetic fields into mag-
netic (electric) multipoles as,

r · B⃗(M)
ℓm = ℓ(ℓ+1)

k gℓ(kr)Yℓm(θ, ϕ) = 1
ckL · E⃗

(M)
ℓm and r · E⃗(M)

ℓm = 0

r · E⃗(E)
ℓm = −Z0

ℓ(ℓ+1)
k fℓ(kr)Yℓm(θ, ϕ) = c

kL · B⃗
(E)
ℓm and r · B⃗(E)

ℓm = 0

.

(19.77)
where gℓ is a linear combination of Bessel and Hankel functions and ℓ(ℓ + 1)/k a
convenient normalization factor.

We can see (by simplifying the argument a bit) that, by comparing (19.77) with

the equation (19.71) the field E⃗(M) must contain the operator L,

E⃗(M) = cgℓ(kr)LYℓm(θ, ϕ) with B⃗(M) = − ı
ck∇× E⃗

(M)
ℓm

B⃗(E) = µ0gℓ(kr)LYℓm(θ, ϕ) with E⃗(E) = − ıck∇× B⃗
(E)
ℓm

. (19.78)

The functions,

Xℓm(θ, ϕ) =
1√

ℓ(ℓ+ 1)
LYℓm(θ, ϕ) , (19.79)

are known as vector spherical harmonics. Combining the expansions into electric and
magnetic multipoles we obtain,

B⃗ =
∑

ℓm

[
a
(E)
ℓ,mfℓ(kr)Xℓ,m − ı

ka
(M)
ℓ,m∇× gℓ(kr)Xℓm

]
(19.80)

E⃗ =
∑

ℓm

[
ı
ka

(E)
ℓ,m∇× fℓ(kr)Xℓ,m − a(M)

ℓ,m gℓ(kr)Xℓm

]
.

The coefficients can be determined from the radial projections of the fields.

19.1.5.2 Vector spherical harmonics

The vector spherical harmonics defined above are a particular case of those defined
for the coupling of two spins L and S with S = 1 in the following sense,

Yjℓm =
∑

q


 J 1 L

−m q m− q


Y

(ℓ)
m−qêq , (19.81)
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where the basis is in Cartesian coordinates,

ê0 = êz and ê± = − 1√
2
(êx ± ıêy) . (19.82)

These functions are tensor operators of rank (1, ℓ), since Yjℓm = (Y (ℓ) ⊗ ê(1))
(j)
m .

This means they have vectorial properties via ê
(1)
q and, at the same time, are tensor

operators just like the spherical harmonics Y
(ℓ)
m . It is possible to check the following

expressions,

J2Yjℓm = j(j + 1)Yjℓm (19.83)

L2Yjℓm = ℓ(ℓ+ 1)Yjℓm

S2Yjℓm = 2Yjℓm

JzYjℓm = mYjℓm .

Furthermore, comparing (19.83) and (19.79),

L√
ℓ(ℓ+ 1)

Y (ℓ)
m = −ıYℓℓm = Xℓm (19.84)

r

r
Y (ℓ)
m = ı

√
ℓ+ 1

2ℓ+ 1
Yℓ ℓ+1 m − ı

√
l

2ℓ+ 1
Yℓ ℓ−1 m

0 = r ·Yℓℓm = p ·Yℓℓm .

In 19.1.6.8 we calculate the following examples, Y000 = 0 and,

rY110 =
√

3
16π


−ıy
ıx

0

 , rY11±1 =
√

3
16π


z

±ı
−(x± ıy)

 , rY10±1 = −
√

1
24π


x

±ıy
0

 .

(19.85)

Also,

Y2
κκm = [κ(κ+1)−m(m+1)]|Yκ m+1|2+2m2|Yκ m|2+[κ(κ+1)−m(m−1)]|Yκ m−1|2 .

(19.86)
Applying the formulas [1368](Chp. 10.1) to scalar and vector products of vector

spherical harmonics, it is possible to derive the energy density ε0
2 E⃗2jmτ + 1

2µ0
B⃗2jmτ and

the Poynting vector ε0|E⃗jmτ×B⃗jmτ |. The calculation is complicated, because we must
calculate (3j), {6j}, and {9j} coefficients. Considering that the angular distribution
is the same for electric and magnetic multipolar radiation, we obtain,

ujmτ (r) =
1

2µ0
B⃗2jmτ (r) = −

ℏω
4V

(
j + 1

2j + 1

)2
(kr)2j

(2j + 1)!!2
Y2
jjm , (19.87)

The question now is, with what polarization ε and under what angle of incidence k
can we excite a particular multipolar transition. The transition can only be excited by
a mode, to which it couples and, therefore, into which it can radiate light. Therefore, it
is sufficient to analyze the angular distribution and the polarization of spontaneously
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emitted radiation. In the far-field of a point source the electric and magnetic fields
satisfy the Helmholtz equation [1368],

(△+ k2)E⃗(r, t) = 0 , (19.88)

and similarly for the magnetic field B⃗(r, t). An atomic transition |J,mJ⟩ ↔ |J +
κ,mJ +m⟩ interacts with the electric or magnetic multipolar part κ of the radiation
field. The general solution of the Helmholtz equation, therefore, is expanded into
spherical harmonics Yκm(θ, ϕ):

E⃗ =

∞∑

κ=0

κ∑

m=−κ

(
E⃗(Eκ)m + E⃗(Mκ)

m

)
(19.89)

and similarly for the magnetic field. The angular distributions of the multipolar
electric field components are calculated by,

E⃗(Eκ)m = −ık−1∇× B⃗(Eκ)m (19.90)

B⃗(Eκ)m = −ı (k×∇)Yκm(θ, ϕ) ≡
√
κ(κ+ 1)Yκκm(θ, ϕ) , (19.91)

and similarly for the magnetic field. The field components can be expressed by the
vector spherical harmonics Yκκm. The angular distribution of the radiated intensity
follows from the absolute value of the Poynting vector,

I(Eκ)m (r) = µ−10

∣∣∣E⃗(Eκ)m (r)× B⃗(Eκ)m (r)
∣∣∣ = µ−10

∣∣∣B⃗(Eκ)m (r)
∣∣∣
2

∝ Yκκm(θ, ϕ)2 . (19.92)

The multipolar order of a radiation can, in principle, be determined by mea-
suring its angular distribution. The above distribution integrate over all possible
polarizations. If polarized light is used, in order to excite transitions between se-
lected Zeeman levels, the angular intensity distribution of polarized radiation must
be calculated. The transition rate between two levels |a⟩ and |b⟩ for light incident

from a given direction r with a given polarization ε̂ is, |⟨b|ε̂E⃗(Eκ)m (r)|a⟩|2, where

E⃗(Eκ)m (r) = −ık−1∇ × B⃗(Eκ)m (r). The cases of linear polar polarization (respectively
axial) of the light field in relation to the quantization axis are expressed by the frac-
tions ε̂polar · Yκκm, respectively, ε̂axial · Yκκm, the absolute square values of which
add up to the angular intensity distribution,

u10 ∼ 4|Y (1)
1 |2 = 3

4π
2 sin2 θ

u1±1 ∼ 2|Y (1)
1 |2 + 2|Y (1)

0 |2 = 3
4π

(1 + cos2)

u20 ∼ 12|Y (2)
1 |2 = 5

4π
18 sin2 cos2

u2±1 ∼ 4|Y (2)
2 |2 + 2|Y (2)

1 |2 + 6|Y (2)
0 |2 = 5

4π
3(4 cos2−3 cos2 +1)

u2±2 ∼ 8|Y (2)
2 |2 + 4|Y (2)

1 |2 = 5
4π

3 sin2(1 + cos2)

u30 ∼ 24|Y (3)
1 |2 = 7

4π
9
2
sin2(5 cos2−1)2

u3±1 ∼ 10|Y (3)
2 |2 + 2|Y (3)

1 |2 + 12|Y (3)
0 |2 = 7

4π
3
8
(225 cos6−305 cos4 +111 cos2 +1)

u3±2 ∼ 6|Y (3)
3 |2 + 8|Y (3)

2 |2 + 10|Y (3)
1 |2 = 7

4π
15
4
sin2(9 cos4−2 cos2 +1)

u3±3 ∼ 18|Y (3)
3 |2 + 6|Y (3)

2 |2 = 7
4π

45
8
sin4(1 + cos2) .

(19.93)
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Figure 19.3: (code) Angular dependence of dipolar radiation u1m (left), quadrupolar u2m

(center) and u3m octupolar (right) with their respective contributions m = 0 (blue), m = ±1
(red), m = ±2 (yellow) and m = ±3 (magenta).

In the equatorial plane, only the parts uj±1 contribute; but these disappear in po-
lar direction. All other components lie in the equatorial plane. For non-polarized
radiation the angular distribution is uniform,

j∑

m=−j
ujm ∼ 2j+1

4π 2(j + 1)! . (19.94)

19.1.5.3 Distribution of the polarization of multipolar radiation

The axial and polar components of the vector spherical harmonics Yjℓm(θ, ϕ) at the
observation point r can be determined as follows: First, we orient the coordinate
system via the application of two rotation matrices Mz(ϕ) and My(θ) such that the
observation point lies on top of the x axis. Then, we project the vector spherical
harmonic via the application of a projection matrix Mp(λ) on a straight line, which
is perpendicular to the x-axis and forms with the y-axis an angle λ, as illustrated in
Fig. 19.4. Finally, the coordinate system is rotated back to the original position:

Yλ
jlm(θ, ϕ) =Mz(ϕ)

−1My(θ)
−1Mp(λ)My(θ)Mz(ϕ)Yjlm(θ, ϕ) (19.95)

with

Mp(λ) =


1 0 0

0 sinλ 0

0 0 cosλ

 , My(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , (19.96)

Mz(ϕ) =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 . (19.97)

The projection of the vector spherical harmonics Yjlm(θ, ϕ) onto the vector field
Yλ
jℓm(θ, ϕ) describes, how the light emitted by the multipolar transition is modified

by transmission through a polarizer, whose main axis is rotated about the quantization
axis by an angle λ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_MultipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_MultipoleRadiation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_MultipoleRadiation.m
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Figure 19.4: Illustration of the measurement of Yjℓm(ϑ, φ).

19.1.5.4 Coupling of multipolar fields to radiation sources

We consider distributions of charges, currents, and intrinsic magnetization, e.g. the
electron spin.

Figure 19.5: Classical picture of the electronic motion excited by (a) π-light, (c) σ±-light,
and (b) both.

19.1.5.5 Atomic multipoles

Here, we consider the electric charges and currents of an atom interacting with elec-
tromagnetic fields. We borrow the parametrization of the charges (17.25) and currents
(17.39) in the atomic layer from the microscopic model of Maxwell’s equations,

ϱmic(r) = Zeδ(r)−
∑

j

eδ(r− rj) , jmic(r) =
∑

j

eṙjδ(r− rj) . (19.98)

We derive a polarization (17.34) and a magnetization (17.50) which, in the absence
of free charges and currents, are given by,

ϱmic(r) = −∇ · P⃗(r) , jmic(r) = Ṗ(r) +∇× M⃗(r) . (19.99)

Interacting with radiation fields E⃗ and B⃗, the interaction energy is,

W = −
∫
E⃗(r) · P⃗(r) d3r −

∫
M⃗(r) · B⃗(r) d3r . (19.100)

The multipolar expansion using the above five equations gives,

W = e
∑

j

[
1 + 1

2! (rj · ∇) + 1
3! (rj · ∇)2 + ..

]
rj · E⃗(0)+ (19.101)

+ e
m

∑
j

[
1
2! +

2
3! (rj · ∇) + 3

4! (rj · ∇)2 + ..
]
lj · B⃗(0) ,
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where lj ≡ mrj × ṙj . Introducing dipole, quadrupole, and octupolar electric and
magnetic moments,

dE =
∑
jrj dM = 1

2!
1
cm

∑
jlj

qE = 1
2!

∑
jrj ⊗ rj qM = 2

3!
1
cm

∑
jlj ⊗ rj

oE = 1
2!

∑
jrj ⊗ rj ⊗ rj oM = 3

4!
1
cm

∑
jlj ⊗ rj ⊗ rj

(19.102)

and making the ansatz for the fields E⃗(r) = ϵ̂E⃗0eık·r and B⃗(r) = (k× ϵ̂)B⃗0eık·r, where
B⃗0 = E⃗0/c we obtain,

W = eE⃗0ε̂[dE + qE∇+ oE(∇⊗∇) + ..] eık·r
∣∣
r=0

(19.103)

+ eE⃗0(k× ε̂)[dM + qM∇+ oM (∇⊗∇) + ..] eık·r
∣∣
r=0

.

The gradient only acts on the coordinate r,

W = eE⃗0ε̂[dE + qEık− oE(k⊗ k) + ..] + eE⃗0(k̂× ε̂)[dM + qM ık− oM (k⊗ k) + ..] .
(19.104)

To render irreducible multipolar component we replace,

qE → qE − 1
3 E⃗3Tr qE = 1

2!

(
r⊗ r− 1

3 E⃗3r2
)
. (19.105)

19.1.5.6 Multipolar expansion of the vector potential

When the radiation has a small wavelength, or when dipolar transitions are prohibited
by selection rules, higher multipolar orders can enter the game [718]. Then we expand
the plane waves into spherical waves,

eık·r = 4π

∞∑

ℓ=0

ℓ∑

m=−ℓ
ıℓjℓ(kr)Y

m
ℓ (êk)Y

m∗
ℓ (êr) =

∞∑

ℓ=0

(2ℓ+ 1)ıℓjℓ(kr)Pℓ(êk · êr) .

(19.106)
The quantum operator for the vector potential is,

Â−(r) =
√

ℏω
2ε0V

ϵ̂eık·râ =

∞∑

j=0

j∑

m=−j

∑

τ=±(−1)j
Â−jmτ (r)

onde Â−jm(−1)j (r) =
√

ℏω
2ε0V

1√
j(j+1)

−ı
k ∇× (∇× r)Yjm(θ, ϕ)jj(kr)âjmτ

and Â−jm(−1)j+1(r) =
√

ℏω
2ε0V

1√
j(j+1)

∇× rYjm(θ, ϕ)jj(kr)âjmτ

.

(19.107)
Multipolar electric radiation has the parity τ = (−1)j and magnetic radiation the
parity τ = −(−1)j ,

ΠÂjmτ (r) = −Âjmτ (−r) = τÂjmτ (r) . (19.108)
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The partial fields Âjmτ are irreducible tensor fields of order j:

URÂjmτ (r)U
∗
R = Âjmτ (R

−1r) =
∑

m′

Âjm′τ (r)D
j
mm′ . (19.109)

As a result, the elements of the transition matrix are,

⟨jfmfτf |ıÂjmτ (r)p̂|jimiτi⟩ . (19.110)

19.1.5.7 Representation in terms of vector spherical harmonics

The electric vector potential can be written as,

Â
(E)
jmτ (r) =

√
ℏ

2ε0V ω

1√
j(j + 1)

−ı
k
∇× jY (j)

m (Ω)jj(kr) (19.111)

=

√
ℏ

2ε0V ω

−ı
k
∇× Yjjm(Ω)jj(kr)

=

√
ℏ

2ε0V ω

[
−
√
j2j + 1 jj+1(kr)

0
Yjj+1m(Ω) +

√
j + 1

2j + 1
jj−1(kr)Yjj−1m(Ω)

]
,

because for a small source sizes we can approximate, jj(kr) ≃ (kr)j/(2j + 1)!!. We
obtain,

Â
(E)
jmτ (r) =

√
ℏ

2ε0V ω

√
j+1
2j+1

(kr)j−1

(2j−1)!!Yjj−1m

ˆ⃗E(E)
jmτ (r) = −∂Â

(E)
jmτ

∂t = ı
√

ℏω
2ε0V

√
j+1
2j+1

(kr)j−1

(2j−1)!!Yjj−1m

ˆ⃗B(E)
jmτ (r) = ∇× Â

(E)
jmτ = −ı

√
µ0ℏω
2V

j+1
2j+1

(kr)j

(2j+1)!!Yjjm .

(19.112)

Similarly we obtain for the magnetic vector potential,

Â
(M)
jmτ (r) = −ı

√
ℏ

2ε0V ω

1√
j(j + 1)

jY (j)
m (Ω)jj(kr) = −ı

√
ℏ

2ε0V ω
jj(kr)Yjjm(Ω) ,

(19.113)
and for a small source sizes,

Â
(M)
jmτ (r) = −ı

√
ℏ

2ε0V ω
(kr)j

(2j+1)!!Yjjm

ˆ⃗E(M)
jmτ (r) =

√
ℏω

2ε0V
(kr)j

(2j+1)!!Yjjm

ˆ⃗B(M)
jmτ (r) =

√
µ0ℏω
2V

√
j+1
2j+1

(kr)j−1

(2j−1)!!Yjj−1m .

(19.114)

19.1.5.8 Interaction with light fields

The interaction energy is expressed by insertion of the field operators for E⃗ and B⃗,
ˆ⃗E(r)− =

ˆ⃗E−0 ϵ̂eık·r and
ˆ⃗B(r)− =

ˆ⃗E−0 1
ωk× ϵ̂eık·r with

ˆ⃗E−0 ≡ ı
√

ℏω
2ε0V

â .

(19.115)
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Here,
ˆ⃗E+0 creates a photon, while

ˆ⃗E−0 annihilates a photon. Considering first order

processes (RWA), we obtain for the matrix element ⟨f |Ĥww|i⟩ for the emission of a
photon (and similarly for absorption),

⟨g, n+1|Ĥww|e, n⟩ = −ie
√

ℏω
2ε0V

⟨n+1|â†|n⟩ [ϵ̂⟨g|dE + ...|e⟩+ (êk × ϵ̂)⟨g|dM + ...|e⟩)] .
(19.116)

Finally, the matrix elements for the first three multipolar orders are,

⟨f |Ĥww|i⟩ = −ie
√

ℏω
2ε0V

√
· [ϵ̂(⟨g|dE |e⟩+ ı⟨g|qE |e⟩k− ⟨g|oE |e⟩k× k+ ...) (19.117)

+(êk × ϵ̂)(⟨g|dM |e⟩+ ı⟨g|qM |e⟩k− ⟨g|oM |e⟩k× k+ ...)] .

For
√· =

√
n+ 1 this formula describes induced and spontaneous emission and for√· = √n absorption.

19.1.5.9 Matrix element for electromagnetic transitions

The matrix element is a tensor product between the vector operator p̂ and a vector
spherical harmonic Yjℓm. Therefore,

Â
(E)
jmτ (r) · p̂ = ı

√
ℏ

2ε0V ω

√
j + 1

(2j + 1)!!
⟨j||p(1)||j − 1⟩(kr)j−1Y (j)

m (19.118)

Â
(M)
jmτ (r) · p̂ = −ı

√
ℏ

2ε0V ω

1√
j + 1(2j + 1)!!

⟨j||p(1)||j⟩(kr)jY (j)
m .

In addition, we have Y
(j)
m = ı−j⟨Ω|jm⟩, and therefore,

⟨jfmf |Y (j)
m |jimi⟩ = ıjj−ji

√
2j + 1

√
2ji + 1√

4π
√
2jf + 1


 jf

mf

∣∣∣∣∣∣
j ji

m mi




jf

0

∣∣∣∣∣∣
j ji

0 0


 . (19.119)

This relation contains the selection rules for the matrix element ⟨jjmjτf |Âjmτ (r) ·
p̂|jimiτi⟩, i.e. the conservation laws for angular momentum and parity:

|jf − ji| ≤ j ≤ jf + ji and (−)jj+ji = τ . (19.120)

19.1.5.10 Matrix element without hyperfine and fine structure

This matrix element relates the initial state to the final state by,

⟨αLm|T̂(k)
q |α′L′m′⟩ . (19.121)

The angular momentum of the electronic layer is not split any more. Following the
Wigner-Eckart theorem we have,

⟨Lm|T̂(k)
q |L′m′⟩ = (−)L−mL


 L′ k L

m′L q −mL


 ⟨L||T̂(k)

q ||L′⟩ . (19.122)
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With the (3j)-symbol being (3j) ∼ δ(L′kL)δm′
L+q,mL

the following selection rules
apply,

|L− L′| ≤ k ≤ L+ L and m′L + q = mL . (19.123)

The Zeeman splitting is normalized by,

∑

mL,m′
L

|⟨Lm|T̂(k)
q |L′m′⟩|2 = |⟨L||T̂(k)

q ||L′⟩|2 . (19.124)

With this, we obtain for the relative oscillator strengths,

∣∣∣∣∣
⟨Lm|T̂(k)

q |L′m′⟩
⟨L||T̂(k)

q ||L′⟩

∣∣∣∣∣

2

=


 L′ k L

m′L q −mL




2

. (19.125)

However, electric multipole radiation does not act on L, but on J. For example, in the
ion Yb+ the transition 2D5/2 −2 P1/2 is dipolarly prohibited, but not 2D3/2 −2 P1/2.

19.1.5.11 Fermi’s golden rule

A Fermi’s Golden rule (first perturbative order) allows us to make a gross estimation
of the transition rate,

1

τ
=

2π

ℏ2
|⟨f |Ĥww|i⟩|2δ(ω − ω0) . (19.126)

For spontaneous emission we have,

1

τ
=

2π

ℏ2
e2

m2

ℏ
ω2ε0V

|⟨g|eık·rĤww|i⟩|2 . (19.127)

Approximating p/m ≃ c and V ≃ λ3 and using α ≡ e2/(4πε0ℏc) and r ≃ aB , we
obtain,

1

τ
=

α

2π
ω2|⟨eıkaB ⟩|2δ(ω) . (19.128)

Now, expanding the exponential function into plane waves (19.106) and using the
limit kr ≪ ℓ, where the Bessel function is well approximated by (19.27), we obtain,

1

τ
=

2πα

(2ℓ+ 1)!!2
(kaB)

2ℓω|⟨||⟩|2 . (19.129)

19.1.6 Exercises

19.1.6.1 Ex: Relationship between current density and electric dipole
moment

a. For a charge and current configuration contained in a volume V show that,
∫
V jdV =

dd
dt , where d is the total dipolar moment.
b. Demonstrate the relationship,

∫
r′(êr·r′)ϱ̇(r′)d3r′ =

∫
{j(r′)(êr · r′) + r′[êr · j(r′)]} d3r′.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadArbitraria01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadArbitraria01.pdf
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Solution: a. We first calculate,

0 =

∮

∂V
xj · dS =

∫

V
∇ · (xj)dV =

∫

V
(∇x · j+ x∇ · j)dV

=

∫

V
(jx + x∇ · j)dV =

∫

V

(
jx − x

∂ϱ

∂t

)
dV ,

where we used the continuity equation. By choosing the volume large enough, the
surface integral vanishes. Generalizing to 3D, we get,

∫

V
jdV =

∫

V
r
∂ϱ

∂t
dV ≡ dd

dt
,

which is the definition of the dipole moment.
b. The continuity equation allows us to replace ıωϱ(r′) by ∇ · j(r′),

− ıω2
∫

r′(êr · r′)ϱ(r′)d3r′ = − 1
2

∫
r′(êr · r′)∇ · j(r′)d3r′ .

Considering only one coordinate, we can apply the rule of integration by parts,

0 =

∮
(ψj)·dS =

∫
∇(ψj)d3r′ =

∫
(j · ∇ψ + ψ∇ · j)d3r′ .

In the following way,

−
∫
x′(êr · r′)∇ · j(r′)d3r′ =

∫
j(r′) · ∇[x′(êr · r′)]d3r′

=

∫
j(r′) · [(êr · r′)∇x′ + x′∇(êr · r′)]d3r′

=

∫
j(r′) · [(êr · r′)êx + x′êr]d

3r′ =
∫
{jx(r′)(êr · r′) + x′[êr · j(r′)]} d3r′ .

Such that finally,

− ıω2
∫

r′(êr · r′)ϱ(r′)d3r′ =
∫
{j(r′)(êr · r′) + r′[êr · j(r′)]} d3r′ .

19.1.6.2 Ex: Hertz dipole

A Hertz dipole with vertical orientation is in the focus of a parabolic antenna PA1 and
emits electromagnetic radiation with a frequency of 3GHz. The shape of the antenna
is such that the electromagnetic radiation is reflected forming a ’parallel’ beam with
diameter d = 3m. The electric field within the beam can be roughly described by the
following formula:

E⃗1(r, t) = E⃗0 cos(k1 · r− ωt) êz where k1 = −kêx sinα+ kêy cosα .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadDipolar01.pdf
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a. Determine the parameter k using the wave equation.
b. What is the amplitude E⃗0 of the electric field assuming that the parabolic antenna
emits a power of 5 W?
c. There is a second Hertz dipole, acting as a detector, oriented orthogonal to k1. The
maximum amplitude of the electric field detected by D2 is around 0.1V/m. Estimate
the angle of the orientation of the dipole with respect to the vertical axis (without
calculation, but with a short justification).
d. Now, the emitter dipole D1 is also rotated in such a way that, regardless of the
orientation of the dipole D2, it does not receive signals. What is the orientation of
the dipole emitter? Give a short justification.
e. The dipole emitter is again oriented vertically. Another parabolic antenna PA2,
identical to PA1, is now integrated into the experiment, as shown in the figure. Cal-
culate the power density S on the axis x in the time average. (α = 5◦)
Help: Addition theorems:

cos(α± β) = cosα cosβ ∓ sinα sinβ and cos 2α = cos2 α− sin2 α

Figure 19.6: Hertz dipole.

Solution: a. The wave equation gives,

0 =
1

c2
∂2E⃗1
∂t2

−∇2E⃗1 =
−ω2

c2
E⃗1 −

∂2

∂x2
E⃗1 −

∂2

∂y2
E⃗1 − ∂2

∂z2 E⃗1
0

=
−ω2

c2
E⃗1 + k2E⃗1 sin2 α+ k2E⃗1 cos2 α =

−ω2

c2
E⃗1 + k2E⃗1 ,

such that, k = ω/c.
b. The power being,

P = Iπ
d2

4
= cε0E⃗20π

d2

4
= 5W ,

we calculate E⃗0 ≈ 23V/m. c. The dipole D2 is oriented in the direction ???
d. The dipole D2 is oriented such as to oscillate along the line D1-PA1.
e.
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19.1.6.3 Ex: Dipolar spherical waves

We derived in class, starting from the relations B⃗ = ∇ × A and E⃗ = ıc
k∇ × B⃗, the

expressions (19.40) for the magnetic and electric fields of a electric dipole radiation
produced by the dipole moment d = dêz.
a. Show that the magnetic field can be expressed in the form B⃗ = B⃗ϕ(r, θ)êϕ.
b. Show that the electric field can be expressed in the form E⃗ = E⃗r(r, θ)êr+ E⃗θ(r, θ)êθ.
c. The purpose of this exercise is to check in spherical coordinates, where the diver-
gence and rotation are given by (12.79) and (12.80), that these fields satisfy Maxwell’s
equations.

Solution: a. We calculate,

B⃗ =
ck3µ0

4π
Re

[
êr × d

eı(kr−ωt)

kr

(
1− 1

ıkr

)]
= −ck

3dµ0

4π
sin θêϕRe

[
eıu

kr

(
1− 1

ıkr

)]

= −ck
3dµ0

4π
sin θ

[
cosu

kr
− sinu

(kr)2

]
êϕ

≡ B⃗ϕêϕ ,

where we introduced the abbreviation u ≡ kr − ωt and used êr × êz = −êϕ.
b. We calculate,

E⃗ =
k3

4πε0
Re

[
(êr × d)× êr

eı(kr−ωt)

kr
+ [3êr(êr · d)− d]

(
1

(kr)2
+

1

ıkr

)
eı(kr−ωt)

kr

]

=
k3d

4πε0
Re

[
− sin θêθ

eı(kr−ωt)

kr
+ [2 cos θêr + sin θêθ]

(
1

(kr)2
+

1

ıkr

)
eı(kr−ωt)

kr

]

=
k3d

4πε0
Re

[
2 cos θ

(
1

(kr)2
+

1

ıkr

)
eıu

kr
êr + sin θ

(
1

(kr)2
+

1

ıkr
− 1

)
eıu

kr
êθ

]

=
k3d

4πε0

[
2 cos θ

(
cosu

(kr)2
+

sinu

kr

)
1

kr
êr + sin θ

(
cosu

(kr)2
+

sinu

kr
− cosu

)
1

kr
êθ

]

≡ E⃗rêr + E⃗θêθ ,

where we used êϕ × êr = êθ and êz = êr cos θ − êθ sin θ.
c. Maxwell’s fourth equation is obvious,

∇ · B⃗ =
1

r sin θ

∂

∂ϕ
[B⃗ϕ] = 0 .

The third gives,

∇ · E⃗ =
1

r2
∂

∂r
[r2E⃗r] +

1

r sin θ

∂

∂θ
(sin θE⃗θ)

=
k3d

4πε0
2 cos θ

1

(kr)2
∂

∂r

[(
1

kr
+

1

ı

)
eiu
]
+

k3d

4πε0

(
1

(kr)2
+

1

ıkr
− 1

)
eıu

kr

1

r sin θ

∂

∂θ
sin2 θ

= 0 .
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The second gives,

∇× E⃗ =
k3d

4πε0

1

r

[
∂

∂r
(rE⃗θ)−

∂

∂θ
(E⃗r)

]
êϕ

=
k3d

4πε0

1

r

[
1

k
sin θ

∂

∂r

{(
1

(kr)2
+

1

ıkr
− 1

)
eıu
}
−
(

1

(kr)3
+

1

ı(kr)2

)
eıu

∂

∂θ
2 cos θ

]
êϕ

= −ıω ck
3dµ0

4π
sin θ

[(
1− 1

ıkr

)
eıu

kr

]
êϕ =

ck3pµ0

4π

∂

∂t
sin θ

[(
1− 1

ıkr

)
eıu

kr

]
êϕ

= −∂B⃗
∂t

.

Finally, the first one gives,

∇× B⃗ = êr
1

r sin θ

[
∂

∂θ
(B⃗ϕ sin θ)

]
+ êθ

1

r sin θ

[
− sin θ

∂

∂r
(rB⃗ϕ)

]

= −ck
3dµ0

4π

[
1

r sin θ

(
1

kr
− 1

ı(kr)2

)
eıu

∂

∂θ
sin2 θêr −

sin θ

kr

∂

∂r

(
1− 1

ıkr

)
eıuêθ

]

= −ıω k
3dµ0

4π

[
2 cos θ

(
1

(kr)2
+

1

ıkr

)
eıu

kr
êr + sin θ

(
1

(kr)2
+

1

ıkr
− 1

)
eıu

kr
êθ

]

=
k3d

4πε0

∂

c2∂t

[
2 cos θ

(
1

(kr)2
+

1

ıkr

)
eıu

kr
êr + sin θ

(
1

(kr)2
+

1

ıkr
− 1

)
eıu

kr
êθ

]

=
∂E⃗
c2∂t

.

For an illustration see Fig. 19.2.

19.1.6.4 Ex: Gauges of dipolar potentials

Verify that the retarded potentials of an oscillating dipole,

Φ(r, θ, t) =
p0 cos θ

4πε0r

{
−ω
c
sin[ω(t− r/c)] + 1

r
cos[ω(t− r/c)]

}

A(r, θ, t) = −µ0p0ω

4πr
sin[ω(t− r/c)]êz ,

satisfy the Lorentz gauge.
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Solution: With êz = cos θêr − sin θêθ, we calculate,

∇ ·A =
1

r2
∂

∂r
[r2Ar] +

1

r sin θ

∂

∂θ
[sin θAθ] +

1

r sin θ

∂

∂ϕ
[Aϕ]

= −µ0p0ω

4π

{
1

r2
∂

∂r

r2 cos θ sin(ωt− ωr/c)
r

+
1

r sin θ

∂

∂θ

− sin2 θ sin(ωt− ωr/c)
r

}

= −µ0p0ω

4π

{
− cos θ

−c sin(ωt− ωr/c) + rω cos(ωt− ωr/c)
cr2

− 2 cos θ sin(ωt− ωr/c)
r2

}

= −µ0p0ω cos θ

4πr

{
−ω cos[ω(t− r/c)]

c
− sin[ω(t− r/c)]

r

}

= − 1

c2
p0 cos θ

4πε0r

∂

∂t

{
−ω
c
sin[ω(t− r/c)] + 1

r
cos[ω(t− r/c)]

}
= − ∂Φ

c2∂t
.

19.1.6.5 Ex: Electric and magnetic fields of an oscillating electric dipole

Calculate the electric and magnetic fields of an oscillating electric dipole in the dipo-
lar approximation (kr′ ≪ 1) but for arbitrary distances (kr ≶ 1) directly from the
retarded potentials in spherical coordinates. Find the Poynting vector and show that
the radiation intensity is exactly the same, as the one derived within the far-field
approximation (kr ≫ 1).

Solution: To create an electric dipole, we imagine a charge oscillating between the
two ends of a linear antenna of length b, such that Q(t) = Q0 cosωt. The electric
dipole moment is,

d = Qb = Q0bêz cosωt ,

the oscillating charge distribution can be parametrized by 6,

ϱ(r′, tr) = Q0 cosωtr

[
δ(3)(z′ − b)− δ(3)(z′ + b)

]
.

The retarded scalar potential is,

Φ(r, t) =
1

4πε0

∫
ϱ(r′, tr)
R

d3r′ =
1

4πε0

(
Q0 cosωt

R+
− Q0 cosωt

R−

)
,

with tr = t − R/c. We parametrize the extremities by b = bêz and concentrate on a
point in the y = 0 plane, such that r = rêx sin θ + rêz cos θ. Then the distances are,

R± =
√

(r− b)2 =
√
r2 + (b/2)2 ∓ 2rb cos θ .

For a perfect dipole we require a small antenna size, b≪ r. This allows us to approx-
imate, to first order in b,

R± ≃ r
(
1∓ b

2r
cos θ

)
and

1

R±
≃
(
1± b

2r
cos θ

)
, (19.130)

6Note that these oscillations do not presuppose the existence of a current. We could also have
assumed an oscillating current parametrized by ϱ(r′, tr) = Q0δ(3)(kz′ − b cosωtr).
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such that,

cos[ω(t− R±
c )] ≃ cos

[
ω(t− r

c )± ωb
2c cos θ

]

= cos[ω(t− r
c )] cos

(
ωb
2c cos θ

)
∓ sin[ω(t− r

c )] sin
(
ωb
2c cos θ

)
.

In the dipolar approximation we assume, b≪ c/ω, such that,

cos[ω(t− R
c )] ≃ cos[ω(t− r

c )]∓ ωb
2c cos θ sin[ω(t− r

c )] . (19.131)

Inserting the approximations (19.130) and (19.131) in the expression for the vector
potential and introducing the abbreviation X ≡ ω(t− r

c ), we obtain,

Φ(r, t) =
p0b

4πε0
cos θ

(
cosX

r2
− ω sinX

cr

)
.

The oscillation of the charges is necessarily due to a current, I(t)êz = Q̇(t)êz =
−Q0ωêz sinωt,

A(r, t) =
µ0

4π

∫
j(r′, tr)
R

d3r′ =
µ0

4π

∫

antenna

−Q0ωêz sinωt

R
dS⃗ ′ ,

such that,

A(r, t) = −µ0p0ω

4πr
êz sinX .

The derivatives are,

∇Φ = êr
∂Φ

∂t
+ êθ

1

r

∂Φ

∂θ
=

p0ω

4πε0c
êr cos θ

(
ω cosX

cr
+

sinX

r2

)
+

p0ω

4πε0c
êθ sin θ

sinX

r2

∂A

∂t
= − p0ω

2

4πε0c2
(êr cos θ − êθ sin θ)

cosX

r

∇×A =
1

r

∂(rAθ)

∂r
− 1

r

∂Ar
∂θ

= −µ0p0ω

4π
êϕ sin θ

(
ω cosX

cr
+

sinX

r2

)
.

With this, the fields are,

E⃗ = −∇Φ− ∂A

∂t
= − p0ω

4πε0c
êr cos θ

sinX

r2
− p0ω

4πε0c
êθ sin θ

(
ω cosX

cr
+

sinX

r2

)

B⃗ = ∇×A = −µ0p0ω

4π
êϕ sin θ

(
ω cosX

cr
+

sinX

r2

)
.

The Poynting vector is ...

19.1.6.6 Ex: Electric and magnetic fields of an oscillating magnetic
dipole

Calculate the electric and magnetic fields of an oscillating magnetic dipole in the dipo-
lar approximation (kr′ ≪ 1), but for arbitrary distances (kr ≶ 1) directly from the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_MagDipolar01.pdf
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retarded potentials in spherical coordinates. Compare with the fields of an oscillating
electric dipole. Find the Poynting vector and show that the intensity of the radiation
is exactly the same, as the one derived within the far-field approximation (kr ≫ 1).

Solution: To create a magnetic dipole, we imagine a circular loop of radius b tra-
versed by a current I(t) = I0 cosωt. The magnetic dipole moment is,

m = Ia = πb2I0êz cosωt .

If the loop is electrically neutral, the retarded potentials are,

Φ = 0 and

A(r, t) =
µ0

4π

∫
j(r′, tr)
R

d3r′ =
µ0

4π

∫

loop

I0 cosωtr
R

dS⃗ ′ = µ0I0b

4π
êy

∫ 2π

0

cosωtr
R

cosϕ′dϕ′ ,

with tr = t − R/c. To evaluate the integral we parametrize any point of the loop as
b = bêx cosϕ

′ + bêy sinϕ
′ and concentrate on a point in the y = 0 plane, such that

r = rêx sin θ + rêz cos θ,

R =
√
(r− b)2 =

√
r2 + b2 − 2rb sin θ cosϕ′ .

For a perfect dipole we require a small size of the loop, b ≪ r. This allows us to
approximate, to first order in b,

R ≃ r
(
1− b

r
sin θ cosϕ′

)
and

1

R
≃
(
1 +

b

r
sin θ cosϕ′

)
, (19.132)

such that,

cos[ω(t− R
c )] ≃ cos

[
ω(t− r

c ) +
ωb
c sin θ cosϕ′

]

= cos[ω(t− r
c )] cos

(
ωb
c sin θ cosϕ′

)
− sin[ω(t− r

c )] sin
(
ωb
c sin θ cosϕ′

)
.

In the dipolar approximation we assume, b≪ c/ω, such that,

cos[ω(t− R
c )] ≃ cos[ω(t− r

c )]− ωb
c sin θ cosϕ′ sin[ω(t− r

c )] . (19.133)

Inserting the approximations (19.132) and (19.133) in the expression for the vector
potential and introducing the abbreviation X ≡ ω(t− r

c ), we obtain,

A(r, t) =
µ0I0b

4πr
êy

∫ 2π

0

{
cosX + b sin θ cosϕ′

(
cosX

r
− ω sinX

c

)}
cosϕ′dϕ′ .

The first term gives zero because
∫ 2π

0
cosϕ′dϕ′ = 0. For the second we use

∫ 2π

0
cos2 ϕ′dϕ′ =

π, such that,

A(r, t) =
µ0m0

4π
êϕ sin θ

(
cosX

r2
− ω sinX

cr

)
,

with m0 ≡ πb2I0. Here, we relax the specialization on the y-axis by replacing ey by
êϕ. The derivatives are,

∇×A = êr
1

r sin θ

∂

∂θ
(Aϕ sin θ)− êθ

1

r

∂

∂r
(rAϕ) .
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The fields are,

E⃗ = −∂A
∂t

=
µ0m0ω

4π
êϕ sin θ

(
ω cosX

cr
+

sinX

r2

)

B⃗ = ∇×A

=
µ0m0

2π
êr cos θ

(
cosX

r3
− ω sinX

cr2

)
+
µ0m0

4π
êθ sin θ

[(
1

r3
− ω2

c2r

)
cosX − ω sinX

cr2

]
.

The Poynting vector is,
S⃗ = 1

µ0
E⃗ × B⃗ = ...

The time average is,

S⃗ =
µ0m

2
0ω

4 sin2 θ

32π2c3r2
.

19.1.6.7 Ex: Spherical harmonics

The spherical harmonic function for ℓ = 2 and m = 1 has the form,

Y21(ϑ, φ) =
√

15
8π sinϑ cosϑ(cosφ+ ı sinφ) .

Express the quadrupolar momentum q21 as a linear combination in Cartesian coordi-
nates,

Qij =

∫
ρ(r)(3xixj − δijr2) dr3 .

Solution:

19.1.6.8 Ex: Vector spherical harmonics

Calculate the angular distribution of E1 and M1 radiation.Derive Eq. (19.85).

Solution: The general formula is given by (19.129),

Yjlm =
∑

q


 J 1 L

−m q m− q


Y

(ℓ)
m−qêq ,

where êq is given by ê± ≡ − 1√
2
(êx ± ıêy) and ê0 = êz. For E1 and M1 radiation we

have to calculate the vector spherical harmonics Y11m and Y10m. Using the tabulated
spherical harmonics, we find,

rY100 =


1 1 0

0 0 0


Y (0)

m ê0 =
√

1
3

√
1
4π rê0 = −

√
1

12π




0

0

r


 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_RadQuadrupolar01.pdf
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and

rY10±1 =

 1 1 0

∓1 1 0

 rY
(0)
0 ê1 +

 1 1 0

∓1 −1 0

 rY
(0)
0 ê−1 =

√
1
3

√
1
4π
rê±1 = −

√
1

24π


x

±ıy
0

 ,

and

rY110 =

1 1 1

0 1 −1

 rY
(1)
−1 ê1 +

1 1 1

0 0 0

 rY
(1)
0 ê0 +

1 1 1

0 −1 1

 rY
(1)
1 ê−1

= −
√

1
2

(
rY

(1)
−1 ê1 + rY

(1)
1 ê−1

)
=

1

2
r


Y

(1)
−1 + Y

(1)
1

ı(Y
(1)
−1 − iY (1)

1 )

0



= 1
2
ı
√

3
2π


− sin θ sinϕ

sin θ cosϕ

0

 = 1
2
ı
√

3
2π


−y
x

0

 ,

and

rY11±1 =


 1 1 1

∓1 1 ±1 − 1


 rY

(1)
±1−1

ê1 +


 1 1 1

∓1 0 ±1 − 0


 rY

(1)
±1−0

ê0 +


 1 1 1

∓1 −1 ±1 + 1


 rY

(1)
±1+1

ê−1

=
√

1
2

(
rY

(1)
0 ê1 + rY

(1)
±1

ê0 + rY
(1)
0 ê−1

)
= 1

2
r




Y
(1)
0

±iY
(1)
0

±
√

2Y
(1)
±1




= 1
4

√
3
π

r




cos θ

±ı cos θ

sin θe±ıϕ


 = 1

4

√
3
π




z

±iz

−(x ± ıy)


 .

19.2 Radiation of point charges

The fundamental structure of matter is based on electromagnetic forces: Electrons
are bound to nuclei by the Coulomb-Lorentz force, the orbital motion of the electrons
produces magnetic fields, which can interact with the intrinsic spins of electrons and
nuclei, external electromagnetic fields can influence the motion of electrons. There-
fore, it is of primary interest to understand the radiation emitted by accelerated
point-like electric charges.

19.2.1 Power radiated by an accelerated point charge

We derived in an earlier chapter the fields (17.140) and (17.141) produced by an
arbitrary moving charge,

E⃗(r, t) = q

4πε0

R

(R · u)3 [(c
2 − v2)u+R× (u× a)] (19.134)

B⃗(r, t) = 1
cR× E⃗(r, t) ,
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with u = cêr − v. We call the first term in (19.134) velocity field and the second
acceleration field. The Poynting vector is,

S⃗ = 1
µ0
(E⃗ × B⃗) = 1

µ0c
[E⃗ × (R× E⃗)] = 1

µ0c
[E2êr − (êr · E⃗)E⃗ ] . (19.135)

However, not all of this energy flow constitutes radiation; part of it is field energy
transported by the particle as it moves. The radiated energy is the part that separates
from the charge and propagates to infinity. To calculate the total power radiated by
the particle at time tr we draw a large sphere of radius R, centered on the position
of the particle at time tr, we wait for the appropriate interval,

t− tr ≡
R

c
, (19.136)

for the radiation to reach the sphere and, at that moment, we integrate the Poynting
vector on the surface. The notation tr points to the fact, that this is the retarded
time for all points on the sphere at time t. Now, the area of the sphere is proportional
to R2, hence any term in S⃗ that goes like 1/R2 will produce a finite response, but
terms like 1/R3 or 1/R4 will not contribute in the limit R → ∞. For this reason,
only the acceleration field truly radiates:

E⃗rad =
q

4πε0

R

(R · u)3 [R× (u× a)] . (19.137)

Since E⃗rad ⊥ R, the second term in Eq. (19.135) disappears:

S⃗rad =
1

µ0c
E⃗2radêr . (19.138)

Example 116 (Radiation at the turning point): If at time tr the charge
is instantaneously at rest, v(tr) = 0, for example at the turning points of a
harmonic oscillation, then u = cêr, and,

E⃗rad =
q

4πε0c2R
[êr × (êr × a)] =

µ0q

4πR
[(êr · a)êr − a] . (19.139)

In this case,

S⃗rad =
1

µ0c

( µ0q

4πR

)2
[a2 − (êr · a)2]êr = µ0q

2a2

16π2c

sin2 θ

R2
, (19.140)

where θ is the angle between êr and a. No power is radiated in forward or
backward directions. Instead, it is emitted in a torus around the instantaneous
acceleration, as shown in Fig. 19.7(a).
The total radiated power is evidently,

P =

∮
S⃗rad · dS =

µ0q
2a2

16π2c

∫
sin2 θ

R2
R2 sin θdθdϕ =

µ0q
2a2

6πc
. (19.141)

This, again, is the Larmor formula, which we previously obtained via another

route (19.19). Although derived under the assumption that v = 0, the equations

(19.140) and (19.141) represent a good approximation, since v ≪ c.
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An exact treatment of the case v ̸= 0 is more difficult for two reasons. The first
obvious reason is, that E⃗rad is more complicated, and the second more subtle reason
is that S⃗rad, which is the rate at which energy passes through the sphere, is not equal
to the rate at which the energy separated from the particle. Suppose someone is
throwing a stream of bullets through the window of a moving car. The rate Nt at
which the bullets hit a stationary target is not the same as the rate Ng at which they
left the weapon, because of the movement of the car. In fact, we can easily verify
that Ng = (1− v/c)Nt, if the car is moving toward the target, and,

Ng =
(
1− êr·v

c

)
Nt (19.142)

for arbitrary directions (here v is the speed of the car, c is the velocity of the bullets,
and R is a unit vector pointing from the car towards the target). In our case, if
dW/dt is the rate at which energy passes through the sphere of radius R, then the
rate at which the energy separated from the charge was,

dW

dtr
=
dW/dt

∂tr/∂t
. (19.143)

We calculate the denominator from the relation (19.136),

∂tr
∂t

= 1− ∂
√
[r−w(tr)]2

c∂t
= 1− −2[r−w(tr)]

2c
√
[r−w(tr)]2

· ∂w(tr)

∂tr

∂tr
∂t

(19.144)

= 1 +
R

cR
· v∂tr

∂t
=

1

1− êR · v/c
=

cR

R · u .

This factor is precisely that of the relation (19.142) between Ng and Nt; is a purely
geometric factor (the same as in the Doppler effect).

Therefore, the power radiated by the particle into an area element, R2 sin θdθdϕ =
R2dΩ of the sphere is, using the Poynting vector (19.138) and the radiated field
(19.137), given by,

dP

dΩ
=
S⃗rad
∂tr/∂t

=
R · u
Rc

1

µ0c
E⃗2radR2 =

q2

16π2ε0

|êr × (u× a)|2
(êr · u)5

, (19.145)

where dΩ = sin θdθdϕ is the solid angle at which this energy is radiated. Integrating
over θ and ϕ to obtain the total radiated power is not easy, such that we simply quote
the answer:

P =
µ0q

2γ6

6πc

(
a2 −

∣∣∣∣
v × a

c

∣∣∣∣
2
)

, (19.146)

where γ ≡ 1/
√
1− v2/c2. This is Liénard’s generalization of Larmor’s formula, to

which it reduces when v ≪ c. The factor γ6 means that the radiated power increases
enormously as the velocity of the particle approaches the speed of light.

Resolve the Excs. 19.2.3.1 to 19.2.3.5.
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19.2.1.1 Bremstrahlung

Suppose that v and a be instantaneously collinear (at time tr), such as for a motion
on a straight line. In this case u× a = (cêr − v 0)× a, then the angular distribution
of radiation (19.145) gives,

dP

dΩ
=

q2c2

16π2ε0

|êr × (êr × a)|2
(c− êr · v)5

. (19.147)

Now with |êr × (êr × a)| = a sin θ and letting v ≡ vêz,

dP

dΩ
=
µ0q

2a2

16π2c

sin2 θ

(1− β cos θ)5 , (19.148)

where β ≡ v/c. This is consistent with the result (19.140), in the case v = 0.
However, for very large v (β ≈ 1), the torus of the radiation illustrated in Fig. 19.7(a)
is stretched and pushed forward by a factor (1−β cos θ)−5, as indicated in Fig. 19.7(b).
Although there is still no radiation in the exact forward direction, most of the radiation
is concentrated in an increasingly narrow cone around the forward direction.

Figure 19.7: (code) (a) Radiation pattern of an accelerated charge. (b) Angular distribution

of the bremsstrahlung.

The total emitted power is found by integrating equation (19.149) over all angles:

P =

∫
dP

dΩ
dΩ =

µ0q
2a2

16π2c

∫
sin2 θ

(1− β cos θ)5 sin θdθdϕ (19.149)

=
µ0q

2a2

8πc

∫ +1

−1

1− x2
(1− βx)5 dx =

µ0q
2a2

8πc
4
3 (1− β2)−3 =

µ0q
2a2γ6

6πc
.

This result is consistent with the Liénard’s formula (19.146), for the case when v
and a are collinear. Note that the angular distribution of radiation is the same,
whether the particle is accelerating or decelerating; it does not depend on a, but only
on velocity being concentrated in forward direction (with respect to the velocity) in
both cases. When a high-speed electron hits a metal target, it decelerates rapidly,
releasing what is called bremsstrahlung. This example is essentially the classical
theory of bremsstrahlung.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_Bremsstrahlung.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_Bremsstrahlung.m
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We will calculate the synchrotron radiation in Exc. 19.2.3.6 and the Cherenkov
radiation in Exc. 19.2.3.7. A movie illustrating the Cherenkov radiation emission can
be viewed at (watch movie).

Example 117 (Bremsstrahlung of thermal electrons): The power lost by
bremsstrahlung for not extremely relativistic velocities is,

P =
µ0q

2a2γ2

6πc
≃ µ0q

2a2

6πc
,

such that,

E⃗rad =

∫ t

0

Pdt =
µ0q

2a2

6πc

∫ 0

v0

dv

v̇
=
µ0q

2a

6πc

∫ 0

v0

dv =
µ0q

2a

6πc
v0 .

For an electron in a metal with a free path of d ≈ 3 nm and a thermal velocity

v0 = 100000 m/s the deceleration a =
v20
2d

leads to a negligible radiated fraction,

E⃗rad
Ekin

=
µ0q

2a
6πc

v0
m
2
v20

=
µ0q

2a

3πcmv0
=

µ0q
2

3πcm

v0
2d
≈ 2 · 10−10 .

19.2.2 Radiation reaction

According to the laws of classical electrodynamics, an accelerated charge radiates.
This radiation takes energy, which must come at the expense of the particle’s kinetic
energy. Under the influence of a given force, therefore, a charged particle accelerates
less than a neutral particle of the same mass. The radiation evidently exerts a reactive
force Frad corresponding to a recoil. We will now derive the radiation reaction force
from energy conservation.

For a non-relativistic particle (v ≪ c), the total radiated power P is given by the
Larmor formula (19.141). The conservation of energy suggests that this is also the
rate at which the particle loses energy, under the influence of the radiative reaction
force Frad:

Frad · v ?
= −µ0q

2a2

6πc
= −P . (19.150)

However, this equation is really wrong. For, to derive Larmor’s formula, we calculated
the radiated power by integrating the Poynting vector on a sphere of ’infinite’ radius;
in this calculation the velocity fields did not contribute, since they fall off very rapidly
as a function of R. However, the velocity fields carry energy; they simply do not carry
it to infinity. As the particle accelerates and decelerates, it exchanges energy with
the velocity fields, while another part of the energy is irremediably radiated away
by the acceleration fields. The equation (19.150) only takes into account this lost
energy, but if we want to know the recoil force exerted by the fields on the charge,
we must consider the power lost at each instant of time, not only the radiatively
escaping power. (In this sense the term ’radiation reaction’ is misleading and should
be replaced by ’field reaction’.) In fact, we shall see shortly that Frad is determined
by the time derivative of the acceleration and can be nonzero, even if the acceleration
is instantaneously zero, such that the particle does not radiate.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/ED_Radiation_Cherenkov_Movie.mp4
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The energy lost by the particle during a given time interval, therefore, must equal
the energy carried away by radiation plus the extra energy that has been pumped
into the velocity fields. However, if we agree to consider only time intervals [t1, t2]
over which the system returns to its initial state, then the energy in the velocity fields
is the same at both times, and the only loss is through radiation. Thus, equation
(19.150), while instantly incorrect, is valid on average:

∫ t2

t1

Frad · vdt = −
µ0q

2

6πc

∫ t2

t1

a2dt , (19.151)

with the stipulation that the state of the system is identical at times t1 and t2. In the
case of periodic movements, for example, we must integrate over a total number of
complete cycles. Now, the right-hand side of the equation (19.151) can be integrated
by parts: ∫ t2

t1

a2dt = v · dv
dt

∣∣∣∣
t2

t1

−
∫ t2

t1

d2v

dt2
· vdt . (19.152)

The boundary term cancels, since the velocities and accelerations are identical at t1
and t2, then the equation (19.151) can be written in an equivalent way as,

∫ t2

t1

(
Frad −

µ0q
2

6πc
ȧ

)
· vdt = 0 . (19.153)

This equation will certainly be satisfied if,

Frad =
µ0q

2

6πc
ȧ . (19.154)

This is the Abraham-Lorentz formula for the radiation reaction force. Obviously, the
equation (19.153) does not prove (19.154), because it does not say anything about
the component of Frad perpendicular to v; and only informs us on the time-average
of the parallel component for, moreover, very special time intervals.

The Abraham-Lorentz formula has disturbing implications, which are not fully
understood nearly a century after the law was first proposed. Let us assume that a
particle is not subject to external forces; then Newton’s second law tells us,

Frad =
µ0q

2

6πc
ȧ = ma , (19.155)

yielding,

a(t) = a0e
t/τ with τ =

µ0q
2

6πmc
. (19.156)

In the case of an electron, τ = 6 · 10−24 s. The acceleration increases spontaneously
exponentially with time! This absurd conclusion can be avoided, if we insist that
a0 = 0. But it turns out, that the systematic exclusion of such catastrophic solutions
has an even more unpleasant consequence: if we now switch on an external force, the
particle begins to respond to it before it actually has been switch on (see Exc. 19.2.3.8
and 19.2.3.9).
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Example 118 (Radiative damping): Here, we calculate the radiative damp-
ing rate τ of a charged particle fixed to a spring by solving the equation of
motion,

mẍ = Fsprng + Frad + Fexcit = −mω2
0x+mτ

...
x + Fexcit .

With the oscillating system, x(t) = x0 cos(ωt+ δ), we have,

...
x = −ω2ẋ .

Therefore,

mẍ+mω2τ ẋ+mω2
0x = Fexcit ,

and the damping factor is given by ω2τ .

Example 119 (Radiation reaction): In previous chapters, the problems of
electrodynamics were divided into two classes: one class in which the charge and
current sources are specified and the resulting electromagnetic fields are calcu-
lated, and the other class in which external electromagnetic fields are specified
and the motion of charged particles of currents are calculated. Occasionally, as
in the discussion of the bremsstrahlung, the two problems are combined. But
the treatment is recursive: first, the motion of a charged particle in an external
field is determined neglecting the radiation it emits; then the radiation of the
particle is calculated from its (accelerated) trajectory treating the particle as a
source of charge and current.
Obviously, this way of dealing with electrodynamical problems can only be ap-
proximate. The (accelerated) motion of charged particles within force fields
necessarily involves the emission of radiation, removing energy, angular momen-
tum, and momentum from the particles and thus influencing their subsequent
motion. Consequently, the motion of radiation sources is (partially) determined
by the emission of radiation, and a correct treatment must take account of the
reaction of the radiation onto the motion of the sources. Fortunately, for many
problems of electrodynamics the radiative reaction is negligibly small. On the
other hand, there exists no completely satisfactory classical treatment. The dif-
ficulties presented by this problem touch upon fundamental aspects of physics,
such as the nature of elementary particles. Nevertheless, there are viable partial
solutions with limited regimes of validity. In quantum mechanics, the introduc-
tion of renormalization techniques was able to solve the divergences within the
theory of quantum electrodynamics (QED).
In order to give a gross idea of ’radiative reaction’, let us consider a charge q
of a point particle distributed in space. For simplicity we choose ’sub-charges’
q
2
located at two positions d1,2 = ± d

2
êy and moving in an accelerated way in

x-direction, that is, a = aêx. Only after the calculations will we go to the limit
d→ 0. So with (17.140) we obtain for the electric field generated by the charge
2 at the place of the charge 1,

E⃗1(r, t) = q/2

4πε0

R

(R · u)3 [(c
2 − v2)u+R× (u× a)]

=
q/2

4πε0

R

(R · u)3 [(c
2 − v2 +R · a)u− a(R · u)] .

Now, we assume that the charge be instantly at rest, v = 0, that is, u ≡
cêr − v = cêr. In Cartesian coordinates, R ≡ lêx + dêy, where l ≡ x(t)− x(tr)
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is the distance between the actual position and the retarded position, we can
write the x-component of the electric field as,

E⃗x,1 =
q/2

4πε0

R

c3R3
[(c2 +R · a)ux − (R · u)ax] = q

8πε0c2
c2l − d2a
√
l2 + d2

3 .

By symmetry, E⃗x,1 = E⃗x,2, such that the force on the dumbbell is,

Fself =
q

2
(E⃗1 + E⃗2) = q

8πε0c2
c2l − d2a
√
l2 + d2

3 êx .

Now, we expand l in terms of the retarded time,

l = x(tr + T )− x(tr) = vT
0
+ 1

2
aT 2 + 1

6
ȧT 3 + ... ,

such that,

d =
√

(cT )2 − l2 = cT

√
1−

(
aT
2c

+ ȧT2

6c
+ ...

)2
= cT−a

2

8c
T 3+... ≃ cT−a

2

8c

(
d

c

)3

+... ,

where we replaced, in the last step, the first order solution in the expansion,
T ≃ d/c, for the third order. Resolving by T ,

T ≃ d

c
+
a2d3

8c5
.

and inserting into the expansion of l,

l ≃ 1

2
a

(
d

c
+
a2d3

8c5

)2

+
1

6
ȧ

(
d

c
+
a2d3

8c5

)3

+ ... ≃ 1

2
a

(
d

c

)2

+
1

6
ȧ

(
d

c

)3

.

With this we obtain for reaction force,

Fself ≃ q

8πε0c2
c2l − d2a
√
l2 + d2

3 êx ≃
q

8πε0c2

c2
(

1
2
a
(
d
c

)2
+ 1

6
ȧ
(
d
c

)3)− d2a√
(..)d4 + d2

3 êx

≃ q

4πε0c2

(
− a

4d
+

ȧ

12c

)
êx ,

considering that d is small. The acceleration is still expressed in terms of the
retarded time, but this is easily remedied by,

a(tr) = a(t) + ȧ(t)(t− tr) = a(t)− ȧ(t)d
c
.

Inserting into the force,

Fself ≃ q

4πε0c2

(
− a

4d
+

ȧ

12c

)
êx =

q

4πε0

(
− a(t)
4c2d

− −ȧ(t)
4c3

+
ȧ(t)

12c3

)
êx

=
q

4πε0

(
a(t)

4c2d
+
ȧ(t)

3c3

)
êx .

Finally,

F = mtota+ Frad =

(
m0 +

1

4πε0

q2

4dc2

)
a+

µ0q
2ȧ

12πc
,

where m0 is the sum of the two partial masses. We retrieve the Abraham-

Lorentz formula by the second term. The missing factor of 2, when compared

to (19.155), comes from the fact that we only consider the mutual reactions of

partial charges. The expression in the parentheses corresponds to a correction

of the inertial mass of the particle due to the Coulombian repulsion between the

charges.
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19.2.2.1 Radiation of a charge exposed to a gravitational field

Generalize Larmor’s formula. Needs relative movement of charge and field [552].

Figure 19.8: Illustration of the radiation field of a charge suspended in the Earth’s gravita-
tional field.

19.2.3 Exercises

19.2.3.1 Ex: Radiation emitted by a rotating electron

A particle with charge q moves with constant angular velocity ω in a circular orbit
with radius R around the origin in the plane x-y. Its trajectory therefore is,

R′(t) = R(ê′x cosωt+ ê′y sinωt) .

a. Calculate the associated (temporary) charge density ϱ(r′, t) and the dipole moment
using the general rule,

d(t) =

∫
r′ϱ(r′, t)d3r′ .

b. The rotating particle can be seen as a source of radiation. At a point r far from this
source, in the dipole approximation, the associated electromagnetic fields are given
by,

B⃗ = µ0

4πcr êr × d̈ respectively E⃗ = cB⃗ × êr .

Calculate the Poynting vector,
S⃗ = 1

µ0
E⃗ × B⃗

as well as its component Sn ≡ êr · S⃗ in the direction of the point r. Help: Use the
formula a× b× c = b(a · c)− c(a · b).
c. Now calculate the time average of Sn over an orbit of the particle, that is, calculate
S̄n =

∫
dtSn /

∫
dt with the two integrals taken between t = 0 and t = 2π/ω. Ex-

press the result in spherical coordinates, so that r2S̄n is precisely the average power
radiated to the solid angle element dΩ in the direction r. Now integrate over the
entire solid angle and evaluate the total emitted power P .

Solution: a. The time-dependent charge density is in Cartesian coordinates,

ϱ(r′, t) = qδ(x′ −R cosωt)δ(y′ −R sinωt)δ(z′) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada01.pdf
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It is easy check that the volume integral over this charge density is, at all times, equal
to the total existing charge. The electric dipole moment of our charge distribution is
now,

d(t) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

−∞
dz′[x′êx + y′êy + z′êz]ϱ(x

′, y′, z′, t)

= qR(êx cosωt+ êy sinωt) = qR(t) .

b. Using the result of part (a),
d̈ = −ω2d .

Thus, at a point r very far from the radiation source, oscillating here at a frequency
ω, the electromagnetic fields are given in the dipolar approximation by,

B⃗ = −µ0ω
2

4πcr
[êr × d] as well as E⃗ = −µ0ω

2

4πr
êr × [êr × d] .

With the given formulas the electric field can also be written,

E⃗ =
µ0ω

2

4πr
[d− êr(êr · d)] .

For the Poynting vector we get in this way 7,

S⃗ =
µ0

c

(
ω2

4πr

)2

[d− êr(êr · d)]× [êr × d]

=
µ0

c

(
ω2

4πr

)2

[d× [êr × d]− (êr · d)êr × [êr × d]]

=
µ0

c

(
ω2

4πr

)2

[êr(d · d)− d(êr · d)− (êr · d)2êr + d(êr · d)]

=
µ0

c

(
ω2

4πr

)2

êr[(d · d)− (êr · d)2] .

7For time-dependent sinusoidal electromagnetic fields, the average power flux per unit time is often
more useful. It can be found by using the analytical representation of the electric and magnetic fields
as follows,

S⃗ = E⃗ × H⃗ = Re (E⃗0eıωt)×Re (H⃗0e
ıωt) = 1

2
(E⃗0eıωt + E⃗∗0 e−ıωt)× 1

2
(H0e

ıωt + H⃗∗0e−ıωt)
= 1

4
(E⃗0 × H⃗∗0 + E⃗∗0 × H⃗0 + E⃗0 × H⃗0e

2ıωt + E∗0 × H⃗∗0e−2ıωt)

= 1
4
[E⃗0 × H⃗∗0 + (E⃗0 × H⃗∗0)∗ + E⃗0 × H⃗0e

2ıωt + (E⃗0 × H⃗∗0e2ıωt)∗]
= 1

2
Re (E⃗0 × H⃗∗0) + 1

2
Re (E⃗0 × H⃗0e

2ıωt) .

The temporal average is given by,

⟨S⃗⟩ = 1

T

∫ T

0
S⃗(t)dt = 1

T

∫ T

0
[ 1
2
Re (E⃗0 × H⃗∗0) + 1

2
Re (E⃗0 × H⃗∗0e2ıωt)]dt .

The second term is a sinusoidal curve, Re e2ıωt = cos 2ωt, and its average is zero, giving

⟨S⃗⟩ = 1

2
Re (E⃗0 × H⃗∗0) = 1

2
Re (E⃗0eıωt × H⃗∗0e−ıωt) .
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The component of Poynting vector in r-direction is, hence,

Sn = êr · S⃗ =
µ0

c

(
ω2

4πr

)2

[(d · d)− (êr · d)2] .

For our example we obtain,

Sn =
µ0

c

(
ω2q

4πr

)2

(R2 − [x cosωt+ y sinωt]2)

=
µ0

c

(
ω2q

4πr

)2

(R2 − x2 cos2 ωt− y2 sin2 ωt− 2xy sinωt cosωt) .

c. The temporal average of Sn over the period of an orbit gives, using

ω

2π

∫ 2π/ω

0

dt cos2 ωt =
ω

2π

∫ 2π/ω

0

dt sin2 ωt =
1

2

and
ω

2π

∫ 2π/ω

0

dt cosωt sinωt = 0

the result,

S̄n =
µ0

c

(
ω2qR

4πr

)2

[R2 − 1

2
(x2 + y2)] =

µ0

2c

(
ω2q

4πr

)2

(1 + cos2 θ) ,

where we moved in the last line to spherical coordinates. For the solid angle element
dΩ pointing in r-direction we obtain the power radiated by the source,

dPn
dΩ

= r2S̄n =
µ0

2c

(
ω2q

4π

)2

(1 + cos2 θ) .

Integration over dΩ = dϕ sin θdθ gives the total radiated power,

P =
µ0

2c

(
ω2q

4π

)2 ∫ +1

−1
dx(1 + x2) =

µ0ω
4q2R2

6πc
.

19.2.3.2 Ex: Rutherford’s atom model

In Rutherford’s ’classical’ atom model a hydrogen atom is described by an electron
(charge −e) orbiting a nucleus (charge +e) in a circular trajectory with constant an-
gular velocity ω. The equilibrium condition is chosen so that the Coulomb force and
the centrifugal force compensate each other. However, according to the Exc. 19.2.3.1,
such an electron represents a source of radiation. The radiated power decreased the
energy of the electron [dE/dt = −P with P taken from Exc. 19.2.3.1(c)]. Derive a
differential equation for the temporal variation of the radius R(t) of the electronic
orbit, and integrate it with the boundary conditions t0 = 0 and R(t0) = aB , where

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada02.pdf
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aB = 0.53× 10−8 cm is the Bohr radius. After what time T do we get R(T ) = 0?

Solution: The equilibrium condition requires,

mω2R =
e2

R2
.

The kinetic energy of the electron is then,

Ekin =
1

2
mv2 =

1

2
mω2R2 =

1

2

e2

R
,

and its potential energy,

Epot = −
e2

R
.

Hence,

E = Ekin + Epot = −
1

2

e2

R
.

The energy loss is, according to the Exc. 19.2.3.1,

dE

dt
= −P = −2ω4e2R2

3c3
.

Now, understanding R as a function of time t, we obtain,

dE

dt
=

d

dt

(
−1

2

e2

R

)
=

e2

R2

dR

dt
= −2ω4e2R2

3c3
,

and with this, once again using the equilibrium condition, the differential equation,

dR

dt
= −4

3

e4

c3m2

1

R2
.

Integration of this equation gives,

t− t0 = −1

4

c3m2

e4
(R3 −R3(t0)) .

Inserting t0 = 0 and for R(t0) = aB the Bohr radius, we obtain,

t = (a3B −R3)
m2c3

4e4
.

The time T when, due to the loss of energy, the radius of the electron’s orbit becomes
R = 0, is therefore,

T =
m2c3a3B

4e4
.

Insertion of given values yields,

T ∼ 1.6× 10−11 s .

This is the radiation catastrophe of the classical model of the hydrogen atom.
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19.2.3.3 Ex: Dynamics of charged point particles

Consider a point particle with charge q and mass m and general electromagnetic fields
in vacuum, E⃗(r, t) and B⃗(r, t), which are not perturbed neither by the charge nor the
current resulting from the particle’s motion. On the particle acts the Coulomb-Lorentz
force.
a. What are the equations of motion for the particle? What is the temporal variation
of its total kinetic energy? What condition must be satisfied to ensure that the kinetic
energy of the particle is temporally constant?
b. We now consider homogeneous fields E⃗(r, t) = E0êz and B⃗(r, t) = B0êz. What are
the equations of motion now?
c. The particle is at time t = 0 at the origin of the coordinate system and has the ve-
locity v0. Solve the equations of motion. Help: Use the complex variable η = x+ ıy
and add the equations of motion to obtain a complex equation motion for η of the
type η̈ = −ıωη̇ with ω = qB⃗0/(mc).
d. How does the kinetic energy of the particle vary over time?

Solution: a. From the specified force we derive, for the charged particle, Newton’s
equation of motion:

mr̈ = F = q(E⃗ + v × B⃗) .
The temporal variation of the kinetic energy is given by,

Ẇ ≡ d

dt

(m
2
v2
)
= mv · v̇ = v · F = qv · E⃗ .

For energy to remain constant, we need to guarantee,

Ẇ = qv · E⃗ = 0 = qṙ · E⃗ .

b. For time-independent and homogeneous fields, E⃗(r, t) = E⃗0êz and B⃗(r, t) = B⃗0êz,
we calculate for the force,

F = qE⃗0êz + B⃗0(vxêx + vyêy + vzêz)× êz = qE⃗0êz + qB⃗0(−vxêy + vyêx) ,

and therefore for the equations of motion by components,

ẍ =
qB⃗0
m

ẏ , ÿ = −qB⃗0
m

ẋ , z̈ =
qE⃗0
m

.

c. The third equation can be integrated immediately. With the boundary conditions
z(0) = 0 and ż(0) = v0z follows the ’free fall’,

z(t) =
qE⃗0
2m

t2 + v0zt .

For the other two (coupled) equations we use a standard trick: we add ı times the
second equation to the first one, and get,

ẍ+ ıÿ = −ı qB⃗0
mc

(ẋ+ ıẏ) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CargaAcelerada03.pdf
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that is, with the abbreviations η = x+ ıy and ω = qB⃗0/(mc)

η̈ = −ıωη̇ ,

we use that η̇(0) = v0x + ıv0y. From this follows immediately,

η̇(t) = ẋ+ ıẏ = (v0x + ıv0y)e
−ıωt .

This equation can also be directly integrated,

η(t) = x+ ıy =
ı

ω
e−ıωt + c

=
(v0x
ω

sinωt− v0y
ω

cosωt+Re c
)
+ ı
(v0x
ω

cosωt+
v0y
ω

sinωt+ Im c
)
.

Inserting the initial conditions,

x(t) =
v0x
ω

sinωt− v0y
ω

(cosωt− 1)

y(t) =
v0x
ω

(cosωt− 1) +
v0y
ω

sinωt .

d. From (c) follows,
ẋ2 + ẏ2 = v20x + v20y = constant .

Calling T0 the kinetic energy at time t = 0 we get,

T (t) = m
2 (ẋ

2 + ẏ2 + ż2) = T0 +
m
2 qE⃗0t(qE⃗0t+ 2v0z) .

19.2.3.4 Ex: Excitation of an electron by circularly polarized light

Derive the expression for the dipole radiation from the Maxwell equations proceeding
in the following way:
a. Derive the equation of motion of a point particle of charge q and mass m in an elec-
tromagnetic field (E⃗ , B⃗) neglecting the emission of radiation by the moving charge.
Determine the temporal variation of the particle’s energy W inside the external field.
b. A circularly polarized monochromatic wave in vacuum is described by the electric
field, E⃗(r, t) = E [cos(kz − ωt)êx + sin(kz − ωt)êy]. Calculate the corresponding mag-

netic field B⃗(r, t).
c. Calculate the Poynting vector S⃗(r, t).
d. For an energy flux of the electromagnetic wave of 10W/m2 calculate the ampli-
tudes of the electric and the magnetic field.
e. For the particle of part (a) moving in the fields of part (b) establish the equation
of motion.
f. Initially (t = 0) the particle is at the origin of the coordinate system. How should
the initial condition for the velocity be chosen in order to obtain a constant energy
for the particle?
g. Determine the momentum p of the particle and verify that p⊥ = pxêx + pyêy
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coincides at every instant of time with the direction of B⃗.
h. Solve the equation of motion with the initial conditions of part (d).
i. What is the form of the particle’s trajectory in the x-y plane?

Solution: a. The Lorentz force is,

F = qE⃗ + q(v × B⃗) .
With Newton immediately follows the equation of motion,

r̈ = q
m E⃗ +

q
m (ṙ× B⃗) .

For the temporal variation of the particle’s energy we obtain,

Ẇ = v · F = qv · E⃗ .
b. We have

B⃗ = 1
ω (k× E⃗) ,

with k = kêz.
c. The Poynting vector is,

S⃗(r, t) = ε0c
2(E⃗ × B⃗) = ε0c

2 E⃗20
c

[
êz sin

2(kz − ωt) + êz cos
2(kz − ωt)

]
= ε0cE⃗20 êz ,

that is, we have a constant flow in the direction of the k vector.
d. The amplitudes are E0 =

√
s/ε0c ≈ 61V/m and B0 = E0/c ≈ 2.1 · 10−7 T.

e. Inserting the derived magnetic field into the equation of motion,

r̈ = q
m E⃗ +

q
mωv × (k× E⃗) = q

m E⃗ +
q
mω (k(v · E⃗)− E⃗(v · k)) .

Using one more time k = kêz and ω = ck, we obtain by components,

ẍ =
q

m
Ex
(
1− ż

c

)
=

q

m
E
(
1− ż

c

)
cos(kz − ωt)

ÿ =
q

m
Ey
(
1− ż

c

)
=

q

m
E
(
1− ż

c

)
sin(kz − ωt)

z̈ =
q

mc
(ṙ · E⃗) .

f. If we want Ẇ = 0 at all times, from (a) we get immediately that ṙ · E⃗ = 0 must
always be satisfied. With the last equation of part (e) this implies z̈ = 0, that is
ż = const = v0. Insertion in the other two equations of motion provides,

ẍ =
qE
m

(
1− v0

c

)
cos(kz − ωt)

ÿ =
qE
m

(
1− v0

c

)
sin(kz − ωt) .

Integration gives,

ẋ = − qE
mω

(
1− v0

c

)
sin(kz − ωt) + ẋ0

ẏ =
qE
mω

(
1− v0

c

)
cos(kz − ωt) + ẏ0 .
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With this follows,

0 = ṙ · E⃗ =

[
− qE
mω

(
1− v0

c

)
sin(kz − ωt) + ẋ0

]
E cos(kz − ωt)

+

[
qE
mω

(
1− v0

c

)
cos(kz − ωt) + ẏ0

]
E sin(kz − ωt)

= ẋ0E cos(kz − ωt) + ẏ0E sin(kz − ωt)ṙ0 · E⃗ = Exẋ0 + Ey ẏ0 .

For this expression to be zero at all times, we need ẋ0 = ẏ0 = 0. Since z(t = 0) = 0,
we obtain for the initial conditions we were looking for,

v(t = 0) =
(
0 qE

mω

(
1− v0

c

)
0
)

with v0 arbitrary .

g. For the momentum we get,

p =




− qEω
(
1− v0

c

)
sin(kz − ωt)

qE
ω

(
1− v0

c

)
cos(kz − ωt)

mv0


 .

A comparison with the magnetic field E⃗(r, t) = E
c [− sin(kz − ωt)êx + cos(kz − ωt)êy]

calculated in (b) shows that,

p⊥ =
q

ck

(
1− v0

c

)
B⃗ .

h. Integration

x = − qE
mω2

(
1− v0

c

)
cos(kz − ωt) + x0

y = − qE
mω2

(
1− v0

c

)
sin(kz − ωt) + y0

z = v0t + z0 .

With x(t = 0) = y(t = 0) = z(t = 0) = 0 follows the solution,

x(t) =
qE
mω2

(
1− v0

c

)
[1− cos(kz − ωt)]

y(t) = − qE
mω2

(
1− v0

c

)
sin(kz − ωt)

z(t) = v0t .

i. We define,

R ≡ qE
mω2

(
1− v0

c

)
.

We see immediately with part (f), that,

(x(t)−R)2 + y2(t) = R2 .

Therefore, the trajectory is a circle with the radius R and the center (R, 0).
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19.2.3.5 Ex: Charge and current densities for radiative atomic transi-
tions

The charge and current densities for radiative atomic transitions from the statem = 0,
2p of hydrogen to the ground state 1s, are (neglecting the spin),

ϱ(r, θ, ϕ, t) =
2e√
6a4B

re−3r/2aBY00Y10e
−ıω0t , j(r, θ, ϕ, t) = −ıv0

(
êr
2

+
aB
z

êz

)
ϱ(r, θ, ϕ, t) ,

where v0 = αc is the orbital velocity of the electron, aB the Bohr radius, and α the
Sommerfeld constant.
a. Show that the effective transitional orbital ’magnetization’ is,

M⃗ef (r, θ, ϕ, t) = −ı
αcaB
2

tan θ(êx sinϕ− êy cosϕ)ϱ(r, θ, ϕ, t) .

Calculate ∇ · M⃗ef and evaluate the electric and magnetic dipole moments.
b. In the electric dipole approximation, calculate the temporal average of the total
radiated power. Express your response in units of (ℏω0)(α

4c/aB).
c. Interpreting the classically calculated power as the energy of a photon (ℏω0) times
the transition probability, numerically evaluate the transition probability in units of
reciprocal seconds.
d. If, instead of the semiclassic charge density used above, the electron in the 2p
state is described by a circular Bohr orbit of radius 2aB , rotating with the transition
frequency ω0, what would be the radiated power? Express your answer in the same
units as in part (b), and evaluate the ratio of the two powers numerically.

Solution: a. The magnetization is,

M⃗ = 1
2r× j = 1

2r×
[
−iv0

(
êr

2

0

+
aB
z
êz

)
ϱ

]
= −ıv0aB 1

2 êr × êz
r
zϱ

= −ıv0aB 1
2 (−êy sin θ cosϕ+ êx sin θ sinϕ)

r
zϱ

= −ıcαaB 1
2 tan θ(êx sinϕ− êy cosϕ)ϱ ≡ Xϱ ,

defining X = −ıcαaB 1
2

(
êx

y
r − êy

x
r

)
r
z . We find Y00 =

√
1/(4π) and Y10 =

√
3/(4π)z

in tables of mathematical formulas and introduce the abbreviation κ ≡ 2q√
6a4B

1√
4π

√
3
4π .

With this the charge density becomes,

ϱ = κze−3r/aB .

The divergence of magnetization is,

∇ · M⃗ = ϱ∇ ·X+X · ∇ϱ = ϱ∇ ·X 0
+ κX · ∇ze−3r/2aB

= X ·
{
ze−3r/2aB

[ −3x
2aBr

êx +
−3y
2aBr

êy +

(
1

z
− 3z

2aBr

)
êz

]}
= 0 .

We can write the electric dipole moment as,

d =

∫
(xêx + yêy + zêz)ϱ(r)d

3r =

∫
(xêx + yêy

0
+ zêz)κze

−3
2aB

√
x2+y2+z2

ϱ(r)d3r ,
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because integrals of odd functions vanish. Now,

d = κêz

∫
z2e

−3
2aB

√
x2+y2+z2

ϱ(r)d3r = 2πκêz

(∫ ∞

0

r4e−3r/2aBdr

)(∫ 1

−1
cos2 θd(cos θ)

)
.

Using
∫∞
0
rne−βrdr = n!

βn+1 we finally get,

d = 2πκêz

(
4!

(3/2aB)5

)(
2

3

)
d = πκêz

(
4aB
3

)5

=
29√
235

eaB ≈ 1.49eaB êz .

Now we calculate the magnetic dipole moment,

m =

∫
M⃗d3r = −−ıaBv0

2

∫ (y
z
êx −

x

z
êy

)
ϱd3r = 0 ,

because integrals of odd functions vanish, ϱ being even in x and y.
b. The time-averaged total radiated power is given by,

PJackson =
µ0c

3k4

12π
p̄2 ≈ 0.039 (ℏω0)

(
α4c
aB

)
.

c. We obtain,

Γ =
P

ℏω
≈ 6.3 · 108 s−1 ≈ (2π) 100MHz .

d. For a Bohr transition from the state 2p having the radius r = 2aB to the state 2s
having the radius aB,

d = q(2aB − aB)êze−ıωt = qaBe
−ıωtêz ,

gives an emitted power of,

PBohr = 0.018 (ℏω0)
(
α4c
aB

)
≈ 0.45 PJackson .

19.2.3.6 Ex: Synchrotron radiation

In the discussion of the Bremsstrahlung in class we assumed that the velocity and
the acceleration were (at least instantaneously) collinear. Do the same analysis for
the case, that they are perpendicular. Choose your axes so that v is along the
z-axis and a along the x-axis (see Fig. 19.7), such that v = vêz, a = êx and
R = sin θ cosϕêx + sin θ sinϕêy + cos θêz. Verify whether P is consistent with the
Liénard formula.

Solution: We start from the Liénard’s generalization of Larmor’s formula (19.146),

dP

dΩ
=

q

16πε0

|êr × (u× a)|2
(c− êr · v)5

,
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inserting boundary conditions, which are specific to the problem,

v = vêz and a = aêx such that u = cêr − v = cêr − vêz .

Using êr = êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ to calculate,

dP

dΩ
=

q2

16πε0

|êr × [(cêr − vêz)× aêx]|2
(c− êr · vêz)5

=
q2a2

16πε0c3
|êr × (êr × êx)− βêr × (êz × êx)|2

(1− βêr · êz)5

=
q2a2

16πε0c3
|êr(êr · êx)− êx(êr · êr)− βêz(êr · êx) + βêx(êr · êz)|2

(1− βêr · êz)5

=
µ0q

2a2

16πc

(êr sin θ cosϕ− êx − βêz sin θ cosϕ+ βêx cos θ)
2

(1− β cos θ)5

=
µ0q

2a2

16πc

(êr − βêz)2 sin2 θ cos2 ϕ+ (1− β cos θ)2 − 2(êr − βêz) · êx sin θ cosϕ(1− β cos θ)
(1− β cos θ)5

=
µ0q

2a2

16πc

(1 + β2 − 2β cos θ) sin2 θ cos2 ϕ+ (1− β cos θ)2 − 2 sin θ cosϕ(1− β cos θ)
(1− β cos θ)5

=
µ0q

2a2

16πc

(1− β cos θ)2 − (1− β)2 sin2 θ cos2 ϕ
(1− β cos θ)5 .

The integral is,

P =

∫
dP

dΩ
dΩ =

µ0q
2a2

16πc

∫ π

0

∫ 2π

0

(1− β cos θ)2 − (1− β)2 sin2 θ cos2 ϕ
(1− β cos θ)5 sin θdϕdθ

=
µ0q

2a2

16π2c

8

3

π

(1− β2)2
=
µ0q

2a2γ4

6πc
.

For the relativistic velocities (≃ c), the radiation is again accentuated in forward
direction. The most important application of these formulas is the case of a circular
movement. In this case the radiation is called synchrotron radiation. For a relativistic
electron, the radiation sweeps like a locomotive beacon, as the particle moves.

19.2.3.7 Ex: Cherenkov radiation

Cherenkov radiation is observed, when a charge moves with relativistic velocity within
a dielectric medium, which reduces the speed of light below the velocity of the parti-
cle. A blue superluminal shock wave is then formed.
a. Calculate the angle θc between the propagation direction of the charge and the
propagation direction of the shock wavefront.
b. We now imagine the deceleration process of the charge inside the dielectric as being
due to a collision with a heavy molecule of the dielectric material. The collision cre-
ates a photon emitted under the angle θc and the momentum of charge is deflected.
We despise the recoil of the molecule. Based on relativistic energy and momentum
conservation, calculate the angle θc in terms of the momenta of charge before and
after the collision and of the radiated frequency.
c. Comparing the results obtained in (a) and (b), calculate the rest mass of the charge.
d. Calculate the retarded Liénard-Wiechert potentials inside and outside of the cone.
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Solution: a. From the diagram we can easily see,

cos θc =
1

βn
with βn =

nv

c
.

b. Relativistic momentum and energy conservation,

Figure 19.9: Scheme for Cherenkov radiation. (a) Charge moving at subluminal velocity,
(b) at superluminal velocity.



√
c2p2befor +m2c4

pbefor


 =



√
c2p2aftr +m2c4 + ℏω

paftr + nℏk


 .

Momentum conservation,

p2aftr = p2befor+(nℏk)2−2nℏkpantes) cos θc =⇒ cos θc =
p2aftr − p2befor + (nℏk)2

−2nℏkpbefor
.

Resolving the momentum conservation by pafter,

c2p2aftr =

(√
c2p2antes +m2c4 − ℏω

)2

−m2c4 = c2p2befor+ℏ2ω2−2ℏω
√
c2p2before +m2c4 ,

and replacing this in the formula for cos θc,

cos θc =
p2before +

ℏ2ω2

c2 − 2ℏω
c2

√
c2p2befor +m2c4 − p2befor + (nℏk)2

−2nℏkpbefor

=
2
√
c2p2before +m2c4 + (n2 − 1)cℏk

2cnpbefor
.

c. Substituting cos θc by 1
βn

,

v =
c2pbefor√

c2p2befor +m2c4 + (n2 − 1)cℏk
.
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d. From Fig. 19.9 we read,

∆t = t−tr =
|r−w(tr)|

cn
, r−w(tr) = R(tr) , v∆t = R(tr)−R(t) , w(t) = r−R(t)

which allows us to calculate,

cn∆t = R(tr) = |v∆t+R(t)| =
√
v2∆t2 +R2(t) + 2v∆tR(t) cos θ ,

which has two solution for ∆t,

∆t =
R(t)

c2n − v2
(
v cos θ ±

√
c2n − v2 sin2 θ

)
.

Since, only real solutions are possible, we get a condition for θ,

| sin θ| < cn
v
≡ sin θC ,

where θC is the Cherenkov angle.
The Liénard-Wiechert potentials are now, using the Heaviside function,

Φ(r, t) =
1

4πε0

qcn
R(tr)cn −R(tr) · v

Θ(cos θC − cos θ) and A(r, t) =
v

c2n
Φ(r, t) .

The denominator of the potentials is,

R(tr)cn −R(tr) · v = c2n∆t− [v∆t+R(t)] · v

= (c2n − v2)∆t− vR(t) cos θ = ±R(t)
√
c2n − v2 sin2 θ ,

such that,

Φ(r, t) = ± q

4πε0

Θ(cos θC − cos θ)

R(t)
√

1− v2

c2n
sin2 θ

.

19.2.3.8 Ex: Electron subject to gravity

An electron is released from rest and falls under the influence of gravity. Within the
first centimeter, what fraction of the lost potential energy is radiated?

Solution: Accelerates by gravity the charge radiates. This means that not all lost
potential energy is converted into kinetic energy, but also into radiation. Therefore, a
charged object falls more slowly than an electrically neutral object. The dipole moment
of the electron will be,

p = ezêz .

The radiated power was derived in class,

P ≃ µ0p̈

6πc
=
µ0eg

6πc
≈ 5.7 · 10−52 Js−1 .
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To find out how much energy is radiated during the fall of the electron, we need to
know, how long it takes the electron to drop by 1 cm. If all lost potential energy were
transformed into kinetic energy, we would have, v = gt and d = 1

2gt
2. Since the

radiated power is very small, we can safely assume the validity of these expressions
and verify that the response is consistent,

t =

√
2d

g
≈ 0.045 s ,

such that the radiated energy is,

Pt = 2.46 · 10−53 J .

The lost potential energy is,

V = mgh ≈ 8.92 · 10−32 J ,

such as the fraction of potential energy lost by radiation is xxx.

19.2.3.9 Ex: Radiation reaction

Including the radiative reaction force (19.154), Newton’s second law for a charged
particle becomes,

a = τ ȧ+
F

m
,

where F is an external force acting on the particle.
a. In contrast to the case of an uncharged particle (a = F/m), the acceleration (in
the same way as position and velocity) must be a continuous function of time, even
when the force changes abruptly. (Physically, the radiative reaction dampens out any
rapid variation in a.) Show that a is continuous at any time t by integrating the given
equation of motion between (t− ϵ) and (t+ ϵ) and evaluating the limit ϵ→ 0.
b. A particle be subjected to a constant force F , beginning at time t = 0 and remain-
ing until the time T . Find the most general solution a(t) of the equation of motion
in each of the three stages: (i) t < 0; (ii) 0 < t < T ; and (iii) t > T .
c. Impose the continuity condition (a) at times t = 0 and t = T . Show, that it is possi-
ble to either eliminate ’runaway-acceleration’ in region (iii) or avoid ’pre-acceleration’
in region (i), but not both.
d. Choosing to eliminate the runaway-acceleration, what will be the acceleration, as a
function of time, in each stage (i-iii)? How will the velocity behave, which obviously
must be continuous at t = 0 and t = T . Assume, that the particle was initially at
rest: v(−∞) = 0. Prepare schemes of a(t) and v(t) and compare with the behavior
of a neutral particle.
e. Repeat (d) choosing the option to eliminate pre-acceleration.

Solution: a. Including the radiative reaction force, Newton’s second law for a charged
particle becomes,

a = τ ȧ+
F

m
with τ ≡ µ0Q

2

6πc
ȧ .
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For an electrically neutral particle, the reaction term disappears, which means that
if F is discontinuous (as in the case of a suddenly applied force), then a also is.
However, it turns out that adding the term τ ȧ guarantees that the acceleration is
always continuous, even if the force is not. Suppose that we integrate this equation in
a small time interval between t− ϵ and t+ ϵ,

∫ t+ϵ

t−ϵ
adt′ =

∫ t+ϵ

t−ϵ

(
τ ȧ+

F

m

)
dt′ = τa(t+ ϵ)− τa(t− ϵ) + 1

m

∫ t+ϵ

t−ϵ
Fdt′ .

Given that both a and F are finite over the time interval (there are no divergences,
such as delta functions), then both integrals, the one of the acceleration and the one
of the force, should tend to zero as ϵ → 0. This is true, even F being discontinuous.
The consequence is,

lim
ϵ→0

[(a(t+ ϵ)− a(t− ϵ)] = 0 ,

that is, a is continuous. In the case of the neutral particle, Q = 0 and therefore τ = 0
as well, such that a(t+ ϵ)− a(t− ϵ) vanishes in any case, and the argument fails.
b. Now, we consider the following example:

a(t) =





τ ȧ for t < 0

τ ȧ+ F/m for 0 < t < T

τȧ for T < t

.

The partial solutions are,

a(t) =





a0e
t/τ for t < 0

a1e
t/τ + F/m for 0 < t < T

a2e
t/τ for T < t

.

c. The continuity of the acceleration at the times t = 0 and t = T requires,

a0 = a1 + F/m and a1e
T/τ + F/m = a2e

T/τ .

Eliminating t1,
a2 = F

m (e−T/τ − 1) + a0 .

Since there were no forces before t = 0, we let a0 = 0. But this means, that we
accept a constant (and negative, for a2 < 0) acceleration in the third period without
external force. Alternatively, we can let a2 = 0, but that means that we accept a
pre-acceleration in the first period, when the force has not yet come into action.
d. Accepting the condition a2 = 0, we obtain the solutions,

a(t) =





F
m (1− e−T/τ )et/τ for t < 0
F
m (1− e(t−T )/τ ) for 0 < t < T

0 for T < t

.

and

v(t) =





Fτ
m (1− e−T/τ )et/τ for t < 0
F
m (t− τe(t−T )/τ ) + Fτ

m for 0 < t < T
FT
m for T < t

.
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e. Accepting the condition a0 = 0, we obtain the solutions,

a(t) =





0 for t < 0
F
m (1− et/τ ) for 0 < t < T
F
m (e−T/τ − 1)et/τ for T < t

.

and

v(t) =





0 for t < 0
F
m (t− τet/τ ) + Fτ

m for 0 < t < T
Fτ
m (e−T/τ − 1)et/τ + FT

m for T < t

.

It is interesting to note that, changing the sign of τ → −τ , behavior makes sense.
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Figure 19.10: (code) Radiation reaction.

19.3 Diffraction and scattering

Radiation (let us call it ’light’ for simplicity) incident on a target (e.g. a charge and
current distribution, a dielectric body, an atomic cloud, or anything else) will be
absorbed, diffracted or scattered. In the absence of absorption, the entire incident
energy must be re-emitted. Whether the re-emission process is best described by
diffraction or scattering models depends on the wavelength λ of light in relation to the
size of the target and its structure. When the target is small, we can treat the problem
in the lowest (usually dipolar) multipolar order; for a target of comparable size with
λ, a complete multipolar treatment is required, and in the limit of a large target, we
can resort to semi-geometrical methods to explain deviations from geometric optics
caused by diffraction.

The topic of diffraction and scattering is well covered in the literature [659]. Rather
than reproducing these theories here, we will give in this course a brief introduction

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Radiation_RadReaction.m
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to the coupled-dipoles model. This model, which has received much attention in recent
years, has proven capable, albeit renouncing of notions such as the refraction index, to
give a microscopic view of many macroscopic scattering and diffraction phenomena.

19.3.1 Coupled dipoles model

The electrodynamics contained in Maxwell’s macroscopic equations describes the in-
teraction of light with matter characterized by a refractive index n(r). The refractive
index is understood as a continuous field, which fully describes the reaction of the tar-
get to incident light. On the other hand, we know how the microscopic constituents,
that is, the atoms and molecules of the target material, react individually to incident
light. In the simplest case, a two-level atom will absorb a photon carrying an electron
to a higher orbit, and when the electron returns to the original state, it will emit a
photon into an arbitrary direction, that is, isotropically in the time average.

The difficulty now resides in the linking of the macro- and microscopic images,
illustrated in Fig. 19.11, to a complete theory. Indeed, all atoms or molecules in the
crystal must cooperate in some way to generate a refractive index and macroscopic
scattering phenomena described by the laws of Snellius, Lambert-Beer, or Ewald-
Oseen [180]. The details of how this cooperation works are being studied in several
laboratories around the world [1180, 1182, 298].

Figure 19.11: (Left) Macroscopic refraction and (right) microscopic scattering. See also
(watch talk).

From a microscopic point of view, the refractive index is an artifact; it does not
exist like an atom exists! Since Democritus’ reflections on the nature of matter 350
years before Christ, we know that what does exist are ’atoms and empty space, the
remainder is mere opinion’. The index of refraction can help us to simplify the
description of how light interacts with macroscopic objects. But this does not always
work, and in some circumstances even leads to paradoxical results, that are difficult
to resolve within Maxwell’s theory of electromagnetism. This is, for example, the
case of the famous Abraham and Minkowski dilemma, which since 1909, when these
two physicists proposed different calculations for the photonic momentum inside a
dielectric medium leading to different results, still gives rise to debates. But there are
also other situations, where microscopic theory is able to describe phenomena beyond
the macroscopic approximation of continuous media. These are phenomena due to
disorder, such as Anderson’s localization of light or the spontaneous synchronization
of atomic dipoles in superradiance.

In the simplest version of the coupled-dipoles model we imagine the target as a
(more or less dense) sample of point-like two-level atoms, so that the radiation of the
atoms can be described in the dipolar limit, aB ≪ λ, where the Bohr radius gives a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AbrahamMinkowski
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typical scale for the extension of the radiation source. We will not reproduce integrally
the derivation of the coupled-dipoles model here, which borrows from the theory of
quantum mechanics. Instead, we will superficially trace the line of argumentation
and justify the results by showing that, in the limit of a smooth distribution of the
atomic scatterers, we recover the classical laws of Maxwell’s theory.

19.3.1.1 Rayleigh scattering

To describe the Rayleigh scattering from an atom, we need to understand the phe-
nomenon of spontaneous emission. This is usually achieved by the Weisskopf-Wigner
theory starting from the Hamiltonian describing the interaction of a single two-level
atom of the sample (labeled j) interacting with an incident laser,

Ĥj = ℏgk0

(
σ̂je
−ıωat + σ̂†je

ıωat
)(

â†k0
eıω0t−ık0·rj + âk0e

−ıω0t+ık0·rj
)

(19.157)

+
∑

k

ℏgk
(
σ̂je
−ıωat + σ̂†je

ıωat
)(

â†ke
ıωkt−ık·rj + âke

−ıωkt+ık·rj
)
.

Here, ω0, ωa, and ωk are, respectively, the frequencies of the incident laser, the atomic
resonance and the scattered light 8. gk0

is the coupling strength between the atom
and the incident light mode and gk = d

√
ω/(ℏε0V ) describes the coupling between

the atom and a vacuum mode with the volume V . σ̂j = |g⟩⟨e| is the lowering operator
of the atomic excitation, that is, it describes the transition of the jth atom from the
excited state |e⟩ to the ground state |g⟩. âk is the annihilation operator of a photon
in the mode k.

Figure 19.12: Scheme of the interaction of a light beam with a sample of atoms.

Now, considering an incident light mode (e.g. a laser beam) with high power,

âk0 |n0⟩k0 =
√
n0|n0 − 1⟩k0 ≃ α0|n0⟩k0 , (19.158)

âk0 is approximately an observable, whose amplitude is proportional to the root of

the intensity. As [âk0
, â†k0

] ≃ 0, we can disregard the quantum nature and treat the
incident light as a classical field by replacing Ω0 ≡ 2α0gk0 , where Ω0 is the Rabi
frequency. The rotating wave approximation (RWA) allows us to neglect those terms

8We are only considering fixed atoms in space, that is, we do not allow acceleration by photonic
recoil.
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of the Hamiltonian, which (in the first perturbative order) do not conserve energy,
that is, terms proportional to σ̂−j â and σ̂+

j â
†. Introducing the abbreviations,

∆0 ≡ ω0 − ωa and ∆k ≡ ωk − ωa . (19.159)

the Hamiltonian becomes,

Ĥ = ℏ
2Ω0

(
σ̂â†k0

eı∆0t + h.c.
)
+ ℏ

∑

k

(
gkσ̂â

†
ke
ı∆kt + h.c.

)
. (19.160)

The system can be found in three states,

|Ψ(t)⟩ = α(t)|0⟩a|0⟩k + β(t)|1⟩a|0⟩k +
∑

k

γk(t)|0⟩a|1⟩k . (19.161)

Before the scattering the system is, with the probability amplitude α, in the state
|0⟩a|0⟩k. After the absorption of a photon, with the probability amplitude β, the atom
is excited |1⟩a|0⟩k. Finally, after the reemission of the photon to a mode k, with the
probability amplitude γk, the state of the system is |0⟩a|1⟩k. The temporal evolution
of the probability amplitudes is obtained by inserting the Hamiltonian (19.160) and
the ansatz (19.161) into the Schrödinger equation,

d

dt
|Ψ(t)⟩ = − ı

ℏ
Ĥ|Ψ(t)⟩ . (19.162)

We get, after a calculation which is not reproduced here 9 and which makes use of the
so-called Markov approximation postulating that the variation of the amplitudes βj(t)
is slower than the evolution of the system given by eı(ωk−ω0)t, the following equation
of motion for the amplitudes βj ,

β̇j =

(
ı∆0 −

Γ

2

)
βj −

ıΩ0

2
eık0·rj . (19.163)

This equation correctly describes the dynamics of the probability amplitude of finding
an atom exposed to a laser beam and subject to spontaneous emission of its excited
state.

19.3.1.2 Collective scattering

In the presence of several atoms, the full Hamiltonian for the atomic cloud is simply
obtained by summing over the N atoms 10,

Ĥ =

N∑

j=1

Ĥj . (19.164)

Following the same scheme as in the last section, the Schrödinger equation with the
Hamiltonian (19.164) where (19.157) can be resolved to the limit of weak excitation:

9See Sec. 39.1.2 .
10We do not consider in this Hamiltonian collisional interactions between the atoms, for example,

of the van der Waals type, which can have a great impact at high densities n≫ λ−3.



1088 CHAPTER 19. RADIATION

Let us restrict to the situation in which at most a single photon or a single atomic
excitation can be in the system. This assumption is realistic, when the time for
reemitting a photon is short. The state created by the passage of a single photon is a
collective state, because the atomic sample can either be entirely in the ground state
before a scattering event, |g1, .., gN ⟩|0⟩k, or after a scattering event, |g1, .., gN ⟩|1⟩k, or
else any one of the atoms j can be excited, |g1, .., ej , .., gN ⟩|0⟩k, during the scattering
event. All information on the system is coded in the temporal dependencies of the
probability amplitudes for these states, which we obtain through the insertion of the
wavefunction 11,

|Ψ⟩ = α(t)|g1 . . . gN ⟩|0⟩k + e−ı∆0t
N∑

j=1

βj(t)|g1 . . . ej . . . gN ⟩|0⟩k (19.165)

+
∑

k

γk(t)|g1 . . . gN ⟩|1⟩k +

N∑

m,n=1

ϵm<n,k(t)|g1 . . . em . . . en . . . gN ⟩|1⟩k .

within the Schrödinger equation. What we get is a set of integro-differential equations
for the amplitudes α, β, and γk, which can be solved within the Markov approxima-
tion,

β̇j =

(
ı∆0 −

Γ

2

)
βj −

ıΩ0

2
eık0·rj − Γ

2

∑

m ̸=j

eık0|rj−rm|

ık0|rj − rm|
βm . (19.166)

We note, that the first two terms of this equation correspond to the equation describ-
ing the dynamics of a single atom (19.163). The third term corresponds to processes,
where photons scattered at an atom are reabsorbed by another atom.

Figure 19.13: Illustration of cooperative scattering: From (a) to (c) a photon traversing an
atomic cloud first excites the upstream dipoles, which immediately begin to radiate. The
downstream dipoles are excited later on. The phase lag of the reemission processes leads to
a radiative emission pattern being strongly peaked into forward direction.

The claim is now that equation (19.166) (or at least its generalization to level
systems allowing to take account of the vectorial nature of light) is capable of re-
producing all phenomena of macroscopic scattering, usually described by Maxwell’s
theory, for example, refraction, diffraction, Mie and Bragg scattering, etc. In ad-
dition, it correctly describes microscopic scattering phenomena, such as cooperative
Rayleigh scattering, Anderson location, photonic band gaps, etc.

11The fourth term corresponds to the presence of two simultaneously excited atoms plus a (virtual)
photon with ’negative’ energy. These states need to be taken into account, if we do not want to
make use ofthe RWA approximation.
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19.3.2 The limit of the Mie scattering and the role of the re-
fractive index

In practice, the exploitation of the N coupled equations (19.166) (one for each atom),
which needs to be done numerically, is limited by computer capacity to some 100 000
atoms. On the other hand, at least, in the limit of high densities, we may hope, that
the atomic cloud be well described by a continuous density distribution,

∑

j

βj →
∫
β(r′)ρ(r′)dV ′ . (19.167)

Considering the stationary case, β̇j = 0, we arrive at,

Ω0

2
eık0·r = (∆0 + ıΓ)β(r) +

Γ

2

∫
eık0|r−r

′|

k0|r− r′|β(r
′)ρ(r′)dV ′ . (19.168)

We note that the kernel of the above equation is the Green function of the Helmholtz
equation, since,

[∇2 + k20]
eık0|r−r

′|

4π|r− r′| = −δ
(3)(r− r′) . (19.169)

Now, by applying the operator [∇2+ k20] to both sides of equation (19.168), we arrive
at,

0 = (∆0 + ıΓ)[∇2 + k20]β(r)− 2πΓ
β(r)ρ(r)

k0
, (19.170)

that is [458, 66, 67],

[∇2 + k20n(r)
2]β(r) = 0 defining n2(r) ≡ 1− 4πρ(r)

k30(2∆0/Γ + ı)
. (19.171)

This is the Helmholtz equation of Maxwell’s theory. The reappearance of the refractive
index n(r) is the price to pay for smoothing the density distribution, and with it
we lose all effects related to discretization and cloud disorder. In Exc. 19.3.3.1 we
compare the result of the smoothed coupled-dipole model (19.171) to the macroscopic
susceptibility derived from the Lorentz model (18.142), and to the Clausius-Mossotti
formula (14.28).

Example 120 (Bragg scattering by partially disordered clouds): Fig. 19.14

shows the example of Bragg scattering by an atomic cloud. Without disorder

we would expect an incident laser beam to be partially reflected and partially

transmitted. The simulation of the stationary version of equation (19.166) for

the scattering of the cloud illustrated in (a) shows, in addition to transmission

and reflection, a random pattern of specular scattering in all directions, which

can be attributed to disorder.

Example 121 (Collective radiative pressure): The internal and the global

structure of an atomic cloud both dramatically influence the radiative pressure

force exerted on its center of mass. We compare two limiting cases [298]: (a) For
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Figure 19.14: (a) Experimental scheme for Bragg reflection by an ordered atomic cloud
in a periodic pile of pancakes. (b) Simulation of the stationary cloud scattering equation
schematized in (a).

large dilute clouds, scattering by intrinsic disorder prevails. The more atoms are

in the cloud, the more pronounced is the forward scattering of the light. There-

fore, the radiative pressure force per atom exerted by the incident light decreases

with N . (b) For small dense clouds, the scattering is rather governed by the

global inhomogeneous shape of the cloud. The more atoms are in the cloud,

the greater the variation of the refractive index and the greater the refractive

deflection of photons off the optical axis [120]. Therefore, the radiation pres-

sure force per atom exerted by the incident light increases with N , as shown in

Fig. 19.15(c).

Figure 19.15: (a) Rayleigh scattering by a disordered cloud. (b) Mie scattering via wavefront
deformation by the refractive index of an optically dense cloud. (c) Dependence of the
radiation pressure force on the number of atoms for the two cases (a) and (b).

Microscopic collective scattering depends on one hand on the internal spatial dis-
tribution of the scatterers, that is, the intrinsic disorder, and on the other hand on the
global distribution, i.e. the shape and the size of the cloud and its density distribution
near the edges, which may be smooth or abrupt. In the limit of despicable disorder,
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we have seen that the theory of collective scattering is equivalent to Maxwell’s macro-
scopic theory. In this limit, we can describe the cloud of scatterers as a (locally)
homogeneous sphere characterized by a refractive index n(r), which varies spatially
with the density of the scatterers. Let us assume, for simplicity, a spherical cloud
with a homogeneous refraction index n(r) = n0 inside the cloud and n(r) = 1 out-
side. The scattering of a plane wave of radiation by a dielectric sphere is known
as Mie scattering . In Mie’s theory we expand the incident plane wave into partial
spherical waves,

eık·r =
√
4π

∞∑

ℓ=0

√
2ℓ+ 1ıℓjℓ(kr)Yℓ0(êr) , (19.172)

which must satisfy the boundary condition for electromagnetic waves at the outer edge
of the sphere. This is illustrated in Fig. 19.16. Theoretically it should be possible to
observe Mie resonances with atomic clouds, albeit strictly speaking, they do not have
a surface which could act like an abrupt boundary condition.

Figure 19.16: Two types of Mie resonances are possible: (i) Waves propagating in the interior
of the body and form a stationary wave bounded by the surface and (ii) evanescent waves
that propagate on the surface of the body (whispering gallery modes). The resonances of
type (ii) require abrupt boundary conditions.

19.3.3 Exercises

19.3.3.1 Ex: Coupled dipoles versus Clausius-Mossotti

Compare the result of the smoothed coupled-dipole model (19.171) to the macroscopic
susceptibility derived from the Lorentz model (18.142), and to the Clausius-Mossotti
formula (14.28).

Solution:

19.4 Further reading

M.J. Berg et al., A new explanation of the extinction paradox [126]DOI

V.C. Ballenegger, The Ewald-Oseen extinction theorem and extinction lengths [79]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Radiation_CoupledClausius.pdf
http://doi.org/10.1016/j.jqsrt.2010.08.024
http://doi.org/10.1119/1.19330
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Chapter 20

Theory of special relativity

Until the end of the nineteenth century people believed in the existence of an ’ether’,
that is, a medium capable of carrying oscillations of the electromagnetic field in a
similar way as water transports surface waves or the air propagates the sound. The
propagation velocity of the light must then have a certain value c in this ether. But
when measured in another inertial system, according to the Galilei transformation,
propagation velocity should be the sum of c and the velocity v of the inertial system
through the ether. This ether would be fixed to the universe, and the earth would
have a velocity v with respect to this ether.

With the objective of measuring the relative velocity between a fixed laboratory
and the ether, Michelson and Morley did an experiment known as Michelson-Morley
experiment, and which now represents one of the foundations of the theory of special
relativity. It consists of a Michelson interferometer, which can be rotated in space.
If an ’ether’ existed, which is not fixed to the Earth, the speed of light must be
anisotropic and the interference fringes observed in the interferometer must move
when the interferometer is rotated. This was not observed.

Figure 20.1: Scheme of the Michelson-Morley experiment.

Within the resting system (the ether) the times required for light to travel through
each of the interferometer arms are,

t1,2 =
2L

c
. (20.1)

In a frame moving in the direction of one of the arms these times would be,

t1 =
2L

c

1√
1− β2

and t2 =
L

c+ v
+

L

c− v =
2L

c

1

1− β2
. (20.2)

The experiment confirms the result (20.1) regardless of the rotation of the interfer-
ometer.

1093
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Guided by Michelson’s observation it was Poincaré, who first proposed the absence
of an ether, which motivated Einstein to formulate the following postulates:

Law A: The laws of physics do not depend on a translatory motion of the system as a
whole. There is no particular system, in which the ’ether’ would be at rest.

Law B: The speed of light is constant in all inertial systems and regardless of the speed
of the emitting source.

These postulates revolutionized classical mechanics. The new theory, called the
theory of special relativity, still contains classical mechanics in the limit of slow veloc-
ities, but extends its validity to the limit of velocities approaching the speed of light.
Moreover, special relativity reconciles mechanics with electrodynamics in a natural
way, as we will show in the following sections.

20.1 Relativistic metric and Lorentz transform

In the theory of relativity, the space represented by the vector r and the time repre-
sented by the scalar ct (where we multiply the universal speed of light for dimension-
ality reasons) are treated on equal footing. There are other combinations of scalar and
vectorial physical quantities such as energy E/c and linear momentum p which, when
combined to a four-dimensional entity, allow for a more symmetrical representation
of the fundamental laws of physics. Let us, in the following, set the foundations of
this new formalism developed by Poincaré, Lorentz, Einstein, and Minkowski.

20.1.1 Ricci’s calculus, Minkowski’s metric, and space-time
tensors

In the notation of 4-dimensional space-time vectors the physical quantities are de-
scribed (or combined) by tensors of rank k, e.g. scalars A, vectors Aµ, matrices Aµν ,
and tensors of higher ranks Aµνλ.... Tensors can be contravariant, Aµ, or covariant,
Aµ, with respect to an index, depending on their behavior regarding the Lorentz
transform (as we shall see shortly). Co- (or contra-) variant scalars are indepen-
dent of the inertial system and, therefore, called Lorentz invariants. The contra- and
covariant tensors are related by the Minkowski metric defined by (see also Sec. 12.4),

(gµν) ≡




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




, (20.3)

using the sum rule of Einstein, which consists in summing over all pairs of co- and
contravariant indices,

aµaµ ≡
∑

µ
aµaµ , (20.4)

via
aµ = gµνaν . (20.5)
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We note that the first index in a matrix counts the columns and the second index the
rows. For flat space-time (that is, without curvature),

g ν
µ = gµαg

αν = δνµ , gµν = gµν that is ǧ−1 = ǧ = ǧ⊺ , (20.6)

where δνµ is the Kronecker symbol and the decoration ’∨’ denotes a matrix, ǎ ≡ (aµν).

Thus, the identity and the metric are the two faces of the same tensor, δ̌ = ǧ. The
norm is defined by,

∥(aµ)∥ ≡
√
aµaµ =

√
aµgµνaν . (20.7)

The product between two contravariant vectors is given by,

aµbµ ≡ aµgµνbν . (20.8)

The tensors are represented by scalars, vectors and matrices. The vector symbol
is used for the contravariant column vector,

a⃗ ≡ (aµ) =


a

0

a


 , ǎ ≡ (aµν) =


 a0 (am0)

(a0n) (amn)


 . (20.9)

The covariant vector is also represented by a column,

ǧa⃗ = (aµ) = (gµνa
ν) =


 a0

−a


 . (20.10)

Often, Greek letters are used as indices for space-time tensors, while Roman letters
are used as indices for spatial components. In order to work with vectors within
Minkowski’s formalism, we must interpret them as two-dimensional 1× 4 matrices,

a⃗ ≡ (aµ1) , (20.11)

where the ’1’ indicates the number of columns of the matrix. Introducing the trans-
position, denoted by the symbol ’⊺’, as an exchange of the indices labeling rows and
columns,

Fµν = (F ⊺)νµ , (20.12)

we can represent the transposition of a vector by a 4× 1 matrix,

a⃗⊺ = (aµ1)⊺ = (a1µ) =
(
a0 a

)
, (20.13)

and define the scalar product between vectors in terms of the product between ma-
trices as,

a⃗ · b⃗ ≡ (aµ1bµ1) = (a⊺)1µ(bµ1) = (a⊺)1µgµν(b
ν1) = ǎ⊺ǧb̌ (20.14)

=
(
a0 (am)

)

1 0

0 (−δmn)




 a0

(an)


 .

We conclude emphasizing that, to be able to multiply tensores as matrices, the indices
to be contracted must be adjacent. If necessary, the tensors must be transposed,

AµαBνα = Aµα(B⊺) να . (20.15)

One has to be very careful, because in general Aµα ̸= Aαµ ̸= Aαµ ̸= Aµα ̸= A µ
α ̸=

A α
µ ̸= Aµα ̸= Aαµ.
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20.1.2 Lorentz transform

We are now in the shape to officially introduce our first explicit space-time vector by
combining the physical quantities time and position,

(rµ) ≡
(
ct

r

)
. (20.16)

In classical mechanics the transformation to a system moving at velocity β = v/c is
described by the Galilei transform given by,

(Gµν) ≡




1 0 0 0

0 1 0 0

0 0 1 0

−β 0 0 1




, (Gµν)
−1 =




1 0 0 0

0 1 0 0

0 0 1 0

β 0 0 1




. (20.17)

Example 122 (Galilei transform): Let us try out the Galilei transform on
the space-time vector (20.16):

ct′

x′

y′

z′

 = (r′µ) = (Gµν)(rν) =


1 0 0 0

0 1 0 0

0 0 1 0

−β 0 0 1




ct

x

y

z

 =


ct

x

y

z − vt

 .

In classical mechanics wave propagation is conditioned to the existence of a medium.
Consequently, different inertial systems are not equivalent and, as will be shown in
a later section, the wave equation is not invariant to the Galilei transform. Let
us therefore look for another transformation, which preserves the shape of the wave
equation. We may, for example, request the transformation to ensure that the prop-
agation of the phase fronts of a spherical wave is independent of the inertial system:
c2t′2 − r′2 = c2t2 − r2.

The story of the Lorentz transform begins with Poincaré, who introduced the idea
of local time: According to him, simultaneity depends on the reference system. Voigt
attempted in 1897 for the first time to find a transformation that would conserve the
value of c, but it was Lorentz who found a transformation leaving Maxwell’s equations
invariant and, consequently, Helmholtz’s wave equation as well. The Lorentz trans-
form is linear with respect to the preservation of space-time intervals in Minkowski
space and, as we will see shortly, it removes the contradictions between classical me-
chanics and electrodynamics.

Consider a system S′ moving through our lab S at a velocity v = vêz. We define,

β =
v

c
and γ =

1√
1− β2

. (20.18)
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The matrix describing the Lorentz transform from system S to system S′ is,

Λ̌ = (Λµν) ≡




γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ




, Λ̌−1 = (Λµν)
−1 =




γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ




(20.19)
that is, the inverse of the transformation matrix is obtained by changing the sign of
the velocity, v → −v. For the Lorentz transform tensor we can show,

(Λµν)
−1 = gµωΛ

ω
κg
κν = Λ ν

µ that is Λ̌−1 = ǧΛ̌ǧ (20.20)

and ΛωµgωκΛ
κ
ν = gµν that is Λ̌⊺ǧΛ̌ = ǧ .

The transformation from a laboratory reference frame S into a rest frame S′ is done
by,

A′µ = ΛµνA
ν . (20.21)

Time-space scalars are always Lorentz invariant. We consider, for example,

x′µx
′µ = Λ ν

µ xνΛ
µ
ωx

ω = (Λ̌−1Λ̌)νωxνx
ω = I xωxω . (20.22)

For space-time differentials, since,

dx′µ =
∂x′µ

∂xν
dxν , (20.23)

comparing with the relationship (20.21), we can identify,

Λµν =
∂x′µ

∂xν
. (20.24)

Contra- and covariant tensors are defined by their different behavior under arbi-
trary coordinate transformation. For example, in the case of Lorentz transforms,

A′µ =
∂xν

∂x′µ
Aν , A′µ =

∂x′µ

∂xν
Aν . (20.25)

Similarly, tensors or higher rank satisfy,

A′µν =
∂xµ

∂x′ν
∂xν

∂x′β
Aνβ , A′µν =

∂x′µ

∂xν
∂x′ν

∂xβ
Aνβ , (20.26)

and also,
A′µ1..µn

ν1..νm = Λµ1
ω1
..Λµn

ωn
Λ κ1
ν1 ..Λ

κn
νn Aω1..ωn

κ1..κm
. (20.27)

In Exc. 20.1.7.1 we show that the derivative by a covariant coordinate is contravariant.

Example 123 (Lorentz transform): In the limit of slow velocities, v ≪ c, the
Lorentz transform converges to the Galilei transform. This can be seen rewriting
the Lorentz transform as,t′

z′

 =

 γ − γβ
c

−γβ γ

t
z

 ≃
 1 0

−β 1

t
z

 .
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Example 124 (Lorentz transform): We have,

Λµν =
∂x′µ

∂xν
=

(
∂x′µ
∂xν

)−1

=

(
∂xν

∂x′µ

)−1

= (Λ ν
µ )−1 .

20.1.3 Contraction of space

Einstein’s theory has important consequences, such as the contraction of space and
the dilatation of time. Let us consider a rod moving through the lab S with velocity
v. The rod delimits two points j = 1, 2 in space-time for which we measure in the lab
(at time t = t1 = t2) the distance z2 − z1. The spatio-temporal points are Lorentz-
transformed to the system S′, in which the rod is at rest (neglecting transverse spatial
dimensions), by, 

ct
′
j

z′j


 = (Λµν)


ct
zj


 =


 γct− γβzj
−γβct+ γzj


 . (20.28)

Hence,
z′2 − z′1 = −γβct+ γz2 + γβct− γz1 = γ(z2 − z1) . (20.29)

Consequently, in the lab the distance seems smaller than in the rest frame 1.

20.1.4 Dilatation of time

We consider a clock flying through the lab S at a velocity v. The clock produces
regular time intervals, for which we measure in the lab the duration t2 − t1. The
spatio-temporal points are Lorentz-transformed to the system S′ in which the clock
is at rest (z′ = z′1 = z′2) via,


ct

′
j

z′


 = (Λµν)


ctj
zj


 =


 γctj − γβzj
−γβctj + γzj


 . (20.30)

Hence,

t′2 − t′1 = γt2 − γβ
z2
c
− γt1 + γβ

z1
c

(20.31)

= γt2 − β
(
z′

c
+ γβt2

)
− γt1 + β

(
z′

c
+ γβt1

)
= γ−1(t2 − t1) .

Consequently, in the lab the time interval seems longer than in the rest frame.
A good illustration of the effect of time dilatation is the twin paradox. A twin

begins an interstellar voyage aboard a space ship traveling at a constant velocity.
Twin B, who remained on Earth calculates, that the time elapsed for his twin A is
smaller than his own time. Twin B calculates that the elapsed time for his twin A
is shorter. Who’s right? Twin A is wrong, because his system must be accelerated
when taking off from Earth. Note that only special relativity is required to understand

1Alternatively, we can measure the instants of time tj when the ends of the rod pass by a certain
point z of the lab, such that l = v(t2 − t1).
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Figure 20.2: Illustration of (a) contraction of space and (b) dilatation of time.

the effect 2: Take for example, a third person traveling back to Earth after having
synchronized its clock with twin A. We calculate in Excs. 20.1.7.2 to 20.1.7.5 examples
of temporal dilatation.

20.1.5 Transformational behavior of the wave equation

In the previous section we have seen that the relativistic metric is based on the co-
variant formulation of mechanics with the definition of relativistic space-time vectors.
We introduced the quadri-vectors of the displacement ∆rµ, of the position (rµ), and
of the gradient (∂µ),

(∆rµ) ≡
(
c∆t

∆r

)
, (rµ) ≡

(
ct

r

)
, (∂µ) ≡

( 1
c
∂
∂t

−∇

)
. (20.32)

The contraction of quadri-vectors produces Lorentz invariants, such as the quadri-
scalars of space-time intervals ∆s2, of proper time ∆τ , of proper distance |∆S⃗|, or of
the d’Alembertian □, given by,

∆s2 ≡ ∆rµ∆r
µ = c2∆t2 −∆r2 , (20.33)

∆τ ≡
√

∆s2

c2 for ’time’-like intervals ∆s2 > 0 ,

|∆s| ≡
√
−∆s2 for ’space’-like intervals ∆s2 < 0 ,

□ ≡ ∂µ∂µ = 1
c2

∂2

∂t2 −∇2 .

With these definitions we can write the wave equation in the absence of sources,

□ψ = ∂µ∂µψ = 0 . (20.34)

The covariant form of the wave equation already shows its compatibility with the
Lorentz transform. Nevertheless, we will discuss the transformation properties in the
following. These are fundamental, since the propagation of light, whose invariant
velocity triggered the theory of relativity, is an undulatory phenomenon.

2[http://de.wikipedia.org/wiki/Zwillingsparadox]
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20.1.5.1 Wave equation under Galilei transformation

The Galilei transformation claims that we obtain the coordinates of an object in a
system S′ simply by substituting z → z′ and t→ t′ with 3,

t′ ≡ t and z′ ≡ z − v0t or (20.35)

t ≡ t′ and z ≡ z′ + v0t ,

which implies

v′ =
∂z′

∂t′
=
∂z

∂t
− v0 = v − v0 . (20.36)

Figure 20.3: Wave in the inertial system S as seen by an observer in the system S′ moving
at a velocity u.

Newton’s classical mechanics is Galilei invariant, which means that the funda-
mental equations of the type,

mv̇i = −∇xi

∑

j

Vij(|xi − xj |) , (20.37)

do not change their shape under the Galilei transform. In contrast, the wave equation
is not Galilei invariant. To see this, we consider a wave in the inertial system S,
which is resting with respect to the propagation medium, being described by Y (z, t)
and satisfying the wave equation,

∂2Y (z, t)

∂t2
= c2

∂2Y (z, t)

∂z2
. (20.38)

An observer sits in the inertial system S′ moving with respect to S with the speed
v0, such that z′ = z − v0t. The question now is, what is the equation of motion for
this wave described by Y ′(z′, t′), that is, we want to check the validity of

∂2Y ′(z′, t′)
∂t′2

?
= c2

∂2Y ′(z′, t′)
∂z′2

. (20.39)

For example, the wave Y (z, t) = sin k(z − ct) traveling to the right is perceived in
the system S′, which is also traveling to the right, as Y ′(z′, t′) = sin k[z′−(c−v0)t′] =
Y (z, t) applying the Galilei transform. Therefore,

Y ′(z′, t′) = Y (z, t) , (20.40)

3Note that the Galilei transform (20.17) is unitary because detG = 1.
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that is, we expect that the laws valid in S are also valid in S′. We calculate the
partial derivatives,

∂Y ′(z′, t′)

∂t′
=
∂Y (z, t)

∂t′
=

∂t

∂t′
∂Y (z, t)

∂t

∣∣∣∣
z=const

+
∂z

∂t′
∂Y (z, t)

∂z

∣∣∣∣
t=const

=
∂Y (z, t)

∂t
+ v0

∂Y (z, t)

∂z

∂Y ′(z′, t′)

∂z′
=
∂Y (z, t)

∂z′
=

∂t

∂z′
∂Y (z, t)

∂t

∣∣∣∣
z=const

+
∂z

∂z′
∂Y (z, t)

∂z

∣∣∣∣
t=const

=
∂Y (z, t)

∂z
. (20.41)

Therefore, we conclude that the wave equation in the propagating system is modified:

∂2Y ′(z′, t′)
∂t′2

→
=
∂2Y (z, t)

∂t2
+ v20

∂2Y (z, t)

∂z2
+ 2v0

∂2Y (z, t)

∂t∂z
(20.42)

eq.onda
= c2

∂2Y (z, t)

∂z2
+ v20

∂2Y (z, t)

∂z2
+ 2v0

∂2Y (z, t)

∂t∂z

←
= (c2 − v20)

∂2Y ′(z′, t′)
∂z′2

+ 2v0
∂2Y ′(z′, t′)
∂t′∂z′

.

Only in cases where the wave function can be written as Y (z, t) = f(z − ct) =
f(z′ − (c− v0)t′) = f ′(z′ − ct′) = Y ′(z′, t′), will we obtain a similar wave equation to
that of the system S, but with a modified propagation velocity. We calculate,

∂f ′(z′ − ct′)
∂t′

=
∂f(z′ − (c− v0)t′)

∂t′
= (v0 − c)∂f(z

′ − (c− v0)t′)
∂z′

= (v0 − c)∂f
′(z′ − ct′)
∂z′

,

(20.43)

and the second derivative,

∂2f ′(z′ − ct′)
∂t′2

= (c− v0)2
∂2f ′(z′ − ct′)

∂z′2
. (20.44)

The observation that the wave equation is not Galilei invariant expresses the fact,
that there is a preferential system for the wave to propagate, which is simply the
system in which the propagation medium is at rest. Only in this inertial system will
a spherical wave propagate isotropically.

Example 125 (Wave equation under Galilei transformation): Let us now
verify the correctness of the wave equation in the propagating system S′ using
the example of a sine wave,

(c2 − v20)
∂2 sin k[z′ − (c− v0)t′]

∂z′2
+ 2v0

∂2 sin k[z′ − (c− v0)t′]
∂z′∂t′

= −k2(c2 − v20) sin k[z′ − (c− v0)t′] + 2uk2(c− v0) sin k[z′ − (c− v0)t′]

= −k2(c− v0)2 sin k[z′ − (c− v0)t′] = ∂2 sin k[z′ − (c− v0)t′]
∂t′2

.

20.1.5.2 Wave equation under Lorentz transformation

The question now is, how to deal with electromagnetic waves which are lacking a prop-
agation medium, as we have already noted and as has been verified by Michelson’s
famous experiment. If there is no propagation medium, all inertial systems should be
equivalent, and the wave equation should be the same in all systems, and so should
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be the propagation velocity, i.e. the speed of light. These were the consideration of
Henry Poincaré. To solve the problem we need another transformation than that
of Galileo Galilei. It was Hendrik Antoon Lorentz who found the solution, but the
biggest intellectual challenge was to accept all consequences of this new transforma-
tion. Albert Einstein accepted the challenge and created a new mechanics, which he
called relativistic mechanics. The wave equation for electromagnetic waves, called
the Helmholtz equation, being a direct consequence of Maxwell’s theory, it is not sur-
prising that the relativistic theory proved not only compatible with electrodynamic
theory, but provides a much deeper understanding of the latter.

We begin with the ansatz of a general transformation connecting temporal and
spatial coordinates via four unknown parameters, γ, γ̃, β, and β̃,

ct = γ(ct′ + βz′) and z = γ̃(z′ + β̃ct′) . (20.45)

A similar calculation as the one made for the Galilei transformation now gives the
first derivatives,

∂Y ′(z′, t′)

c∂t′
=
∂Y (z, t)

c∂t′
=

∂t

∂t′
∂Y (z, t)

c∂t

∣∣∣∣
z=const

+
∂z

c∂t′
∂Y (z, t)

∂z

∣∣∣∣
t=const

= γ
∂Y (z, t)

c∂t
+ γ̃β̃

∂Y (z, t)

∂z

(20.46)

∂Y ′(z′, t′)

∂z′
=
∂Y (z, t)

∂z′
=
c∂t

∂z′
∂Y (z, t)

c∂t

∣∣∣∣
z=const

+
∂z

∂z′
∂Y (z, t)

∂z

∣∣∣∣
t=const

= γβ
∂Y (z, t)

c∂t
+ γ̃

∂Y (z, t)

∂z
.

The second derivatives and the application of the wave equation in the system S give,

∂2Y ′(z′, t′)

c2∂t′2
→
= γ2 ∂

2Y (z, t)

c2∂t2
+ 2γγ̃β̃

∂2Y (z, t)

c∂t∂z
+ (γ̃β̃)2

∂2Y (z, t)

∂z2
(20.47)

wave eq.
= γ2 ∂

2Y (z, t)

∂z2
+ 2γγ̃β̃

∂2Y (z, t)

c∂t∂z
+ (γ̃β̃)2

∂2Y (z, t)

c2∂t2

!
= (γβ)2

∂2Y (z, t)

c2∂t2
+ 2γγ̃β

∂2Y (z, t)

c∂t∂z
+ γ̃2 ∂

2Y (z, t)

∂z2
←
=
∂2Y ′(z′, t′)

∂z′2
.

That is, the wave equation in the system S′ has the same form 4, under the condition
that,

γ = γ̃ and (γβ)2 = (γ̃β̃)2 and β = β̃ . (20.48)

In addition, the transformation

ct

′

z′


 = Λ


ct
z


 with Λ ≡


 γ γβ

γβ γ


 (20.49)

has to be unitary, that is,

1 = detΛ = γγ̃ − γγ̃ββ̃ = γ2(1− β2) , (20.50)

which allows to relate the parameters γ and β by,

γ =
1√

1− β2
. (20.51)

4Note that the computation is dramatically simplified in the covariant formalism of 4-dimensional
space-time vectors introduced by Hermann Minkowski and Gregory Ricci-Curbastro.
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Finally and obviously, we expect to recover the Galilei transformation at low velocities,

ct = γ(ct′ + βz′)→ ct′ and z = γ(z′ + βct′)→ z′ + v0t
′ . (20.52)

That is, the limit is obtained by γ → 1 and γβc→ v0, such that,

β =
v0
c
. (20.53)

The Lorentz transform from an inertial system S to another S′ is,

t′ = γ
(
t− v0

c2 z
)

and z′ = γ(z − v0t) or (20.54)

t = γ
(
t′ + v0

c2 z
′) and z = γ(z′ + v0t

′) .

20.1.6 The Lorentz boost

In this section we will construct the Lorentz transform from infinitesimal generators
[659]. To begin with we introduce 6 fundamental matrices. The matrices,

Kk ≡


 0 êk

êk 03


 , (20.55)

with the unit vectors êk = êx, êy, êz generate linear boosts and the matrices,

Sk ≡


0 0

0 Sk


 with Sx ≡ êzê

†
y−êyê†z , Sy ≡ êxê

†
z−êzê†x , Sz ≡ êyê

†
x−êxê†y ,

(20.56)
generate spatial rotations around the 3 Cartesian axes. We note that the squares of
all matrices Sk and Kk are diagonal and that,

[Si, Sj ] = ϵijkSk , [Si,Kj ] = ϵijkKk , [Ki,Kj ] = −ϵijkSk . (20.57)

Example 126 (Actions of the matrices Kk and Sk): For example, the
operation

(x′µ) = (I4 +Kz)
µ
ν(x

ν) =

 1 êz

êz I3

ct
r


transports a space-time point (ct, r) with light velocity along the z-axis to an-
other point, (ct′, r′) = (ct+ z, r+ ctêz). And the operation

(x′µ) = (I4+Sz)µν(xν) =

1 0

0 I3 + Sz

ct
r

 =


ct

1 −1 0

1 1 0

0 0 1

 r

 =


ct

x− y
y + x

z


transports a space-time point (ct, r) around the z-axis to another point, (ct′, r′) =

(ct, x− y, y + x, z).
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The Lorentz boost can now be written as,

Λ = eL with L = −ω⃗ · S− ζ⃗ ·K

where S ≡
(
Sx Sy Sz

)

and K ≡
(
Kx Ky Kz

)
. (20.58)

We verify that,
detΛ = det eL = eTr L = ±1 . (20.59)

Example 127 (Lorentz-boost without rotation): For a Lorentz-boost with-
out rotation,

Λ = e−ζ⃗·K with ζ⃗ = êβ tanh−1β ,

we get,

Λ =


γ −γβx −γβy −γβz
−γβx 1 +

(γ−1)β2
x

β2

(γ−1)βxβy
β2

(γ−1)βxβz
β2

−γβy (γ−1)βxβy
β2 1 +

(γ−1)β2
y

β2

(γ−1)βyβz
β2

−γβz (γ−1)βxβz
β2

(γ−1)βyβz
β2 1 +

(γ−1)β2
z

β2

 =

 γ −γβ⃗
−γβ⃗ I3 + (γ − 1)β̂iβ̂j

 ,

(20.60)

as will be shown in Exc. 20.1.7.6. The Lorentz transform (20.19) into a system

moving along the z-axis follows immediately with βx = βy = 0.

20.1.6.1 The Thomas precession

We consider the circular motion of an electron around a nucleus about the z-axis
subject to a centripetal (Coulombian) force. The nucleus is fixed in the lab frame S,
the electron’s rest frame S′ moves with respect to the lab frame at the instantaneous
velocity v(t) = cβ⃗(t), as illustrated in Fig. 20.4.

Figure 20.4: Circular motion of an electron around a nucleus.

At time t, when the electron’s velocity is β⃗(t), the Lorentz transform from S to
S′ is described by [659],

x′(t) = Λboost(β⃗)x , (20.61)

Note, that the nucleus’ position does not change in the frame S, x(t+ δt) = x(t) = x.

At a later time t + δt, when the electron’s velocity is β⃗(t + δt) = β⃗(t) + δβ⃗(t), the
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Lorentz transform,

x′(t+ δt) = Λboost(β⃗ + δβ⃗)x = Λboost(β⃗ + δβ⃗)Λ−1boost(β⃗)x
′(t) (20.62)

can be expressed as a Lorentz transform from the electron’s system S′ at time t to
the same S′ at time t+ δt. From the expression (20.60) for a Lorentz-boost without
rotation, setting βz = 0, we get for Lorentz-boost in the xy-plane,

Λ±1boost(βxêx + βyêy) =




γ ∓γβx ∓γβy 0

∓γβx 1 +
(γ−1)β2

x

β2

(γ−1)βxβy

β2 0

∓γβy (γ−1)βxβy

β2 1 +
(γ−1)β2

y

β2 0

0 0 0 1




. (20.63)

Now, setting the initial position of the electron along the direction β⃗(t) = βêx, as
shown in Fig. 20.4, we get,

Λ−1boost(β⃗) =




γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1




, (20.64)

and, expanding γ for small velocity changes like,

γ + δγ =
1√

1− (β + δβ)2
≃ γ + γ3βδβ , (20.65)

we find,

Λboost(β⃗ + δβ⃗) =


γ + δγ −(γ + δγ)(β + δβx) −(γ + δγ)δβy 0

−(γ + δγ)(β + δβx) 1 + (γ+δγ−1)(β+δβx)2

(β+δβx)2
(γ+δγ−1)(β+δβx)δβy

(β+δβx)2
0

−(γ + δγ)δβy
(γ+δγ−1)(β+δβx)δβy

(β+δβx)2
1 +

(γ+δγ−1)(δβy)
2

(β+δβx)2
0

0 0 0 1



≃


γ + γ3βδβx −γβ − γ3δβx −γδβy 0

−γβ − γ3δβx γ + γ3βδβx
γ−1
β
δβy 0

−γδβy γ−1
β
δβy 1 0

0 0 0 1

 . (20.66)

Multiplying the matrices (20.65) and (20.66) we get,

ΛTh(β⃗ + δβ⃗) = Λboost(β⃗ + δβ⃗)Λ−1boost(β⃗) ≃




1 −γ2δβx −γδβy 0

−γ2δβx 1 γ−1
β δβy 0

−γδβy −γ−1β δβy 1 0

0 0 0 1




.

(20.67)
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This represents an infinitesimal Lorentz transformation that, expressing the compo-
nents of δβ⃗ parallel and perpendicular to β by,

δβ⃗∥ =
δβ⃗·β⃗
β2 β⃗ and δβ⃗⊥ = δβ⃗ − δβ⃗·β⃗

β2 β⃗ (20.68)

can be written in terms of the matrices S and K as 5,

ΛTh(β⃗ + δβ⃗) = I− γ−1
β2 (β⃗ × δβ⃗) · S− (γ2δβ⃗∥ + γδβ⃗⊥) ·K

≃ R(∆Ω⃗) Λboost(∆β⃗)

. (20.69)

Here, we defined the commuting infinitesimal boosts and rotations called Wigner
rotations,

Λboost(∆β⃗) ≡ I−∆β⃗ ·K and R(∆Ω⃗) ≡ I−∆Ω⃗ · S (20.70)

in terms of velocity and rotation angle,

∆β⃗ ≡ γ2δβ⃗∥ + γδβ⃗⊥ and ∆Ω⃗ ≡ γ − 1

β2
β⃗ × δβ⃗ . (20.71)

Clearly, the second line of (20.69) holds to first order in δβ⃗. Thus, the pure Lorentz

boost (20.62) to the frame with velocity c(β⃗ + δβ⃗) is equivalent to a boost (20.61) to

a frame moving with velocity cβ⃗, followed by an infinitesimal Lorentz transformation
consisting of a boost with velocity c∆⃗β and a rotation ∆Ω⃗.

In summary, we got,

x′(t+ δt) = Λboost(β⃗ + δβ⃗)x = Λboost(β⃗ + δβ⃗)Λ−1boost(β⃗)x
′(t) (20.72)

= ΛTh(β⃗ + δβ⃗)x′(t) = R(∆Ω)Λboost(∆β⃗)x
′(t) .

In terms of the interpretation of the moving frames as successive rest frames of the
electron we do not want rotations as well as boosts. Non-relativistic equations of
motion can be expected to hold provided the evolution of the rest frame is described
by infinitesimal boosts without rotations. We are thus led to consider the rest-frame
coordinates at time t+ δt that are given from those at time t by the boost Λboost(∆β⃗)
instead of ΛTh. Denoting these coordinates by x̃′ we have,

x̃′(t+ δt) = Λboost(∆β⃗)x
′(t) (20.73)

= R(−∆Ω⃗)x′(t+ δt) = R(−∆Ω⃗)Λboost(β⃗ + δβ⃗)x .

The rest system of coordinates defined by x̃′ is rotated by R(−∆Ω⃗) relative to the
boosted laboratory axes x′. If a physical vector G has a (proper) time rate of change
(dG/dτ) in the rest frame, the precession of the rest-frame axes with respect to the

5We note that, for the case β⃗(t) = βêx Eq. (20.69) can be written as,

ΛTh = I− γ − 1

β
Szδβy − γ2Kxδβx − γKyδβy ,

which reproduces exactly Eq. (20.67).
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laboratory makes the vector have a total time rate of change with respect to the
laboratory axes of,

(
dG

dt

)

non−rot
=

(
dG

dt

)

rest

+ ω⃗Th ×G . (20.74)

with

ω⃗Th = − lim
δt→0

∆Ω

δt
=

γ2

γ + 1

a× v

c2
, (20.75)

where a is the acceleration in the laboratory frame and, to be precise,

(
dG

dt

)

rest

= γ−1
(
dG

dτ

)

rest

. (20.76)

The Thomas precession is purely kinematical in origin. If a component of acceleration
exists perpendicular to v, for whatever reason, then there is a Thomas precession,
independent of other effects such as precession of the magnetic moment in a magnetic
field.

Example 128 (Circular motion): Assuming a constant circular motion about
the z-axis, as parametrized by v = rθ̇êθ and a = −rθ̇2êr = −θ̇vêr with θ̇ =
const, we find,

ω⃗Th =
γ2

γ + 1

a× v

c2
=

γ2

γ + 1

−θ̇v2
c2

êz = − γ
2β2

γ + 1
θ̇êz = −(γ − 1)θ̇êz .

20.1.6.2 Spin-Orbit coupling

For electrons in atoms the acceleration is caused by the screened Coulomb field. Thus
the Thomas angular velocity is,

ω⃗Th ≃ −
1

2c2
r× v

m

1

r

dV

dr
= − 1

2m2c2
L
1

r

dV

dr
. (20.77)

It is evident that the extra contribution to the energy from the Thomas precession
reduces the spin-orbit coupling, yielding,

U =
−ge
2mc
S⃗ · B⃗ +

(g − 1)

2m2c2
S⃗ · L1

r

dV

dr
. (20.78)

20.1.7 Exercises

20.1.7.1 Ex: Contravariant partial derivation

Show that the partial derivative by the contravariant coordinate xµ is covariant.

Solution: Contravariance of xµ means,

x′µ = Λµνx
ν =

∂x′µ

∂xν
xν .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_MetricaMinkowski01.pdf
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With this, we obtain the covariant transformation,

∂′µ ≡
∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= (Λ−1)νµ∂ν = Λ ν

µ ∂ν .

20.1.7.2 Ex: Time dilatation

Proxima Centauri, which is the closest star to our solar system with a distance of 4.22
light-years from Earth, is a so-called Red Dwarf of class M. At its 34th anniversary,
Peter embarks on a journey from Earth to this star. His spaceship flies with a speed
of 250000 km/s. How old is Peter when he arrives? What is the age of Peter’s twin
brother, who remained on Earth at this time?

Solution: The elapsed time seen from the Earth is,

T =
s

t
⇐⇒ t =

s

v
=

4.22 Lj

250000 km/s
= 5.064 a .

The time elapsed for the astronaut is, due to the smaller time dilatation:

T ′ =
t

γ(v)
=

5.064 a√
1− (250000 km/s)2

(300000 km/s)2

≈ 2.8 a .

Therefore, Peter arrives at Proxima Centauri at the age of 36.8, while his twin brother
is 39.1 years old.

20.1.7.3 Ex: The twin paradox

Explain the twin paradox by applying the Lorentz transform to the twin traveling on
a round-trip to α-Centauri assuming a fixed distance between Earth and α-Centauri.

Solution: Let us denote by (t0, z0) the coordinates of the Earth S at the instant
when the twin takes off with a space ship S′ and by (t1, z1) the position of α-Centauri
and the arrival time as indicated by the Earth-bound clock. The flying twin calculates
his own coordinates via,

(
ct′j
z′j

)
=

(
γctj − γβzj
−γβctj + γzj

)
with j = 0, 1 .

Inserting the take-off and arrival time coordinates the Earth-bound team gets,

t1 − t0 =
1

γβc
(γz1 − z′1)−

1

γβc
(γz0 − z′0) =

1

v
(z1 − z0) ,

while the twin located in his space ship at z′1 = z′0 reads on his clock,

t′1 − t′0 =

(
γt1 −

γβ

c
z1

)
−
(
γt0 −

γβ

c
z0

)

= γt1 −
β

c
(z′1 + γβct1)− γt0 +

β

c
(z′0 + γβct0) =

1

γ
(t1 − t0) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal02.pdf
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On α-Centauri the traveling twin encounters another space ship S′′ flying in opposite
direction v → −v. The crews of both ships quickly synchronize their clocks before
continuing their trip through space. Space ship S′′ calculates for its coordinates with
respect to the Terrestrian coordinates,

(
ct′′j
z′′j

)
=

(
γctj + γβzj
γβctj + γzj

)
with j = 1, 2 .

After a long voyage S′′ arrives on Earth at the coordinates (t2, z2 = z0) according
to the Earth-bound clock. Inserting the encounter and arrival time coordinates and
knowing z′′2 = z′′1 ,

t2 − t1 =
1

v
(z1 − z2) and t′′2 − t′′1 =

1

γ
(t2 − t1) ,

in the same way as on the outbound flight. Hence, t′′2 − t′′0 = 2
γ (t2 − t0).

20.1.7.4 Ex: Muons

In the upper layers of the atmosphere (at 20 km altitude) about 250 muons are gen-
erated per square meter and second. After that they move with 99.98% of the speed
of light towards the surface of the Earth. Muons at rest have a lifetime of 1.52µs.
a. Assuming that there were no time dilatation, how many muons would arrive per
square meter and second at the surface of the Earth?
b. How many muons actually reach the surface of the Earth?

Solution: a. The number is,

N = N0·0.5t/TH = N0·0.5s/(vTH) = 250·0.520 km /(0.9998·300000 km/s ·1.52·10−6 s) ≈ 1.6·10−11 .

Therefore, to observe on average a single muon, we would need to wait around 2000
years.
b. In fact, because of their high velocity, they decay much slower. At a speed of
99.98% of the speed of light the time dilatation factor is γ close to 50. Hence the
lifetime increases to 76µs.

N = N0·0.5t/TH = N0·0.5s/(vTH) = 250·0.520 km /(0.9998·300000 km/s ·50·1.52·10−6 s) ≈ 136 .

Consequently, we expect around 136 muons.

20.1.7.5 Ex: Atomic clocks

In 1971 atomic clocks were taken by a high-speed aircraft to measure time dilatation
directly. How long must an aircraft fly at a speed of 3000 km/h, so that the airplane’s
clock and a clock fixed on Earth show, due to time dilatation, a difference of one
second?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal04.pdf
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Solution: We have,

t− t

γ
= ∆t =⇒ t =

∆t

1− 1
γ

=
1 s

1−
√
1− 3000:3.6

3·108
≈ 8200 a .

20.1.7.6 Ex: Lorentz-boost without rotation

Derive the matrix (20.60) for the Lorentz-boost without rotation to a system moving
in arbitrary direction.

Solution: To find the Lorentz-boost to an arbitrary direction β⃗ we proceed as fol-
lows. We first rotate the vector β⃗ about the z-axis until its y-components vanishes,

Uz =




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 =

1

βρ




βx βy 0

−βy βx 0

0 0 βρ


 ,

where βρ =
√
β2
x + β2

y . Then we rotate the resulting vector about the y-axis until it

lies on the z-axis,

Uy =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 =

1

β




βz 0 −βρ
0 β 0

βρ 0 βz


 .

It is easy to verify,
UyUzβ⃗ = βêz .

Now, we extend the total rotation matrix into space-time,

U =
1

βρβ




1 0 0 0

0 βxβz βyβz −β2
ρ

0 −βyβ βxβ 0

0 βxβρ βyβρ βzβρ




,

apply the Lorentz-boost along the z-axis according to (20.19) and finally rotate back.
The result is,

Λβ⃗ = U−1ΛzU =




γ −γβx −γβy −γβz
−γβx 1 +

(γ−1)β2
x

β2

(γ−1)βxβy

β2

(γ−1)βxβz

β2

−γβy (γ−1)βxβy

β2 1 +
(γ−1)β2

y

β2
γ−1
β2 βyβz

−γβz (γ−1)βxβz

β2

(γ−1)βyβz

β2 1 +
(γ−1)β2

z

β2




,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_DilatacaoTemporal05.pdf
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which is just the wanted formula (20.60).

20.2 Relativistic mechanics

20.2.1 The inherent time of an inertial system

The key to constructing relativistic theories is to find the quantities behaving well
under Lorentz transformations. We have already defined some quantities in (20.32)
and (20.33). But we need more to establish a relativistic mechanics. In the following
sections we will analyze how other kinematic variables (velocity, momentum, and
acceleration) fit into four-vectors. Since these variables are defined through time
derivatives, an accurate characterization of the notion of time intervals is necessary.

We consider an object following a space-time trajectory. As the evaluation of trav-
eled distances and elapsed time intervals depends on the observer’s inertial system,
there is no universal parametrization. But there is at least one ’natural’ parametriza-
tion that all observers can agree on, which is the proper time τ , which is the duration
of time felt by the object itself. Due to time dilatation, an observer sitting in some
inertial system and measuring the motion of the object with the old-fashioned New-
tonian tri-velocity v(t) infers, that the relation between his own time t and the proper
time τ of the particle is given by,

dt

dτ
= γv ≡

1√
1− v2/c2

> 1 . (20.79)

Example 129 (Common velocity under Lorentz transformation): We
could define the common velocity of a body via the distance r covered in a time
interval t measured in the laboratory system (in relation to which the body
travels with this velocity),

(vµ) ≡ d(rµ)

dt
=

(
c

v

)

However, the contraction of this 4-vector is not a Lorentz invariant because,

vµv
µ = c2 − v2 ̸= c2 − v′2 = v′µv

′µ .

On the other hand, the notion of proper time allows us to define a true quadri-
velocity. We assume that in some inertial system, the body follows the trajectory
rµ(τ). Then the quantity,

uµ ≡ γvvµ = γv
drµ

dt
= γv

dτ

dt

drµ

dτ
=
drµ

dτ
that is (uµ) =

(
γvc

γvv

)
, (20.80)

called proper velocity is a Lorentz invariant, since,

uµu
µ = c2 . (20.81)
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A useful illustration of the relation between space and time, as proposed by
Minkowski, is exhibited in Fig. 20.5. The inner region of the cone represents the
space-time points in a lab frame that a moving body can reach within a given time
interval. The cone’s surface are the points that can be reaches traveling at light speed,
and the outer region remains inaccessible.

space

time(a)

space

time(b)

Figure 20.5: Two-dimensional illustration of Minkowski space-time. The cones delimits
accessible (inside) from inaccessible (outside) regions. The red curve in (a) represents a
possible trajectory for a moving body. The hyperboloid in (a) represents the hyperspace
where a system S′ with its proper velocity v is found after a time τ elapsed in the system
S′. The hyperboloid in (b) represents the hyperspace of ’space’-like intervals according to
(20.33).

20.2.2 Adding velocities

The Lorentz transformation from system S′ moving with respect to another system
S with the relative velocity v0 must be applied to the proper velocity,


 γv′c

γv′v
′


 = (Λµν)


γvc
γvv


 =


 γ −γβ
−γβ γ




γvc
γvv


 = γvγ


 c− βv
−βc+ v


 , (20.82)

where we denote γ ≡ γv0 . Eliminating γv′ and resolving by v′ we get,

v′ =
v − v0

1− v0v/c2
. (20.83)

Obviously, the speed of light can not be exceeded. The velocity in the system S′

is limited to −c ≤ v′ ≤ c, even if v = c. Similar calculations can be made for the
two transverse directions, and we obtain the general formula reproduced here without
proof,

v =
v′ + v0

[
γ(1 + v0 · v′/v20)− v0 · v′/v20

]

γ(1 + v0 · v′/c2)
. (20.84)

We calculate in Exc. 20.2.6.1 an example of relativistic addition of velocities.
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20.2.3 Relativistic momentum and rest energy

The relativistic linear momentum is given by,

pµ ≡ muµ = mγvv
µ or (pµ) =

(
E/c

p

)
. (20.85)

We will show in Exc. 20.2.6.2 that an identification of the momentum pµ with mvµ

would be inconsistent with the principle of momentum conservation and the principle
of relativity. For zero velocity of the particle, v = 0, the first line of the expression
(20.85) is the famous Einstein equation on the equivalence of mass and energy,

E = mc2 . (20.86)

Thus, the mass is nothing more than the energy of the particle in its rest frame.
Transforming into the rest frame, we have:

p′µp
′µ =

∥∥∥∥
(
E/c

p

)∥∥∥∥
2

=

∥∥∥∥
(
mc

0

)∥∥∥∥
2

= pµp
µ , (20.87)

yielding,

E =
√
m2c4 + c2p2 = mc2

√
1 + γ2v

v2

c2
= γvmc

2 . (20.88)

The kinetic energy in the non-relativistic limit follows from a Taylor expansion of
the expression (20.88) for low velocities,

Ekin ≡ E −mc2 = mc2(γv − 1) ≃ p2

2m
− p4

8m3c2
. (20.89)

Example 130 (Compton scattering): Here we consider the interaction of a
photon with an electron. The electron has the rest massme. Thus, transforming
to the rest frame, we find its energy via, (pe)µ(pe)

µ = E2
e/c

2 − p2 = m2
ec

4. The
photon has no rest mass. Thus, transforming to the rest frame, we find its
energy via, (pγ)µ(pγ)

µ = (ℏk)2 = (ℏω)2/c2.
Now we let the photon with energy ℏωi bounce off an electron initially at

Figure 20.6: Scattering of a photon from an electron.

rest. After the collision the photon and the electron move away under angles
of sin θγ , respectively, sin θe, with respect to the collision axis. As shown in
Fig. 20.6, we can choose the collision axis along the z-axis and within the xy-
plane. The photon has changed its energy to ℏωf and its momentum to ℏkf , the
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electron now has the momentum pf . For an elastic collision, energy and linear
momentum conservation request,

pµi ≡


Ei/c

pxi

pyi

pzi

 =


ℏωi/c+mec

0

0

ℏki


!
=


ℏωf/c+

√
m2
ec2 + p2f

−ℏkf sin θγ + pf sin θe

0

ℏkf cos θγ + pf cos θe

 =


Ef/c

pxf

pyf

pzf

 ≡ p
µ
f .

Solving the second line by θe and substituting into the fourth,

ℏωi
c

= ℏki = pf cos θe + ℏkf cos θγ = pf
√

1− sin2 θe + ℏkf cos θγ

= pf

√
1−

(
ℏkf
pf

)2

sin2 θγ + ℏkf cos θγ .

Solving this by pf ,

c2p2f = (ℏωi − cℏkf cos θγ)2 − (cℏkf )2 sin2 θγ = (ℏωi)2 − 2ℏωicℏkf cos θγ + (cℏkf )2

= (ℏωi)2 − 2ℏωiℏωf cos θγ + (ℏωf )2 .

Inserting this result into energy conservation,

ℏωi+mec
2 = ℏωf+

√
m2
ec4 + c2p2f = ℏωf+

√
m2
ec4 + (ℏωi)2 − 2ℏωiℏωf cos θγ + (ℏωf )2 .

Solving this by ωf ,

hc

λf
= ℏωf =

1

(1− cos θγ)/mec2 + 1/ℏωi
,

or defining the Compton wavelength of the electron,

λC ≡ h

mec

we find for the wavelength of the scattered photon,

λf = λi + λC(1− cos θγ) .

Other examples of relativistic collisions will be studied in Excs. 20.2.6.3 to 20.2.6.5.

20.2.4 Relativistic Doppler effect

We have seen at the example of sonic waves, that the magnitude of the Doppler effect
depends on who moves with respect to the medium: the source or the receiver. Elec-
tromagnetic waves, however, propagate in empty space, that is, there is no material
medium, ether, or wind. According to Einstein’s theory of relativity, there is no abso-
lute motion and the propagation velocity of light is the same for all inertial systems.
Therefore, the classical theory of the Doppler effect can not apply to electromagnetic
waves.
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By the fact that the vector kµ given by,

kµ ≡ pµ

ℏ
that is (kµ) =

(
ω/c

k

)
(20.90)

is a space-time vector,
kµk

µ = ω2/c2 − k2 = 0 , (20.91)

we know that this vector transforms like,

ω/c

k


 = (Λµν)

−1


ω
′/c

k′


 =


 γ γβ

γβ γ




ω
′/c

k′


 (20.92)

=


γ

ω′

c + γβk′

γβ ω
′

c + γk′


 =

ω′

c
γ(1 + β)


1

1


 ,

such that,

ω = ck = ω′

√
1 + β

1− β = γω′(1 + β) . (20.93)

Including the transverse motion, we obtain

ω = γω′
(
1 +

v0 · v
vc

)
, (20.94)

where v0 is the speed of the source. It is interesting to note that, even in case of a
purely transverse motion v0 · v = 0, we observe a Doppler shift.

Example 131 (Doppler effect on a moving laser): We now consider a light
source flying through the lab S, for example, a laser operating at a frequency
ω′, which is well-defined by an atomic transition of the active medium. A
spectrometer installed in the same rest frame S′ as the laser will measure just this
frequency. We now ask, what frequency would be measured by a spectrometer
installed in the lab frame. The classical response has already been derived for a
moving sound source,

ω′ = ω − kv = ω − ω

c
v =

ω

1 + v
c

,

with k = ω/c. Because of time dilatation, we need to multiply by γ,

ω′ =
γ−1ω

1 + v
c

= ω

√
1− β
1 + β

≃ ω
(
1± v

c
+

v2

2c2

)
.

The above example shows that, for non-relativistic velocities, one can distinguish
the first-order Doppler effect from the relativistic Doppler effect due to time dilatation,

ω′ ≃ ω ± kv + 1
2ωβ

2 . (20.95)

We will study the Doppler effect for the case of ultracold atoms in Excs. 20.2.6.6 to
20.2.6.8.



1116 CHAPTER 20. THEORY OF SPECIAL RELATIVITY

20.2.5 Relativistic Newton’s law

The relativistic form of Newton’s law,

F =
dp

dt
, (20.96)

with the momentum given by (20.85) defines the common relativistic force. However,
because it is derived from the momentum with respect to common time, the common
force F can not be extended to a Lorentz invariant of the type Fµ. In contrast,
Minkowski force defined as,

Kµ =
dpµ
dτ

=
γvdpµ
dt

that is (Kµ) =

(
γvP/c

γvF

)
, (20.97)

is covariant. Nevertheless, we will often be interested in the common force F acting
on moving bodies as measured in a laboratory frame.

The work exerted on a particle increases its kinetic energy, such that,

W ≡
∫

F · dl =
∫
dp

dt
· dl =

∫
dp

dt
· v dt =

∫
d

dt
(γvmv) · v dt (20.98)

=

∫
(γ3vmv̇) · v dt =

∫
mc2

dγv
dt

dt =

∫
dE

dt
dt = Efinal − Einitial .

Unlike the first two Newton laws, the third one (actio = reactio) does not apply
in the relativistic regime. Indeed, the simultaneity of ’actions’ and reactions’ in the
forces that two distant bodies A and B exert on each other depends on the velocity
of the observer.

20.2.6 Exercises

20.2.6.1 Ex: Adding velocities

Imagine an array of flash lamps at rest in the system S. The lamps are aligned at
distances of ∆s = 10m from each other. The array extends over a distance of many
light-years. Now, the lamps are flashed successively (from left to right), so that the
light seems to move to the right.
a. At what time interval ∆t two adjacent lamps need to flash in order to generate an
apparent velocity of v1 = 1.2c?
b. An inertial system S′ moves relative to S with velocity v2 = −0.56c in opposite
direction to that of the motion of the flashes. At what velocity the flashes seem to be
moving in the system S′?

Solution: a. We have

∆t =
∆s

v
=

10m

1.2c
= 2.78 · 10−8 s .

b. We consider the array of lamps at the instant in which the first lamp flashes, and
we call this instant t = 0. In system S the distance of the lamps is ∆s = 10 m. In

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_AdicaoVelocidade01.pdf
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S′ the situation is obviously different: the distance of the lamps is shortened and the
clocks (fixed to the lamps) go more slowly and not in a synchronized way. We label
the flash-lamps with an integer number j and parametrize the ’flashes’ in the system
S by,

zj = j∆s = j · 10m

tj = j∆t = j
∆s

v1
= j

10m

1.2c
≈ 2.89 · 10−8 s ,

and we transform to the system S′,

z′j = γzj − γv2tj = γj∆s− γv2j
∆s

v1
=

(
1− v2

v1

)
γj∆s

t′j = γtj − γ
v2
c2
zj = γj

∆s

v1
− γ v2

c2
j∆s =

(
1

v1
− v2
c2

)
γj∆s .

Now, we can calculate the apparent velocity in the system S′:

v′2 =
z′j − z′j−1
t′j − t′j−1

=
1− v2

v1
1
v1
− v2

c2

=
v1 − v2

1− v1v2/c2
=

1.2c+ 0.56c

1 + 1.2 · 0.56 ≈ 1.053c .

Surprisingly, the apparent velocity gets smaller, although we move in the direction
opposite to the motion. We find the same value, when we simply apply Einstein’s
formula for the addition of velocities.
The term ’apparent velocity’ means that, seen from far, the array looks like a single
flashing light propagating in space. Traveling at a certain speed v1 we would be at the
position of every lamp of the array exactly when it flashes. If v1 > c this is of course
not possible to realize. Note that there is no contradiction of relativity, because no
information is transmitted through the flashing array. The flash lamps are assumed
to have been programmed a long time ago and brought into their position afterward.
Relativity does not impede events to occur at positions so distant that they cannot
influence each other even by messengers traveling at the speed of light.

20.2.6.2 Ex: Covariant momentum

Show that an identification of the momentum pµ with mvµ would be inconsistent
with the principle of momentum conservation and the principle of relativity.

Solution:

20.2.6.3 Ex: Inelastic collision

A particle of mass m whose total energy is twice its rest energy collides with an iden-
tical particle at rest. If they stick together, what is the mass of the resulting particle
compound? What is its velocity?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_MecaRela01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela01.pdf
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Solution: Conservation of energy and momentum requires,

(pµbefore) =


Ebefore/c

pzbefore


 =


2mc+mc
√
3mc


 !

=



√
m2

12c
2 + p212

p12


 = (pµafter) .

This gives,

2mc+mc =
√
m2

12c
2 + 3m2c2 .

Solving by m12,
m12 =

√
6m .

The time dilatation factor is,

γ =
γm

m
=
E/c2

m
=

2m

m
= 2 .

With this, the velocity in the lab frame is before the collision,

v =
u

γ
=

p

γm
=

√
3mc

γm
=

√
3

4
c ,

and after the collision,

v12 =
u12
γ

=
p12
γm12

=

√
3mc

2m12
=

√
3mc

2
√
6m

=

√
1

8
c =

√
1

6
v .

20.2.6.4 Ex: Relativistic collision

Consider a relativistic completely inelastic frontal collision of two particles moving
along the x-axis. Both particles have mass m. Before the collision, an observer A
sitting in an inertial frame, notices that the masses move with the same constant
velocities but in the opposite direction, that is, the particle 1 moves with velocity v
and the particle 2 moves with velocity −v. According to another observer B, however,
particle 1 is initially at rest.
a. Determine the velocity v′x of particle 2 measured by observer B before collision.
b. Find the velocities vA and v′B of the particle resulting from the collision, measured,
respectively, by the observers A and B.
c. Use the relativistic mass-energy conservation and calculate the mass M of the par-
ticle resulting from the collision.

Solution: a. We can conclude that the observer B has the same velocity as the
particle 1. Therefore, vB = v, where vB is the velocity of the observer B. The ob-
server A, at rest, measures for the particle 2 the velocity u2 = −v. From the Lorentz
transformations, we see that particle 2 has the following velocity

u′2 =
u2 − vB
1− u2vB

c2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela02.pdf
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Therefore, the velocity of the particle measured by the observer B is,

u′2 =
−v − v

1− (−v)v
c2

=
−2v

1 + v2/c2
.

b. After the collision, the observer A verifies that the final velocity is zero, uA = 0.
Considering again the Lorentz transform, the moving observer detects the following
velocity for the particle resulting from the collision,

u′B =
uA − vB
1− uAvB

c2
= −v .

c. The total energy of the system is equal to the sum of the energies of the particles,

Ebefore = E1 + E2 =
mc2√

1− u21/c2
+

mc2√
1− u22/c2

=
mc2√

1− v2/c2
+

mc2√
1− (−v)2/c2

=
2mc2√
1− u21/c2

.

Let’s call M the mass of the compound after the collision and keep in mind that M
is not necessarily 2m:

Eafter =
Mc2√

1− u2A/c2
.

Since uA = 0, it results Eafter =Mc2. In order to satisfy mass-energy conservation,
we have Ebefore = Eafter, that is,

2mc2√
1− v2/c2

=Mc2 .

Hence,

M =
2m√

1− v2/c2
.

This is the mass of the resulting particle.

20.2.6.5 Ex: γ-rays

γ-rays produced by paired annihilation exhibit considerable Compton scattering.
Consider a photon produced with the energy m0c

2 by the annihilation of an elec-
tron and a positron, where m0 is the rest mass of the electron. Suppose that this
photon be scattered by a free electron and that the scattering angle is θγ , as shown
in Fig. 20.6.
a. Find the maximum possible kinetic energy for the recoiling electron.
b. If the scattering angle were θγ = 120◦, determine the photon energy and the kinetic
energy of the electron after the scattering.
c. If θγ = 120◦, what is the direction of motion of the electron after the scattering
with respect to the direction of the incident photon?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_GammaRays.pdf
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Solution: a. Given the expression for Compton scattering, where the apostrophe
indicates the scattered photon,

λ′ − λ =
h

m0c
(1− cos θγ) .

Multiplying it with 1/hc, we have,

λ′

hc
− λ

hc
=

1

mc2
(1− cos θγ) .

But E = hc/λ, and the initial photon energy is m0c
2, hence,

1

E′
− 1

m0c2
=

1

m0c2
(1− cos θγ) .

The maximum momentum transfer to the electron occurs at,

θγ = 180◦ ,

then we can obtain the energy of the scattered photon,

E′ =
m0c

2

3
.

By energy conservation, we have that the maximum kinetic energy is,

Emaxc =
2m0c

2

3
.

b. From the second expression, considering that cos 120◦ = − cos 60◦ = −1/2, we have
that,

E′ =
2m0c

2

5
By energy conservation,

Ec =
3m0c

2

5
.

c. Because of momentum conservation, we have the following components (θe is the
angle of the electron with respect to the direction of the incident photon).
In vertical direction (y), we have pe sin θe = p′ sin θγ .
In horizontal direction (x), we have pe cos θe = p− p′ cos θγ .
By dividing one expression by the other, we eliminate the variable pe and get,

tan θe =
p′ sin θγ

p− p′ cos θγ
.

But for the photon, E = pc, hence: tan θe =
E′ sin θγ

E−E′ cos θγ
, but since cos 120◦ =

− cos 60◦ = −1/2 and sin 120◦ = cos 30◦ =
√
3/2 and given the values of E and

E′, we arrive at,

tan θe =

√
3

6
.
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20.2.6.6 Ex: Second order Doppler shift

The second order Doppler shift comes from the relativistic dilation of time. Periodic
events occurring in a moving inertial system appear dilated to an observer in an-
other system. Consider a strontium atom, which has a resonance at the wavelength
λ = 461 nm, located inside a resonant laser beam from which it absorbs and reemits
photons.
a. Assume the atom initially at rest. What will be it’s velocity after having absorbed
a single photon?
b. Calculate the first and second order Doppler shift for the remitted photon as a
function of the emission direction.

Solution: a. The atomic mass of strontium is 88u. The atomic velocity due to
photonic recoil is,

v =
p

m
=

ℏk
m

=
h

mλ
= 9.9mm/s .

b. The first order Doppler shift is,

k · v = kv cos θ =
2π

λ

h

mλ
cos θ = (2π) 21259Hz cos θ ,

and the second order Doppler shift is,

∆ω =
ωβ2

2
=
πv2

λc
= (2π) 3.5 · 10−7 Hz .

20.2.6.7 Ex: Recoil- and Doppler-shift upon photon absorption

Derive the expressions for the recoil- and Doppler-shift upon the absorption of a pho-
ton of frequency ωi by an atom with the initial velocity vi using relativistic mechanics.

Solution: Conservation of energy and linear momentum require that the photon ab-
sorption process i→ a satisfies,

pµi =


ℏωi/c+ Ei/c

ℏki + pi


 =


Ea/c+ E∗/c

pa


 = pµa .

The resonance frequency for the absorption of a photon of frequency ω = ck by an
atom traveling at velocity v = p/m must be calculated relativistically,

E∗ − ℏωi = Ei − Ea =
√
m2c4 + c2p2i −

√
m2c4 + c2p2a

≃ mc2
(
1 +

p2i
2m2c2

)
−mc2

(
1 +

(ℏki + pi)
2

2m2c2

)

≃ −ℏ2k2i
2m

− ℏki · pi
m

= − ℏ2ω2
i

2mc2
− ℏki · vi .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela03.pdf
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The first correction term accounts for photonic recoil, the second describes the linear
Doppler effect.

20.2.6.8 Ex: Recoil- and Doppler-shift upon photon scattering in rela-
tivistic mechanics

Derive the expression for the recoil- and Doppler-shift upon the absorption and ree-
mission of a photon of frequency ωi by an atom with the initial velocity vi using
relativistic mechanics. Discuss the particular case, vi = 0.

Solution: Conservation of energy and linear momentum require that the photon ab-
sorption process i→ a and the reemission process a→ f satisfy,

pµi =


ℏωi/c+ Ei/c

ℏki + pi


 = pµa =


Ea/c+ E∗/c

pa


 = pµf =


ℏωf/c+ Ef/c

ℏkf + pf


 ,

where E∗ is the excitation energy of the atom and,

m2c2 = (Ei/c)
2 − p2

i = (Ea/c)
2 − p2

a = (Ef/c)
2 − p2

f ,

the atom’s energy in its rest system. Hence,

ℏωi +
√
m2c4 + c2p2i = ℏωf +

√
m2c4 + c2p2f

ℏki + pi = ℏkf + pf

from which we now aim at calculating the emission frequency ωf as a function of the
scattering angle ϑ ≡ ∢(ki,kf ) and the initial atomic momentum piin a similar way
as we did in Sec. 38.3.1. Defining ∆ω ≡ ωf − ωi and ∆k ≡ kf − ki, we get,

ℏ∆ω =
√
m2c4 + c2p2i −

√
m2c4 + c2(pi − ℏ∆k)2 .

Let us consider the particular cases when pi = 0 and introduce the recoil-frequency,

ωrec =
ℏω2

i

2mc2
≃

ℏω2
f

2mc2
,

we recover the non-relativistic result (38.40) in first order,

ℏ∆ω = mc2−
√
m2c4 + ℏ2c2∆k2 ≃ −

ℏ2(ω2
f + ω2

i − 2ωfωi cosϑ)

2mc2
≃ 2ωrec(−1+cosϑ) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_ColisaoRela05.pdf
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20.3 Relativistic electrodynamics

20.3.1 Relativistic current and magnetism

To begin with, we introduce the space-time current density by,

(jµ) ≡
(
cϱ

j

)
. (20.99)

This notation allows us to formulate the continuity equation as,

∂µj
µ = 0 . (20.100)

Example 132 (Electric charge under Lorentz transformation): In order
to convince ourselves that it makes sense to combine charge density and current
as quadri-vectors, we consider a situation in which there are only static charges
with density ϱ0 and has no current: jµ = (cϱ0 0). Now, in an inertial system
moving at velocity v, the charge density will appear as a current,

(j′µ) = (Λµνj
ν) =

(
γcϱ0

−cγβϱ0êz

)
=

(
γϱ

−γϱv

)
.

That is, different observers observe different charge densities. The current −γϱv
appears due to the motion of the charge being contrary to the motion of the

observer. Moreover, as the charge density is defined per unit volume and the

volume is compressed due to Lorentz contraction, the observed charge density

γϱ0 appears to be increased.

The observation that a moving charge gives rise to a current is not new. But the
fact that we can transform charge into current through a Lorentz transform already
points to the close connection between the phenomena of electricity and magnetism
in the theory of relativity: moving electric fields must generate magnetic fields. We
will study the details of how this happens shortly. But first, let us have a look at
a simple example, where we re-derive the magnetic force purely from the Coulomb
force and a Lorentz contraction.

Example 133 (Electric current under Lorentz transform): We consider a
sample of positive charges +q moving along a conducting wire with velocity +v
and a sample of negative charges −q moving in opposite direction with velocity
−v, as shown Fig. 20.7. If the densities n of positive and negative charges is
equal, the total charge density vanishes, while the currents add up to I = 2nAqv,
where A is the cross section of the wire. We now consider a test particle, also
carrying a charge q, which moves parallel to the wire at some velocity v0. This
charge does not feel any electrical force, because the wire is neutral, but we
know that it experiences a magnetic force. We will now show, how to find an
expression for this force without ever invoking the phenomenon of magnetism.
The trick is to go to the inertial system S′ of the test particle, which means that
we have to transform to a velocity v0. The formula for summing relativistic
velocities tells us, that the velocities of the positive and negative charges are
now different,

v± =
v ∓ v0

1∓ v0v/c2
.
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Figure 20.7: Illustration of the relativistic origin of the Lorentz force.

But with this transformation comes a Lorentz contraction modifying the density
of the charges. In addition, the different velocities of the positive and negative
charges cause that, seen from the system S′ (rest frame of the test particle), the
wire is no longer neutral. Let us see how this works: First, we introduce the
density of positively (negatively) charged particles n0 in the system S+ (S−) in
which they are at rest. With this, the charge densities in the lab system S (rest
frame of the wire) are,

ϱ± = qn± = γvqn0 .

In the system S, the wire is neutral because the positive and negative charges
travel at the same velocity, albeit in opposite directions, ϱ+ + ϱ− = 0. Now, in
the system S′, the charge densities are,

ϱ′± = qγv±n0 =
1√

1−
(

v∓v0
c∓vv0/c

)2 qn0

=
−c2 ± vv0√

(c2 − v2)(c2 − v20)
qn0 =

(
1∓ v0v

c2

)
γv0γvqn0 ,

Since v− > v+, we have n′− > n′+, and the wire carries negative charge. That
is, the total charge density in the new system is,

ϱ′ = q(n′+ − n′−) = −
2v0v

c2
γv0qn± .

But we know that a line of electric charges creates an electric field (using Gauß’
law) of,

E⃗ ′(r) = ϱ′A

2πε0r
êr = −2v0v

c2
γv0qn±

A

2πε0r
êr ,

where r is the radial direction perpendicular to the wire. This means that in its
rest frame, the particle experiences a force,

F ′ = qE ′(r) = −v0γv0
n±Aq

2v

πε0c2r
,

where the negative sign tells us, that the force is in radial direction toward the
center of the wire for v0 > 0. But if there is a force in one system, there must
also be a force in the other one. Transforming back to the lab system S, we
conclude that even when the wire is neutral, there will be a force,

F =
F ′

γv0
= −v0 n±Aq

2v

πε0c2r
= −v0q µ0I

2πr
.

But this agrees precisely with the Lorentz force attracting or repelling two neu-

tral current-carrying wires.
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This analysis provides an explicit demonstration of how an electric force in one
reference system is interpreted as a magnetic force in another. Another surprising
observation is the following. We are accustomed to think of Lorentz contraction as an
exotic result, which is only important, when we approach the speed of light. However,
the electrons traveling on a wire are very slow, taking about an hour to travel a meter!
Nevertheless, we can easily detect the magnetic force between two wires which, as we
have seen above, can be directly attributed to the length contraction of the electronic
density 6.

20.3.2 Electromagnetic potential and tensor

The shape of the scalar and vector relativistic potentials (17.104), as expressed by the
laws of Coulomb and Biot-Savart, suggests their combination to a quadri-vector,

(Aµ) ≡
( 1
cΦ

A

)
. (20.101)

with this the gauge transform defined in (17.85) adopts the form,

Aµ → Aµ − ∂µχ . (20.102)

In particular, the Lorentz gauge (17.86) becomes,

∂µA
µ = 0 . (20.103)

Now, let us have a look at the following antisymmetric construction,

Fµν ≡ ∂µAν − ∂νAµ . (20.104)

Obviously, this tensor is invariant under gauge transformation, since,

Fµν → ∂µ(Aν − ∂νχ)− ∂ν(Aµ − ∂µχ) = Fµν − ∂µ∂νχ+ ∂ν∂µχ . (20.105)

which already suggests, that the components of Fµν have something to do with elec-
tromagnetic fields.

In fact, analyzing each component of (20.104) in the light of the equations (17.78),
we find the so-called electromagnetic field tensor,

F̌ = (Fµν) =




0 − 1
cEx − 1

cEy − 1
cEz

1
cEx 0 −Bz By
1
cEy Bz 0 −Bx
1
cEz −By Bx 0




=


 0 − 1

c E⃗
1
c E⃗ (−ϵmnkBk)


 . (20.106)

where ϵmnk it is the Levi-Civita tensor.

6The above discussion needs a small adjustment for real wires. In the rest frame of the wire
the positive charges, which are ions, are fixed while the electrons move. According to the above
explanation, we might think that this will lead to an imbalance of the charge densities. But this is
not correct. The current is due to electrons injected by the battery into one end of the battery and
drained at the other end in such a way, that the wire remains neutral in the rest frame, with the
electron density accurately compensating the ionic density. In contrast, if we moved to a system in
which ions and electrons had equal and opposite speeds, the wire would appear charged.
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20.3.2.1 Maxwell’s equations

The dual tensor is,

F̌ = (Fµν) = (12ϵ
µναβFαβ) =




0 −Bx −By −Bz
Bx 0 1

cEz − 1
cEy

By − 1
cEz 0 1

cEx
Bz 1

cEy − 1
cEx 0




=


0 −B⃗
B⃗ ( 1c ϵmnkEk)


 .

(20.107)
The spatio-temporal Maxwell equations are written,

∂µF
µν = µ0j

ν , ∂µFµν = 0 . (20.108)

The first space-time Maxwell equation incorporates the familiar form of Maxwell’s
first and third equations,

(∂µF
µν) =

(
∂
c∂t ∇

)

 0 − 1

c E⃗
1
c E⃗ (−ϵmnkBk)


 =




1
c∇ · E⃗

− 1
c2

∂
∂t E⃗ − ∇ · (ϵmnkBk)




⊺

(20.109)

=




1
c∇ · E⃗

− 1
c2

∂
∂t E⃗ +

(
ϵmkn

∂
∂xmBk

)




⊺

=




1
c∇ · E⃗

− 1
c2

∂
∂t E⃗ +∇× B⃗




⊺

= µ0


cρ

j




⊺

= (µ0j
ν) ,

using the definition of the vector product,

(a× b)k = ϵmnkambn . (20.110)

The second space-time Maxwell equation incorporates Maxwell’s second and fourth
equations. With the definition of the Levi-Civita tensor, we can rewrite the equation
as,

ϵµνκλ∂κFµν = ∂κFµν + ∂µFνκ + ∂νFκµ = 0 . (20.111)

This form satisfies the requirement of cyclical permutability and also takes into ac-
count the fact, that all indexes must be different. If two indexes are equal, for exam-
ple, µ = κ, we would have ∂κFµµ + ∂µFµκ + ∂µFκµ. This expression is certainly zero
because the field tensor is antisymmetric, Fµν = −F νµ.

20.3.3 Lorentz transformation of electromagnetic fields

The rapid motion of the electron within the electrostatic field E⃗ of the nucleus pro-
duces, according to the theory of relativity, a magnetic field B⃗′ in the reference frame
of the electron. In atomic physics 7 we learn that this field can interact with the spin
of the electron, thus giving rise to a considerable energy shift called the fine structure
of the atomic spectrum. We calculate the interaction energy in the following.

7See script on Quantum mechanics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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In the relativistic mechanics defined by the metric (20.3) and the Lorentz transform
(20.19) the Maxwell field tensor is given by (20.106). With this we can calculate the
field transformed into an inertial system propagating along the z-axis,

F ′µν = ΛµαF
αβΛ ν

β =


0 − γ

c
Ex + γβBy − γ

c
Ey − γβBx − 1

c
Ez

γ
c
Ex − γβBy 0 −Bz −γ β

c
Ex + γBy

γ
c
Ey + γβBx Bz 0 −γ β

c
Ey − γBx

1
c
Ez γ β

c
Ex − γBy γ β

c
Ey + γBx 0

 .

(20.112)

Using v = vzêz, that is βx = 0 = βy and βz = β, we find,

E⃗ ′ =




E ′x
E ′y
E ′z


 =




γEx − βzcγBy
γEy + βzcγBx

Ez


 =




γEx + γcβyBz − γcβzBy − γ2

γ+1βxβ⃗ · E
γEy + γcβzBx − γcβxBz − γ2

γ+1βyβ⃗ · E
γEz + γcβxBy − γcβyBx − γ2

γ+1βzβ⃗ · E




(20.113)

B⃗′ =




B′x
B′y
B′z


 =




γBx + βz

c γEy
γBy − βz

c γEx
Bz


 =




γBx − γ βy

c Ez + γ βz

c Ey −
γ2

γ+1βxβ⃗ · B
γBy − γ βz

c Ex + γ βx

c Ez −
γ2

γ+1βyβ⃗ · B
γBz − γ βx

c Ey + γ
βy

c Ex −
γ2

γ+1βzβ⃗ · B


 .

yielding,

E⃗ ′ = γ(E⃗ + cβ⃗ × B⃗)− γ2

γ + 1
β⃗(β⃗ · E⃗)

B⃗′ = γ(B⃗ − 1
c β⃗ × E⃗)−

γ2

γ + 1
β⃗(β⃗ · B⃗)

. (20.114)

Although having been derived for the special case β⃗ = βêz, this result holds for
arbitrary velocities, γ → 1, in any direction β⃗. At lower velocities the result simplifies
to,

E⃗ ′ ≃ E⃗ + cβ⃗ × B⃗ and B⃗′ = B⃗ − 1
c β⃗ × E⃗ . (20.115)

The first of these equations is the Coulomb-Lorentz force: In the charge’s rest
frame the Lorentz part of the force has to disappear. The second equation becomes
important only for relativistic velocities. Let us consider, for example, the orbital
motion of an electron within the Colombian field generated by a proton. From the
point of view of the proton, the motion of the electron corresponds to a circular current
producing a magnetic field in the place of the proton, which can be approximated to
first order in v/c by 8,

B⃗′ ≃ − v

c2
× E⃗ . (20.116)

We conclude that magnetism can be seen as a relativistic electrical phenomenon. Do
the Exc. 20.3.6.2.

8Note, however, that this derivation does not account for the rotation of electrons reference system
giving rise to the so-called Thomas precession.
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20.3.3.1 Lorentz force

The spatio-temporal Lorentz force is,

Kµ =
dpµ

dτ
= qFµνuν , (20.117)

using the definition of the proper velocity (20.80) and of the proper momentum
(20.85). Being covariant it is a Minkowski force of the type (20.97). Extracting
the spatial components,

F =
dp

dt
=

dp

γdτ
= q(E⃗ + v × B⃗) , (20.118)

Remembering that p = mγv is the relativistic momentum.
The temporal component of the Lorentz force,

dE/c

dt
=
dE/c

γdτ
=
q

c
E⃗ · v , (20.119)

simply informs us, that the kinetic energy mγc2 −mc2 increases under the action of
work.

The spatio-temporal Lorentz force density is,

fu = Fµνjν . (20.120)

From this we obtain the equations,

fu = Fµνjν =


 0 − 1

c E⃗
1
c E⃗ (−ϵmnkBk)




cϱ

j


 =


 − 1

c E⃗ · j
ϱE⃗ − (ϵmnkjmBk)


 (20.121)

=


 − 1

c E⃗ · j
ϱE⃗ + j× B⃗


 =




1
cP

f


 .

20.3.4 Energy and momentum tensor

The meaning of the 4-dimensional energy-momentum tensor is illustrated with the
following matrix,

Tαβ =




density flux flux flux

flux pressure shear shear

fluxo shear pressure shear

flux shear shear pressure




. (20.122)

The Maxwell stress tensor for an electromagnetic field in the absence of sources is
defined by,

Tµν = 1
µ0

(
FµαF

αν + 1
4FαβF

αβgµν
)
. (20.123)
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In matrix notation this gives,

(Tµν) = 1
µ0

(
FµγgγαF

αν + 1
4
gαγF

γδgδβF
αβgµν

)
= 1

µ0
F̌ ǧF̌ + 1

4µ0

∥∥F̌ (ǧF̌ ǧ)
∥∥ ǧ (20.124)

=

 u 1
c
S⃗

1
c
S⃗ −(Tmn)



=


ε0E2 1

c
Sx 1

c
Sy 1

c
Sz

1
c
Sx −ε0E2x − 1

µ0
B2
x +

1
µ0
B2 −ε0ExEy − 1

µ0
ByBx −ε0ExEz − 1

µ0
BzBx

1
c
Sy −ε0ExEy − 1

µ0
ByBx −ε0E2y − 1

µ0
B2
y +

1
µ0
B2 −ε0EyEz − 1

µ0
BzBy

1
c
Sz −ε0ExEz − 1

µ0
BzBx −ε0EyEz − 1

µ0
BzBy −ε0E2z − 1

µ0
B2
z +

1
µ0
B2


+
(
ε0
2
E2 − 1

2µ0
B2
)
(gµν) ,

with the energy density u = ε0
2 E2 + 1

2µ0
B2, the Poynting vector S⃗ = 1

µ0
E⃗ × B⃗, the

Maxwell stress tensor
←→
T = ε0EmEn + 1

µ0
BmBn − uδmn.

20.3.4.1 Energy and momentum conservation

Using the space-time formalism the energy and momentum conservation laws can be
summarized by,

fµ + ∂νT
µν = 0 and Tµν = T νµ . (20.125)

This can be seen by applying Maxwell’s equations,

Fµνjv +
1
µ0
∂ν
(
FµαF

αν + 1
4FαβF

αβgµν
)
= 0 . (20.126)

In matrix notation we obtain,


 0 − 1

c E⃗
1
c E⃗ −(ϵmnkBk)


+




∂
c∂tu+ 1

c∇ · S⃗
ε0µ0

∂
∂t S⃗ − ∇(Tmn)


 = 0 , (20.127)

and therefore,

(
P/c f

)
+
(
∂
c∂t ∇

)

 u 1

c S⃗
1
c S⃗ −(Tmn)


 =




P
c + ∂

c∂tu+ 1
c∇ · S⃗

f + 1
c
∂
c∂t S⃗ − ∇(Tmn)




⊺

(20.128)

=


 − 1

c j · E⃗ + ∂
c∂tu+ 1

c∇ · S⃗
ρE⃗ + j× B⃗ + ε0µ0

∂
∂t S⃗ − ∇(Tmn)




⊺

= 0 .

20.3.4.2 Properties of the energy and momentum tensor

Note however, that in a dielectric medium, the matrix elements can be decomposed
into separate contributions of the radiation field and the medium. Taken by parts the
contributions do not necessarily satisfy the symmetry requirements 9.

9See the Abraham-Minkowski controversy.
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Defining the angular momentum density of the shear via,

Mµνg = Tµνxg − Tµgxν . (20.129)

Conservation of angular momentum means,

∂µM
µνg = 0 . (20.130)

20.3.5 Solution of the covariant wave equation

Inserting into Maxwell’s equations (20.108) the representation of the fields in terms
of potentials (20.104), we calculate,

µ0j
µ = ∂µF

µν = ∂µ(∂
µAν − ∂νAµ) = □Aν + ∂ν (∂µA

µ)
0
. (20.131)

The second term disappears in the Lorentz gauge (20.103). Then, the inhomogeneous
wave equation is,

□Aµ = µ0j
µ . (20.132)

Analogously to the three-dimensional Green function (17.99) we can define a four-
dimensional one,

□D(x) ≡ δ(4)(x) (20.133)

with x = r − r′. With the representation of the Dirac function,

δ(4)(x) = 1
(2π)4

∫
d4ke−ık·x , (20.134)

where k · x = kµxµ = ωt− k · r, and the Fourier transform of the Green function,

D(x) = 1
(2π)4

∫
d4kD̃(k)e−ık·x , (20.135)

the equation (20.132) becomes,

[
1

c2
∂2

∂t2
−∇2

]
1

(2π)4

∫
d4kD̃(k)e−ık·x =

1

(2π)4

∫
d4kD̃(k)

(
−ω

2

c2
+ k2

)
e−ık·x

=
1

(2π)4

∫
d4ke−ık·x = δ(4)(x) , (20.136)

that is,

D̃(k) = − 1

k · k . (20.137)

With this, the Green function becomes,

D(x) = −1
(2π)4

∫
d4k

e−ık·x

k · k . (20.138)

The integral can be solved by contour integration [659], yielding,

Dr,a(r − r′) = 1
2π θ(±ct∓ ct′)δ[(r − r′)2] , (20.139)
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where the index ’r’ refers to retarded and ’a’ to advanced. Finally the solution of
inhomogeneous wave equation is,

Aµ(r) = Aµr,a(r) + µ0

∫
d4r′Dr,a(r − r′)jµ(r′) , (20.140)

where Aµr,a(r) are the solutions of the homogeneous wave equation for an incoming,
respectively, outgoing wave.

The radiation fields are defined by the difference of the incident and outgoing
fields. Thus, the vector potential of the radiation is,

Aµrad(r) = Aµout(r)−Aµin(r) = µ0

∫
d4r′D(r − r′)jµ(r′) , (20.141)

with D(x) ≡ Dr(x)−Da(x).
We can generalize the parametrization of 4-current by,

jµ(r) = ec

∫
dτuµ(τ)δ(4)[r − r′(τ)] . (20.142)

By inserting this current into (20.140) we obtain the Liénard-Wiechert potentials.

20.3.6 Exercises

20.3.6.1 Ex: Motion in constant fields

In the Newtonian world, electric fields accelerate particles on straight lines and mag-
netic fields make the particles move in circles. Here, we will re-analyze the Coulomb-
Lorentz force in the relativistic framework. The force remains the same, but the
momentum is now p = mγu.
a. Consider a constant electric field E⃗ = E êx without magnetic field.
b. Consider a constant magnetic field B⃗ = Bêz without electric field.

Solution: a. The equation of motion for a charged particle with velocity u = (u, 0, 0)
is,

m
d(γu)

dt
= qE =⇒ mγu = qEt ,

where we assume implicitly, that the particle starts at rest at t = 0. Reorganizing, we
get,

u =
dx

dt
=

qEt√
m2 + q2E2t2/c2

t→∞−→ c .

If the particle starts at the origin, we have,

x =
mc2

eQ

(√
1 +

q2E2t2
m2c2

− 1

)
.

At the beginning, when the velocities are not very high, yet, this reduces to,

mx ≃ 1
2qEt2 + ... ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_EletroRelativista01.pdf
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which is the usual non-relativistic result for particles undergoing a constant accelera-
tion on a straight line.
b. Now, let’s turn off the electric field and look at the case of the constant magnetic
field B⃗ = Bêz. In the non-relativistic world we know that the particles rotate with
the cyclotron frequency ω = qB/m. Looking at the temporal component of the force
equation, we find, in the absence of an electric field,

dP 0

dτ
= 0 .

This tells us that, as in the classical world, magnetic fields do not do work in rel-
ativistic situations. We conclude, then, that the energy E = mγc2, is constant.
Consequently, the (magnitude) of the velocity remains constant. In other words, the
velocity, and therefore the position, continue to rotate in circles. The equation of
motion is now,

m
d(γu)

dt
= qu× B⃗ .

Since γ is constant, the equation adopts the same form as in the non-relativistic case
and the solutions are circles. The only difference is, that the frequency with which the
particle moves on a circle, now depends on how fast the particle is moving,

ω =
qB
mγ

.

We can interpret this as being due to the relativistic increase of the mass of the moving
particle.
So far, we have analyzed situations, where E⃗ = 0 or B⃗ = 0. On the other hand, we
have already seen that E⃗ ·B⃗ = 0 and E⃗2−B⃗2 are two Lorentz-invariant quantities. This
means that the solutions described above can be generalized to apply to any situation,
where E⃗ · B⃗ = 0 and E⃗2 − B⃗2 is > 0 or < 0.

20.3.6.2 Ex: Electric and magnetic dipole moment of moving dipoles

The electric dipole moment d and the magnetic dipole moment µ⃗ of a particle in
its rest frame will appear in a lab frame through which the particle is moving with
velocity v as,

d′ = d+ 1
c2v × µ⃗ and µ⃗′ = µ⃗− 1

2v × d .

Verify this for a particle with a purely magnetic dipole moment via a Lorentz trans-
form using by the following procedure:
a. Derive the Lorentz transform from a rest frame S, flying through the lab frame S′

into arbitrary direction β⃗, back into the lab frame for (i) the charge-current density
quadrivector, (ii) the time-position quadrivector, and (iii) a volume element using the
generalized Lorentz boost (20.60).
b. Parametrize the electric and magnetic dipole moment by appropriate charge and
current densities, e.g. assuming two equal charges dislocated in opposite directions of
the z-axis, respectively, a circular current in the xy-plane.
c. Apply the Lorentz transform to the electric dipole moment by transforming all

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_EletroRelativista02.pdf
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quantities of the defining formula. (It is convenient to choose βy = 0.)

Solution: a. The Lorentz transform of the charge-current density quadrivector into
a frame moving S′ into arbitrary direction β⃗ is given by [448],


cϱ

′

j′


 = (Λµν )

−1


cϱ

j


 =


 γ γβ⃗

γβ⃗ I3 + (γ − 1)β̂iβ̂j




cϱ

j




=


 γcϱ+ γβ⃗ · j
γcβ⃗ϱ+

(
j+ γ−1

β2 βiβj

)
jj


 =


 γcϱ+ γβ⃗ · j
j+
(
γcϱ+ γ−1

β2 β⃗ · j
)
β⃗


 .

The same transformation of the position vector yields,


ct

′

r′


 = (Λµν )

−1


ct

r


 =


 γct+ γβ⃗ · r
r+

(
γct+ γ−1

β2 β⃗ · r
)
β⃗


 .

Evaluating in the lab frame at t′ = 0,

r′ = r+

(
γct+

γ − 1

β2
β⃗ · r

)
β⃗ = r+

(
−γβ⃗ · r+ γ − 1

β2
β⃗ · r

)
β⃗ = r− γ

γ + 1
β⃗ · rβ⃗ .

And a volume element will always be contracted by,

d3r′ =
1

γ
d3r .

b. For convenience, we assume that the electric dipole moment d is generated by two
point charges displaced from the center along the z-axis by an amount b, and the
magnetic dipole moment µ⃗ is generated by a current line in the xy-plane at a distance
R from the center,

ϱ(r) = qδ3(r)+
d

2b
[δ3(r−bêz)−δ3(r+bêz)] and j(r) =

1

πR4
µ⃗×r δ(θ− π

2 )δ(r−R) .

With this it is easy to verify the electric and magnetic dipole moments,

d ≡
∫

rϱ(r)d3r and µ⃗ ≡ 1
2

∫
r× j(r)d3r ,

as can easily be verified.
c. The transformed dipole moment now reads, assuming ϱ = 0,

d′ =
∫

r′ϱ′d3r′ =
∫ [

r− γ

γ + 1
(β⃗ · r)β⃗

] [
γβ⃗ · j

] 1
γ
d3r

=
1

πR4

∫ [
r− γ

γ + 1
(β⃗ · r)β⃗

] [
γβ⃗ · (µ⃗× r)δ(θ − π

2 )δ(r −R)
] 1
γ
r2 sin θdrdθdϕ ,

after inserting the current density parametrization. With,

β⃗ = βxêx+βzêz , µ⃗ = µêz , r = rêr , R = Rêx cosϕ+Rêz sinϕ ,
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we calculate,

d′ =
−βxµ
πR4

∫ 
sin θ cosϕ− γβx

γ+1
(βx sin θ cosϕ+ βz cos θ)

sin θ sinϕ

cos θ − γβz
γ+1

(βx sin θ cosϕ+ βz cos θ)

 sinϕδ(θ − π
2
)δ(r −R)r4 sin θdrdθdϕ

=
−βxµ
π

∫ 
sinϕ cosϕ− γ

γ+1
β2
x sinϕ cosϕ

sin2 ϕ

− γ
γ+1

βxβz sinϕ cosϕ

 dϕ = −βxµêy = 1
c
β⃗ × µ⃗ .

20.4 Lagrangian formulation of electrodynamics

20.4.1 Relation with quantum mechanics

In classical and relativistic mechanics we learn to deal with masses and in electro-
dynamics with charges and with fields and electromagnetic waves. We will show in
Sec. 20.4.2.1 how electrodynamics can be integrated into the classical and relativistic
mechanics by the prescription of minimal coupling,

pµ → pµ − qAµ . (20.143)

Revolutionary discoveries in the early twentieth century culminated in the develop-
ment of quantum mechanics, where we learned to accept that the microscopic world
works differently. On one hand, massive particles have undulating properties; they
can diffract and interfere. On the other side, light has corpuscular properties; it con-
sists of indivisible energy packets called photons. Fortunately, classical theories can be
incorporated into quantum mechanics by canonical procedures called first and second
quantization.

20.4.1.1 Treatment of massive particles in quantum mechanics

In quantum mechanics we learn 10 that matter propagates like a scalar wave (in
contrast to electromagnetic waves, which are vectorial). Consequently, in quantum
mechanics, massive particles are described by wavefunctions obeying wave equations.
Slow particles obey the Schrödinger equation, whereas bosonic relativistic particles
obey a wave equation called Klein-Gordon equation and fermions obey the Dirac
equation. The Schrödinger and Klein-Gordon equations are obtained from a simple
prescription for canonical quantization:

pµ → ıℏ∂µ . (20.144)

Obtaining the Dirac equation is a bit more involved.

10See script on Quantum mechanics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf


20.4. LAGRANGIAN FORMULATION OF ELECTRODYNAMICS 1135

20.4.1.2 Quantization of the electromagnetic field

We also learn in quantum mechanics 11 that light consists of indivisible energy packets.
This fact is taken into account, by dividing space into modes that can be filled with
discrete numbers of photons. Each mode is treated as a harmonic oscillator. Quantum
field theories explain, how we must quantize non-radiative electric and magnetic fields.

These topics will not be covered in this course.

20.4.2 Classical mechanics of a point particle in a field

For a system with m degrees of freedom specified by generalized coordinates q1, .., qm
and the generalized velocities q̇1, .., q̇m the classical action is determined by the La-
grangian L(qi, q̇i) via,

S[qi, q̇i] =
∫
dtL(qi, q̇i, t) . (20.145)

Thus, the action is a functional of the generalized coordinates. According to Hamil-
ton’s least action principle, the dynamics of a classical system is described by equa-
tions that minimize the action, δS = 0. These equations of motion can be expressed
by the Lagrangian in the form of Euler-Lagrange equations,

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0 . (20.146)

The canonical momentum is given by equation,

pi(qi, q̇i, t) =
∂L
∂q̇i

, (20.147)

and the Hamiltonian is defined by the Legendre transform,

H(qi, pi) = q̇i
∂L
∂q̇i
− L = piq̇i − L(qi, q̇i) . (20.148)

using Einstein’s summing convention. Comparing the differential of both sides of this
equation,

[
∂H
∂qi

dqi +
∂H
∂pi

dpi

]
+
∂H
∂t

= dH =

[
q̇idpi + pidq̇i −

∂L
∂qi

dqi −
∂H
∂q̇i

dq̇i

]
− ∂L
∂t

,

(20.149)
we obtain Hamilton’s equations of motion,

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

,
∂H
∂t

= −∂L
∂t

. (20.150)

From these equations it follows, that if the Hamiltonian is independent of a particular
coordinate qi, the corresponding moment pi is constant. For conservative forces, the
Lagrangian and the Hamiltonian can be written as L = T − V and H = T + V , with
T the kinetic energy and V the potential energy 12.

11See script on Quantum mechanics (2023).
12Thus, a particle chooses its trajectory in a way to minimize the conversion between kinetic and

potential energy.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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20.4.2.1 Electrodynamic Lagrangian

So far we have focused on free particles or particles confined by scalar potentials. In
what follows, we will address the influence of a magnetic field on a charged particle.
Classically, the force on a charged particle in electric and magnetic fields is given by
the Lorentz force law and the exerted work by Ohm’s law:

dW

dt
= ev × E⃗ and F = q(E⃗ + v × B⃗) , (20.151)

where q denotes the charge and v the velocity. In this case, the generalized coordinates
qi ≡ ri ≡ (r1, r2, r3) are precisely the Cartesian coordinates specifying the position,
and q̇i = ṙi = (ṙ1, ṙ2, ṙ3) the velocity of the particles. These equations of motion
are sufficient to describe the dynamics of a system. The force which depends on the
velocity and is associated with the magnetic field is quite different from the conserva-
tive forces associated with scalar potentials. Let us now study, how the Lorentz force
appears in the Lagrange formulation of classical mechanics.

With revised these foundations, we will return to the problem of the influence of
an electromagnetic field on the dynamics of a charged particle. Since the Lorentz force
depends on velocity, it can not simply be expressed as a gradient of some potential.
However, the classical trajectory of the particle is still specific to the least action
principle.

The electric and magnetic fields can be expressed in terms of a scalar and a vector
potential as,

E⃗ = −∇Φ− ∂tA and B⃗ = ∇×A . (20.152)

The Lorentz force is,

F = q

[
−∇Φ− ∂A

∂t
+ v × (∇×A)

]
. (20.153)

We now analyze the x-component,

Fx = q

[
−∂Φ
∂x
− ∂Ax

∂t
+ vy

(
∂Ay
∂x
− ∂Ax

∂y

)
− vz

(
∂Ax
∂z
− ∂Az

∂x

)
+ vx

∂Ax
∂x
− vx

∂Ax
∂x

]

= q

[
−∂Φ
∂x

+ v · ∂A
∂x
− dAx

dt

]
, (20.154)

where we used,
d

dt
=

∂

∂t
+ vi

∂

∂xi
. (20.155)

Since the potentials do not depend on the velocity, we can also write,

Fx = q

[
−∂Φ
∂x

+
∂v ·A
∂x

− d

dt

∂v ·A
∂vx

]
= −∂U

∂x
+
d

dt

∂U

∂vx
, (20.156)

introducing the generalized potential,

U ≡ qΦ− qA · v . (20.157)
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The corresponding Lagrangian takes the form:

L(ri, ṙi) = m
2 ṙ

2 − qΦ+ qṙ ·A = m
2 ṙiṙi − qΦ+ qṙiAi . (20.158)

The important point is that the canonical momentum

pi =
∂L
∂ṙi

= mṙi + qAi (20.159)

is no longer equal to velocity times the mass, mvi ̸= pi, because there is an extra
term!

Using the definition of the corresponding Hamiltonian,

H(ri, pi) = (mṙi + qAi)ṙi − m
2 ṙiṙi + qΦ− q

∑

i

ṙiAi (20.160)

=
(
m
2 ṙi + qAi

)
ṙi + qΦ = m

2 v
2 + qΦ .

Obviously, the Hamiltonian has just the familiar form of the sum of kinetic and po-
tential energies. However, to obtain Hamilton’s equations of motion, the Hamiltonian
must be expressed only in terms of the coordinates and the canonical momenta, that
is,

H(ri, pi) =
1

2m
(p− qA)2 + qΦ = qvj

∂Aj
∂ri
− q ∂Φ

∂ri
. (20.161)

Let us now consider Hamilton’s equations of motion,

ṙi =
∂H
∂pi

=
1

m
(pi − qAi) (20.162)

ṗi = −
∂H
∂ri

= − 1

2m

∂

∂ri
(pj − qAj)2 − q

∂Φ

∂ri
.

The first equation reproduces the canonical momentum (20.158), while the second
gives the Lorentz force. To understand how, we need to remember that dp/dt is
not the acceleration: The term dependent on A also varies over time in a rather
complicated way, since it is the field seen by the moving particle.

Example 134 (Lorentz force from the Lagrangian): Obviously, we can
recover the Lorentz force from the Hamiltonian: Differentiating the canonical
momentum (20.158),

mr̈i = −qȦi + ṗi = −qȦi − ∂H
∂ri

= −qȦi − ∂

∂ri
q

(∑
j

vj
∂Aj
∂ri
− ∂Φ

∂ri

)
= −qȦi + q∇i(A · v)− q∇iΦ .

that is,

mr̈ = −q∇Φ+ qv × (∇×A) + q(v · ∇)A− q dA
dt

= −q∇Φ+ qv × (∇×A)− q ∂A
∂t

= qE⃗ + qv × B⃗

using the rules (20.155) and v × (∇×A) = ∇(A · v)− (∇ · v)A.
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Using the Coulomb gauge ∇ · A = 0 the Coulomb-Lorentz force can be derived
from the Lagrangian via the equation (20.158) or from the Hamiltonian via the second
equation (20.162).

20.4.3 Generalization to relativistic mechanics

We now want to generalize the Lagrangian treatment of a particle to relativistic
mechanics. Not all forces known in classical mechanics can be put into a covariant
form. One example is the Newtonian gravitational force, understood as a force acting
at a distance, which is incompatible with the theory of relativity. On the other
side, electrodynamics is automatically Lorentz-invariant. Therefore, let us discuss
the Lagrangian only for two examples: 1. a totally free particle and 2. a particle
under the influence of electromagnetic forces.

Analogously to the classical case, we want to derive, from the principle of minimum
action (20.145) Euler-Lagrange type equations (20.146). To put the action into a
Lorentz-invariant form, we go to the particle’s rest frame via t = γτ ,

S[rµ, uµ] =
∫
γL(qµ, uµ, τ)dτ . (20.163)

We note, however, that we must now distinguish co- and contravariant indices to
take account of non-Euclidean metrics. Since S is an invariant scalar, γL must be an
invariant scalar as well. The Euler-Lagrange equations are now,

d

dτ

∂L
∂uµ

− ∂L
∂xµ

= 0 . (20.164)

The ansatz for the Lagrangian,
L ≡ m

2 uµu
µ (20.165)

inserted into the Euler-Lagrange equation gives,

d

dτ
muµ − 0 =

d

dτ
pµ = 0 , (20.166)

which makes sense in the absence of external forces 13.

20.4.3.1 Lagrangian relativistic electrodynamics

We now consider a charged particle interacting with an external electromagnetic field
[659]. In relativistic notation the Lorentz force and the Ohm’s law (20.145) become
[compare (20.117)],

mduµ

dτ
= qFµνuν , (20.167)

where m is the resting mass, τ the proper time in the particle’s system, and (uµ) =
(γc, γu) = (pµ/m) its 4-velocity. Following the classical model (20.157) we can make
for the Lagrangian the covariant ansatz [519],

L = Lfree + Lint = m
2 uµu

µ + quµA
µ . (20.168)

13We note, that any ansatz L(z) ≡ L(uµuµ) satisfying ∂zL = m
2

is possible. We will show this in
Exc. 20.4.5.1.
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The canonical momenta are,

pµ =
∂L
∂uµ

= muµ + qAµ , (20.169)

such that the Euler-Lagrange equations (20.164) result in,

d

dτ
(muµ + qAµ)−

∂

∂xµ
(quνA

ν) = 0 . (20.170)

That is,

Kµ =
d

dτ
muµ =

∂

∂xµ
(quνA

ν)− d

dτ
(qAµ) , (20.171)

which is precisely the Minkowski type Lorentz force.
The total energy is,

Etot = cp0 = c(E + qΦ) , (20.172)

where E is the kinetic energy including the rest mass (20.88). We calculate,

m2uµu
µ = m2c2 = (pµ−qAµ)(pµ−qAµ) = m2u0u

0−(p−qA)2 = E2/c2−(p−qA)2 .
(20.173)

That is,
E2 = (p− qA)2 −m2c2 . (20.174)

In Exc. 20.4.5.3 we show an example for the application of the relativistic electro-
dynamic Lagrangian.

20.4.3.2 Charges and currents interacting with an electromagnetic field

In the case of continuous variables we use Lagrangian densities,

L =
∑

i

Li(qi, q̇i) −→
∫
L(ϕk, ∂αϕk)d3x . (20.175)

For example, the Lagrangian of the electromagnetic field is [520],

L = T − V = Lfield + Lint = − 1
4µ0

FµνFµν −Aµjµ , (20.176)

but we will not deepen this here.

20.4.4 Symmetries and conservation laws

Symmetry is a feature of a system conserving specific properties under
some transformation.

For example, the geometry of a system does not change, when we apply a reflection
and the interaction energy between two charges does not change when we switch their
coordinates.

In the Lagrangian formalism we call a quantity (or generalized momentum) con-
served, when the Lagrangian does not depend on the associated coordinate,

L ≠ L(qk) =⇒ pk is conserved . (20.177)
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We can see this by the Euler-Lagrange equation,

dpk
dt

=
d

dt

∂L
∂q̇k

=
∂L
∂qk

= 0 . (20.178)

Emmy Noether formulated the theorem, that a symmetry transformation, that is,
a transformation that does not change the action,

t→ t+ δt and q→ q+ δq , (20.179)

conserves the following quantities:

(
q̇ · ∂L

∂q̇
− L

)
δt− ∂L

∂q̇
· δq . (20.180)

For example, a temporal translation, δt ̸= 0 without another transformed coordi-
nate δqα = 0 , ∀α, leaves the total energy,

q̇
∂L
∂q̇
− L = H , (20.181)

(known by the Legendre transform) unchanged. The spatial translation, δqα = 0 but
δt ̸= 0, leave the linear momentum,

∂L
∂q̇α

= pα , (20.182)

unchanged. We note that in relativistic theory, these two conservation laws are re-
lated. Spatial rotation around an axis ên, defined in Cartesian coordinates by,

r→ r+ δθ⃗ = r+ δ(ên × r) , (20.183)

with δt ̸= 0, leaves the angular momentum,

∂L
∂q̇
· δ(ên × r) = p · (ên × r) = ên · (r× p) = ên · L = 0 , (20.184)

unchanged.

symmetry class symmetry invariance conserved quantity

Lorentz homogeneity of time translation in time energy

homogeneity of space translation in space linear momentum

isotropy of space rotation in space angular momentum

discrete T (isotropy of time) time reversal temporal parity

P coordinate inversion spatial parity

C charge conjugation charge parity

internal U(1) gauge transformation electric charge
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20.4.5 Exercises

20.4.5.1 Ex: Lagrangian relativistic of a free particle

Show that the Lagrangian L(z) = L(uµuµ) with L′ = m
2 satisfies the Euler-Lagrange

equation.

Solution: We calculate,

d

dτ

∂L
∂uµ

− ∂L
∂xµ

=
d

dτ
2uµ

∂L
∂z

=
d

dτ
muµ = 0 .

20.4.5.2 Ex: Motion of charged particles in a magnetic field

A non-relativistic particle with mass m and charge q be in a static magnetic field,

B⃗(r) = Bx(x, y, z)êx + By(x, y, z)êy + Bz(x, y, z)êz .

Its Lagrange function is then,

L =
1

2
mv2 +

q

c
v ·A ,

where v is the velocity of the particle and A the vector potential corresponding to
the magnetic field B⃗.
a. If A = Ax(x, y, z)êx+Ay(x, y, z)êy+Az(x, y, z)êz is given, what are the Cartesian

components of B⃗?
b. Using the formula d

dt
∂L
∂q̇ = ∂L

∂q derive the equations of motion for the Cartesian
components of v.
c. What is the condition for Bx = By = 0 and Bz = B0 to be constant?
d. Now, consider Ax = Ay = 0 and Ay = B0x. What equations of motion for vx, vy,
and vz follow from this?
e. Calculate vx(t), vy(t), and vz(t). Contour conditions be given by vz(t = 0) = v

(∥)
0 ,

vy(t = 0) = 0 and vx(t = 0) = v
(⊥)
0 . Use the abbreviation ω0 = qB0

mc .
f. Calculate x(t), y(t), and z(t) choosing x(t = 0) = y(t = 0) = z(t = 0) = 0. What
is the form of the trajectory that corresponds to this motion?
g. Suppose now that Ax = Ay = 0 and Ay = B(z)x. What is the consequence of this
for Bx, By, and Bz? What are the corresponding equations of motion for vx, vy, and
vz ?
h. Now, let ∂B(z)

∂z = B′ =constant. Discuss the motion equation for vz, inserting as
an approximation for vy(t) and x(t) the solutions of parts (e) and (f). What, under
this circumstance, is the consequence for vz(t)?

Solution: a. We have B⃗ = ∇×A and hence,

Bx =
∂Az
∂y
− ∂Ay

∂z
, By =

∂Ax
∂z
− ∂Az

∂x
, Bz =

∂Ay
∂x
− ∂Ax

∂y
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron03.pdf
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b. The Lagrange function is,

L = m
2 (v

2
x + v2y + v2z) +

q
c (vxAx + vyAy + vzAz) .

Therefore we get for k = (x, y, z),

∂L
∂vk

= mvk +
q

c
Ak and

∂L
∂xk

=
q

c

(
vx
∂Ax
∂xk

+ vy
∂Ay
∂xk

+ vz
∂Az
∂xk

)
.

The Lagrange equations,
d

dt

∂L
∂vk

=
∂L
∂xk

,

therefore, give for the x-component of the velocity,

m
dvx
dt

+
q

c

(
vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

)
=
q

c

(
vx
∂Ax
∂x

+ vy
∂Ay
∂x

+ vz
∂Az
∂x

)
.

resp.

dvx
dt

=
q

mc

(
vy

[
∂Ay
∂x
− ∂Ax

∂y

]
− vz

[
∂Ax
∂z
− ∂Az

∂x

])
=

q

mc
(vyBz − vzBy)

=
q

mc
(v × B⃗)x .

In the same way,
dvy
dt

=
q

mc
(v × B⃗)y .

and
dvz
dt

=
q

mc
(v × B⃗)z .

Finally,
dv

dt
=

q

mc
v × B⃗ .

are the expected equations of motion for a particle under the influence of the Lorentz
force.
c. For Bx = By = 0 we have everywhere,

∂Az
∂y

=
∂Ay
∂z

and
∂Az
∂x

=
∂Ax
∂z

.

Since Bz = constant = B0 we also have everywhere,

B0 =
∂Ay
∂x
− ∂Ax

∂y
.

We make the ansatz,

Ay = c1x+ c′1 and Ax = c2y + c′2 .

From this immediately follows,
B0 = c1 − c2 .
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d. We can now, without restricting the generality of the result, choose,

Ax = Az = 0 and Ay = B0x .

Hence,
Bx = By = 0 and Bz = B0 ,

and therefore,

dvx
dt

=
qB0
mc

vy and
dvy
dt

= −qB0
mc

vx and
dvz
dt

= 0 .

e. Because of,
dvz
dt

= 0 follows vz = constant ≡ v(∥)0 .

We also have,

d2vx
dt2

=
qB0
mc

dvy
dt

= −
(
qB0
mc

)2

vx .

resp.
d2vx
dt2

= −ω2
0vx .

From this immediately follows,

vx = +v
(⊥)
0 (cosω0t+ α sinω0t)

vy = −v(⊥)0 (sinω0t− α cosω0t)

vz = constant = v
(∥)
0 .

Considering also the boundary condition vy(t = 0) = 0, necessarily, α = 0 and, hence,

vx = v
(⊥)
0 cosω0t , vy = −v(⊥)0 sinω0t , vz = v

(∥)
0 .

With this, we see,

v2 = (v
(∥)
0 )2 + (v

(⊥)
0 )2 = constant .

f. We obtain successively,

dz

dt
= v

(∥)
0 hence z(t) = v

(∥)
0 t+ z0 .

dx

dt
= v

(⊥)
0 cosω0t hence x(t) =

v
(⊥)
0

ω0
sinω0t+ x0 .

dy

dt
= −v(⊥)0 sinω0t hence y(t) =

v
(⊥)
0

ω0
cosω0t+ y0 .

With x(t = 0) = y(t = 0) = z(t = 0) = 0 now we get, x0 = z0 = 0 and y0 = −v(⊥)0 /ω0.
Hence, we obtain,

x(t) =
v
(⊥)
0

ω0
sinω0t , y(t) =

v
(⊥)
0

ω0
cosω0t−

v
(⊥)
0

ω0
, z(t) = v

(∥)
0 t .
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Therefore, the trajectory is a spiral around the z-axis.
g. Let now be Ax = Az = 0 as above, but Ay = B(z)x. In this case, we have,

Bz = B(z) , By = 0 , Bx = −x∂B(z)
∂z

.

respectively. For the equation of motion (let ω0 = qB0/mc again),

dvx
dt

= +ω0vy
B(z)
B0

dvy
dt

= −ω0

(
vx
B(z)
B0

+ xvz
1

B0
∂B(z)
∂z

)

dvz
dt

= +ω0xvy
1

B0
∂B(z)
∂z

.

h. From (e) and (f) follows:

vyx = − (v
(⊥)
0 )2

ω0
sin2 ω0t .

and hence,
dvz
dt
≈ −(v(⊥)0 )2 sin2 ω0t

1

B0
∂B(z)
∂z

.

If the derivative of B(z) by z is constant (= B′), we obtain,

vz(t) ≈
1

2
(v

(⊥)
0 )2 {sinω0t cosω0t− ω0t}

B′
B0

+ v
(∥)
0 .

Hence, for large B′ and t large vz can change sign.

20.4.5.3 Ex: Connection between kinetic and canonical momentum and
the Abraham-Minkowski debate

The nonrelativistic Lagrangian that governs the interaction of a particle with electric
and magnetic dipole moment with external electromagnetic fields can be written,

L = m
2 v

2 + E⃗ · d+ B⃗ · µ⃗ .

a. Based on the results of Exc. 20.3.6.2 calculate the kinetic and canonical momenta
of a particle with flying at velocity v through a lab.
b. Now, average over a macroscopic number of particles introducing the polariza-
tion P⃗ = ⟨∑n dnδ

3(r − S⃗n)⟩ and the magnetization M⃗ = 1
2 ⟨
∑
n µ⃗nδ

3(r − S⃗n)⟩, and
compare the kinetic and canonical momenta with the Abraham and Minkowski ex-
pressions for the linear momentum density.

Solution: a. The kinetic momentum is simply [1132],

pkin = mv .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_LagrangianoEletron03.pdf
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Inserting the electric and magnetic dipole moments, as they appear in the lab frame,
the Lagrangian becomes,

L = m
2 v

2 + E⃗ · (d+ 1
c2v × µ⃗) + B⃗ · (µ⃗− 1

2v × d) ,

and its derivative,

pcani =
∂L

∂vi
= mvi +

1

c2
∂

∂vi
Ejϵjmnvmµn −

c

2

∂

∂vi
Bjϵjmnvmdn

= mvi +
1
c2 ϵinjµnEj − 1

2ϵinjdnBj ,

or

pcan − pkin = 1
c2 µ⃗× E⃗ − 1

2d× B⃗ .

b. We get for the macroscopic kinetic and canonical momenta,

pcan − pkin = 1
c2M⃗ × E⃗ − P⃗ × B⃗ ,

and for the Abraham and Minkowski expressions linear momentum densities,

℘⃗A = 1
c2 E⃗ × H⃗ = 1

c2 E⃗ ×
(

1
µ0
B⃗ − M⃗

)
and ℘⃗M = D⃗ × B⃗ = (ε0E⃗ + P⃗)× B⃗ .

Hence,

℘⃗A − ℘⃗M = 1
c2M⃗ × E⃗ − P⃗ × B⃗ = pcan − pkin .

20.5 Relativistic gravity

The starting point of Einstein’s theory on general relativity is the famous equivalence
principle stating that there is no difference in heavy mass and inert mass, that is,
gravity and acceleration are fundamentally the same. Taking this axiom seriously,
we must accept a series of astonishing corollaries, such as the fact that space-time
is neither Euclidian, nor Minkowskian, but distorted by the presence of mass. Time
and space coordinates are intertwined (see also Secs. 6.4 and 36.5.2).

In the following, we briefly recapitulate Minkowskian metrics in Cartesian and
spherical coordinates before introducing Schwarzschild metrics as a special case.

20.5.1 Metric and geodesic equation in curved space-time

Minkowskian metrics in Cartesian coordinates has been introduced in Sec. 20.1.1.
In the following sections, we will briefly recapitulate it and extend it to spherical
coordinates before generalizing the metrics to curved space-time.
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20.5.1.1 Minkowski metrics

In Cartesian coordinates the line element and tetrad are given by,

ds2 = c2t2 − dx2 − dy2 − dz2 (20.185)

et =
1

c
∂t , ex = ∂x , ey = ∂y , ez = ∂z

et = cdt , ex = dx , ey = dy , ez = dz ,

and the metric tensor by,

gµν =
∂xα
∂ξµ

∂xα

∂ξν
=




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (20.186)

Note that the matrix representation of the metric is defined via,

ds2 = gµνdxµdxν . (20.187)

In spherical coordinates,




t

x

y

z




=




t

r sin θ cosϕ

r sin θ sinϕ

r cos θ




, (20.188)

the line element and tetrad are given by,

ds2 = c2t2 − dr2 − r2dθ2 − r2 sin2 θdϕ2 (20.189)

et =
1

c
∂t , er = ∂r , eθ =

1

r
∂θ , eϕ =

1

r sin θ
∂ϕ ,

and the metric tensor,

gµν =
∂xα
∂ξµ

∂xα

∂ξν
=




1 0 0 0

0 −1 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ




, (20.190)

with ξµ, ξν = t, r, θ, ϕ and xα = t, x, y, z. The Minkowski metrics is a generalization
of Euclidian metric to four-dimensional space-time.
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20.5.2 Schwarzschild metric

General relativity breaks with the concept of Euclidian space allowing for space-time
to be distorted. The simplest example is the Schwarzschild metric which assumes
a distortion of time and space as a function of the distance from a heavy mass.
Schwarzschild’s solution was the first exact solution of Einstein’s field equations. It
holds on the outside of non-charged non-rotating masses.

Metric and tetrad of Schwarzschild coordinates (t, r, θ, ϕ) are given by,

c2dτ2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1
dr2 − r2dθ2 − r2 sin2 θdϕ2 (20.191)

et =
1

c
√
1− rs/r

∂t , r =

√
1− rs

r
∂r , eθ =

1

r
∂θ , er =

1

r sin θ
∂ϕ ,

where,

rs ≡
2γNM

c2
, (20.192)

is called the Schwarzschild radius. The metric tensor in free (massless) space is,

gµν =
∂xα
∂ξµ

∂xα

∂ξν
=




1− rs
r 0 0 0

0 −(1− rs
r )
−1 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ




. (20.193)

For r ≫ rs this reduces to the Minkowski metric.

20.5.3 Christoffel symbols for relativistic space-time and geodesic
equation

The Christoffel symbols are defined by,

Γµαβ ≡
∂eα
∂xβ

· eµ =
∂2ξγ

∂xα∂xβ
∂xµ

∂ξγ
. (20.194)

They yields for spherical coordinates,

Γait =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




, Γair =




0 0 −r 0

0 0 0 0

0 0 0 0

0 0 0 0




(20.195)

Γaiθ =




0 0 −r 0

0 0 0 0

0 0 0 0

0 0 0 0




, Γaiϕ =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




.
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In relativistic space-time the geodesic equation is a curve representing in some
sense the shortest path between two points in a surface. The geodesic line is obtained
by solving the differential equation,

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 . (20.196)

Define Einstein tensor, Ricci tensor (see 12.4.3).

20.5.4 Exercises

20.5.4.1 Ex: Space-time metric in spherical coordinates

Write down the space-time metric for Earth in spherical coordinates.

Solution: From Sec. 12.3.6 we derive,

ds2 = c2dt2 − dr2 − r2dθ2 − r2 sin2 θdϕ2 .

It is obtained from the Schwarzschild metric setting the Schwarzschild radius rs ≃ 0.
For Earth rs ≈ 8.8mm.

20.6 Further reading

J.D. Jackson, Classical Electrodynamics [659]ISBN

D.J. Griffiths, Introduction to Electrodynamics [545]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Relativity_RelatigravityMetric01.pdf
http://isbnsearch.org/isbn/978-0-471-30932-1
http://isbnsearch.org/isbn/978-1-108-42041-9


Chapter 21

Appendices to
’Electrodynamics’

21.1 Special topic: Goos-Hänchen shift with light
and matter waves

Newton’s corpuscular light model predicts a lateral shift of a light beam when totally
reflected from an interface to an optically thin medium. Photons leaving the optically
dense medium are reattracted to it by gravitation. The lateral distance covered during
their ballistic flight corresponds to the shift, called Goos-Hänchen shift (GHS). It
seems as if the light beam was reflected at a plane lying behind the boundary within
the region of the evanescent wave (EW). Although the underlying model is incorrect
(although De Broglie himself conjectured that the effect could point towards a finite
photon mass), newer model based on the Maxwell theory also predict an energy
flux within the EW forming within the thin medium. Many unsuccessful attempts
have been undertaken to observe this flux, and it has still not been directly observed
nowadays. The problem is that any probe brought into the EW undermines it and
vanishes the GHS. Goos and Hänchen circumvented the problem by measuring only
the lateral shift in the optically dense medium [522, 523, 195]. The agreement of their
observations with Maxwell theory gives confidence in the existence of the flux.

21.1.1 Evanescent wave potentials

A light field reflected at an angle θ (= 52◦ for Landragin’s dielectric prism) on a
boundary to an optically thin medium is described by

E(r) = E0eıqx−κz , (21.1)

where q = kn sin θ and κ = k
√
n2 sin2 θ − 1. Introducing the Rabi frequency

Ω(r) =

√
σ0Γ

ℏω
I(r) =

√
ϵ0c2σ0Γ

ℏω
E0e−κz , (21.2)

the interaction energy reads d · E⃗ = Ω(r)eıqx. The force F = −∇d · E⃗ is made of two
contributions. Using the optical Bloch equations, we find the stationary solutions for

1149
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the dipole and the dissipative forces [20]

Fdip = −
ℏ∆Ω

4∆2 + 2Ω(r)2 + Γ2
∇Ω(r) , (21.3)

Fdiss =
ℏΓΩ2

4∆2 + 2Ω(r)2 + Γ2
∇θ(r) .

Treating the mechanical effects of light analogously to the Laguerre-Gaussian modes.
For LGM the phase gradient is almost parallel with the Poynting vector except for
higher order corrections for the axial component.

The dipole force can be derived from a conservative evanescent potential

V (z) =
Ω2

∆
e−2κz =

πc2Γ

2ω3
I

(
1

∆D1
+

2

∆D2

)
e−2κz .

Apparently, radiation pressure accelerates the atoms not in the direction of the
wavevector, but of the phase gradient [22]. Is this the same as the Poynting vector?
This may lead to observable effects in evanescent waves. Hence, the observation of a
transverse radiation pressure would already prove a Goos-Hänchen shift.

21.1.2 Energy flux in the evanescent wave

An incoming laser beam be expanded after phases

Ei(x) = Eip
∫
f(θ)e−ıxkix0

θdθ . (21.4)

The reflected beam then reads

Er(x) = Eip
∫
r(θ)f(θ)e−ıxkix0

θdθ , (21.5)

where r(θ) = a−ıb
a+ıb according to the Fresnel equations or r = eiφ. We assume that we

can linearize the phase φ(θ) = φ(θ0)+(θ−θ0)∂θφ(θ0) ≡ χ+θ∂θφ(θ0). Then equation
(21.5) can be written

Er(x) = Eipe−ıχ
∫
f(θ)e−ı(x−∆xGH)kix0

θdθ = Ei(x−∆xGH)e−ıχ , (21.6)

where ∆xGH = 2 cos θ0
kix0

∂θφ(θ0) = 2
ki
∂θφ(θ0). The reflected laser beam is parallel

shifted.
Calculations show [1091, 815] that the energy flux penetrates the thin medium only

where the transverse profile of the beam shows a gradient. In the regions of constant
intensity the flux is inside the plane of incidence and parallel to the surface. Hence,
the Goos-Hänchen shift is only observable with spatially inhomogeneous beams.

21.1.2.1 Expression for the shift

Let us now estimate the GHS for a prism n1 = 1.5, the Rb D2-line for which λ =

2π/k = 780 nm. The EW penetration depth ζ is given by kζ =
√
n21 sin

2 θ − n22
−1

∆GH

2ζ
=

n21n
2
2 sin θ cos

2 θ

n41 sin
2 θ + n42 cos

2 θ − n21n22
. (21.7)
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We assume that the angle of incidence is close to the critical angle θ = θc + ξ =
arcsinn−11 + ξ. Near the critical angle the GHS diverges as does the penetration
depth. Hence, the GHS should be measured very close to the critical angle. The
expansion in ξ yields

∆GH

2ζ
=
n1
n2

(
1 + ξ

n22n
2
1 − n42 − 2n41

n32
√
n21 − n22

)
. (21.8)

The Goos-Hänchen shift is proportional to the penetration depth of the evanescent
wave. It has been measured by [195].

21.1.2.2 Goos-Hänchen shift with resonant absorbers

Resonant absorbers have an impact on the evanescent wave and hence on the Goos-
Hänchen shift as has been measured by [1028]. Hence, we now consider the presence
of an resonant gas with a small index of refraction, n2 = 1 + n̄, so that

k∆GH

2
=

1√
n21 sin

2 θ − (1 + n̄)2

n21(1 + n̄)2 sin θ cos2 θ

n41 sin
2 θ + (1 + n̄)4 cos2 θ − n21(1 + n̄)2

. (21.9)

To first order in n̄ and ξ

∆GH(n̄, ξ) ≈ An̄√
ξ (Bξ − n̄) + ∆GH(n̄ = 0, ξ) . (21.10)

According to [953] (Eq. 4.6),

T = − N |dϵ1|2
ηε0ℏ|ϵ1|2

∫
dvW (v)θ(vz)

1

Γ + ηkvz − ı (∆− αkvx)
(21.11)

= −N |d|
2

ηε0ℏ

(
3

2πv20

)3/2 ∫ ∞

0

dvze
−3v2z/2v20

∫ ∞

−∞
dvye

−3v2y/2v20
∫ ∞

−∞
dvxe

−3v2x/2v20 1

Γ− ı∆

= −N |d|
2

ηε0ℏ
1√
2

1

Γ− ı∆ .

An effective refractive index variation may be define [953] (Eq. 3.16) with β = iη,

δn = −βT = β
N |d|2√
2ηε0ℏ

1

Γ− ı∆ = ı
N |d|2√
2ε0ℏ

Γ + ı∆

Γ2 +∆2
. (21.12)

The interesting question is, whether the energy flux in the evanescent wave is
directly observable. The existence of an EW is not questionable. On the contrary it
has become an important in quantum optics, where near-resonant EWs are used for
selective reflection spectroscopy. In cold atom optics, far-off resonant EWs are used
to repel ultracold atoms from surfaces. Does the energy flux related to the GHS leave
any footprints in the atomic cloud (possibly a BEC)? Certainly, one has to stay at a
detuning, where the flux in the evanescent wave satisfies Im k ⊥ Re k, so that there
is no energy transfer. Think about phase shift of the de Broglie wave underneath a
fixed envelope, analogy to geometric phases or the Aharonov-Bohm effect.



1152 CHAPTER 21. APPENDICES TO ’ELECTRODYNAMICS’

0 0.5 1

ξ ×10−4

0

20

40

60

80

Δ
G
H

(μ
m
)

red : ζ         blue : -Δ
GH

-10 0 10

Δ/Γ

-0.02

-0.01

0

0.01

0.02

n
2
−
1

-5 0 5

n2 − 1×108

-5

-4

-3

-2

-1

Δ
G
H

(μ
m
)

Figure 21.1: (code) Selective reflection Goos.

21.1.3 Imbert-Fedorov shift

A transverse shift should be expected for circularly polarized light or Laguerre-
Gaussian modes. This shift called Imbert-Fedorov shift can be described with the
flux method. The effect should be small, ∆xIF ≈ 0.1 ∆xGH . It has been observed
with microwaves [307] and light [1034].

For this case it is interesting that the wavevector k and the flux S are both parallel
to the surface, but orthogonal on each other. The flux is perpendicular to the plane
of incidence.

The symmetry breaking (upward or downward flux) is inherent in the circularly
polarized laser beam [23, 478, 975]. Here the Poynting vector describes a helix about
the optical axis.

For matter waves the index of refraction can be tuned via the particle energy,
which is not possible with light. E.g. if E = V2 > V1, the critical angle for total
reflection is α = 0. Do we expect a Imbert-Fedorov shift for spinor condensates? Is
the plane wave approximation good or should be use real BEC wavefronts?

The total reflection of Laguerre-Gaussian beams has also been studied [969].

21.1.4 Matter wave Goos-Hänchen shift at a potential step

The phase of a BEC could be a sensitive probe for the Goos-Hänchen shift. Here, it
is important that the de Broglie wavelength be longer than the edge of the potential.
Otherwise, the effect is trivial even in the classical particle picture.

Matter waves behave analogously to optical waves, except that the Schrödinger
equation must be used. Consider the situation of a particle moving towards a potential
step at an angle α as shown in Fig. 21.2. The energy of the particle is E > V2 > V1.
The incidence region V1 corresponds to the atom optically thick medium (the de
Broglie wavelength is shorter, the propagation velocity fast, ℏk1 =

√
2m(E − V1). V2

is the atom optically thin medium.

Consequently we expect a critical angle αc beyond which the matter wave is totally
reflected,

sinαc =

√
E − V2
E − V1

. (21.13)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Appendix_GoosSelectiveReflection.m
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Figure 21.2: Matter wave refraction at a potential step.

For partial reflection, if the incident wave is described by [1091] ψ0 = eıxkx1+ıyky1 ,
the reflected and refracted wave are

ψ1 =
cosα−

√
sin2 αc − sin2 α

cosα+
√
sin2 αc − sin2 α

e−ıxkx1+ıyky1 (21.14)

ψ2 =
2 cosα

cosα+
√
sin2 αc − sin2 α

e−ıx
√
k22−k2y1+ıyky1 .

For total reflection,

ψ1 = exp


−ı2 arctan

√
sin2 α− sin2 αc

1− sin2 α


e−ıxkx1+ıyky1 (21.15)

ψ2 =
2 cosα

cosα+ ı
√

sin2 α− sin2 αc
e−x
√
k21y−k22+ıyky1 .

The matter wave Goos-Hänchen shift ∆GH can be estimated by comparing the
matter wave flux J = −i ℏ

2m (ψ∗∇ψ − ψ∇ψ∗) in the evanescent wave with the flux in
a ∆GH wide strip of the reflected beam. The result [1091] is

∆GH

2
=

sinα cos2 α

k cos2 αc
√

sin2 α− sin2 αc
. (21.16)

See [1091, 611].
The difficult question is now what the matter wave analogue of the Imbert-Fedorov

shift would be. It is known for relativistic electrons that momentum and velocity must
not necessarily be collinear [334]. How about particles with a real angular orbital
momentum, e.g. the reflection of vortices?

21.2 Special topic: The dilemma of Abraham and
Minkowski

If Minkowski is correct, then as a photon enters an atomic cloud with n > 1, then
the cloud receives a collective momentum in the direction opposite to the photon
propagation [230]. ’Momentum conservation requires then that the medium also has
a mechanical momentum. When a pulse of light enters the medium, the particles in
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the medium are accelerated by the leading edge of the pulse and decelerated by the
trailing edge.’ However, near resonance the refraction index is dispersive. I.e. for blue-
detuning we should expect n < 1 and hence a collective momentum in the direction
of photon propagation.

A picturesque interpretation would be, that the acceleration of the atoms by the
leading or trailing edge of the light pulse is due to the dipole force (real part of sus-
ceptibility). For red (blue) detuning, the atoms are accelerated backwards (forwards)
by the leading edge of the pulse and forwards (backwards) by the trailing edge. In
case, that the cloud absorbs or diffracts photons, a net momentum should remain in
the cloud: [817] ”The propagation of an optical pulse through a transparent dielectric
causes no transfer of momentum to the material, as a positive Lorentz force in the
leading part of the pulse is exactly balanced by a negative Lorentz force in its trailing
part. However, this balance is removed in the present problem because of the attenu-
ation of the light by its interaction with the charge carriers. This causes the leading
part of the pulse at a given time to be weaker than the trailing part and produces a
net negative transfer of momentum to the bulk semiconductor.”

Out side the medium, we know that the photon momentum is,

pout = mc , (21.17)

with m = ℏω/c2. Inside the medium, it is

pin = m
c

η
=

ℏω
ηc

. (21.18)

According to Minkowski, we must use m = ℏω/(c/η)2.

21.2.1 Calculation of the momentum of light in a dielectric
medium

Let us consider [898] a plane light wave within a dielectric medium given by ε = η2ε0
and µ = µ0,

E⃗(r, t) = êxE0 cosω (t− z/c) and H⃗(r, t) = êy

√
ε

µ0
E0 cosω(t− z/c) , (21.19)

The energy densities and the energy flows, called ’Poynting vector’, are (taking the
temporal average),

u =
1

2
(E⃗ · D⃗ + B⃗ · H⃗) = 1

2εE20 and S = E⃗ × H⃗ = 1
2

√
ε

µ0
E20 êz =

c

η
uêz . (21.20)

Therefore, the intensity of a light field, I = |S|, is increased by the dielectric. Rewrit-
ing this in terms of the average number of photons q in a volume V , we obtain for
the energy, ∫

ud3r = 1
2εE20V = Nℏω . (21.21)

The energy flow of a field of light is equal to the momentum carried by the photons.
For a single photon, we have,

pAbr≡
1

N

1

c2

∫
Sd3r =

ℏk0

η
. (21.22)
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However, Minkowski’s point of view was,

pMin =
1

N

∫
dV D⃗ × B⃗ = ηℏk0 . (21.23)

The recoil frequency is modified from ℏωrec = ℏ2k2

2m to ℏωηrec = η2ωrec [230].

21.2.1.1 Kinetic versus canonical momentum

In reality, what is propagating in the medium is NOT a photon, but a photon in-
teracting with atoms of the medium (otherwise we wouldn’t need a refractive index
to describe the propagation of light). The total momentum must, obviously, be con-
served. Upon entering a medium, part of the radiation momentum is transferred to
the medium [1132]:

ptot = pmed + prad . (21.24)

But how this repartition is done is, as long as we do not attempt to measure one or
the other component, arbitrary. We could chose (pmed,prad) → (pmedkin ,p

rad
kin), and

calling pAbr ≡ pradkin = ε0µ0

N

∫
E⃗ × H⃗dV the Abraham momentum, write,

ptot = pmedkin + pAbr . (21.25)

We could also chose (pmed,prad)→ (pmedcan ,p
rad
can), and calling pMin ≡ pradcan = 1

N

∫
D⃗×

B⃗dV the Minkowski momentum, write,

ptot = pmedcan + pMin . (21.26)

We could also chose (pmed,prad)→ (pmedrel ,p
rad
rel ), and calling pem ≡ pradrel = ε0

N

∫
E⃗ ×

B⃗dV the vacuum electromagnetic momentum, write,

ptot = pmedrel + pem . (21.27)

prel = pkin − E⃗ × 1
c2m , pkin = mv . (21.28)

21.2.1.2 Tentative explanations

People seem to agree on the interpretation that, as long as the propagation of the
energy in a medium is concerned, the Abraham interpretation is valid. The kinetic
momentum of a laser beam is given by the Abraham value pAbr. But as soon as
photons are localized by atoms, it is Minkowski? The scattering of a photon by an
individual atom tears away the atoms from its neighbors. The difference pmed in the
momentum pMin imparted to the individual atom and the momentum carried by the
photon pAbr is imparted to neighboring atoms.

The total momentum transfer to bulk material, free of any boundary or surface
effects, has the Abraham value of ℏω0/ηgc but that the transfer to an attenuating
subsystem within the bulk material has the Minkowski value of ηpℏω0/c [817].

The field carries a momentum pAbr per photon, but that there is also a momentum
pmed imparted by the field to the medium. An atom that absorbs or emits a photon of
frequency ω in the medium therefore recoils with the momentum pAbr + pmed = pMin,
as if the photon momentum were the Minkowski photon momentum pMin [898].

A slide show about this topic can be visualized at (watch talk).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AbrahamMinkowski
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21.2.1.3 Energy and momentum tensor in a dielectric

In a dielectric,

Tαβ =


 g0 cg̃jrad + cg̃jmat

cgirad + cgimat −Tij
rad −Tij

mat


 . (21.29)

We need girad+gimat = g̃irad+ g̃imat, but this does not necessarily imply, girad = g̃irad.
The Abraham form of the energy-momentum tensor is,

TαβAbr =


 g0 cgjrad + cg̃jmat

cgirad + cgimat −Tij
rad −Tij

mat


 . (21.30)

Obviously, the radiation term is symmetric. From the Minkowski form,

TαβMkw =


 g0 c−1E⃗ × H⃗+ cg̃jmat

cD×B+ cgimat −Tij
rad −Tij

mat


 , (21.31)

the radiation term is not symmetric. ’Every experiment is only sensitive to specific
terms of the complete energy-momentum tensor. Every experiment involving only
angular momentum will be insensitive to independently symmetric terms, and ex-
periments involving only linear momentum will be insensitive to terms, which are
divergence-free. ’ [1027].

The total electromagnetic stress tensor contains the following components,

Tαβ(m) = ρ0(c
2 + ϵi)u

αuβ + ϕ
(
uαuβ + δµν

)
(21.32)

Tαβ(f) = ε0c
2
(
FµγF νγ − 1

4F
2
γδδ

µν
)

Tαβ(P ) =
1

ε−ε0
(
PµγP νγ − 1

4P
2
γδδ

µν
)

Tαβ(M) =
1

µ−1−µ−1
0

(
MµγMν

γ − 1
4M

2
γδδ

µν
)
− F ∗µγMν

γ − FµγM∗νγ ,

with

uβ =


c
u


 , (21.33)

Pµν =


0 P⃗
P⃗ 1

c (v
aP b − vbP a)


 , Mµν =


 0 M⃗
M⃗ 1

c (v
aM b − vbMa)




D⃗ = εE⃗ = ε0E⃗ + P⃗ + 1
c

(
v
c × M⃗

)
, H⃗ = 1

µ B⃗ = 1
µ0
B⃗ − M⃗+ c

(
v
c × P⃗

)
.

Hence,

Mµνη = Tµνxη − Tµηxν (21.34)

0 = ∂ηM
µνη = Tµν∂ηx

η − ∂ηTµηxν = 3Tµν .
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21.2.1.4 Discussion in the framework of cooperative scattering

• It seems to me that the problem does not even arise in our cooperative scatter-
ing theory, at least as long as we don’t do the smooth density approximation.
Cooperative scattering from a coarse-grained cloud’s does not require the no-
tion of a refractive index. The notion of refractive index is an artifact coming
from the smooth density approximation. It is not surprising if its application to
coarse-grained atomic clouds can lead to apparently paradox effects. The para-
dox disappears within a correct microscopic theory of cooperative scattering.

On the other hand, the collective scattering theory may give some hints on
sheer forces within the cloud. Coarse-grained atomic clouds do not have sharp
boundaries. Thus, it is not essential, when the pulse enters the cloud, but when
a photon is scattered by an individual atom. The Abraham momentum has
never been measured really. If we measure pm and pmed we could infer pA from
the difference.

• Timed Dicke state gives wrong results for photon momentum inside cloud...!
Can we test this by manipulating the dispersive part of n?

• We can calculate the radiation pressure force. Can we also calculate the Poynt-
ing vector?

• Is the small displacement of the momentum halo ring into −ℏk0 direction real?
They all assume that the bulk of the recoil is absorbed by a single atom, but
that the other atoms also feel something. Perhaps, this holds for Bragg scat-
tering, where the high cooperativity leave the atoms only with two choices: Be
diffracted or stay in the cloud. In disordered clouds the situation may be not
so clear.

21.2.1.5 Test using sub-recoil resolving cavities

Advantage: Due to high cavity cooperativity we can enforce backscattering, which
facilitates the situation. If a single atom is backscattered from an atom inside the
atomic cloud, the recoil imparted to rest of the atomic cloud should be P = 2(η −
1)ℏk0, or p = P/N per atom. If many photons are scattered this should lead to an
appreciable acceleration. The use of a sub-recoil resolving cavity could allow detecting
the acceleration spectroscopically. Problem: How to distinguish this effect from the
shift of the cavity eigenfrequencies due to η?

A cavity immersed in a dielectric medium with n changes its resonances to ν0 =
c/ηλ. This shows that the wavelength is altered in the medium. I.e. forward scattering
with η > 1 shifts a cavity resonance to the red. What does it do to the atomic
resonance? Is this the collective Lamb shift?

A microscopic quantum mechanical description, e.g. based on the coupled dipoles
model detailed in Sec. 19.3.1 may lead to a deeper understanding of the interplay of
radiation and matter in a dielectric medium [1027, 587, 495, 817, 506, 230].

21.2.1.6 Shared recoil?

Assume a BEC irradiated by two intersecting laser beams in Raman configuration
tuned in a way as to generate Bragg diffraction. Applying a π/2 pulse, we observe
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matter wave interference. What is the resulting N -body state 1?

|Ψ⟩ = |ΨP ⟩ ± | −ΨP ⟩ = |P, P, P...⟩ ± | − P,−P,−P, ...⟩ (21.35)

|Φ⟩ = (|ψ1P ⟩ ± | − ψ1P ⟩)(|ψ2P ⟩ ± | − ψ2P ⟩)... (21.36)

We know the answer: The second case is correct, and we do not create Schrödinger
cat states. For every atom, the final state is completely independent of the presence
of the other atoms, i.e. the scattering is NOT collective in the sense that the recoil
momentum is distributed over several atoms.

Here are some question:

• Why does collective scattering seem to be negligible for Bragg diffraction?
We believe that the state generated by a Bragg pulse is a product state (or
Schrödinger kitten state): During the scattering process, every atom evolves
by itself into a superposition of momentum states, which is shaped the the
mean-field of other atoms.

• What does this mean for collective scattering? Is the final atomic state some
intermediate situation between |Ψ⟩ and |Φ⟩? Then there should be entangle-
ment.

• How can we break down theN -body matter wave function we found for collective
halos into the individual atoms?

• What is the correct ansatz for the state generated by a pump beam inside an
atomic cloud: The timed Dicke ansatz or the product state? They are identical
in the single-excited atom case, but different for higher excitations. Must the
experiment decide?

The p = mc argument leads to Abraham, the p = h/λ argument to Minkowski!

• ’Hidden’ momentum discussion by Saldanha. Consider Amperian current loop
in a uniform electric field: Smat = −IEbaNŷ = M⃗ × E⃗ There is a net material
momentum up canceled by an el.mg. momentum down.

• No interfaces no surfaces in atomic clouds.

• To what might correspond the division into an el.mg. and a medium part in
collective scattering?

21.2.2 Exercises

21.2.2.1 Ex: Einstein box Gedankenexperiment with a BEC

Estimate whether the Einstein box experiment is feasible with a BEC using EIT to
cancel absorption?

1Same idea, assume a BEC in one of two possible hyperfine states. Apply a microwave π/2-pulse.
Look at the internal degrees of freedom.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_AbrahamMinkowski01.pdf
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Solution: Consider a transparent slab of thickness D and mass M traversed by a
radiation pulse of wavevector ℏk0. The traversal time is,

τ =
D +∆z

c/η
, (21.37)

where ∆z is the displacement of the slab during the transit time. After the pulse
entered the slab, the slab a velocity,

vm =
ℏk0 − ℏkM

M
, (21.38)

so that the displacement after the pulse left the slab is

∆z = vmτ =
ℏ(k0 − kM )

M

D +∆z

c/η
, (21.39)

or

Mc2 = ℏc(k0 − kM )η(D +∆z) = ℏω(η − η kM
k0

)(D +∆z) . (21.40)

Relativistic energy must be conserved, because the system is closed, i.e.

pµp
µ = E2/c2 − p · p =Mc2 . (21.41)

Would such an experiment be able to yield one (or both) momenta: Abraham and
Minkowski?

21.3 Special topic: Advanced Gaussian optics

The most common mode is a Gaussian laser beam, which is the lowest order Hermite-
Gaussian mode. But other modes are possible.

21.3.1 Laguerre-Gaussian beams

Since several years, attention has been drawn on an unusual feature of light: The
fact that it carries angular momentum when it is in special modes called a Laguerre-
Gaussian mode [1208]. Furthermore, while it is well-known that the light polarization
couples to the internal degrees of freedom of atoms, the light angular momentum has
been predicted to couple to external degrees of freedom, i.e. light should be able to
exert a torque to the atomic motion [21, 65, 22, 20, 23, 973]. The torque has been
observed on macroscopic particles [1208]. For a hot atomic gas, the Doppler-effect
precludes the direct observation of torsional effect. Recently, phase-conjugation by
Non-Degenerate Four-Wave Mixing (ND4WM) in a Magneto-Optical Trap (MOT)
has been used to indirectly proof that the atoms acquired angular momentum from
light [1289]. Also, magneto-optical trap have been constructed based on laser beams
[757, 1223]. Those experiments exploited the doonat-shaped intensity distribution of
the LG modes, but did not demonstrate the effect of the torque. And frequency shift
[302]. Most traps for neutral atoms are based on light forces, for example the MOT
works with radiation pressure. Deliberate misalignement of the optical beams within
a plane can give rise to vortex forces and set up a racetrack for the atoms [1351, 71].

Laguerre-Gaussian modes can be generated using a Fresnel zone plate.
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21.3.1.1 Energy density in Laguerre-Gaussian modes

Besides plane and spherical waves, Gaussian beams and many other functions, the
Laguerre-Gaussian modes (LGM) are a solution of Maxwell’s equations, i.e. they
satisfy ∇2u + k2u = 0, where u is the scalar mode function of the beam [734]. The
vector potential in the Lorentz gauge, Φ = − 1

ık∇ ·A, of those modes in the paraxial
approximation [777] is given by [21],

Anm(r) = êxunm(r)e−ıkz

unm(r) = u00(r)
(
r
√
2

w(z)

)|l|
L
|l|
p

(
2r2

w(z)2

)
e−ılϕ e

ı(2p+|l|) arctan z
zR

u00(r) = u0√
z2+z2R

e
− r2

w(z)2 e
− ıkr2z

2(z2+z2R) e
ı arctan

z
zR

, (21.42)

where l = n − m and p = min(n,m). In the following we will use the convenient
cylindrical coordinate system defined in (12.43). Note that, for l = p = 0 we recover
a Gaussian beam, as will be shown in Exc. 21.3.2.3.

21.3.1.2 Poynting vector in Laguerre-Gaussian modes

The energy flux is given by the Poynting vector S⃗ = µ−10 E⃗ × B⃗ = c2p. |S⃗| is the beam
intensity. The energy density is u = 1

2 (ε0|E⃗ |2 + µ−10 |B⃗|2). The linear momentum and
angular momentum densities and total momenta are defined as,

p =
∫
℘⃗d3r with ℘⃗ = ε0E⃗ × B⃗

L =
∫
ℓ⃗d3r with ℓ⃗ = r× ℘⃗

. (21.43)

The cycle-average of the real part of the linear momentum density can in the paraxial
approximation be traced back to the mode function u, respectively, the scalar potential
Φ and the vector potential A using (17.78),

⟨℘⃗⟩ = ε0
2
(E⃗∗ × B⃗ + E⃗ × B⃗∗) (21.44)

= ıω
ε0
2
(u∗∇u− u∇u∗) + ωkε0|u|2êz + ωσ

ε0
2

∂|u|2
∂r

êϕ .

The components of the linear momentum density are [23],

℘⃗ = ε0ωk|u|2
[
êz +

rz

z2 + z2r
êr +

(
l

kr
− σ

2|u|2
∂|u|2
k∂r

)
êϕ

]
. (21.45)

The Poynting vector is in general not parallel to the wavevector k, but spirals about
the optical axis.



21.3. SPECIAL TOPIC: ADVANCED GAUSSIAN OPTICS 1161

21.3.1.3 Poynting vector in Hermite-Gaussian modes

This holds even for Hermite-Gaussian beams, as we will show in the following. We
start from the energy density of a LGM in Eq. (21.42). For a Gaussian mode l = p = 0,

|u00(r)| =
u0e
−r2/w(z)2

w(z)
. (21.46)

we find, as will be shown in Exc. 21.3.2.3,

℘⃗ = ε0ωk|u|2
[
êz +

rz

z2 + z2r
êr + σ

rzR
z2 + z2R

êϕ

]
. (21.47)

i.e. the radial component vanishes for small beam divergence, the azimuthal compo-
nent is on the order w0/zR ≈ 500 times smaller.

Inserting the full expression of the energy density of a LGM, one finds one term
containing σ and hence predicting spin-orbit coupling. It can be shown that it results
in a dissipative force proportional to lσ [20].

21.3.1.4 Mechanical forces exerted by Laguerre-Gaussian modes

The Laguerre-Gaussian modes are labeled by n and m, where l = n − m and p =
min(n,m), such that 2p+ |l| = m+n. We should recover the Gaussian field for l = 0.
The electric field Elp(r) = εlp(r)e

iθlp(r) is,

εlp(r) = ε00

√
p!

(|l|+ p)!

e−r
2/w(z)2

√
1 + z2/z2R

(
r
√
2

w(z)

)|l|
L|l|p

(
2r2

w(z)2

)
, (21.48)

θlp(r) =
kr2z

2 (z2 + z2R)
+ lϕ+ (2p+ l + 1) arctan

z

zR
+ kz .

With the Rabi frequency defined through,

Ωlp(r) = Ω0
w0

w(z)
e−r

2/w(z)2

(
r
√
2

w(z)

)|n−m|
L
|n−m|
min(n,m)

(
2r2

w(z)2

)
, (21.49)

Using the optical Bloch equations, we find the stationary solutions for the dipole and
the dissipative forces [20],

Fdip = −2ℏΩlp(r)
∆

4∆2 + 2Ωlp(r)2 + Γ2
∇Ωlp(r) , (21.50)

Fdiss = 2ℏΩ2
lp(r)

Γ

4∆2 + 2Ωlp(r)2 + Γ2
∇θlp(r) .

where the gradients are,
∇Ωlp(r) = ... (21.51)

and,

∇θlp(r) = −∇
[
−kz − lϕ− kr2z

2(z2 + z2R)
− (n+m+ 1) tan−1

z

zR

]
(21.52)

=

(
k +

kr2

2(z2 + z2R)

(
1− 2z2

z2 + z2R

)
+

(n+m+ 1)zR
z2 + z2R

)
êz +

krz

z2 + z2R
êr +

l

r
êϕ .
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Here we assume the velocity cold enough not to influence the detuning. Otherwise,
we must substitute ∆ → ∆ − v∇θ. At the waist z = 0 and for typical experimental
conditions r, k−1 ≪ zR,

∇θlp(r) ≈ kêz +
l

r
êϕ . (21.53)

We can now write the azimuthal force and the torque in analogy to the radiation
pressure,

Faz = ℏ
l

r

I

ℏω
σ(∆) (21.54)

and,

T = ℏ
r× l

r

I

ℏω
σ(∆) . (21.55)

If we further concentrate on the first Laguerre-Gaussian mode given by l = 1 and
p = 0 or n = 1 and m = 0, and assume low saturation Ω≪ Γ, we find the force,

Fdiss = −ℏΓ
[
kêz +

êϕ
r

]
e−2r

2/w2
0
2r2

w2
0

Ω2
0

4∆2 + Γ2
. (21.56)

It consists of a rotational torque and a component in k direction. For a normal Gaus-
sian field, l = 0. The LG modes have a ring-shaped intensity distribution I(Lag)(x, y).
Therefore, the rotational force depends on the distance from the axis and has a max-
imum at the radius r = w0/2. The dipole force contribution may be neglected close
to resonance, and higher-order contributions from the LG mode as well.

21.3.1.5 Laguerre-Gaussian standing wave

Many experiments are performed within the Rayleigh range, z ≪ zR, where,

Epl(r, ϕ) = E0fpl(r) e−ilϕeı(ωt−kz) , (21.57)

fpl(r) =
Ωpl(r)

Ω0
=
e−r

2
w/2

zR
r|l|w L|l|p (r2w) .

where we introduced the normalized paraxial distance rw ≡ r
√
2/w0. When such a

Laguerre-Gaussian beam is reflected form a mirror reflected from a mirror it changes
the signs of k −→ −k but not l→ l. We obtain a standing wave, made of ring-shaped
potentials,

∣∣∣fpl(r) e−ılϕeı(ωt−kz) + fpl(r) e
−ılϕeı(ωt+kz)

∣∣∣
2

= 4f2pl(r) cos
2 kz . (21.58)

At z = 0 the potential reads

Upl =
Ω2

4∆
=
σ0ΓI(x, y)

ℏω4∆
=

Ω2
0

4∆
4f2pl(r) , (21.59)

If in contrast the counterpropagating beam has an inverse angular momentum,

∣∣∣fpl(r) e−ılϕei(ωt−kz) + fpl(r) e
ılϕeı(ωt+kz)

∣∣∣
2

= 4f2pl(r) cos
2(kz − lϕ) , (21.60)



21.3. SPECIAL TOPIC: ADVANCED GAUSSIAN OPTICS 1163

the superposition of a Laguerre-Gaussian beam with a reflected beam gives an az-
imuthally periodic modulation like a circular 1D lattice, which is twisted along the
ẑ-axis. However there is no axial confinement. The intensity resembles a knot of l
worms winding about the ẑ-axis at constant distance like helices. Axial modulation
has to be obtained by an additional plane wave [27].

Let us calculate the dipole force via F = −∇U ,

∂f2pl(r)

∂x
= 2fpl(r)

∂r

∂x

∂

∂r

e−r
2
w/2

zR
r|l|w L|l|p (r2w) (21.61)

= fpl(r)
2 8x

w2
0

[
|l|
2r2w
− 1

2
−
L
|l|+1
p−1 (r2w)

L
|l|
p (r2w)

]

using d
dxL

(m)
n (x) = −L(m+1)

n−1 (x).

21.3.1.6 Creation of Laguerre-Gaussian modes

The polarization of light couples to the internal degrees of freedom of the atoms.
But special light modes, i.e. the higher-order Laguerre-Gaussian (LG) modes, may
carry orbital angular momentum. This angular momentum couples to the external
degrees of freedom of the atoms [21, 65, 22, 20], i.e. the light exerts a torque onto
the atoms. This light force is, however, very weak and in a gas cell with hot atoms,
the Doppler-effect smears out the motional effect. Nevertheless, the torque has been
observed with macroscopic particles [1208]. And in a Magneto-Optical Trap (MOT),
phase-conjugation by nondegenerate four-wave mixing has been used to indirectly
prove the transfer of angular momentum to the atoms [1289]. Finally, MOTs using
Laguerre-Gaussian laser beams been constructed, however without demonstrating the
effect of the torque [757, 1223].

Figure 21.3: Masks for generating Laguerre-Gaussian beams.

The interference of such a mode with a plane wave v yields interference patterns
proportional to,

unm(r)e−ikz + vnm(r)e−ikz ∝ cos

(
−lϕ− kr2z

2z2R
− (m+ n+ 1) arctan

z

zR

)
. (21.62)

At some distance z ̸= 0 and for l ̸= 0 the patterns have Yin-Yang spiral shape. In-
versely, like in holography, plane waves are diffracted at the spiral patterns in such a
way that they generated a Laguerre-Gaussian mode. This is not an image. Images
are also formed with undiffracted parts of the plane wave. The patterns form a funda-
mental focus at a distance f and subfoci at distances f/2, f/3, .... The fundamental
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beam is separated from the undiffracted and higher-order Fresnel modes by a short
focal length lens placed in the fundamental focus. A spiral mask can be generated by
setting z = zR in Eq. (21.62) and filling black the region where r and ϕ satisfy [593],

cos

(
−lϕ− kr2

2zR
− π(n+ 1/2)

)
> 0 . (21.63)

A special case is defined by l = 0 which reproduces the Fresnel zone plate. The orbital
momentum may be transferred to the atomic motion. Perhaps this also has an effect
on the internal degrees of freedom: The higher-order orbital angular momentum may
couple to higher multipole moments. At reflection on a mirror, the symmetry of the
LG mode is inverted. Therefore, we can build a standing wave LG beam with no axial
force (if the intensities are balanced and the waists matched) and twice the torque.
LG modes can also be created from normal Gaussian modes with an arrangement of
cylindrical lenses.

Figure 21.4: Laguerre-Gaussian beams with various charges.

21.3.1.7 Optical signatures

The interference of a Laguerre-Gaussian mode (LGM) with a phase-matched plane
wave Gaussian beam yields interference patterns shown in the above figure. In the
far-field, the laser beam forms a ring-shaped LGM. Higher-order topological charges
are easily detected in the interference patterns through the occurrence of bifurcations
or by the number of arms spiraling into the center.

Figure 21.5: Bifurcations in a Laguerre-Gaussian beam.
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21.3.1.8 Detection of photon torque in ion traps

The general force of a light beam on an atom consists of the dipole force which
depends on the intensity gradient in the light beam and the radiation pressure which
is proportional to the phase gradient. The dipole force has a neglegible contribution
to the torque, so that we will concentrate on the radiation pressure.

The torque eventually accelerates a rotational motion of the irradiated atoms that
may be directly detected by suitable velocimetric schemes (i.e. heterodyne beating
[1371]). The methods are based either on the Doppler effect shifting the atomic res-
onance lines or on the spatial resolution of the coordinate ot momentum distribution
of the atoms. We will discuss four possibilities: A. fluorescence spectra, B. excitation
spectra, C. fluorescence imaging, D. absorption imaging.

For detection of the pure effect, one might consider either free atoms, optical
molasses, atoms trapped in a MOT or ions confined in Penning or Paul traps. Ion
traps are better suited for detecting the Doppler shift [1048]. The ion traps are very
deep (several eV) so that they can stay trapped even when heated by laser beams.
MOTs or molasses or cold atoms in free expansion might allow to detect the effect of
redistribution of the atoms by the azimuthal force.

Hot gases have inhomogeneously Doppler broadened fluorescence spectra. For a
Maxwell-Boltzmann velocity distribution, the line profile will be Gaussian. On the
other hand, if the atoms are cold kv̄ < Γ, the inhomogeneous broadening disappears
and the linewidth is given by the spontaneous decay of the upper level (Lamb-Dicke
regime). If cold atoms are subject to a torque, the velocity distribution will exhibit
a significant deviation from the Gaussian shape. The shape of the fluorescence spec-
trum also should strongly depend on the observation axis. In the simplest case of
atoms rotating with a constant velocity of 12m/s around the z-axis, watching per-
pendicularly to the z-axis the fluorescence spectrum should exhibit shoulders. Could
also take stroboscopic TOF pictures. For sodium Γ = 2π × 10MHz this corresponds
to 6m/s velocity or 40µK temperature.

The excitation spectrum of a single oscillating two-level atom is easy to predict.
For a sodium atom λ = 589 nm, rotating with ωrot = 2π × 10 kHz on an orbit with
r = 1mm, radius the excitation spectrum can be described by a convolution (figure ).
For multi-level systems, we have to solve the Bloch equations with an oscillating term
using the method of infinite fractions. For sodium, the characteristics cannot be
resolved because of the hyperfine splitting being smaller than kvmax ≈ 2π×100MHz.
Cesium might be better.

Experimentally, one could either analyze the fluorescence spectrum with homodyne
beating or deduce the velocity distribution from the dependence of the optical cross
section of the Doppler-induced detuning, i.e. by recording excitation spectra 2.

21.3.1.9 Detection of photon torque in atomic gases

Let us consider a cloud of 109 sodium atoms at densities around 109 cm-3 and tem-
peratures around 300µK. Then the magnetic field is suddenly switched off and the
laser beams are detuned further from resonance and attenuated. This configuration
consists a friction force for the atoms, but there is no restoring force. The atoms move

2An interesting question is whether there is coupling to higher multipole moments of internal
transitions.
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in this so-called optical molasses for 5ms before the laser beams are switched off, too.
After 15ms, a time-of-flight image tells us the velocity distribution at the switch-off
time. During the molasses period, we can irradiate two counterpropagating LG laser
beams along the symmetry axis of the trap. This light is resonant to the F = 2 to
F ′ = 3 transition of the D2 line.

Being released from the MOT, the atoms are initially inhomogeneously distributed
in space as well as in velocity space. Then molasses, then atoms feel different Ω(r,∆).
Effects of optical pumping and repumping in a multi-level system? Problems with
imbalanced z component in the standing wave LG beam? Consider collisions? Atoms
get out of resonance when kv ≫ Γ,Ω.

Comparing the equations for radiation pressure and for the azimuthal force, we
see that the relative strength of the forces is like k and r−1 which is on the order of
1:10000 for typical experimental conditions, and the wanted effect is rather small. The
longitudinal radiation pressure can be compensated by taking two counterpropagating
beams. Upon reflection on a mirror, the symmetry of the LG mode is inverted, so
that it is easy to build a standing wave LG beam with no axial force (if the intensities
are balanced and the waists matched) and twice the torque 3.

21.3.1.10 Monte-Carlo simulations

Numerical Monte-Carlo simulations of the motion of the atoms in a Laguerre-Gaussian
beam can be performed by solving the deterministic Newton equations and adiabati-
cally updating the initial conditions. This procedure disregards the stochastic recoil
induced by spontaneous emission and therefore does not reproduce the random walk
of the atoms. We start by generating a numeric atomic cloud trapped in a MOT with
randomly distributed initial conditions in position and velocity space. The velocity
distribution is chosen according to a temperature of 300µK, the position distribution
according to reproduce the experimentally observed size of the MOT, i.e. typically
3mm. We sometimes arbitrarily distort the position distribution to make the influence
of the torque more visible.

It is important to consider the cross saturation of both the molasses and the
Laguerre beams j =ML,LG:

σm=x,y,z(∆
(j)) (21.64)

=
Γ2

4(∆(j) − kêmv − µB/ℏ · (r · ∇)B)2 + 2
∑
j

∑
n=x,y,z 2Ω

(j)
n (r)2 + Γ2

,

where

Ω(ML)
m=x,y,z(r) = Ω(ML)e−|êm×r|2/w2

mot (21.65)

and

Ω(LG)
m=x,y(r) = Ω(LG)e−|êm×r|2/w2

LG

√
2
|êm × r|
wLG

. (21.66)

3An interesting question is whether LG beams can be coupled into linear cavities. If so, we
expect ring-shaped intensity profiles, with axial standing wave modulation, having a constant angular
momentum along axial direction. This would represent an ideal system to study torque, since the
axial component is balanced exactly.
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The forces of the molasses beams and the Laguerre-Gaussian beam are calculated in
two dimensions by,

F =
∑

m=±x,±y,±z

êmℏk · Ω
(ML)
m (r)

Γ

2

· σm(∆(ML))

σ0
+

∑
m=±x,±y

êϑℏ/r · Ω
(LG)
m (r)2

Γ
· σm(∆(LG))

σ0
.

(21.67)

Employing the Verlet algorithm for the Monte-Carlo iteration of the position and
velocity of the atoms after each time step dt

r = r0 + v0dt+
1

2mF0dt
2 (21.68)

v = v0 +
1

2m (F+ F0)dt

t = t+ dt .

Here, ∆mot, Ωmot, and wmot denote the detuning, Rabi frequency and waist of the
molasses (and MOT) beams.

A more sophisticated method would simulate the random walk by including spon-
taneous emission either simultaneously doing Monte-Carlo wavefunction simulations
of the optical Bloch equations or by simulating a random waiting time to the next
absorption process.

The most obvious impact of the Laguerre-Gaussian beam on the atomic motion
was seen when 1) a non-uniform spatial MOT distribution was generated, 2) the
LG beam was strongly saturating and irradiated for several ms during the molasses
period (that way, the velocity distribution was modified by the torque, but the viscous
friction did not allow a radial acceleration), 3) the atoms were allowed to ballistically
expand. This converted the velocity distribution into a position distribution and gave
rise to a characteristic shape of the atomic cloud [478].

21.3.2 Exercises

21.3.2.1 Ex: Gaussian and Laguerre-Gaussian beams

Convince yourself that the Laguerre-Gaussian beam parametrized in (21.42) corre-
sponds to the Gaussian beam of (18.293).

Solution: The Gaussian beam is,

ψ(r) =
w0

w
eı arctan(−z/q0)−ık(x

2+y2)/2q =
w0

w
e−kr

2zR/2(z
2+z2R)eı arctan(−z/q0)−ıkr

2z/2(z2+z2R) ,

using (18.288). On the other hand, the zero-order Laguerre-Gaussian beam is,

u00(r) =
u0√
z2 + z2R

e−kr
2zR/2(z

2+z2R)eı arctan(−z/q0)−ıkr
2z/2(z2+z2R

=
u0
zR

w0

w
e−kr

2zR/2(z
2+z2R)eı arctan(−z/q0)−ıkr

2z/2(z2+z2R) =
u0
zR
ψ(r) ,

using L0
0(x) = 1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_LaguerreGauss01.pdf
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21.3.2.2 Ex: Motion of atoms in Laguerre-Gaussian beams

Programs on the motion of atoms in Laguerre-Gaussian beams.

Solution: LaguerreGaussian1
LaguerreGaussian2 intensity and phase profile and force fields.
LaguerreGaussian3 beating with a plane wave.
LaguerreGaussian4 superposition with a reflected wave.
LaguerreExpansion Motion of a free atom in a MOT with Laguerre-Gaussian laser
beam. Calculated trajectories and endpoints for several atoms, the force stops when
Doppler shift ¿ linewidth.
LaguerreExpansion1 Only endpositions calculated.
LaguerreExpansion2 Makes a movie.
LaguerreExpansion3 Makes a movie, specializes on first order Laguerre beam.
LaguerreExpansion4 Nonlinearized molasses forces without random walk by sponta-
neous emission.
LaguerreExpansion5 Atomic motion in a ring built by counterpropagating LG beams
with dipole force.

21.3.2.3 Ex: Linear momentum density for Hermite-Gaussian modes

Compare the linear momentum density for Hermite-Gaussian (18.293) and Laguerre-
Gaussian (21.42) modes.

Solution: Using (18.290) ...

21.4 Special topic: Superconductivity

At low temperatures some metals completely give up electric resistance. This ef-
fect found by Kammerlingh-Onnes is called superconductivity and has been explained
through Bose-Einstein condensation of electron pairs [290]. But before we outline this
theory let us try a classical approach based on electrodynamics as proposed by Fritz
and Heinz London.

21.4.1 London model of superconductivity and the Meissner
effect

We learned in Sec. 14.3.2 that Ohm’s law is explained within the Drude model by the
fact that the accelerating Coulomb force of the electric field, mv̇ = qE⃗ , is spoiled by
collisions,

j = ς E⃗ . (21.69)

Let us now suppose a perfect conductor, where collisions are absent. Then, if we want
the current density j = ϱv to be constant,

0 = j̇ = ϱv̇ = −q
2ne
m
E⃗ , (21.70)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_LaguerreGauss02.pdf
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where ϱ = −ene is the free electron charge density.
Let us now study the behavior of the magnetic field in a conductor with µ0 = 0.

Maxwell’s equations require,

∇× E⃗ = − ˙⃗B and ∇× B⃗ = µ0j+
˙⃗D . (21.71)

Assuming
˙⃗D = 0 the above equations can easily be solved, yielding,

∇2 ˙⃗B =
µ0neq

2

m
˙⃗B . (21.72)

This equation describes the behavior of a magnetic field in and around a perfect
conductor.

Figure 21.6: Scheme of the Meissner effect.

As we will see in Exc. 21.4.5.1, the solution of Eq. (21.72) predicts an expulsion of
the magnetic field out of the conductor, as illustrated in Fig. 21.6. This effect is termed
the Meissner-Ochsenfeld effect. That is, in the absence of resistivity, a conductor acts
like a perfect diamagnetic (magnetic susceptibility χm = 1). According to the Lenz
rule, the electrons try to compensate any B-field change by collectively rotating such
as to counteract the change. The electrons rotate in such a way that the B-field
disappears inside the conductor, which leads to an amplification of the field near the
surfaces. As a consequence, permanent magnets are repelled from superconducting
surfaces.

The problem is that the discontinuity of the magnetic field at the periphery of
the superconductor should violate the continuity equation. And in fact, it is ex-
perimentally observed, that the magnetic field is not completely expelled from thin
superconducting films, because the magnetic field penetrates somewhat into the super-
conductor with the penetration depth λL. In order to understand this, it is necessary
to replace the classical Ohm’s law for the current density j and the electric field E⃗ ,
j = ς E⃗ , by the London equation.

The London brothers postulates that the magnetic field inside a superconductor
would not only be constant, as predicted by Eq. (21.72) by vanish altogether,

∇2B⃗ =
µ0neq

2

m
B⃗ . (21.73)

We will study consequences of this equation in Exc. 21.4.5.2.

21.4.1.1 Derivation of the London equation

The London equation can be derived in the framework of quantum mechanics, con-
sidering the superconducting state as a macroscopically extended quantum state de-
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scribed by the following wavefunction,

ψ(r) = ψ0e
ıS(r) , (21.74)

where S = S(r) is the phase of the macroscopic wavefunction. ψ2
0 = ne corresponds

to the density of the number of Cooper pairs in the superconductor. The implicit
assumption of a homogeneous density of the Cooper pairs is reasonable, since the pairs
are negatively charged and repel each other. Any imbalance of the density of pairs
would therefore generate an electric field, which would be compensated immediately.
The kinetic momentum operator in the presence of a magnetic field, p = −ıℏ∇ −
qA, where A = A(r, t) is the vector potential of the magnetic field, applied to the
wavefunction ψ gives,

mvψ = pψ = (ℏ∇S − qA)ψ . (21.75)

That is,

v =
ℏ
m
∇S − q

m
A . (21.76)

With j = qnev follows immediately,

j =
neqℏ
m
∇S − neq

2

m
A . (21.77)

This is the London equation.
There are two useful forms of this equation, sometimes referred to as the 1st and

the 2nd London equation,

∂tj =
neq

2

m
E⃗ , (21.78)

and

∇× j = −neq
2

m
B⃗ . (21.79)

The phase S does not contribute to these two equations. It does not contribute to
the first equation, because the phase is only dependent on the position and therefore
constant in time, and it does not contribute to the second equation, because∇×∇S =
0 4

21.4.2 BCS theory

Many-body effects like superconductivity are not explained by the free electron or
the Bloch model. Superconductivity is characterized by two main features: The
disappearance of electrical resistance in some metals at temperatures below roughly
T ≃ 10K, and the expulsion of magnetic flux lines out of the metals, known as
Meissner-Ochsenfeld effect.

According to Bardeen-Cooper-Schrieffer near the edge of the Fermi surface induced
by weak attractive interactions strong correlations in momentum space may build up.

4Note that, although the phase does not contribute to the last two formulas, it should not be
neglected! If the phase component were not included, it would mean that the current density without
magnetic field would have to be zero. In reality, however, the phase gradient can also contribute to
the current density, which therefore need not necessarily be zero, i.e. the current density is not zero,
although no magnetic field is applied.
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Such interations can be mediated by local polarization traces, i.e. deformations of the
lattice or phonons, imprinted by a moving electron into the metallic lattice and sensed
by a second electron following at a reasonable distance [207, 244]. Thus Fermi gases
are unstable with respect to formation of bound fermion pairs. However, fermion
pairs are not bound in the ordinary sense, and the presence of a filled Fermi sea
is essential. Rather, we have a many-body state. Hence, the interpretation as a
Bose-condensate of Cooper pairs explains some characteristics like the existence of
a delocalized macroscopic wavefunction and the superfluid-like behavior suppressing
the electrical resistance. But it oversimplifies and does not account for the important
role of fermionic statistics in the many-body state.

The requirements for Cooper pairing are 1. low temperature to rule out ther-
mal phonons, 2. strong electron-lattice interaction, 3. many electrons just below EF ,
4. anti-parallel spins, and 5. antiparallel momentum of the electrons.

Below Tc the motions of the electrons and the ions in the lattice are highly corre-
lated. Cooper pairs are weakly bound, in thermal equilibrium with unpaired electrons,
and have a vanishing total momentum. The typical distance of the electrons in a pair
is roughly 100 nm. Although the fraction of paired electrons is only 10−4, their number
within the volume occupied by a single pair is 106.

Cooper-pairs form through scattering processes. Since all states below the Fermi
surface are occupied, the final momenta must be above kF . In other words, the two
electrons are excited from slightly below E = EF to slightly above E + Eg/2 = EF ,
where they profit from the large amount of available empty states allowing for their
high mobility and letting them transit into the strongly correlated pairing state. The
pairs then have the binding energy Eg, because the increase in kinetic energy must
be overcompensated by the potential energy. Such processes smooth out the Fermi
edge even at T = 0, as if the temperature really were at T ≃ Tc.

An energy gap forms which has just the width Eg. Its origin is understood as
follows: If an electron could slightly change its energy, the pair correlation would
immediately break up and the binding energy Eg liberated. But this energy cannot
be dissipated. Since the binding energy for Cooper pairs is roughly Eg ≃ 3kBTc, a
thermal noise source must at least provide the energy 3kBTc, which is not possible if
T < Tc. At higher temperatures, the pairing gap narrows and vanishes at T = Tc.
The gap can be spectroscopically probed with IR radiation.

Higher B fields require lower critical temperatures. The critical temperature drops
with rising mass of the ions, Tcm

1/2 = const. This indicates that the vibration of the
lattice ions is crucial for superconductivity.

Magnetic fields trying to penetrate superconducting wires perturb the supercon-
ductivity. This problem can be reduced in type II superconductors, where the size of
the Cooper pairs are reduced and employing superconducting wires containing normal
conducting channels.

The quantitative treatment starts with the two-body Schrödinger equation,

[
− ℏ2

2m
(∇2

1 +∇2
2) + V (r1 − r2)

]
Ψ(r1, r2) = (E + 2EF )Ψ(r1, r2) . (21.80)
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Here we assume singlet pairing s-wave collisions. Center-of-mass and relative coordi-
nates are now separated, giving,

[
−2 ℏ2

2m
∇2
r + V (r)

]
ψ(r) =

(
E + 2EF −

ℏ2K2

4m

)
Ψ(r) . (21.81)

Transforming into momentum space, assuming that the Fourier transform V (p, p′) =
V −1

∫
e−ı(p−p

′)rV (r)d3r is only nonzero, = V0, inside an energy interval smaller than
the Debye frequency ℏωD close to the Fermi surface, we finally arrive at the binding
energy of the Cooper-pair,

E = − 2ℏωD
e2/VoD(EF ) − 1

, (21.82)

where D(EF ) ∝ kF is the density of states at the Fermi surface. Estimating V (r) ≈
ℏ2/ma2 the Fourier transform goes like V0 ∝ a, so that kBTBCS ∝ −e−π/2kF |as|(see
Sec. 49.4).

A full quantum treatment reveals the presence of a gap. This gap can also be
understood in the following way. In the normal state the energy spectrum is twofold
degenerate. A state with a hole in the Fermi surface has the same energy as a state
with an electron above the Fermi surface. Cooper-pairing couples those states, which
leads to energy splitting and introduces a pairing gap,

|uk|2 =
1

2

[
1 +

ϵk − EF√
∆2

0 + (ϵk − EF )2

]
= 1− |vk|2 (21.83)

∆ = −
∑

k

ukvk .

The product ukvk only contributes near the Fermi surface. We get a density of states,

Ds(E) = Dn
|E − EF |√

−∆2
0 + (ϵk − EF )2

, (21.84)

which has a gap. The states are redistributed toward the edges of the gap.
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superconducting

ground state
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Figure 21.7: Pairing gap in the energy spectrum and the density of states.
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21.4.3 Josephson junctions

Two superconductors that are joined by a nm thin isolating oxide layer build a Joseph-
son junction (JJ) [685]. Cooper pairs may tunnel through the junction producing a
current flow iJ . The basic JJ is described by,

iJ = Ic sinφ and v =
Φ0

2π

dφ

dt
, (21.85)

where

Φ0 =
h

2e
. (21.86)

Ic is the critical supercurrent of the junction, and v is the voltage at the JJ. φ is
a dynamical variable describing the phase difference between the macroscopic wave
functions on both sides of the junction. Note that for small φ we have u ∝ i similar
to the situation in a magnetic coil. The ac-Josephson effect consists in applying
a constant voltage. Then φ increases linearly in time and the Josephson-current
oscillates at a given (microwave) frequency [505],

fJ =
v

Φ0
. (21.87)

This allows a very precise measurement of h/e.

21.4.4 Synchronization of coupled Josephson junctions

The superconducting flux is quantized. A superconducting quantum interference de-
vice consist of two JJs connected in parallel. In that way the supercurrent is split and
recombined.

21.4.4.1 Resistively shunted junctions

In a widely accepted model of nonideal resistively shunted junctions (RSJ) [1031]
the junction current consists of three components: A superconducting current iJ =
Ic sinφ, a resistive current iR = v/R, and a capacitance current v̇C (see Fig. 21.8).
From Kirchhoff’s laws using (21.85),

C
Φ0

2π

d2φ

dt2
+

1

R

Φ0

2π

dφ

dt
+ Ic sinφ = i , (21.88)

if the resistance is assumed independent of the applied voltage. Located in front of
the term φ̇ the resistivity is inversely proportional to the dissipation. The reason for
this is that dissipation occurs via single-particle tunneling. Note that the equation is
identical to that of an overdamped rotator or of a phase-locked loop.

Neglecting the resistance, the equation of motion can be derived from the Hamil-
tonian,

Ĥ =
p2φ

2CΦ0/2π
− iφ− Ic cosφ , (21.89)

via φ̇ = ∂H
∂pφ

and ṗφ = −∂H∂φ . The φ and pφ are conjugate variables,

[φ, pφ] = ı . (21.90)
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Figure 21.8: Resistively shunted Josephson junction.

Let us go to scaled variables via H̃ ≡ H/(CΦ0/2π), p̃φ ≡ pφ/(CΦ0/2π), K ≡
Ic/(CΦ0/2π), and λ ≡ i/(CΦ0/2π),

H̃ =
p̃2φ
2
− λφ−K cosφ , (21.91)

In these units,

[φ, p̃φ] = ı
e

ℏC
. (21.92)

21.4.4.2 Response to ac driving sources

Let the applied voltage be v(t) = V0 + Vs cosωst. We may substitute the voltage in
(21.85) and integrate,

φ = φ(0) +
2π

Φ0
V0t+

2π

Φ0

Vs
ωs

sinωst . (21.93)

The resistive current is then,

iR =
V0
R

+
Vs
R

cosωst , (21.94)

and plugging (21.93) this into the Josephson current (21.85),

iJ = Ic sin

(
φ(0) +

2π

Φ0
V0t+

2πVs
Φ0ωs

sinωst

)
(21.95)

= Ic
∑

n

(−1)nJn
(
2πVs
Φ0ωs

)
sin [(fJ − nωs)t+ φ(0)] ,

where we expanded the double sine into Bessel-functions. The time-averaged Joseph-
son current disappears unless fJ = nωs,

īJ = Ic
∑

n

(−1)nJn
(
2πVs
Φ0ωs

)
sin [φ(0)] δ(fJ − nωs) . (21.96)

The averaged total current i = īR + īJ as a function of the applied voltage v thus
obtains a washboard-type characteristics,

i =
V0
R

+ Ic
∑

n

(−1)nJn
(
2πVs
Φ0ωs

)
sin [φ(0)] δ(v − nωsΦ0) . (21.97)

The plateaus in the i-v characteristics are called Shapiro steps. They appear at
voltages nℏωs/4πe. In the case of arrays of m JJs, steps are also observed at voltages
corresponding to rational fractions of frequencies mωj = nωs, provided the JJs are
locked [249].
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Figure 21.9: (code) Shapiro steps and their derivative.

21.4.4.3 Locking

To study the locking phenomenon we simplify the JJ equation by neglecting dissipa-
tion, C = 0,

Φ0

2π

dφ

dt
= Ri+RIc sinφ . (21.98)

This is the so-called Adler equation,

dψ

dt
= −ν + ε sinψ , (21.99)

whose formal solution is [1031],

t =

∫
dψ

ε sinψ − ν . (21.100)

The beat frequency is,

Ωψ = 2π

∣∣∣∣∣∣

∫
dψ

ε
(
1− ψ2

2

)
− ν

∣∣∣∣∣∣

−1

, (21.101)

expanding around the maximum at ψ = π/2,

Ωψ ≃ πε
∣∣∣∣
∫

dψ

−ψ2 − 2νε + 2

∣∣∣∣
−1

= π
√
2ε
√
ε− ν

∣∣∣∣∣

∫
dψ̃

1− ψ̃2

∣∣∣∣∣

−1

≃ π
√
2ε
√
ν − ε .

(21.102)
This is due to a locking of the drive frequency and the frequency of the oscillators.

21.4.4.4 Devil’s staircase

Locking can also happen between higher harmonics. To see this we chose an alterna-
tive treatment goes as follows. The equation of motion with a pure ac driving voltage
without resistance is,

C
Φ0

2π

d2φ

dt2
+ Ic sin

(
φ(0) +

2πV0
Φ0

t+
2πVs
Φ0ωs

sinωst

)
= 0 . (21.103)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Appendix_JosephsonShapiroSteps.m
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Figure 21.10: (code) Arnold tongue.

It can be derived from the Hamiltonian,

Ĥ =
p2φ

2CΦ0/2π
− Ic cos

(
φ(0) +

2πV0
Φ0

t+
2πVs
Φ0ωs

sinωst

)
. (21.104)

Substituting H̃ ≡ H/(CΦ0/2π), p̃φ ≡ pφ/(CΦ0/2π), K ≡ Ic/(ωsCΦ0/2π), and λ ≡
ı/(ωsCΦ0/2π), ...

We now go to the annulus map describing the Josephson junction. The JJ map can
be interpreted as a δ-kicked rotor. The dissipative map [1431] predicts the occurrences
of locking regions, known as Shapiro steps observed at all simple rational numbers
m/n. They are equivalent to those of a devil’s staircase.

21.4.4.5 Quantized JJ

The quantized energy levels of the JJ cosψ potential result in a phase quantization.
As a consequence, the energy exchange between an oscillating driving pump, ωs, and
the JJ, only occurs in multiples of ωJ .

To visualize quantum effects, one has to go to the quantum map |ψn+1⟩ = Ûψn.

21.4.5 Exercises

21.4.5.1 Ex: Perfect conductor

Calculate the magnetic field near a perfect conductor by solving equation (21.72).

Solution:

21.4.5.2 Ex: Perfect conductor

Quantify the Meissner effect for a thin layer by solving equation (21.73).

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ElectroDynamics/ED_Appendix_JosephsonLocking.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_PerfectConductor01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_PerfectConductor02.pdf
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21.4.5.3 Ex: Meissner-Ochsenfeld effect

Calculate the magnetic field inside a thin superconducting layer as a function of layer
thickness and temperature.

Solution: See Lucca 7300035/2020-2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ElectroDynamics/Sol_ED_Appendix_PerfectConductor03.pdf
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21.5 Quantities and formulas in electromagnetism

21.5.1 Electromagnetic quantities

charge Q basic SI unit [C]

electric field (Coulomb law) E⃗ dE⃗(r) = 1
4πϵ0

dQ(r−r′)
|r−r′|3

Coulomb law E⃗(r) = 1
4πϵ0

∫
V
ρ(r′)(r−r′)
|r−r′|3 d3r′

superposition principle F = F1 + F2

Coulomb force FC FC = qE⃗
electric dipole moment p p ≡ qr
electric torque τ⃗ τ = p× E⃗
potential energy of electric dipoles Ue Ue = −p · E⃗
electric flux Ψe Ψe ≡

∫
S E⃗ · dS

electric Gauß law
∮
S E⃗ · dS = Qdentro

ϵ0
= 1

ϵ0

∫
V ρ(r

′)d3r′

gradient ∇ ∇ ≡∑k êk
∂
∂xk

potential V V ≡ −
∫
γ
E⃗ · dr

voltage U U12 ≡ V2 − V1
capacity C C ≡ Q

U

plate capacitor C = ϵ0A
d

resistance (Ohm’s law) R R ≡ U
I

lei 1. de Kirchhoff
∑
k Uk = 0 in every mesh

lei 2. de Kirchhoff
∑
k Ik = 0 in every node

magnetic field (Biot-Savart law) B⃗ dB⃗(r) = µ0

4π

∫
C
Idℓ⃗×(r−r′)
|r−r′|3

Biot-Savart law B⃗(r) = µ0

4π

∫
V

(r−r′)×j(r′)
|r−r′|3 d3r′

Lorentz force FL FL = qv × B⃗
magnetic dipole moment µ⃗ µ⃗ ≡ IA
magnetic torque τ⃗ τ⃗ = µ⃗× B⃗
potential energy of magnetic dipoles Um Um = −µ⃗ · B⃗
magnetic flux Ψm Ψm ≡

∫
S B⃗ · dS

magnetic Gauß law
∮
S B⃗ · dS = 0

Ampère’s law
∮
C B⃗ · dℓ⃗ = µ0Identro = µ0

∫
S j(r

′)d2r′

Faraday law Uind = −dΦm

dt

inductance L L ≡ − Uind

dI/dt

self-inductance of a coil L = µ0
N2πr2

ℓ

Poynting vector S⃗ S ≡ E⃗ × H⃗
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electric displacement D⃗ D⃗ = εE⃗
polarization P⃗ P⃗ = D⃗ − ε0E⃗
magnetic excitation H⃗ H⃗ = µ−1B⃗

magnetization M⃗ M⃗ = µ−10 B⃗ − H⃗
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21.5.2 Formulas of special relativity

metric Kronecker symbol (δµν)

Lévi-Civita symbol (ϵµνωκ)

Minkowski metric (ηµν)

Lorentz transform (Λµν)

position (rµ) ≡
(
ct
r

)

displacement (∆rµ) ≡
(
c∆t
∆r

)

space-time interval ∆s2 ≡ ∆rµ∆r
µ = c2∆t2 −∆r2

proper time ∆τ ≡
√

∆s2

c2 for ’time-like’ intervals ∆s2 > 0

proper distance |∆S⃗| ≡
√
−∆s2 for ’space-like’ intervals ∆s2 < 0

gradient (∂µ) ≡
(
c−1∂t
−∇

)

d’Alembertian □ ≡ ∂µ∂µ = 1
c2

∂2

∂t2 −∇2

mechanics proper velocity (uµ) ≡ (∂r
µ

∂τ ) =
(
γuc
γuu

)

momentum (pµ) ≡ (∂u
µ

∂τ ) =
(
E/c
p

)

rest mass mc2 = pµp
µ = E2

c2 − p2

wave vector (kµ) ≡
(
ω/c
k

)

force (Kµ) ≡
(
γP/c
γF

)

e-dynamics current density (jµ) ≡ (ϱ0U
µ) =

(
cϱ
j

)
with ∂µj

µ = 0

el.-mag. potential (Aµ) ≡
(
c−1ϕ
A

)
with Fµν = ∂µAν − ∂νAµ

Stokes theorem F
∫
Fµνds

µν =
∫
Aµdx

µ

el.-mag. flux (Sµ) ≡
(
cu
S

)

el.-mag. field tensor (Fµν) ≡


 0 − 1

c E⃗
1
c E⃗ (−ϵmnkBk)




dual tensor (Fµν) ≡ 1
2ϵ
µναβFαβ =


0 −B⃗
B⃗ ( 1c ϵmnkEk)




Lorentz force density fµ = Fµνjν

Lagrangian 1
2µ0

FµνF
µν = 1

µ0
B2 − ε0E2

FωκFωκ = 1
2ϵµνωκF

µνFωκ = − 4
c B⃗ · E⃗

21.5.3 CGS units

Often used in electrodynamics are CGS units, also called Gaussian units. In this
script we will use exclusively SI units of the Système International d’Unités. To do
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the conversion between the unit systems, it is enough let,

e→ eCGS
√
4πε0 , j→ jCGS

√
4πε0 (21.105)

E⃗ → E⃗CGS
√

1
4πε0

, B⃗ → B⃗CGS
√

µ0

4π

D⃗ → D⃗CGS
√

ε0
4π , H⃗ → H⃗CGS

√
1

4πµ0

P⃗ → P⃗CGS
√
4πε0 , M⃗ → M⃗CGS

√
4π
µ0

.

Maxwell’s equations in the irrational Gaussian system are,

rot H⃗ = 1
c∂tD⃗ + 4π

c j , div D⃗ = 4πϱ . (21.106)

Moreover,

u = 1
8π (E⃗2 + B⃗2) , S = c

4π (E⃗ × B⃗) . (21.107)

The material equations for dielectric media are,

D⃗ = εE⃗ , P⃗ = χεE⃗ , ε = 1 + 4πχε , (21.108)

and for dia- and paramagnetic media,

B⃗ = µH⃗ , M⃗ = χµH⃗ , µ = 1 + 4πχµ . (21.109)

21.6 Rules of vector analysis

21.6.1 Basic rules

(i) A ·B = B ·A but A · ∇ ̸= ∇ ·A , (21.110)

(ii) ϕB = Bϕ but ϕ∇ ≠ ∇ϕ ,
(iii) A×B = −B×A but A×∇ ̸= −∇×A ,

(iv) A · (B×C) = B · (C×A) ,

(v) A× (B×C) = B(A ·C)−C(A ·B) ,

(vi) ∇f(ϕ(r)) = ∂f

∂ϕ
∇ϕ(r) chain rule ,

(vii) ∇(A ·B) = ∇(AB) +∇(AB) product rule for scalars and vectors .
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21.6.2 Deduced rules

(i) ∇(ϕ+ ψ) = ∇ϕ+∇ψ , (21.111)

(ii) ∇(ϕψ) = ϕ∇ψ + ψ∇ϕ ,
(iii) ∇ · (A+B) = ∇ ·A+∇ ·B ,

(iv) ∇× (A+B) = ∇×A+∇×B ,

(v) ∇ · (ϕA) = ϕ(∇ ·A) + (∇ϕ) ·A ,

(vi) ∇× (ϕA) = ϕ(∇×A) + (∇ϕ)×A ,

(vii) ∇ · (A×B) = (∇×A) ·B−A · (∇×B) ,

(viii) ∇×(A×B) = (B · ∇)A− (A · ∇)B+A(∇ ·B)−B(∇ ·A) ,

(ix) ∇(A ·B) = A× (∇×B) +B×(∇×A) + (A · ∇)B+ (B · ∇)A ,

(x) ∇× (∇ϕ) = 0 = ∇ · (∇×A) ,

(xi) ∇× (∇×A) = ∇(∇ ·A)−△A ,

(xii) ∇ · (∇ϕ) = △ϕ ,
(xiii) A · (∇ϕ) = (A · ∇)ϕ ,
(xiv) A× (∇ϕ) = (A×∇)ϕ ,

(xv) ∇ϕ =
dϕ

dr
∇r chain rule ,

(xvi) ∇ϕ(ψ) = dϕ(ψ)

dψ
∇ψ ,

(xvii) ∇ ·A(ψ) =
dA(ψ)

dψ
· ∇ψ ,

(xviii) ∇×A(ψ) = −dA(ψ)

dψ
×∇ψ .
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21.6.3 Integral rules

(i)

∫

V
∇ϕdV =

∫

S
ϕdS, (21.112)

(ii)

∫

V
∇ · E⃗dV =

∮

∂V
E⃗ · dS Gauß’ rule ,

(iii)

∫

A

∇× E⃗ · dS =

∮

∂C
E⃗ · dl Stokes’ rule ,

(iv)

∫

V
ϕ(∇ψ)dV =

∫

∂V
ϕψdS−

∫

V
(∇ϕ)ψdV Green’s rule ,

(v)

∫

V
[ϕ(△ψ)− (△ϕ)ψ] dV =

∫

∂V

[ϕ(∇ψ)− (∇ϕ)ψ] · dS

(vi)

∫

V
ϕ(△ψ)dV =

∫

V
(△ϕ)ψdV (21.113)

where △ is hermitian, when lim
r→∞

rϕ(r) = 0 = lim
r→∞

rψ(r) ,

(vii)
d

dt

∫ b(t)

a(t)

f(x, t)dx =

∫ b(t)

a(t)

∂f

∂τ
(x, t)dx+

db(t)

dt
f(b, t)dx− da(t)

dt
f(a, t)dx .

Notation,

∇ϕ · dS = ∇ϕ · n dS =
∂ϕ

∂n
dS . (21.114)



21.7. RULES FOR LAPLACE AND FOURIER TRANSFORMS 1185

21.7 Rules for Laplace and Fourier transforms

21.7.1 Laplace transform

Formulas for the Laplace transform:

(definition) (Lf)(p) =
∫ ∞

0

f(t)e−ptdt (21.115)

(inversion) L−1Lf = f where (L−1Lf)(t) =
∫ ε+ıω

ε−ıω
Lf(p)ept dp

2πı

(linearity) L(af + bg) = aL(f) + bL(g)
(similarity) L[f(at)] = a−1Lf(a−1p)
(translation) LT f = Lf · e−pT where T f(t) = f(t− T )

L
(
feqt

)
= T Lf

(differentiation) L∂tf = pLf − f(0)
L(−tf) = ∂pLf

(pulse response) Lδ = 1 where δ(t) = L−11
(step response) Lδ′ = p−1

(integration) L
∫ t

0

dt f = p−1Lf

L(t−1f) =
∫ ∞

p

dp Lf

(convolution) L(f ⋆ g) = Lf · Lg

(periodic functions) L(f = T f) =
∫ −T

0

dt
e−ptf(t)
1− epT

(eigenfunctions) f ⋆ ept = Lf · ept .

21.7.2 Correlation

Formulas for the correlation:

(definition) (f ⋄ g)(t) =
∫ ∞

−∞
f(τ)g(t+ τ)dτ (21.116)

(non-commutativity) (f ⋄ g)(t) = (g ⋄ f)s

(complex autocorrelation) |f ⋄ g∗| ≤ f ⋄ g∗(0) .
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21.7.3 Fourier transform

Formulas for the Fourier transform:

(definition) (Ff)(ω) =
∫ ∞

−∞
f(t)e−ıωtdt (21.117)

(inversion) F−1Ff = f where (F−1Ff)(t) =
∫ ∞

−∞
Ff(ω)eıωtdω

(linearity) F(af + bg) = aF(f) + bF(g)
(similarity) ?

(translation) FT f = Ff · e−ıωT where T f(t) = f(t− T )
F
(
feıωt

)
= T Ff

(differentiation) F [tf(t)] = ı∂ω(Ff)(ω)

F [f ′(t)] = ıω(Ff)(ω)

(pulse response) Fδ = 1 where δ(t) = F−11
(step response) Fδ′ =?

(duality) FF f = fs where fs(t) = f(−t)
F f∗ = (F f)∗s where fs(t) = f(−t)

(symmetry) f = fs = f∗ ⇔ F f = (F f)s

f = −fs = f∗ ⇔ F f = −(F f)∗

f = f∗ ⇔ F f = (F f)∗s

(convolution) F (f ⋆ g) = Ff · Fg
F (f · g) = Ff ⋆ Fg

(eigenfunctions) f ⋆ eıωt = Ff · eıωt .

21.7.3.1 Fast Fourier transform

The discrete Fourier transform is defined by,

Hn =

N−1∑

k=0

e−2πınk/Nhk (21.118)

=

N−1∑

k=0

e−2πınk/(N/2)h2k + e−2πık/N
N/2−1∑

k=0

e−2πınk/(N/2)h2k+1

= even+ odd .

The inverse transform is,

hk =
1

N

N−1∑

k=0

e2πınk/NHn . (21.119)

The sine transform of a real vector sk is,

Sn =
2

N

N−1∑

k=1

sk sinπnk/N . (21.120)
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In MATLAB the fast Fourier transform is defined by:

F (k + 1) =

N−1∑

n=0

f(n+ 1)e−2πı/N ·kn . (21.121)

inversion:

f(n+ 1) =
1

N

N−1∑

k=0

F (k + 1)e2πı/N ·kn . (21.122)

symmetry,

f(n+ 1) = f∗(n+ 1) (21.123)

=⇒ K(k + 1) =

N−1∑

n=0

f∗(n+ 1)e−2πı/N ·kne−2πı/N ·Nn = F ∗(N − k + 1) .

and,

f(N − n) = f(n+ 1) = f∗(n+ 1) (21.124)

=⇒ F (k + 1) =

N−1∑

n=0

f∗(N − n)e−2πı/N ·kn

=

N−1∑

n=0

f∗(n′ + 1)e2πı/N ·kn
′
e−2πı/N ·(N−1) = F ∗(k + 1)e2πı/N .

and,

− f(N − n) = f(n+ 1) = f∗(n+ 1) (21.125)

=⇒ F (k + 1) =

N−1∑

n=0

−f∗(N − n)e−2πı/N ·kn

=

N−1∑

n=0

−f∗(n′ + 1)e2πı/N ·kn
′
e−2πı/N ·(N−1) = −F ∗(k + 1)e2πı/N .

Hence, we choose, Ff(n+ 1) = F (k + 1)e−πı/N .

21.7.3.2 Fourier expansion

The complex Fourier expansion is defined by,

fN (x) =

N∑

n=−N
cne

ınx , (21.126)

where

cn ≡
1

2π

∫

2π

s(x)e−ınxdx . (21.127)
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21.7.4 Convolution

Formulas for the convolution:

(definition) (f ⋆ g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ (21.128)

(neutral element) f ⋆ δ(n) = f (n)

(distributivity) (f + g) ⋆ h = f ⋆ h+ g ⋆ h

af ⋆ g = f ⋆ ag

(commutativity) f ⋆ g = g ⋆ f

(associativity) (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)

(translational invariance) T (f ⋆ g) = T f ⋆ g = f ⋆ T
(differentiation) ∂x(f ⋆ g) = ∂xf ⋆ g = f ⋆ ∂xg

(integration)

∫

x

(f ⋆ g) =

∫

x

f

∫

x

g

(complexity) f = fr + ıfi

(Dirac function) T f = f ⋆ T δ
f(T ) = f · T δ .

Example 135 (Convolution of two Lorentzians): The convolution of two
Lorentzians,

La(x) ≡ a

π

1

x2 + a2
with

∫ ∞
−∞
La(x)dx = 1 ,

is simply another Lorentzian with the linewidth a+ b,

(La ⋆ Lb)(x) = La+b(x) .

In order to demonstrate this, we first we apply the method of partial fractions
to the expression,

1

y2 + a2
1

(x− y)2 + b2
=

A

y2 + a2
+

B

(x− y)2 + b2

with A =
2xy + (x2 − a2 + b2)

(x2 + a2 + b2)2 − 4a2b2
, B =

−2x(y − x) + (x2 + a2 − b2)
(x2 + a2 + b2)2 − 4a2b2

.

Now, we calculate the convolution,

(La ⋆ Lb)(x) =
ab

π2

∫ ∞

−∞

1

y2 + a2

1

(x − y)2 + b2
dy

=
ab

π2

1

(x2 + a2 + b2)2 − 4a2b2



∫ ∞

−∞

2xy + (x2 − a2 + b2)

y2 + a2
dy +

∫ ∞

−∞

−2x(y − x) + (x2 + a2 − b2)

(x − y)2 + b2
dy




=
ab

π2

1

(x2 + a2 + b2)2 − 4a2b2

(
(x

2 − a
2

+ b
2
)

∫ ∞

−∞

1

y2 + a2
dy + (x

2
+ a

2 − b
2
)

∫ ∞

−∞

1

(x − y)2 + b2
dy

)

=
ab

π2

(x2 − a2 + b2)π
a

+ (x2 + a2 − b2)π
b

(x2 + a2 + b2)2 − 4a2b2
=

a + b

π

1

x2 + (a + b)2
= La+b(x) .
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Example 136 (Convolution of two Gaussians): The convolution of two
Gaussians,

Ga(x) ≡
√

1

π

1

a
e−x

2/a2 with

∫ ∞
−∞
Ga(x)dx = 1 ,

is simply another Gaussian with the linewidth
√
a2 + b2,

(Ga ⋆ Gb)(x) = G√
a2+b2

(x) .

We demonstrate this by calculating,

(Ga ⋆ Gb)(x) = 1

πab

∫ ∞
−∞

e−y
2/a2e−(x−y)2/b2dy =

√
ab

π

∫ ∞
−∞

e−(a−2+b−2)y2+2b−2xy−b−2x2dy

=
1

πab
√

(a−2 + b−2)

∫ ∞
−∞

e
−ỹ2+ 2x

b2
√

a−2+b−2
ỹ−b−2x2

dỹ

=
1

π
√
a2 + b2

∫ ∞
−∞

e
−
(
ỹ− x√

b4/a2+b2

)2

− x2

a2+b2

dỹ

=
1

π
√
a2 + b2

e
− x2

a2+b2

∫ ∞
−∞

e−ỹ
2

dỹ =
1√

π
√
a2 + b2

e
− x2

a2+b2 = G√
a2+b2

(x) .

21.7.5 Green’s functions

If a differential operator Lx acting on a variable x admits a Green’s function G such
that,

LxG(x, x′) = δ(x− x′) , (21.129)

The Green function can be used to solve any equation,

Lxf(x) = ϱ(x) (21.130)

by calculating,

f(x) =

∫
G(x, x′)ϱ)(x)dx . (21.131)

21.7.5.1 List of Green functions

The following table provides a list of useful Green functions.
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differential operator L Green function G
∂nt

tn−1

(n−1)!Θ(t)

∂t + γ Θ(t)e−γt

△ − 1
4πr

∇· − r−r′
4πR3

∇× − (r−r′)×(r−r′)
4πR3

□ − 1
4πr δ(t∓ 1

c r)

△+ k2 − eıkr

4πr

−∇×∇×+k2 see Sec. 18.3.1

Example 137 (Green function for time derivation): To solve the differen-
tial equation,

(∂t + γ)f(t) = c ,

we search the Green function for the equation,

(∂t + γ)G(t, t′) = δ(t− t′) .

From the above table, we get,

f(t) =

∫ ∞
−∞
G(t, t′) c dt′ = c

∫ ∞
−∞

Θ(t− t′)e−γ(t−t′)dt′ = c

γ
e−γt .
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Part III

Quantum Mechanics
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The courses in Quantum Mechanics A (QM/SFI5774), of Quantum Mechanics B
(QO/SFI5708), of Atomic and Molecular Physics (AM/SFI5814), of Light Matter In-
teraction (LM/SFI5877), and of Atom Optics (OA/SFI5887) may have the following
contents:
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Sections QM QO AM LM AO

Antecedents 23.1.1-23.2.9 x
Repetition of basic notions of quantum mechanics 24.1.1-24.5.4 x x x
Motion in separable potentials & numerical approaches 25.1.1-25.4.2 x
The harmonic oscillator 25.5.1-25.6.5 x x
Rotations, central potentials and spin coupling 26.1.1-26.4.4 x x
Periodic systems 27.1.1-27.3.1 x
Stationary perturbation, variational method, WKB 28.1.1-28.2.2 x x
Time-dependent perturbation theory 28.4.1-28.4.5 x x x x
Spin of the electron & (hyper-)fine structure 30.1.1-30.4.4 x x
Charged particles in electromagnetic fields 31.1.1-31.1.2 x x x
Atoms in stationary and electromagnetic fields 31.2.1-31.3.1 x x
Atoms with multiple electrons 32.1.1-32.4.3 x
Dimeric molecules 33.1.1-33.3.4 x
Collisions 34.1.1-34.5.5 x
Absorption and emission of radiation and spectral lines 35.1.1-35.2.5 x x
Density operator & Bloch equations & NMR 35.3.1-35.4.5 x x
Spontaneous emission & saturation & line broadening 35.5.1-35.6.5 x x
Multilevel systems 35.7.1-35.7.5 x x
Quantization of radiation and dressed states 36.1.1-36.1.3 x x x
Probability distributions & squeezed states 36.2.1-36.3.3 x
Jaynes-Cummings model and quantum correlations 36.2.1-36.2.3 x x
Spontaneous emission & resonance fluorescence 36.3.1-36.3.4 x
Light scattering from multilevel atoms 36.4.4-36.4.2 x
Beam splitting and quantum amplification 36.5.1-36.5.7 x
Photon counting statistics 36.6.1-36.6.3 x
Quantum measurement 37.1.1-37.6.2 x x
Nonlinear optics 38.1.1-38.2.6
Forces exerted by electromagnetic fields 39.1.1-39.1.3 x x x x
Optical forces & recoil 39.2.1-39.3.4 x x x
The structure factor & coupled dipoles model 40.1.1-40.1.7 x
Mie scattering & scattering from disordered clouds 40.2.1-41.3.3 x
Bragg scattering and photonic band gaps 40.4.1-40.4.3 x
Interaction of atoms with cavities 41.1.1-41.3.6 x
Interaction of atoms with surfaces 41.4.1-41.4.2 x
Dicke model & super-/subradiance 42.1.1-42.2.2 x
Interacting atoms 42.3.1-42.3.3 x
Entanglement & quantum gates 42.4.1-42.6.4 x
CARL & consorts in the classical and quantum regime 43.1.1-43.5.6 x
Statistical models of CARL 43.6.1-43.8.2 x
Manipulation of atomic gases 44.1.1-44.6.5 x
Thermodynamics of degenerate gases 45.1.1-45.2.10 x
Bose-Einstein condensation 46.1.1-46.8.3 x
Superfluid & coherent properties of condensed gases 47.1.1-47.4.3 x
Theories on the interaction of light and BECs 48.1.1-48.2.4 x
BEC Bragg diffraction and matter wave superradiance 48.3.1-48.4.3 x
BECs in superpositions of states coupled by light 48.4.1-48.4.2 x
Interaction of BECs with optical cavities 48.5.1-48.5.4 x
Condensates in reduced dimensions and other topics 49.1.1-50.8.8 x
Instrumentation of a quantum optics lab 51.1.1-56.4.3 x



Chapter 22

Antecedents of quantum
mechanics

Developed at the beginning of the 20th century, quantum mechanics is today the
most fundamental and far-reaching theory in physics. It shaped our World more than
any other science, as technologies based on quantum mechanical effects are the key
to an industry representing today one third of the World’s global domestic product.
Boosted by the invention of the transistor and the laser, the industry today branches
out in many areas including energy generation, electronics, optics, and photonics.
Nevertheless and despite its long history and its incomparable success, quantum me-
chanics is far from being exhausted. The invention of novel techniques for quantum
state manipulation and entanglement generation, awarded with various Nobel prizes
in the past, and advances in information science during the past 25 years prepared the
ground for a second wave of quantum-based technologies called Quantum Revolution
2.0. In terms of economic, military, and social advantages the stakes of this revolu-
tion are so important that they triggered a fierce international race for technological
domination. This chapter traces briefly the historical conditions and the discoveries
that led to the invention of quantum mechanics.

The fundamental idea of quantum mechanics is the assumption that there are
entities which can not be subdivided beyond a certain limit. Examples are the mass
of a body, the speed of an electron orbiting an atom, or the intensity of a beam
of light. This idea was first uttered by Leucippus 500 years a.c. and his student
Democritus, who imagined matter being made of smallest particles which they called
atoms. These atoms move freely, collide, combine, and separate: ’There is nothing
else than atoms and free space’ they claimed. The microscopic atoms would have the
same characteristics as the macroscopic objects they form when they combine, for
example, color and shape. The idea of the atom resurfaced and was refined in the
course of the 18th century (see Tab. 1.1 below). Today, we know that the basic idea
was good, but reality is a little more complicated.

Still, at the end of the 19th century, the physical world seemed rather simple:
matter and light was all that existed. Matter was made up of atoms and light was a
wave. Therefore, to describe a real system, it was enough to calculate the trajectories
of its elementary particles and the propagation of light between them. The way that
light interacts with polarizable and magnetizable matter via electric and magnetic
fields had been perfectly explained by laws discovered by Coulomb, Ampère, Faraday,
and Maxwell.

1197
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Table 22.1: Historical time line of the quantization of matter.

500 a.c. Democritus invention of the atom

1800 Avogadro, Dalton reinvention of the atom

1897 Thomson charge transport, raisin-in-a-cake model

1909 Rutherford, Geiger, Marsden α-scattering, charge localized in nuclei

1911 Rutherford planetary model

1900 Bohr quantized orbitals

1923 de Broglie matter has characteristics of waves

1927 Davisson, Germer, Stern electron and atoms diffraction

Figure 22.1: Particle-wave duality.

However, new experimental observations, such as the ultraviolet divergence of
black-body radiation, that appeared in the late 19th century, were incompatible with
these traditional concepts. New ideas were pioneered by Max Planck who, in 1905,
with a little help from Einstein quantized the electromagnetic field, and therefore the
light, into small harmonic oscillators. This was the starting point for the development
of a new theory called ’quantum mechanics’. Soon, this theory was applied to explain
the photoelectric effect. The second important step was initialized by Niels Bohr,
who quantized the hydrogen atom in 1913 into discrete excitation levels.

Table 22.2: Historical time line of the quantization of light.

1801 Young light is diffracted like a wave

1860 Maxwell unified theory of electrodynamics including light

1888 Hertz detection of radio waves

∼ 1890 accurate measurements of black-body radiation spectra

1900 Planck quantum hypothesis: E = hν

1905 Einstein photoelectric effect, light behaves like a particle

Nowadays we know that our universe is not as simple as classical mechanics sug-
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gested, and that atoms are also waves and light also behaves like particles. This
duality principle is one of the fundamental ideas of quantum mechanics. The appear-
ance of an object as a wave or as a particle depends on the situation in which it is
observed. While the wave nature of light was well established in classical physics since
a long time, Louis de Broglie was the first in 1924 to apply the duality principle also to
massive particles and to predict that particles, under certain conditions, behave like
waves the wavelengths of which increase as their velocity decreases. Each particle (or
body) is delocalized along a distance corresponding to this ’de Broglie wavelength’.
This feature of matter was soon discovered experimentally in electron beams and is
still used today in commercial devices, for example in electron microscopes.

22.1 The discovery of the atom

22.1.1 Democrit’s model

’The principles of reality are atoms and emptiness while other things are mere opin-
ions.’ This is a quotation from the Greek philosopher Democritus 400 years before
Christ and before Socrates. Together with his teacher Leucippus, he formed the first
idea of indivisible particles: atoms.

Figure 22.2: Democritus and dust in a sun ray.

Democritus’ work only survived as second-hand accounts, the major part of it hav-
ing been written down by Aristotle, who also, defending the idea of the continuum,
was the greatest critic of Democritus’ theory. Aristotle said that the reasoning that
guided Democritus to affirm the existence of atoms was as follows. For a body to
change its shape, it is necessary that its parts can move. This presupposes an empti-
ness (or vacuum) in which the matter moves. But if matter were divided infinitely
into ever smaller parts, it would loose its consistency. Nothing could be formed be-
cause nothing could arise from the ever more infinitely deep dilution of matter into
emptiness. Hence, he concluded that the division of matter can not be infinite, that
is, there is an indivisible limit: the atom. ’There is only atoms and emptiness’, he
said.

Observing dust particles in a whirling motion within a ray of sunlight, Democritus
was led to the idea that atoms would behave in the same way, randomly colliding,
some crowding, others dispersing, others never yet joining with another atom.
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The consistency of clusters of atoms, which makes something look solid, liquid,
gaseous, or animated (which is the state of the soul) would then be determined by the
shape of the atoms involved and their spatial arrangement. In this sense, water atoms
are smooth and slippery; the atoms of steel have shapes with sharp edges that hold
them solidly together; the atoms of salt, as their taste shows, are harsh and pointed;
the atoms of air are small and little connected, penetrating all other materials; and
the atoms of soul and fire are spherical and very delicate.

Figure 22.3: Atoms of steel and air, atoms of the soul, and Bohr’s atom model.

We know nowadays that Democritus’ first theory of the structure of matter was
very close to the truth: There really are indivisible particles called atoms composed
of a nucleus and an electronic shell, and the space between the atomic nuclei is, in
fact, quite empty.

The atomic hypothesis came to be reborn in the modern age with the scientists
Boyle, Clausius, Maxwell, and Boltzmann due to their successful explanations of the
properties of gases based on the so-called kinetic theory, where they assumed a gas
being constituted of identical molecules that collided elastically with each other and
with the walls of the recipient containing them. The discovery of the atom through
the laws of proportions in chemistry and the establishment of Avogadro’s number
considerably strengthened the atomic hypothesis. The hypothesis was definitely con-
secrated with the various experiments that established the charge of the electron and
the mass ratio between electrons and protons.

By the beginning of the 19th century the atomic nature of matter had definitely
been established, and the basic composition of the atoms was already relatively well
known. It was known, through experiments, that electrons could be removed from
neutral atoms thus creating positively charged ions and that only a certain number
of electrons could be removed from each atom. This number proved to be dependent
on the atomic species and was called the atomic number Z. This information was
fundamental for establishing the basic composition of atoms. The question that arose
at this point concerned the dimensions and configurations of the atomic system. How
would loads and masses be distributed in this entity?

22.1.2 Thomson’s model and Rutherford’s experiment

The internal structure of a body can be studied by throwing beams of small parti-
cles against it. The detection of the angular distribution of the scattered particles
gives access to the structure factor of the body. In crystallography we throw X-rays
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into super-complicated molecules to learn the architecture e.g. of proteins. And in
medicine, X-rays reveal the internal structure of the human body. Obviously, the
scattering technique is an extremely powerful tool, used in many areas of modern
physics.

In a series of experiments done before 1911, Ernest Rutherford analyzed the in-
ternal structure of gold atoms using α-particles, i.e., He2+ atoms. The experiments
carried out by Geiger, Marsden, and Rutherford consisted of observing the deflection
of particles from a collimated beam when scattered by a thin metallic sheet (gold of
thickness ∼ 1µm) carefully obtained by electroplating [see Fig. 22.4(cd)].

Figure 22.4: Comparison of Rutherford scattering by free electrons and electrons strongly
bound to small nuclei. (a) Thomson’s ’raisin-in-a-pudding’ type atom; (b) Rutherford’s
’planetary’ atom. (c) Rutherford scattering by a raisin pudding atom and (d) by a planetary
atom.

The atomic model proposed by Joseph John Thomson suggests a structure re-
sembling a pudding with raisins: the electrons would be homogeneously distributed
within an extended nucleus (size 0.1 nm) of positive charge thus compensating for the
negative charge of the electrons. The α-particles would penetrate the gold nucleus,
perceived as almost homogeneous, but would suffer multiple deflections due to colli-
sions with the disordered electrons within the nucleus. Since electrons are very light,
the angle of deflection θ would be small, even after many collisions. For this model we
expect a Gaussian dependence of the particles’ deflection angle given by the scattering
cross section [see Fig. 22.4(a-b)],

dσ

dΩ
∝ e−θ2/θ20 , (22.1)

where θ0 is a small angle.
However, the measurements performed on this Rutherford scattering showed dif-

ferent results:

• For a fixed scattering angle, the amount of particles scattered into a solid angle
element dΩ is proportional to the thickness of the metal foil.
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• For a given fixed angle and a given metal sheet the amount of scattered particles
in dΩ varies inversely with E2

kin, where Ekin is the kinetic energy of the α-
particles.

• For a given energy and a given metal sheet, the number of particles scattered
into dΩ is proportional to (sin θ

2 )
−4.

• For a given energy and sheet thickness, the number of particles scattered into
dΩ in a given direction is proportional to Z2

tg, where Ztg is the atomic number
of the element that constitutes the sheet.

The extremely rare deflection of α-particles and their angular distribution can be
understood by the assumption that the positive charge is concentrated in a very small
volume (∼ 1 fm, that is 10000 times less than the size of the atom itself). This volume
is called the atomic nucleus, hence the denomination of nuclear model. Since most of
the particles pass through the gold sheet without hindrance, there must be a large
gap between the nuclei. The electrons, which move within a large (in comparison with
the diameter of the nucleus) empty space (the vacuum) around the nucleus, shield
the positive nuclear charge, so that the atom appears outwardly neutral.

Figure 22.5: (a) Trajectory of an α-particle. (b) Illustration of the scattering cross section.

We now derive Rutherford’s scattering formula from the hypothesis of a point-like
nucleus. Due to the repulsive action of the Coulomb force,

F =
ZαZtge

2

4πε0r2
, (22.2)

we have for the trajectory of the α-particle (Zα = 2) a hyperbola [see Fig. 22.5(a)].
The large half-axis of the hyperbola can be determined from the following ansatz,

Ekin =
ZαZtge

2

4πε0

1

2a
, (22.3)

where 2a is the minimum distance of the particle α, when it collides with the nucleus
in a central collision 1. The distance a depends on the kinetic energy and can also
be used for non-central collisions. The collision parameter b is the minimum distance
of the α-particle to the nucleus, if it continued to fly in a straight line. In fact the

1In a central collision, when the α-particle reaches the minimum distance 2a, its initial kinetic
energy, Ekin is fully converted into potential energy.
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α-particle will be deflected by an angle θ. From the geometry of the hyperbola, as
2ϕ+ θ = 180◦, we obtain the following equation:

tanϕ = b
a = tan

(
90◦ − θ

2

)
= cot θ2 , (22.4)

and therefore

cot θ2 =
b

a
=

8πε0Ekin

ZαZtge2
b , (22.5)

replacing a with the formula (22.3). Taking the derivative of this latter formula, we
obtain a relation between the width db of the hollow cone and the pertinent width dθ
of the deflection angle θ,

− 1

2 sin2 θ2
dθ =

8πε0Ekin

ZαZtge2
db . (22.6)

Let ntg =
Ntg

V be the density of the particles in the target (Ntg atoms per volume

V ) and x the film thickness. Then σ = A
Ntg

= V/x
Ntg

= 1
ntgx

is the average cross-section

per atom sensed by the α-particle on its way through the film. The probability P (θ)dθ
for the α-particle of being within a ring at distance b from the nucleus (whose area is
2πbdb) and being scattered into the angle θ is then given by,

P (θ)dθ =
2πbdb

σ
= ntgx2πbdb . (22.7)

These particles, i.e., dN of the N particles, are deflected into the hollow cone with
the probability,

dN

N
= P (θ)dθ = ntgx2π

ZαZtge
2

8πε0Ekin
cot

θ

2
· ZαZtge

2

8πε0Ekin
· 1

2 sin2 θ2
dθ (22.8)

= ntgx
Z2
αZ

2
tge

4

64πε20E
2
kin

· cos
θ
2

sin3 θ2
dθ ,

where we replaced the parameters b and db with the expressions (22.5) and (22.6).
The solid angle of the cone can be expressed by,

dΩ = 2π sin θdθ = 4π sin θ
2 cos

θ
2dθ . (22.9)

Thus, the number dN of particles scattered to the solid angle dΩ remains,

dN

N
= ntgx

Z2
αZ

2
tge

4

256π2ε20E
2
kin

· 1

sin4 θ2
dΩ . (22.10)

That is Rutherford’s scattering formula. Often, the formula is expressed with the
differential cross section dσ

dΩ . We get,

dN

N
=
dσ

σ
= ntgxdσ , (22.11)

and therefore
dσ

dΩ
=

dN

NntgxdΩ
=

(
ZαZtge

2

4πε0 · 4Ekin

)2
1

sin4 θ2
. (22.12)

Here, we have to make some comments:
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• The angle θ = 0 is not defined, since there exists a minimum deflection angle
θmin. This angle is reached, when the α-particle moves at the distance b = bmax

from the atom, that is, at the edge of the circular area of the cross section.
For a greater collision parameter b, the α-particle traverses the field of the next
neighboring atom, and the deflection angle increases again. We have:

σ =
A

Ntg
= πb2max and θmin

2 ≃ tan θmin

2 =
ZαZtge

2

8πε0Ekin · bmax
, (22.13)

simply by inverting the formula (22.5). For very large impact parameters, that
is, when the α-particle passes the atom outside its electronic layer, the electrons
of the atom shield the charge of the nucleus, an effect called screening.

• For very high energies, the distribution of the nuclear charge over a finite vol-
ume influences the scattering, calling for corrections in the Rutherford formula.
Moreover, at short internuclear distances, nuclear forces appear additionally to
the electromagnetic interaction.

• The integral over the probability distribution P (θ)dθ is normalized,

π∫

θmin

P (θ)dθ = 1 . (22.14)

Similarly, we have for the surface integrals,
∫

θ⩾θmin

dσ

dΩ
dΩ = σ . (22.15)

0 50 100 150

θ

10−30

10−28

10−26

10−24

N

Figure 22.6: (code) Angular dependence of the cross-section corresponding to Thomson’s

(green) and Rutherford’s (red) models.

Rutherford derived the formula (22.12) describing the scattering of α-particles
within classical physics. A derivation from the laws governing quantum mechanics
using the Born approximation shows that Rutherford’s formula describes scattering
correctly in first order, and that purely quantum effects present only minor correc-
tions. We will review the Rutherford scattering in Excs. 22.1.6.1 and 22.1.6.2 and
discuss the screening effect in Exc. 22.1.6.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Antecedents_Rutherspectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Antecedents_Rutherspectrum.m
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22.1.3 Emission of radiation in the planetary model

The planetary model proposed by Rutherford suggests electrons spinning around a
positively charged nucleus in circular orbits 2. This motion of electrons should obey
the laws of Maxwell’s electrodynamic theory. Let us now calculate some consequences
of this picture.

Figure 22.7: Light-induced transitions between orbits in the planetary model.

We now treat the atom as a rotor where the negative particle, the electron, orbits
the positive particle. The dipole moment is,

p0 = −er . (22.16)

We calculate in the Exc. 22.1.6.4 the power emitted by the acceleration a = ω2r of
the electron on its circular trajectory,

P =
µ0ω

4p20
12πc

. (22.17)

The initial energy of the electron spinning around the nucleus (for a hydrogen atom
Z = 1),

E =
p2

2me
− e2

4πε0r
=
meω

2r2

2
− e2

4πε0r
, (22.18)

is dissipated by radiation of the power (22.17), i.e.,

−P =
dE

dt
= meω

2r
dr

dt
+

e2

4πε0r2
dr

dt
= 2meω

2r
dr

dt
. (22.19)

The latter equation supposes an equilibrium between the centrifugal force and the
Coulomb force,

meω
2r =

e2

4πε0r2
, (22.20)

allowing to link the revolution frequency ω to the instantaneous radius of the orbit
r(t). Resolving the Eq. (22.19) by ṙ and replacing the power by the relation (22.17)

2This type of model had already been proposed by Jean Perrin in 1901 and by Hantaro Nagaoka
in 1903, around the same time when Thompson developed his model. The planetary model was later
on rescued by John William Nicholson in 1911.
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and the frequency ω by the relation (22.20), we obtain,

dr

dt
= − P

2meω2r
= − µ0ω

2e2

24πmec
r = − e4

96π2ε20m
2
ec

3

1

r2
. (22.21)

Integration of this equation gives,

t− t0 = −32π2ε20m
2
ec

3

e4
[r3 − r3(t0)] . (22.22)

Now inserting t0 = 0 and assuming r(t0) = aB , the time τ within which the loss of
energy due to radiation emission decreases the radius of the electronic orbit to r = 0,
is,

t = τ =
32π2ε20m

2
ec

3a3B
e4

. (22.23)

Insertion of the numerical values gives the decay time τ ∼ 10−10 s. This is the effect
called radiation collapse of the classical atomic model.

22.1.4 Zeeman effect in the planetary model

The orbital motion of the electron generates a ring current I = e/T = eω/2π, which
produces an orbital magnetic moment which, as shown in Exc. 22.1.6.5, can be calcu-
lated following the laws of electromagnetism,

µ⃗ℓ = IAn̂ =
eω

2π
πr2n̂ , (22.24)

where A = πr2 is the area of the trajectory. Introducing the angular momentum
L = meωr

2n̂ we get in vector notation,

µ⃗ℓ =
e

2me
L . (22.25)

We now imagine this atom in the presence of a magnetic field B⃗ oriented in the
direction that we will call z. This results in a precession of the magnetic moment
around the field (similar to the precession of a spinning top in the presence of a
gravitational field) governed by the equation,

dL

dt
= µ⃗ℓ × B⃗ =

e

2me
L× B⃗ = −ΩL × L ,

with ΩL = e
2me
B⃗ representing the precession frequency and being called Larmor

frequency. It is evident that the presence of the magnetic field considerably alters
the state of the atom, even producing profound modifications in the frequency of the
orbit of the electron ω0 and therefore in the energetic state of the atom. This change
is called Zeeman effect.

The Zeeman effect can be calculated by imagining that the field has an arbitrary
direction with respect to L. In this case, the equation describing the electronic motion
as resulting from an equilibrium between the centrifugal force and the Coulomb force
needs to be complemented by a Lorentz force,

mer̈+meω
2
0r = FL = −ev × B⃗ . (22.26)
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where mr̈ is the centrifugal force due to the circular motion of the electron and meω
2
0r

the centripetal force due to the Coulomb attraction exerted by the nucleus. Assuming
the direction of the magnetic field given by B⃗ = Bêz with B = 2meΩL/e, the equations
of motion can be decomposed into,

ẍ+ ω2
0x+ 2ΩLẏ = 0 (22.27)

ÿ + ω2
0y − 2ΩLẋ = 0

z̈ + ω2
0z = 0 .

The z-direction is not influenced. With the ansatz x = aeıωt and y = beıωt we obtain
the system of equations,

a(ω2
0 − ω2) + 2ıΩLωb = 0 (22.28)

b(ω2
0 − ω2)− 2ıΩLωa = 0 ,

which has a non-trivial solution for a and b only when the determinant of the coeffi-
cients of a and b vanishes:

0 =

∣∣∣∣∣
ω2
0 − ω2 2ıΩLω

−2ıΩLω ω2
0 − ω2

∣∣∣∣∣ = ω4 − (2ω2
0 + 4Ω2

L)ω
2 + ω4

0 . (22.29)

We get,

ω = ω1,2 =

√
ω2
0 + 2Ω2

L ± 2ΩL

√
ω2
0 +Ω2

L = ω0 ± ΩL +
1

2

Ω2
L

ω0
+ ... , (22.30)

or, as ΩL ≪ ω, we get ω1,2 = ω0 ∓ ΩL. The result is a splitting of the energy levels
proportional to the magnetic field,

∆E = 2ℏΩL =
ℏe
me
B = 2µBB , (22.31)

where the abbreviation µB = eℏ/2me ≃ 9.27 ·10−24 JT-1 is called the magneton Bohr.
Although the classical derivation shows quantitative deviations from experimental

observations, it is quite interesting, as it illustrates several aspects which have a
quantum mechanical equivalence.

Example 138 (Stern-Gerlach experiment): Among several historical exper-
iments carried out to unravel the atomic structure, one of the most important
is the experiment carried out by Otto Stern and Walther Gerlach in 1922 to
measure the magnetic moment of atoms. The results of this experiment once
again demonstrated the need for new concepts to explain the observations.
Using Bohr’s quantization rule, L = nℏ, within the formula (22.25) we get,

µ⃗ = −µB L

ℏ
.

In the presence of a magnetic field the dipole undergoes an interaction W =
−µ⃗ · B⃗, and therefore a feels a force,

F = −µ⃗ · ∇B⃗ .

By subjecting beams of atoms to the gradient of a magnetic field and detect-

ing this force, Stern and Gerlach were able to measure the magnetic moment

produced by the rotation of the electrons around the atomic nuclei.
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22.1.5 Bohr’s theory and its limitations

The classical model of the planetary atom provides a mechanical illustration of the
microscopic world but fails to quantitatively explain experimental observations such
as the discrete nature of atomic spectra.

The radiation emitted by hydrogen atoms is characterized by discrete, spectrally
very thin lines. The observed lines are grouped in series named after Lyman, Ballmer
and others,

1

λ
= RH

µ

me

(
1

m2
− 1

n2

)
, (22.32)

where m and n are integers. RH = (1/4πϵ)2(mee
4/4πℏ3c) is the Rydberg constant

and µ = memat/(me +mat) the reduced mass.

The discrete nature of spectral lines and the problem of the radiation collapse led
Niels Bohr to formulate the following postulates:

1. There are specific stationary orbits, where electrons do not emit energy.

2. Each emission or absorption of radiation energy by electrons comes with a tran-
sition between stationary orbits. The radiation emitted during this transition
is homogeneous.

3. The laws of mechanics can describe the dynamic equilibrium of electrons in sta-
tionary states, but fails to describe the transition of electrons between stationary
orbits.

Thus, Bohr’s model predicts the quantization of energy levels, known as first quanti-
zation of quantum mechanics. The radii of the possible orbits can be calculated from
the postulate that the orbital angular momentum be quantized in units of ℏ, that is,
the electrons form stationary de Broglie waves along the orbits 3. We discuss Bohr’s
model in Excs. 22.1.6.6 and 22.1.6.7.

In the picture proposed by Bohr, the radiative decay happens as an abrupt tran-
sition of an electron between an outer (more energetic) orbit and an inner (less ener-
getic) orbit. Since the energies of stationary orbits are very well defined, the emitted
radiation is mono-energetic, i.e., the spectrum consists of discrete characteristic lines.

We note here that the picture of an abrupt transition of electrons between discrete
states, called the quantum jump, did not receive Schrödinger’s blessing. He rather
imagined for electrons, within his theory of quantum wave mechanics, wave-shaped
orbitals instead of planetary trajectories, thus avoiding the problem of radiation due
to charge deceleration and the quantum jump concept. According to him, during a
transition between electronic orbits, the energy is transformed into radiation gradu-
ally 4.

3A generalization of Bohr’s theory was provided by Arnold Johannes Wilhelm Sommerfeld. As-
suming elliptical orbits for the electrons he managed to explain some features of the fine structure,
provided the motion of the electron was treated relativistically. The basic premises were 1. stable
orbits when the Coulomb attraction is balanced by the centrifugal force, 2. quantization of phase
space

∫
rqdq = nqℏ, and 3. quantization of angular momentum

∫
Ldθ = nθℏ.

4We note here, that quantum jumps were observed much later!
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22.1.6 Exercises

22.1.6.1 Ex: Analysis of Rutherford scattering

a. What conclusions can be drawn from the observation that Rutherford’s formula
describes well the scattering of charged particles traveling through matter over a wide
range of parameters?
b. Why do we see a deviation from Rutherford’s formula for large energies?
c. The scattering of protons with energy E crossing a thin film of thorium is well
described up to energies of E = 4.3MeV by Rutherford’s formula. Estimate for this
case the range of nuclear forces.
d. For small scattering angles θ we observe large deviations from Rutherford’s for-
mula. Explain why?
e. Assume the thorium atoms of item (c) to form a periodic crystal with the lattice
constant d = 10aB . At which minimum angle θ Rutherford’s formula loses its validity.

Solution: a. Thomson’s assumption of a heavy nuclear charge distributed across
the atom is false. Instead they are the light-weighted electrons distributed through the
atom.
b. For large energies, i.e., small distances, the proton can feel the finite extension of
the nucleus as well as nuclear forces.
c. When the shock parameter b tends to zero, the distance 2a between the proton and
the nucleus depends on the kinetic energy as,

Ekin =
ZpZtge

2

4πε0

1

2a
.

With Zp = 1, Ztg = 90 and the given energy limit we obtain 2a = 15 fm.
d. When the collision parameter b is large, we need to take into account the proximity
of other nuclei as well as screening effects.
e. For this case we set b = 5aB. From Eq. (22.5) we find,

cot θ2 =
8πε0E

ZαZthoriume2
b ,

yielding θ = 1.14 · 10−4 rad = 6.5 · 10−3 ◦.

22.1.6.2 Ex: Rutherford scattering

a. A beam of α-particles with energy Ekin = 3MeV and flux I = 5·103 s-1 impinges on
a thick gold film x = 1µm. Using Rutherford’s formula, calculate how many particles
are scattered in ∆t = 10minutes in the range of angles 10◦ ≤ θ ≤ 30◦.
b. Now, the gold film is replaced with an aluminum film of the same thickness. How
many α-particles are scattered under equal circumstances?

Solution: a. The atomic mass of gold 197
79 Au being mAu = 196.966570 u contains

and its density being ρAu = 19.3 g/cm3, we expect ntg = ρAu/mAu = 5.9 · 1028 m3

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_EspalhamentoRutherford1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_EspalhamentoRutherford2.pdf
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atoms per volume. With this we calculate,

NAu = I∆t

∫

10◦≤30◦

dN

N
= I∆tntgx

Z2
αZ

2
tge

4

256π2ε20E
2
kin

∫ 2π

0

∫ 30◦

10◦

1

sin4 θ2
sin θdθdϕ

= 63.6 · −4π
sin2 θ2

∣∣∣∣∣

30◦

10◦

= 105000 .

b. Aluminum 27
13Al has about the same number of atoms per volume. With this we

calculate,

NAl =
Z2
Al

Z2
Au

NAu = 3885 .

22.1.6.3 Ex: Screening of electrons

Consider thin layer of charge −Ztge with radius R. This screening causes a scattering
angle,

tan θ
2 =

D

2b

√
1− (b/R)2

1 +D/2R
,

with D ≡ 3Ze2

m2v2/2
for b < R. Verify how the screening changes the differential cross

section dσ
dΩ .

Solution:

22.1.6.4 Ex: Radiation of an oscillating dipole

Calculate the angular distribution of the power radiated by an oscillating electric or
magnetic dipole from expressions for the emitted electric and magnetic fields found
in literature.

Solution: We consider 5 an electric dipole with the dipole moment p0 harmonically
oscillating with the angular frequency ω along the direction êz,

p(r, t) = p(r)e−ıωt = p0êze
−ıωt .

In vacuum, the generated field can be derived exactly using the retarded potentials as,

E =
1

4πε0

{
ω2

c2r
(êr × p)× êr +

(
1

r3
− ıω

cr2

)
[3êr(êr · p)− p]

}
eıωr/ce−ıωt

B =
ω2

4πε0c3
êr × p

(
1− c

ıωr

) eıωr/c
r

e−ıωt .

5See script on Electrodynamics (2023), Excs. 7.6.1.2 and 8.2.1.2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_ScreeningEletrons.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_RadiacaoDipolar.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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For rω/c ≫ 1, the far field adopts the simplest form of a radiating spherical wave,
but with the angular dependence incorporated in the vector product:

B =
ω2

4πε0c3
(êr × p)

eıω(r/c−t)

r
=
ω2µ0p0
4πc

(êr × êz)
eiω(r/c−t)

r
= −ω

2µ0p0
4πc

sin θ
eiω(r/c−t)

r
êϕ

E = cB× êr = −
ω2µ0p0

4π
sin θ(êϕ × êr)

eiω(r/c−t)

r
= −ω

2µ0p0
4π

sin θ
eıω(r/c−t)

r
êθ .

In the temporal average, ω
2π

∫ 2π

0
cos2 ωtdt = 1

2 , the Poynting vector,

⟨S⟩ = 1

µ0
⟨E×B⟩ = µ0p

2
0ω

4

32π2c

sin2 θ

r2
êr

In the temporal average, it is not isotropically distributed, but concentrated in the
directions perpendicular to the dipolar moment, as a result of the non-spherical nature
of the electrical and magnetic waves. In fact, the spherical harmonic function (sin θ)
responsible for this toroidal angular distribution is just the p-wave (ℓ = 1). The total
power radiated by the field can be derived from the vector Poynting vector as being,

P =

∫ 2π

0

∫ π

0

⟨S⟩ · êrr2 sin θdθdϕ =
µ0p

2
0ω

4

32π2c
2π

∫ π

0

sin3 θdθ =
µ0ω

4p20
12πc

.

22.1.6.5 Ex: Magnetic moments

a. Derive from the expression µ⃗L = 1
2

∫
R3 r × j(r′)d3r′ of classical electrodynamics

and an appropriate parametrization of the current density j the relation between the
magnetic dipole moment µ⃗ due to the orbiting electron and the angular momentum
L.
b. The length of the angular momentum vector being given by |L| = ℏ, calculate the
magnetic moment for an electron and for a proton.

Solution: a. The rotational motion of a charge, −e, creates a current I = −e/2πr,
corresponding to a current density,

j(r′) = Iêϕδ(r − r′)δ(z′) = −e
v

2πr
δ(r − r′)δ(z′) .

The dipole moment caused by a circular motion of an electron is,

µ⃗L = 1
2

∫

R3

r× j(r′)d3r′ = 1
4π r×

∫ 2π

0

dϕ′
∫ ∞

−∞
dz′
∫ ∞

0

r′dr′
−ev
r
δ(r − r′)δ(z′)

= −1
2 er× v =

−e
2me

L ,

with the angular momentum L = r ×mev. The quotient γe ≡ −e/2me is called the
gyromagnetic ratio of the electron. We often use the Bohr magneton, µB ≡ ℏe/2me,
which represents the elementary unit of angular momentum,

µ⃗L = −µB
ℏ
gLL ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_MomentosMagneticos.pdf
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where gL ≡ µL/L = 1 is a factor taking into account possible corrections between the
classical derivation and quantum mechanics.
b. We have,

µe = µB , µp = µK .

22.1.6.6 Ex: Bohr’s atom

In 1913, Niels Bohr presented his atomic model adapting Rutherford’s model to the
quantization ideas proposed by Max Planck.
a. Impose the quantization rule for the angular momentum (L = nℏ) of an electron
orbiting an atom of atomic number Z to find an expression for the radii of the allowed
orbits.
b. According to Bohr’s model, the transition between different orbits is accompa-
nied by the emission (or absorption) of a photon. Determine the energy of a photon
emitted during a transition between the first excited state and the ground state of a
hydrogen atom.
c. Consider an electron trapped in an infinite one-dimensional box potential of width
a. Determine an expression for the electronic energy levels.
d. What should be the width a of this potential, in terms of the Bohr radius, so to
ensure that a photon emitted during a transition between the first excited state and
the ground state equals that obtained in item (b)?

Solution: a. In equilibrium, the centrifugal force and the Culombian force between
the electron and the Z positive charges of the nucleus must compensate. Hence,

Fcf = Fcou therefore
mev

2

r
=

1

4πε0

Ze2

r2
.

But the quantization condition is L = nℏ, which by the definition of angular momen-
tum leads us to:

v =
nℏ
mer

.

By replacing the velocity in centripetal force, we will have:

rn =
(4πε0)ℏ2

mee2
n2

Z
= aB

n2

Z
,

where we defined the radius of Bohr aB.

b. The energy of the electron is E = Ec + Ep = me

2 v
2 − 1

4πϵ0
Ze2

r . With the Coulomb
force, we have,

E = −1

2

1

4πε0

Ze2

r
.

Inserting the possible radii rn, we get:

En = −1

2

1

4πε0

Z2e2

aBn2
= −me

2

(
1

4πε0

)2
Z2e2

ℏ2n2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_AtomoBohr.pdf
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The energy Ef of the photon emitted is,

E2 − E1 = −1

2

(
1

4πε0

)2
meZ

2e2

ℏ2

[
1

4
− 1

]
.

Hence,

Ef =
3

8

(
1

4πε0

)2
mee

2

ℏ2
.

c. Considering that the potential V (x) is zero for 0 < x < a and infinity outside

this region, we have the Schrödinger equation − ℏ2

2m
d
dxψ = Eψ which leads us to the

solution:

ψ(x) = A cos(kx) +B sin(kx) where k2 =
2meE

ℏ2

The boundary condition, ψ(0) = 0 leads to A = 0 and ψ(a) = 0 leads to ka = nπ.
With ansatz above, we conclude that

En =
n2π2ℏ2

2ma2
.

d. The energy of the emitted photon is,

Ef = E2 − E1 =
ℏ2π2

2ma2
[4− 1] =

3ℏ2π2

2ma2
.

Thus, equating with the expression for Ef for the Bohr atom, we have

3ℏ2π2

2mea2
=

3

8

(
1

4πε0

)2
me2

ℏ2
.

Hence,

a =
4πε0ℏ2

mee2
2π .

But the Bohr radius aB is just the orbit in which n = 1 in the expression of the Bohr
radius. Then

a = 2πaB .

That is, the width of the potential has the same order of magnitude as the diameter
of a hydrogen atom (around 0.1 nm).

22.1.6.7 Ex: The hydrogen atom

The hydrogen atom can be seen as a point-like proton and an electron distributed
over space with charge density ρ = Ae−2r/aB around the proton that is in the center.
Here, A is a constant and r is the distance from the center.
a. Calculate A considering the fact that the atom is electrically neutral.
b. Calculate the amplitude of the electric field at a radius r = aB .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_AtomoHidrogenio.pdf
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Solution: a. The total charge of the electronic layer must give one unit of nega-
tive elementary charge,

−e
A

=

∫

R3

e−2r/aBdV = 4π

∫ ∞

0

r2e−2r/aBdr

= 4π

(
−1

2
aBe

−2 R
aB R2 − 1

2
a2Be

−2 R
aB R− 1

4
a3Be

−2 R
aB +

1

4
a3B

)∣∣∣∣
∞

0

= πa3B .

Hence, A = −e/πa3B.
b. For a sphere with volume V and surface ∂V we have according to Gauß’ law,

∮

∂V

E⃗ · df⃗ =
1

ε0

∫

V

−e
πa3B

e−2r/aBdV .

The surface integral in spherical coordinates is,
∮

∂V

E⃗ · df⃗ =

∮

∂V

E⃗ · êrR2 sin θdθdϕ = 4πErR
2 .

The charge inside the sphere (including the proton) is,

e+

∫

V

−e
πa3B

e−2r/aBdV = e+
−e
πa3B

4π

∫ R

0

r2e−2r/aBdr

= e+
−e
πa3B

4π
−1
2
aB

(
e
−2 R

aB R2 + aBe
−2 R

aB R+
1

2
a2Be

−2 R
aB − 1

2
a2B

)

=
2e

a2B

(
e
−2 R

aB R2 + aBe
−2 R

aB R+
1

2
a2Be

−2 R
aB

)
.

Hence,

Er(R) =
e

2πε0a2B

(
e
−2 R

aB +
aB
R
e
−2 R

aB +
1

2

a2B
R2

e
−2 R

aB

)

R→aB−→ e

4πε0a2B
5e−2 ≃ 350GV/m .

22.2 The discovery of the photon

The concept of the nature of light has a variable history. Newton proposed around
∼ 1650 a corpuscular model to explain Snellius’ law on the refraction of a light beam
penetrating a crystal. Around the same time Huygens found a wave-based interpre-
tation. The two models predicted different speeds of light within the dense medium.
Newton found, that the speed of light is greater in the medium than outside, while
Huygens found the opposite 6. In the late 1800’s the wave nature of light was estab-
lished through observations of interference effects confirming Huygens’ hypothesis.

6Note that until today there remain doubts about the correct value of the momentum of light in
dielectric media [898].
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However, some observations made were incompatible with this simplistic ideas, for
example, the spectrum of blackbody radiation, the Compton effect, the specific heat
of the solid, the radiation pressure, and the photoelectric effect. All these observations
are readily understood by assuming a corpuscular nature of the light 7.

Nowadays, knowing the theory of quantum mechanics, we are aware that both
ideas have their range of validity and that the electromagnetic radiation is dual: In
general, propagation and interference effects are best described by waves. However,
when interacting with matter, light tends to localize into small energy packets that
we call photons.

22.2.1 Radiation in a conductive cavity

In the age of lasers a classical treatment of the emission and absorption of light
may seem an atavism. However, even with coherent and monochromatic radiation
sources, the most commonly used physical picture is that of a classical optical field
interacting with an atom or a molecule whose energetic structure is treated quantum
mechanically. And even the atomic or molecular dipole is often treated like a classical
oscillator. The exposition of such a dipole to simple boundary conditions prepares
the analogous development of a quantum oscillator and provides a direct path to
quantization of the radiation field.

Even if we rarely do experiments by throwing light into a small hole in a metallic
box, the electromagnetic fields obtained by solving Maxwell’s equation are particularly
simple for boundary conditions, where the fields disappear on the inner surfaces of
the box. Before discussing the physics of radiation in a perfectly conducting cavity,
we have to introduce some basic relations between electromagnetic amplitudes, stored
energy, and intensity.

The electric field of a plane wave oscillating with frequency ω and propagating
through vacuum in the direction of propagation defined by the wave vector,

k =
2π

λ
k̂ , (22.33)

can be written,

E⃗ = E⃗0eı(k·r−ωt) , (22.34)

where E⃗0 = E0ê consists of an amplitude E0 and a polarization ê. Since the field E⃗0
is transverse to the direction of propagation, the polarization has two components
perpendicular to k. The magnetic induction field associated with the wave is,

B0 = 1
cE0 . (22.35)

For a propagating wave E⃗ and B⃗ are in phase, while for a standing wave they are out
of phase.

For a given cavity mode we can express the standing wave in this mode as,

E⃗ = E⃗0(r)e−ıωt . (22.36)

7The corpuscular hypothesis is now called the second quantization of quantum theory or quanti-
zation of the electromagnetic field.
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The energy of the electromagnetic field of a standing wave, averaged over one oscilla-
tion of the frequency ω is,

Ū =
1

2

∫ (
ε0
2
|E⃗ |2 + 1

2µ0
|B⃗|2

)
dV . (22.37)

Now, the energy density of the oscillating electromagnetic field is given by,

ū =
dŪ

dV
=

1

4

(
ε0|E⃗ |2 +

1

µ0
|B⃗|2

)
. (22.38)

From the equation (22.35) we can see that the contributions of the electric and mag-
netic fields are equal. Therefore,

Ū = 1
2

∫
ε0|E⃗ |2dV and ū = 1

2ε0|E⃗ |2 . (22.39)

Another important quantity is the flux of electromagnetic energy through a surface.
The Poynting vector describing this flux is defined by,

I = 1
µ0
E⃗ × B⃗ . (22.40)

Again using the equation (22.35), we find the value averaged over a time period,

Ī = 1
2ε0c|E⃗ |2 . (22.41)

This quantity, called intensity, describes the fact that the flux is a density of energy
multiplied with the velocity of propagation in vacuum,

ūc = 1
2ε0c|E⃗ |2 = Ī . (22.42)

The intensity can also be written,

Ī =
1

2

√
ε0
µ0
|E⃗ |2 . (22.43)

where the factor
√
µ0/ε0 is called impedance of free space, because it has the unit

of a resistance and the last equation has the same form as the power dissipated in a
resistor,

W =
1

2

V 2

R
. (22.44)

22.2.2 Black body radiation

We now want to calculate the energy density inside the cavity before using the result to
describe the interaction between light and a sample of two-level atoms located inside
the cavity. The basic idea is to say that the electrons inside the conducting surface
of the cavity oscillate because of thermal motion. The oscillation generates a dipolar
radiation leading to stationary waves developing within the cavity. As the walls of the
cavity are conducting, the electric field E⃗ must disappear inside the wall and on its
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surfaces. The task is now twofold: first count the number of possible standing waves,
which satisfy the boundary conditions as a function of frequency; second, determine
the energy for each wave and then calculate the spectral distribution of the energy
within the cavity.

The equations describing the radiated energy in free space are,

∇2E⃗ =
1

c2
∂2E⃗
∂t2

and ∇ · E⃗ = 0 . (22.45)

The stationary waves solutions separate into terms oscillating in time and in space.

Figure 22.8: (a) Cavity in position space showing the thermal motion of the electrons inside
the walls. (b and c) Density-of-states in a cavity in momentum space.

Now, respecting the boundary conditions for a three-dimensional box of length L, we
have for the components of E⃗ 8,

E⃗(r, t) = e−ıωt[êx cos(kxx) sin(kyy) sin(kzz) (22.46)

+êy sin(kxx) cos(kyy) sin(kzz)

+êz sin(kxx) sin(kyy) cos(kzz)] ,

with the components,

kx =
πnx
L

for nx = 0, 1, 2, ... (22.47)

and similar for ky and kz. Note, that for each component Ex,y,z the transverse am-
plitudes disappear in 0 and L. By inserting this solution into Helmholtz’s equation
(22.45), we obtain,

k2x + k2y + k2z =
ω2

c2
. (22.48)

The states kx,y,z (enumerated by integer numbers nx,y,z) form a three-dimensional
orthogonal lattice of points in space k separated by a distance along the axes kx, ky,
kz of π

L , as shown in Fig. 22.8. In principle, the number of states that can be placed
within a sphere of radius k in the momentum space is,

N =

∫

sphere

dnxdnydnz . (22.49)

8See script on Electrodynamics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf


1218 CHAPTER 22. ANTECEDENTS OF QUANTUM MECHANICS

However, the periodic boundary conditions for |k| limit the components kx, ky, kz
to positive values (n ≥ 0), that is, the volume under consideration is limited to an
octant. On the other hand, we must multiply the number of states by two because of
the degeneracy of polarizations. Hence,

4N =

∫ n

0

4πn2dn =

(
L

π

)3 ∫ k

0

4πk2dk =
4L3

π2

k3

3
=

4L3ω3

3π2c3
. (22.50)

With this, we obtain the mode density,

N

L3
=

ω3

3π2c3
. (22.51)

The spectral density of modes ϱ can be given in several units,

∫
ϱ(n)dn =

∫
ϱ(k)dk =

∫
ϱ(ω)dω =

N

L3
, (22.52)

such that,

ϱ(n) =
πn2

L3
or ϱ(k) =

k2

π2
or ϱ(ω) =

ω2

π2c3
. (22.53)

The density of oscillating modes within the cavity grows like the square of the
frequency. Now, the mean energy per mode in a sample of oscillators in thermal
equilibrium is, following the equipartition law, equal to,

Ē = kBT , (22.54)

where kB is the Boltzmann constant. We conclude that the spectral energy density
uRJ(ω) in the cavity is,

uRJ(ω)dω = kBTϱ(ω)dω = kBT
ω2

π2c3
dω . (22.55)

This law is known as the Rayleigh-Jeans law of black-body radiation. As seen in
Fig. 22.9, this law suggests the physically impossible fact, called ultraviolet catastro-
phe, that the energy storage in the cavity grows without limits like the square of
frequency.

22.2.3 Planck’s distribution of modes

We obtained the result (22.54) by multiplying the number of modes with the mean
energy per mode. As there is no doubt about our method of counting the modes, the
problem with the ultraviolet catastrophe can only root in the use of the equipartition
principle for assigning energy to the oscillators.

Planck’s idea to solve this problem was to first consider the probability distribu-
tion for exciting the modes (thermal states) for a sample of oscillators in thermal
equilibrium at temperature T . This probability distribution p comes from mechanical
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Figure 22.9: (code) Spectral energy density following Rayleigh-Jeans’ and Planck’s laws.

statistics and can be written in terms of the Boltzmann factor, e−En/kBT , and the
partition function q =

∑∞
n=0 e

−En/kBT as,

pn =
e−En/kBT

q
. (22.56)

Now Planck hypothesized that the energy be quantized, that is, it must be assigned
in discrete portions, proportional to the frequency, such that,

En = nℏω , (22.57)

where n = 0, 1, 2, .. and the proportionality constant ℏ is called Planck’s constant.
With the abbreviation Z ≡ e−ℏω/kBT and using the rule

∑∞
n=0 Z

n = (1 − Z)−1, we
find the average number,

n̄ =
∑

n

npn = (1− Z)
∑

n

nZn = (1− Z)Z ∂

∂Z

∑

n

Zn =
Z

1− Z =
1

eℏω/kBT − 1
.

(22.58)
The probability of occupancy of state n is,

pn = (1− Z)Zn =
n̄n

(1 + n̄)1+n
, (22.59)

and the average energy is,

Ē =
∑

n

Enpn =
∑

n

nℏωe−nℏω/kBT =
ℏω

eℏω/kBT − 1
, (22.60)

in contrast to the initial assumption (22.55).
Finally, we obtain Planck’s expression for the energy density inside the cavity by

replacing the energy (22.60) for the factor kBT in Rayleigh-Jeans’ law (22.55),

uP (ω)dω = Ēϱ(ω)dω =
ω2

π2c3
ℏω

eℏω/kBT − 1
dω . (22.61)

This result, drawn in Fig. 22.9, is much more satisfactory, because now the energy
density has an upper bound, and it coincides with the results of experiments. For high

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Antecedents_RayleighJeans.m
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temperatures or low excitation energies, ℏω ≪ kBT , Planck’s distribution converges
to that of Rayleigh-Jeans’, uP (ω)→ uRJ(ω).

Note, that the form of the expression for the energy depends on the parametriza-
tion and must be derived respecting u(ω)dω = u(λ)dλ, etc.. Often the blackbody
radiation is expressed in terms of the spectral radiance,

L(ω) ≡ c

4π
u(ω) , (22.62)

which can be understood as the (isotropic) energy flux into all directions of space.
Solve the Excs. 22.2.10.1 to 22.2.10.7.

22.2.4 The corpuscular nature of the photon

22.2.4.1 The photoelectric effect

Light incident on a metallic surface can expel electrons. For this to occur, the light
must have a minimum frequency. If the frequency is below this value, there is no
point in increasing the light intensity: the electrons won’t be expelled. The main
experimental observations are: 1. Electrons are ejected without apparent delay, i.e. it
is not necessary (and it doesn’t help) to accumulate a certain amount of energy.
2. Higher light intensities increase the number of electrons, but not their kinetic
energy after expulsion. 3. Red light does not eject electrons, even at high intensities.
4. Weak ultraviolet light only ejects few electrons, but with high kinetic energy.

These observations challenge the classical electromagnetic model according to
which the Lorentz acceleration of the electrons should be proportional to the field
amplitude. The observations were explained by Einstein’s theory of the photoelec-
tric effect, which assumes the light to be quantized (unlike Planck, who preferred to
quantize the process of light absorption),

E = hν . (22.63)

Assuming a fixed exit work A for the extraction of an electron, we can measure the
constant ℏ:

hν = A+ mv2

2 = A+ eV → h =
eV

ν − νg
. (22.64)

The energy of the fastest electrons is measured through the decelerating voltage by
varying ν and I. We will discuss the photoelectric effect quantitatively later in the
Exc. 27.4.5.7.

22.2.4.2 Bremsstrahlung and the Franck-Hertz experiment

Bremsstrahlung is, in a way, the inverse process of the photoelectric effect. Here,
electrons are accelerated toward a cathode. Finding a target they are rapidly decel-
erated, a process in which they emit a continuous spectrum of X-rays (in addition to
characteristic lines attributed to electronic transitions in the target atoms). For any
given kinetic energy the spectra have a red threshold corresponding to photons that
receive the entire energy of the electron.

In the Franck-Hertz experiment free electrons produced in a plasma are acceler-
ated by a strong electric field. Having traveled a sufficiently long distance they have
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acquired enough kinetic energy to excite electronic transitions in the atoms of the
plasma. When an excitation occurs, the electron suddenly loses all its energy and
must be accelerated again, starting from rest, before it can excite another atom.

22.2.4.3 Radiative pressure and Compton scattering

When light is scattered from a particle, it transfers momentum to it called photonic
recoil. This effect, known as radiation pressure, occurs for example in Compton scat-
tering.

X-rays scattered by the electrons of a carbon target are red-shifted by an amount,
which increases with the scattering angle. This is the Compton effect. The data
are understood assuming a corpuscular nature of light and applying the laws of con-
servation of energy and momentum to the collision processes between photons and
electrons. The scattered photon sees its energy reduced and therefore its wavelength
increased, as we have already seen in Sec. 20.2.3.

In a material where there are free electrons, this effect will occur at all photon
energies. In other materials, it is only observed with high energy photons. For high
energy photons, exceeding the atomic binding energy, the electrons can be considered
free such that, in the scattering process, the photon is able to eject the electron from
its atom. The photon receives the remaining energy and is deviated, such that the
overall momentum of the system is conserved. The loss of energy for the photon
results in a spectral shift to the red during its passage through the material.

Photons of visible light, on the other hand, do not have enough energy to eject
bound electrons. In this case, the mass in the Compton formula must be replaced by
the atomic mass, such that the spectral displacement becomes much smaller. This
limit, which involves bound electrons, is that of Thomson and Rayleigh scattering.

The relevance of this effect lies in the fact that it shows that light exhibits proper-
ties commonly attributed to corpuscles, since Thomson’s scattering model, based
on the classical theory of charged particles accelerated by electromagnetic fields,
can not explain any spectral shift. Compton scattering is discussed quantitatively
in Exc. 20.2.6.5.

22.2.5 Einstein’s transitions rates

Bohr’s atom model explained for the first, time how light interacts with matter: Atoms
have discrete excitation levels, and they absorb and emit discrete energy packets ℏω.
Unfortunately, Bohr’s model can not predict transition rates. Here, Einstein helped
out by developing a useful theory (see Fig. 22.10).

Figure 22.10: Bohr model and Einstein rate diagram.
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We consider a two-level atom or a sample of atoms within a conducting cavity.
We have N1 atoms in the lower energy state E1 and N2 in the upper state E2. Light
interacts with these atoms through stimulated resonant absorption and emission. The
rates, B12u(ω) and B21u(ω) are proportional to the energy spectral density u(ω) of
the cavity modes. The central idea of Einstein is to postulate that atoms in the higher
state can emit light spontaneously at a rate A21, which depends only on the density
of modes of the cavity, i.e. the volume of the cavity, but not the energy of the field
of radiation. With the Einstein coefficients we can formulate valid rate equations in
situations, where the spectral distribution of the radiation is wider than the spectral
width of the atomic transition and where the spectral distribution of the light flux
from the source, Ī(ω), is weak compared to the saturation intensity of the atomic
transition. Even if modern light sources generally have very narrow and intense
spectral emission bands, Einstein’s coefficients are often used in the spectroscopic
literature to characterize the light-matter interaction with atoms and molecules.

The Einstein rate equations describe the energy flux between atoms and the optical
modes of the cavity,

dN1

dt
= −dN2

dt
= −R1→2 +R2→1 + S2→1 (22.65)

= −N1B12u(ω) +N2B21u(ω) +N2A21 .

R1→2 is the absorption rate, R2→1 the stimulated emission rate and S2→1 the sponta-
neous emission rate. The assumption of a third type of transition, called spontaneous
emission, is necessary, if B12 = B21 but N1 > N2 in thermal equilibrium. In thermal
equilibrium we have the condition of stationarity, dN1

dt = −dN2

dt = 0 for a given energy
density value u(ω) = uth(ω), such that,

uth(ω) =
A21(

N1

N2

)
B12 −B21

. (22.66)

The Boltzmann distribution law controlling the distribution of the number of atoms
in the lower and upper states is given by,

N1

N2
=
g1
g2
e−(E1−E2)/kBT , (22.67)

where g1,2 are the degeneracies of the lower and upper states and E2−E1 = ℏω0. We
find,

uth(ω) =
A21

g1
g2
eℏω0/kBTB12 −B21

. (22.68)

But this result must be consistent with Planck’s distribution (22.61). Therefore, by
comparing this equation with the equation (22.68), it must be that,

g1
g2

B12

B21
= 1 . (22.69)

and also,
A21

B21
=

ℏω3
0

π2c3
. (22.70)
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This equation shows that, once we know one of the three transition rates, we can
always calculate the others.

It is useful to compare the rate A21 with B21 from the equation (22.68) inserting
the equation (22.69),

A21

B21uth(ω)
= eℏω0/kBT − 1 . (22.71)

This expression shows that, when E2 − E1 ≫ kBT , that is, for optical, UV, or X-
ray frequencies, spontaneous emission dominates. But in low-frequency regimes, that
is, IR, microwave, or radio waves, stimulated emission is more important. Note that
even when stimulated emission dominates, spontaneous emission is always present and
plays an important role, for example, in processes ultimately limiting the emission
bandwidth of lasers.

22.2.6 Absorption spectrum for a single atom

Every light source has a certain spectral width. Conventional light sources, such
as incandescent bulbs or plasmas have relatively broad emission bands compared to
atomic or molecular absorbers, at least when the latter ones are studied in dilute
gases. Even when we use pure spectral sources, such as a laser tuned to the peak
of a resonance, the transition line always exhibits an intrinsic width associated with
the interruption of the phase evolution of the excited state. Phase interruptions such
as spontaneous or stimulated emission and collisions are common examples of line
broadening mechanisms. The emission or absorption of radiation occurs within a
frequency distribution centered about ω0 ≡ ω2 − ω1, and we must account for this
spectral distribution in our calculation of the energy transfer.

On the other hand, as we will see in Sec. 34.1.3 and Sec. 34.5.1, spontaneous
decay at a rate Γ of the excited level causes a finite linewidth for the atomic transi-
tion. Consequently, even perfectly monochromatic light will be absorbed according
to a probability distribution given by the spectral absorption profile of the atomic
transition. This profile is called the frequency-dependent optical cross section and
reads 9,

σ(ω) =
g2
g1
λ2

Γ

2π

1
4Γ

(ω − ω0)2 +
1
4Γ

2
=
g2
g1
λ2

Γ

4
LΓ(ω − ω0) , (22.72)

where we defined the Lorentzian profile as,

Lβ(∆) ≡ β

2π

1

∆2 + (β/2)2
with

∫ ∞

−∞
Lβ(∆)d∆ = 1 . (22.73)

The total power P absorbed by a two-level atom with resonance frequency ω0

from a radiation field with the spectral intensity distribution I(ω) and with the total
intensity of the laser beam Ī =

∫
I(ω)dω can now be expressed as the integral,

P =

∫
σ(ω)I(ω)dω , (22.74)

9At low saturation.
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Example 139 (Limiting cases): Let us analyze the two limiting cases when
either one of the spectral distributions I(ω) or σ(ω) is much narrower than the
other.
For a narrow laser, we may assume a δ-peaked spectral intensity distribution,

I(ω) = Īδ(ω − ωL) . (22.75)

When it drives a broad transition described by an optical cross section given by
(22.72), the scattered power is,

P = Īσ(ωL) . (22.76)

For a narrow transition, we may substitute the Lorentzian in (22.72) by a Dirac
δ-function,

σ(ω)
Γ→0−→ g2

g1
λ2Γ

4
δ(∆) . (22.77)

When it is driven by a broad laser, for which we assume a spectral intensity
distribution,

I(ω) = ĪLβ(ω − ωL) with Ī =

∫
I(ω)dω =

I(ωL)

Lβ(0)
=
πβ

2
I(ωL) (22.78)

we obtain for the scattered power,

P =

∫
g2
g1
λ2Γ

4
δ(ω − ω0)ĪLβ(ω − ωL)dω =

g2
g1
λ2Γ

4
ĪLβ(ω0 − ωL) . (22.79)

22.2.6.1 Broad laser driving a broad transition

Until now we assumed a fixed laser frequency ωL (with finite emission bandwidth)
driving a fixed resonance frequency ω0. What we call absorption spectrum is what
we obtain when we tune either the laser frequency or when we (somehow) vary the
resonance frequency, such that ∆ ≡ ωL−ω0 is ramped. Assuming Lorentzian profiles
with finite linewidths for both, Ī and σ, we get,

P (∆) = P (ωL − ω0) =

∫
σ(ω)I(ω)dω =

∫
g2
g1

λ2Γ

4
LΓ(ω − ωL)ĪLβ(ω − ω0)dω

=
g2
g1

λ2Γ

4
Ī

∫
LΓ(ω

′ + ω0 − ωL)Lβ(ω′)dω′ . (22.80)

That is, the absorption spectrum is obtained as a convolution of both profiles,

P (∆) =
g2
g1

λ2ΓĪ

4
(LΓ ⋆ Lβ)(∆) . (22.81)

This result reproduces the two limiting cases discussed in the above example,
since for narrow transitions, Γ → 0, that is LΓ → δ, we recover the results (22.79),
and for narrow lasers, β → 0, that is, Lβ → δ, we recover (22.76). Obviously, this
formula holds for other line profiles e.g. when the resonance is broadened by some
perturbations 10.

10Let us here remind the following identities holding for Lorentzian and Gaussian line profiles:

(Lγ ⋆ Lβ)(∆) = Lγ+β(∆) and (GΓ ⋆ Gβ)(∆) = G√
γ2+β2 (∆) .
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Figure 22.11: Absorption spectrum (blue) and spectral energy distribution of the source
(red).

22.2.6.2 Two-level atom in a blackbody radiation field

When considering a two-level atom interacting with a blackbody a radiation field, we
describe the spectral intensity distribution by (22.61),

I(ω) =
ω2

π2c2
ℏω

eℏω/kBT − 1
(22.82)

with Ī =

∫
I(ω)dω =

ℏ
π2c2

(
kBT

ℏ

)4 ∫ ∞

0

x3dx

ex − 1
=

π2

15c2ℏ3
(kBT )

4 .

Since the width of the transition is negligibly small in comparison with the blackbody
spectrum, Γ→ 0, we may evaluate the scattered power as,

P =

∫
g2
g1

λ2Γ

4
LΓ(ω − ω0)

ω2

π2c2
ℏω

eℏω/kBT − 1
dω (22.83)

Γ→0−→ g2
g1

λ2Γ

4

ω2
0

π2c2
ℏω0

eℏω0/kBT − 1
.

22.2.7 Absorption in a gas

We are often interested in the attenuation of the intensity of a beam of light traversing
a dilute gas of resonant scattering atoms. The Einstein rate equation yields the
temporal transition rates, but does not say how they relate to the spatial attenuation
length of the light beam. Let us now generalize the previous results to a gas of two-
level atoms. As long as the transition linewidth is narrow [case (22.77)], the power
is removed from the system only by spontaneous emission; absorption only converts
radiation into atomic excitation which, subsequently, can be returned to the radiation
field by stimulated emission. At steady-state the Einstein rate equation (22.65) reads,

0 = −N1B12u(ω0) +N2B21u(ω0) +N2A21 . (22.84)

Using the result (22.69), we can write the amount of power removed from the system
by spontaneous emission as,

P = N2A21ℏω0 = u(ω0)B12(N1 − g1
g2
N2)ℏω0 . (22.85)

The second part of the equation describes the energy loss of the beam, i.e. the dif-
ference between energy removed by absorption and energy returned to the beam by
stimulated emission.
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On the other hand, the power absorbed from the radiation field u(ω0) by atoms
whose transition is described by the cross section (22.72), is given by,

P =

∫
(N1 − g1

g2
N2)σ(ω)I(ω)dω . (22.86)

Remembering I(ω) = cu(ω) and assuming a large radiation spectrum, I(ω) ≃ I(ω0),
a comparison of equations (22.85) and (22.86) yields,

B12 =
c

ℏω0

∫
σ(ω)dω . (22.87)

22.2.7.1 Lambert-Beer law

In the expression (22.86) the absorption probability distribution σ(ω) is convoluted
with the spectral energy distribution of the light source, u(ω) = dū/dω, which in turn
is related to the energy density via, Ū = V ū, where V is the mode volume of the light
field. Considering a thin slab of the absorber with volume ∆V , we have dŪ = ∆V dū.
Assuming that the light propagates in z-direction across the absorber and converting
the time dependence into a spatial dependence, we have on one hand,

P = −dŪ
dt

= −dū
dt

∆V = −cdū
dz

∆V = −dĪ
dz

∆V . (22.88)

On the other hand, assuming that the light field be a laser with narrow emission
bandwidth, I(ω) = Īδ(ω − ωL), we get from (22.86),

P =

∫
(N1 − g1

g2
N2)σ(ω)I(ω)dω = Ī(N1 − g1

g2
N2)σ(ωL) , (22.89)

Now comparing both results,

dĪ

Ī
= −

N1 − g1
g2
N2

∆V
σ(ωL)dz ≃ −nσ(ωL)dz , (22.90)

where the approximation holds for low saturation, that it, if N1 ≫ N2. The solution
of this differential equation is,

Ī = Ī0e
−σ(ωL)nz . (22.91)

Here, z is the total distance, over which absorption takes place. The last equation
is the Lambert-Beer law for light absorption. It is very useful for measuring atomic
densities in gas cells or of atomic beams [860, 816, 1364]. Solve the Excs. 22.2.10.9 to
22.2.10.11.

22.2.8 Saturation

Strong driving of a transition leads to its saturation and causes line broadening. To
see this, we go back to Einstein’s rate equations in steady-state (22.65) additionally
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simplified by assuming g1 = 1 = g2, such that B12 = B21. Resolving these equations
by N1 and N2 and using N1 +N2 = N and N1 −N2 ≡ ∆N , we get,

N1 = N
B21u(ω) +A21

2B21u(ω) +A21
and N2 = N

B12u(ω)

2B21u(ω) +A21
. (22.92)

For vanishing pump rate we expect, N1
u→0−→ N and N2

u→0−→ 0. In contrast, when
the pump rate becomes much larger than the relaxation rates, N1, N2

u→∞−→ 1
2 . This

means that the absorption coefficient α = σ(N1 −N2) goes to zero, and the medium
becomes completely transparent. The difference in the populations of the ground and
excited states,

∆N = N
A21

2B21u(ω) +A21
=

N

1 + s(ω)
, (22.93)

can be expressed via a saturation parameter

s(ω) ≡ 2B12u(ω)

A21
, (22.94)

which represents the ratio of pump rate to the relaxation rate. The pump rate due to
a monochromatic wave with intensity Ī is obtained by comparing (22.85) with (22.89),

B12u(ω) =
σ(ω)Ī

ℏω
. (22.95)

We obtain for the saturation parameter,

s(ω) =
2σ(ω)Ī

ℏωA21
. (22.96)

According to (22.85) and (22.93) the power absorbed per unit volume on the transition
by atoms with the populations N1,2 in a radiation field with a broad spectral profile
and spectral energy density u(ω) is,

P = ℏωB12u(ω)∆N = ℏωB12u(ω)
N

1 + s(ω)
. (22.97)

With (22.94) this can be written as,

P = ℏω
A21

2

N

1 + s(ω)−1
. (22.98)

Let us now remember that the absorption cross section (22.72) of a homogeneously
broadened line is Lorentzian. This means that the saturation parameter (22.96) itself
becomes Lorentzian. We can assume that the relaxation rate A21 is independent of
ω within the frequency range of the line profile,

s(ω) = s(ω0)
(Γ/2)2

∆2 + (Γ/2)2
. (22.99)



1228 CHAPTER 22. ANTECEDENTS OF QUANTUM MECHANICS

Substituting this into (22.98) yields the frequency dependence of the absorbed radia-
tion power per unit frequency interval dω,

P = ℏω
A21N

2

s(ω0)(Γ/2)
2

(ω − ω0)2 + (Γ/2)2[1 + s(ω0)]
= NĪσ(ω0)

(Γ/2)2

∆2 + (γs/2)2
, (22.100)

where we introduced the increased halfwidth of the Lorentzian profile,

γs ≡ Γ
√
1 + s(ω0) . (22.101)

Apparently, the halfwidth of the saturation-broadened line increases with the resonant
saturation parameter s(ω0). If according to (22.94) the induced transition rate at
resonance equals the total relaxation rate A21/2, the resonant saturation parameter
becomes s(ω0) = 1, which increases the linewidth by a factor

√
2, compared to the

unsaturated linewidth Γ for weak radiation fields. Starting from (22.100) we can
define a saturated absorption cross section,

σs(ω) = σs(ω0)
(γs/2)

2

∆2 + (γs/2)2
= σ(ω0)

(Γ/2)2

∆2 + (γs/2)2
= σ(ω)

1

1 + s(ω)
, (22.102)

where the unsaturated absorption profile is,

σ(ω) = σ(ω0)
(Γ/2)2

∆2 + (Γ/2)2
. (22.103)

This shows that the saturation decreases the absorption coefficient by the factor
1 + s(ω). At the line center, this factor has its maximum value 1 + s(ω0), while it
decreases to 1 for increasing |∆|, see (22.101), see Fig. 22.12. This is the reason why
the line broadens.

From (22.96) we see, that unity saturation, s(ω0) = 1, corresponds to a light
intensity of,

Īsat ≡
ℏω

2σ(ω0)
Γ =

2π2cℏ
3λ3

Γ . (22.104)

This intensity is called saturation intensity. Taking account of the degeneracies gj of
the levels the saturation intensity becomes 11,

Isat =
g1
g2

2π2cℏ
3λ30

Γ . (22.105)

Finally, we anticipate that the resonant saturation parameter is basically a measure
for the ratio between the stimulated population transfer rate, given by a quantity
called Rabi frequency Ω, which will be thoroughly introduced in Secs. 27.4.3 and
34.4.2, and the spontaneous decay rate Γ,

s(ω0) =
2Ω2

Γ2
. (22.106)

We thus obtain the important relationship between laser intensity and Rabi frequency,

Ω2 = σ(ω0)
Ī

ℏω0
Γ . (22.107)

11Some authors define the saturation for s = 2, as happens when Ω = Γ.
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Figure 22.12: (code) Optical cross section for absorption at various saturation parameters.

The reduction of absorption is understood by considerable depletion of the ground state at

the profit of the excited state, N1, N2
s→∞−→ 1

2
, in which case absorption is totally compensated

by stimulated emission.

22.2.9 Specific heat of solids

The Debye model applies Planck’s law on the distribution of energy in electromagnetic
radiation, which treats radiation as a gas of photons, to the energy distribution of
atomic vibrations in a solid, treating them as a gas of phonons in a box (the box being
the solid). Most of the steps of the calculation are identical, as both are examples of
a massless bosonic gas with linear dispersion relation.

According to the equipartition theorem, every atom has 3 degrees of freedom due
to its translational motion. Thus, in a crystal lattice with N atoms, we expect the
total energy E = 3NkBT and the specific heat should be, following the Dulong-Petit
law,

CV =

(
∂E

∂T

)

V

= 3NkB , (22.108)

for all solids regardless of temperature.
It was observed, however, that the specific heat of solids decreases like CV ∝ T 3 as

T approaches zero. It was Einstein’s idea to apply Planck’s formula by treating the N
atoms as three-dimensional harmonic oscillators vibrating in a lattice. The discrete
energies nℏω are identified with quasi-particles called phonons. The quantum nature
of atoms does not matter, they just provide the medium supporting the phonons.
Following the Bose-Einstein statistics, we must replace,

kBT → ℏω/(eℏω/kBT − 1) , (22.109)

such that the derivative of the energy,

CV =

(
∂

∂T

3NkBℏω
eℏω/kBT − 1

)

V

= 3NkB

(
ℏω
kBT

)2
eℏω/kBT

(eℏω/kBT − 1)2
, (22.110)

gives the specific heat. The disappearance of the specific heat at low temperatures,

CV ≃
3N(ℏω)2

kBT 2
e−ℏω/(kBT ) , (22.111)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Antecedents_SaturatedCrossSection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Antecedents_SaturatedCrossSection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Antecedents_SaturatedCrossSection.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Antecedents_SaturatedCrossSection.m
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which is related to the finite localization energy of harmonic oscillators, does not
describe experimental observations very well, and the model had to be refined by
Debye, later on.

22.2.9.1 Debye model for the specific heat

While Einstein assumed monochromatic lattice vibrations, Debye’s approach was to
allow a spectrum of vibrational frequencies. With the density of states,

ρ(ν)dν = (4πV v3)ν2dν , (22.112)

where v is the velocity of sound propagation, the formula is totally equivalent to the
density-of-states for photons in a cavity. Assuming that there is an upper bound νm
for the vibrational frequencies, we normalize as 3N0 =

∫ νm
0

ρ(ν)dν. The energy now
is 12,

E =

∫ νm

0

ℏω
eℏω/kBT − 1

4πV

v3
νdν = 9NkB

T 4

θ3

∫ θ/T

0

x3dx

ex − 1
. (22.113)

The Debye temperature θ = hνm/kB is characteristic for the metal. The derivative is
then,

CV = 9NkB

[
4

(
T

θ

)3 ∫ θ/T

0

x3dx

ex − 1
− θ

T

1

eθ/T − 1

]
. (22.114)

At low temperatures this formula reproduces the Debye law,

CV =
12π4

5
NkB (T/θ)

3
. (22.115)

22.2.10 Exercises

22.2.10.1 Ex: Resistance of vacuum

Show that
√
µ0/ε0 has the dimension of a resistance and the value of 376.7Ω.

Solution: Using the expressions ∇ · E⃗ = ϱ/ε0,
∫
E⃗ · dl = U , Q̇ = I, and U = RI,

dimensional considerations yield,

[√
µ0

ε0

]
=

[
1

ε0c

]
=

[
|E⃗ |
lϱc

]
=

[
Ul3

Ql2c

]
=

[
U

I

]
= [R] = Ω .

ε0 = 8.8542 · 1012 As/Vm and µ0 = 4π · 10−7 Vs/Am.

12The fact that the electron gas also has a heat capacity is neglected.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_ResistenciaVacuo.pdf
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22.2.10.2 Ex: The laws of Planck and Rayleigh-Jeans

Show that Planck’s law reproduces the Rayleigh-Jeans law in the low-frequency limit.

Solution: Taylor Expansion of Planck’s law:

uPlω =
ω2

π2c3
ℏω

eℏω/kBT − 1
=

ω2

π2c3
ℏω

(1 + ℏω/kBT + ...)− 1
≃ ω2

π2c3
kBT .

22.2.10.3 Ex: The laws of Wien and Stefan-Boltzmann

a. Derive the parametrization of Planck’s law in terms of frequency ν and wavelength
λ.
b. Derive the law of Stefan-Boltzmann according to which the total power radiated
per unit surface area of a black body across all wavelengths (also known as the black-
body radiant emittance) is given by σT 4, where σ ≡ π2k4B/60c

2ℏ3 is called the Stefan-
Boltzmann constant.
c. Derive Wien’s displacement law according to which the maximum emission of a
blackbody spectrum occurs at λmaxT = 2.898×10−3 Km in the wavelength parametriza-
tion and νmax/T = 0.0588THz/K in the frequency parametrization. Determine the
frequency of the maximum emission for the 2.7K background radiation of the uni-
verse.

Solution: a. The spectral energy density of a blackbody according to Planck’s law
is in the various parametrizations,

uPl(ω)dω =
ω2

π2c3
ℏω

eβℏω − 1
dω

= uPl(ν)dν =
8πhν3

c3
1

eβhν − 1
dν

= uPl(λ)dλ =
8πch

λ5
1

eβhc/λ − 1
dλ

b. The intensity of the light emitted from the blackbody surface is given by,

LPl(ω) =
c

4π
uPl(ω) =

2hν3

c2
1

eβℏω − 1
.

The power emitted per unit area of the emitting body is,

P

A
=

∫

half sphere

cos θdΩ

∫ ∞

0

LPl(ν)dν =

∫ 2π

0

∫ π/2

0

cos θ sin θdθdϕ

∫ ∞

0

2hν3

c2
1

eβℏω − 1
dν

= π

∫ ∞

0

2h

c2
1

(βh)4
x3

ex − 1
dx = π

2h

c2
1

(βh)4
π4

15
=

π2k4B
60ℏ3c2

T 4 ≡ σT 4 .

c. The spectral radiance in wavelength parametrization is

LPl(λ)dλ =
c

4π
uPl(λ)dλ =

2c2h

λ5
1

eβhc/λ − 1
dλ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_RayleighJeans.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_StefanBoltzmann.pdf
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The peak follows from,

0 =
∂L(λ)

∂λ
= 2c2h

−5λeβh c
λ + 5λ+ chβeβh

c
λ

λ7
(
eβh

c
λ − 1

)2 .

Defining x ≡ βh cλ we find the condition,

0 = (x− 5)ex + 5

with the numerical solution x = 4.965.... Hence,

λpeak =
hc

xkB

1

T
.

For 2.7K we expect λpeak = 966µm, or νpeak = 310GHz.
The spectral radiance in frequency parametrization is,

L(ν)dν =
c

4π
uPl(ν)dν =

2hν3

c2
1

eβhν − 1
dν .

The peak follows from,

0 =
∂L(ν)

∂ν
= 2hν2

3eβhν − 3− νβheβhν
c2 (eβhν − 1)

2 .

Defining x ≡ βhν we find the condition,

0 = (x− 3)ex + 3

with the numerical solution x = 4.965.... Hence,

νpeak =
xkB
h
T .

For 2.7K we expect νpeak = 280GHz.

22.2.10.4 Ex: Radiometric thermometry

Modern radiometric thermometers measure the blackbody radiation emitted by a hot
body. Calculate the variation of the blackbody radiant emittance of a person having
fever (40◦ instead of 37◦ body temperature). How much does the maximum emission
wavelength change? In which spectral range should the thermometer be sensitive?

Solution: The Stefan-Boltzmann law reads,

P

A
= σT 4 with σ =

π2k4B
60c2ℏ3

≈ 5.67 · 10−8 W

m2K4
.

Hence, around T = (273 + 37)K and with ∆T = 3K,

∆(P/A)

P/A
=

4σT 3∆T

σT 4
=

4∆T

T
≈ 0.0387 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_StefanBoltzmann02.pdf
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Wien’s law reads,

λmaxT = CWien with CWien ≈ 2.898 · 10−3 Km .

Hence, around T = (273 + 37)K,

λmax =
CWien

T
≈ 9.348µm ,

and with ∆T = 3K,
∆λmax
λmax

= −∆T

T
≈ 0.0097 .

The thermometer should be sensitive in the infrared range around 10µm.

22.2.10.5 Ex: Photons in a resonator

a. The light power emitted by a laser (λ = 633 nm) be P = 1nW. How many photons
does the laser emit per second? How many photons of the emitted laser beam are in
a mode volume of L = 10 cm length?
b. How many photons on average are inside an optical cavity having the same mode
volume at ambient temperature, when there is no incident light?

Solution: a. The number of emitted photons per second is,

# =
P

hν
=
λP

hc
≈ 3.2 · 109 s-1 .

Using the expressions I = 2P/πw2 and Vm = π
2w

2L, we get for the number of photons
in the mode,

n =
E

ℏω
=
uVm
ℏω

=
IVm
cℏω

=
2P

πw2

Vm
cℏω

=
LP

cℏω
= 1.06 photons .

b. The back-body radiation puts

n̄ =
1

eℏω/kBT − 1
= 10−33 photons

into the mode volume.

22.2.10.6 Ex: Number of modes in a cavity

a. How many modes do fit into a cubical box of 10 cm size for a frequency interval of
1000Hz centered at a wavelength of 500 nm?
b. How many photons are in the box supposing it has a temperature of T = 300K,
respectively, T = 6000K?

Solution: a. From Eq. (22.51) we get the total number of modes with frequencies
between 0 and ν,

N =
ω3

3π2c3
L3 =

8πν3

3c3
L3 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_CavityPhotons01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_CavityPhotons02.pdf
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Hence, for the given range,

N = L3

∫ ν+∆ν/2

ν−∆ν/2
ϱ(ν)dν = L3

∫ ν+∆ν/2

ν−∆ν/2

8πν2

c3
dν

=
8πL3

3c3
[
(ν +∆ν/2)3 − (ν −∆ν/2)3

]
≃ 8πL3

3c3
6ν2

∆ν

2
=

8πL3

cλ2
∆ν = 335100 .

b. The number of photons follows from the spectral energy density Eq. (22.61),

Nph = L3

∫ ν+∆ν/2

ν−∆ν/2

u(ν)

hν
dν = L3

∫ ν+∆ν/2

ν−∆ν/2
ϱ(ν)

hν

eβhν − 1
dν

= L3

∫ ν+∆ν/2

ν−∆ν/2

4ν2

c3
1

eβhν − 1
dν ≃ 4L3

cλ2
∆ν

1

eβhν − 1
.

For T = 300K we expect only 4.6 · 10−36 photons, but for T = 6000K we expect
1.8 · 104 photons. Integrated over all frequencies we would have,

Nph = L3

∫
4ν2

c3
1

eβhν − 1
dν = L3 1

(βh)3
4

c3

∫ ∞

0

x2

ex − 1
dx =

(
2LkBT

ch

)3

ζ(3) ,

hence Nph ≈ 8.7 · 1010 photons at 300K and Nph ≈ 7 · 1014 photons at 6000K.

22.2.10.7 Ex: Number of photons emitted from lasers and blackbodies

a. Calculate the total number of photons per area per unit time emitted by a black-
body at temperature T .
b. The linewidth of a helium-neon laser is ∆ν = 1000Hz. The operating wavelength
is λ = 632.8 nm, the power is P = 1mW, and the beam size w0 = 1mm. How many
photons are emitted per second?
c. What would be the temperature of a blackbody radiator emitting the same number
of photons from an equal area and over the same frequency interval as the laser?

Solution: a. According to Wien’s law the total radiance is,

I = σT 4 =
2π5k4B
15c2h3

T 4 .

The total number of photons per area per unit time is,

∂N

∂A∂t
=

∫
Iν
hν
dν =

∫ ∞

0

2πν2

c2
1

eβhν − 1
dν

=
2π

c2(βh)3

∫ ∞

0

x2

ex − 1
dx =

2π(kBT )
3

c2h3
2ζ(3) .

with ζ(3) = 1.202.
b. The photon flux for the HeNe laser is,

∂NHeNe
∂t

=
P

hν
≈ 3.2 · 1015 s-1 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_CavityPhotons03.pdf


22.2. THE DISCOVERY OF THE PHOTON 1235

c. The photon flux from the blackbody within the specified bandwidth is (Iν = c
4πuν),

∂N

∂A∂t
=

∫ ν+∆ν

ν

Iν
hν
dν ≃ Iν

hν
∆ν =

2

λ2
∆ν

eβhν − 1

=⇒ ∂N

∂t
=

2

λ2
∆ν

eβhν − 1
πw2

0 .

Hence,

T =
hν/kB

ln
(
1 +

2πw2
0

λ2
∆ν

∂tNHeNe

) ≈ 4.6 · 109 K .

22.2.10.8 Ex: Number of photons per radiation mode

Assume the isotropic emission of a pulsed flashlamp with spectral bandwidth ∆λ =
100 nm around λ = 400 nm amounts to P0 = 100W peak power out of a volume
of 1 cm3. Calculate the spectral power density u(ν) and the spectral intensity I(ν)
through a spherical surface r = 2 cm away from the center of the emitting sphere.
How many photons per mode are contained in the radiation field?

Solution: The total intensity is,

I =
P0

4πr2
≈ 2 · 104 W/m2 .

The spectral intensity is,

I(ν) =
I

|∆ν| =
I

(c/λ2)∆λ
≈ 1.1 · 10−10 J/m2 ,

the spectral power density is,

u(ν) =
I(ν)

c
= 3.6 · 10−19 Js/m2 ,

and the spectral mode density is,

ϱ(ν) =
8πν2

c3
.

Within the volume of the sphere with radius r there are

N = ϱ(ν)V∆ν = ϱ(ν) 43πr
3∆ν ≈ 3 · 1015

modes. The energy per mode is

Wm =
u(ν)V∆ν

N
≈ 7 · 10−25 J/mode .

With the energy of a photon at λ of E = hν = hc/λ ≈ 3.1 eV, the average number of
photons per mode is,

nph =
Wm

hν
=
u(ν)

ϱ(ν)
=≈ 1.5 · 10−6 .

The average number of photons per mode is therefore very small.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_CavityPhotons04.pdf
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22.2.10.9 Ex: Atoms in an optical cavity

a. Consider a closed optical cavity at T = 600◦ C. The cavity has the shape of a
L = 1m-long and d = 3 cm-diameter tube. Calculate the total energy of the black-
body radiation inside the cavity.
b. Inside the cavity there is a gas with strontium atoms (1 fundamental level and
3 degenerate excited levels, λ = 461 nm). Using the expression (22.67), assuming
thermal equilibrium, calculate the number of excited atoms for a partial pressure of
the strontium gas of 10−3 mbar.
c. Calculate the optical density for a laser in resonance with the transition traversing
the cavity along the symmetry axis.

Solution: a. Following Planck’s law the spectral energy density is,

uP (ω) =
ω2

π2c3
ℏω

eℏω/kBT−1
.

The energy density is,

ūP =

∫ ∞

0

uPlE (ω)dω =
kBT

π2c3

(
kBT

ℏ

)3 ∫ ∞

0

x3

ex − 1
dx

=
kBT

π2c3

(
kBT

ℏ

)3
π4

15
=

π2

15ℏ3c3
(kBT )

4 = 4
cσT

4 = 4.3 · 10−4 J/m3 ,

where σ = 5.67 · 10−8 W/m2 K4 is the Stefan-Boltzmann constant. With the cavity
volume V = πLd2/4 the energy is,

ūPV = 3 · 10−7 J .

b. In equilibrium the Einstein rate equation gives,

N1

N2
=
g1
g2
e−(E1−E2)/kBT .

Hence,

N2

N
=

1

N1/N2 + 1
=

1
g1
g2
e−(E1−E2)/kBT − 1

= 9.9 · 10−16 .

At the pressure p = 10−1 Pa, the total number of atoms is N = pV
kBT

≃ 5.8 · 1015.
Therefore, we expect N = 57 atoms.
c. With the density of the strontium gas n = N/V ≃ 8.3 · 1013 cm-3, we obtain for
optical density,

b0 = σ0nL =
g2
g1

λ2

2π
nL ≃ 8.4 · 105 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_AtomsCavity.pdf
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22.2.10.10 Ex: Sodium atoms in an optical cavity

A sodium atom is placed in a cavity of volume V = 1 cm3 with walls at the temper-
ature T , producing a thermal radiation field with spectral energy density uP (ν). At
what temperature T are the spontaneous and induced transition probabilities equal
a. for the transition 3P → 3S with the transition wavelength λ = 589 nm and the
excited state lifetime τ3P = 16ns;
b. for the hyperfine transition 3S (F = 3 → F = 2) with the transition frequency
ν = 1772MHz and the excited state lifetime τ3F ≃ 1 s?

Solution: Induced and spontaneous transition probabilities are equal when the ra-
diation field contains one photon per mode. This means:

n̄ =
1

ehν/kBT − 1
= 1 ,

hence ehν/kBT = 2 and hence,

T =
hc

λk ln 2
.

a. For λ = 589 nm we obtain for a thermal radiation field T = 35300K. If a laser
beam is sent through the cavity, the condition Bikρ = Aik can be fulfilled at modest
laser intensities. This can be estimated as follows: The number of modes in the
cavity within the frequency interval ∆ν = [2πτ3P ]

−1 ≈ 10MHz, which is the natural
linewidth of the 3P → 3S transition of Na, is,

ϱ(ν)∆ν =
8π

cλ2
∆ν ≈ 2.4 · 106 cm-3 .

The energy of a photon at the transition wavelength is hν. With 1 photon per mode,
the radiation density in the cavity is,

ū = ϱνhν∆ν ≈ 8 · 10−8 J/cm-13 .

The intensity of a laser beam with a spectral width equal to ∆ν is then inside the
cavity I = cū ≈ 24mW/cm2.
b. For ν = 1.772MHz we obtain T = 0.12K. The energy density ū of the thermal
field within the natural linewidth ∆ν = [2πτ3F ]

−1 ≈ 0.16 s-1 is,

ū = uν∆ν = ϱνhν∆ν =
8πν2

c3
hν∆ν .

With this we get, ū = 5 ·10−37 Ws/cm3, which is 24 orders of magnitude smaller than
the visible radiation in (a).

22.2.10.11 Ex: Applying the Lambert-Beer law

The beam of a monochromatic laser passes through an absorbing atomic vapor with
path length L = 5 cm. If the laser frequency is tuned to the center of an absorbing
transition |i⟩ → |k⟩ with absorption cross section σ0 = 10−14 cm2, the attenuation

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_CavityPhotons05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Antecedents_CavityPhotons06.pdf
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of the transmitted intensity is 10%. Assuming low saturation calculate the atomic
density ni in the absorbing level |i⟩.

Solution: The transmitted intensity is,

I = I0e
−αL = 0.9I0 .

Hence, αL = 0.1. With L = 5 cm we expect α = 0.02 cm-1. Now with α = niσ,

ni =
α

σ
= 2 · 1012 cm-3 .

22.3 Further reading

W. Demtröder, Atoms, Molecules and Photons: An Introduction to Atomic, Molec-
ular, and Quantum Physics [352]ISBN

J. Weiner et al., Light-matter interaction, Fundamentals and applications [1364]DOI

R. Loudon, Oxford Science Publications, Oxford (1982), The quantum theory of light
[816]ISBN

http://isbnsearch.org/isbn/978-3-642-10298-1
http://doi.org/10.1002/9783527617883
http://isbnsearch.org/isbn/978-0-198-50176-3


Chapter 23

Foundations and
mathematical tools

As we have seen in the precedent section, the important message of quantum mechan-
ics is that matter propagates as a wave and light, when localized, only changes its
energy in discrete units. Once we understand (or at least accept) this fact, a large part
of quantum mechanics follows just as a corollary. The idea expressed by de Brogie,
that matter would be a wave led to the first quantization. Interestingly, the concept
of light underwent a reverse evolution. Classically described as a wave, it was divided
by Planck and Einstein into quantized corpuscles, today called ’photons’.

Figure 23.1: Illustration of particle-wave duality for matter and light.

In this chapter, we will introduce step by step the formalism of quantum mechanics
by gradually increasing the degree of abstraction. Applications of the formalism will
be shown in consecutive chapters (watch talk).

1239
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23.1 Basic notions

The aim of this section is to give ’feeling’ for the new concepts introduced and used
by quantum mechanics. We will first motivate the fundamental quantum equations
of motion by linking them to classical dispersion relations and then spend some time
to discuss the probabilistic concept proposed by Max Born.

23.1.1 Dispersion relation and Schrödinger equation

A fundamental problem in physics is the issue of the propagation of physical entities.
On one hand, we have the light, whose propagation in the vacuum is described by the
dispersion relation ω = ck or,

ω2 − c2k2 = 0 . (23.1)

Since light is a wave, in the most general form, assuming the validity of the superpo-
sition principle, it can be described by a wave packet, A(r, t) =

∫
eı(k·r−ωt)a(k)d3k.

It is easy to verify that the wave equation,

∂2

∂t2
A− c2∇2A = 0 , (23.2)

reproduces the dispersion relation.
On the other hand, we have slow massive particles possessing kinetic energy,

E =
p2

2m
. (23.3)

With the hypothesis of de Broglie that even a massive particle has wave quality, we
can try an ansatz 1 of a wave equation satisfying the dispersion relation (23.3). From
Planck’s formula, E = ℏω, and the formula of Louis de Broglie, p = ℏk, describing
the particle by a wave packet ψ(r, t) =

∫
eı(k·r−ωt)φ(k)d3k not subject to external

forces, it is easy to verify that the equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∇2

)
ψ , (23.4)

reproduces the dispersion relation. If the particle is subject to a potential, its total
energy is E = p2/2m + V (r, t). This dispersion relation corresponds to the famous
Schrödinger equation,

ıℏ
∂

∂t
ψ =

(
− ℏ2

2m
∇2 + V (r, t)

)
ψ . (23.5)

23.1.2 Relativistic particle waves

Despite the similarities between light particles and material particles, there are no-
table differences: The photon is a relativistic particle with no rest mass. How can we
establish a relationship between such different objects?

1Trial, working hypothesis.
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To clarify this relationship we now consider particles that are similar to light
in the sense that they have high velocities, that is, relativistic particles. From the
relativistic principle of the equivalence of mass and energy, we obtain for a massive
particle E2 = m2c4 + c2p2 or,

ω2 − c2k2 =
m2c4

ℏ2
. (23.6)

This dispersion relation can be obtained from the differential equation,

∂2

∂t2
A− c2∇2A = −m

2c4

ℏ2
A , (23.7)

inserting, for example, the already proposed wave packetA(r, t) =
∫
eı(k·r−ωt)a(k)d3k,

supposed not to be subject to external forces. The equation (23.7) is a wave equa-
tion called Klein-Gordon equation. For particles without rest mass, as in the case of
photons, the equation is reduced to the wave equation of light (23.2).

Now, making the transition to non-relativistic velocities, v ≪ c, we can expand
the dispersion relation,

E =
√
m2c4 + c2m2v2 = mc2

(
1 +

v2

2c2
+ ..

)
or ℏω ≃ mc2 + ℏ2k2

2m
. (23.8)

In analogy with the Klein-Gordon equation we can derive the approximate dispersion
relation (23.8) from a wave equation,

ıℏ
∂

∂t
A =

(
mc2 − ℏ2

2m
∇2

)
A . (23.9)

With the transformation ψ = e−ımc
2t/ℏA, we rediscover the Schrödinger equation

(23.4),

ıℏ
∂

∂t
ψ = − ℏ2

2m
∇2ψ (23.10)

as the non-relativistic limit of the Klein-Gordon equation.
It is interesting to note that in all cases discussed, obviously the dispersion relations

and the differential equations can be interconverted by the substitutions,

E −→ ıℏ
∂

∂t
and p −→ −ıℏ∇ . (23.11)

We will discuss this later in the context of Ehrenfest’s theorem in Secs. 23.1.6, 23.1.7,
and 23.4.6.

Example 140 (Demystifying Quantum Mechanics 1.0): The essence of

quantum mechanics can be boiled down to the particle-wave duality. That is

the fact that the building blocks of matter must be considered as de Broglie

waves. Once this fact is understood and assimilated, quantum mechanics loses

much of its mystery. For example delocalization of an atom, that is, the fact

that it can be at two locations at the same time irritates us only as long as we

try to imagine it as an indivisible solid block. In contrast we are not surprised
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to encounter the same ocean wave or tsunami in different continents.

The misconception is already rooted in the statement that a quantum particle

can be simultaneously in two places. What we really mean when we say a particle

is delocalized is, that the way it is embedded in space-time (which is the frame

in which we can (or cannot) attribute locations and velocities to it) resembles

a wave, and that the way this wave evolves or propagates in space is wave-like

and described by a Schrödinger equation. Note that position-velocity is just

one property that a particle can have. Spin is another one, and the appropriate

space in which a spin is embedded is not necessarily position space, but can be

an abstract configuration space. An atom can have an internal structure, whose

dynamics is totally independent of how the atom moves as a whole. Thus, a

particle IS not a wave, but PROPAGATES like one in space-time. Still, its

evolution will follow a Schrödinger-type equation.

At first the Schrödinger equation seems weird, because it is complex and thus

rules the behavior of an unphysical quantity, the wave function. But we should

keep in mind the Schrödinger equation is the non-relativistic approximation of

the Klein-Gordon equation, which resembles much more a classical wave equa-

tion, and applies also to particles propagating at velocities nearly as fast as light.

With regard to these facts, a terminology that suits much better the features of

quantum mechanics is simply wave mechanics, how Schrödinger termed it. This

terminology also has the advantage of avoiding confusion with light wave effects

erroneously attributed to quantum mechanics, such as light tunneling which is

totally understood within Maxwell’s theory.

We must however be aware that the simple wave picture is not sufficient to

understand all of quantum mechanics. As we will see in the next sections, it is

necessary to complement wave mechanics with a measurement theory, and phe-

nomena genuine to what today is called Quantum Mechanics 2.0, in particular,

entanglement are difficult to understand in wave mechanics.

23.1.3 Born’s interpretation

The first part of this script is devoted to individual particles or systems of distin-
guishable massive particles, and we will only turn our attention to light and indistin-
guishable particles when discussing the (second) quantization of fields.

According to our current conviction, the complete reality (neglecting relativistic
effects) on any system is contained in the Schrödinger equation (23.5). That state-
ment does not make us smarter without having to explaining the meaning of the
wavefunction ψ. In an attempt to marry the concepts of particles and waves, Max
Born proposed in 1926 the interpretation of the quantity

∫

V

|ψ(r, t)|2d3r (23.12)

as probability of finding the particle inside the volume V .
If |ψ(r, t)|2 has the meaning of a probability density or probability distribution, the

square of the wavefunction must be integrable,

∥ψ(r, t)∥2 ≡
∫

R3

|ψ(r, t)|2d3r <∞ . (23.13)
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This allows us to proceed to a normalization of the wave function,

ψ̃(r, t) ≡ ψ(r, t)√∫
R3 |ψ(r, t)|2d3r

, (23.14)

such that ∥ψ̃(r, t)∥ = 1.

23.1.4 Continuity equation

In quantum mechanics we associate the wavefunction that describes a quantum system
to a probability wave. As the Schrödinger equation describes a time evolution, in
order to be useful, the wavefunction must allow for probability flows. We define the
probability density and the probability flow by,

ρ(r, t) ≡ ψ∗(r, t)ψ(r, t) , (23.15)

j(r, t) ≡ ℏ
2mı

[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] .

Starting from the Schrödinger equation we can easily derive the continuity equation
(see Exc. 23.1.8.1),

ρ̇(r, t) +∇ · j(r, t) = 0 , (23.16)

or in the integral form,

− d

dt

∫

V

ρd3r =

∫

V

∇ · jd3r =
∮

∂V

j · dS , (23.17)

using Gauß’ law. With I ≡
∫
S
j · dS, the probability current which flows through the

surface S delimiting the probability charge Q ≡
∫
V
ρ(r, t)d3r, we obtain,

−Q̇ = I . (23.18)

The continuity equation is obviously similar to that of electromagnetism.

23.1.5 Distributions in space and time

So far we only spoke of spatial distributions, ψ(r, t). But we could also consider ve-
locity or moment distributions. In classical mechanics, a particle has a well-defined
position and velocity. Knowing the position and velocity, Newton’s equations al-
low predicting its coordinates at future times. Let us now investigate whether the
Schrödinger equation allows this as well.

The more general solution of the Schrödinger equation can be written as a su-
perposition of plane waves eı(r·k−ωt) with frequencies ω = p2/2ℏm and wave vectors
k = p/ℏ. Each plane wave has an individual amplitude φ(p), such that,

ψ(r, t) = 1
h3/2

∫
d3pφ(p)eı(r·k−ωt) =

∫
d3p 1

h3/2φ(p)e
ı(r·p/ℏ−p2t/2mℏ) , (23.19)

with h ≡ 2πℏ. At time t = 0, this expansion is nothing more than a Fourier transform,

ψ(r, 0) = 1
h3/2

∫
d3pφ(p)eır·k , (23.20)
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that we can reverse,

φ(p) = 1
h3/2

∫
d3rψ(r, 0)e−ır·k . (23.21)

In the absence of forces the momentum distribution becomes stationary. We can now
use the momentum distribution φ(p) as coefficients of the expansion of the tempo-
ral wavefunction ψ(r, t), as shown above. Thus, the expansion represents a general
solution of the time-dependent Schrödinger equation. The magnitude |φ(p)|2 is the
probability density in momentum space.

Example 141 (Normalization of the wave function in momentum space): It
is easy to show that the probability density in momentum space is also normal-
ized:∫

|φ(p)|2d3p = 1
h3

∫
d3p

∫
d3rψ∗(r)eır·k

∫
d3r′ψ(r′)e−ır

′·k

=

∫
d3r

∫
d3r′ψ∗(r)ψ(r′) 1

(2π)3

∫
d3keık·(r−r′)

=

∫
d3r

∫
d3r′ψ∗(r)ψ(r′)δ3(r− r′) =

∫
|ψ(r)|2d3r = 1 ,

knowing that the Fourier transform of a plane wave is nothing more than the

Dirac distribution.

Since the probability distributions |ψ(r)|2 and |φ(p)|2 are interconnected by Fourier
transform, we already know that we can not localize 2 both simultaneously. If one is
well localized, the other is necessarily delocalized. Do the Exc. 23.1.8.2.

23.1.6 Eigenvalues

We have already seen that the position and momentum distributions of a particle are
spread. We calculate the mean values of these distributions, denoted by ⟨r⟩ and ⟨p⟩,
as first moments of the respective distributions:

⟨r⟩ =
∫
d3r|ψ(r, t)|2r and ⟨p⟩ =

∫
d3p|φ(p, t)|2p . (23.22)

Using the expansions (23.19) and (23.20), we can calculate,

⟨p⟩ =
∫
φ∗(p)pφ(p)d3p =

∫
1

h3/2

∫
ψ∗(r)eık·rd3rpφ(p)d3p

= 1
h3/2

∫
ψ∗(r)

∫
φ(p)peık·rd3pd3r

= 1
h3/2

∫
ψ∗(r)ℏı∇

∫
φ(p)eık·rd3pd3r =

∫
ψ∗(r)ℏı∇ψ(r)d3r .

This calculation shows that the expectation value, called eigenvalue, of the momentum
can be expressed through an operator p̂ ≡ (ℏ/ı)∇ acting on the wavefunction 3,4.

2Localize: Restrict the distribution volume indefinitely.
3From now on, the hat over a physical magnitude will denote quantum operators.
4We note here that the rules ⟨ψ|x̂|ψ⟩ ↔ ⟨ϕ| − ℏ

ı
∇p|ϕ⟩ and ⟨ψ| ℏ

ı
∇r|ψ⟩ ↔ ⟨ϕ|p̂|ϕ⟩ from the

Fourier transformation are useful for numerical simulations of the Schrödinger equation: Instead of

calculating the spatial derivative
(

ℏ
ı
∇
)2

of the wavefunction, one makes a Fast Fourier Transform

(FFT) to momentum space, multiplies with p, and transforms back.
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More generally, we can compute the eigenvalue of a function in r and p via,

⟨f(r̂, p̂)⟩ =
∫
d3rψ∗(r)f(r, p̂)ψ(r) . (23.23)

However, it is important to note that the operators r̂ and p̂ do not necessarily com-
mute.

Example 142 (Non-commutation of space and momentum): Considering
a one-dimensional motion, we verify,

p̂xxψ =
ℏ
ı

d

dx
xψ =

ℏ
ı
ψ + x

ℏ
ı

d

dx
ψ ̸= x

ℏ
ı

d

dx
ψ = xp̂xψ .

23.1.7 Temporal evolution of eigenvalues

We now consider the temporal evolution of the position of a particle. We will use in
the following the partial integration rule

∫
V
ψ∇ξ =

∮
∂V

ψξ −
∫
V
∇ψξ = −

∫
V
(∇ψ)ξ,

assuming that at least one of the functions, ψ or ξ, disappears at the edge of the
volume, which can be guaranteed by choosing the volume large enough. To begin
with, we will concentrate on the x-component of the position, the time derivative of
which is computed using the continuity equation (23.16),

d

dt
⟨x̂⟩ =

∫
d3r

d

dt
|ψ|2x = −

∫
d3r x∇ · j = −

∫
dS · j x

0
+

∫
d3r j · ∇x =

∫
d3r jx ,

(23.24)
Generalizing to three dimensions, we can write,

d

dt
⟨mr̂⟩ = m

∫
d3r j = m

∫
d3r

ℏ
2mı

[ψ∗∇ψ − ψ∇ψ∗] (23.25)

= 1
2

∫
d3r[ψ∗p̂ψ + ψp̂ψ∗] =

∫
d3rψ∗p̂ψ = ⟨p̂⟩ ,

since the eigenvalue of p̂ is a real quantity.
Now, we define the abbreviation:

Ĥ ≡ − ℏ2

2m
∇2 + V (r̂, t) , (23.26)

called the Hamilton operator or Hamiltonian and we calculate the second derivative
of the position using the Schrödinger equation (23.5),

d

dt
⟨p̂⟩ =

∫
d3r

[(
1
ıℏĤψ

)∗
p̂ψ + ψ∗p̂ 1

ıℏĤψ
]
= ı

ℏ

∫
d3r ψ∗(Ĥp̂− p̂Ĥ)ψ = ı

ℏ ⟨[Ĥ, p̂]⟩ ,
(23.27)

introducing the commutator [â, b̂] ≡ âb̂− b̂â as an abbreviation. After that,

ı
ℏ ⟨[Ĥ, p̂]⟩ = ı

ℏ ⟨[V̂ , p̂]⟩ = ı
ℏ

∫
d3rψ∗

[
V̂ ℏ
ı∇ψ − ℏ

ı∇(V ψ)
]
= −

∫
d3rψ∗ψ∇V = ⟨F̂⟩ .

(23.28)
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In summary, we found a law,

⟨F̂⟩ = d2

dt2
⟨mr̂⟩ , (23.29)

much like Newton’s law, but instead of applying to localized particles, the law applies
to the eigenvalues of probability distributions. Similar laws can be derived for angular
momentum and energy conservation.

The observation made by Paul Ehrenfest, that in quantum mechanics the mean
values follow the same laws of classical mechanics, is called Ehrenfest theorem.

23.1.8 Exercises

23.1.8.1 Ex: Conservation of probability

Demonstrate the conservation of local probability through the definitions of proba-
bility densities, ρ(r, t), and probability current j(r, t).

Solution: Assuming the validity of the Schrödinger equation, we obtain,

ρ̇ = ψ∗ψ̇ + ψ̇∗ψ = ψ∗
1

ıℏ

(−ℏ2
2m
∇2

)
ψ +

(
1

ıℏ
−ℏ2
2m
∇2ψ

)∗
ψ

= − ℏ
2mi
∇ · [ψ∗∇ψ − (∇ψ)∗ψ] = −∇ · j .

23.1.8.2 Ex: Fourier theorem

The spatial distribution of a particle is given by a Gaussian function with the width
∆x. Calculate the momentum distribution and its width ∆p. Just consider one spa-
tial dimension. Show that ∆x∆p = ℏ using the rms definition for the widths.

Solution: The distribution of the particle is given by ψ(x, 0) = Ae−x
2/2∆x2

. The
constant A is determined from the normalization condition,

1 =

∫ ∞

−∞
|ψ(x, 0)|2dx =

∫ ∞

−∞
A2e−x

2/∆x2

dx = A2
√
π∆x =⇒ A =

(
1

π∆x2

)1/4

.

Therefore, the momentum distribution is,

φ(p) =
1

(2πℏ)1/2

∫ ∞

−∞
ψ(x, 0)e−ıxkdx =

1

(2πℏ)1/2π1/4

1√
∆x

∫ ∞

−∞
e−x

2/2∆x2

e−ıxkdx .

With the definition of the Fourier transform,

g(k) =
1√
2π

∫ ∞

−∞
f(x)e−ıkxdx ,

the transformation of f(x) = 1√
2π

1√
∆x
e−x

2/2∆x2

is g(k) = 1√
2π

√
∆xe−∆x

2k2/2. Hence,

φ(p) =
1

(2πℏ)1/2π1/4

√
∆xe−∆x

2k2/2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_BasicnotionContinuity.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TeoremaFourier.pdf
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The width of this momentum distribution is ∆k ≡ ∆x−1, which shows that position
and momentum distributions can not be narrow simultaneously. The equation

∆x∆p = ℏ

corresponds to the Heisenberg uncertainty relation.

23.2 Postulates of quantum mechanics

In this section we will introduce the fundamentals and main methods of quantum
mechanics. We will learn what are observables and get to know the postulates which
establish the foundation of quantum mechanics, as well as Heisenberg’s famous prin-
ciple of uncertainty.

23.2.1 Superposition principle (1. postulate)

A physical system can be found in several states. For example, a particle may be at
rest or in motion, an atom may be excited or deexcited. In quantum mechanics, every
possible state is described by a wavefunction ψ. Wavefunctions can be functions of
various types of coordinates, for example, of position ψ = ψ(r), of momentum ψ =
ψ(p), or of energy ψ = ψ(E). The choice of the coordinates is called representation.

One peculiarity of quantum systems is that they may be in a superposition of
states. That is, if ψ1, ψ2, ..., ψk are possible states with amplitudes ck, automatically
the functions,

ψ =
∑

k

ckψk or ψ =

∫
dk c(k)ϕ(k) (23.30)

are possible states as well. This is called superposition principle, and means, for
example, that a particle may be simultaneously in several places or that an atom may
be at the same time excited and deexcited.

There are systems that can only exist in a restricted number of states, such as
the two-level atom. Others may exist in an infinite number of states or even in a
continuous distribution of states.

23.2.2 Interpretation of the wave function (2. postulate)

A state function (or wavefunction) characterizes a system of which we may calculate
various properties. The function can adopt complex values devoid of immediate phys-
ical interpretation. In fact, the wavefunction is above all a mathematical construct.
On the other hand, the norm |ψ|2 has the meaning of a probability of the system to
be in the state ψ. This is the famous interpretation of Max Born of the wave function
(see Sec. 23.1.3).

If ψk with k = 1, 2, . . . are all possible states of a system, the interpretation as a
probability requires, ∑

k

|ψk|2 = 1 . (23.31)
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Analogically, for a continuous distribution, for example, in spatial representation,

∫ ∞

−∞
|ψ(x)|2dx = 1 . (23.32)

That is, the probability needs normalization.

23.2.3 Dirac bra-ket notation and vector representation

In order to distinguish more easily the amplitudes (which are complex numbers) and
the wavefunctions we will now use the Bra-Ket notation introduced by Paul Dirac.
The functions are represented by kets,

|ψ⟩ =
∑

k

ck|k⟩ . (23.33)

The complex transpositions of these states are represented by bras,

⟨ψ| = |ψ⟩† =
∑

k

c∗k⟨k| . (23.34)

But the notation has other advantages. For example, let us suppose that we know
the three possible states of a system, |1⟩, |2⟩, and |3⟩, which are linearly independent.
Then we can define the states as vectors:

|1⟩ =



1

0

0


 , |2⟩ =



0

1

0


 , |3⟩ =



0

0

1


 . (23.35)

These three states can be interpreted as the basis of a vector space representing the
system. Now, each wavefunction can be expanded on this basis and expressed by a
vector. An arbitrary ket state of this system will then be,

|ψ⟩ =



c1

c2

c3


 . (23.36)

The corresponding bra state will be,

⟨ψ| =
(
c∗1 c∗2 c∗3

)
. (23.37)

Now we can easily calculate the probability for a system to be in a state |ψ⟩,

||ψ⟩|2 = ⟨ψ|ψ⟩ =
(
c∗1 c∗2 c∗3

)
·



c1

c2

c3


 = |c1|2 + |c2|2 + |c3|2 . (23.38)
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23.2.4 Observables (3. postulate)

The only way to get information about a system is to measure the values of character-
istic quantities of the system, e.g. energy or linear momentum. In classical mechanics
we have learned that a system can be completely characterized by a set of measurable
physical quantities. For example, the motion of a rigid body of mass m and inertial
moment I is defined by its position r, its moment p, and its angular momentum L. In
quantum mechanics we describe observable physical quantities by operators acting on
the Hilbert space of wavefunctions, |ψ⟩ 7→ p̂|ψ⟩, where p̂ would be the operator of the
linear momentum. To better distinguish the observables, we decorate their symbols
with a hat. We will see more ahead (see Sec. 23.3.5) that every quantum system is
completely described by a complete set of observables.

To find the current values aψ of any observable Â in a specific situation given by
a wave function ψ, we need to solve an equation of eigenvalues,

Â|ψ⟩ = aψ|ψ⟩ . (23.39)

We can rewrite the equation as aψ = ⟨ψ|Â|ψ⟩. The values an are real numbers, if the
observable is a Hermitian operator, that is,

Â = Â† =⇒ aψ = a∗ψ . (23.40)

We leave proof of this for the Exc. 23.2.9.1.
Thus, we postulate the substitution of the dynamic variables characterizing a clas-

sical system by abstract objects called operators. These operators can be understood
as mathematical prescriptions, e.g., differential operators acting on a state of the
system. The expectation value of any operator Â characterizing a system in a state
|ψ⟩ is aψ ≡ ⟨Â⟩ψ ≡ ⟨ψ|Â|ψ⟩/⟨ψ|ψ⟩. Such operators are specific for a system, but
independent of its state. The dynamical variables for a specific state are obtained as
eigenvalues of the respective variable in that specific state. The temporal evolution
of the operators or of the states is governed by equations of motion (see Sec. 23.4) 5.

23.2.5 Representation of operators as matrices

In the same way as we already represented wavefunctions by vectors, we can also
represent operators by matrices,

Â ≡
∑

i,j

|i⟩aij⟨j| =




:

.. aij ..

:


 =




:

.. ⟨j|Â|i⟩ ..

:


 . (23.41)

To extract components from a matrix we do, ⟨i|Â|j⟩, for example,

⟨1|Â|1⟩ =
(
1 0 ..

)
· Â ·



1

0

:


 = a11 . (23.42)

5Note that there are theoretical attempts to generalize the concept of observables to non-
Hermitian operators [117, 118] only displaying PT -symmetry.
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Projectors are particular operators defined by,

P̂k ≡ |k⟩⟨k| =



0 : 0

.. 1 ..

0 : 0


 . (23.43)

The eigenvalue of a projector, ⟨P̂k⟩ = ⟨ψ|P̂k|ψ⟩ = |⟨k|ψ⟩|2, is nothing more than the
probability of finding a system, whose general state is |ψ⟩, in the particular state,
since expanding as done in (23.33), we have,

⟨P̂k⟩ =
∑

m,n

c∗mcn⟨m|k⟩⟨k|n⟩ = |ck|2 . (23.44)

Using the matrix formalism we can define other interesting operators and verify
their properties. For example, choosing the basis,

|1⟩ =
(
1

0

)
, |2⟩ =

(
0

1

)
, (23.45)

we find,

|1⟩⟨1| =

(
1 0

0 0

)
, |2⟩⟨2| =

(
0 0

0 1

)

|1⟩⟨2| =

(
0 1

0 0

)
, |2⟩⟨1| =

(
0 0

1 0

) . (23.46)

Obviously, these matrices can be used to expand any 2× 2 matrix. An equivalent set
of matrices are the Pauli spin matrices,

I ≡
(
1 0

0 1

)
, σ̂x ≡

(
0 1

1 0

)
, σ̂y ≡

(
0 ı

−ı 0

)
, σ̂z ≡

(
−1 0

0 1

)
. (23.47)

An important property of the Pauli matrices is their behavior under commutation
and anti-commutation,

[σ̂k, σ̂m]− ≡ σ̂kσ̂m − σ̂kσ̂m = ıϵkmnσ̂n (23.48)

[σ̂k, σ̂m]+ ≡ σ̂kσ̂m + σ̂kσ̂m = 2δkm .

Defining so-called ladder operators or rising, respectively, lowering operators, de-
pending on the arrangement of the level system via,

σ̂± = 1
2 (σ̂x ± ıσ̂y) , (23.49)

we may represent the matrices as,

|1⟩⟨1| = 1
2 (I2 − σ̂z) = σ̂−σ̂+ , |2⟩⟨2| = 1

2 (I2 + σ̂z) = σ̂+σ̂−

|2⟩⟨1| = 1
2 (σ̂

x + ıσ̂y) = σ̂+ , |1⟩⟨2| = 1
2 (σ̂

x − ıσ̂y) = σ̂−
, (23.50)



23.2. POSTULATES OF QUANTUM MECHANICS 1251

and write down the Pauli vector 6,

ˆ⃗σ ≡



σ̂x

σ̂y

σ̂z


 =




σ̂− + σ̂+

ı(σ̂− − σ̂+)

[σ̂+, σ̂−]


 (23.51)

and the vector

ρ⃗ ≡



⟨σ̂x⟩
⟨σ̂y⟩
⟨σ̂z⟩


 , (23.52)

which is called Bloch vector 7,8. The eigenvalue of the Bloch vector has a fixed length
(see Exc. 23.2.9.2).

The representation of physical quantities by matrices is essential for the description
of quantum superposition states.

23.2.6 Correspondence principle (4. postulate)

Operators do not necessarily commute. We have already seen in Sec. 23.1.6, that in
one dimension the position and the momentum operators do not commute. We can
generalize to three dimensions via,

[p̂j , x̂k] = −ıℏδjk and [p̂j , p̂k] = 0 = [x̂j , x̂k] , (23.53)

which is easily verified by replacing the operators with x̂k = xk and p̂k = ℏ
ı∇ and

allowing the commutators to act on a wavefunction ψ(x).
Conversely, quantum mechanics follows from classical mechanics with the pre-

scription 9, A(qk, pk, t) −→ A(q̂k, p̂k, t) = Â. Letting the smallest amount of energy
possible go to zero, ℏ −→ 0, the commutator disappears, the energy spectrum becomes
continuous, and we recover classical mechanics.

23.2.7 Schrödinger equation and quantum measurements (5.
postulate)

The time evolution is given by the Schrödinger equation,

ıℏ
∂

∂t
|ψ⟩ = Ĥ|ψ⟩ . (23.54)

A closed system, disconnected from the rest of the world (we will now call the
rest of the world reservoir) is not subject to dissipation, i.e., it does not lose energy

6Note that other definitions of the Pauli matrices, e.g. σ̂y → −σ̂y and σ̂z → −σ̂z are also found
in literature. They simply correspond to a change of basis |1⟩ ↔ |2⟩.

7The Bloch vector is widely used in describing the interaction of a two-level system with a light
field.

8Schrödinger invented the wave mechanics when he derived his wave equation from the dispersion
relation for massive particles. Heisenberg invented a mechanics (detailed in later sections), which he
called mechanics of matrices. Later, he showed the formal equivalence of both theories.

9Considering the Weyl order.
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to the reservoir. Such a system is always described by a hermitian Hamiltonian.
Unfortunately, this system also does not allow information leakage, that is, we can
not measure the system. This is reflected in the fact that the Schrödinger equation
does not allow to describe the process of a quantum measurement. This is because
before the measurement, the system can be in several states or even in a superposition
of states, while after the measurement we know exactly the state. This amounts to a
reduction of entropy, which is not allowed in a closed system.

The famous postulate of state reduction or projection of the wavefunction formu-
lated by John von Neumann describes the quantum measurement process as a se-
quence of two distinct steps 10. In a first step, the measuring apparatus projects the
measured operator Â on an eigenvector basis. That is, if the measurement is compat-
ible with the operator 11, we obtain a distribution of probability amplitudes of the
results,

Â ↷ ⟨Â⟩ = ⟨ψ|Â|ψ⟩ = ⟨ψ|Â|
∑

k

ck|k⟩ =
∑

k

akck⟨ψ|k⟩ =
∑

k

ak|ck|2 , (23.55)

with ⟨ψ|ψ⟩ =∑k |ak|2 = 1. Therefore, we can understand |⟨k|ψ⟩|2 as the probability
of the system to be in the eigenstate |k⟩. In other words, this first step of the measure-
ment process removes in an irreversible manner all coherences from the observable,
Â↷

∑
k |k⟩⟨k|Â|k⟩⟨k|.

Figure 23.2: Superposition.

In a second step, the observing scientist will read the measuring device and note
the result, which will necessarily be one of the possible ak,

⟨Â⟩ ↷ ak . (23.56)

If the state is stationary, it will never change any more. That is, each subsequent
measurement will yield the same result. The Exc. 23.2.9.3 illustrates the process of

10For simplicity, we only consider pure state, here.
11To understand the meaning of compatible, we must establish a more complete theory of mea-

surement including the reservoir in the quantum description.
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quantum measurement at the example of a measurement of the excitation energy of
a two-level atom.

23.2.8 Stationary Schrödinger equation

The general form of the Schrödinger equation in one dimension is,

ĤΨ(t, x) = ıℏ
∂

∂t
Ψ(t, x) , (23.57)

with Ĥ ≡ p̂2

2m + V (x, t) and p̂ ≡ −ıℏ ∂
∂x . If the potential is independent of time,

V (x, t) = V (x), we can do the following ansatz, Ψ(x, t) ≡ ψ(x)f(t). Insertion into
the Schrödinger equation yields,

1

ψ(x)

(
− ℏ2

2m

d2

dx2
+ V (x)

)
ψ(x) =

ıℏ
f(t)

d

dt
f(t) = const. ≡ E . (23.58)

The solution of the right-hand side of the equation is ıℏ(ln f − ln f0) = E(t − t0).
Hence,

f(t) = f(0)e−ıE(t−t0)/ℏ . (23.59)

Obviously, |Ψ(x, t)|2 = |ψ(x)|2.
Now, we can see that the stationary Schrödinger equation,

Ĥψ(x) = Eψ(x) , (23.60)

is nothing more than an eigenvalue equation. This means that the Schrödinger
wave mechanics is equivalent to the mechanics of the Heisenberg matrices. The
Excs. 23.2.9.4 and 23.2.9.5 are first simple calculations of the eigenvalues and eigen-
vectors of a two-level system.

23.2.9 Exercises

23.2.9.1 Ex: Reality of eigenvalues

Show that the eigenvalues of an observable are real.

Solution:
aψ = ⟨ψ|Â|ψ⟩ = ⟨ψ|Â†|ψ⟩ = (⟨ψ|Â|ψ⟩)∗ = a∗ψ .

23.2.9.2 Ex: Normalization of the Bloch vector

Calculate the expectation value of the length of the Pauli vector and the length of
the Bloch vector (23.49).

Solution: With |ψ⟩ = a1|1⟩ + a2|2⟩ the expectation value of the length of the Pauli
vector is,

⟨ˆ⃗σ† ˆ⃗σ⟩ = ⟨ψ|σ̂2
x + σ̂2

y + σ̂2
z |ψ⟩ = 3⟨ψ|I2|ψ⟩ = 3 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_RealidadeAutovalor.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_VetorBloch.pdf
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In contrast, the expectation value of the length of the Bloch vector is,

ρ⃗†ρ⃗ = ⟨ψ|σ̂x|ψ⟩2 + ⟨ψ|σ̂y|ψ⟩2 + ⟨ψ|σ̂z|ψ⟩2

= (a∗1a2 + a1a
∗
2)

2 − (a∗1a2 − a1a∗2)2 + (a∗1a1 − a∗2a2)2 = |a1|2 + |a2|2 = 1 .

23.2.9.3 Ex: Quantum measurement

Explain the idea of quantum measurement at the example of a measurement of the
excitation energy of a two-level atom.

Solution: With the general wavefunction |ψ(t)⟩ ≡ c1(t)|1⟩+ c2(t)|2⟩, we obtain

⟨ψ|Ĥ|ψ⟩ = |c1|2E1 + |c2|2E2 .

Normalization requires ⟨ψ|ψ⟩ = |c1|2 + |c2|2 = 1. The measuring apparatus will give
the result E1 with the probability |c1|2 and the result E2 with the probability |c2|2, even
if in reality the system was in a superposition of the two states 12.

23.2.9.4 Ex: Two-level atom

Consider a two-level atom. The Hamiltonian is given by,

Ĥ =

(
0 0

0 ℏω0

)
.

Using the stationary Schrödinger equation, calculate the eigenvalues and eigenvectors.

Solution: The Hamiltonian has the eigenvalues,

det

(
−E 0

0 ℏω0 − E

)
= −E(ℏω0 − E) = 0 =⇒ E = 0, ℏω0 .

Solving the Schrödinger equation, Ĥ|ψ⟩ = E|ψ⟩, we get the eigenvectors,

(
0 0

0 ℏω0

)(
c1

c2

)
= 0

(
c1

c2

)
=⇒ |1⟩ =

(
1

0

)
,

(
0 0

0 ℏω0

)(
c1

c2

)
= ℏω0

(
c1

c2

)
=⇒ |2⟩ =

(
0

1

)
.

12The quantum Monte Carlo wavefunction simulation method provides a useful picture of what
happens in the process of projecting a wavefunction by a quantum measurement.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_MedidaQuantica.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_AtomoDoisniveis.pdf
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23.2.9.5 Ex: The ammonium molecule

Consider the two states |1⟩ and |2⟩ of the ammonium molecule outlined in the figure.
Suppose they are orthonormal, ⟨i|j⟩ = δij , and that only these two states are accessible
to the system, so that we can describe it using the basis formed by |1⟩ and |2⟩. On
this basis the Hamiltonian Ĥ of the system is given by,

Ĥ =

(
E0 −E1

−E1 E0

)
.

a. If the system is initially in state |1⟩, will it remain in that state at a later time?
How about if the initial state is |2⟩?
b. Obtain the eigenvalues EI and EII and the respective eigenvectors |I⟩ and |II⟩ of
Ĥ, expressing them in terms of |1⟩ and |2⟩.
c. What is the probability of measuring an energy EI in the following state,

|ψ⟩ = 1√
5
|1⟩ − 2√

5
|2⟩ ?

d. Based on the above result, we can predict at least one possible electromagnetic
radiation emission frequency for an ammonia sample. What is this frequency?

EUF 2014, 1 Semestre, Mecânica Quântica - Q1 1

(a) Não, já que estes estados não são autoestados do hamiltoniano. A evolução temporal do sistema 
mistura os dois e temos duas combinações específicas com energia bem definida, os autoestados de 
H. Começando em |1> ou |2> teremos a possibilidade de medir qualquer uma das duas energias 
possíveis dependendo do tempo esperado.

|1> |2>

(b)

Figure 23.3: The two states of the ammonium molecule.

Solution: a. No, because these states are not eigenstates of the Hamiltonian. The
temporal evolution of the system mixes the two, and we have two specific combinations
with well-defined energy, the eigenstates of Ĥ. Starting in |1⟩ or |2⟩ we will be able
to measure either one of the two possible energies depending of the time we wait, that
is, ⟨2|Ĥ|1⟩ ≠ 0.
b. We write

|1⟩ =
(
1

0

)
and |2⟩ =

(
0

1

)
and |ψ⟩ =

(
c1

c2

)
.

With this,

0 = Ĥ

(
c1

c2

)
− λ

(
c1

c2

)
=

(
E0 − λ− E1

−E1 E0 − λ

)(
c1

c2

)
.

Hence, ∣∣∣∣∣
E0 − λ− E1

−E1 E0 − λ|

∣∣∣∣∣ = (E0 − λ)2 − E2
1 = 0 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_MoleculaAmonia.pdf
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giving the eigenvalues

λ = EI,II = E0 ± E1 .

The eigenvectors follow from,

Ĥ

(
c1

c2

)
= EI

(
c1

c2

)
=⇒

(
E0c1 − E1c2

−E1c1 + E0c2

)
=

(
E0c1 − E1c1

E0c2 − E1c2

)
=⇒ c1 = c2 .

Along with the normalization condition ⟨I|I⟩ = 1 this gives c1 = c2 = 1/
√
2 and

|I⟩ = 1√
2
|1⟩+ 1√

2
|2⟩ .

Also,

Ĥ

(
c1

c2

)
= EII

(
c1

c2

)
=⇒

(
E0c1 − E1c2

−E1c1 + E0c2

)
=

(
E0c1 + E1c1

E0c2 + E1c2

)
=⇒ c1 = −c2 .

Along with the normalization condition ⟨II|II⟩ = 1 this gives c1 = −c2 = 1/
√
2 and

|II⟩ = 1√
2
|1⟩ − 1√

2
|2⟩ .

c. We calculate the superposition

PEI
= |⟨I|ψ⟩|2 =

∣∣∣
(

1√
2
⟨1|+ 1√

2
⟨2|
)(

1√
5
|1⟩ − 2√

5
|2⟩
)∣∣∣

2

=
∣∣∣ 1√

10
⟨1|1⟩ − 2√

10
⟨2|2⟩

∣∣∣
2

=
∣∣∣− 1√

10

∣∣∣
2

= 10% .

d. The emission is due to the transition from EII to EI , hence the emitted energy is:

EII − EI = E0 + E1 − (E0 − E1) = 2E1 .

Therefore the frequency of the emitted photons is ν = 2E1

h .

23.3 Abstract formalism of quantum mechanics

The formal development of quantum mechanics will be the subject of this section. We
will learn how to find a complete set of observables characterizing a system, discuss
the role of symmetries in quantum mechanics and show how to switch between several
representations of the same system.

23.3.1 Lie algebra

The quantum mechanical operators form a Lie algebra L2. This means that L2 is
at the same time a complex and linear vector space with respect to addition and
scalar multiplication and a non-commutative ring with scalar internal product. In
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particular, L2 is unitary, normalized, and complete and acts on a Hilbert space of
quantum states,

(Â+ B̂)|ψ⟩ = Â|ψ⟩+ B̂|ψ⟩, (23.61)

(αÂ)|ψ⟩ = α(Â|ψ⟩) ,
(ÂB̂)|ψ⟩ = Â(B̂|ψ⟩) .

The properties of the Hilbert space are,

Â|ψ + φ⟩ = Â|ψ⟩+ Â|φ⟩ , (23.62)

Â|aψ⟩ = aÂ|ψ⟩ .

For a Hermitian operator, Â = Â†, we have ⟨ψ|Â|ψ⟩ = ⟨Âψ|ψ⟩ or ⟨Â⟩ ≡ ⟨ψ|Â|ψ⟩ =
⟨Â⟩∗, using the Dirac bra-ket notation,

⟨ψ|† ≡ |ψ⟩ . (23.63)

There are identity and nullity operators,

1̂|ψ⟩ = |ψ⟩ and 0̂|ψ⟩ = 0 . (23.64)

We define the (anti-)commutator as,

[Â, B̂]∓ ≡ ÂB̂ ± B̂Â , (23.65)

which can be ̸= 0. The sum of two Hermitian operators is Hermitian, but the product
is not, since,

(Â+ B̂)† = Â† + B̂† = Â+ B̂ but (ÂB̂)† = B̂†Â† = B̂Â ̸= ÂB̂ . (23.66)

On the other hand, the following relations of Hermitian operators are always Hermi-
tian,

ÂB̂ + B̂Â and ı(ÂB̂ − B̂Â) . (23.67)

We define the scalar product as,

⟨ψ|φ⟩ . (23.68)

Two states are called orthogonal, if ⟨ψ|φ⟩ = 0. The norm is written as,

|ψ|2 = ⟨ψ|ψ⟩ , (23.69)

the deviation is,

∆A ≡
√
⟨Â2⟩ − ⟨Â⟩2 . (23.70)

A unitary operator is defined by Â−1 = Â†.
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23.3.2 Complete bases

If it is impossible to find a set of amplitudes cn,

∄{cn} such that
∑

n

cn|n⟩ = 0 , (23.71)

the functions are called linearly independent. A set of linearly independent functions
may form a basis. The space opened by a set of linearly independent functions is
called Hilbert space.

An operator Â is completely characterized by its eigenvalues and eigenfunctions.
If a set of eigenfunctions |n⟩ is complete, every allowed state of the system can be
expanded in these eigenfunctions,

|ψ⟩ =
∑

n

cn|n⟩ and Â|n⟩ = an|n⟩ . (23.72)

To calculate properties of a specific system, we often want to find a matrix repre-
sentation for the operator Â. For this, we solve the stationary Schrödinger equation,
that is, we calculate the eigenvalues and eigenvectors. When all eigenvalues are differ-
ent, an ̸= am, we know that the corresponding eigenvectors are orthogonal, ⟨n|m⟩ = 0,

Â|n⟩ = an|n⟩ , Â|m⟩ = an|m⟩ , ∀{n,m} an ̸= am (23.73)

=⇒ ∀{n,m} ⟨n|m⟩ = δm,n .

Exc. 23.3.10.1 asks for demonstrating this.

Frequently, for example, in the case of a particle confined to a potential, there
exist discrete eigenvalues (for E < 0) simultaneously with continuous eigenvalues (for
E > 0). Assuming ⟨m|m′⟩ = δm,m′ , ⟨m|k⟩ = 0 and ⟨k|k′⟩ = δ(3)(k − k′), with a
complete base,

∑

m

|m⟩⟨m|+
∫
d3k|k⟩⟨k| = 1̂ , (23.74)

an arbitrary vector can be expanded on an orthogonal basis,

|ψ⟩ =
∑

m

|m⟩⟨m|ψ⟩+
∫
d3k |k⟩⟨k|ψ⟩ . (23.75)

This also applies to observables,

Â =
∑

m,n

|m⟩⟨m|Â|n⟩⟨n|+
∫
d3kd3l |k⟩⟨k|Â|l⟩⟨l| , (23.76)

and functions of observables,

f(Â) =
∑

m,n

|m⟩f(⟨m|Â|n⟩)⟨n|+
∫
d3kd3l |k⟩f(⟨k|Â|l⟩)⟨l| . (23.77)
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23.3.3 Degeneracy

The eigenvectors form a natural basis for the Hilbert space. However, a problem arises
in the case of degeneracy, that is, when some eigenvalues are equal, an = am. In this
case, the eigenvectors that correspond to degenerate eigenvalues are not completely
defined, and we have to construct a basis verifying that all constructed eigenvectors are
orthogonal. For this, there exists the method of orthogonalization by Schmidt, which
works like this: We assume that we have already solved the eigenvalue equation, that
we found a degenerate eigenvalue, Â|ak⟩ = a|ak⟩ for every k = 1, .., gk, where gk is
the degree of degeneracy, and that we also found a complete basis of eigenvalues |am⟩,
but which is not orthogonal, that is, ∃{m,n} with ⟨an|am⟩ ≠ 0. The task is to build
another basis |bm⟩ satisfying ⟨bn|bm⟩ = δn,m.

The first vector of the orthogonal base can be chosen freely, e.g.,

|b1⟩ ≡ |a1⟩ . (23.78)

Since the basis {|ak⟩} is assumed to be complete, the second vector is necessarily a
linear combination of vectors |ak⟩, that is, |b2⟩ = |a2⟩ + λ|b1⟩. With the condition
⟨b1|b2⟩ = 0 = ⟨b1|a2⟩+λ⟨b1|b1⟩ we can determine the parameter λ, and obtain for the
second vector,

|b2⟩ ≡ |a2⟩ − |b1⟩
⟨b1|a2⟩
⟨b1|b1⟩

. (23.79)

In the same way, we can derive for a third vector, |b3⟩ = |a3⟩ + µ|b1⟩ + ν|b2⟩, the
conditions, ⟨b1|b3⟩ = 0 = ⟨b1|a3⟩ + µ⟨b1|b1⟩ and ⟨b2|b3⟩ = 0 = ⟨b2|a3⟩ + ν⟨b2|b2⟩, and
obtain,

|b3⟩ ≡ |a3⟩ − |b1⟩
⟨b1|a3⟩
⟨b1|b1⟩

− |b2⟩
⟨b2|a3⟩
⟨b2|b2⟩

. (23.80)

An overall way of writing this down is,

|bk⟩ ≡
(
1− |b1⟩⟨b1|⟨b1|b1⟩

− |b2⟩⟨b2|⟨b2|b2⟩
− ...− |bk−1⟩⟨bk−1|⟨bk−1|bk−1⟩

)
|ak⟩ . (23.81)

In the Exc. 23.3.10.2 we practice the orthogonalization of a set of three linearly inde-
pendent but non-orthogonal vectors, and in the Exc. 23.3.10.3 we find an orthogonal
basis for a partially degenerate three-level system.

23.3.4 Bases as unitary operators

One way to formulate the eigenvalue problem is as follows: Let |n⟩ be an orthonormal
basis with the respective eigenvalues an of an operator Â:

Â|n⟩ = an|n⟩ with ⟨n|m⟩ = δmn . (23.82)

We construct the matrices,

U ≡
(
|1⟩ |2⟩ · · ·

)
and Ê ≡




a1 0 · · ·
0 a2
...

. . .


 . (23.83)
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With the definition of U† we have,

U† =




⟨1|
⟨2|
...


 and U†U =




⟨1|1⟩ ⟨1|2⟩ · · ·
⟨2|1⟩ ⟨2|2⟩ · · ·
...

...
. . .


 = 1̂ . (23.84)

Therefore,

U†U = 1̂ =⇒ U†UU−1 = 1̂U−1 =⇒ U† = U−1 (23.85)

U†U = 1̂ =⇒ UU†UU−1 = U 1̂U−1 =⇒ UU† = 1̂ .

Also,
Â|n⟩ = Ê|n⟩ and ÂU = UÊ . (23.86)

That is, by knowing the unitary matrix (or transformation matrix) U , we can solve
the eigenvalue problem simply by Ê = U−1ÂU .

Note, that this does not apply to a non-orthonormal basis. In this case, we need
to do a Schmidt orthogonalization and use the condition detU = 1. We apply the
technique detailed in this section to solve Excs. 23.3.10.4, 23.3.10.5, and 23.3.10.6.

23.3.5 Complete set of commuting operators

Even for simple systems, we can ask various types of questions (measurements). Con-
sidering, for example, a particle flying freely in space, we can gather its position
or its velocity. Let a be the result of a measurement of the observable Â, that is,
a = ⟨ψa|Â|ψa⟩. Due to the measurement we know that the system is in the state
|ψa⟩. Immediately after this first measurement we perform another measurement of
another observable B̂ giving ⟨ψa|B̂|ψa⟩. The result of this measurement can only
yield an eigenstate, b = ⟨ψa|B̂|ψa⟩, if the operators commute, [Â, B̂] = 0. That is, if
two operators Â and B̂ commute, and if |ψ⟩ is an eigenvector of Â, then B̂|ψ⟩ is also
an eigenvector of Â with the same eigenvalue:

[Â, B̂] = 0 , a = ⟨ψ|Â|ψ⟩ (23.87)

=⇒ Â(B̂|ψ⟩) = a(B̂|ψ⟩) and ⟨ψ|B̂|ψ⟩ ∈ R .

In addition, we observe that, if two operators commute, the orthonormal basis
constructed for one of the operators is also orthonormal for the other. That is, if
two operators Â and B̂ commute and if |ψ1⟩ and |ψ2⟩ are two eigenvectors of Â with
different eigenvalues, then the matrix element ⟨ψ1|B̂|ψ2⟩ is equal to zero:

[Â, B̂] = 0 , a1 = ⟨ψ1|Â|ψ1⟩ ≠ ⟨ψ2|Â|ψ2⟩ = a2 (23.88)

=⇒ ⟨ψ1|B̂|ψ2⟩ = 0 .

Finally, we affirm that, if two operators Â and B̂ commute, we can construct an
orthonormal basis {|ψa,b⟩} with common eigenvectors of Â and B̂:

[Â, B̂] = 0 (23.89)

=⇒ ∃ {|ψa,b⟩} tal que Â|ψa,b⟩ = a|ψa,b⟩ and B̂|ψa,b⟩ = b|ψa,b⟩ .
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The statements (23.87) to (23.89) are verified in Exc. 23.3.10.7.

The fact that commuting operators have a common system of eigenvectors autho-
rizing sharp eigenvalues can be used to construct and characterize a state.

Example 143 (Measuring momenta in orthogonal directions): For exam-
ple, the obvious solutions of the eigenvalue equations,

p̂x|ψpx⟩ =
ℏ
ı

d

dx
|ψpx⟩ = px|ψpx⟩ and p̂y|ψpy ⟩ =

ℏ
ı

d

dy
|ψpy ⟩ = py|ψpy ⟩

are the plane waves eıpxx/ℏ and eıpyy/ℏ. Therefore, the total state of the particle
can be described by,

|ψpx,py,pz ⟩ = |ψpx⟩|ψpy ⟩ = e(ı/ℏ)(pxx+pyy)f(z) .

However, these eigenfunctions are infinitely degenerate, since the linear momen-
tum in z-direction is not specified. A third operator p̂z|ψ⟩ = pz|ψ⟩ commutes
with the others,

[p̂k, p̂m] = 0 .

Hence,

|ψpx,py,pz ⟩ = e(ı/ℏ)(pxx+pyy+pzz) ,

is a possible state of the system.

On the other hand, choosing p̂2z = −ℏ2 ∂2

∂z2
as the third operator, giving the

eigenvalues p2z, the state would have been,

|ψpx,py,p2z ⟩ = e(ı/ℏ)(pxx+pyy) cos pzzℏ or |ψpx,py,p2z ⟩ = e(ı/ℏ)(pxx+pyy) sin pzz
ℏ .

(23.90)

Therefore, there are two solutions with the same eigenvalues, px, py, p
2
z. To lift

this degeneracy, we need to introduce yet another observable. This observable

can be, for example, the parity P̂ , that is, the behavior of the wave function

upon mirroring z −→ −z in the x-y plane. The fact that the set of operators

px, py, pz on one hand and px, py, p
2
z, P̂ on the other are equivalent, shows that

the required number of observables for a complete characterization depends on

their judicious choice.

Also, the number needed for a complete set of commuting operators (CSCO) de-
pends on the number of degrees of freedom and the symmetry of the system. In the
case of the free particle in one dimension it is enough to consider one observable only,
for example, x̂ or p̂. In three dimensions, we already need at least three commuting
observables. In Exc. 23.3.10.8 we will try to find a CSCO for a matrix with partially
degenerate eigenvalues.

23.3.6 Uncertainty relation

We have already learned that observables that do not commute can not be measured
with arbitrary precision. This principle can be quantified as follows: If Â and B̂ are
two observables, then,

∆Â∆B̂ ≥ 1
2 |⟨[Â, B̂]⟩| . (23.91)
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This is Heisenberg’s famous uncertainty principle. For example, [p̂, x̂] = −ıℏ, and
hence, ∆p∆x ≥ ℏ/2. We will see later (see Sec. 25.3.1), that [l̂x, l̂y] = ıℏl̂z such
that ∆lx∆ly ≥ ℏ|⟨lz⟩|/2. More difficult to show, since time has no simple quantum
operator, is ∆E∆t ≥ ℏ/2. In the Exc. 23.3.10.9 we will show the Schwartz inequality,
and in the Exc. 23.3.10.10 we ask for a formal derivation of Heisenberg’s uncertainty
principle.

23.3.7 Representations

23.3.7.1 Spatial representation

A Hilbert space can be discrete or, as in the case of the momentum of a free particle,
continuous. In this latter case, the eigenvalues are continuously distributed, since the
equation,

−ıℏ∇rψ(r) = pψ(r) , (23.92)

has solutions for each value of E. The eigenfunctions are ψ(r) = aeıp·r/ℏ. Eq. (23.92)
clearly has the form of an eigenvalue equation, for which we have already introduced
the Heisenberg matrix formalism. The question now is how these descriptions com-
bine.

Observables that do not commute correspond to expansions on different bases
and generate alternative representations. For example, we can represent quantum
mechanics in position space or linear momentum space. If |r⟩ is a basis of the space
of the particles’ state,

r̂|r⟩ = r|r⟩ , ⟨r′|r⟩ = δ3(r′ − r) ,

∫

R3

|r⟩⟨r|d3r = 1̂ , (23.93)

we can expand the position operator on a position basis as,

r̂ =

∫

R3

r|r⟩⟨r|d3r , (23.94)

and any state vector as,

|ψ(t)⟩ =
∫

R3

|r⟩ψ(t, r)d3r . (23.95)

The quantities ⟨r|ψ(t)⟩ = ψ(t, r) Schrödinger wave functions. We can also say that the
wavefunctions are the coordinates of the state in the particular base |r⟩. Consequently,

⟨r|̂r|r′⟩ = rδ3(r− r′) (23.96)

⟨r|f(r̂)|r′⟩ = f(r)δ3(r− r′) .

It is also true that,

⟨r|Â|ψ(t)⟩ =
∫

R3

A(r, r′)ψ(t, r′)d3r′ , (23.97)

where the quantity A(r, r′) ≡ ⟨r|Â|r′⟩ is called kernel of the operator. The transition
from Heisenberg’s abstract mechanics to Schrödinger’s wave mechanics is done by the
substitutions |ψ(t)⟩ → ψ(t, r) and Â→ A(r, r′).
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23.3.7.2 Momentum representation

The uncertainty relation is symmetric in r̂ and p̂. Nothing prevents us from choosing
as a basis,

p̂|p⟩ = p|p⟩ , ⟨p′|p⟩ = δ3(p′ − p) ,

∫

R3

|p⟩⟨p|d3p = 1̂ , (23.98)

in which we can expand the momentum operator on a momentum basis as,

p̂ =

∫

R3

p|p⟩⟨p|d3p , (23.99)

with the wavefunctions,

|ψ(t)⟩ =
∫

R3

|p⟩φ(p, t)d3p , (23.100)

where ⟨p|ψ(t)⟩ = φ(t,p). The formulas are analogous to the ones in the spatial
representation. In particular, in the momentum representation the position operator
is r = ıℏ∇p.

The representations follow from one another by Fourier transformation. Since
−ıℏ∇r⟨r|p⟩ = p⟨r|p⟩, we know,

⟨r|p⟩ = 1
ℏ3/2 exp(

ı
ℏr · p) , (23.101)

where the prefactor ℏ−3/2 is introduced to take account of the unit of the states 13.
ψ and φ are different representations of the same quantum state related by,

⟨r|ψ(t)⟩ =
∫

R3

⟨r|p⟩⟨p|ψ(t)⟩d3p = 1
h3/2

∫

R3

eır·p/ℏφ(p, t)d3p = ψ(r, t) (23.102)

⟨p|ψ(t)⟩ =
∫

R3

⟨p|r⟩⟨r|ψ(t)⟩d3r = 1
h3/2

∫

R3

e−ır·p/ℏψ(r, t)d3r = φ(p, t) .

Normalization ensures that ψ = F−1Fψ with the relation,

δ(x) = lim
t→∞

1
2π

∫ t

−t
eıkxdk . (23.103)

Using the wavevector ℏk = p we can also write,

ψ(r) = 1
(2π)3/2

∫

R3

eır·kφ̃(k)d3k and φ̃(k) = 1
(2π)3/2

∫

R3

e−ır·kψ(r)d3r , (23.104)

defining the function φ̃(k) ≡ ℏ3/2φ(p). Applying the Fourier transform to functions
of operator we can calculate,

⟨r|G(p̂)|r′⟩ =
∫
d3p⟨r|G(p̂)|p⟩⟨p|r′⟩ =

∫
d3pG(p)⟨r|p⟩⟨p|r′⟩ (23.105)

= 1
ℏ3/2

∫
d3pG(p)eık·(r−r

′) = 1
ℏ3 (FG)(r− r′) .

13Note that the units of the wavefunctions are defined by normalization: ⟨r′|r⟩ = δ3(r − r′).
Introducing the parenthesis [...] to extract the unit of a physical quantity, we find, [|r⟩] = [ψ(r)] =
[r−3/2] and [|p⟩] = [φ(p)] = [p−3/2]. We do not assign a unit to the abstract state |ψ⟩, that is,
[|ψ⟩] = 1.
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In Exc. 23.3.10.11 we will show ⟨r|p̂|ψ⟩ = (ℏ/ı)∇r⟨r|ψ⟩, thus justifying that we
can understand an operator as a rule to determine what happens to a function. For
example, the rule p̂x asks for a derivation of the wavefunction by x.

23.3.8 Quasi-classical approximation (WKB)

We can express the correspondence between classical and quantum mechanics by
the following analogy between (i) the density matrices and observables depending on
(ii) discrete variables and (iii) continuous variables,

ϱ(p, q) = 1
I

∑I
i=1 δ(p− pi)δ(q − qi) (i) ϱ̂ = 1

I

∑I
i=1 |piqi⟩⟨qipi|

⟨A⟩(p, q) = 1
I

∑I
i=1A(pi, qi) (ii) ⟨Â⟩ = 1

I

∑I
i=1⟨piqi|Â|qipi⟩

⇒ ⟨A⟩(p, q) =
∫
A(p, q)ϱ(p, q)dpdq (iii) ⟨Â⟩ =

∑I
i=1⟨piqi|ϱ̂Â|qipi⟩

.

(23.106)
The objective is to bring this analogy to the point of assigning to the quantum func-
tions Â unequivocally corresponding classical functions A(p, q) satisfying classical
formula. We achieve this by,

A(p, q) ≡ ⟨p|Â|q⟩⟨q|p⟩ that is Â ≡
∫
|p⟩⟨p|A(p, q̂)dp =

∫
A(p̂, q)|q⟩⟨q|dp ,

(23.107)
with the normalization,

⟨q|q′⟩ = hI/2δ(q − q′) and ⟨p|p′⟩ = hI/2δ(p− p′) (23.108)

as well as ⟨p|q⟩ = h−I/2eipq/ℏ and

∫
|q⟩⟨q|dq = I =

∫
|p⟩⟨p|dp ,

with p, q ∈ RI and |p⟩ = |p1⟩|p2⟩..|pI⟩. We obtain for classical distributions for
position and momentum,

∫
ϱ(p, q)dpdq = 1 (23.109)

∫
ϱ(p, q)dp = ⟨q|ϱ̂|q⟩ = w(q) = 1

I

I∑

i=1

⟨δ(q̂ − qi)

∫
ϱ(p, q)dq = ⟨p|ϱ̂|p⟩ = w(p) = 1

I

I∑

i=1

⟨δ(p̂− pi) .

Now we expand the commutator [Â, B̂] in powers of ℏ:

(AB)(p, q) = ⟨p|ÂB̂|q⟩⟨q|p⟩ (23.110)

= ⟨p|
∫
|p′⟩⟨p′|A(p′, q̂)dp′

∫
B(p̂, q′)|q′⟩⟨q′|dq′|q⟩⟨q|p⟩ = ⟨p|A(p, q̂)B(p̂, q)⟨q|p⟩ .
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We expand,

A(p, q̂) = A|q +
∂A

∂q

∣∣∣∣
q

(q̂ − q) + ...+
1

n!

∂nA

∂qn
(q̂ − q)n + ... (23.111)

B(p̂, q) = B|p +
∂B

∂p

∣∣∣∣
p

(p̂− p) + ...+
1

m!

∂mB

∂pm
(p̂− p)m + ... .

Now,

(AB)(p, q) = AB +A
∂B

∂p
⟨p|p̂− p|q⟩⟨q|p⟩+ ∂A

∂q
B⟨p|q̂ − q|q⟩⟨q|p⟩+ ... (23.112)

+
1

m!n!

∂nA

∂qn
∂mB

∂pm
⟨p|(q̂ − q)n(p̂− p)m|q⟩⟨q|p⟩+ ... .

But now we have, [(p̂− p), (q̂ − q)] = [p̂, q̂] = ℏ/ı with the consequence,

[(p̂− p), (q̂ − q)n] = ℏ
ı

∂(q̂ − q)n
∂(q̂ − q) =

ℏ
ı
(q̂ − q)n−1n . (23.113)

Also,

[(q̂−q)n, (p̂−p)m] = (p̂−p)[(q̂−q)n, (p̂−p)m−1]+[(q̂−q)n, (p̂−p)](p̂−p)m−1 . (23.114)

Because of ⟨p|p̂− p = 0 all terms with p̂− p vanish,

(q̂ − q)n(p̂− p)m = [(q̂ − q)n, (p̂− p)](p̂− p)m−1 = ℏın(q̂ − q)n−1(p̂− p)m−1

(23.115)

=

{(
(ℏı)nn!(p̂− p)m−n for m ≥ n
(ℏı)nm!(q̂ − q)n−m for n ≥ m

)
= (ℏı)nn!δnm .

Finally,

(AB)(p, q) = (ℏı)nn!
∂nA

∂qn
∂nB

∂pn
. (23.116)

23.3.9 Spanning a Hilbert space with several degrees of free-
dom

All systems analyzed up to this point were characterized by a single degree of freedom
(e.g., energy, momentum, or angular momentum), which could have a continuous
or discrete spectrum. Even when we treated systems exhibiting various degrees of
freedom (motion of a particle in 3D space, electron orbitals in the hydrogen atom),
we always found a way to separate the degrees of freedom into orthogonal Hilbert
spaces, which allowed us to treat the dynamics of the degrees of freedom separately.
In this chapter, we will establish the theoretical foundations allowing us to analyze
systems, where degrees of freedom can not be separated because they are entangled
or interact. In particular, we will consider the system of two spins and the coupling
of angular momenta in general.
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23.3.9.1 Projection and internal sum

A projector is an operator which reduces the domain of an operator, originally acting
on a Hilbert spaceH to the subspace defined by the projector. We consider an operator
Â with the matrix representation,

Â ≡
∑

i,j
|i⟩,|j⟩∈H

|i⟩Aij⟨j| =




:

.. Aij ..

:


 , (23.117)

acting on wavefunctions |ψ⟩ ∈ H which can be expanded on a basis |i⟩ of H. Now,
we consider a subspace R ⊂ H defined by the base |k⟩. Then the projector P̂R can
be represented by,

P̂R ≡
∑

k
|k⟩∈R

|k⟩⟨k| =




0 0 0

0



1

..

1


 0

0 0 0




. (23.118)

Applied to the operator Â,

ÂR ≡ P̂RÂ = P̂RÂR =
∑

k,l

|k⟩Akl⟨l| =




0 0 0

0




:

.. Akl ..

:


 0

0 0 0




. (23.119)

Applied to a state |i⟩,

|ψ⟩R = P̂R|ψ⟩ = P̂R|ψ⟩R =
∑

k

ck|k⟩ =




0


:

ck

:




0




. (23.120)

We study an example in the 23.3.10.12
Consequently, we can understand the Hilbert space as the sum of its subspaces,

Â =
⊕

R
ÂR and

⊕

R
P̂R = I . (23.121)

The dimensions of the subspaces are additive,

dim Â =
∑

R
dim ÂR .
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Example 144 (Projection for a three-level atom): The Hamiltonian of a
three-level atom with excitation of two transitions is given by,

Ĥ =

 ω1 Ω12 0

Ω12 ω2 Ω23

0 Ω23 ω3

 .

The projector,

P̂ =

1 0 0

0 1 0

0 0 0


reduces the Hamiltonian to a two-level transition,

ĤR =

 ω1 Ω12 0

Ω12 ω2 0

0 0 0

 .

Obviously, the concatenation (23.121) only serves to increase the Hilbert space of
a given degree of freedom described by a given observable, e.g., when we add one
more level of energy to the spectrum of an atom described by a Hamiltonian. If, in
contrast, we want to add another degree of freedom, we need the external sum or
external product discussed below.

23.3.9.2 Tensorial product

We have previously worked with systems exhibiting more than one degree of freedom
and therefore having to be characterized by more than one observable with its spec-
trum of eigenstates. One example are the electronic orbitals of the hydrogen atom
|nℓm⟩, which need three quantum numbers to be labeled unambiguously. Obviously,
each quantum number increases the dimensionality of the Hilbert space. Another
example is the system |αβ⟩ of two particles with spin 1

2 , each spin being defined on
its respective space,

|α⟩ =
(
α1

α2

)
= (αi)i ∈ HA and |β⟩ =

(
β1

β2

)
= (βk)k ∈ HB . (23.122)

The combined state is,

|αβ⟩ ∈ HA ⊗HB with dim HA ⊗HB = dim HA dim HB . (23.123)

The symbol ⊗ denotes the outer tensorial product of two vectors (states) 14. Now, in
order to represent the multidimensional space HA ⊗HB by a matrix, we use the fact

14The tensorial product of two states should not be confused with other definitions of products,
such as the inner (or scalar) product of two states,

⟨α|β⟩ ≡ α1β1 + α2β2 ,
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that it is isomorphic to the space HI⊗HA⊗B , that is, we proceed to a reorganization
of the quantum numbers identifying,

|γ⟩ ≡ |α⟩|β⟩ = |α⟩ ⊗ |β⟩ = |αβ⟩ =
(
α1|β⟩
α2|β⟩

)
=




α1β1

α1β2

α2β1

α2β2


 = (γm)m ∈ HA ⊗HB ,

(23.124)
wherem = 1, 2, 3, 4 is identified with (i, k) = (1, 1), (1, 2), (2, 1), (2, 2). The new vector
is element of the 4-dimensional vector space HA⊗HB . If {|α⟩i} and {|β⟩k} are bases
in their respective spaces HA and HB , then {|γ⟩m} is a basis of the product space
HA ⊗HB .

Figure 23.4: Illustration of the isomorphism between HA⊗HB and HI⊗HA⊗B for matrices
of rank 2.

For observables we proceed in the same way: The external product of two com-
mutators spans a Hilbert product space with the dimension corresponding to product
of the dimensions of the sub-spaces. Assuming that,

Â ≡
∑

i,j
|i⟩Aij⟨j| and B̂ ≡

∑
k,l
|k⟩Bkl⟨l| . (23.125)

then

Â⊗ B̂ ≡
∑

(ik)(jl)

|ik⟩AijBkl⟨jl| , (23.126)

the outer product,

|α⟩⟨β| ≡
(
α1β1 α1β2

α2β1 α2β2

)

A11

A12

A21

A22



B11

B12

B21

B22


†

=


A11B11 A11B12 A11B21 A11B22

A12B11 A12B12 A12B21 A12B22

A21B11 A21B12 A21B21 A21B22

A22B11 A22B12 A22B21 A22B22

 ,

the exterior (cross) product,

|α⟩ × |β⟩ =

α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1

 ,

nor the point-wise or Hadamard product,

Â ◦ B̂ ≡
(
A11 A12

A21 A22

)
◦
(
B11 B12

B21 B22

)
=

(
A11B11 A12B12

A21B21 A22B22

)
.
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such that

dim Â⊗ B̂ = dim Âdim B̂ .

For example, |i⟩⟨j| ⊗ |k⟩⟨l| = |ik⟩⟨jl|.
For two two-dimensional operators Â and B̂, the tensorial external product is

defined by,

Â⊗ B̂ =




A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22


 , (23.127)

and can be decomposed as,

Â⊗ B̂ = (Â⊗ I)(I⊗ B̂) =




A11 A12

A11 A12

A21 A22

A21 A22







B11 B12

B21 B22

B11 B12

B21 B22


 .

(23.128)

The concept (23.126) can be generalized to more degrees of freedom like,

Â⊗ B̂ ⊗ Ĉ ≡
∑

(ikm)(jln)

|ikm⟩AijBklCmn⟨jln| , (23.129)

Obviously, the external product is associative (Â ⊗ B̂) ⊗ C = Â ⊗ (B̂ ⊗ C), but
does not commute, even though the operators acting on different spaces do commute,
[Â, B̂] = 0. Nevertheless, we can reverse the order of the product of two operators
using,

Â⊗ B̂ = S(B̂ ⊗ Â)S with S ≡




1

0 1

1 0

1


 . (23.130)

The operator S is also called SWAP-gate.

We note, that it is important to distinguish from what space the vector came from.
In our notation, the vector before the symbol of the tensorial product (⊗) is belongs to
the space HA, and the one after the ⊗ belongs to the space HB . With the definition
(23.125) we can verify that the operators only act on their respective states:

(A⊗B)(|α⟩ ⊗ |β⟩) = A|α⟩ ⊗B|β⟩ . (23.131)

Example 145 (Tensorial product): We can check the relationship (23.131)
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by the definitions (23.124) and (23.127) of the external product,[(
A11 A12

A21 A22

)
⊗
(
B11 B12

B21 B22

)][(
α1

α2

)
⊗
(
β1

β2

)]
(23.132)

=


A11B11 A11B12 A12B11 A11B12

A11B21 A11B22 A12B21 A11B22

A21B11 A11B12 A22B11 A22B12

A21B21 A11B22 A22B21 A22B22



α11β11

α11β21

α21β11

α21β21



=


A11B11α11β11 +A11B12α11β21 +A12B11α21β11 +A11B12α21β21

A11B21α11β11 +A11B22α11β21 +A12B21α21β11 +A11B22α21β21

A21B11α11β11 +A11B12α11β21 +A22B11α21β11 +A22B12α21β21

A21B21α11β11 +A11B22α11β21 +A22B21α21β11 +A22B22α21β21



=


(A11α1 +A12α2)(B11β1 +B12β2)

(A11α1 +A12α2)(B21β1 +B22β2)

(A21α1 +A22α2)(B11β1 +B12β2)

(A21α1 +A22α2)(B21β1 +B22β2)


=

(
A11α1 +A12α2

A21α1 +A22α2

)
⊗
(
B11β1 +B12β2

B21β1 +B22β2

)
=

(
A11 A12

A21 A22

)(
α1

α2

)
⊗
(
B11 B12

B21 B22

)(
β1

β2

)
.

Example 146 (Mathematical definition of the tensor product): If α be-
longs to the Hilbert space Hα and β belongs to Hβ , then the equivalence class
of (α, β) is denoted by α⊗β and called the tensor product of α with β. This use
of the ⊗-symbol refers specifically to the outer product operation. An element
of Hα ⊗ Hβ that can be written in the form α ⊗ β is called a pure tensor. In
general, an element of the tensor product space is not a pure tensor, but rather a
finite linear combination of pure tensors. For example, if α1 and α2 are linearly
independent, and β1 and β2 are also linearly independent, then α1⊗β1+α2⊗β2
cannot be written as a pure tensor. The number of pure tensors required to ex-
press an element of a tensor product is called the tensor rank. The rank should
not be confused with the tensor order, which is the number of spaces one has
taken the product of (in this case two), and which corresponds to the number of
indices. For linear operators or matrices, thought of as (1, 1) tensors (elements
of the space Hα ⊗H∗α), the tensor rank agrees with matrix rank.
Given bases {αi} and {βj} for Hα and Hβ respectively, the tensors {αi ⊗ βj}
form a basis for Hα ⊗Hβ . Therefore, if Hα and Hβ are finite-dimensional, the
dimension of the tensor product is the product of dimensions of the original
spaces; for instance Rm ⊗ Rn is isomorphic to Rnm.
The tensor product also operates on linear maps (called operators in quan-
tum mechanics) between vector spaces. Specifically, given two linear maps
Â : Hα → H′α and B̂ : Hβ → H′β between vector spaces, the tensor product of

the two linear maps Â and B̂ is a linear map,

Â⊗ B̂ : Hα ⊗Hβ → H′α ⊗H′β ,

defined by,

(Â⊗ B̂)(α⊗ β) = Â(α)⊗ B̂(β) .
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In this way, the tensor product becomes a bifunctor from the category of vector
spaces to itself, covariant in both arguments. If Â and B̂ are both injective,
surjective or (in the case that Hα, H′α, Hβ , and H′β are normed vector spaces

or topological vector spaces) continuous, then Â ⊗B̂ is injective, surjective or
continuous, respectively.
By choosing bases of all vector spaces involved, the linear maps Â and B̂ can be
represented by matrices. Then, depending on how the tensor α⊗β is vectorized,
the matrix describing the tensor product Â ⊗B̂ is the Kronecker product of
the two matrices. For example, if Hα, H′α, Hβ , and H′β above are all two-

dimensional and bases have been fixed for all of them, and Â and B̂ are given
by the matrices,

Â =

(
A11 A12

A21 A22

)
, B̂ =

(
B11 B12

B21 B22

)
respectively, then the tensor product of these two matrices is,

(
A11 A12

A21 A22

)
⊗
(
B11 B12

B21 B22

)
=


A11

(
B11 B12

B21 B22

)
A12

(
B11 B12

B21 B22

)

A21

(
B11 B12

B21 B22

)
A22

(
B11 B12

B21 B22

)
 .

The resultant rank is at most 4, and thus the resultant dimension is 4. Note that

rank here denotes the tensor rank i.e. the number of requisite indices (while the

matrix rank counts the number of degrees of freedom in the resulting array).

Note Tr Â⊗ B̂ = Tr Â× Tr B̂.

A dyadic product is the special case of the tensor product between two vectors

of the same dimension.

23.3.9.3 Direct external sum

Using the nomenclature (23.125) we define the external direct sum by,

Â⊕ B̂ ≡
∑

(ik)(jl)

|ik⟩(Aij +Bkl)⟨jl| , (23.133)

that is,

Â⊕ B̂ =




A11 +B11 A11 +B12 A12 +B11 A12 +B12

A11 +B21 A11 +B22 A12 +B21 A12 +B22

A21 +B11 A21 +B12 A22 +B11 A22 +B12

A21 +B21 A21 +B22 A22 +B21 A22 +B22


 . (23.134)

It can be decomposed as,

Â⊕ B̂ = Â⊕O+O⊕ B̂ = Â⊗
(
1 1

1 1

)
+

(
1 1

1 1

)
⊗ Â . (23.135)

Again, using the definition (23.130) of the unitary operator S, we can reverse the
order of the operator by,

Â⊕ B̂ = S(B̂ ⊕ Â)S . (23.136)
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Example 147 (Direct external sum of two diagonal Hamiltonians): As
an example we consider a two-level atom excited by radiation and trapped in
an external harmonic potential. We assume that the degrees of freedom do not
interact. As the Hamiltonian of the HO is diagonal, the total Hamiltonian is
organized into a diagonal matrix of quadratic subspaces,

Ĥ = ℏω(n+ 1
2
)⊕
(

0 ℏΩ
ℏΩ ℏ∆

)
=



ℏω
2

ℏω
2

+ ℏΩ 0 0
...

ℏω
2

+ ℏΩ ℏω
2

+ ℏ∆ 0 0
...

0 0 3ℏω
2

3ℏω
2

+ ℏΩ
...

0 0 3ℏω
2

+ ℏΩ 3ℏω
2

+ ℏ∆
...

· · · · · · · · · · · ·
. . .


.

It acts on the product state |n⟩|i⟩, where the first ket denotes the vibrational

level and the second ket the electronic excitation of the atom.

Other examples are studied in 23.3.10.13 and 23.3.10.14.

23.3.9.4 Trace

The trace of an operator over a subspace reduces its domain to the remaining dimen-
sions (the · -symbol is a place holder for the dimension over which we do NOT want
to trace):

TrBÂ⊗ B̂ =
∑

(ik)(jl)(·m)

⟨· m|ik⟩AijBkl⟨jl| ·m⟩ =
∑

(ik)(jl)(·m)

|i⟩AijBkl⟨j|δkmδlm

(23.137)

=
∑

(i)(j)(m)

|i⟩AijBmm⟨j| = Â
∑

m

Bmm = Â TrBB̂ .

For example, TrρÂ⊗ ρ̂ = Â. See the Excs. 23.3.10.15 and 23.3.10.16.
It can be shown,

Tr ÂB̂ = Tr B̂Â . (23.138)

23.3.10 Exercises

23.3.10.1 Ex: Orthogonality

Show that two eigenvectors of a Hermitian operator associated with two different
eigenvalues are orthogonal.

Solution:

Â|1⟩ = a1|1⟩ , Â|2⟩ = a2|2⟩
=⇒ ⟨2|a2|1⟩ = ⟨2|Â†|1⟩ = ⟨2|Â|1⟩ = ⟨2|a1|1⟩
=⇒ ⟨2|1⟩ = δa1,a2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_OrtogonalidadeAutovetores.pdf
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23.3.10.2 Ex: Orthonormalization

Orthonormalize the base ⟨a1| =
(
1 −1 0

)
, ⟨a2| =

(
0 1 0

)
, ⟨a3| =

(
0 1 1

)
.

Solution: The new base is,

|b1⟩ =
|a1⟩
||a1⟩|

= 1√
2
|a1⟩ = 1√

2




1

−1
0




|b2⟩ =
(1− |b1⟩⟨b1|)|a2⟩
|(1− |b1⟩⟨b1|)|a2⟩|

=
1

|.|


1−

1
2




1

−1
0







1

−1
0




†




0

1

0


 = 1√

2



1

1

0




|b3⟩ =
(1− |b1⟩⟨b1| − |b2⟩⟨b2|)|a3⟩
|(1− |b1⟩⟨b1| − |b2⟩⟨b2|)|a3⟩|

=
1

|.|


1−

1
2




1

−1
0







1

−1
0




†

−



1

0

0






1

0

0




†




0

1

1


 =



0

0

1


 .

23.3.10.3 Ex: Orthonormal base

Construct an orthonormal basis for the following operator describing a partially de-
generate three-level system,

Â =



1 1 1

1 1 1

1 1 1


 .

Solution: Obviously ⟨a1| =
(
1 1 1

)
is an eigenvector for the eigenvalue a = 3

without degeneracy. The other eigenvalue, a = 0, is twice degenerate, since it has

the linearly independent eigenvectors ⟨a2| =
(
1 −1 0

)
and ⟨a3| =

(
1 0 −1

)
.

However, ⟨a2| and ⟨a3| are not orthonormal. But

|b1⟩ =
|a1⟩
∥· · · ∥ = 1√

3



1

1

1


 and |b2⟩ =

|a2⟩ − |b1⟩⟨b1|a2⟩
∥· · · ∥ =

|a2⟩
∥· · · ∥ = 1√

2




1

−1
0




and |b3⟩ =
|a3⟩ − |b1⟩⟨b1|a3⟩ − |b2⟩⟨b2|a3⟩

∥· · · ∥ =
|a3⟩ − |b2⟩ 1√

2

∥· · · ∥ = 1√
6




1

1

−2


 are.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_OrtonormalizacaoBase1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_OrtonormalizacaoBase2.pdf
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23.3.10.4 Ex: Eigenvalue equation

Calculate the unitary matrix U transforming the Hamiltonian Ĥ =

(
1 −ı
ı 1

)
into a

diagonal matrix E = U†ĤU .

Solution: The eigenvalue matrix is,

E =

(
0 0

0 2

)
.

The eigenvalue 0 corresponds to the eigenvector 1√
2

(
ı

1

)
and the eigenvalue 2 to the

eigenvector 1√
2

(
−ı
1

)
. Hence,

U =
1√
2

(
ı −ı
1 1

)
.

This makes it easy to check E = U†ĤU . Note that the transformation matrix is not
uniquely defined, since every matrix eıϕU does the same job.

23.3.10.5 Ex: Spin rotation operators

Prove the following relations for the spin rotation operator: e−ıπσ̂x/4σ̂ze
ıπσ̂x/4 = −σ̂y

and e−ıπσ̂x/4σ̂ye
ıπσ̂x/4 = σ̂z.

Solution: The Hermitian operator σx can be diagonalized via,

σ̂x =

(
0 1

1 0

)
=

(
−1 1

1 1

)(
−1 0

0 1

)(
−1 1

1 1

)−1
= U(−σ̂z)U−1 .

Hence, the unitary transformation e−ıπσx/4 reads,

e−ıπσ̂x/4 = Ueıπσ̂z/4U−1 =

(
−1 1

1 1

)(
eıπ/4 0

0 e−ıπ/4

)(
−1 1

1 1

)−1
=

(
1√
2
− ı√

2

− ı√
2

1√
2

)
.

And so,

e−ıπσ̂x/4σ̂ze
ıπσ̂x/4 =

(
1√
2
− ı√

2

− ı√
2

1√
2

)(
1 0

0 −1

)(
1√
2
− ı√

2

− ı√
2

1√
2

)−1
=

(
0 ı

−ı 0

)
= σ̂y ,

and similar for the second expression.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EquacaoAutovalores1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EquacaoAutovalores4.pdf
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23.3.10.6 Ex: Eigenvalues and eigenvectors

Find the eigenvalues and -vectors of the operator Â =



1 1 1

1 1 1

1 1 1


 and construct the

unitary matrix which transforms this operator into a diagonal matrix.

Solution: The eigenvalues follow from,

0 = det(Â− E) = 3E2 − E3 =⇒ E1 = 0, E2 = 3, E3 = 0 .

The eigenvectors from,

Â



a

b

c


 =



a+ b+ c

a+ b+ c

a+ b+ c


 = 3



a

b

c


 =⇒ a = b = c

a2 + b2 + c2 = 1
=⇒ u2 =




1√
3
1√
3
1√
3




Â



a

b

c


 =



a+ b+ c

a+ b+ c

a+ b+ c


 = 0



a

b

c


 =⇒ b = −a− c

a2 + b2 + c2 = 1
=⇒ c = −1

2

(
a±

√
2− 3a2

)

=⇒ u1 =




a
1
2

(
−a+

√
2− 3a2

)
1
2

(
−a−

√
2− 3a2

)


 , u3 =




a
1
2

(
−a−

√
2− 3a2

)
1
2

(
−a+

√
2− 3a2

)


 .

We define the unitary transformation matrix and the diagonal matrix of eigenvalues,

U ≡
(
|u1⟩ |u2⟩ |u3⟩

)
=




a 1√
3

a
1
2

(
−a+

√
2− 3a2

)
1√
3

1
2

(
−a−

√
2− 3a2

)

1
2

(
−a−

√
2− 3a2

)
1√
3

1
2

(
−a+

√
2− 3a2

)




E ≡



E1 0 0

0 E2 0

0 0 E3


 =



0 0 0

0 3 0

0 0 0


 .

For the transformation matrix to be unitary, we need

1 = detU = a
√
3
√

2− 3a2 ,

with the solution a = 1√
3
, that is,

U =




1√
3

1√
3

1√
3

1
2 − 1

2
√
3

1√
3
− 1

2 − 1
2
√
3

− 1
2 − 1

2
√
3

1√
3

1
2 − 1

2
√
3


 .

It is easy to show,

U†U = UU† = 1̂ and ÂU = UE .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EquacaoAutovalores2.pdf
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23.3.10.7 Ex: Commuting operators

a. Show that if two operators Â and B̂ commute and if |ψ⟩ is an eigenvector of Â,
B̂|ψ⟩ also is an eigenvector of Â with the same eigenvalue.
b. Show that if two operators Â and B̂ commute and if |ψ1⟩ and |ψ2⟩ are two eigen-
vector of Â with different eigenvalues, the matrix element ⟨ψ1|B̂|ψ2⟩ is equal to zero.
c. Show that if two operators Â and B̂ commute, we can construct an orthonormal
basis of eigenvectors common to Â and B̂.

Solution: a. The operators Â and B̂ commute:

[Â, B̂] = 0 , Â|ψ⟩ = a|ψ⟩
=⇒ ÂB̂|ψ⟩ = B̂Â|ψ⟩ = B̂a|ψ⟩ = aB̂|ψ⟩ .

b. If furthermore |ψ1⟩ and |ψ2⟩ are eigenvectors of Â,

[Â, B̂] = 0 , Â|ψ1⟩ = a1|ψ1⟩ , Â|ψ2⟩ = a2|ψ2⟩
=⇒ ⟨ψ1|a1B̂|ψ2⟩ = ⟨ψ1|ÂB̂|ψ2⟩ = ⟨ψ1|B̂Â|ψ2⟩ = ⟨ψ1|B̂a2|ψ2⟩
=⇒ ⟨ψ1|B̂|ψ2⟩ = ⟨ψ1|B̂|ψ2⟩δa1,a2 .

The result can be generalized to,

⟨ψm|B̂|ψn⟩ = δm,n⟨ψm|B̂|ψm⟩ .

c. Using the last result we can make the following calculation,

B̂ =
∑

m,n

|m⟩⟨m|B̂|n⟩⟨n| =
∑

m

|m⟩⟨m|B̂|m⟩⟨m| ,

and,

B̂|n⟩ =
∑

m

|m⟩⟨m|B̂|m⟩⟨m|n⟩ = ⟨n|B̂|n⟩|n⟩ = bn|n⟩ .

This shows that |n⟩ is an eigenvector of B̂, too.
c Alternative. The opposite is easy to show, since Â|ψn⟩ = ψn|un⟩ and B̂|ψn⟩ = bn|ψn⟩
we see that [Â, B̂]|ψn⟩ = 0.
To prove that observable commutators [Â, B̂] = 0 have a complete set of common
eigenfunctions, we first consider the case where the eigenvalues of Â are all non-
degenerate. We let {|ψn⟩} be a complete base of eigenvectors of Â with the eigenvalues
an,

Â|ϕn⟩ = an|an⟩ with an ̸= am .

We can now write,
Â(B̂|ψn >) = B̂Â|ψn⟩ = an(B̂|ψn⟩) ,

such that we can say that B̂|ψn⟩ is an eigenvector of Â with the corresponding eigen-
value an. As both, B̂|ψn⟩ and psin⟩ are eigenvectors associated with the same eigen-
value an, which is unique, they may only be differ by a multiplicative constant, which
we will call bn. That is,

B̂|ϕn⟩ = bn|ψn⟩ .
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Now we treat the case, where Â has degenerate eigenvalues, for example, the eigenvalue
an being g times degenerate. We let |ψnr > with r = 1, 2, .., g be linearly independent
eigenvectors of the eigenvalue. Since [Â, B̂] = 0, we reason as we did above to find
that B̂|ψnr⟩ is an eigenvector of Â corresponding to the degenerate eigenvalue a.
Therefore, we can expand B̂|ψnr⟩ on the basis of degenerate eigenvectors of an:

B̂|ψnr⟩ =
g∑

s=1

crs|ψns⟩ ,

with the expansion coefficients of crs. Now we apply the sum
∑
r dr with constants dr

to this equation,

B̂

g∑

r=1

dr|ψnr⟩ =
g∑

r=1

g∑

s=1

drcrs|ψns⟩ .

Hence,
∑
r dr|ψnr⟩ will be an eigenvalue of B̂ with the eigenvalue bn, under the con-

dition that,
g∑

r=1

drcrs = bnds with s = 1, 2, .., g .

This constitutes a system of g linear equations for dr constants. A non-trivial solution
requires,

det[crs − bnδrs] = 0 .

This is an equation of order g in bn with g roots. For each root, bn = b
(k)
n with

k = 1, 2, .., g, we get a value dr, for example, d
(k)
r . Now, the ket,

|ϕ(k)n ⟩ =
g∑

r=1

d(k)r |ψnr⟩

is simultaneously an eigenvector of Â and of B̂ with their respective eigenvalues an
and b

(k)
n .

23.3.10.8 Ex: Eigenvalues

a. Find the eigenvalues and eigenvectors of the operator Â =



1 0 1

0 µ 0

1 0 1


 for 0 <

µ < 2.
b. Write down the unitary matrix U satisfying the eigenvalue equation: ÂU = UEA,
where EA is the matrix that has all eigenvalues of Â in its diagonal.
c. Now consider the case µ = 0. Find a complete set of commuting operators (CSCO).
That is, calculate the components of a second operator B̂, which commutes with Â,
as a function of its eigenvalues λ1, λ2, and λ3, and verify [Â, B̂] = 0. Find the most
general form of operator B̂.
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Solution: a. The eigenvalues are,

det



1− λ 0 1

0 µ− λ 0

1 0 1− λ


 = −2λµ+ 2λ2 + λ2µ− λ3 = 0 =⇒ λ = 0, µ, 2 .

The eigenvectors are,



1 0 1

0 µ 0

1 0 1






a

b

c


 = 0



a

b

c


 =⇒

a+ c = 0

µb = 0

a+ c = 0

=⇒ c = −a
b = 0

=⇒ u1 =




1/
√
2

0

−1/
√
2


 ,



1 0 1

0 µ 0

1 0 1






a

b

c


 = µ



a

b

c


 =⇒

a+ c = µa

µb = µb

a+ c = µc

=⇒ a = b =⇒ u2 =



0

1

0


 ,



1 0 1

0 µ 0

1 0 1






a

b

c


 = 2



a

b

c


 =⇒

a+ c = 2a

µb = 2b

a+ c = 2c

=⇒ c = a

b = 0
=⇒ u3 =



1/
√
2

0

1/
√
2


 .

They form an orthonormal basis.
b. The eigenvalue matrix and the unitary matrix are,

EA =



0 0 0

0 µ 0

0 0 2


 and U =




1/
√
2 0 1/

√
2

0 1 0

−1/
√
2 0 1/

√
2


 .

It is easy to check ÂU = UEA.
c. As long as, µ ̸= 0, 2 the observable Â is sufficient to characterize the system, but
if for example µ = 0, we need another observable B̂ which commutes with Â and
satisfies the condition, B̂U = UÊB,



b11 b12 b13

b21 b22 b23

b31 b32 b33


U =



b11/
√
2− b13/

√
2 b12 b11/

√
2 + b13/

√
2

b21/
√
2− b23/

√
2 b22 b21/

√
2 + b23/

√
2

b31/
√
2− b33/

√
2 b32 b31/

√
2 + b33/

√
2




=



λ1/
√
2 0 λ3/

√
2

0 λ2 0

−λ1/
√
2 0 λ3/

√
2


 = U



λ1 0 0

0 λ2 0

0 0 λ3


 ,

where bij are the components and λi the eigenvalues of B̂. The result is,

B̂ =




1
2 (λ1 + λ3) 0 1

2 (λ3 − λ1)
0 λ2 0

1
2 (λ3 − λ1) 0 1

2 (λ1 + λ3)


 .
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It’s easy to check [Â, B̂] = 0. Of course, in order to lift the degeneracy of Â regarding
the eigenvectors u1 and u2, the eigenvalues of B̂ belonging to the same eigenvectors
must be different, that is, λ1 ̸= λ2. Note that the trivial case λ2 = λ3 represents a
possible observable.

23.3.10.9 Ex: Schwartz inequality

Demonstrate the Schwartz inequality |⟨u|v⟩|2 ≤ ⟨u|u⟩⟨v|v⟩.

Solution: Defining the wavefunction |ϕ⟩ ≡ |v⟩⟨u|u⟩ − |u⟩⟨u|v⟩,

0 ≤ ⟨ϕ|ϕ⟩ = (−⟨v|u⟩⟨u|+ ⟨u|u⟩⟨v|)(|v⟩⟨u|u⟩ − |u⟩⟨u|v⟩)
= −⟨v|u⟩⟨u|v⟩⟨u|u⟩+ ⟨v|u⟩⟨u|u⟩⟨u|v⟩+ ⟨u|u⟩⟨v|v⟩⟨u|u⟩ − ⟨u|u⟩⟨v|u⟩⟨u|v⟩
= ⟨u|u⟩⟨v|v⟩⟨u|u⟩ − ⟨u|u⟩⟨v|u⟩⟨u|v⟩ = ⟨u|u⟩(⟨u|u⟩⟨v|v⟩ − |⟨u|v⟩|2) .

23.3.10.10 Ex: Heisenberg’s uncertainty principle

Develop the formal derivation of Heisenberg’s uncertainty principle.

Solution: First we show,

∆A2 = ⟨A2⟩ − ⟨A⟩2 = ⟨A2 − 2⟨A⟩A+ ⟨A⟩2⟩ = ⟨(A− ⟨A⟩)(A− ⟨A⟩)⟩ = ⟨δAδA⟩ .

Now we calculate,

∆A2∆B2 = ⟨ψ|δÂδÂ|ψ⟩⟨ψ|δB̂δB̂|ψ⟩ = ⟨δÂψ|δÂψ⟩⟨δB̂ψ|δB̂ψ⟩

≥ |⟨δÂψ|δB̂ψ⟩|2 =
∣∣∣⟨ψ|δÂδB̂|ψ⟩

∣∣∣
2

,

using Schwartz’s inequality. Separating the real and imaginary part,

∆A2∆B2 ≥ Re 2⟨ψ|δÂδB̂|ψ⟩+ Im 2⟨ψ|δÂδB̂|ψ⟩ ≥ Im 2⟨ψ|δÂδB̂|ψ⟩

=
[

1
2i

(
⟨ψ|δÂδB̂|ψ⟩ − ⟨ψ|δB̂δÂ|ψ⟩

)]2
=
[

1
2i ⟨ψ|[δÂ, δB̂]|ψ⟩

]2
=
[

1
2i ⟨ψ|[Â, B̂]|ψ⟩

]2
.

ı[Â, B̂] is always real when Â and B̂ are observable. This inequality has two roots:
∆A∆B ≥ ± 1

2 |⟨[Â, B̂]⟩|, but as the result must be valid when we exchange Â and B̂,
we finally obtain,

∆A∆B ≥ 1
2 |⟨[Â, B̂]⟩| .
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23.3.10.11 Ex: Fourier transform

Show that ⟨r|P̂|ψ⟩ = ℏ
ı∇⟨r|ψ⟩ reproduces the Schrödinger equation in position rep-

resentation.

Solution: Using the result (23.105) we calculate,

⟨r|P̂|ψ⟩ =
∫
d3r′⟨r|P̂|r′⟩⟨r′|ψ⟩ = 1

ℏ3/2

∫ ∫
d3r′d3p peıp·(r−r

′)/ℏψ(r′)

= 1
ℏ3/2

∫ ∫
d3r′d3pℏ

ı∇re
ıp·(r−r′)/ℏψ(r′) = ℏ

ı∇r

∫
d3r′δ3(r− r′)ψ(r′) = ℏ

ı∇rψ(r) .

Alternatively we can explore the property of the Fourier transform, F [xnf(x)] =

ın d
nFf(k)
dkn , giving

⟨r|P̂x|r′⟩ =
∫
d3p⟨r|P̂x|p⟩⟨p|r′⟩ = ℏ

ı δ
′(x− x′)δ(y − y′)δ(z − z′) .

to calculate,

⟨r|P̂x|ψ⟩ =
∫
d3r′⟨r|P̂x|r′⟩⟨r′|ψ⟩

= ℏ
ı

∫
dx′δ′(x− x′)

∫
dy′δ(y − y′)

∫
dz′δ(z − z′)ψ(r′) = ℏ

ı

∂

∂x
ψ(x, y, z) .

With this result and the Hamiltonian Ĥ ≡ P̂2/2m + V (R̂) it is easy to verify the
Schrödinger equation in spatial representation,

ıℏ
d

dt
⟨r|ψ(t)⟩ =

[
− ℏ2

2m
∇2

r + V (r)

]
⟨r|ψ(t)⟩ .

It is interesting to note that the Schrödinger equation in momentum representation is
given by,

ıℏ
d

dt
⟨p|ψ(t)⟩ = ⟨p| P̂

2

2m
ψ(t)⟩+ ⟨p|V (R̂)|ψ(t)⟩

=
p2

2m
⟨p|ψ(t)⟩+

∫ ∫
⟨p|V (R̂)|r⟩⟨r|p′⟩φ(p′, t)d3rd3p′

=
p2

2m
⟨p|ψ(t)⟩+ 1

h3/2

∫ ∫
V (r)e(ı/ℏ)(p

′−p)·rφ(p′, t)d3rd3p′

=
p2

2m
⟨p|ψ(t)⟩+

∫
Ṽ (p− p′)φ(p′, t)d3p′ ,

where Ṽ (p) = ℏ−3/2
∫
V (r)e−ık·rd3r.

23.3.10.12 Ex: Projection of the motion of a particle

Project the Hamiltonian of the motion of a free particle onto the plane x-y at the
position z = z0 using the projection operator P̂ = |z0⟩⟨z0| and the trace defined in

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TransformacaoFourier.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_EspacoHilbert01.pdf


23.3. ABSTRACT FORMALISM OF QUANTUM MECHANICS 1281

(23.137) generalized to continuous variables.

Solution: The particle’s Hamiltonian is,

Ĥ =
p̂2

2m
=

∫
d3rd3r′|r′⟩⟨r′| p̂

2

2m
|r⟩⟨r| .

The projector P̂ = |z0⟩⟨z0| projects the Hamiltonian onto,

ĤR = |z0⟩⟨z0|
∫
d3rd3r′|x′y′z′⟩⟨x′y′z′| p̂

2

2m
|xyz⟩⟨xyz|z0⟩⟨z0|

=

∫
d3rd3r′δ(z′ − z0)|x′y′⟩⟨x′y′|

p̂2x + p̂2y + p̂2z
2m

|xy⟩⟨xy|δ(z − z0)

=

∫
dxdydx′dy′|x′y′⟩⟨x′y′| p̂

2
x + p̂2y
2m

|xy⟩⟨xy| = p̂2x + p̂2y
2m

.

23.3.10.13 Ex: Complete system of commuting operators

Construct the Hilbert space of two independent two-level systems a and b. Consider
observables X̂a and Ŷb acting on their respective systems. What will be their shapes
X̂ab, respectively Ŷab, in the total Hilbert space? Construct the expanded state |ψab⟩
from the basis of the individual systems. Verify [X̂ab, Ŷab] = 0. Verify that the ex-
panded observables obey the same eigenvalue equations as the original ones.

Solution: Be X̂a and Ŷb two operators related to the two atoms a and b with the
eigenvalue spectra,

X̂a|k⟩a = ak|k⟩a , Ŷb|k⟩b = bk|k⟩b ,
with k = 1, 2 such that the general states are |ψa⟩ = a1|1⟩a + a2|2⟩a and |ψb⟩ =
b1|1⟩b + b2|2⟩b. Since [X̂a, Ŷb] = 0, we can build the operators,

X̂ab = X̂a⊗ 12 =

(
X̂a 0

0 12

)
, Ŷab = 12⊗

(
12 0

0 Ŷa

)
, Ẑab =

(
X̂a 0

0 Ŷb

)
.

We verify that [X̂ab, Ŷab] = 0 simply because of the construction of the total matrix.
Also, we build states

|ψab⟩ = c1

(
|1⟩a
|1⟩b

)
+c2

(
|2⟩a
|1⟩b

)
+c3

(
|1⟩a
|2⟩b

)
+c4

(
|2⟩a
|2⟩b

)
= c1|1⟩ab+c2|2⟩ab+c3|3⟩ab+c4|4⟩ab .

The expanded operators satisfy the same eigenvalue equations:

X̂ab|1ab⟩ =
(
X̂a 0

0 12

)(
|1⟩a
|1⟩b

)
=

(
X̂a|1⟩a
|1⟩b

)
=

(
a1|1⟩a
|1⟩b

)
= a1|1ab⟩ .

such that X̂ab|ψab⟩ = ck|ψab⟩.
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23.3.10.14 Ex: Liouville equation

Show that

(
1 0

0 0

)
⊗ Â+

(
0 0

0 1

)
⊗ B̂ = Â⊕ B̂.

Solution:

23.3.10.15 Ex: Liouville equation

Show at the example of a two-level system that the von Neumann equation, ˙̂ρ =
− ı

ℏ [Ĥ, ρ̂], can be written, ˙⃗ρ = − ı
ℏ (Ĥ ⊗ I− I⊗ Ĥ)ρ⃗, using the definition of the exter-

nal product and ρ⃗ ≡


ρ11

ρ12

ρ21

ρ22

. Help: For this exercise the physical interpretation of ρ̂

as the density operator does not matter. It may be regarded as a common observable.

Solution: On one hand we have,

[Ĥ, ρ̂] =

(
H11 H12

H21 H22

)(
ρ11 ρ12

ρ21 ρ22

)
−
(
ρ11 ρ12

ρ21 ρ22

)(
H11 H12

H21 H22

)

=

(
H12ρ21 −H21ρ12 H11ρ12 +H12ρ22 −H12ρ11 −H22ρ12

H21ρ11 +H22ρ21 − ρ21H11 − ρ22H21 H21ρ12 −H12ρ21

)
.

On the other hand, knowing,

Ĥ ⊗ I =




H11 H12 0 0

H21 H22 0 0

0 0 H11 H12

0 0 H21 H22


 , I⊗ Ĥ =




H11 0 H12 0

0 H11 0 H12

H21 0 H22 0

0 H21 0 H22


 ,

we have,

(I⊗ Ĥ − Ĥ ⊗ I)ρ⃗ =




H11 0 H12 0

0 H11 0 H12

H21 0 H22 0

0 H21 0 H22


−




H11 H12 0 0

H21 H22 0 0

0 0 H11 H12

0 0 H21 H22







ρ11

ρ12

ρ21

ρ22




=




H12ρ21 −H12ρ12

−H21ρ11 + (H11 −H22)ρ12 +H12ρ22

H21ρ11 + (H22 −H11)ρ21 −H12ρ22

H21ρ12 −H21ρ21


 ,

given that Ĥ† = Ĥ.
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23.3.10.16 Ex: Unitary transformation of singlet states

Consider two spins a and b that do not interact. Applying to each spin the same
transformation to another base, show that the singlet state has in each base the fol-
lowing form: |ψ⟩ = 1√

2
(| ↑⟩a| ↓⟩b − | ↓⟩a| ↑⟩b).

Solution: The change of base corresponds to a unitary transformation U =

(
a b

c d

)
,

where detU = 1. Hence,

|0, 0⟩ = 1√
2
[| ↑⟩a| ↓⟩b − | ↓⟩a| ↑⟩b]

= 1√
2
[(a|1⟩a + b|2⟩a)(c|1⟩b + d|2⟩b)− (c|1⟩a + d|2⟩a)(a|1⟩b + b|2⟩b)]

= 1√
2
[ad(|1⟩a|2⟩b − |2⟩a|1⟩b) + bc(|2⟩a|1⟩b − |1⟩a|2⟩b)] = 1√

2
(|1⟩a|2⟩b − |2⟩a|1⟩b) .

23.4 Time evolutions

Quantum systems may evolve in time, as predicted by the time-dependent Schrödinger
equation (23.54). In this section we show different equivalent but complementary
descriptions of the temporal evolution of quantum systems depending on whether the
time dependence is attributed to the state function of to observables.

23.4.1 Unitary transformations

The best we can do to characterize a system is, obviously, to measure all its observ-
ables. However, neither the state functions nor the observables are fixed unambigu-
ously, since defining a unitary operator, U† = U−1, we can do,

⟨ψ|Â|ψ⟩ = ⟨ψ|U†UÂU†U |ψ⟩ = ⟨Uψ|UÂU†|Uψ⟩ . (23.139)

That is, exchanging |ψ⟩ by U |ψ⟩ and at the same time Â by UÂU†, we obtain quan-
tities describing the same physical reality, since the eigenvalues are unchanged. This
allows us to choose the best mathematical representation for a specific problem. As
an example, we will apply the temporal unitary transformation to solve the dynamics
of a coupled two-level system in Exc. 23.4.7.1.

23.4.2 Schrödinger picture

Important examples of how the same system can be represented in different ways
(related by unitary transformations) are the Heisenberg, Schrödinger, and interaction
pictures.

The Schrödinger picture, denoted by the subscript S, is defined by the choice of a
Hamiltonian,

ĤS = Ĥ(t, p̂S , r̂S) with
d

dt
p̂S =

d

dt
r̂S = 0 . (23.140)
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That is, the observables of the system ÂS(t, p̂S , r̂S) can only depend explicitly on
time, but not via other operators, for instance p̂S and r̂S , which are stationary,

d

dt
ÂS =

∂ÂS
∂t

+ ˙̂pS
0∂ÂS
∂pS

+ ˙̂rS
0∂ÂS
∂rS

. (23.141)

This is,

d

dt
ÂS(t) =

∂

∂t
ÂS(t) . (23.142)

In the context of a moving particle, this means that the Hamiltonian 1
2m p̂

2
S + V (r̂S)

is time-independent (unless the potential V (r̂S , t) is itself time-dependent). In this
case, the formal solution of the Schrödinger equation,

ıℏ
d

dt
|ψS(t)⟩ = ĤS |ψS(t)⟩ , (23.143)

can be written,

|ψS(t)⟩ = e−(ı/ℏ)ĤSt|ψS(0)⟩ ≡ U(t)|ψS(0)⟩ . (23.144)

Apparently, the temporal dynamics is completely within the wave functions.

Example 148 (The time evolution operator): Generalizing to an arbitrary
initial time t0 we write the temporal translation operator,

U(t, t0)|ψ(t0)⟩ = |ψ(t)⟩ . (23.145)

By the expression (23.144) we find immediately, with t0 < t1 < t2,

U(t2, t0) = U(t2, t1)U(t1, t0) and U(t0, t) = U†(t, t0) = U−1(t, t0) = U(t, t0)
−1 .

The conjugate operator of time evolution acts on the vector ’bra’,

⟨ψ(t)| = ⟨ψ(t0)|U†(t, t0) .

23.4.3 Heisenberg picture

As unitary transformations do not change the physics, the system described by,

|ψS(t)⟩ −→ U(t)†|ψS(t)⟩ ≡ |ψH⟩ and ÂS(t) −→ U(t)†ÂS(t)U(t) ≡ ÂH(t)
(23.146)

with the transformation defined by equation (23.144), is equivalent. The subscript H
means the Heisenberg picture. In particular, we obviously have,

ĤS = ĤH ≡ Ĥ . (23.147)

Thus, the matrix element of the operator ÂS in Schrödinger’s picture with the time-
dependent base {|ψS⟩} is equal to the matrix element of the operator ÂH = U†ÂSU
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in Heisenberg’s picture with the time-independent base {|ψH⟩}. In this picture the
wavefunctions are independent of time,

d

dt
|ψH⟩ =

d

dt
|ψS(0)⟩ = 0 , (23.148)

but the operators depend im- and explicitly on time,

d

dt
ÂH(t) =

d

dt

(
U(t)†ÂS(t)U(t)

)
=
dU†

dt
ÂS(t)U(t) + U(t)†ÂS(t)

dU

dt
+ U(t)†

∂ÂS(t)

∂t
U(t)

=
ı

ℏ
Ĥ†U(t)†ÂSU(t) + U(t)†ÂS

−ı
ℏ
ĤU(t) + U†(t)

∂ÂS(t)

∂t
U(t) . (23.149)

That is,

d

dt
ÂH(t) =

ı

ℏ
[Ĥ, ÂH(t)] +

∂ÂH(t)

∂t
. (23.150)

This so-called Heisenberg equation, which describes the temporal evolution of an op-
erator acting on time-independent states in the Heisenberg picture, is equivalent to
the Schrödinger equation, which expresses the temporal evolution of a quantum state
in Schrödinger’s picture.

According to equation (23.150), the rate of temporal variation of an operator in
the Heisenberg representation is given by the commutator of that operator with the
total Hamiltonian of the system. Note that if an operator representing a dynamic
variable commutes with the Hamiltonian in the Schrödinger representation, it will
also commute with the Hamiltonian in the Heisenberg representation and thus with
the complete set of commutating observables,

[Ĥ, ÂS ] = 0 ⇐⇒ [Ĥ, ÂH ] = 0 . (23.151)

We will show this in the Exc. 23.4.7.2. Note that we could interpret Eq. (23.148) as
a Schrödinger equation with a Hamiltonian H̃H = 0. That is, the Hamiltonian used
in the Schrödinger equation differs from the one used in the Heisenberg equation. We
will study this in more detail in Secs. 23.4.4 and 23.4.5.

Example 149 (Position and momentum operators in the Heisenberg
picture): We know that in Schrödinger’s picture (23.140), the operators p̂S
and r̂S are stationary. Using this fact in derivation (23.149), we can show for
example for the momentum operator,

∂

∂t
p̂S = 0 =⇒ ∂

∂t
p̂H = 0 =⇒ d

dt
p̂H =

ı

ℏ
[Ĥ, p̂H ] .

In the Exc. 23.4.7.3 we will use the Heisenberg picture to derive the equations of
motion for a particle confined to a potential.
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23.4.4 Interaction picture

The interaction picture deals with problems where the total Hamiltonian is composed
of a time-independent part and a time-dependent part,

Ĥ = Ĥ0 + V̂ (t) . (23.152)

Analogously to Eq. (23.144), we define a time evolution operator in terms of the
time-independent part of the total Hamiltonian,

|ψI(t)⟩ = eıĤ0t/ℏ|ψS(t)⟩ and ÂI(t) = eıĤ0t/ℏÂSe
−ıĤ0t/ℏ . (23.153)

Now we are interested in the temporal dependence of quantum states and operators

in the interaction picture. Replacing the inverse function |ψS(t)⟩ = e−ıĤ0t/ℏ|ψI(t)⟩
in the Schrödinger equation (23.143) we immediately see,

V̂ (t)|ψI(t)⟩ = ıℏ
∂

∂t
|ψI(t)⟩ . (23.154)

Apparently, in the interaction picture, only the perturbative term in Hamiltonian
controls the temporal evolution. Taking the time derivative of both sides of the
equation (23.153) transforming an operator from the Schrödinger to the interaction
picture results in,

dÂI
dt

=
ı

ℏ
[Ĥ0, ÂI ] +

∂ÂI
∂t

. (23.155)

Therefore, we see that the time derivative can be expressed in the form of a commu-
tator, resembling the Heisenberg equation (23.150), except that only the unperturbed
term of the Hamiltonian appears in the argument of the commutation operator. As
already state in Sec. 23.4.3, different Hamiltonians are used in the Schrödinger and
in the Heisenberg equation.

Example 150 (Schrieffer-Wolff transformation): The Schrieffer-Wolff trans-
formation is a unitary transformation used to perturbatively diagonalize the sys-
tem Hamiltonian to first order in the interaction. As such, the Schrieffer-Wolff
transformation is an operator version of second-order perturbation theory. The
Schrieffer-Wolff transformation is often used to project out the high energy ex-
citations of a given quantum many-body Hamiltonian in order to obtain an
effective low energy model. The Schrieffer-Wolff transformation thus provides
a controlled perturbative way to study the strong coupling regime of quantum-
many body Hamiltonians.
Consider a quantum system evolving under the time-independent Hamiltonian
operator Ĥ of the form Ĥ = Ĥ0 + V̂ , where H0 is a Hamiltonian with known
eigenstates |m⟩ and corresponding eigenvalues Em, and where V is a small per-
turbation. Moreover, it is assumed without loss of generality that V̂ is purely
off-diagonal in the eigenbasis of Ĥ0, i.e.,

⟨m|V̂ |m⟩ = 0 (23.156)

for all m. Indeed, this situation can always be arranged by absorbing the diag-
onal elements of V̂ into Ĥ0, thus modifying its eigenvalues to,

E′m = Em + ⟨m|V̂ |m⟩ . (23.157)
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The Schrieffer-Wolff transformation is a unitary transformation which expresses
the Hamiltonian in a basis (the ’dressed’ basis) where it is diagonal to first order
in the perturbation V̂ . This unitary transformation is conventionally written
as:

Ĥ ′ = eıSĤe−ıS . (23.158)

When V̂ is small, the generator S of the transformation will likewise be small.
The transformation can then be expanded in S using the Baker-Campbell-
Haussdorf formula,

Ĥ ′ = Ĥ + [ıS, Ĥ] + 1
2
[ıS, [ıS, Ĥ]] + . . . . (23.159)

In terms of Ĥ0 and V̂ , the transformation becomes,

Ĥ ′ = Ĥ0+ V̂ +[ıS, Ĥ0]+ [ıS, V̂ ]+ 1
2
[ıS, [ıS, Ĥ0]]+

1
2
[ıS, [ıS, V̂ ]]+ . . . . (23.160)

The Hamiltonian can be made diagonal to first order in V̂ by choosing the
generator S such that,

[Ĥ0, ıS] = V̂ . (23.161)

This equation always has a definite solution under the assumption that V̂ is
off-diagonal in the eigenbasis of Ĥ0. Substituting this choice in the previous
transformation yields:

Ĥ ′ = Ĥ0 +
1
2
[ıS, V̂ ] +O(V̂ 3) . (23.162)

This expression is the standard form of the Schrieffer-Wolff transformation. Note

that all the operators on the right-hand side are now expressed in a new basis

’dressed’ by the interaction V̂ to first order.

In the general case, the difficult step of the transformation is to find an explicit

expression for the generator S. Once this is done, it is straightforward to com-

pute the Schrieffer-Wolff Hamiltonian by computing the commutator [S, V̂ ]. The

Hamiltonian can then be projected on any subspace of interest to obtain an ef-

fective projected Hamiltonian for that subspace. In order for the transformation

to be accurate, the eliminated subspaces must be energetically well separated

from the subspace of interest, meaning that the strength of the interaction V̂

must be much smaller than the energy difference between the subspaces. This

is the same regime of validity as in standard second-order perturbation theory.

23.4.5 Hamiltonian under arbitrary unitary transformation

In the preceding section we have studied particular unitary transformations between
the Schrödinger, Heisenberg, and interaction pictures. Let us now have a look at
arbitrary unitary transformations.

We have seen that the unitary transformation,

|ψU ⟩ = U†|ψ⟩ , ÂU = U†ÂU , (23.163)

leaves the physics of a system unchanged. The question is now, how the Schrödinger
equation,

Ĥ|ψ⟩ = ıℏ
d

dt
|ψ⟩ (23.164)
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transforms into the new system, that is, what will the Hamiltonian ĤU look like in
the transformed equation,

ĤU |ψU ⟩ ?
= ıℏ

d

dt
|ψU ⟩ . (23.165)

We calculate,

ıℏ
d

dt
|ψU ⟩ = ıℏU†

d

dt
|ψ⟩+ ıℏU̇†|ψ⟩ = (U†Ĥ + ıℏU̇†)|ψ⟩ (23.166)

= (U†Ĥ + ıℏU̇†)U |ψU ⟩ = (U†ĤU + ıℏU̇†U)|ψU ⟩ = ĤU |ψU ⟩ .

Hence,

ĤU = U†ĤU + ıℏU̇†U . (23.167)

We will apply this concept in Exc. 23.5.6.2 to a particle in the field of gravity.

Example 151 (Interaction picture): The above derivation is general and
holds for any unitary transformation. We will now apply it to transform the
Hamiltonian Ĥ = Ĥ0 + V̂ (t) into the interaction picture via the transformation

U = e−(ı/ℏ)Ĥ0t. From

U̇† =
ı

ℏ
Ĥ0e

(ı/ℏ)Ĥ0t =
ı

ℏ
Ĥ0U

† (23.168)

we calculate,

ĤU = U†ĤU + ıℏU̇†U = U†[Ĥ0 + V̂ (t)]U + ıℏ ı
ℏ
Ĥ0U

†U (23.169)

= U†[Ĥ0 + V̂ (t)]U − Ĥ0 = U†V̂ (t)U ,

which confirms the validity of the Schrödinger equation (23.154) in the inter-
action picture, provided the Hamiltonian is taken to be the perturbation part
V̂ (t), only. In the Heisenberg picture V̂ (t) = 0, such that,

ĤU = 0 , (23.170)

which confirms Eq. (23.148).

23.4.6 Ehrenfest’s theorem

For linear operators satisfying [Â, B̂] = ı we can give a generalization of the commu-
tation relation:

[Â, F (Â, B̂)] = ı
δF (Â, B̂)

δB̂
. (23.171)

This can be verified by a Taylor expansion of F (Â, B̂) by B̂ around B̂ = 0, as will be
shown in Exc. 23.4.7.4. An immediate consequence of [p̂, r̂] = −ıℏ is,

[p̂, F (r̂)] = −ıℏδF (r̂)
δr̂

. (23.172)

The momentum observable is not singularly defined by the commutation rela-
tion, because each unitarily transformed operator satisfies the relation as well. We



23.4. TIME EVOLUTIONS 1289

can expand a unitarily equivalent momentum as p̃ = UpU† = eıF (r)pe−ıF (r) =
p+ ı[F (r), p] + 1

2! [F (r), [F (r), p]] + ... using the relation (23.172).
The observables in the Heisenberg picture follow the same equations of motion as

the corresponding classical quantities. This correspondence principle is called Ehren-
fest theorem. For example, when working with position and momentum variables

[r̂, k̂] = ı and Ĥ = ℏ2

2m k̂
2 + V (r̂), we obtain,

[r̂, Ĥ] = ıℏ
δĤ

δp̂
and [p̂, Ĥ] = −ıℏδĤ

δr̂
, (23.173)

and using the Heisenberg equation (23.150),

˙̂r =
δĤ

δp̂
and ˙̂p = −δĤ

δr̂
. (23.174)

We will demonstrate this in Exc. 23.4.7.5 for the case of a harmonic potential.
In the Schrödinger picture the equation of motion for the eigenvalues of the ob-

servables takes the form,

d

dt
⟨ÂS⟩ = ⟨∂tψ|ÂS |ψ⟩+ ⟨ψ|∂tÂS |ψ⟩+ ⟨ψ|ÂS |∂tψ⟩ =

∂

∂t
⟨ÂS⟩+

ı

ℏ
⟨[Ĥ, ÂS ]⟩ . (23.175)

The eigenvalues behave as Heisenberg observables in Eq. (23.149), that is, they follow
the laws of Hamilton’s and Newton’s mechanics.

The important result now is that the equations that govern the eigenvalues of the
observables are identical in the both pictures, since from the Heisenberg picture we
obtain with Eq. (23.149),

d

dt
⟨ÂH⟩ =

∂

∂t
⟨ÂH⟩+

ı

ℏ
⟨[Ĥ, ÂH ]⟩ .

23.4.7 Exercises

23.4.7.1 Ex: Coupled two-level atom

Calculate the time evolution of an atom with two levels coupled by a light field using
the Hamiltonian,

Ĥ =

(
0 1

2ℏΩ
1
2ℏΩ −ℏ∆

)
,

where ∆ = ω − ω0 is the detuning between the frequency of the light and the fre-
quency of the transition and Ω the Rabi frequency. Help: Determine the matrix of the
eigenvalues Ê and the unitary transformation U given by U†ĤU = Ê and use the for-

mal solution of the Schrödinger equation: |ψ(t)⟩ = e−ıĤt/ℏ|ψ0⟩ = e−ıU
†ÊUt/ℏ|ψ0⟩ =

U†e−ıÊt/ℏU |ψ0⟩.

Solution: We find the eigenvalues via,

0 = det(Ĥ−E1̂) = det

(
−E 1

2Ω
1
2Ω −∆− E

)
= E∆+E2− 1

4Ω
2 =⇒ E1,2 = − 1

2∆± 1
2

√
∆2 +Ω2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_AtomoExcitado.pdf
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The eigenvectors follow, introducing the generalized Rabi frequency, G ≡
√
∆2 +Ω2,

from,

Ĥ

(
a

b

)
=

(
1
2Ωb

1
2Ωa−∆b

)
= − 1

2∆± 1
2G

(
a

b

)
=⇒ Ωb = a(−∆±G)

a2 + b2 = 1
.

The second equation allows us to introduce an angle ϑ such, that for the first eigen-
value, a1 = cosϑ and b1 = sinϑ. We find

tanϑ =
b1
a1

=
G−∆

Ω
=

Ω

G+∆
=
−a2
b2

.

Joining the eigenvectors to form a unitary matrix and the eigenvalues into a diagonal
matrix,

U ≡
(
a1 a2

b1 b2

)
=

(
cosϑ sinϑ

− sinϑ cosϑ

)
, E =

(
− 1

2∆+ 1
2G 0

0 − 1
2∆− 1

2G

)
.

It is easy to show

detU = 1 , U−1 = U† , U†ĤU = E .

With the Schrödinger equation, d
dt |ψ(t)⟩ = 1

ıℏ |ψ(t)⟩, through its formal solution, we
can finally calculate the temporal evolution,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ0⟩ = e−ıU
†ÊUt/ℏ|ψ0⟩ = U†e−ıÊt/ℏU |ψ0⟩

=

(
cosϑ − sinϑ

sinϑ cosϑ

)(
e

1
2 ıt(−∆+G) 0

0 e
1
2 ıt(−∆−G)

)(
cosϑ − sinϑ

sinϑ cosϑ

)
|ψ0⟩

=


 cos2 ϑe

1
2 ıt(−∆+G) + sin2 ϑe

1
2 ıt(−∆−G) sinϑ cosϑ

(
e

1
2 ıt(−∆+G) − e 1

2 ıt(−∆−G)
)

sinϑ cosϑ
(
e

1
2 ıt(−∆+G) − e 1

2 ıt(−∆−G)
)

sin2 ϑe
1
2 ıt(−∆+G) + cos2 ϑe

1
2 ıt(−∆−G)


 |ψ0⟩ .

Assuming the two-level system to be initially in its ground state, |ψ0⟩ =
(
1
0

)
, we

0 1 2 3 4 5
t (s)

0

0.5

1

|1〉
,

|2〉

Figure 23.5: (code) Temporal evolution of the populations in a three-level system.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Fundaments_Evolucao.m
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obtain,

a1(t) = e−ıt∆/2
(
eıtG/2 cos2 ϑ+ e−ıtG/2 sin2 ϑ

)
= e−ıt∆/2

[
cos Gt2 + ı

(
cos2 ϑ− sin2 ϑ

)
sin Gt

2

]

a2(t) = e−
1
2 ıt∆ sinϑ cosϑ

(
e−

1
2 ıtG − e 1

2 ıtG
)
= 2ie−ıt∆/2 sinϑ cosϑ sin Gt

2 .

With

cos2 ϑ− sin2 ϑ =
1− tan2 ϑ

1 + tan2 ϑ
=

Ω2 − (G+∆)2

Ω2 + (G+∆)2
= −∆

G

sinϑ cosϑ =
tanϑ

1 + tan2 ϑ
=

Ω(G−∆)

Ω2 + (G−∆)2
=

Ω

2G

we find

a1(t) = e−ıt∆/2
[
cos Gt2 − ı∆G sin Gt

2

]
and a2(t) =

ıΩ

G
e−ıt∆/2 sin Gt

2

in accordance with the derivation of the Rabi formula (27.93).

23.4.7.2 Ex: Commutator in Schrödinger’s and Heisenberg’s picture

Show that operators which commute with the Hamiltonian in the Schrödinger picture
also do it in the Heisenberg picture. Use the rule [Ĥ, ÂB̂] = Â[Ĥ, B̂] + [Ĥ, Â]B̂.

Solution: We calculate,

0 = [Ĥ, UÂSU
†] = UÂS [Ĥ, U

†]
0

+ U [Ĥ, ÂS ]U
† + [Ĥ, U ]

0

ÂSU
† .

23.4.7.3 Ex: Motion in Heisenberg’s picture

Consider the Hamiltonian Ĥ = p̂2

2m + m
2 ω

2r̂2. Using the relation [p̂, r̂] = −ıℏ calcu-
late in the Heisenberg picture the equations of motion for the observables p̂, r̂, and p̂r̂.

Solution: a. We have

dp̂

dt
=
ı

ℏ
[Ĥ, p̂]+

∂p̂

∂t
=
ı

ℏ

[
p̂2

2m
+
m

2
ω2r̂2, p̂

]
=
ımω2

2ℏ
[r̂2, p̂] =

ımω2

2ℏ
[
r̂r̂p̂−

(ℏ
ı + r̂p̂

)
r̂
]
= −mω2r̂ .

b. We have

dr̂

dt
=
ı

ℏ
[Ĥ, r̂]+

∂r̂

∂t
=
ı

ℏ

[
p̂2

2m
+
m

2
ω2r̂2, r̂

]
=

ı

2ℏm
[p̂2, r̂] =

ı

2ℏm
[
p̂p̂r̂ −

(
p̂r̂ − ℏ

ı

)
p̂
]
=

p̂

m
.

c. We have

d(p̂r̂)

dt
=
ı

ℏ

[
p̂2

2m
+
m

2
ω2r̂2, p̂r̂

]
+
∂(p̂r̂)

∂t

=
ı

ℏ2m
[
p̂p̂p̂r̂ − p̂

(
p̂r̂ − ℏ

ı

)
p̂
]
+
ımω2

2ℏ
[
r̂r̂p̂r̂ −

(ℏ
ı + r̂p̂

)
r̂r̂
]
=
p̂2

m
−mω2r̂2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg2.pdf
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23.4.7.4 Ex: Commutator of a function of operators

Prove the relationship (23.171).

Solution: We first calculate,

[Â, B̂n] = B̂n−1[Â, B̂] + [Â, B̂n−1]B̂

= B̂n−1[Â, B̂] + B̂n−2[Â, B̂]B̂ + [Â, B̂n−2]B̂2

= B̂n−1[Â, B̂] + B̂n−2[Â, B̂]B̂ + ...+ [Â, B̂]B̂n−1

=

n∑

k=1

B̂n−k[Â, B̂]B̂k−1 = ınB̂n−1 .

With this we can show,

[Â, F (Â, B̂)] =

[
Â, F (Â, 0) +

δF (Â, 0)

δB̂
B̂ + ...+

1

n!

δnF (Â, 0)

δB̂n
B̂n + ...

]

=
δF (Â, 0)

δB̂
[Â, B̂] + ...+

1

n!

δnF (Â, 0)

δB̂n
[Â, B̂n] + ...

= ı
δF (Â, 0)

δB̂
+ ...+ ı

1

n!

δnF (Â, 0)

δB̂n
ınB̂n−1 + ...

= ı
δ

δB̂

(
1 + ...+ ı

1

(n− 1)!

δn−1

δB̂n−1
B̂n−1 + ...

)
F (Â, 0) = ı

δ

δB̂
F (Â, B) .

23.4.7.5 Ex: Ehrenfest’s theorem

Compare the equations of Ehrenfest’s theorem with those of Hamilton-Jacobi for a
classical particle subject to a time-independent potential. Discuss the classical limit,
that is, when the Hamilton-Jacobi equations approach those of Ehrenfest.

Solution: Are equivalent,

[r̂, Ĥ] =
1

2m
(r̂p̂p̂− p̂p̂r̂) = 1

2m
((p̂r̂ + ıℏ)p̂− p̂ (−ıℏ+ r̂p̂)) =

ıℏ
m
p̂ = ıℏ

δĤ

δp̂

[p̂, Ĥ] = p̂V (r̂)− V (r̂)p̂ = −ıℏδĤ
δr̂

.

For example, we take the harmonic potential, V (r̂) = m
2 ω

2r̂2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TeoremaEhrenfestense1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_TeoremaEhrenfestense2.pdf
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23.5 Symmetries in quantum mechanics

We already saw in Sec. 23.3.4 that, beyond observables, there is another category
of operators that does not correspond to measurable physical quantities, but is very
useful in the quantum formalism. These are the unitary transformations. In this
section we will encounter some interesting examples.

23.5.1 Translation, rotation and momentum kick

23.5.1.1 Temporal translation operator

The temporal evolution of a system is described by the Schrödinger equation whose
formal solution can be written as follows,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ(0)⟩ . (23.176)

With this we can define an evolution operator or temporal translation,

Utp(τ) ≡ e−ıĤt/ℏ such that Utp(τ)|ψ(t)⟩ = |ψ(t+ τ)⟩ . (23.177)

The temporal evolution has already been discussed extensively in Sec. 23.4.

23.5.1.2 Spatial translation operator

In this section we look for a unitary translation operator,

Ttrr ≡ a+ r . (23.178)

Before this, we need to derive the following calculation rule for commutators, which
will be done in Exc. 23.5.6.1:

eÂB̂e−Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B̂]] + ... . (23.179)

Applying this formula to the two operators p̂ and r̂ related by the commutation
rule (23.53), we obtain,

e(ı/ℏ)a·p̂r̂e(−ı/ℏ)a·p̂ = r̂+ [(ı/ℏ)a · p̂, r̂] + 1
2! [(ı/ℏ)a · p̂,a]

0
+ ... = r̂+ a . (23.180)

That is, the operator

Utr(a) ≡ e(−ı/ℏ)a·p̂ (23.181)

performs a spatial translation of the position operator. The operator is unitary,

Utr(a)
−1 = Utr(a)

† , (23.182)

and forms a group since Utr(a)Utr(b) = Utr(a+ b). Summarizing the impact of the
translation on the operators of space,

U†tr(a)r̂Utr(a) = r̂+ a , U†tr(a)p̂Utr(a) = p̂ , (23.183)
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where the second relation is obvious.
To demonstrate how the translation acts on a state, let us calculate,

r̂e(−ı/ℏ)a·p̂|r⟩ = e(−ı/ℏ)a·p̂(r̂+ a)|r⟩ = (r+ a)e(−ı/ℏ)a·p̂|r⟩ . (23.184)

Hence,

Utr(a)|r⟩ = e(−ı/ℏ)a·p̂|r⟩ = |r+ a⟩ . (23.185)

Therefore, if a particle is in an eigenstate |r⟩ of the position operator (i.e. located
exactly at the position r), then after Utr(a) acts on it, the particle is at the position
r+a: The translation operator Utr(a) hence moves particles and fields by the distance
a.

Finally, we want to describe, how the translation operator acts on an arbitrary
state |ψ⟩ represented in position-space, remembering that the position-space wave-
function is obtained via ψ(r) ≡ ⟨r|ψ⟩, as already mentioned in Sec. 23.3.7. We get,

ψ′(r) ≡ Ttrψ(r) ≡ ⟨r|Utr(a)|ψ⟩ = ⟨U†tr(a)r|ψ⟩ = ⟨r− a|ψ⟩ = ψ(r− a) . (23.186)

This relation is easier to remember as ψ′(r + a) = ψ(r), which can be read as: The
value of the new wavefunction at the new point equals the value of the old wavefunction
at the old point.

Example 152 (Translation of spatial wavefunctions): Here is an example

showing that these two descriptions (23.185) and (23.186) are equivalent. The

state |x⟩ corresponds to the wavefunction ψ(r) = δ3(r − x), while the state

Utr(a)|x⟩ = |x + a⟩ corresponds to the wavefunction ψ′(r) = δ3(r − (x + a)).

These indeed satisfy ψ′(r) = ψ(r− a).

Comparing the expansion of the translation operator,

⟨r|Utr(a)|ψ⟩ = ⟨e(ı/ℏ)a·p̂r|ψ⟩ =
(
1 +

ı

ℏ
a · p̂− 1

ℏ2
(a · p̂)2

2!
+ ..

)
⟨r|ψ⟩ , (23.187)

with the Taylor expansion of the wavefunction,

⟨r+ a|ψ⟩ = ψ(r+ a) =

(
1 + a · ∇+

(a · ∇)2
2!

+ ..

)
ψ(r) . (23.188)

we obtain

p̂|r⟩ = ℏ
ı
∇|r⟩ . (23.189)

Finally, we note that the momentum operator can be defined via the translation
operator,

p̂ = ıℏ ∇aUtr(a)|a=0 . (23.190)

23.5.1.3 Momentum kick operator

In this section we look for the unitary transformation into a frame moving a constant
velocity v,

Tkcp ≡ p+mv . (23.191)
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As this transformation corresponds to a ’translation’ in momentum space, the form of
the unitary transformation operator and the way it acts on operators and states are
easy to derive by analogy to the spatial translation operator, simply interchanging the
roles of the conjugate operators of space and momentum. The corresponding unitary
operator in the so-called kick operator,

Ukc(mv) = e(ı/ℏ)mv·r̂ . (23.192)

where mv = p = ℏk is the gain in momentum due to the kick.
A common situation where such a kick occurs is the photonic recoil that an atom

receives upon absorption of a photon. Using the relationship (23.179) derived in
Exc. 23.5.6.1 it is easy to verify the following expressions of the left-hand panel,

eık·r̂|r⟩ = eık·r|r⟩

eık·r̂|p⟩ = |p+ ℏk⟩

e−ık·r̂r̂eık·r̂ = r̂

e−ık·r̂p̂eık·r̂ = p̂+ ℏk

e−ık·r̂
p̂2

2m
eık·r̂ =

(p̂+ ℏk)2

2m

,

e−ıb·p̂/ℏ|r⟩ = |r+ b⟩

e−ıb·p̂/ℏ|p⟩ = e−ıb·p/ℏ|p⟩

eıb·p̂/ℏr̂e−ıb·p̂/ℏ = r̂+ b

eıb·p̂/ℏp̂e−ıb·p̂/ℏ = p̂

eıb·p̂/ℏV (r̂)e−ıb·p̂/ℏ = V (r̂+ b)

(23.193)
The rule implies [eık·r̂, p̂] ̸= 0 ̸= [eık·r̂, Ĥ]. That is, we describe the kick by simply
adding the corresponding momentum ℏk to the system and adjusting the kinetic
energy accordingly.

The right-hand panel of Eq. (23.193) summarizes rules for calculating with the spa-
tial displacement operator, Utr(b) = e−ıb·p̂/ℏ, introduced in Sec. 23.5.1. By analogy
we find [e−ıb·p̂/ℏ, r̂] ̸= 0 ̸= [e−ıb·p̂/ℏ, Ĥ] when the particle is subject to a potential.

The ’kick’ will play a prominent role in the discussion of photonic recoil (see
Sec. 24.6.2). Of course the assumption of an infinitely fast transition is an idealization
and the ultimate reason for the non-conservation of momentum and energy by the
system. In real situations, such as in the case of photonic recoil, the dynamics should
be described by a collision process which conserves momentum and energy.

23.5.1.4 Rotation operator

In this section we look for the unitary transformation corresponding to the rotation
operator [1298],

Trtr ≡ eα⃗×r . (23.194)

We calculate,

eα⃗×r =
∑

n

(α⃗×)n
n!

r = r+ α⃗× r+ 1
2 α⃗× (α⃗× r) + .. (23.195)

= êα(êα · r) + êα × r sinα− êα × (êα × r) cosα ,

as we will see in Exc. 23.5.6.4. We define the unitary rotational transformation by,

U†rt(α⃗)r̂Urt(α⃗) = eα⃗×r̂ , Urt(α⃗)|r⟩ = |eα⃗×r⟩ . (23.196)
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To derive the explicit form of the rotation operator, we consider two rotations
about the same axis α⃗ = λ1êα + λ2êα, such that

Urt(λ1êα)Urt(λ2êα) = Urt(λ1êα + λ2êα) . (23.197)

Calculating the derivative of this equation by λ1 and then setting λ1 = 0, we have,

dUrt(λ1êα)
dλ1

∣∣∣
λ1=0

Urt(λ2êα) = dUrt(λ1êα+λ2êα)
d(λ1+λ2)

∣∣∣
λ1=0

d(λ1+λ2)
dλ1

∣∣∣
λ1=0

=⇒ dλ1êα

dλ1

∣∣∣
λ1=0

· ∇α⃗Urt(α⃗)|α⃗=0 Urt(λ2êα) = dUrt(λ2êα)
dλ2

=⇒ êα · L̂
ıℏ Urt(λ2êα) = dUrt(λ2êα)

dλ2

(23.198)

where we define the angular momentum operator,

L̂ ≡ ıℏ ∇α⃗Urt(α⃗)|α⃗=0 . (23.199)

The solution of the last differential equation (23.198) is, with λ2êα = α⃗|λ1=0,

Urt(α⃗) = e(−ı/ℏ)L̂·α⃗ . (23.200)

The explicit form of L̂ follows from its action on a state |ψ⟩ projected into position
space. In analogy with the derivation of the result (23.189), comparing the expansion
of the operator (23.200),

⟨r|Urt(α⃗)|ψ⟩ = ⟨e(ı/ℏ)α⃗·L̂r|ψ⟩ =
(
1 +

ı

ℏ
α⃗ · L̂+ ..

)
⟨r|ψ⟩ , (23.201)

with the Taylor expansion of the wavefunction,

⟨eα⃗×r|ψ⟩ = ψ(r+ α⃗× r+ ..) = [1 + (α⃗× r) · ∇r + ..]ψ(r) , (23.202)

we find,

ı

ℏ
α⃗ · L̂ = (α⃗× r) · ∇r = α⃗ · (r×∇r) =

ı

ℏ
α⃗ · (r× p̂) , (23.203)

that is,

L̂ = r̂× p̂ . (23.204)

Therefore, the observable L̂ is the orbital angular momentum of the particle producing
the rotations.

Inserting the angular momentum expression (23.204) into the rotation operator
(23.200) and using the rule (23.179) as well as the commutation relations for posi-
tion and momentum operators, we can now verify the expression directly. Note also
that the rotation transformation acts on the momentum operators and states in the
same way as on position operators and states. This is not surprising, as the angular
momentum operator is symmetric in r and p.
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23.5.2 Transformation to accelerated and rotating frames

23.5.2.1 Transformation to an accelerated frame

Transformation into a accelerated frame with acceleration g adds a homogeneous
force term to the Hamiltonian. At non-relativistic velocities, the transformation can
be performed via a unitary kick into a system instantaneously moving at velocity gt,

Uac(g) = e(ı/ℏ)mgt·r̂ , |ψac⟩ = Uac(g)|ψ⟩ . (23.205)

This operator removes the force field from the Hamiltonian, since the Schrödinger
equation,

ıℏ
d

dt
|ψ⟩ = Ĥ|ψ⟩ with Ĥ =

p̂2

2m
+mg · r̂ , (23.206)

transforms into the Schrödiner equation,

ıℏ
d

dt
|ψac⟩ = ıℏ

d

dt

(
e(ı/ℏ)mgt·r̂|ψ⟩

)
(23.207)

= ıℏe(ı/ℏ)mgt·r̂ d
dt
|ψ⟩+ ıℏ|ψ⟩ d

dt
e(ı/ℏ)mgt·r̂

= e(ı/ℏ)mgt·r̂
(

p̂2

2m
+mg · r̂

)
|ψ⟩ −mg · r̂e(ı/ℏ)mgt·r̂|ψ⟩ = p̂2

2m
|ψac⟩ .

23.5.2.2 Transformation to a rotating frame

Transformation into a frame rotating at angular velocity ω⃗ adds ... to the Hamilto-
nian. At non-relativistic velocities, the transformation can be performed via a unitary
rotation transformation into a system rotated by an angle ω⃗t,

Uar(ω⃗) = e(ı/ℏ)mω⃗t·L̂ , |ψar⟩ = Uar(ω⃗)|ψ⟩ . (23.208)

23.5.3 Composite transformations, Galilei boost

Some transformations are generated by several operators. The Galilei transform of a
system into a moving frame, the displacement operator for coherent states (24.111),
or the squeezing operator (35.88) are prominent examples. These transformations can
be handled using Glauber’s formula, which will be introduced below, before we turn
our attention to the Galilei transform.

23.5.3.1 Glauber’s and Baker-Campbell-Hausdorff’s formulas

The Baker-Campbell-Hausdorff formula for operators Â and B̂ reads,

ln(eÂeB̂) = Â+ B̂ + 1
2 [Â, B̂] + 1

12 [Â, [Â, B̂]]− 1
12 [B̂, [Â, B̂]] + ... . (23.209)

A useful special case called Glauber’s formula follows when Â and B̂ commute with
their commutator, i.e. [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0,

e[B̂,Â]/2eÂeB̂ = eÂ+B̂ = e[Â,B̂]/2eB̂eÂ . (23.210)
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Example 153 (The Baker-Hausdorff formula): In order to prove the Baker-
Hausdorff formula, we consider the operator,

Ĝ(τ) ≡ eτ(Â+B̂)e−τB̂e−τÂ .

The derivative is,

Ĝ′(τ) = (Â+ B̂)eτ(Â+B̂)e−τB̂e−τÂ − eτ(Â+B̂)B̂e−τB̂e−τÂ − eτ(Â+B̂)e−τB̂Âe−τÂ

= eτ(Â+B̂)
[
Âe−τB̂ − e−τB̂Â

]
e−τÂ = eτ(Â+B̂)

[
Â− e−τB̂ÂeτB̂

]
e−τB̂e−τÂ

= eτ(Â+B̂)
[
Â−

(
Â+ [−τB̂, Â] + 1

2!
[−τB̂, [−τB̂, Â]] + ..

)]
e−τB̂e−τÂ ,

using the formula (23.179). If now [Â, [Â, B̂]] = 0 = [B̂, [Â, B̂]], then,

Ĝ′(τ) = eτ(Â+B̂)τ [B̂, Â]e−τB̂e−τÂ = −τ [Â, B̂]eτ(Â+B̂)e−τB̂e−τÂ = −τ [Â, B̂]Ĝ(τ) .

The solution of this differential equation is,

Ĝ(τ) ≡ e−(τ2/2)[Â,B̂]Ĝ(0) .

With Ĝ(0) = 1 we obtain at the point τ = 1,

eÂ+B̂e−B̂e−Â = e−(1/2)[Â,B̂] .

23.5.3.2 Galilei and Lorentz boosts

The Galilei transform (or Galilei boost) is defined by,

TGr = r+ vt and TGp = p+mv . (23.211)

It describes the transformation of a system into a moving frame. Obviously, the
Galilei transform must satisfy Tv1Tv2 = Tv1+v2 , while this certainly does not hold for
relativistic velocities.

In quantum mechanics we define,

Ĝ = p̂t− r̂m = ıℏ∇vUG(v)|v=0 , (23.212)

with the Galilei boost,

UG(v) = e(−ı/ℏ)v·Ĝ . (23.213)

We can simplify this unitary transform using Glauber’s formula (23.210). To this end
we first calculate the commutator,

[v · p̂,v · r̂] = −ıℏv2 , (23.214)

which does not depend on p̂ nor r̂, but may contribute a phase factors. With this we
can rewrite the expression (23.213),

UG(v) = e(−ı/ℏ)vt·p̂+(ı/ℏ)vm·̂r (23.215)

= e(−ı/ℏ)mtv
2/2e(ı/ℏ)vm·̂re(−ı/ℏ)vt·p̂ = e(ı/ℏ)mtv

2/2e(−ı/ℏ)vt·p̂e(ı/ℏ)vm·̂r

U†G(v) = e(ı/ℏ)vt·p̂−(ı/ℏ)vm·̂r

= e(−ı/ℏ)mtv
2/2e(−ı/ℏ)vm·̂re(ı/ℏ)vt·p̂ = e(ı/ℏ)mtv

2/2e(ı/ℏ)vt·p̂e(−ı/ℏ)vm·̂r .
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We apply these expressions to transform the position and momentum operators,

U†G(v)r̂UG(v) = e(ı/ℏ)vt·p̂r̂e(−ı/ℏ)vt·p̂ = r̂+ vt

U†G(v)p̂UG(v) = e(−ı/ℏ)vm·̂rp̂e(ı/ℏ)vm·̂r = p̂+mv
, (23.216)

and consequently,

U†G(v)
p̂2

2m
UG(v) =

[U†G(v)p̂UG(v)]
2

2m
=

(p̂+mv)
2

2m
(23.217)

U†G(v)V (r̂)UG(v) = V (U†G(v)r̂UG(v)) = V (r̂+ vt) .

Settingm = 0 the Galilei boost simply reproduces a spatial translation by a vector vt,
and setting t = 0 the Galilei boost simply becomes the prescription for the momentum
kick by an amount mv.

Applying the Galilei boost expressions (23.215) to states, we find,

UG(v)|r⟩ = e(ı/ℏ)mv·(r̂+vt/2)|r+ vt⟩

UG(v)|p⟩ = e−(ı/ℏ)tv·(p̂+mv/2)|p+mv⟩
. (23.218)

The prefactors do not shift the states, but only contribute irrelevant phase factors.
Finally, knowing the commutator of p̂ and r̂ we derive,

[G · a,G · b] = 0 , (23.219)

for any vectors a and b, and with that, using Glauber’s formula (23.210), we verify,

UG(v1)UG(v2) = e(−ı/ℏ)(v1+v2)·G−[v1·G,v2·G]/2ℏ2

= UG(v1 + v2) . (23.220)

Obviously, for very high velocities, the Galilei-boost should be replaced by the
Lorentz transform (or Lorentz boost) [659]. Here, we only note, that the additivity of
velocities expressed by equation (23.220) does not hold for non-collinear relativistic
velocities (see Sec. 20.1.6).

23.5.4 Gauge transformations

We learn in electrodynamics 15, that the motion of a particle carrying the charge q
and interacting with an electrical potential Φ(r, t) and a magnetic vector potential
A(r, t) is governed by the electric and the magnetic field,

E⃗(r, t) = −∇Φ− ∂tA and B⃗(r, t) = ∇×A . (23.221)

Also, we know that the fields are invariant under the substitution,

Φ→ Φ′ ≡ Φ− ∂tχ and A→ A′ ≡ A+∇χ , (23.222)

15See script on Electrodynamics (2023).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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where χ(r, t) is a scalar field called gauge field.
In quantum mechanics the gauge transformation defined by,

Ugg(χ) = e−ıqχ(r,t)/ℏ (23.223)

obviously must keep the Schrödinger equation invariant. However, since the gauge
field may depend on time, as shown in Sec. 23.4.5, the Hamiltonian is different in the
transformed system. Transforming operators and wave functions as,

Ĥ → UggĤU
−1
gg ≡ ĤU and |ψ⟩ → Ugg|ψ⟩ ≡ |ψU ⟩ , (23.224)

we calculate for the energy,

ĤU |ψU ⟩ = Uggıℏ d
dtU

−1
gg |ψU ⟩ = UggıℏU−1gg d

dt |ψU ⟩+ Uggıℏ
(
−ıq
ℏ U−1gg

dχ
dt

)
|ψU ⟩

= ıℏ
(
d
dt −

ıq
ℏ
dχ
dt

)
|ψU ⟩ , (23.225)

in accordance with the transformation rule (23.167) for time-dependent unitary trans-
formations. For the momentum, we get analogously,

p̂U |ψU ⟩ = Ugg(−ıℏ∇)U−1gg |ψU ⟩ = Ugg(−ıℏ)U−1gg (∇|ψU ⟩) + Ugg(−ıℏ)
(−ıq

ℏ U−1gg ∇χ
)
|ψU ⟩

= (−ıℏ)
[
∇− ıq

ℏ (∇χ)
]
|ψU ⟩ , (23.226)

This corresponds to the substitutions 16,

Uggıℏ
d

dt
U−1gg = ıℏ

d

dt
+ q

dχ

dt
and Uggp̂U

−1
gg = p̂− q∇χ . (23.227)

This shows that the gauge transformation applies to the minimal coupling rule (see
Sec. 30.1.2),

Ĥ = Ĥkin+qΦ
Ugg↷ Ĥkin+qΦ+q∂tχ and mv̂ = p̂−qA Ugg↷ p̂−qA−q∇χ , (23.228)

confirming the rules (23.222). That is, the Hamiltonian of a particle carrying the
charge q and interacting with an electric potential Φ and a magnetic vector potential
A is,

Ĥ = 1
2m (p̂− qA− q∇χ)2 + qΦ+ q∂tχ . (23.229)

23.5.5 Noether’s theorem and conservation laws

The fundamental laws of physics are often expressed as symmetries. The knowledge
of symmetries allows the characterization of a system and its behavior without the
need to know its details. We can often deduce the differential equation of motion
from the symmetries. The fundamental symmetries define the fundamental laws of
physics. Following Noether’s theorem each symmetry corresponds to a conserved
quantity, that is, a quantities that remains invariant for all time. The invariance of a

16In quadrivetorial notation ıℏ∂µ −→ ıℏ∂µ + q∂µχ.
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system under symmetry transformation represents a conservation law. For example,
the homogeneity of space corresponds to the conservation of linear momentum.

In quantum mechanics, a symmetry transformation is defined by,

|ψ⟩ −→ U |ψ⟩ and Q̂ −→ UQ̂U† . (23.230)

Therefore, to find a conservation law, i.e., an invariable observable (also called con-
stant of motion), we must verify that the observable and the transformed wavefunc-
tions simultaneously satisfy the same fundamental equations (that is, Schrödinger’s
or Heisenberg’s equation) as the original observable and wavefunctions. For example,
if the wavefunction |ψ⟩ satisfies the Schrödinger equation, the wave function U |ψ⟩
must do this too,

ĤU |ψ⟩ !
= ıℏ

d

dt
U |ψ⟩ = ıℏ

dU

dt
|ψ⟩+ ıℏU

d

dt
|ψ⟩ = ıℏ

dU

dt
|ψ⟩+ UĤ|ψ⟩ . (23.231)

Consequently, we obtain the relation,

[Ĥ, U ] = ıℏU̇ . (23.232)

As shown in (23.175) and (23.176), an operator that commutes with the Hamiltonian
does not explicitly depend on time, that is, it is conserved.

23.5.5.1 Temporal homogeneity

Temporal homogeneity means invariance under translation in time by a fixed time
interval τ , that is, under the unitary temporal transformation,

U(τ) ≡ |ψ(τ)⟩⟨ψ(0)| = e(ı/ℏ)Êτ . (23.233)

Since d
dte

(ı/ℏ)Êτ = 0, this means [e(ı/ℏ)Êτ , Ĥ] = 0, which implies conservation of

energy [Ê, Ĥ] = 0. This will be verified in the Exc. 23.5.6.5.

Example 154 (Homogeneity of time): We imagine the following mental

experiment or Gedankenexperiment: We consider two attractive bodies that

move away from each other until they reach the perihelia. At this point, before

the bodies reapproach, we change the laws, for example, by modifying the force

of attraction. As a consequence, when the bodies arrive at the initial point, the

total energy is non-zero. Therefore, the conservation of energy indicates that

the laws are invariant.

23.5.5.2 Temporal isotropy

The fundamental laws of classical physics and quantum mechanics are all symmetrical
under time reversal. That is, they are remain invariant when we change the arrow of
time, t→ −t.
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23.5.5.3 Spatial homogeneity

Spatial homogeneity means invariance under spatial translation, that is, under the
unitary translational transformation,

Utr(a) ≡
∫
|r+ a⟩⟨r|d3r = e(−ı/ℏ)p̂·a . (23.234)

This is equivalent to momentum conservation [p̂, Ĥ] = 0 17.

Example 155 (Homogeneity of space): Ehrenfest’s theorem says [p̂, H] =

−ıℏ ∂H
∂p̂

. Therefore, the commutator is not zero when there is a potential, Ĥ =

p̂2/2m + V (r̂). This is obvious, because the potential introduces an energy

inhomogeneity to a particle interacting with the potential. However, this does

not mean that the space itself is inhomogeneous, because in order to verify the

translational invariance of space, we must displace the entire system, that is, the

particle together with the potential. For example, if the potential is generated

by another particle we must consider the Hamiltonian Ĥ = p̂2
1/2m1+ p̂2

2/2m2+

V (r̂1 − r̂2).

23.5.5.4 Spatial isotropy

Spatial isotropy means invariance under rotation, that is, under rotational unitary
transformation,

Urt(ϕ) ≡ e(−ı/ℏ)L̂ϕ . (23.235)

This is equivalent to the conservation of angular momentum [L̂, Ĥ] = 0.

23.5.5.5 Parity conservation

Besides continuous symmetry transformations there exist discrete transformations.
Discrete symmetries are important in elementary particle physics. The parity con-
servation means invariance to spatial reflection: r→ −r. A parity transformation is
defined by the mirroring of the wavefunction through a point in space, for example
r = 0,

P̂ |ψ(r)⟩ ≡ |ψ(−r)⟩ . (23.236)

with
P̂ 2 = P̂ . (23.237)

We talk about even parity when P̂ |ψ(r)⟩ = |ψ(r)⟩ and odd parity when P̂ |ψ(r)⟩ =
−|ψ(r)⟩. See Exc. 23.5.6.6.

17Imagine that the forces attracting two bodies to each other are not equal: Contrary to Newton’s
third law, body A attracts body B, more than the body B attracts the body A. In that case after a
while the two bodies have different momenta. With the unitary transformation Utr(a) = e−ıp̂·a/ℏ ≃
1− ıϵp · a/ℏ+ ... we have,

UtrH|ψ⟩ = UtrEψ |ψ⟩ = EψU |ψ⟩ = H|ψ(r+ a)⟩ =? = H|ψ(r⟩ .
Since, [H, p̂] = 0, Heisenberg’s equation yields,

∂

∂t
⟨ψ|p̂ · a|ψ⟩ = 1

ıℏ
⟨ψ|[p̂ · a, Ĥ]|ψ⟩ = 0 .
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23.5.5.6 Invariance to the velocity of the inertial system

The Galilei boost asks for Galilei invariance regarding the transformation,

UG(v) ≡
x
|r+ vt,p+mv⟩⟨r,p|d3rd3p , (23.238)

that is, the equations of motion ruling the dynamics of the inertial system under
consideration should not dependent on its velocity v.

23.5.5.7 Charge conservation

Let us consider again the gauge transform (23.222). We know that the Lagrangian
density in free space is given in terms of the potentials by,

L(xµ) = 1
4µ0

FµνFµν −Aµjµ = ε0
2 E⃗2 − 1

2µ0
B⃗2 −Aµjµ (23.239)

= ε0
2 [∇Φ+ ∂tA]2 − 1

2µ0
[∇×A]2 − Φρ+A · j ,

and the action is simply the fourth-dimensional integral,

S =

∫
L(xµ)dV dt . (23.240)

From the Lagrangian formulation, Maxwell’s equations can be derived by requiring
the action to be minimal, δS = 0, which yields the Euler-Lagrange equations. As
the field equations do not change under gauge transformation, this implies that the
action is also unchanged.

To find the relation with charge conservation, we simply have to compare the
actions in different gauges. First, we express the Lagrangian transformed into the old
gauge,

L′(xµ) = ε0
2 {∇[Φ− ∂tχ ] + ∂t[A+ ∇χ ]}2 − 1

2µ0
{∇ × [A+ ∇χ 0

]}2 (23.241)

− [Φ− ∂tχ]ρ+ [A+∇χ] · j
= L+ (∂tχ)ρ+∇χ · j .

With this result, we can calculate the difference between the actions under gauge
transformation and recall, that they can not be different:

0
!
= S′ − S =

∫
[(∂tχ)ρ+∇χ · j]dV dt = −

∫
χ[∂tρ+∇ · j]dV dt , (23.242)

using partial integration 18 and choosing volumes so large, that every charge is inside.
This is the continuity equation derived from the gauge invariance of the action. The
calculation really is nothing more than an application of Noether’s theorem from
which we could have derived directly the continuity equation, ∂µj

µ = 0.
In summary, the conservation of charge means invariance with respect to gauge

transformations,
Ucl(χ) ≡ e−ıqχ(r,t)/ℏ , (23.243)

18Think about the argument, because
∫
∂t|χρdt = 0!
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where χ is the gauge field. We note that q and χ are conjugated observables. There-
fore, if [χ, Ĥ] = 0, then the charge q is a conserved quantity.

Transformations can be combined. For example, we believe that nowadays all laws
are invariant with respect to CPT transformation, that is, a combination of charge
conjugation, parity inversion, and θ-transform.

23.5.6 Exercises

23.5.6.1 Ex: Calculus with commutator

Derive the rule (23.179) via a Taylor expansion of the operator Ĝ(τ) ≡ eτÂB̂e−τÂ.

Solution: To derive the rule we make a Taylor expansion of the operator,

Ĝ(τ) ≡ eτÂB̂e−τÂ =
∑

n

τn

n!

dn

dτn
Ĝ(0) .

Derivatives are easily calculated,

Ĝ′(τ) = ÂeτÂB̂e−τÂ − eτÂB̂Âe−τÂ = [Â, Ĝ(τ)] ,

Ĝ′′(τ) = Â[Â, Ĝ(τ)]− [Â, Ĝ(τ)]Â = [Â, [Â, Ĝ(τ)]] .

At point τ = 1 we get the result (23.179).

23.5.6.2 Ex: Particle in a homogenous gravitational field

a. Consider a particle free to move along the axis of gravity. Derive the time-dependent
unitary operator describing the transformation into the particle’s rest frame and
check, whether the transformation satisfies the expression (23.167).
b. Solve the Schrödinger equation and derive the Heisenberg equations for x̂ and p̂.
c. Calculate the phase shift due to gravity from the solution of the Schrödinger equa-
tion.

Solution: a. The force free-particle Schrödinger equation,

ıℏ
d

dt
|ψ⟩ = p̂2

2m
|ψ⟩

describes the particle’s evolution in the frame accelerated by gravity, where the particle
does not sense external forces. With the time-dependent unitary transformation |ψ̃⟩ =
|ψ⟩e−ımgzt/ℏ,

ıℏ
d

dt
|ψ̃⟩ = ıℏe−ımgzt/ℏ

d

dt
|ψ⟩+ ıℏ|ψ⟩ d

dt
e−ımgzt/ℏ

=
p̂2

2m
e−ımgzt/ℏ|ψ⟩+mgze−ımgzt/ℏ|ψ⟩ =

(
p̂2

2m
+mgz

)
|ψ̃⟩ = Ĥ|ψ̃⟩

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CalculoComutadores.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg3.pdf
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we transform back into the lab frame, where the particle is subject to a homogeneous
potential.
b. Inserting into the Schrödinger equation,

ıℏ
d

dt
ψ̃(z, t) = Ĥψ̃(z, t) =

(
− ℏ2

2m

d2

dz2
+mgẑ

)
ψ̃(z, t)

the ansatz,
ψ̃(z, t) ≡ ψ(z)e−ıEt/ℏe−ımgzt/ℏ ,

we get,

− d2

dz2
ψ(z) =

2mE

ℏ2
ψ(z) = k2ψ(z) .

Hence,
ψ̃(z, t) = e−ıEt/ℏe−ımgzt/ℏeıkz .

The Heisenberg equations are,

d

dt
ẑ =

ı

ℏ
[Ĥ, ẑ] =

p̂

m
and

d

dt
p̂ =

ı

ℏ
[Ĥ, p̂] = mg .

c. The instantaneous phase is the exponent of the wavefunction,

ϕ(t) = −Et
ℏ
− mgzt

ℏ
+ kz = k

(
z − v

2
t
)
− mgzt

ℏ
,

with v = ℏk/m. Without gravity the de Broglie phase front would propagate with
z − v

2 t = const. Hence, the phase shift due to gravity depends quadratically on time,

ϕ2z=vt(t) = −
mgvt2

2ℏ
= −kgt

2

2
.

23.5.6.3 Ex: Phase shift in a Ramsey-Bordé interferometer

a. Calculate the time dependence of the dynamical phase accumulated by an atom in
the field of gravity as a function of its initial momentum.
b. Derive the phase difference of a particle wavefunction passing through a Ramsey-
Bordé interferometer 19.

Solution: a. We assume plane waves. The momentum evolves as,

p = mgt+ p0 .

Hence, the accumulated phase is,

ϕp0 = ℏ−1
∫ t

0

Edt = ℏ−1
∫ t

0

p2

2m
dt =

mg2t3

6ℏ
+
p0gt

2

2ℏ
+

p20t

2mℏ
.

19A Ramsey-Bordé interferometer consists of a π/2-π-π/2 laser pulse sequence (similar to photon
echo in NMR) of Bragg diffraction pulses leading to a splitting and recombination of an atomic
wavefunction in momentum space. Assume that every pulse transfers one unit of photonic recoil,
ℏk, to the atomic center-of-mass, where k is the wavevector of the laser light.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ImagemHeisenberg4.pdf
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The phase difference with and without initial momentum is,

∆ϕ = ϕp0 − ϕ0 = 1
2ℏ (p0gt

2 + 1
mp

2
0t) .

b. Using the obtained result, we calculate for each of the two arms of a Ramsey-
Bordé interferometer, the upper and the lower one, two contributions: One phase
shift accumulated between the first and second laser pulse and another phase shift
accumulated between the second and third laser pulse,

ϕlower = ϕp0 |p0=0 + ϕp0 |p0=ℏk−mgt and ϕupper = ϕp0 |p0=ℏk + ϕp0 |p0=ℏk−mgt ,

where t is the time interval between the first and second laser pulse. Apparently, the
phase shifts accumulated during the time interval between the second and third laser
pulse cancel out. Hence,

∆ϕ = ϕupper − ϕlower = ϕp0 |p0=ℏk − ϕp0 |p0=0 =
ℏkgt2

2ℏ
+

(ℏk)2t
2mℏ

=
kgt2

2
+ ωrect .

Figure 23.6: Scheme of a Ramsey-Bordé interferometer.

23.5.6.4 Ex: Rotation operator

Derive the rule eα⃗×r =
∑
n

(α⃗×)n
n! r = êα(êα · r) + êα × r sinα− êα × (êα × r) cosα.

Solution: We use,

α⃗× (α⃗× r) = α⃗(α⃗ · r)− α2r

α⃗× [α⃗× (α⃗× r)] = −α2(α⃗ · r)
α⃗× {α⃗× [α⃗× (α⃗× r)]} = −α2α⃗× (α⃗× r) .

The odd terms of the sum give

α⃗× r− α2

3! α⃗× r+ α4

5! α⃗× r− ... = α⃗× r sinα .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_CalculoRotacoes.pdf
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Even terms give

r− 1
2! α⃗× (α⃗× r)− α2

4! α⃗× (α⃗× r)− ... = r+ (1− cosα)α⃗× (α⃗× r) .

Putting the terms together,

eα⃗×r = r+ êα × r sinα+ êα × (êα × r)(1− cosα) ,

this is the equation we looked for.
The transformation represents a rotation about the angle α⃗, which can be seen by
separating r into vectors parallel or perpendicular to êα:

eα⃗×r∥ + eα⃗×r⊥ = r∥ + êα × r⊥ sinα+ r⊥ cosα .

This equation is equivalent to,

eα⃗×r∥ = r∥ and eα⃗×r⊥ = êα × r⊥ sinα+ r⊥ cosα ,

the parallel component is conserved while for the perpendicular we have,

(eα⃗×r⊥)
2 = r2⊥ sin2 α+ r2⊥ cos2 α = r2⊥ and (eα⃗×r⊥) · r⊥ − cosα .

23.5.6.5 Ex: Constants of motion

Show at the example of energy conservation using the relation (23.232), that energy
commutes with the Hamiltonian if Ė = 0.

Solution: If Ė = 0, we can deduce,

0 = −e(ı/ℏ)Êτ dÊ
dt

= ıℏ
d

dt

(
e(ı/ℏ)Êτ

)
= ıℏU̇ = [Ĥ, U ] =

[
Ĥ,

(
1 +

ıÊτ

ℏ
− Ê2τ2

2!ℏ2
+ ...

)]

=
ıτ

ℏ
[Ĥ, Ê]− τ2

2!ℏ2
[Ĥ, Ê2] + ... =

ıτ

ℏ
[Ĥ, Ê]− τ2

2!ℏ2
[
[Ĥ, Ê]Ê + Ê[Ĥ, Ê]

]
+ ...,

which is valid when [Ĥ, Ê] = 0.

23.5.6.6 Ex: Parity

Show that the eigenfunctions of the Hamiltonian Ĥ = −(ℏ/2m)(d2/dx2)+V (x) have
well-defined parity, i.e., parity is a good quantum number in cases where the energy is
an even function of position, V (x) = V (−x).

Solution: A state |ψ⟩ has even parity when the wavefunction does not change un-
der inversion of the position coordinate, P̂ ⟨x|ψ⟩ = ⟨−x|ψ⟩. It has odd parity when

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ConstanteMovimento.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Fundaments_ParidadeAutofuncoes.pdf
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P̂ ⟨x|ψ⟩ = ⟨−x| − ψ⟩. P̂ is a good quantum number when is commutes with the
Hamiltonian,

0 = [P̂ , Ĥ]⟨x|ψ⟩ =
(
− ℏ2

2m

d2

d(−x)2 + V (−x)
)
⟨−x| ± ψ⟩ −

(
− ℏ2

2m

d2

dx2
+ V (x)

)
⟨−x| ± ψ⟩

= [V (−x)− V (x)]⟨−x| ± ψ⟩ .

That is, it should be, V (x) = V (−x).

23.6 Further reading

Ph.W. Courteille (2020), Script on Optical spectroscopy: A practical course http

Ph.W. Courteille (2020), Script on Electrodynamics: Electricity, magnetism, and
radiation http

Ph.W. Courteille (2020), Script on Quantum mechanics applied to atomic and molec-
ular physics http

W.R. Theis, Teubner (1985), Grundzüge der Quantentheorie [1298]ISBN

C. Cohen-Tannoudji, B. Diu, F. Laloe, Wiley Interscience, Quantum mechanics,
vol. 1,2 [276]ISBN

L.I. Schiff, McGraw-Hill Book Company (1968), Quantum mechanics [1155]ISBN

J.J. Sakurai, J.J. Napolitano, 2nd ed. Springer (2011), Modern Quantum Mechanics
[1128]ISBN

H.A. Bethe, R. Jackiw, 3rd ed. Taylor & Francis (1997), Intermediate Quantum
Mechanics [135]ISBN

D.J. Griffiths, Introduction to Quantum Mechanics [546]ISBN

Photonics101, How the Gauge Invariance of the Action implies Charge Conservation

http
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Chapter 24

Linear motion / Separable
potentials

In this chapter we will analyze the translational and vibrational motion of a quantum
particle. We will give special consideration to the rectangular potential and the
harmonic oscillator.

24.1 Translational motion

In one dimension the Hamiltonian of a free particle is,

Ĥ = − ℏ2

2m

d2

dx2
. (24.1)

Therefore, the general solution of the Schrödinger stationary equation,

Ĥψ(x) = Eψ(x) , (24.2)

is,

ψ(x) = Aeıkx +Be−ıkx with k =
√

2mE
ℏ2 . (24.3)

Note that the eıkx functions are not quadratically integrable, since
∫∞
−∞ |eıkx|2dx =∫∞

−∞ dx → ∞. On the other side, they do not represent actual physical systems. In
practice, we need to consider wave packets or specify a finite volume for the particle.
Note also that the spectrum of eigenvalues is continuous. Do the Exc. 24.1.4.1.

24.1.1 Quadratic integrability

To allow for an interpretation as probability density we need to ask for quadratic
integrability, ∫

|ψ|2d3r = 1 . (24.4)

This means that the wavefunction can not be infinite inside a finite volume. But it
can be infinite within an infinitely small volume. Also, since the Schrödinger equation
contains the second derivative by position, the wavefunction must be continuous and
have a continuous derivative.

1309
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24.1.2 Separation of dimensions

Frequently, a 3D potential can be written in the way,

V (x, y, z) = Vx(x) + Vy(y) + Vz(z) . (24.5)

This is the case, for example, for a rectangular well with Vx(x) = Vy(y) = Vz(z) =
V0/3 inside the well and V (x, y, z) = 0 outside. It also holds for a harmonic potential,

V (r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (24.6)

In these cases, the following ansatz for the wavefunction is generally useful,

ψ(r) = ψx(x)ψy(y)ψz(z) , (24.7)

since inserting the ansatz into the Schrödinger equation,

[
− ℏ2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
+ Vx(x) + Vy(y) + Vz(z)

]
ψx(x)ψy(y)ψz(z) = Eψx(x)ψy(y)ψz(z) ,

(24.8)
the equation separates into three independent one-dimensional equations,

− ℏ2

2m

ψ′′x(x)
ψx(x)

+ Vx(x) = const. ≡ Ex , (24.9)

and the same for y and z. Since, E = Ex + Ey + Ez may have the same value
for different combinations of Ex, Ey and Ez, multidimensional systems are often
degenerate.

24.1.3 Homogeneous force fields, gravity

The behavior of a wavefunction in a homogeneous force field has been studied in
Excs. 23.5.6.2 and 23.5.6.3.

24.1.4 Exercises

24.1.4.1 Ex: Trapped particle

Consider the problem of a particle of mass m forced to move in a single direction and
completely confined to a box, with walls placed at the positions x = 0 and x = a.
a. The particle be in the ground state, what is its energy and its wavefunction?
b. Suppose the particle has the following wavefunction:

ψI(x) =
1√
7a

[
2 cos

( π
2a

(6x− a)
)
− 3ı sin

(
2π

a
x

)
+ cos

( π
2a

(2x− a)
)]

,

what is the probability that a measurement of the energy yields the result E = 2π2ℏ2

ma2 ?
c. Considering again the ground state of item (a), what is the probability distribution
for the momentum of the particle in this state?
d. Still starting from the ground state, suppose we remove (instantaneously) the walls,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_TrappedParticle.pdf
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leaving the particle free (Ĥ = p̂2/2m). What is the energy of this free particle?
Formulae:

∫ L

0

eıBx sin
(nπx
L

)
dx =

nπL[1− (−1)neıBL]
n2π2 −B2L2

for n = 1, 2, 3, ...

∫ ∞

−∞

x2

(1− x2)2 cos2 πx2 dx =
π2

4

Solution: a. This is the classical problem of an infinite potential well in 1D:

[
− ℏ2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x) .

with V (x) = 0 for 0 < x < a and V (x) = ∞ for x > a or x < 0. For 0 < x < a the
ansatz

ψ(x) = Aeıkx +Be−ıkx

gives k =
√
2mE/ℏ. For x > a or x < 0 we have ψ(x) = 0. Hence, ψ(a) = ψ(0) = 0

and ψ(0) = A+ B = 0, that is, A = −B. Also, ψ(a) = A(eıka − e−ıka) = 0, that is,
A sin(ka) = 0 or k = nπ/a for n = 1, 2, .... The result is,

ψn(x) = An sin
nπx

a
.

Normalization requires 1 =
∫ a
0
|ψn(x)|2dx, hence,

A2
n

∫ a

0

sin2
nπx

a
dx =

A2
na

2
= 1 ,

or An =
√
2/a. The final result is,

ψn(x) =

√
2

a
sin

nπx

a
,

for 0 < x < a. With k =
√
2mE
ℏ = nπ

a we have

E =
n2π2ℏ2

2ma2
,

for n = 1, 2, 3, ...
b. We can rewrite the cosines as sines [they are only written as cosines to not imme-
diately deliver the solution of item (a)],

ψI(x) =
1√
7a

[
2 sin

3πx

a
− 3ı sin

2πx

a
+ sin

πx

a

]
.

The energy E = 2π2ℏ2

ma2 corresponds to the state with n = 2 and the wavefunction:

ψa(x) =
√

2
a sin

2πx
a and the overlap between this state and ψI(x) is given by the
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scalar product between them (see the given formulae). Only the product with the same
period does not result in zero when integrated:

⟨ψ2(x)|ψI(x)⟩ =
∫ ∞

−∞
ψ∗2(x)ψI(x)dx =

√
2

a

−3ı√
7a

∫ a

0

sin
2πx

a
sin

2πx

a
dx =

−3ı√
14

.

The probability is given by:

P = |⟨ψ2(x)|ψI(x)⟩|2 =
9

14
≈ 64% .

c. We can go from the original wavefunction to the momentum space distribution:

ψ(p) =
1√
2πℏ

∫ ∞

−∞
ψ(x)eıpx/ℏdx =

1√
2πℏ

∫ a

0

√
2

a
sin

πx

a
eıpx/ℏdx

=
1√
aπℏ

πa[1 + eıpa/ℏ]

π2 − p2a2/ℏ2 =

√
aπ

ℏ
1 + eıpa/ℏ

π2 − p2a2/ℏ2 ,

using the given formulae. The probability distribution for moments is,

|ψ(p)|2 =
aπ

ℏ
(1 + eıpa/ℏ)(1 + e−ıpa/ℏ)

(π2 − p2a2/ℏ2)2 =
aπℏ3

(π2ℏ2 − p2a2)2 (2 + eıpa/ℏ + e−ıpa/ℏ)

=
2aπℏ3

(π2ℏ2 − p2a2)2 (1 + cos pa/ℏ) =
4aπℏ3

(π2ℏ2 − p2a2)2 cos2 pa/ℏ .

d. The ’smart’ way to respond is simply to argue that the idealized walls (infinitely
high and instantaneously withdrawn) do not interact with the particle. Then by con-
servation of energy, the energy is the same as in item (a):

E0 =
π2ℏ2

2ma2
.

Or we can do the calculation. The Hamiltonian of the free particle is Ĥ = p2/2m.
We can calculate the energy using the state prior to the removal of walls, and the new
Hamiltonian is,

E =

∫ ∞

−∞

p2

2m
|ψ(p)|2dp = 1

2m
4aπℏ3

∫ ∞

−∞

p2

(ℏ2π2 − p2a2)2 cos2
pa

2ℏ
dp

=
2ℏ2

ma2

∫ ∞

−∞

y2

(1− y2)2 cos2
πy

2
dy =

π2ℏ2

2ma2
,

using the given formulae.

24.2 Rectangular potentials

The continuity equation (23.16) teaches us that the probability flux of a moving
particle cannot make abrupt changes. That is, even if the particle encounters an
obstacle represented by a smooth or abrupt variation of the potential depth, the
wavefunction and its derivative must remain continuous, unless the potential step is
infinitely high.
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24.2.1 Box potential

Let us now place the particle into a rectangular potential well, such that the Hamil-
tonian is,

Ĥ = − ℏ2

2m

d2

dx2
+ V (x) with V (x) =

{
0 for x ∈ [0, L]

∞ for x /∈ [0, L]
. (24.10)

As the potential barriers are high, the walls are hard, that is, the particle, even being
a quantum particle, can not penetrate. The wavefunction and the possible energy
values are,

ψ(x) =

√
2

L
sin

nπx

L
and En =

n2ℏ2π2

2mL2
. (24.11)

The Exc. 24.2.5.1 asks to demonstrate the result (24.11) illustrated in Fig. 24.1.
Obviously the spectrum of eigenvalues is now discrete. They can be enumerated by

an integer n called quantum number. Note that the energy levels are not equidistant.

Example 156 (Localization energy): There is a minimal energy E1 = ℏ2π2

2mL2

which is called zero point energy or localization energy. This energy can be
understood as a consequence of Heisenberg’s uncertainty principle. We can make
the following gross estimation of the zero point energy. Obviously, the particle
is localized with an uncertainty lower than ∆x < L. Hence, ∆p > ℏ/∆x > ℏ/L.
The average kinetic energy is,

⟨p2⟩
2m

=
⟨p⟩2 +∆p2

2m
=

∆p2

2m
>

ℏ2

2mL2
.

The fact that the numerical value is different from the value calculated by the

formula (24.11) comes from the particular geometry of the box potential.

24.2.2 Multidimensional box potential

In a multidimensional well there can be degeneracy if the well exhibits symmetries. In
the case of a 2D quadratic well Lx = Ly, the eigenenergies are doubly degenerate, since
Enx,ny

= Eny,nx
. In the case of a 3D cubic well Lx = Ly = Lz, the eigenenergies

are 6-fold degenerate, because Enx,ny,nz
= Eny,nz,nx

= Enz,nx,ny
= Enz,ny,nx

=
Eny,nx,nz = Enx,nz,ny . The states and energies of the 2D well are calculated in
Exc. 24.2.5.2.

24.2.3 Potentials with several sections of constant depths

To find the global wavefunction in potentials with several sections of constant depths,
we solve Schrödinger’s equations separately for each section,

(
− ℏ2

2m

d2

dx2
+ Va

)
ψa(x) = Eψa(x) . (24.12)

The general solution for a section a with potential energy Va is,

ψa(x) = Aae
ıkax +Bae

−ıkax , (24.13)
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Figure 24.1: (code) (a) Wavefunctions and energies in the box potential. (b) The rectangular

potential well with the reference energy set to the height of the well.

where ka = 1
ℏ
√
2m(E − Va). If E > Va, the wave is propagating. ka is the Broglie

wavevector of the wave. If E < Va, the wave is evanescent. That is, the wave decays
within a distance κa = −ıka.

If the particle is confined, that is, if E < V (x → ±∞), the possible energy levels
are quantized and the spectrum is discrete.

For every transition between two sections a = 1 and a = 2 we require the boundary
conditions,

ψ1(x) = ψ2(x) and ψ′1(x) = ψ′2(x) . (24.14)

Together with the normalization, 1 =
∫∞
−∞ |ψ|2dx, these conditions are sufficient to

determine the wavefunction unambiguously.

Figure 24.2: Scheme of a potential with several sections of constant depths.

24.2.4 Potential well

Consider a particle with energy E and a potential well of finite depth such that
V (x) = V0 < 0 for −L/2 > x > L/2 and V (x) = 0 otherwise, as illustrated in
Fig. 24.3(a). The particle be confined, E < 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareWell.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareWell.m
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Figure 24.3: (a) Scheme of a two-sided and (b) one-sided potential well.

The wavevectors are

k1 = k3 = 1
ℏ

√
2mE = ı 1ℏ

√
2m|E| = ıκ1 and k2 = 1

ℏ

√
2m(E − V0) . (24.15)

with κ1 ∈ R+. The boundary conditions yield,

A1e
−ık1L/2 +B1e

ık1L/2 = A2e
−ık2L/2 +B2e

ık2L/2 (24.16)

−ık1A1e
−ık1L/2 + ık1B1e

ık1L/2 = −ık2A2e
−ık2L/2 + ık2B2e

ık2L/2

A2e
ık2L/2 +B2e

−ık2L/2 = A3e
ık1L/2 +B3e

−ık1L/2

ık2A2e
ık2L/2 − ık2B2e

−ık2L/2 = ık1A3e
ık1L/2 − ık1B3e

−ık1L/2 .

For confined particles, E < 0, the problem is totally symmetric. In addition, the
wavefunction must disappear for x→ ±∞. Therefore, we can simplify,

A1 = 0 = B3 and A3 = B1 . (24.17)

The first two equations (24.16) now give,

B1e
ık1L/2 = A2e

−ık2L/2 +B2e
ık2L/2 =

k2
k1

(
−A2e

−ık2L/2 +B2e
ık2L/2

)
. (24.18)

We now consider the quotient B2/A2. Using the right part of equation (24.18),

B2

A2
=
e−ık2L/2(k2 + k1)

eık2L/2(k2 − k1)
=
e−ık2L(k2 + ıκ1)

2

k22 + κ21
. (24.19)

Since the amplitudes are real, the imaginary part of the quotient (24.19) should
disappear, which is the case when,

0 = Im e−ık2L(k2 + ıκ1)
2 = 2κ1k2 cos k2L+ (κ21 − k22) sin k2L (24.20)

=⇒ tan k2L =
2κ1k2
−κ21 + k22

.

In order to construct graphically the values of the momenta k2 of the particle
associated with the allowed energy levels, we introduce a constant β ≡ ℏ/(L

√
2m|V0|).

Hence,

tan k2L = tan
1

β

√
1− |E/V0| =

2
√
|E/V0|

√
1− |E/V0|

1− 2|E/V0|
=

2κ1k2
−κ21 + k22

. (24.21)
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Figure 24.4: (code) Graphical solution for a finite bilateral potential well. The red dotted

curves represent the tangents (left side of the equation (24.21)), the solid green curves the

hyperbolas (right side of the equation), the circles in cyan are the eigenenergies. When

0 < E−V0 ≪ E, they converge to the eigenenergies of the infinitely deep well (black crosses

and vertical black line).

At the bottom of deep potentials, that is, when 0 < E − V0 ≪ E, or equivalently,
E ≃ V0, we have k2 ≪ κ1 and hence, tan k2L → 0 =⇒ k2L = nπ. The energies are
then,

E − V0 =
ℏ2

k22
2m =

ℏ2π2

2mL2
n2 . (24.22)

Apply the notions obtained in this section to solve Excs. 24.2.5.3 and 24.2.5.4.

24.2.5 Exercises

24.2.5.1 Ex: Particle in a box

Obtain the wavefunctions and associated energy levels of a particle confined in a box,
where V (x) = 0 for 0 ≤ x ≤ l and V (x) =∞ outside.

Solution: In order to avoid abrupt variations near the walls, we require,

ψ(0) = 0 = ψ(L) .

The general solution of the Schrödinger equation inside the well is,

ψ(t) = C cos kx+D sin kx .

With the boundary conditions,

C = 0 and sin kL = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SquareFinite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ParticulaCaixa.pdf
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The normalization condition results in,

1 =

∫ L

0

|ψ(x)|2dx = D2

∫ L

0

sin2
nπx

L
dx =

1

2
LD2 .

Therefore, the wave function and the possible values of energy are,

ψ(x) =

√
2

L
sin

nπx

L
and En =

n2ℏ2π2

2mL2
.

24.2.5.2 Ex: Particle in a two-dimensional box

Obtain the wavefunctions and associated energy levels of a particle trapped in a two-
dimensional box inside which the particle is confined to a rectangular surface with
dimensions L1 in x-direction and L2 in y-direction, V (x, y) = 0 for 0 ≤ x ≤ L1 and
0 ≤ y ≤ L2 and V (x, y) =∞ else.

Solution: Since the dimensions of the potential separate, V (x, y) = V1(x) + V2(y),
we can simply use the solutions of the 1D problem,

⟨n1, n2|ψ⟩ ≡ ψ(x, y) =
2√
L1L2

sin
n1πx

L1
sin

n1πx

L2
and En1,n2 =

n21ℏ2π2

2mL2
1

+
n22ℏ2π2

2mL2
2

.

In the case where L1 = L2, the eigenenergies are doubly degenerate, since En1,n2
=

En2,n1
.

24.2.5.3 Ex: Particle in a well

Obtain the energies of the bound states of a particle in the potential well in which
V (x) = ∞ for x < 0, V (x) = −V0 for 0 ≤ x ≤ L/2 and V (x) = 0 to x > L/2. Com-
pare the obtained values with those of the symmetrical well discussed in Sec. 24.2.4
and the well with infinitely high walls discussed in Sec. 24.2.1.

Solution: For the unilateral potential well we can simply apply the results of the
bilateral potential well. However, with the condition ψ(0) = 0, even eigenfunctions
are not allowed. That is, n = 1, 3, ...

24.2.5.4 Ex: Least bound states and localization energy

Calculate, based on the discussion in Sec. 24.2.4, the minimum required potential
depth V0 of a three-dimensional finite rectangular well potential of size L to have a
bound state capable of trapping an 87Rb atom. Assuming a trap volume of L = 10nm,
how deep should the trap be?

Solution: We first consider the one-dimensional potential V (r) = −V0 for |x| < L/2

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_CaixaBidimensional.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ParticulaPoco1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ParticulaPoco2.pdf
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discussed in Sec. 24.2.4. When, varying the potential depth V0, a bound state goes
into the continuum, we have E = 0. With this condition Eq. (24.21) simplifies to,

tan L
ℏ

√
2mV0 = 0 or V0 =

(nℏπ)2

2mL2
,

which is just the energy spectrum (24.11) of an infinite box potential. In three dimen-
sions,

En1,n2,n3
=

ℏ2π2

2mL2
(n21 + n22 + n23) .

Hence,

V0 >
3ℏ2π2

2mL2
.

That is, the more a particle is localized, the deeper must be the potential. For L =
10nm, we get V0 > 17MHz = 816µK.

24.3 Potential barrier

The linear momentum of a particle described by ψ(x, t) = Aeıkx is,

⟨ψ|p̂|ψ⟩ = ⟨ψ|ℏ
ı

d

dx
|ψ⟩ = ℏk . (24.23)

Therefore, this particle propagates towards +∞. On the contrary, the particle Be−ıkx

propagates towards −∞. Thus, the two solutions (24.13) of the Schrödinger equation
(24.12) correspond to propagating particle waves. From here on we will use the letter
A (B) to denote the amplitudes of waves propagating in direction ∞ (−∞).

In locations where the potential changes abruptly, the particle can be partially
reflected.

24.3.1 T -scattering matrix

As we have already shown in the previous section, we can write the transformation
of the amplitudes due to a potential step at position L as,

A2e
ık2L +B2e

−ık2L = A1e
ık1L +B1e

−ık1L (24.24)

ık2A2e
ık2L − ık2B2e

−ık2L = ık1A1e
ık1L − ık1B1e

−ık1L .

We can summarize these two equations in a matrix formalism,

(
A2

B2

)
= T

(
A1

B1

)
, (24.25)
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with the scattering matrix T for a particle with energy E (see Fig. 24.2),

T = 1
2



(
1 + k1

k2

)
eı(k1−k2)L

(
1− k1

k2

)
eı(−k1−k2)L(

1− k1
k2

)
eı(k1+k2)L

(
1 + k1

k2

)
eı(−k1+k2)L


 (24.26)

= 1
2

(
e−ık2L 0

0 eık2L

)(
1 + k1

k2
1− k1

k2

1− k1
k2

1 + k1
k2

)(
eık1L 0

0 e−ık1L

)
.

If there are more zones with different depths, we may concatenate the scattering
matrices. Denoting by Tm→n the scattering matrix describing a transition at position
Lm,n of a potential of the depth Vm to another potential Vn, we write,

T = T2→3T1→2 . (24.27)

24.3.2 S-scattering matrix

Another common definition is the scattering matrix S,
(
A2

B1

)
= S

(
B2

A1

)
. (24.28)

To see how the scattering matrices are interconnected, we start with
(
A2

B2

)
= T

(
A1

B1

)
=

(
T11A1 + T12B1

T21A1 + T22B1

)
, (24.29)

Multiplying the first line with T22 and the second with −T12 and adding them,

T22A2 − T12B2 = (T11T22 − T12T21)A1 . (24.30)

This equation resolved by A2 along with the second equation (24.29) resolved by B1

give,
(
A2

B1

)
= S

(
B2

A1

)
=

(
T12/T22 T11 − T12T21/T22
1/T22 −T21/T22

)(
B2

A1

)
. (24.31)

The matrix S describes the causality of scattering process more adequately: The
amplitude A2 in region (2) results from the superposition of a wave B2 being reflected
by the barrier and a wave A1 being transmitted by the barrier. The amplitude B1 in
region (1) results from the superposition of a wave A1 being reflected by the barrier
and a wave B2 being transmitted by the barrier. Therefore, the matrix S is more
appropriate for the description of the quantum reflection, as we will discuss in the
next section. However, it has the disadvantage that it can not be concatenated in the
same way as the T matrices.

Unlike the T matrix the S matrix is unitary, since

detS = S11S22 − S12S21 = −T11T22
= −e2ık1L . (24.32)

Also, it is possible to show,

S†S =

(
S∗11 S∗21
S∗12 S∗22

)(
S11 S12
S21 S22

)
=

(
1 0

0 1

)
. (24.33)
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24.3.3 Quantum reflection at a potential step

The quantum reflection is a non-classical property of the motion of a particle. An
example is the reflection of a quantum particle by an attractive potential. To study
this effect, we consider a plane wave eık1x propagating in region (1) (E1 > V1) en-
countering a potential step up or down at position x = 0 leading to another region
(2). Using the S matrix formalism introduced in the previous section,

S =
1

k1 + k2

(
k2 − k1 2k1

2k2 k1 − k2

)
, (24.34)

we find that one part of the wave is reflected into the region (1), another is transmitted
into the region (2),

(
A2

B1

)
= S

(
0

1

)
=

(
T11 − T12T21/T22
−T21/T22

)
=

(
(1+k1/k2)

2−(1−k1/k2)2
2(1+k1/k2)

− 1−k1/k2
1+k1/k2

)
(24.35)

=
1

k1 + k2

(
2k1

k1 − k2

)
.

We use B2 = 0, since no wave comes from the side of region (2), and A1 = 1,
because it simplifies the formulas and does not affect the generality of the results.
The interesting results are:

• Even when E2 < V2, the particle enters the classically prohibited region: ψ2(x) ∝
e−κ2x with κ2 = 1

ℏ
√

2m(V2 − E2), i.e. the transmission is non-zero, |A2| > 0.

• Even with E2 > V2, the particle has a probability of being reflected at the step,
|B1| > 0.

Example 157 (Contrast of a partially reflected wave): Defining K± ≡
1
2

(
max |ψ1|2 ±min |ψ1|2

)
, the contrast of the wavefunction in region (1) is given

by K−/K+. Writing the function as ψ1 = eık1x + B1e
−ık1x it is easy to show,

that

|B1| =
√
K+ +K− −

√
K+ −K−√

K+ +K− +
√
K+ −K−

≃ K−
2K+

. (24.36)

This formula can be understood as an analogue of Fresnel formula for matter

waves 1.

In Exc. 24.3.7.1 we calculate the behavior of a Broglie wave passing through a po-
tential step and entering a classically forbidden region. In Exc. 24.3.7.2 we investigate
a model describing the collision between attracting or repelling particles via a partial
reflection at a potential step.

1In this sense light reflection at an optical interface (with typical losses of 4% for glass) can be
interpreted as quantum reflection of light
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24.3.4 Continuity of probability flow

The continuity equation (23.16) requires that the probability flux be preserved in
stationary situations,

0 =
dj

dx
=

d

dx

ℏ
2mı

[
ψ∗
(
d

dx
ψ

)
−
(
d

dx
ψ∗
)
ψ

]
. (24.37)

Applying this to a potential step separating the regions n = 1, 2, we find,

jn =
ℏ

2mi

[
ψ∗

d

dx
ψ − ψ d

dx
ψ∗
]

(24.38)

=
ℏ

2mı

[
(A∗ne

−ıknx +B∗ne
ıknx)(ıknAne

ıknx − ıknBne−ıknx)

− (Ane
ıknx +Bne

−ıknx)(−ıknA∗ne−ıknx + ıkB∗ne
ıkx)

]

=
ℏkn
m

(|An|2 − |Bn|2) .

Hence, j1 = j2 implies k1|A1|2 − k1|B1|2 = k2|A2|2 − k2|B2|2. Assuming that the
particle comes from side 1 and B2 = 0, we have,

1 = |B1|2 + k2
k1
|A2|2 = R+ T , (24.39)

defining the transmission T and the reflection R as,

T ≡ k2
k1
|S12|2 = k2

k1
|A2|2 and R ≡ |S22|2 = |B1|2 . (24.40)

24.3.5 Tunneling and quantum reflection at a potential well

Particles thrown with a kinetic energy E against potential barriers can cross them
even if V0 > E or be reflected even when V0 < E, as illustrated in Fig. 24.5(a). This
can be verified by considering a particle propagating from x = −∞ towards x = +∞
through a potential well located at x ∈ [0, a]. We determine the concatenation T =
T2→3T1→2. Then we find the S matrix that corresponds to the T matrix and solve the
problem in the same way as in the previous section. For example, we can calculate
the transmission and reflection probabilities. The formula is derived in Exc. 24.3.7.3,

R = 1− T =

(
1 +

16E/V0(1− E/V0)
(eκL − e−κL)2

)−1
, (24.41)

and sketched in Fig. 24.5(b).

24.3.6 The delta-potential

In quantum mechanics the δ-potential can be used to simulate situations, where a
particle is free to move in two regions of space with a barrier in between. For example,
an electron can move almost freely in a conducting material, but when two conducting
surfaces are put close together, the interface between them acts as a barrier for the
electron that can be approximated by a δ-potential. The δ-potential is a limiting
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Figure 24.5: (code) (a) Tunnel effect and quantum transmission and reflection at a
potential barrier. (b) Coefficients of transmission and reflection (horizontal) through
the shown potential barrier as a function of the energy normalized to the height of the
barrier E/V0. The dashed red curve corresponds to a low barrier, β ≡ 1

ℏL
√
2mV0 = 3,

the blue solid curve corresponds to a deep barrier β = 10.

case of the finite potential well when we decrease its width while maintained the
product of its width and its depth constant. Here, for simplicity, we only consider a
one-dimensional potential well, but the analysis can be expanded to more dimensions.

The time-independent Schrödinger equation for the wavefunction ψ(x) of a particle
in one dimension is,

− ℏ2

2m

d2ψ(x)

dx2
+ αδ(x)ψ(x) = Eψ(x) , (24.42)

The potential is called a δ-potential well if α is negative and a δ-potential barrier if
α is positive.

The potential splits the space in two parts (x < 0 and x > 0). In each of these
parts the potential energy is zero, and the Schrödinger equation reduces to,

d2ψ

dx2
= −2mE

ℏ2
ψ . (24.43)

The solutions of this differential equation are linear combinations of eıkx and e−ıkx,
where the wavenumber k is related to the energy by k =

√
2mE
ℏ . In general, due to

the presence of the δ-potential in the origin, the coefficients of the solution need not
be the same in both half-spaces:

ψ(x) =

{
ψ1(x) = A1e

ıkx +B1e
−ıkx for x < 0

ψ2(x) = A2e
ıkx +B2e

−ıkx for x > 0
, (24.44)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_Reflection.m
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where, in the case of positive energies (real k), eıkx represents a wave traveling to
the right, and e−ıkx one traveling to the left. One obtains a relation between the
coefficients by imposing that the wavefunction be continuous at the origin,

ψ(0) = ψ1(0) = ψ2(0) = A1 +B1 = A2 +B2 . (24.45)

A second relation can be found by studying the derivative of the wavefunction.
Normally, we could also impose differentiability at the origin, but this is not possible
because of the δ-potential. However, if we integrate the Schrödinger equation around
x = 0 over an interval [−ϵ,+ϵ]:

− ℏ2

2m

∫ +ϵ

−ϵ
ψ′′(x)dx+

∫ +ϵ

−ϵ
V (x)ψ(x)dx = E

∫ +ϵ

−ϵ
ψ(x)dx . (24.46)

In the limit ϵ→ 0 the right-hand side of this equation vanishes,

− ℏ2

2m
[ψ′2(0)− ψ′1(0)] + αψ(0) = 0 . (24.47)

Substituting the definition of ψ into this expression, we obtain,

− ℏ2

2m
ık(A1 −B1 −A2 +B2) + α(A1 +B1) = 0 . (24.48)

The boundary conditions thus give the following restrictions on the coefficients,

A1 +B1 −A2 −B2 = 0

A1 −B1 −A2 +B2 =
2mα

ıkℏ2
(A1 +B1)

. (24.49)

Figure 24.6: (a) The δ-potential (green) and the bound state wavefunction (blue). (b) Double
δ-potential (green).

24.3.6.1 Bound states

The bound state wavefunction solution to the δ-function potential is continuous ev-
erywhere, but its derivative is not defined at x = 0.

In any one-dimensional attractive potential there will be a bound state. To find its
energy, note that for negative energies, E < 0, the wavenumber k = ı

√
2m|E|/ℏ = ıκ
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is imaginary and the wavefunctions are exponentially increasing or decreasing func-
tions of x (see above). Requiring that the wavefunctions do not diverge at infinity
eliminates half of the terms: A2 = B1 = 0. The wavefunction is then an evanescent
wave,

ψ(x) =

{
ψ1(x) = A1e

κx for x < 0

ψ2(x) = B2e
−κx for x > 0

. (24.50)

From the boundary conditions and normalization conditions, it follows that,

A1 = B2 =
√
κ and κ = −mα

ℏ2
, (24.51)

from which follows that α must be negative, that is the bound state only exists for
the well, and not for the barrier. The Fourier transform of this wavefunction is a
Lorentzian function. The energy of the bound state is then,

Eb = −
ℏ2κ2

2m
= −mα

2

2ℏ2
. (24.52)

The δ-potential well and its wavefunction are exhibited in Fig. 24.6(a).

24.3.6.2 Scattering

For positive energies, the wavefunctions are oscillating functions of x. That is, the
particle is free to move in either half-space: x < 0 or x > 0, but it may be scattered at
the δ-potential. The quantum case can be studied in the following situation: a particle
incident on the barrier from the left side (A1) may be reflected (B1) or transmitted
(A2). To find the amplitudes for reflection and transmission for incidence from the
left, we set in the equations (24.49) A1 = 1 (incoming particle), B1 = r (reflection),
B2 = 0 (no incoming particle from the right), and A2 = t (transmission), and solve
for r and t,

t =
1

1− mα

ıℏ2k

, r =
1

ıℏ2k
mα
− 1

. (24.53)

Due to the mirror symmetry of the model, the amplitudes for incidence from the right
are the same as those from the left. The result is that there is a non-zero probability,

R = |r|2 =
1

1 +
ℏ4k2

m2α2

=
1

1 +
2ℏ2E
mα2

. (24.54)

for the particle to be reflected. This does not depend on the sign of α, that is, a
barrier has the same probability of reflecting the particle as a well. This is a significant
difference from classical mechanics, where the reflection probability would be 1 for
the barrier (the particle simply bounces back), and 0 for the well (the particle passes
through the well undisturbed). The probability for transmission is,

T = |t|2 = 1−R =
1

1 +
m2α2

ℏ4k2

=
1

1 +
mα2

2ℏ2E

. (24.55)
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Figure 24.7: (code) Transmission (red) and reflection (blue) probability of a δ-potential well.

The energy E > 0 is in units of Eb = mα2/2ℏ2.

An application example regards the interfaces between two conducting materials.
In the bulk of the materials, the motion of the electrons is quasi-free and can be
described by the kinetic term in the above Hamiltonian with an effective mass m.
Often, the surfaces of such materials are covered with oxide layers or are not ideal
for other reasons. This thin, non-conducting layer may then be modeled by a local
δ-function potential. Electrons may then tunnel from one material to the other giving
rise to a current.

Example 158 (Double delta potential): The δ-function model is actually a
one-dimensional version of the hydrogen atom. The model becomes particularly
useful when applied to the hydrogen molecule ion, as shown in the following.
The double-well δ-function models a diatomic hydrogen molecule by the corre-
sponding Schrödinger equation:

− ℏ2

2m

d2ψ

dx2
(x) + V (x)ψ(x) = Eψ(x) ,

where the potential is now:

V (x) = −qλ
[
δ
(
x+ R

2

)
+ δ

(
x− R

2

)]
where 0 < R <∞ is the ’internuclear’ distance with δ-function (negative) peaks
located at x = ±R/2 (shown in brown in the diagram). Keeping in mind the
relationship of this model with its three-dimensional molecular counterpart, we
use atomic units and set ℏ = m = 1. Here 0 < λ < 1 is a formally adjustable
parameter. From the single well case, we can infer the ’ansatz’ for the solution
to be:

ψ(x) = Ae−d|x+R
2 | +Be−d|x−R

2 | .
Matching of the wavefunction at the δ-function peaks yields the determinant:∣∣∣∣∣ q − d qe−dR

qλe−dR qλ− d

∣∣∣∣∣ = 0 where E = −d
2

2
.

Thus, d is found to be governed by the pseudo-quadratic equation:

d±(λ) =
1
2
q(λ+ 1)± 1

2

{
q2(1 + λ)2 − 4λq2[1− e−2d±(λ)R]

}1/2

,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_DeltaTunneling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_DeltaTunneling.m
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which has two solutions d = d±. For the case of equal charges (symmetric
homonuclear case), λ = 1 and the pseudo-quadratic reduces to:

d± = q[1± e−d±R] .

The ’+’ case corresponds to a wave function symmetric about the midpoint
(shown in red in the diagram) where A = B and is called gerade. Corre-
spondingly, the ’-’ case is the wavefunction that is anti-symmetric about the
midpoint where A = −B is called ungerade (shown in green in the diagram).
They represent an approximation of the two lowest discrete energy states of the
three-dimensional H+

2 and are useful in its analysis. Analytical solutions for the
energy eigenvalues for the case of symmetric charges are given by:

d± = q +W (±qRe−qR)/R ,

where W is the standard Lambert function. Note that the lowest energy corre-

sponds to the symmetric solution d+. In the case of unequal charges, and for

that matter the three-dimensional molecular problem, the solutions are given

by a generalization of the Lambert function (see section on generalization of

Lambert function and references herein).

One of the most interesting cases is when qR ≤ 1, which results in d− = 0.

Thus, one has a non-trivial bound state solution with E = 0. For these specific

parameters, there are many interesting properties that occur, one of which is

the unusual effect that the transmission coefficient is unity at zero energy.

24.3.7 Exercises

24.3.7.1 Ex: Tunneling

A rubidium-87 atom moves in free space (region 0) with velocity v = 1 cm/s (see
diagram). Suddenly it encounters a gap with depth V1 = −kB · 1µK.
a. What is the particle’s Broglie wavelength in region 1?
b. Now the atom encounters a barrier of height V2 = −V1. What is the probability
that the particle will enter region 2?
c. What is the probability of finding the particle inside region 2 up to a depth of
x2 = 10nm?

Figure 24.8: Particle in a potential landscape.

Solution: a. The energy of the particle in region 0 is

E =
m

2
v2 = kB · 523 nK .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_TunelamentoAtomico.pdf
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The wave vector in region 1 is

k1 =

√
2m

ℏ2
(E − V1) =

√
m2v2 − 2mV1

ℏ
,

giving λ = 2π/k1 = 270 nm.
b. Writing the wavevector in region 2 as

k2 =

√
2m

ℏ2
(E − V2) = ı

√
2m

ℏ2
(V2 − E) = ıκ2 ,

we have κ2 = 2.34 · 107 m-1. We have the conditions of continuity

ψ1(x) = Aeık1x +Be−ık1x = Ceık2x +De−ık2x = ψ2(x)

ψ′1(x) = ık1Ae
ık1x − ık1Be−ık1x = ık2Ce

ık2x − ık2De−ık2x = ψ′2(x) .

Inserting x = 0 and D = 0,

A+B = C , ık1 − ık1B = ık2C ,

giving

B =
k1 − k2
k1 + k2

A , C =
2k1

k1 + k2
A .

We note that the dimension of the coefficients is that of a wavevector. The probability
of finding the particle within region 2 is,

∫ ∞

0

|ψ2(x)|2dx =

∫ ∞

0

|Ceık2x|2dx =

∣∣∣∣
2k1

k1 + ıκ2

∣∣∣∣
2

A2

∫ ∞

0

e−2κ2xdx

=
4k21

k21 + κ22

A2

−2κ2
e−2κ2x

∣∣∞
0

=
4(E − V1)
−V1 − V1

A2

2κ2
= 1.16 · 10−7 A2 .

c. The probability of finding the particle up to the depth x2 is,

∫ x2

0

|ψ2(x)|2dx = (1− e−2κ2x2)

∫ ∞

0

|ψ(x2)|2dx = 0.27 · 10−7 A2 .

24.3.7.2 Ex: Collisions

A collision between attractive or repulsive particles can be described by the Schrödinger
equation as a one-dimensional scattering,

− ℏ2

2m
ψ′′(x) + αδ(x)ψ(x) = Eψ(x) .

The energy spectrum may be a discrete spectrum of bound states and a continuum
of free states.
a. Calculate the transmission coefficient for the case of a particle with energy E thrown
against the potential energy barrier V (x) = αδ(x). Does the result change for the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_ColisoesInterparticulas.pdf
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case when V (x) = −αδ(x), with α > 0?
b. For this last potential, find the energy of the bound state and its corresponding
wavefunction.

Solution: a. The general solution for E > 0 is simply,

ψE(x) =

{
A1e

ıkx +B1e
−ıkx for x < 0

A2e
ıkx +B2e

−ıkx for x > 0
,

ℏ2k2

2m
= E .

The probability flow in the two regions 1 and 2,

jn =
ℏ

2mı

[
ψ∗

d

dx
ψ − ψ d

dx
ψ∗
]

=
ℏ

2mı

[
(A∗ne

−ıkx +B∗ne
ıkx)(ıkAne

ıkx − ıkBne−ıkx)

− (Ane
ıkx +Bne

−ıkx)(−ıkA∗ne−ıkx + ıkB∗ne
ıkx)

]

=
ℏk
m

(|An|2 − |Bn|2) ,

must be maintained, that is, j1 = j2, such that,

|A1|2 − |B1|2 = |A2|2 − |B2|2 .

Assuming that the particle comes from the region 1, B2 = 0, we obtain,

|B1|2
|A1|2

+
|A2|2
|A1|2

= R+ T = 1 .

b.

24.3.7.3 Ex: Energy barrier

Consider a particle with energy E thrown (in the direction êx) against a potential
energy barrier of finite height and width, such that V (x) = 0 for x < 0 or x > L and
V (x) = V0 for 0 ≤ x ≤ L.
a. Obtain the reflection and transmission coefficients R and T for the case E > V0.
Discuss the result.
b. Do the same for the case E < V0.

Solution: We consider a particle with kinetic energy E moving from x = −∞ to
x = ∞ through a barrier (a well) of potential with the height (depth) V (z) = V0 for
x ∈ [0, L]. The wavevectors of the particle in the three zones are,

k1 = k3 =
1

ℏ
√
2mE and k2 =

1

ℏ
√

2m(E − V0) . (24.56)

The wavefunctions are,

ψ1(x) = eık1x+B1e
−ık1x and ψ2(x) = A2e

ık2x+B2e
−ık2x and ψ3(x) = A3e

ık1x .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_BarreiraEnergetica.pdf
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Boundary conditions must be met,

ψ1(0) = ψ2(0) =⇒ 1 +B1 = A2 +B2

ψ′1(0) = ψ′2(0) =⇒ ık1 − ık1B1 = ık2A2 − ık2B2

ψ1(L) = ψ2(L) =⇒ A2e
ık2L +B2e

−ık2L = A3e
ık1L

ψ′1(L) = ψ′2(L) =⇒ ık2A2e
ık2L − ık2B2e

−ık2L = ık1A3e
ık1L .

This gives,

1 +B1 +
k1
k2
(1−B1) = 2A2 and 1 +B1 − k1

k2
(1−B1) = 2B2

and A3e
ık1L + k1

k2
A3e

ık1L = 2A2e
ık2L and A3e

ık1L − k1
k2
A3e

ık1L = 2B2e
−ık2L .

And then

1 +B1 +
k1
k2
(1−B1) = A3e

ı(k1−k2)L + k1
k2
A3e

ı(k1−k2)L

1 +B1 − k1
k2
(1−B1) = A3e

ı(k1+k2)L − k1
k2
A3e

ı(k1+k2)L ,

yielding,

B1 =
(k22 − k21)(e2ık2L − 1)

(k2 + k1)2 − (k2 − k1)2e2ık2L
and A3 =

(k2 + k1)
2 − (k2 − k1)2

(k1 + k2)2eı(k2−k1)L − (k1 − k2)2eı(k2+k1)L
.

From this we calculate the reflection,

R = |B1|2 =
−(k22 − k21)2(eık2L − e−ık2L)2

2k42 + 12k22k
2
1 + 2k41 − (k22 − k21)2(e2ık2L + e−2ık2L)

= 1−|A3|2 = 1−T .

Substituting (24.56) and κ ≡ ık2, we finally get,

R = 1− T =

(
1 +

16E/V0(1− E/V0)
(eκL − e−κL)2

)−1
.

The reflection |B1|2 and the transmission |A3|2 show resonances, when L or V0 are
varied. These are located at 2κL = 2πın, where n ∈ N.

24.3.7.4 Ex: Wavepacket reflected at a potential barrier

Simulate the reflection of a Gaussian wavepacket at a potential barrier for various
kinetic energies using the Julia programming language.

Solution: Fig. 24.9 shows the simulation.

24.4 Numerical approaches for arbitrary potentials

In practice, many potentials are not box-shaped or harmonic, which renders an ana-
lytic treatment difficult or impossible. To some extend approximation methods can be

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PotentialBarrier01.pdf
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Figure 24.9: (code) Partial reflection of a wavepacket at a potential barrier.

used, as discussed in Sec. 27.5, but many problems can only be solved numerically. In
Sec. 24.4.1 we will first show at the example of arbitrary one-dimensional potentials,
how the Schrödinger equation can be solved numerically and how this allows one to
determine the eigenenergies of bound states. In Sec. 24.4.2 we will introduce the very
efficient Fourier grid method for calculating bound state energies and wavefunctions.

24.4.1 Calculation of free and bound states wavefunctions

Numerical routines or packages are available for solving ordinary differential equations
(ODE). Generally it is advantageous to convert the one-dimensional second-order
Schrödinger equation into two first-order differential equations via,

φ′(x) =
2m

ℏ2
[E − V (x)]ψ(x) and ψ′(x) = φ(x) . (24.57)

For free states, E > V (x), we just solve equation (24.57) specifying the kinetic
energy of the particle. The magenta curve in Fig 24.10(a) is an example of a collisional
wavefunction in a Morse-type interatomic potential.

For bound states, we must additional satisfy the eigenvalue problem, since only
specific discrete eigenenergies E are permitted. A possible procedure consists in
guessing an eigenvalue E, calculating the associated wavefunction ψ(x) using an ODE
solver, check whether it diverges for x → ±∞, and vary E until ψ(x) no longer
diverges. Then we repeat the procedure for are bound state energies, until we got
them all. The red curve in Fig 24.10(a) shows the wavefunction of a vibrational state
in a Morse-type potential obtained by solving the Schrödinger equation and adjusting
the energy until the function stops diverging in the classically forbidden range. In
this example the iteration process was stopped when the wavefunction diverged at
around R ≈ 19aB . In Exc. 24.4.4.1 we will practice this technique at the example
of Hermite’s differential equation, and in Exc. 24.4.4.2 we will study the case of a
potential whose depth linearly increases with the distance from origin.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_PotentialBarrier.jl
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Figure 24.10: (code) (a) Free particle (magenta) and bound state wavefunction (red) calcu-

lated using a MATLAB ODE solver. (b) Bound state wavefunction of the harmonic oscillator

calculated using a MATLAB ODE solver. For the red curve the eigenvalue has been slightly

overestimated and for the blue curve underestimated. (c) Calculation of the harmonic oscil-

lator energies and wave functions using the Fourier grid method.

24.4.2 The Fourier grid method for bound states

The objective of the Fourier grid method is to analytically solve the 1D Schrödinger
equation with an arbitrary potential V (r) on a grid of 2N + 1 equally spaced spatial
points ri, where i = 0,±1, ...,±N . That is, we assume the potential V (ri) to be given
at these points. Skaling by the spatial coordinate r by r/L = x/2π, we get for the
dimensionless coordinate x the Schrödinger equation,

[
− h2

2mL2

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) , (24.58)

with the grid given by,

xi ≡
2πi

2N + 1
. (24.59)

The main difficulty for numerically solving such eigenvalue equations is obviously
the derivative. Numerical differentiation schemes can be cast into the following general
form [884],

f ′(xi) =
N∑

j=−N
Dijf(xj) , (24.60)

that is, they can be expressed as a multiplication of the discretized wavefunction
represented as a vector f(xj) and a matrix Dij . These schemes are usually based on
interpolation polynomials and are the more accurate, the higher the order of these
polynomials is chosen to be.

Instead of using interpolation polynomials, one may now consider over-all approx-
imation of a function f(x) by a Fourier series of N -th order, i.e. to assume (see

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericEigensearch.m
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(21.126)),

f(x) =

∞∑

k=−∞
cke

ıkx ≃
N∑

k=−N
cke

ıkx . (24.61)

The highest harmonics of the Fourier expansion N is set by the distance between two
grid points. The expansion coefficients are,

ck =
1

2π

∫ 2π

0

f(x)e−ıkxdx −→ 1

2π

N∑

j=−N
f(xj)e

−ıkxj∆x =
1

2N + 1

N∑

j=−N
f(xj)e

−ıkxj .

(24.62)
Now, substituting x by the discrete variable xi, we take the derivative f ′(xi) of the
function (24.61), insert the expansion coefficients (24.62), and compare the resulting
expression to the linear combination (24.60) of the functional values f(xj),

f ′(xi) =
N∑

k=−N
ıkcke

ıkxi =
ı

2N + 1

N∑

k=−N
k

N∑

j=−N
f(xj)e

ık(xi−xj) (24.63)

=
2

2N + 1

N∑

k=1

k

N∑

j=−N
f(xj) sin k(xj − xi) ≡

N∑

j=−N
Dijf(xj) .

From this we see, that the matrix elements Dj′j are given by,

Dij =
2

2N + 1

N∑

k=1

k sin k(xj − xi) =
2

2N + 1

N∑

k=1

k sin
2πk(i− j)
2N + 1

. (24.64)

The sum can be evaluated analytically, as shown in Exc. 24.4.4.3 [1244],

Dii = 0 and Di ̸=j =
(−1)i−j

2 sin
xi−xj

2

=
(−1)i−j

2 sin π(i−j)
2N+1

. (24.65)

We may proceed similarly for the second derivative,

f ′′(xi) = −
N∑

k=−N
k2cke

ıkxi =
−1

2N + 1

N∑

k=−N
k2

N∑

j=−N
f(xj)e

ık(xi−xj) (24.66)

=
−2

2N + 1

N∑

k=1

k2
N∑

j=−N
f(xj) cos k(xj − xi) ≡

N∑

j=−N
(D2)ijf(xj) ,

yielding,

(D2)ij =
−2

2N + 1

N∑

k=1

k2 cos k(xj − xi) =
−2

2N + 1

N∑

k=1

k2 cos
2πk(i− j)
2N + 1

. (24.67)

Again, the sum can be evaluated analytically, as shown in Exc. 24.4.4.3 [1244],

(D2)ii = −
N2 + 2

12
and (D2)i̸=j = −

(−1)i−j

2 sin2 π(i−j)2N+1

. (24.68)
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With this scheme of differentiation, the set of difference equations representing the
problem (24.68) is readily found to be [847, 395, 1244],

Ĥψ = Eψ with Ĥij = −
h2

2mL2
(D2)ij + V (xj)δij . (24.69)

This eigenvalue problem can easily be solved on a computer, see Fig 24.10(b).

24.4.3 Steepest descent ot the ground state

The softwares ’Maple’ or ’Mathematics’ are useful for analytical calculations, that
is, multiplying matrices or determining eigenvalues. For numerical calculations the
software ’Matlab’ is more adapted. For example, the time evolution of a Schrödinger
equation,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ(0)⟩ , (24.70)

can be calculated in a single command line using the Matlab ’expm’ function.
When the system varies temporally, Ĥ(t), we may divide time into small units dt

and propagate the wavefunction as,

|ψ(t+ dt)⟩ = e−ıĤ(t)dt/ℏ|ψ(t)⟩ ≃ |ψ(t)⟩
(
1− ı Ĥℏ dt

)
, (24.71)

continuously reinserting the solution into the equation. This Newton method does not
converge quickly (dt should be chosen small enough, when Ĥ(t) varies rapidly), but
there are other more sophisticated methods like the Runge-Kutta method.

A variation of this method is called steepest descent method. This method is
similar to the Newton Eq. (24.71), but replaces the time dt with an imaginary time.
Thus, the coherent temporal evolution of the Schrödinger equation is replaced by a
dissipative evolution. The loss of energy automatically takes the system to the ground
state. However, in order to preserve the normalization of the wavefunction, it must
be renormalized at each iteration step,

|ψ(t+ dt)⟩ → |ψ(t+ dt)⟩√
⟨ψ(t+ dt)|ψ(t+ dt)⟩

. (24.72)

The method also applies to more complicated equations than the Schrödinger equa-
tion, for example, the Gross-Pitaevskii equation. We will deepen this technique in
Sec. 45.3.3.

Another numerical method often used in quantum mechanics is the method called
the quantum Monte Carlo simulation of the wavefunction [913]. This method sim-
ulates trajectories of quantum systems treating intrinsic quantum noise as random
processes disrupting the uniformity of the trajectory. The advantage of this method
is that it also applies to dissipative systems.

24.4.4 Exercises

24.4.4.1 Ex: Numerical resolution of the Hermite differential equation

Solve the Hermite differential equation (24.93) numerically for n = 8, e.g. using the
’ode45’ ordinary differential equation solver of Matlab, or similar. Plot the wavefunc-
tion of the 8-th vibrational level of a harmonic oscillator.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_NumericODE01.pdf
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Figure 24.11: (code) Condensate wavefunction (red) in a double-well potential (blue) nu-

merically calculated using the steepest descent method. Also shown is the chemical potential

(green).

Solution: The results are exhibited in Fig. 24.12.
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Figure 24.12: (code) Solution of the Hermite differential equation for n = 8.

24.4.4.2 Ex: Numerical resolution of the Schrödinger equation

Paramagnetic atoms, such as rubidium, can be confined in quadrupolar magnetic
traps, which are characterized by a linear increase of the magnetic field in any
direction of space. Let us consider one dimension of such a potential, given by
V (x) = µB∂xB |x| − V0 wherever V (x) is negative and V (x) = 0 else. Here µB is the
Bohr magneton. Be ∂xB = 200G/cm the magnetic field gradient and V0 = h 15 kHz
the potential depth.
a. Calculate the energy and wavefunction of the lowest bound state of this potential
by numerical integration of the stationary Schrödinger equation using Matlab or an-
other software.
b. Obtain all bound state energies and wavefunctions using the Fourier grid method.

Solution: The results are exhibited in Fig. 24.13.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericHermite.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_NumericQuadrupole01.pdf
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Figure 24.13: (code) Eigenenergies and wavefunctions of a quadrupolar potential.

24.4.4.3 Ex: The Fourier grid method

Derive (a) the formula (24.65) and (b) the formula (24.68) for N ≫ 1 using the for-
mula (1.352) from [532].

Solution: a. Formula (1.352) [532] reads,

N∑

k=1

k sin kx =
sin(N + 1)x

4 sin2 x2
− (N + 1) cos 2N+1

2 x

2 sin x
2

.

With this, inserting x = 2π(i−j)
2N+1 , we find,

Dij =
2

2N + 1

N∑

k=1

k sin
2πk(i− j)
2N + 1

.

In particular we find,

Dii = 0

Di ̸=j =
2

2N + 1

N∑

k=1

k sin k
2π(i− j)
2N + 1

=
1

2N + 1

(
sin(N + 1) 2π(i−j)2N+1

2 sin2 π(i−j)2N+1

− (N + 1) cosπ(i− j)
sin π(i−j)

2N+1

)
,

in agreement with [1244]. Approximating 2N + 1 ≃ 2N , we can simplify,

Di̸=j ≃
2

2N + 1

(
sinπ(i− j)
4 sin2 π(i−j)2N+1

− (N + 1)(−1)i−j

2 sin π(i−j)
2N+1

)
=

(−1)i−j

2 sin π(j−i)
2N+1

,

recovering the result of [884].
b. Similarly,

(D2)ij =
−2

2N + 1

N∑

k=1

k2 cos
2πk(i− j)
2N + 1

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericQuadrupole.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PaintedGrid01.pdf


1336 CHAPTER 24. LINEAR MOTION / SEPARABLE POTENTIALS

In particular we find [1244],

(D2)ii =
−2

2N + 1

N∑

k=1

k2 =
−2

2N + 1

N(N + 1)(2N + 1)

6
= −N(N + 1)

3

(D2)i ̸=j =
(−1)i−j(N + 1) cos π(i−j)2N+1 + (N + 1) cos (N+1)2π(i−j)

2N+1 − sin (N+1)2π(i−j)
2N+1 cot π(i−j)2N+1

2(2N + 1) sin2 π(i−j)2N+1

.

Approximating 2N + 1 ≃ 2N ,

(D2)i̸=j ≃ (−1)i−j
cos π(i−j)2N+1 + 1

4 sin2 π(i−j)2N+1

.

24.4.4.4 Ex: Derivation of the Fourier grid method from the FFT

The Fast Fourier Transform (FFT) is defined by,

Hn =

N−1∑

k=0

e−2πınk/Nhk

=

N−1∑

k=0

e−2πınk/(N/2)h2k + e−2πık/N
N/2−1∑

k=0

e−2πınk/(N/2)h2k+1 = even+ odd .

the inverse transform is,

hk =
1

N

∑N−1

k=0
e2πınk/NHn .

The sinus transform of a real vector sk is,

Sn =
2

N

∑N−1

k=1
sk sinπnk/N .

Calculate the inverse transform of the matrix Trs = k2rδrs.

Solution: See [884, 847, 395].

24.4.4.5 Ex: Infinite rectangular double-well potential

a. Consider the rectangular double-well potential sketched in Fig. 24.14 and calculate
the energy levels according to the procedure taught in Sec. 24.3.5.
b. For the same type of potential as in (a) prepare a numerical calculation of the
wavefunctions, e.g. using the Fourier grid method introduced in Sec. 32.2.5, for 87Rb
using the following dimensions of the potential: V0 = h × 15MHz, L = 40nm, and
b = 3nm.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PaintedGrid02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PotentialBarrier02.pdf
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Figure 24.14: Scheme of the rectangular double-well potential.

Solution: a. As usual, we set the wavefunctions in the various sections j = 1, 2, 3 as
ψj(x) = Aje

ıkjx +Bje
−ıkjx, where for symmetry reasons k1 = k3, and ℏk1 =

√
2mE

and ℏk2 =
√
2m(E − V0). The boundary conditions are,

ψ1(−L2 ) = 0 = ψ3(
L
2 )

ψ1(− b
2 ) = ψ2(− b

2 ) = ±ψ2(
b
2 ) = ±ψ3(

b
2 )

ψ′1(
b
2 ) = ψ′2(− b

2 ) = ±ψ′2( b2 ) = ±ψ′3( b2 ) .

Solving this system of equations, we get,

B1

A1
= −eık1L =

A3

B3(
1 +

k1
k2

)
A1e

−ık1b/2 +

(
1− k1

k2

)
B1e

ık1b/2 = 2A2e
−ık2b/2

(
1− k1

k2

)
A1e

−ık1b/2 +

(
1 +

k1
k2

)
B1e

ık1b/2 = 2B2e
ık2b/2 ,

and from symmetry considerations,

A1 = ±B3 , B1 = ±A3 , A2 = ±B2 .

After some algebra,

±e
ık1(L+b/2)−ık2b/2 ± e−ık1b/2+ık2b/2
eık1(L+b/2)+ık2b/2 ± e−ık1b/2−ık2b/2 =

k2 − k1
k2 + k1

.

This equation must be solved numerically.
b. Fig. 24.15 shows the simulation.

24.4.4.6 Ex: Least bound states numerically

Calculate numerically the minimum required potential depth V0 to have a bound
state using the method detailed in Sec. 24.4.1 for the following three one-dimensional

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_PaintedGrid03.pdf


1338 CHAPTER 24. LINEAR MOTION / SEPARABLE POTENTIALS

-20 -10 0 10 20

R (nm)

0

5

10

15

20

25

30

V
(M

H
z)

Figure 24.15: (code) Wavefunctions and energy levels of the rectangular double-well potential

calculated by the Fourier grid method.

potentials (Θ is the Heavyside function):
a. For the square well potential V (z) = −V0 Θ(L−2|z|); compare with the calculated
energy spectrum for the box potential and the square well potential of Secs. 24.2.1
and 24.2.4;
b. for the harmonic oscillator potential with given spill-over height V0, that is, V (z) =
(m2 ω

2
hoz

2−V0) Θ(2V0−mω2
hoz

2); compare with the calculated energy spectrum of an
ordinary unlimited harmonic oscillator;
c. for the sinusoidal potential given by V (z) = −V0 cos2(kz) Θ(π − 2k|z|); compare
with the recoil energy Erec = ℏ2k2/2m.

Solution: The results are exhibited in Fig. 24.16.
a. The energy of the lowest bound state in a box potential with infinite walls is,

E1 =
ℏ2π2

2mL2
.

We find that the square well potential must be deeper than V0 = 0.014E1 in order to
support a bound state.
b. The energy of the lowest bound state in a harmonic potential is,

E0 =
ℏωho
2

.

We find that the spill-over height must be higher than V0 = 0.18ℏωho in order to
support a bound state.
c. The recoil energy is,

Erec =
ℏ2k2

2m
.

We find that the potential must be deeper than V0 = 0.54Erec.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_DoublewellPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_DoublewellPotential.m
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Figure 24.16: (code) Potential depth for having exactly one least bound state for (a) a square

well, (b) a harmonic, and (c) a sine potential.

24.5 Harmonic oscillator

Many systems oscillate. Common examples are vibrations of atoms bound in a
molecule or in a crystalline lattice, of particles trapped in applied electric or magnetic
fields, or light in an electromagnetic mode. Most periodic movements are approxi-
mately harmonic for small amplitude vibrations and can be treated in a way that we
will detail now.

We start with the unidimensional harmonic oscillator (OH),

[−ℏ2
2m

d2

dx2
+ V (x)− E

]
ψ(x) = 0 where V (x) =

m

2
ω2x2 . (24.73)

24.5.1 Factorization of the Hamiltonian and Fock states

Respecting the fact that the operators p̂ and x̂ do not commute, ı
ℏ [p̂, x̂] = 1, we can

rewrite the Hamiltonian of the harmonic oscillator in the following way,

Ĥ = − ℏ2

2m

d2

dx2
+
m

2
ω2x̂2 = ℏω

[(√
mω
2ℏ x̂− ı

√
1

2mℏω p̂

)(√
mω
2ℏ x̂+ ı

√
1

2mℏω p̂

)
+ 1

2

]

= ℏω
(
â†â+ 1

2

)
, (24.74)

with the abbreviation

â ≡
√
mω

2ℏ
x̂+ ı

√
1

2mℏω
p̂ (24.75)

and its Hermitian transposition â†. Now let’s try to find out the properties of the
operators â† and â. First of all, the commutator is,

[â, â†] =

[√
mω

2ℏ
x̂+ ı

√
1

2mℏω
p̂,

√
mω

2ℏ
x̂− ı

√
1

2mℏω
p̂

]
=

ı

2ℏ
[x̂+ p̂, x̂− p̂]

= ı
ℏ [p̂, x̂] = 1 . (24.76)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericLeastBoundState.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_NumericLeastBoundState.m
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Knowing Ĥ|ψ⟩ = E|ψ⟩ is it clear that â†â is an observable with the eigenvalue n ≡
E
ℏω − 1

2 ,

â†â|ψ⟩ =
(
E
ℏω − 1

2

)
|ψ⟩ ≡ n|ψ⟩ =⇒ |ψ⟩ = |n⟩ . (24.77)

Now, we show that the states â|ψ⟩ are eigenstates of the operator defined as n̂ ≡ â†â,
since,

â†ââ|ψ⟩ = (ââ† − [â, â†])â|ψ⟩ = (ââ†â− â)|ψ⟩ = â(â†â− 1)|ψ⟩ = (n− 1)â|ψ⟩
=⇒ â|ψ⟩ ∝ |n− 1⟩ ≡ C|n− 1⟩
=⇒ n = ⟨n|â†â|n⟩ = C2⟨n− 1|n− 1⟩
=⇒ C =

√
n . (24.78)

We note that the quantum number of the new |n − 1⟩ is decreased by 1. Similarly,
we show for the state â†|ψ⟩,

â†ââ†|ψ⟩ = â†([â, â†] + â†â)|ψ⟩ = â†(1 + â†â)|ψ⟩ = (n+ 1)â†|ψ⟩
=⇒ â†|ψ⟩ ∝ |n+ 1⟩ ≡ C|n+ 1⟩
=⇒ n+ 1 = ⟨n|â†â+ [â, â†]|n⟩ = C2⟨n+ 1|n+ 1⟩
=⇒ C =

√
n+ 1 . (24.79)

Therefore, this new state is also an eigenvector |n + 1⟩, with a quantum number
increased by one unit. â† and â are creation and annihilation operators of an energy
packet,

â†|n⟩ =
√
n+ 1|n+ 1⟩ and â|n⟩ = √n|n− 1⟩ . (24.80)

Figure 24.17: Equidistant ladder of vibrational levels showing the actions of the creation
and the annihilation operator.

The matrix representation of the field operators is,

â† =
∑

n

√
n+ 1|n+ 1⟩⟨n| and â =

∑

n

√
n|n− 1⟩⟨n| , (24.81)

from which we deduce,

n̂ = â†â =
∑

n

n|n⟩⟨n| and Ĥ = ℏω
(
n̂+ 1

2

)
. (24.82)
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Now it is clear, that n̂ can be understood as a number operator 2. The energy
spectrum of the harmonic oscillator is equidistant,

En = ℏω
(
n+ 1

2

)
. (24.83)

The state with n quanta can be created from the vacuum,

|n⟩ = â†√
n
|n− 1⟩ = â†n√

n!
|0⟩ . (24.84)

The state |n⟩ is called number state or Fock state.

24.5.1.1 Uncertainty in Fock states

We consider an OH of mass m and angular frequency ω prepared in the stationary
state |n⟩ which is an eigenstate of the Hamiltonian Ĥ with eigenvalue (n + 1

2 )ℏω.
Defining the characteristic size of the OH, aho =

√
ℏ/mω, the annihilation and cre-

ation operators can be written,

â =
1√
2

(
x̂

aho
+ ı

aho
ℏ
p̂

)
and â† =

1√
2

(
x̂

aho
− ıaho

ℏ
p̂

)
. (24.85)

Therefore, the position and momentum operators are,

√
2

1

aho
x̂ = â+ â† and

√
2ı
aho
ℏ
p̂ = â− â† . (24.86)

The mean squared deviations of the position x̂ and the momentum p̂ are,

∆x2 = ⟨n|x̂2|n⟩ = a2ho
2
⟨n|ââ+ ââ† + â†â+ â†â†|n⟩ = a2ho

2
⟨n|2n̂+ 1|n⟩

=
a2ho
2

(2n+ 1) (24.87)

∆p2 = ⟨n|p̂2|n⟩ = −ℏ
2

2a2ho
⟨n|ââ− ââ† − â†â+ â†â†|n⟩ = −ℏ

2

2a2ho
⟨n| − 2n̂− 1|n⟩

=
ℏ2

2a2ho
(2n+ 1) .

From the results of the previous item we obtain the uncertainty relation ∆x∆p for
the OH in the state |n⟩,

∆p∆x = ℏ
2 (2n+ 1) . (24.88)

Example 159 (Localization energy): The non-vanishing energy of the funda-
mental state of the harmonic oscillator, E0 = ℏω/2, is an immediate consequence
of the Heisenberg principle ∆x∆p ≥ ℏ, because in analogy with Example 156
we calculate,

⟨p2⟩
2m

=
∆p2

2m
>

ℏ2

2m∆x2
>

ℏ2

2ma2ho
=

ℏω
2

.

In the case of an electromagnetic field this energy is called vacuum fluctuation.

2Also, we can define phase operators by êxp(∓ıϕ) =∑n |n∓ 1⟩⟨n|.
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24.5.2 Harmonic oscillator in spatial representation

To simplify the Schrödinger equation in spatial representation,
[
− ℏ2

2m

d2

dx2
+
m

2
ω2x2

]
ψ(x) = ℏω(n+ 1

2 )ψ(x) , (24.89)

we use the scale x̃ ≡ x/aho, where aho =
√

ℏ/mω is the spatial extent of the ground
state. Therefore,

2

ℏω

[
− ℏ2

2m

d2

d(ahox̃)2
+
m

2
ω2(ahox̃)

2

]
ψ̃(x̃) =

2

ℏω

[
−ℏω

2

d2

dx̃2
+

ℏω
2
x̃2
]
ψ̃(x̃)

=

[
− d2

dx̃2
+ x̃2

]
ψ̃(x̃) = (2n+ 1)ψ̃(x̃) .

Now we start looking for asymptotic solutions. For x̃ → ±∞, that is, when the
particle enters the classically forbidden region, we can neglect the total energy of the
particle, [

− d2

dx̃2
+ x̃2

]
ψ̃∞(x̃) ≃ 0 . (24.90)

The solution of this equation is ψ̃∞(x̃) = Ce−x̃
2/2, since

[
− d2

dx̃2
+ x̃2

]
e−x̃

2/2 = − d

dx̃
(−x̃)e−x̃2/2 + x̃2e−x̃

2/2 (24.91)

= −x̃2e−x̃2/2 + e−x̃
2/2 + x̃2e−x̃

2/2 = e−x̃
2/2 ≃ 0 .

This motivates the ansatz ψ̃(x̃) ≡ e−x̃
2/2H(x̃) for the complete differential equation

(24.89),[
− d2

dx̃2
+ x̃2

]
e−x̃

2/2H(x̃) = −e−x̃2/2 d
2H(x̃)

dx̃2
− 2

de−x̃
2/2

dx̃

dH(x̃)

dx̃
− d2e−x̃

2/2

dx̃2
H(x̃) + x̃2e−x̃

2/2H(x̃)

= −e−x̃2/2 d
2H(x̃)

dx̃2
− 2(−x)e−x̃2/2 dH(x̃)

dx̃
+
[
−x̃2e−x̃2/2 + e−x̃

2/2
]
H(x̃) + x̃2e−x̃

2/2H(x̃)

≡ (2n+ 1)e−x̃
2/2H(x̃) . (24.92)

Thus, the functions H(x̃) must satisfy the differential equation,

H ′′(x̃) = 2x̃H ′(x̃)− 2nH(x̃) . (24.93)

We can verify that the Hermite polynomials defined by,

Hn(x̃) = (−1)nex̃2 dn

dx̃n
e−x̃

2

, (24.94)

transform the differential equation into a recursion formula,

Hn+1(x̃) = 2x̃Hn(x̃)− 2nHn−1(x̃) , (24.95)

which allows us to easily calculate the polynomials,

H0(x̃) = 1 , H1(x̃) = 2x , H2(x̃) = 4x2 − 2 , ... (24.96)
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In summary, the eigenfunction of a harmonic oscillator in the state of excitation
n is,

⟨x|n⟩ = ψn(x) = Cne
−x2/2a2hoHn(x/aho) , (24.97)

where the constant Cn is determined by the normalization condition (28.22), ⟨ψm|ψn⟩ =
δm,n,

Cn =
1√

aho
√
π2nn!

. (24.98)

The Hermite functions, Hn, are found in mathematical tables, see Sec. 28.3. The
spatial and momentum wavefunctions for the vibrational ground state are,

⟨x|0⟩ = 1

π1/4
√
aho

e−x
2/2a2ho and ⟨p|0⟩ = 1

π1/4

√
aho
ℏ
e−a

2
hop

2/2ℏ2

. (24.99)

Here we will only show the graphical representation of |ψ|2 in Fig. 24.18. The
Exc. 24.5.6.1 asks to evaluate HO in a classically forbidden region and in Exc. 24.5.6.2
we will calculate the spectrum of a semi-harmonic HO.
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h
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Figure 24.18: (code) Wavefunctions and energies for a harmonic potential.

24.5.3 Properties of the harmonic oscillator

We note that there are regions where ψ(x̃) ̸= 0 even though V (x) > E. This effect is
purely quantum. Classically, we can not find a particle in regions where its energy is
below the potential.

We also note that for high quantum numbers, n → ∞, we expect to recover the
classical predictions, i.e.,

lim
n→∞

|ψ(x)|2 = PE(x) , (24.100)

where PE is the probability density of finding the oscillating particle at position x.
The probability of finding the particle in a range dx close to the location x is easily

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_Harmonic.m
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calculated,

E =
m

2
v2 +

m

2
ω2x2 (24.101)

⇒ PE(x)dx =
t(x+ dx)− t(x)

T
=
dx

vT
=
dx

T

1√
2E/m− ω2x2

.

We see that for high energy values the wavefunction approaches the classical expec-
tation.

We already mentioned that there exist solutions only for certain energies En =
ℏω(2n + 1). Consequently, the energy levels are equidistant, En+1 − En = ℏω, as if
there were a box into which we add, one after the other, particles with the energy ℏω
until we have accumulated n portions of energy. These particles are called phonons
in the case of vibrations of massive particles, and photons in the case of a radiation
field.

The fact that the energy distribution is the same as the one proposed by Planck
for the black-body radiation suggests the use of the harmonic oscillator to describe
the second quantization.

24.5.4 Time evolution of the unperturbed harmonic oscillator

Here we study the temporal evolution of a population distribution in a harmonic
oscillator. The formal solution of the Schrödinger equation is,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ(0)⟩ . (24.102)

As the Hamiltonian is diagonal in the basis |n⟩,
Ĥ = ℏω(n̂+ 1

2 ) . (24.103)

we can write,

e−ıĤt/ℏ =
∑

n

|n⟩e−ıωt(n+1/2)⟨n| . (24.104)

If the initial state is |ψ(0)⟩ = ∑
m cm|m⟩, the final state and the eigenvalue of any

observable will be,

|ψ(t)⟩ =
∑

n

|n⟩e−ıωt(n+1/2)⟨n|ψ(0)⟩ =
∑

n

e−ıωt(n+1/2)cn|n⟩ (24.105)

⟨ψ(t)|Â|ψ(t)⟩ =
∑

m

⟨m|eıωt(m+1/2)c∗m|Â|
∑

n

e−ıωt(n+1/2)cn|n⟩ =
∑

m,n

c∗mcne
ıωt(m−n)⟨m|Â|n⟩ .

If the oscillator is initially in an eigenstate, |ψ(0)⟩ = |k⟩, we obtain,

|ψ(t)⟩ = e−ıωt(k+1/2)|k⟩ and ⟨ψ(t)|Â|ψ(t)⟩ = ⟨k|Â|k⟩ , (24.106)

that is, the state remains stationary. Motion needs non-diagonal elements of Â.
Another observation is that the populations do not change, even in the case of an

initial superposition, since,

Pk(t) = |⟨k|ψ(t)⟩|2 = |e−ıωt(k+1/2)ck|2 = |ck|2 . (24.107)

We conclude that
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• movement of an observable Â is possible, but only due to variations of the phase
factors;

• to carry out transitions between the vibrational states is necessary to perturb
the oscillator, e.g. by applying fields of electromagnetic radiation.

Example 160 (Motion of a harmonic oscillator): We now consider some
specific examples. If the studied observable is the Hamiltonian and the initial
state an arbitrary superposition, then

⟨ψ(t)|Ĥ|ψ(t)⟩ = ℏω
∑
m,n

c∗mcne
ıωt(m−n)⟨m|n̂+ 1

2
|n⟩ = ℏω

∑
n

|cn|2(n+ 1
2
) .

That is, the total energy of the oscillator is the sum of the energies of the
states weighted with the populations of those states. In the case of the position
operator,

⟨ψ(t)|x̂|ψ(t)⟩ = aho√
2

∑
m,n

c∗mcne
ıωt(m−n)⟨m|â+ â†|n⟩

= aho√
2

∑
n

(
c∗n−1cne

−ıωt√n+ c∗n+1cne
ıωt
√
n+ 1

)
m,n→∞−→ aho

√
2
∑
n

√
n|cn|2 cosωt .

That is, the particle can only oscillate, if there are populations in consecutive

states. If this is not the case, ⟨ψ(t)|x̂|ψ(t)⟩ = 0. The oscillation frequency

is always ω, independent of the energy of the particle. We will study this in

Excs. 24.5.6.3, leaving the discussion of the temporal evolution of perturbed

oscillators to later sections.

24.5.5 Multidimensional harmonic oscillator

The 3D harmonic potential is given by

Vho(r) =
m

2
ω2
xx

2 +
m

2
ω2
yy

2 +
m

2
ω2
zz

2 . (24.108)

Making the ansatz
ψ(r) = ψx(x)ψy(y)ψz(z) , (24.109)

we can separate the spatial directions and obtain a one-dimensional equation for each
coordinate, such that the coordinates can be considered separately. Each function
ψk(xk) is of the form (24.97) and the energies are,

Ek = ℏωk(nk + 1
2 ) , (24.110)

where k = x, y, z.

24.5.6 Exercises

24.5.6.1 Ex: Ground state of a harmonic oscillator

Equating the ground state energy of quantum HO to that of its classical analog, ob-
tain the maximum elongation xm. Now, knowing that the ground state wavefunction

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico01.pdf
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is proportional to the Gaussian ψ0 ∝ e−x
2/2x2

m , obtain the expression for the proba-
bility of finding the HO outside the classical limits and estimate its value.

Solution: The ground state energy is,

1

2
ℏω =

m

2
ω2x2m =⇒ xm =

√
ℏ
mω

= aho .

The ground state wave function is,

ψ0(x) = Ce−x
2/2a2hoH0(x/aho) .

With the normalization,

1 =

∫ ∞

−∞
|ψ0(x)|2dx = C2aho

∫ ∞

−∞
e−x̃

2

dx̃ = C2aho
√
π ,

we get the probability of being in a classically forbidden region,

w = 1−
∫ aho

−aho

|ψ0(x)|2dx = 1− 1√
π

∫ 1

−1
e−x̃

2

dx̃ = 1− erf(1) ≈ 0.157 .

24.5.6.2 Ex: Particle in a semi-harmonic well

Find the energy levels of a particle in a potential energy well of the form V (x) = ∞
for x < 0 and V (x) = mω2x2

2 for x > 0. What is the parity of the allowed states?

Solution: They are simply states with ψn(0) = 0. That is, with n odd. Only states
with odd parity are allowed.

24.5.6.3 Ex: Vibration of a harmonic oscillator

Consider a HO of mass m and angular frequency ω. At time t = 0 the oscillator’s
state is |ψ(0)⟩ =∑n cn|n⟩, where |n⟩ are the stationary states of the HO with energy
(n+ 1/2)ℏω.
a. What is the probability P for measuring, at an arbitrary time t > 0, an energy of
the HO higher than 2ℏω? For the case when P = 0, what are the non-zero coefficients
cn?
b. From now on, we assume that only c0 and c1 are nonzero. Write down the normal-
ization condition for |ψ(0)⟩ and the mean value ⟨Ĥ⟩ of energy in terms of c0 and c1.
With the additional requirement ⟨Ĥ⟩ = ℏω, calculate |c0|2 and |c1|2.
c. Given that the normalized state vector |ψ(0)⟩ is defined to less than an overall
phase factor, we determine this factor by choosing the real and positive coefficients
c0 and c1 = |c1|eıθ. Assuming ⟨Ĥ⟩ = ℏω and ⟨x̂⟩ = 1

2

√
ℏ/mω, calculate θ.

d. With |ψ(0)⟩ determined (according to the previous item), write down |ψ(t)⟩ for
t > 0 and calculate the value θ at this time t. Deduce the average value ⟨x̂⟩(t) of the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Motion_OsciladorHarmonico03.pdf
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position at time t.

Solution: a. The probability is Pn≥2(t) = 1 − |c0|2 − |c1|2. For P = 0 we have
cn = c0δn0 + c1δn1.
b. Normalization requests 1 ≡ ⟨ψ(0)|ψ(0)⟩ = |c0|2 + |c1|2. With the requirement

⟨Ĥ⟩ = 1
2ℏω|c0|2 + 3

2ℏω|c1|2 = ℏω ,

we have the equations

|c0|2 + |c1|2 = 1 and |c0|2 + 3|c1|2 = 2 ,

which gives |c0| = |c1| = 2−1/2.
c. The expectation value for the position is,

⟨x̂(t)⟩ = aho√
2

(
c∗0c1e

−ıωt + c0c
∗
1e
ıωt
)
.

Initially, (t = 0) we have the additional requirement,

⟨x̂(0)⟩ = aho (c
∗
0c1 + c∗1c0) ≡ 1

2

√
ℏ
mω ,

setting c0 = |c0| and c1 = |c1|eıθ we find,

cos θ =
1

4c0c1
=

1√
2
.

This means, θ = π/4.
d. We can now write,

|ψ(t)⟩ = e−ıωt/2c0|0⟩+ e−3ıωt/2c1|1⟩ = 1√
2
e−ıωt/2

(
|0⟩+ e−ıωt−ıπ/4|1⟩

)
.

The expectation value of the position is,

⟨x̂(t)⟩ = 1
2

(
⟨0|+ eıωt+ıπ/4⟨1|

)
aho√

2
(â† + â)

(
|0⟩+ e−ıωt−ıπ/4|1⟩

)

= aho√
2
cos(ωt+ π/4) .

24.6 Superposition states of a harmonic oscillator

As any other quantum system, a harmonic oscillator does not need to be in a par-
ticular vibrational eigenstate. In fact, it is much more common to encounter them
in superpositions of many states. In a system in thermal equilibrium, the energetic
distribution of occupied states reflects the temperature of the system.

24.6.1 Coherent states

The most common superposition for a harmonic oscillation is a Poissonian probability
distribution of occupied vibrational (Fock) states. This state, called coherent or
Glauber state, has particular features that we will discuss in the following sections.
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24.6.1.1 Displacement operator

We now consider the so-called displacement operator,

D(α) ≡ eαâ†−α∗â , (24.111)

which acts on the phase space of a harmonic oscillator spanned by the operators â
and â†, that is, x̂ ∝ Re â and p̂ ∝ Im â, and try to discovers its features.

D(α) is a unitary operator, since using Glauber’s formula (23.210) we get,

D†(α)D(α) = eα
∗â−αâ†eαâ

†−α∗â = eα
∗â−αâ†+αâ†−α∗â+[α∗â−αâ†,αâ†−α∗â]/2 (24.112)

= e[α
∗â−αâ†,αâ†−α∗â]/2 = e[α

∗â,αâ†]/2+[−αâ†,αâ†]/2+[α∗â,−α∗â]/2+[−αâ†,−α∗â]/2

= e|α|
2[â,â†]/2+|α|2[â†,â]/2 = e0 = 1̂ .

We can rewrite the displacement operator using Glauber’s formula:

D(α) = eαâ
†−α∗â = eαâ

†
e−α

∗âe−[αâ
†,−α∗â]/2 = eαâ

†
e−α

∗âe|α|
2[â†,â]/2

= eαâ
†
e−α

∗âe−|α|
2/2 . (24.113)

The state resulting from the action of the operator D(α) onto the ground state of
the HO is,

|α⟩ ≡ D(α)|0⟩ = e−|α|
2/2eαâ

†
e−α

∗â|0⟩ = e−|α|
2/2

∞∑

n=0

(αâ†)n

n!
|0⟩ (24.114)

= e−|α|
2/2

(
1 + αâ† +

(αâ†)2

2!
+ ..

)
|0⟩

= e−|α|
2/2

(
|0⟩+ α

1!

√
1|1⟩+ α2

2!

√
2!|2⟩+ ..

)
,

that is, the state |α⟩ is a superposition distributed according to the Poisson distribu-
tion,

|α⟩ = e−|α|
2/2

∞∑

n=0

αn√
n!
|n⟩ . (24.115)

Applying the step-down operator â onto the state |α⟩, we find,

â|α⟩ = e−|α|
2/2

∞∑

n=0

αn√
n!
â|n⟩ = e−|α|

2/2
∞∑

n=0

αn√
n!

√
n|n− 1⟩

= e−|α|
2/2

∞∑

n=0

αn√
(n− 1)!

|n− 1⟩ , (24.116)

that is,

â|α⟩ = α|α⟩ . (24.117)

We can also write,
⟨α|â† = (â|α⟩)† = (α|α⟩)† = ⟨α|α∗ . (24.118)
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The state |α⟩ is called coherent state or Glauber state 3. We note that, in spite of
its appearance, the equation (24.117) is not an eigenvalue equation, since â is not
observable.

Figure 24.19: Illustration of the action of displacement operators D(α) and D(β) on Glauber
states in the phase space spanned by α = Re α+ı Im α = |α|eıϕ. The uncertainty of Glauber
states ∆x and ∆p is represented by a finite distribution of the amplitude α in the phase space.

Using the formula (23.179), we verify immediately,

D†(α)âD(α) = â+ α , D†(α)â†D(α) = â† + α∗ . (24.119)

Furthermore, the product of two displacement operators is, apart from a phase factor,
another displacement operator satisfying,

D(α)D(β) = e(αβ
∗−α∗β)/2D(α+ β) , (24.120)

as will be verified in Exc. 24.6.6.1. When acting on an eigenket, the phase factor
e(αβ

∗−α∗β)/2 appears in each term of the resulting state, which makes it physically
irrelevant.

24.6.1.2 Uncertainty in Glauber states

Consider a HO prepared in a state |α⟩. The eigenvalues of the observables x̂ ≡
aho√

2
(â† + â) and p̂ ≡ ıℏ

aho

√
2
(â† − â) are,
√
2

aho
⟨α|x̂|α⟩ = ⟨α|â+ â†|α⟩ = α+ α∗ (24.121)

ıaho

√
2

ℏ ⟨α|p̂|α⟩ = ⟨α|â− â†|α⟩ = α− α∗.
With this the eigenvalues of the quadratures become,

2
a2ho
⟨α|x̂2|α⟩ = ⟨α|(â+ â†)2|α⟩ = ⟨α|ââ+ 1 + 2â†â+ â†â†|α⟩ (24.122)

= α2 + 1 + 2|α|2 + α∗2 = 1 + (α+ α∗)2 = 1 + 2
a2ho
⟨α|x̂|α⟩2

−a2ho2
ℏ2 ⟨α|p̂2|α⟩ = ⟨α|(â− â†)2|α⟩ = ⟨α|ââ− 1− 2â†â+ â†â†|α⟩

= α2 − 1− 2|α|2 + α∗2 = −1 + (α− α∗)2 = −1− 2a2ho

ℏ2 ⟨α|p̂|α⟩2 .
3We can also define a Bargmann state as the eigenstate corresponding to the step-up operator

using the notation â†||α⟩ = α||α⟩.
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The uncertainties defined in (23.70) become,

∆x2 = ⟨α|x̂2|α⟩ − ⟨α|x̂|α⟩2 =
a2ho

2 (24.123)

∆p2 = ⟨α|p̂2|α⟩ − ⟨α|p̂|α⟩2 = ℏ2

2a2ho
.

And finally, we find the Heisenberg relation,

∆p∆x = ℏ
2 . (24.124)

Comparing with the uncertainty relation (24.88) derived for Fock states, we con-
clude that the uncertainty is always smallest for Glauber states. In this sense, the
Glauber states are the ones which are closest to classical states characterized by the
absence of uncertainty.

24.6.1.3 Orthogonality and completeness of Glauber states

Glauber are not orthogonal, since,

|⟨α|β⟩|2 = e−|α−β|
2

. (24.125)

We leave the demonstration for Exc. 24.6.6.2, but we note here already that for
|α− β| ≫ 0 the states are approximately orthogonal. The reason for this is, that the
respective population distributions through the Fock states, |⟨n|α⟩|2 and |⟨n|β⟩|2, do
not overlap and hence do not interfere. Some more useful relationships are studied
in Exc. 24.6.6.3. In Exc. 24.6.6.4 we show that the coherent state basis is not only
complete,

1
π

∫
|α⟩⟨α|d2α = I , (24.126)

but it is overcomplete. The state |α⟩ + | − α⟩ is sometimes called Schrödinger cat
state. In Exc. 24.6.6.5 we will show why such states are very difficult to detect.

24.6.2 Kicking a harmonic oscillator

Let us now study the dynamics of a harmonic oscillator subject to a kick or a dis-
location or both in the same time. For this we need to remember the Galilei boost
introduced in Sec. 23.5.3 and the unitary transformations corresponding to a spatial
displacement (23.181) and to a kick (23.192),

Utr(b) = e(−ı/ℏ)bp̂ and Ukc(k) = eıkx̂ , (24.127)

where we restrict to one dimension. The crucial point is that for a harmonic oscillator
we know how to expand the operators x̂ and p̂ into linear combinations of the field
operators â and â†, which allows us to apply the whole formalism developed in the
last sections to these transformation operators.
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24.6.2.1 Transitions between vibrational states via momentum kick and
dislocation

With the formalism developed in the last sections the displacement operator (24.114)
can be decomposed in a combination of a spatial displacement and a kick operator
(24.127). We can see this by simply substituting the field operators â and â† by linear
combinations of position and momentum operators using (24.85),

αâ† − α∗â =
α√
2

(
x̂

aho
− ıahop̂

ℏ

)
− α∗√

2

(
x̂

aho
+ ı

ahop̂

ℏ

)
(24.128)

= −ı
√
2ahoRe α

ℏ
p̂+ ı

√
2Im α

aho
x̂ .

Using Glauber’s rule,

D(α) = eαâ
†−α∗â = eı Re αIm αe(−ıaho

√
2/ℏ)Re α p̂e(ı

√
2/aho)Im α x̂ . (24.129)

Hence, similarly to the Galilei boost in time and space, the displacement operator
D(α) transforms the state of a harmonic oscillator, for example the ground state,
|α⟩ = D(α)|0⟩, by kicking its momentum by an amount,

ℏk =
ℏ
√
2

aho
Im α , (24.130)

and/or displacing its position suddenly by an amount,

b =
√
2ahoRe α , (24.131)

such that,

α =
b√
2aho

+ ı
kaho√

2
. (24.132)

The real and imaginary parts of α decide which contribution predominates, the kick
or the dislocation,

D(α) = eı Re αIm α Utr(
√
2ahoRe α) Ukc(

ℏ
√
2

aho
Im α) . (24.133)

For example, if α is imaginary the operation describes a pure momentum kick by an
amount ℏk, which puts the harmonic oscillator into a coherent state with the mean
occupation number,

n = |α|2 = |Im α|2 = 1
2k

2a2ho , (24.134)

On the other hand, if α is real the operation describes a pure dislocation by an amount
b, which puts the harmonic oscillator into a coherent state with the mean occupation
number,

n = |α|2 = |Re α|2 =
b2

2a2ho
. (24.135)
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Now, let us focus on the kick operator and study how it acts on Fock states,

⟨n|eıkx̂|0⟩ = ⟨n|α⟩ = ⟨n|e−|α|2/2
∞∑

m=0

αm√
m!
|m⟩ (24.136)

= e−|α|
2/2 α

n

√
n!

= e−|kaho|2/4 (ıkaho)
n

√
2nn!

,

using (24.132). This formula tells us that for small α, transitions may only occur to
the vibrational states |0⟩ and |1⟩, since,

⟨n|eıkx̂|0⟩ kaho→0−→ αn√
n!
≃ δn,0 + αδn,1 . (24.137)

On the other hand for very large α, the exponential in (24.136) pulls the transition
rate to a particular vibrational state |n⟩ to zero, but this is simply due to the fact
that the population is redistributed over many states, since,

∑

n

|⟨n|eıkx̂|0⟩|2 = e−(kaho)
2/2

∞∑

n=0

|α|2n
n!

= e−(kaho)
2/2e|α|

2

= 1 . (24.138)
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Figure 24.20: (code) Transition matrix element |⟨n|eıkx̂|0⟩|2 as a function of kaho. The

curves are Poisson distributions of photon numbers in coherent states.

For small momentum kicks we may approximate the transition matrix elements
by,

⟨m|eıkx̂|n⟩ ≃ ⟨m|1 + ık aho√
2
(â+ â†)|n⟩ (24.139)

= δm,n + ıkaho√
2
(
√
nδm,n−1 +

√
n+ 1δm,n+1) ,

such that, ∑

m ̸=n
|⟨m|eıkx̂|n⟩|2 ≃ k2a2ho(n+ 1

2 ) . (24.140)

Formula (24.140) tell us that the probability for a transition between vibrational
states depends on the parameter kaho, which we will discuss in the next section.
For small kaho it gets increasingly more difficult for the system to leave the original

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_LambDickeVibra.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_LambDickeVibra.m
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vibrational state |n⟩ and to form a coherent state. After a momentum kick, the
population is coherently distributed over several vibrational states in a way to fulfill
momentum and energy conservation. Let us consider, for simplicity, an initial state
|0⟩. If the kick is weak or the trap strong (i.e. if |α| < 1), the atom will stay in
|0⟩ with a high probability amplitude and go to |1⟩ only with a small probability
amplitude. We will derive in Exc. 24.6.6.6 the general expression for the transition
matrix element for arbitrary values of α 4,

⟨m|eıkx̂|n⟩ = e|α|
2/2

n∑

k=0

√(
n

k

)(
m

k

)
⟨n− k|α⟩⟨m− k|α⟩ . (24.141)

The formula satisfies,

∑

m

|⟨m|eıkx̂|n⟩|2 =
∑

m

⟨n|eıkx|m⟩⟨m|e−ıkx|n⟩ = ⟨n|eıkxe−ıkx|n⟩ = 1 . (24.142)

Kicking a harmonic oscillator initially in state |0⟩ we obtain for the expectation
value of position and momentum,

⟨α|p̂|α⟩ = ⟨0|D(α)†p̂D(α)|0⟩ = ⟨0|eıkx̂p̂e−ıkx̂|0⟩ = ⟨0|p̂|0⟩+ ℏk

⟨α|x̂|α⟩ = ⟨0|x̂|0⟩
.

24.6.2.2 Lamb-Dicke regime

We already introduced |α| as the amplitude (24.135) of the coherent vibrational state
created by kicking a harmonic oscillator. Defined as,

η ≡ |α| = 1√
2
kaho with aho ≡

√
ℏ

mωho
. (24.143)

the so-called Lamb-Dicke parameter measures the degree of confinement of a particle
in a harmonic trap with respect to the momentum kick. We say that we are in the
Lamb-Dicke regime, when η < 1, that is when the particle is localized to a volume
smaller than the wavelength, 2πx0 ≪ λ = 2π/k, corresponding to the momentum
change.

Figure 24.21: Illustration of the Lamb-Dicke parameter.

4See also 35.2.3.
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We can also rewrite the Lamb-Dicke parameter in terms of the trap’s secular
frequency, ωho, and the recoil-shift,

η =

√
ωrec
ωho

with ωrec ≡
ℏk2

2m
, (24.144)

where we understand the recoil-energy ℏωrec as the kinetic energy gained through
the recoil acceleration. In this form the Lamb-Dicke parameter tells us that, in the
Lamb-Dicke regime, the energy of the momentum kick is not sufficient to efficiently
excite vibrational states,

(2n+ 1)ℏk2/m≪ ωho . (24.145)

That is, cold particles in low vibrational states n can not accommodate the recoil
shift within the vibrational spectrum of the trap. Consequently, the recoil cannot be
transferred to the particle itself, but must be absorbed by the entire trap. This is the
case of the strong binding regime in ion traps, which is analogous to the Mößbauer
effect discussed later in Sec. 38.3.3.

Finally, the Lamb-Dicke parameter can be rewritten in terms of the inverse Doppler
modulation index,

η =
kvmax
2ωho

with
m

2
v2max = ℏωho . (24.146)

Accelerated by the momentum kick, the atom will execute harmonic oscillations with
frequency ωho and with the maximum velocity-excursions vmax. Hence, any quantity
depending on the atomic velocity, e.g. the Doppler-shift of light scattered from the
atom, will be modulated. We will see in Sec. 38.3.3 that the modulation generates
a spectrum of frequency sidebands which, in case of small η < 1, are restricted to
first-order sidebands located at ±ωho of the light frequency. Do the Exc. 24.6.6.7.

Example 161 (Absorption of recoil by a molecular dimer): To be able to
discuss the validity of energy and momentum conservation in a kicked system,
let us consider a molecule made of two atoms with masses m1 and m2 bound
by a force obeying Hooke’s law. Then we kick atom 1 via the momentum shift
operator eıkx̂1 (e.g. during a photon absorption process with the associated
recoil) and analyze the motional dynamics of the whole system 5. (We restrict
ourselves to one dimension.)
The first step is to write down the Hamiltonian,

Figure 24.22: Illustration of a heteronuclear dimer kicked by photonic recoil.

Ĥ = − ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
+
µ

2
ω2
ho(x1 − x2)2 ,

5The selective kicking is realistic if we image both atoms being of different species with different
transitions responding differently to incident radiation.
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We transform in the center-of-mass system via,

M ≡ m1 +m2 and
1

µ
≡ 1

m1
+

1

m2

R =
m1x1 +m2x2

M
and r = x1 − x2 .

Applying the separation ansatz ψ(x1, x2) = Θ(R)ϕ(r) to the Schrödinger equa-
tion,[

− ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
+
µ

2
ω2
ho(x̂1 − x̂2)2

]
ψ(x1, x2) = Etotψ(x1, x2) ,

we calculate for i = 1, 2,

d

dxi
=
dR

dxi

d

dR
+

dr

dxi

d

dr
=
mi

M

d

dR
± d

dr

d2

dx2i
=
m2
i

M2

d2

dR2
± 2

mi

M

d

dR

d

dr
+

d2

dr2

− ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
= − ℏ2

2M

d2

dR2
− ℏ2

2µ

d2

dr2
.

Hence, we get,

− ℏ2

2M

d2

dR2
Θ(R) = (Etot−E)Θ(R) ,

[
− ℏ2

2µ

d2

dr2
+
µ

2
ω2
hor̂

2

]
ϕ(r) = Eϕ(r) ,

with the vibrational energy E and the energy of the center-of-mass motion
Etot − E.
Now, we analyze the kick operator eıkx̂1 with x̂1 = R̂ − m2

M
r̂. We find that,

because of [R̂, r̂] = 0,

eıkx̂1 = eıkR̂e−ık
m2
M
r̂ .

This means that the kick operator simultaneously acts on both: the center-of-
mass receives a recoil accelerating it by an amount pcm = ℏk, and the vibrational
relative motion receives a kick of an amount prl = ℏkm2/M following the dy-
namics described in Sec. 24.6.2.
Obviously, the total system conserves momentum, which is imparted to the
center-of-mass motion. Whether the kick also excites the relative motion de-
pends on mass ratio. In the limit m1 ≪ m2 we find prl = ℏk, while in the limit
m1 ≫ m2 we get prl → 0. In terms of the Lamb-Dicke parameter, we find,

η =
prlaho

ℏ
√
2

=
km2

M
√
2

√
ℏ

µωho
=

km2

m1 +m2

√
ℏ

2ωho

(
1

m1
+

1

m2

)
.

Hence, in the limit m1 ≪ m2 we expect a much larger Lamb-Dicke parameter
than for m1 ≫ m2. In particular, considering the limit m2 → ∞, we recover
the formula (24.144) holding for an atom confined in a harmonic potential,

η
m2→∞−→

√
ℏk2

ωho2m1
=

√
ωrec
ωho

.
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24.6.3 Shaking a harmonic oscillator

As we mentioned below the formulae (23.193), the transformation in momentum space
is not a realistic concept for a kick. In practice, a kick will always be the results of
a collision, which is understood here as a scattering of a free (massive or massless)
particle at our harmonically trapped particle. And the scattering process will take a
finite amount of time, e.g. the duration of a radiative π-pulse required to excite an
atomic transition.

More realistic is to expose the harmonic oscillator to periodic forcing,

Ĥ(t) = Ĥ(0) + Ĥ(1) = − ℏ2

2m

d2

dx2
+
m

2
ω2
hox̂

2 +
ℏΩ
2

(âeıνt + â†e−ıνt) . (24.147)

To study its time evolution we calculate,

|ψ(t)⟩ = e−(ı/ℏ)Ĥt
∑

n

an|n⟩
an=δn,0−→ e−(ı/ℏ)Ĥt|0⟩ , (24.148)

when the oscillator is initially in the state |0⟩. We rewrite the time evolution propa-
gator as,

e−(ı/ℏ)Ĥt = e−ıωhot(n̂+1/2)−(ıΩt/2)(âeıνt+â†e−ıνt) . (24.149)

To simplify the propagator, we first have a closer look at the terms âeıωhot and
â†e−ıωhot, which we evaluate through their action on the complete system of unper-
turbed eigenfunctions,

e−(ı/ℏ)Ĥ
(0)tâe(ı/ℏ)Ĥ

(0)t|n⟩ = e−(ı/ℏ)Ĥ
(0)tâe(ı/ℏ)E

(0)
n t|n⟩ (24.150)

= e−(ı/ℏ)E
(0)
n−1te(ı/ℏ)E

(0)
n tâ|n⟩ = eıωhotâ|n⟩ .

Hence, defining the detuning ∆ ≡ ν − ωho,

âeıνt = eıωhotâeı∆t = e−ıωhot(n̂+1/2)âeı∆teıωhot(n̂+1/2)

â†e−ıνt = e−ıωhotâ†e−ı∆t = e−ıωhot(n̂+1/2)â†e−ı∆teıωhot(n̂+1/2)

n̂ = e−ıωhot(n̂+1/2)n̂eıωhot(n̂+1/2)

. (24.151)

Substituting these expression into the propagator (24.149) we get,

e−(ı/ℏ)Ĥt = ee
−ıωhot(n̂+1/2)[−ıωhot(n̂+1/2)−(ıΩt/2)âeı∆t−(ıΩt/2)â†e−ı∆t]eıωhot(n̂+1/2)

.
(24.152)

Now, making use of the relationship,

ee
−ÂB̂eÂ =

∑

n

(e−ÂB̂eÂ)n

n!
=
∑

n

e−ÂB̂neÂ

n!
= e−ÂeB̂eÂ , (24.153)

which is easy to show by expansion of eB̂ , we find 6,

e−(ı/ℏ)Ĥt = e−ıωhot(n̂+1/2)e−ıωhot(n̂+1/2)−(ıΩt/2)(âeı∆t+â†e−ı∆t)eıωhot(n̂+1/2) . (24.154)

6Note, that this formula can not be simplified using Glauber’s formula, because [n̂, [n̂, â]] ̸= 0.
Note also, that the unitary transformation corresponds to a transformation into Dirac’s interaction
picture, which will be studied in the context of quantized radiation fields in Sec. 35.4.
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In particular, for ∆ = 0,

⟨n|e−(ı/ℏ)Ĥt|0⟩ = e−nıωhot⟨n|e−ıωhot(n̂+1/2)−(ıΩt/2)(â+â†)|0⟩ . (24.155)

The dynamics is illustrated in Fig. 24.23. Again, we notice that the state generated
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)

Figure 24.23: (code) (a) Populations of the vibrational states after a given interaction time.

(b) Time evolution of the lowest populations.

is a coherent state. In Exc. 24.6.6.8 we will study how to generalize the problem to
non-resonant excitation, ∆ ̸= 0.

24.6.4 Forcing a harmonic oscillator

The transfer of momentum is the result of a (generally) constant force applied for a
certain amount of time,

ℏk =

∫ ∞

−∞
mg Θ[0,∆t](t) dt , (24.156)

where g denotes the acceleration. That is, we expect that a harmonic oscillator,

Ĥ(t) = − ℏ2

2m

d2

dx2
+
m

2
ω2
hox̂

2 −mgx̂ Θ[0,∆t](t) , (24.157)

forced for a period of time ∆t should have suffered a kick.

24.6.4.1 Displaced harmonic oscillator

To begin with, we will derive the dynamics of a harmonic oscillator suddenly exposed
to a homogeneous constant force F (t) = mg Θ[0,∞](t). It is easy to see, that the
above perturbed Hamiltonian can be cast into the form,

Ĥ(t) = − ℏ2

2m

d2

dx2
+
m

2
ω2
ho

(
x̂− g

ω2
ho

)2

− mg2

2ω2
ho

, (24.158)

where the last constant term plays no role in the dynamics. That is, as we know
from classical physics, the essential impact of a homogeneous force (e.g. gravity) on
a harmonic oscillator consists in displacing its equilibrium position. Knowing the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_ShakedOscillator.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Motion_ShakedOscillator.m
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eigenvalues and -states of the unperturbed Hamiltonian, the obvious solution of the
perturbed eigenvalue problem is,

Ĥ|ψ(1)
n ⟩ = E(1)

n |ψ(1)
n ⟩ (24.159)

with E(1)
n = En −

mg2

2ω2
ho

and ⟨x|ψ(1)
n ⟩ = ψ(1)

n (x) = ψn(x− g
ω2

ho
) = ⟨x− g

ω2
ho
|n⟩ .

Using the properties (23.181) and (23.183) we may write,

⟨x− g
ω2

ho
|n⟩ = ⟨x|U†tr(− g

ω2
ho
)|n⟩ = ⟨x|e−(ı/ℏ)(g/ω2

ho)p̂|n⟩ , (24.160)

and using the representation (24.86) of the momentum operator by the field operators
and introducing the abbreviation β ≡ g

ω2
hoaho

√
2
we can rewrite,

⟨x− g
ω2

ho
|n⟩ = e−β(â−â

†)⟨x|n⟩ . (24.161)

Note, that the transition from (24.157) to (24.159) can also be obtained by a redefi-
nition of the field operators according to,

b̂ ≡ â− mgaho

ℏωho

√
2
, (24.162)

since,

Ĥ = ℏωho(â†â+ 1
2 )−

mgaho√
2

(â+ â†) = ℏωho(b̂†b̂+ 1
2 )−

mg2

2ω2
ho

(24.163)

and â− â† = b̂− b̂†.
The temporal evolution is given by the time-dependent Schrödinger equation.

Since the jump is finite, the solution must be well behaved at time t = 0,

⟨x|ψ(1)
n (t)⟩ = ⟨x|e−(ı/ℏ)Ĥt|ψ(1)

n (0)⟩ (24.164)

= ⟨x|e−(ı/ℏ)Ĥte−β(â−â†)|n⟩
= ⟨x|e−(ı/ℏ)Ĥte−β(â−â†)e(ı/ℏ)Ĥte−(ı/ℏ)Ĥt|n⟩ .

To simplify the first three exponential functions, we use the relationships (24.153)
and (24.150) 7,

e−(ı/ℏ)Ĥte−β(â−â
†)e(ı/ℏ)Ĥt = e−βe

−(ı/ℏ)Ĥt(â−â†)e(ı/ℏ)Ĥt

= e−β(e
ıωhotâ−e−ıωhotâ†) ,

(24.165)
and write the temporal solution,

ψ(1)
n (x, t) = e−β(âe

ıωhot−â†e−ıωhot)e−(ı/ℏ)Ĥtψn(x) (24.166)

= e−β(â−â
†) cosωhot−ıβ(â+â†) sinωhote−(ı/ℏ)E

(0)
n tψn(x) .

7We can use (24.150), because the shifted harmonic oscillator has, except from a constant offset
the same eigenenergies.
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Using Glauber’s formula (23.210) we find,

ψ(1)
n (x, t) = e−ıβ(â+â

†) sinωhote−β(â−â
†) cosωhoteıβ

2 sinωhot cosωhote−(ı/ℏ)E
(0)
n tψn(x)

= e−ı(mg/ℏωho)x̂ sinωhote−(ı/ℏ)(g/ω
2
ho)p̂ cosωhoteıβ

2 sinωhot cosωhote−(ı/ℏ)E
(0)
n tψn(x)

= e−ıβ(â+â
†) sinωhoteıβ

2 sinωhot cosωhote−(ı/ℏ)E
(0)
n tψn(x− b cosωhot) . (24.167)

Finally,

|ψ(1)
n (x, t)|2 = |ψn(x− x̄(t))|2 where x̄(t) ≡ g

ω2
ho

cosωhot . (24.168)

This means that the spatial distribution of ψ
(1)
n around x̄(t) is the same as of ψn

around x̄ = 0. The entire distribution oscillates without deformation. The momentum
distribution follows from the Fourier transform,

ϕ(1)n (p, t) =
1√
2πℏ

∫
dxe−(ı/ℏ)pxψ(1)

n (x, t) (24.169)

=
1√
2πℏ

∫
du e−(ı/ℏ)pue

−(ı/ℏ)umωho
g
ω2

ho
sinωhot

eıγ(p,t)ψn

= eıγ(p,t)ϕn(p+mωho
g
ω2

ho
sinωhot) ,

where the abbreviation γ = γ∗ contains all unitary transformations of (24.167), that
do not depend on x. We obtain,

|ϕ(1)n (p, t)|2 = |ϕn(p− p̄(t))|2 where p̄(t) ≡ −m g
ωho

sinωhot . (24.170)

24.6.4.2 Discussion of the kick dynamics

For the acceleration of the harmonic oscillator to resemble a ’kick’, the time during
which the perturbation is active must be much smaller than a trap oscillation period,
ωho∆t≪ 1. In this case, we may expand the oscillatory motion (24.168) and (24.170),

x̄ =
g

ω2
ho

and p̄ = −mg∆t ≡ −ℏk , (24.171)

which is consistent with the initial request (24.156). It is also clear that, for a given
force mg, the maximum momentum that can be transmitted is limited, ℏk < mg/ωho.

As long as the kick-approximation ωho∆t≪ 1 holds, we may simply describe the
dynamics during the application of the force, via a time-dependent kick operator,

eık(t)x̂ = D(α(t)) , (24.172)

where the acquired momentum increases linearly with time according to k(t) =

kmax(min(t,∆t),0)
∆t . I.e. the populations of the vibrational states evolve like (24.136)

into a coherent state with increasing amplitude |α(t)|2. At the end of the kick, on
a much slower time-scale ω−1ho , the wavefunctions will start to oscillate all in phase,
according to (24.168).
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The time-dependence of the states |α(t)⟩, as shown in Exc. 24.6.6.9 is given by,

|α(t)⟩ = e−(ı/ℏ)Ĥt|α(0)⟩ =
∑

n

e−(ı/ℏ)Ente−|α(0)|
2/2α(0)

n

√
n!
|n⟩ (24.173)

= e−ıωhot/2
∑

n

e−|α(0)|
2/2 (α(0)e

−ıωhot)n√
n!

|n⟩ = e−ıωhot/2|α(0)e−ıωhot⟩ .

With (24.150) we find,

x̂(t) = e−(ı/ℏ)Ĥtx̂(0)e(ı/ℏ)Ĥt = x̂(0) cosωhot+
p̂(0)
mωho

sinωhot and (24.174)

p̂(t) = e−(ı/ℏ)Ĥtp̂(0)e(ı/ℏ)Ĥt = mωhox̂(0) sinωhot+ p̂(0) cosωhot ,

or with (24.173),

⟨α(t)|x̂|α(t)⟩ = ⟨α(0)|x̂|α(0)⟩ cosωhot+ 1
mωho

⟨α(0)|p̂|α(0)⟩ sinωhot

⟨α(t)|p̂|α(t)⟩ = mωho⟨α(0)|x̂|α(0)⟩ sinωhot+ ⟨α(0)|p̂|α(0)⟩ cosωhot
.

(24.175)
We note, that the position and momentum wavefunctions ⟨x|n⟩ and ⟨p|n⟩ of the
excited vibrational states are complicated Hermite polynomials, but we don’t have
to write them down explicitly to get to the last result. We will derive some further
properties in Exc. 24.6.6.10.

24.6.4.3 Simulation of the displacement of a harmonic oscillator

The Hamiltonian of a harmonic oscillator subject to an external force can be cast into
the form,

Ĥ(t) = − ℏ2

2m

d2

dx2
+
m

2
ω2
hox̂

2 +mgx̂ = ℏωho(â†â+ 1
2 ) +mg aho√

2
(â+ â†)

=




. . .
. . . 0

. . . (n+ 1
2 )ℏωho mg aho√

2

√
n+ 1

mg aho√
2

√
n+ 1 (n+ 3

2 )ℏωho
. . .

0
. . .

. . .




. (24.176)

The temporal evolution of the state is given by,

|ψ(t)⟩ = e−(ı/ℏ)Ĥt|ψ(0)⟩ = e−(ı/ℏ)Ĥt
∑

n

an|n⟩
an=δn,0−→ e−(ı/ℏ)Ĥt|0⟩ , (24.177)

when the oscillator is initially in the state |0⟩. Note that, without perturbation,
|ψ(t)⟩ =∑n e

−ıωho(n̂+1/2)tan|n⟩.
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Various quantities now are interesting to plot as a function of time. Firstly, we
calculate the populations |⟨n|ψ(t)⟩|2 of the various states and the total energy from,

⟨n|ψ(t)⟩ = ⟨n|e−(ı/ℏ)Ĥt
∑

m

am|m⟩

Etot(t) =
∑

n

ℏωho(n+ 1
2 )|⟨n|ψ(t)⟩|2

. (24.178)

Secondly, we get for the temporal evolution of the spatial wavefunction,

⟨x|ψ(t)⟩ =
∑

n

⟨x|n⟩⟨n|ψ(t)⟩ =
∑

n

⟨x|n⟩⟨n|e−(ı/ℏ)Ĥt
∑

m

am|m⟩ , (24.179)

where |⟨x|n⟩⟨n|ψ(t)⟩|2 is the spatial representation of the wavefunction of the n-th
eigenstate derived in (24.97),

⟨x|n⟩ = e−x
2/2a2hoHn(x/aho)√
aho
√
π2nn!

, (24.180)

weighed with instantaneous population (24.178) of this state. We thus obtain for the
total wavefunction,

⟨x|ψ(t)⟩ =
∑

n

e−x
2/2a2hoHn(x/aho)√
aho
√
π2nn!

⟨n|e−(ı/ℏ)Ĥt|n⟩ . (24.181)

Furthermore, we may calculate the expectation values of the position and the
momentum of the harmonic oscillator from the total wavefunction ⟨x|ψ(t)⟩,

⟨ψ(t)|x̂|ψ(t)⟩ =
∫
⟨ψ(t)|x̂|x⟩⟨x|ψ(t)⟩dx =

∫
x|ψ(x, t)|2dx (24.182)

⟨ψ(t)|p̂|ψ(t)⟩ =
∫
⟨ψ(t)|p̂|p⟩⟨p|ψ(t)⟩dp =

∫
p|ϕ(p, t)|2dp ,

where ϕ(p, t) is the Fourier transform of ψ(x, t) according to (23.102). In practice, it
is however easier to calculate them from the populations ⟨n|ψ(t)⟩,

⟨ψ(t)|x̂|ψ(t)⟩ = aho√
2

∑

n

⟨ψ(t)|â+ â†|n⟩⟨n|ψ(t)⟩

⟨ψ(t)|p̂|ψ(t)⟩ = ℏ
ıaho

√
2

∑

n

⟨ψ(t)|â− â†|n⟩⟨n|ψ(t)⟩
. (24.183)

The temporal evolution of the forced harmonic oscillator defined by (24.177) can
be numerically propagated. In cases where the force varies in time, the propagation
can be done iteratively by subdividing time in intervals tk− tk−1 for k ∈ N sufficiently
small that the force can be considered constant within them,

|ψ(tk)⟩ = e−(ı/ℏ)Ĥ(tk−tk−1)|ψ(tk−1)⟩ . (24.184)

The results of such a simulation are illustrated in Fig. 24.24.
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Figure 24.24: (code) Evolution of a harmonic oscillator subject to time-dependent forcing.

(a) Histogram of the final population of the vibrational states. (b) Time evolution of the

vibrational state populations. (c) Time evolution of the applied force (black) and of the

expectation values of position (red) and momentum (brown). (d) Spatial wavefunctions

⟨n|ψ(x)⟩|2 (Hermite polynomials) (blue) of the lowest vibrational states of the harmonic

potential (black). The green Gaussian is the coherent sum of the spatial wavefunctions

|∑n⟨n|ψ(x)⟩|2, and the cyan Gaussian the coherent sum of the momentum wavefunctions

|∑n⟨n|ψ(p)⟩|2. The horizontal yellow line is the total energy of the system. You may also

run a movie of the simulation clicking on (watch movie)! Furthermore, a presentation about

the topic of recoil on trapped atoms is available at (watch talk)!

24.6.5 Quantization of the electromagnetic field

The quantization of light (also called second quantization) triggered by Max Planck’s
treatments of black-body radiation in 1905 resolved the problem of the ultraviolet
divergence and explained the photoelectric effect. Twenty years later the quantiza-
tion of the atom by Niels Bohr (also called first quantization) explained the internal
structure of the atom.

The operator for the electric field of a laser mode is given by,

Ê = ıE1[âeık·r−ıωt − â†e−ık·r+ıωt] , (24.185)

where E1 =
√

ℏω/2ε0V is the electric field generated by a single photon in the mode

volume V . Exc. 24.6.6.11 asks to calculate the eigenvalues ⟨Ê⟩ and ∆Ê .
It is sometimes convenient to represent the light field by its quadratures. With the

definition â ≡ x̂1 + ıx̂2, where x̂1,2 are non-commuting observables ([x̂1, x̂2] = ı/2),
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we can write the field as,

Ê = −2E1[x̂1 sin(k · r− ωt) + x̂2 cos(k · r− ωt)] . (24.186)

Heisenberg’s uncertainty relations requires,

∆x1∆x2 ≥ 1
4 . (24.187)

For coherent states, ∆x1 = ∆x2 = 1
2 .

24.6.6 Exercises

24.6.6.1 Ex: Sum of displacements operators

Prove formula (24.120). Find a geometric interpretation of the phase factor (αβ∗ −
α∗β)/2 in the complex plane of Glauber states.

Solution: The formula can be derived by utilizing the Baker-Campbell-Hausdorff
formula,

eαâ
†−α∗âeβâ

†−β∗â = e(α+β)â
†−(β∗+α∗)âe(αβ

∗−α∗β)/2 .

The phase factor measure the area in the Glauber plane enclosed by the amplitudes α,
β, and α+ β. To see this we represent the amplitudes as vectors,

α→



Re α

Im α

0


 and β →



Re β

Im β

0


 .

Now, the area is given by,

A =

∣∣∣∣∣∣∣



Re α

Im α

0


×



Re β

Im β

0




∣∣∣∣∣∣∣
= |Re αIm β−Im αRe β| =

∣∣∣∣
α∗β − αβ∗

2ı

∣∣∣∣ = |Im α∗β| .

It has the meaning of a geometrical phase.

24.6.6.2 Ex: Harmonic oscillator and coherent states

a. Verify whether the Glauber states of a harmonic oscillator are orthogonal.
b. Show that ⟨α|n̂|α⟩ = |α|2, ⟨α|n̂2|α⟩ = |α|4 + |α|2, and ∆n̂ = |α|.
c. What is the population of the state |n⟩ of a harmonic oscillator in a Glauber state?

Solution: a. This easily follows with

⟨α|β⟩ = e−|α|
2/2−|β|2/2∑

n

α∗nβn

n!
= e−|α|

2/2−|β|2/2+α∗β ,

such that
|⟨α|β⟩|2 = e−|α−β|

2

.
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b. We calculate
⟨α|n̂|α⟩ = ⟨α|â†â|α⟩ = |α|2 ,

and

⟨α|n̂2|α⟩ = ⟨α|â†ââ†â|α⟩ = ⟨α|α∗ââ†α|α⟩ = ⟨α|α∗(1− â†â)α|α⟩ = |α|2 + |α|4 ,
and

∆n =
√
⟨n2⟩ − ⟨n⟩2 = |α| .

c. The population is,

|⟨n|α⟩|2 = e−|α|
2 |α|2n
n!

= e−⟨n⟩
⟨n⟩n
n!

.

This is a Poisson distribution which, for ⟨n⟩ very large, resembles a Gaussian.

24.6.6.3 Ex: Annihilation operator acting on Fock and Glauber states

Show that the annihilation operator â does not reduce the photon number of a Glauber
state in contrast to a Fock state.

Solution: We have,

⟨n|â†n̂â|n⟩
⟨n|n̂|n⟩ = n− 1 but

⟨α|â†n̂â|α⟩
⟨α|n̂|α⟩ = |α|2 = n .

24.6.6.4 Ex: Completeness of coherent states

a. Show,

1
π

∫
|α⟩⟨α|d2α =

∞∑

n=0

|n⟩⟨n| = I .

b. Show that coherent states can be expanded in terms of other coherent states and
that, consequently, the coherent state basis is overcomplete.

Solution: a. Using the expansion (24.115) of Glauber into Fock states and writing
α = |α|eıθ we find,

∫
|α⟩⟨α|d2α =

∞∑

n,m=0

|n⟩⟨m|√
m!
√
n!

∫
e−|α|

2

α∗mαnd2α

=

∞∑

n,m=0

|n⟩⟨m|√
m!
√
n!

∫ ∞

0

e−|α|
2 |α|m+n+1d|α|

∫ 2π

0

eı(n−m)θdθ

=

∞∑

n,m=0

|n⟩⟨m|√
m!
√
n!
× n!

2
× 2πδnm = π

∞∑

n=0

|n⟩⟨n| .

b. [1184], p.55.
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24.6.6.5 Ex: Schrödinger cat state

Calculate the probability of finding n photons in Schrödinger’s cat state |ψ⟩ = 2−1/2(|α⟩±
| − α⟩).

Solution: The probability is,

Pn =
∣∣∣⟨n| 1√

2
(|α⟩ ± | − α⟩)

∣∣∣
2

= 1
2

∣∣∣∣e−|α|
2/2α

n ± (−α)n√
n!

∣∣∣∣
2

.

With this, for the sign (+), we have P catn = 2P coherentn if n is even and P catn = 0 if n
is odd. But for the sign (−) it is just the opposite. That is, the loss of a single photon
turns the ’cat’ |α⟩+ | − α⟩ into a cat |α⟩ − | − α⟩.

24.6.6.6 Ex: Transition elements for arbitrary Lamb-Dicke parameters

Calculate the general expression for ⟨m|eıkx̂|n⟩ with the abbreviation α ≡ ıkaho/
√
2

for arbitrary values of the Lamb-Dicke parameter using the following results of the

discussion of the displacement operator D(α) = eαâ
†−α∗â = e−|α|

2/2eαâ
†
e−α

∗â for
Glauber states. The relations

|n⟩ = (â†)n√
n!
|0⟩ and ⟨n|α⟩ = e−|α|

2/2 α
n

√
n!

describe the relation between Fock and Glauber states. Furthermore,

D(−α) = D†(α) and D†(α)â†D(α) = â† + α∗ .

Solution: From the rules for the displacement operator we immediately derive,

D(α)â† = (â† − α∗)D(α) = (â† + α)D(α) ,

using that in this particular case α∗ = −α. This allows us to do the following deriva-
tion,

eıkx̂|n⟩ = D(α)|n⟩ = 1√
n!
D(α)(â†)n|0⟩ = 1√

n!
(â† + α)nD(α)|0⟩ = 1√

n!
(â† + α)n|α⟩ .

Using the binomial expansion (x+ y)n =
∑n
k=0

(
n
k

)
xkyn−k we calculate,

eıkx̂|n⟩ = 1√
n!

n∑

k=0

(
n

k

)
αn−k(â†)k|α⟩ ,

such that,

⟨m|eıkx̂|n⟩ = 1√
n!

n∑

k=0

(
n

k

)
αn−k⟨m|(â†)k|α⟩

=
1√
n!

n∑

k=0

(
n

k

)
αn−k

[√
m(m− 1)âk−2|m− 2⟩

]†
|α⟩

=
1√
n!

n∑

k=0

(
n

k

)
αn−k

√
m!

[m−min(k,m)]!
⟨m−min(k,m)|(â†)k−min(k,m)|α⟩ .
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Let us restrict to the case m ≥ n. Then necessarily min(k,m) = k, so that,

⟨m|eıkx̂|n⟩ = 1√
n!

n∑

k=0

(
n

k

)
αn−k

√
m!

(m− k)! ⟨m− k|α⟩

=

n∑

k=0

√(
n

k

)
αn−k√
(n− k)!

√(
m

k

)
⟨m− k|α⟩

= e|α|
2/2

n∑

k=0

√(
n

k

)(
m

k

)
⟨n− k|α⟩⟨m− k|α⟩ .

The case m ≤ n can be calculated via,

⟨m|eıkx̂|n⟩ = ⟨n|e−ikẑ|m⟩∗ = ⟨n|D(−α)|m⟩∗ = ⟨n|D(α)|m⟩ ,

which gives us the same formula.
With the last formula we recover the expression (24.136) for ⟨m|e−ıkẑ|0⟩. We also
recover the expressions (24.139),

⟨m|eıkx̂|m⟩ α→0−→
m∑

k=0

m!α2m−2k

k!(m− k)!2
α→0−→ 1

⟨m|eıkx̂|m− 1⟩ α→0−→
m−1∑

k=0

√
(m− 1)!

√
m!

k!(m− 1− k)!(m− k)!α
2m−1−2k α→0−→ √mα

⟨m|eıkx̂|m+ 1⟩ α→0−→
m+1∑

k=0

√
(m+ 1)!

√
m!

k!(m+ 1− k)!(m− k)!α
2m+1−2k α→0−→

√
m+ 1α .

24.6.6.7 Ex: Lamb-Dicke regime

A rubidium atom is trapped in an isotropic harmonic trap with secular frequency
ωho = (2π) 1 kHz. Determine whether, driven on its D2 line, it is within the Lamb-
Dicke regime.

Solution: The frequency of the D2-line is 780 nm. Hence, the recoil frequency is,

ωrec =
ℏk2

2m
≈ (2π) 3.54 kHz ,

and the Lamb-Dicke parameter,

η =

√
ωrec
ωho

≈ 2 .
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24.6.6.8 Ex: Resonantly excited harmonic oscillator

Write down the Hamiltonian of a harmonic oscillator subject to an oscillating homoge-
nous force, and numerically simulate the evolution of the vibrational states starting
from the ground state.

Solution: Writing the force as,

F = −dĤF

dx
= F0 cosωt ,

we see that it can be derived from the potential,

ĤF = −F0x̂ cosωt .

Doing the RWA defining the Rabi frequency Ω as an abbreviation,

ĤF = −F0

√
2

aho
(âeıωt + â†e−ıωt) ≡ ℏΩ

2 (âeıωt + â†e−ıωt) .

In matrix formalism,

Ĥ =
p̂2

2m
+ V (x̂) + ĤF

=
∑

n

[
ℏω0(n|n⟩⟨n|+ 1

2 ) +
ℏΩ
2 e

ıωt
√
n|n− 1⟩⟨n|+ ℏΩ

2 e
−ıωt√n+ 1|n+ 1⟩⟨n|)

]

= ℏ




. . .
. . .

. . . (n− 1)ω0
Ω
2
eıωt
√
n

Ω
2
e−ıωt

√
n nω0

. . .

. . .
. . .




+
ℏω0

2
I .

Transforming the eigenstates of the Schrödinger equation according to |n′⟩ = eınωt|n⟩,
or alternatively transforming the Hamiltonian according to,

Ĥ ′ = U†ĤU + iℏU̇†U

with the unitary transformation,

U ≡




. . .
. . .

. . . eı(n−1)ωt 0

0 eınωt
. . .

. . .
. . .




,

we get,

Ĥ ′ = ℏ




. . .
. . .

. . . −(n− 1)∆ Ω
2

√
n

Ω
2

√
n −n∆

. . .

. . .
. . .




+
ℏω0

2
,
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where we defined ∆ ≡ ω − ω0.

24.6.6.9 Ex: Shifted harmonic oscillator

Consider a HO of mass m, angular frequency ω, and electric charge q immersed in a
uniform electric field oriented parallel to the axis êx of the oscillator.
a. Get the energies of the stationary states of the HO and show how to get the cor-
responding eigenstates.
b. Calculate the expectation values ⟨x⟩ and ⟨p⟩ for the displaced oscillator now using
Glauber states (or arbitrary superpositions of states) and taking advantage of the
formulas (24.86), (24.119), and (23.179).
c. Now, the electric field is suddenly turned off. Calculate the time evolution of the
oscillator.

Solution: We consider an electron in a harmonic potential suddenly subject to an
electric field,

Ĥ =

{
Ĥ(1) = p2

2m + m
2 ω

2x2 + eEx for t < 0

Ĥ = p2

2m + m
2 ω

2x2 for t ≥ 0
.

a. With the abbreviation b ≡ eE
mω2 we can rewrite the Hamiltonian

Ĥ(1) =
p2

2m
+
m

2
ω2(x− b)2 − m

2
ω2b2 ,

with the obvious solution

Ĥ(1)|ψ(1)
n ⟩ = E(1)

n |ψ(1)
n ⟩ , ψ(1)

n (x) = ψn(x− b) , E(1)
n = En −

m

2
ω2b2 .

b. With the Taylor expansion

ψn(x− b) = ψn(x)− bψ′n(x) +
(−b)2
2!

ψ′′n(x) + .. = e−b(d/dx)ψn(x) ,

and the abbreviation β ≡ b
aho

√
2

we can rewrite, |ψ(1)
n (x)⟩ = e−β(â−â

†)|ψn⟩. The

expectation value of â is therefore,

⟨ψ(1)
n |â|ψ(1)

n ⟩ = ⟨ψn|e−β(â
†−â)âe−β(â−â

†)|ψn⟩ .

Using the formula (23.179) we have

e−β(â
†−â)âe−β(â−â

†) = â+ β[â− â†, â] = â+ β ,

which verifies the formula postulated in class (24.119). Hence, ⟨ψ(1)
n |â|ψ(1)

n ⟩ = ⟨ψn|â+
β|ψn⟩ and ⟨ψ(1)

n |â†|ψ(1)
n ⟩ = ⟨ψn|â† + β|ψn⟩, tal que,

⟨ψ(1)
n |x̂|ψ(1)

n ⟩ = b and ⟨ψ(1)
n |p̂|ψ(1)

n ⟩ = 0 .
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c. The temporal evolution is given by the time-dependent Schrödinger equation. Since
the jump is finite, the solution must be well behaved in time t = 0,

ψ(1)
n (x, t) =

{
e−(ı/ℏ)Ĥ

(1)tψ
(1)
n (x) = e−(ı/ℏ)E

(1)
n tψ

(1)
n (x) for t < 0

e−(ı/ℏ)Ĥtψ(1)
n (x) for t ≥ 0

.

For times t ≥ 0 we write,

ψ(1)
n (x, t) = e−(ı/ℏ)Hte−β(â−â

†)ψn(x) = e−(ı/ℏ)Ĥte−β(â−â
†)e(ı/ℏ)Ĥte−(ı/ℏ)Ĥtψn(x) .

We now use the relationship

e−ÂeB̂eÂ =
∑

n

e−ÂB̂neÂ

n!
=
∑

n

(e−ÂB̂eÂ)n

n!
= ee

−ÂB̂eÂ ,

which is easy to show by expansion of eB̂. The expression e−ÂB̂eÂ can be evaluated
through its action on the complete system of eigenfunctions,

e−(ı/ℏ)Ĥtâe(ı/ℏ)Ĥt|ψn⟩ = e−(ı/ℏ)Ĥtâe(ı/ℏ)E
(0)
n t|ψn⟩ = e−(ı/ℏ)E

(0)
n−1te(ı/ℏ)E

(0)
n tâ|ψn⟩ .

Hence,

e−(ı/ℏ)Ĥtâe(ı/ℏ)Ĥt = âeıωt and e−(ı/ℏ)Ĥtâ†e(ı/ℏ)Ĥt = â†e−ıωt .

Now we can write the temporal solution,

ψ(1)
n (x, t) = e−β(âe

ıωt−â†e−ıωt)e−(ı/ℏ)Ĥtψn(x) = e−β cosωt(â−â†)−ıβ sinωt(â+â†)e−(ı/ℏ)E
(0)
n tψn(x) .

Using Glauber’s formula (23.210) we find,

ψ(1)
n (x, t) = e−ıβ sinωt(â+â†)e−β cosωt(â−â†)eıβ

2 sinωt cosωte−(ı/ℏ)E
(0)
n tψn(x)

= e−ıβ sinωt(â+â†)eıβ
2 sinωt cosωte−(ı/ℏ)E

(0)
n tψn(x− b cosωt) .

Finally,
|ψ(1)
n (x, t)|2 = |ψn(x− x̄(t))|2 ,

where x̄(t) ≡ b cosωt. This means that the spatial distribution of ψ
(1)
n around x̄(t) is

the same as of ψn around x̄ = 0. The entire distribution oscillates without deforma-
tion. The momentum distribution follows from the Fourier transform,

ϕ(1)n (p, t) =
1√
2πℏ

∫
dxe−(ı/ℏ)pxψ(1)

n =
1√
2πℏ

∫
du e−(ı/ℏ)pue−(ı/ℏ)umωb sinωteıγ(p,t)ψn

= eıγ(p,t)ϕn(p+mωb sinωt) ,

with γ = γ∗. We obtain,

|ϕ(1)n (p, t)|2 = |ϕn(p− p̄(t))|2 ,

where p̄(t) ≡ −mωb sinωt.
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24.6.6.10 Ex: Spatial wavefunction of a particle in a coherent state

a. Derive the following relations for the harmonic oscillator having received a recoil
momentum,

⟨ψ(1)
n |x̂|ψ(1)

n ⟩ = 0 and ⟨ψ(1)
n |p̂|ψ(1)

n ⟩ = ℏk .
b. Calculate the temporal evolution of the oscillator after having received the recoil
via,

⟨x|e−ıĤt/ℏe−ıkx̂|n⟩ .
c. Calculate the spatial wavefunction of a particle in a coherent state,

⟨x|α⟩ =
∑

n

e−|α|
2/2 α

n

√
n!
⟨x|n⟩ .

Solution: a. We calculate,

⟨ψ(1)
n |x̂|ψ(1)

n ⟩ = aho√
2
⟨n|eıkx̂(b̂+ b̂†)e−ıkx̂|n⟩

= aho√
2
⟨α|b̂+ b̂†|α⟩ = aho√

2
(α+ α∗)⟨α|α⟩ = 0 ,

and,

⟨ψ(1)
n |p̂|ψ(1)

n ⟩ = ℏ
ı
√
2aho
⟨n|eıkx̂(b̂− b̂†)e−ıkx̂|n⟩

= ℏ
ı
√
2aho

(α− α∗)⟨α|α⟩ = −ℏk .

b.

24.6.6.11 Ex: Electric field amplitude and fluctuation

Calculate ⟨Ê⟩ and ∆Ê for a coherent state.

Solution: The results are,

⟨Ê⟩ = −2Êm|α| sin(k·r−ωt) , ⟨Ê2⟩ = Ê2m[4|α|2 sin(k·r−ωt)+1] , ∆Ê = Êm .

24.6.6.12 Ex: Beam splitting a Fock state

A beam splitter is a device dividing an input mode (e.g. a laser beam) into two output
modes 1 and 2. Assuming that a beam splitter sends every single photon with equal
probability to one of the two output modes and that the input mode be a Fock state,
what would be the photon statistics in the output mode? Help: Create the total
output state |n1, n2⟩ from vacuum by successive application of the photon creation

operator â†1 + â†2.

Solution: See Sec. 35.8.2.
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Figure 24.25: Beam splitting of a Fock state.

24.6.6.13 Ex: Wavefunction of a harmonic oscillator in a Glauber state

Derive the wavefunction for a harmonic oscillator in a coherent state using the expo-
nential generating function of Hermite polynomials,

e2xt−t
2

=

∞∑

n=0

tn

n!
Hn(x) .

Solution: Starting from,

⟨x|n⟩ = 1√
aho
√
π2nn!

e−x
2/2a2hoHn(x/aho) and |α⟩ = e−|α|

2/2
∞∑

n=0

αn√
n!
|n⟩

we obtain,

⟨x|α⟩ = e−|α|
2/2e−x

2/2a2ho

√
aho
√
π

∞∑

n=0

(α/
√
2)n

n!
Hn(x/aho) .

Using the given generating function we get,

⟨x|α⟩ = 1√
aho
√
π
e−|α|

2/2−x2/2a2ho+
√
2αx/aho−α2/2 ,

and,

|⟨x|α⟩|2 = 1
aho
√
π
e−[(α+α

∗)/
√
2+x/aho]

2

.

24.7 Further reading

A. Görlitz et al., Observing the Position Spread of Atomic Wave Packets [528]DOI
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1372 CHAPTER 24. LINEAR MOTION / SEPARABLE POTENTIALS

24.7.1 on the Fourier grid method

R. Meyer, Trigonometric Interpolation Method for One-Dimensional Quantum-Mechanical
Problems [884]DOI

O. Dulieu, Coupled channel bound states calculations for alkali dimers using the
Fourier grid method [395]DOI

J. Stare et al., Fourier Grid Hamiltonian Method for Solving the Vibrational Schroedinger
Equation in Internal Coordinates Theory and Test Applications [1244]DOI

C. Clay Marston et al., The Fourier grid Hamiltonian method for bound state eigen-
values and eigenfunctions [847]DOI

24.7.2 on the harmonic oscillator

I. Bouchoule et al., Neutral atoms prepared in Fock states of a one-dimensional
harmonic potential [182]DOI

M.O. Scully and M.S. Zubairy, Cambridge University Press, Quantum Optics [1184]ISBN

http://doi.org/10.1063/1.1673259
http://doi.org/10.1063/1.469622
http://doi.org/10.1021/jp034440z
http://doi.org/10.1063/1.456888
http://doi.org/10.1063/1.1673259
http://isbnsearch.org/isbn/978-0-524-23595-9


Chapter 25

Rotations / Central potentials

Rotations are, on the same rights as translations, symmetry operations in space. They
are of fundamental importance for the discussion of composite particles, such as atoms
because they help us to formulate appropriate boundary conditions facilitating the
solution of the three-dimensional Schrödinger equation.

25.1 Particle in a central potential

Many potentials do not have Cartesian symmetry, but fortunately, many problems
have some kind of symmetry, cylindrical, spherical or periodic. Those with cylindrical
or spherical symmetry can be solved by separating the curvilinear coordinates, as we
will show in the following. Particularly important are spherical potentials caused by
central forces, for example, the Coulomb force between the proton and the electron
in the hydrogen atom.

25.1.1 Transformation to relative coordinates

The hydrogen atom represents a two-body problem. We consider the two masses m1,2

of a proton and an electron separated by a distance r and interacting through a
potential V (r). The Hamiltonian is

Ĥ =
−ℏ2
2m1
∇2
r1 +

−ℏ2
2m2
∇2
r2 + V (r1 − r2) , (25.1)

where r1,2 are the positions of the proton and the electron. With the ansatz Ξ(t, r1, r2) =
Ξ(r1, r2)e

−ıEtott/ℏ, the time-dependent Schrödinger equation

ĤΞ(t, r1, r2) = ıℏ
d

dt
Ξ(t, r1, r2) , (25.2)

becomes stationary,

[−ℏ2
2m1
∇2
r1 +

−ℏ2
2m2
∇2
r2 + V (r1 − r2)

]
Ξ(r1, r2) = EtotΞ(r1, r2) . (25.3)

Now we transform into the center-of-mass system making for the total wavefunction
the ansatz Ξ(r1, r2) = e−ıP·R/ℏΨ(r) with R ≡ m1

M r1 + m2

M r2 and r ≡ r1 − r2 and
introducing the abbreviationM = m1+m2. This corresponds to a product of a plane

1373
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wave, describing the linear motion of the center of the masses, and a radial wave
function, which describes the relative motion of the atom. The kinetic energy of one
mass is:

−ℏ2
2m1
∇2
r1e
−ıP·R/ℏΨ(r) (25.4)

=
−ℏ2
2m1

[
e−ıP·R/ℏ∇2

r1Ψ(r) + 2(− ım1P
ℏM )e−ıP·R/ℏ∇r1Ψ(r) + Ψ(r)(− ım1

ℏ2MP)2e−ıP·R/ℏ
]

= e−ıP·R/ℏ
[−ℏ2
2m1
∇2
r1Ψ(r) +

ıℏP
M
∇r1Ψ(r)− m1P

2

2M2
Ψ(r)

]
.

Hence, for two atoms,

EtotΞ(r1, r2)− V (r)Ξ(r1, r2) (25.5)

= e−ıP·R/ℏ
[−ℏ2
2m1
∇2
r1Ψ(r) +

−ℏ2
2m2
∇2
r2Ψ(r) +

ıℏP
M

(∇r1 +∇r2)Ψ(r) +
P2

2M
Ψ(r)

]
.

Using ∇r1 = −∇r2 = ∇r, we see that the third term cancels, such that,

P 2

2M
Ψ(r) +

−ℏ2
2m1
∇2
rΨ(r) +

−ℏ2
2m2
∇2
rΨ(r) + V (r)Ψ(r) = EtotΨ(r) . (25.6)

Subtracting the energy of the center-of-mass motion with E = Etot − P 2

2M and intro-

ducing the abbreviation m−1 = m−11 +m−12 , we finally get,

[−ℏ2
2m
∇2
r + V (r)

]
Ψ(r) = EΨ(r) . (25.7)

25.1.2 Particle in a cylindrical potential

The equation (25.7) is three-dimensional because Ψ(r) is a scalar field and the mo-
mentum operator in Cartesian coordinates is given by,

∇2
r =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (25.8)

However, in some situations, the symmetry of the system allows to reduce dimension-
ality similarly to the cases of the box potential and the three-dimensional harmonic
oscillator. Let us now discuss the cases of cylindrical and spherical symmetry.

Electrons in magnetic fields are subject to the Lorentz force, which keeps them in
a rotating motion. We can rewrite the momentum operator in cylindrical coordinates,

x = ρ cosφ , y = ρ sinφ , z = z , (25.9)

as

∇2
r =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2
. (25.10)

Now, with the assumption that the potential only depends on ρ, V (r) = V (ρ), we can
try the ansatz,

Ψ(r) = R(ρ)ξ(φ)ζ(z) , (25.11)
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and obtain,

1

R(ρ)

[
− ℏ2

2m

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ V (ρ)

)]
R(ρ)− ℏ2

2m

1

ζ(z)

∂2

∂z2
ζ(z)− ℏ2

2mρ2
1

ξ(φ)

∂2

∂φ2
ξ(φ) = E .

(25.12)
First, we separate the axial motion,

−ζ
′′

ζ
= const ≡ 2mEz

ℏ2
≡ k2z , (25.13)

the solution of this equation being a superposition of two plane waves counterprop-
agating along the axis z, ζ(z) = Aeıkzz + Be−ıkzz. Now, we separate the azimuthal
motion,

ρ2

R(ρ)

∂R2(ρ)

∂ρ2
+

ρ

R(ρ)

∂R(ρ)

∂ρ
+
2mρ2

ℏ2
[E−V (ρ)]−ρ2k2z = −ξ

′′

ξ
= const ≡ m2

φ . (25.14)

The solution of the right-hand part of the equation is ξ(φ) = Ceımφφ + De−ımφφ.
Finally, we have the radial equation,

1

R(ρ)

∂R(ρ)2

∂ρ2
+

1

ρR(ρ)

∂R(ρ)

∂ρ
− 2m

ℏ2
[E − V (ρ)]− k2z −

m2
φ

ρ2
= 0 , (25.15)

with the effective potential Veff = V (ρ) +
ℏ2m2

φ

2mρ2 . For a homogeneous potential,

V (ρ) = V0, the solution will be a superposition of Bessel functions.

Example 162 (Rigid rotor in cylindrical coordinates): To give an example,
we disregard the potential, V (ρ) = 0, and we consider for the particle an orbit
with constant radius, ρ = const such that R(ρ) = δ(ρ − ρ0). In this case, we
only need to treat the orbital motion described by the right part of Eq. (25.14).
For the solution of this equation, ξ(φ) = Aeımφφ, to be well-defined, we need
ξ(φ) = ξ(φ+ 2π). This implies,

mφ = 0,±1,±2, ..
and

Eφ =
ℏ2m2

φ

2mρ2
.

The allowed energies Emφ = Eφ can be obtained by letting the Hamiltonian

Ĥ = −ℏ2

2I

∂2

∂φ2
,

with the moment of inertia I = mρ2 actuate on the azimuthal wavefunction
ξ(φ). We now define the operator,

l̂z =
ℏ
ı

∂

∂φ
.

This operator acts on the wavefunction ξ as follows,

l̂zξ(φ) = ℏmφξ(φ) .

It is easy to show that wavefunctions with different values ml are orthogonal.

Note: 1. The state mφ = 0 has zero energy; that is, it has no zero-point energy.

2. The particle is delocalized within a ring of radius r: ∆lz∆sinφ ≥ ℏ
2
|⟨cosφ⟩|.
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25.1.3 Hamiltonian in spherical coordinates

We can rewrite the momentum operator in spherical coordinates,

x = r sinϑ cosφ , y = r sinϑ sinφ , z = r cosϑ , (25.16)

as 1,

∇2
r =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
L̂2

ℏ2
where

L̂2

ℏ2
≡ 1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2
,

(25.17)
is an abbreviation called Legendre operator. For an isotropic potential, V (r) = V (r),
we can try the ansatz,

Ψ(r) = R(r)Y (ϑ, φ) (25.18)

to solve the Schrödinger equation (23.60),

r2

R(r)

[
− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+ V (r)− E

]
R(r) =

−1
2m

L̂2Y (ϑ, φ)

Y (ϑ, φ)
= const ≡ − ℏ2

2m
ℓ(ℓ+1) ,

(25.19)
where we choose a separation constant, ℓ(ℓ + 1), the significance of which we shall
soon learn. Considering only the angular part,

L̂2Y (ϑ, φ) = ℏ2ℓ(ℓ+ 1)Y (ϑ, φ) , (25.20)

and making another separation ansatz,

Y (ϑ, φ) = Θ(ϑ)Φ(φ) , (25.21)

we obtain,

sin2 ϑ

(
1

Θ(ϑ)

1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
Θ(ϑ) + ℓ(ℓ+ 1)

)
= − 1

Φ(φ)

∂2

∂φ2
Φ(φ) = const ≡ m2 ,

(25.22)
where we choose a separation constant, m2. Introducing another abbreviation,

L̂z ≡
ℏ
ı

∂

∂φ
, (25.23)

the azimuthal equation takes the form

L̂zΦ(φ) = ℏmΦ(φ) . (25.24)

As in the case of the cylindrical potential, the solution of the azimuthal equation is,
using the normalization,

Φ(φ) = 1√
2π
eımφ , (25.25)

with the magnetic quantum number m = 0,±1,±2, ...
1We may also write: p2 = (êr · p)2 + (êr × p)2 = p2r + L2

r2
, where p2r is the radial part of the

Laplace operator and L2

r2
the angular part.
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The polar equation,

1

Θ(ϑ)

1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
Θ(ϑ) + ℓ(ℓ+ 1) =

m2

sin2 ϑ
, (25.26)

is called Legendre’s differential equation and can be solved by a power series in cosk ϑ.
For m = 0, the solutions are the Legendre polynomials, Pℓ(cosϑ) with

Pℓ(z) =
1

2ℓℓ!

dℓ

dzℓ
[(z2 − 1)ℓ] . (25.27)

The first polynomials are,

P0(z) = 1 , P1(z) = z , P2(z) =
1
2 (3z

2− 1) , P3(z) =
1
2 (5z

3− 3z) . (25.28)

For m > 0, the solutions are the associated polynomials,

Pmℓ (z) = (−1)m(1− z2)m/2 d
m

dzm
Pℓ(z) =

(−1)m
2ℓℓ!

(1− z2)m/2 d
ℓ+m

dzℓ+m
[(z2 − 1)ℓ]

(25.29)

P−mℓ (z) = (−1)m (ℓ−m)!

(ℓ+m)!
Pmℓ (z) .

The polar function must still be normalized,

Θmℓ (ϑ) = Pmℓ (cosϑ)

√
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!
. (25.30)

The functions Yℓm(ϑ, φ) are the spherical harmonics. They form an orthonormal
system, ∫ π

0

∫ 2π

0

Y ∗ℓ′m′(ϑ, φ)Yℓm(ϑ, φ) sinϑdϑdφ = δℓ′ℓδm′m . (25.31)

Finite solutions only exist when the angular momentum quantum number is ℓ = 0, 1, ..
and for |m| ≤ ℓ.
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Figure 25.1: (code) Angular wavefunctions. Shown are the Legendre polynomials Pmℓ (cosϑ)

for ℓ = 0, 1, 2, 3 and m = 0, .., ℓ. Red: m = 0, green: |m| = 1, blue: |m| = 2, and magenta:

|m| = 3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Legendre.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Legendre.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Legendre.m
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The solutions of the angular part of the Schrödinger equation for the hydrogen
atom are finally,

Yℓm(ϑ, φ) =
1√
2π

Pmℓ (cosϑ)

√
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!
eımφ . (25.32)

The spherical harmonics are simultaneously eigenfunctions of the operators L2, as
can be seen from Eq. (25.20), and of the operator Lz according to Eq. (25.24). The
quantities represented by the quantum operators Ĥ, L̂2, L̂z are conserved in the hy-
drogen system. The conservation of the angular momentum is due to the spherical
symmetry of the Coulomb potential.

We will verify the parity of the spherical harmonics in Exc. 25.1.5.1.

25.1.4 Separation of radial motion

In Sec. 25.1.3 we derived, after having separated the motion of the center-of-mass
(that is, of the heavy nucleus) and the angular coordinates, the radial equation (25.19)
describing the radial component of the electronic motion,

1

R(r)

[
− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+ V (r)− E

]
R(r) = − L̂2

2mr2
, (25.33)

Now, we make the substitution R(r) = u(r)/r and the radial equation becomes,

[
− ℏ2

2m

∂2

∂r2
+

L̂2

2mr2
+ V (r)

]
u(r) = Eu(r) . (25.34)

This equation is very similar to a one-dimensional Schrödinger equation, but there is
an additional potential term called centrifugal potential,

Vℓ(r) ≡
L̂2

2mr2
. (25.35)

For example, for the potential of an electron orbiting a proton, we have,

[
− ℏ2

2m

∂2

∂r2
− Ze2

4πϵ0r
+

ℏ2ℓ(ℓ+ 1)

2mr2
− E

]
uEℓ(r) = 0 . (25.36)

We will discuss this equation intensely in the context of the hydrogen atom.
In Exc. 25.1.5.2 we derive the radial Gross-Pitaevskii equation for a Bose-Einstein

condensate trapped in a spherical potential. In the Exc. 25.1.5.3 we will study particles
inside a central potential of zero depth, in the Excs. 25.1.5.4 and 25.1.5.5 we consider
3D spherical box potentials and in Exc. 25.1.5.6 a spherical harmonic potential.

Example 163 (Rigid rotor in spherical coordinates): We continue the
discussion of the rigid rotor, now in spherical coordinates. In the case that the
orbit of the particle is fixed to a radius R, we can neglect the kinetic energy due
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Figure 25.2: (code) Sum of a Coulomb potential and centrifugal potential for ℓ = 0 (lower

curve), ℓ = 1 (center curve), and ℓ = 2 (upper curve).

to the radial motion and the potential, both being constant. In this case the
radial Schrödinger equation is,[

ℏ2ℓ(ℓ+ 1)

2mr2

]
uEℓ = EℓuEℓ .

The energies of the rigid rotor are

Eℓ =
ℏ2ℓ(ℓ+ 1)

2I
,

with the momentum of inertia I = mR2.

25.1.5 Exercises

25.1.5.1 Ex: Parity of the spherical harmonic functions

We consider the parity transformation P with (x, y, z)
P−→ (−x,−y,−z). Use spheri-

cal coordinates to show that Yℓm
P−→ (−1)ℓYℓm, and therefore that a spherical surface

function has even parity when ℓ is even, and odd parity, when ℓ is odd.

Solution: In spherical coordinates the parity transformation can be written (r, θ, ϕ)
P−→

(r, π−θ, π+ϕ). On the azimuthal side, the spherical harmonics are ∝ eımϕ. Therefore,
the transformation ϕ→ ϕ+ π yields a factor (−1)m. On the polar side, the spherical
harmonics are ∝ Pmℓ (cos θ). The transformation θ → π− θ transforms z = cos θ into
−z. In the definition of polynomials via derivatives, (25.27) and (25.29), it is clear
that this gives a factor (−1)ℓ+m. Therefore, we obtain,

Yℓm(π − θ, π + ϕ) = (−1)ℓYℓm(θ, ϕ) .

That is, spherical harmonics are functions with well-defined parity.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Centrifugal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Centrifugal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ParidadeHarmonica.pdf
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25.1.5.2 Ex: Bose-Einstein condensate in an isotropic potential

The time-dependent Gross-Pitaevskii equation describing the wavefunction of a Bose-
Einstein condensate reads,

ıℏ
∂ψ(r, t)

∂t
=

(
− ℏ2

2m
∇2 + Vtrp(r) + g|ψ(r, t)|2

)
ψ(r, t) ,

where the factor g depends on the force of the interatomic interaction and Vtrp is the
potential trapping the atoms. Derive the stationary Gross-Pitaevskii equation via the
transform ψ(r, t) = ψ(r)e−ıµt/ℏ, where the constant µ is called the chemical potential.

For V (r) = V (r) the wavefunction will have radial symmetry, ψ(r) = ϕ(r)
r . Rewrite

the Gross-Pitaevskii equation for the function ϕ.

Solution: The transform immediately yields,

µψ(r) =

(
− ℏ2

2m
∇2 + Vtrp(r) + g|ψ(r)|2

)
ψ(r) .

From this we obtain [626],

µ
ϕ(r)

r
=

(
− ℏ2

2m

[
1

r

∂2

∂r2
r +

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

r2 sin2 ϑ

∂2

∂φ2

]
+ Vtrp(r) + g

∣∣∣∣
ϕ(r)

r

∣∣∣∣
2
)
ϕ(r)

r

µϕ(r) =

(
− ℏ2

2m

∂2

∂r2
+ Vtrp(r) + g

|ϕ(r)|2
r2

)
ϕ(r) ,

with ∫
|ψ(r)|2d3r = 4π

∫ ∞

0

|ψ(r)|2r2dr = 4π

∫ ∞

0

|ϕ(ρ, z)|2dr = 1 .

25.1.5.3 Ex: Motion of a free particle in spherical coordinates

Obtain the eigenfunctions of a free particle as the limiting case of its motion in a
central force field with V (r) → 0. Compare the derived eigenfunctions – associated
with the complete set of observables Ĥ, L̂2, and L̂z – to those described by plane
waves – associated with the motion characterized by the observables p̂x, p̂y, p̂z, and

Ĥ = P̂2/2m –, which also constitute a complete set of observables.

Solution: The radial equation is,
[
− ℏ2

2mr2
d

dr

(
r2
d

dr

)
+

ℏ2ℓ(ℓ+ 1)

2mr2
+ V (r)

]
R(r) = ER(r) .

We consider V (r) = 0. Introducing a dimensionless variable ρ ≡ kr with k ≡√
2mE/ℏ2 the equation takes the form of a Bessel equation for J defined by J (ρ) ≡√
ρR(r) (which motivates the choice of the notation J ):

ρ2
d2J
dρ2

+ ρ
dJ
dρ

+
[
ρ2 − (ℓ+ 1

2 )
2
]
J = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_CondensadoConfinado.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MovimentoCentral.pdf
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Regular solutions for positive energies are given by functions called Bessel functions
of the first kind Jℓ+1/2(ρ) such that the solutions for R are the so-called spherical

Bessel functions R(r) = jℓ(kr) ≡
√

π
2krJℓ+1/2(kr). The solutions of the Schrödinger

equation in polar coordinates for a particle of mass m0 in vacuum are enumerated by
the discrete quantum numbers ℓ and m, while k ∈ [0,∞[ varies continuously,

ψ(r) = jℓ(kr)Yℓm(θ, ϕ) ,

where Yℓm are the spherical harmonics. These solutions represent states with defined
angular momentum L, contrary to the states corresponding to plane waves, eik·r,
which are characterized by defined linear momenta p.
It is worth noting that plane waves can be expanded into spherical waves by,

eik·r =
∞∑

ℓ=0

(2ℓ+ 1)ıℓjℓ(kr)Pℓ(k̂ · r̂) = 4π

∞∑

ℓ=0

ℓ∑

m=−ℓ
ıℓjℓ(kr)Yℓm(k̂)Y ∗ℓm(r̂) .

25.1.5.4 Ex: Particle in a spherical box

Find the energy levels and wavefunctions of a particle confined in a spherical box de-
scribed by potential energy, V (r) = 0 for r < a and V (r) = ∞ for r ≥ a considering
the angular momentum ℓ = 0.

Solution: The radial equation is,

− ℏ2

2m

∂2

∂r2
u = Eu .

This is a one-dimensional wave equation the general solution of which, u(r) = Aeıkr+
Be−ıkr, must meet the conditions,

u(0) = 0 = A+B and u(a) = 0 = Aeıka +Be−ıka .

The first condition ensures that the radial function R(r) = u(r)/r does not diverge in
the center. We obtain, ka = nπ and, therefore, the energies,

E =
ℏ2k2

2m
=

ℏ2π2

2ma2
n2 .

The wavefunctions are,

ψ(r) = R1(r)Y00(θ, ϕ) =
1√
4π

u(r)

r
=

A√
4π

eıkr − e−ıkr
r

=
ıA

r
√
π
sin

nπr

a
.

Normalization requests,

1 =

∫
|ψ(r)|2d3r = 4π

A2

π

∫ a

0

sin2 nπa r

r2
r2dr = 4A2

∫ a

0

sin2
nπr

a
dr = 2aA2 .

Finally,

ψ(r) =
ı

r
√
2πa

sin
nπr

a
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_CaixaEsferica1.pdf
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25.1.5.5 Ex: Finite spherical 3D potential well

a. Derive the possible energy levels and associated wavefunctions for a particle trapped
in a spherical 3D potential well of depth V0 and radius a. Note that this problem is
analogous to Mie scattering of scalar waves.
b. Discuss the case of a well surrounded by infinitely high walls.

Solution: a. We consider the potential V (r) = V0 for r < a and V (r) = 0 outside,
and we first concentrate on bound states, that is, E < 0. We will see that there is a
discrete number of such states (unlike for free states with E > 0 which form a contin-
uous spectrum and describe the scattering of the particle by the sphere). Furthermore,
the number of states is finite (unlike for Coulombian potentials). The resolution of
this problem essentially follows that of free space with additionally a normalization
of the total wave function. We solve two Schrödinger equations —inside and outside
the sphere— with constant potential depths considering the following boundary condi-
tions: 1. The wave function must be regular at the origin. 2. The wavefunction and
its derivatives must be continuous at the potential discontinuity. 3. The wavefunction
must converge at infinity.
Inside the well, r < a, the radial Schrödinger equation

[
− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+ V (r)− E

]
REℓ = −

ℏ2ℓ(ℓ+ 1)

2mr2
REℓ

becomes with the substitutions ρ ≡ kr and k ≡ 2m
ℏ2 (E − V0),

R′′Eℓ +
2
ρR
′
Eℓ +

(
1− ℓ(ℓ+1)

ρ2

)
REℓ = 0 .

Outside the radius, r > a, we obtain the same equation with the replacements ρ ≡ ıκr
and κ ≡ 2m

ℏ2 E. The solutions are the spherical Bessel functions, the Hankel functions,
and the Neumann functions 2. We note,

jℓ(ρ) = (−ρ)ℓ
(
1

ρ

∂

∂ρ

)ℓ
sin ρ

ρ
with j0(ρ)

ρ→0−→ 0

nℓ(ρ) = −(−ρ)ℓ
(
1

ρ

∂

∂ρ

)ℓ
cos ρ

ρ
with n0(ρ)

ρ→0−→∞ .

The first boundary condition excludes the Neumann and Hankel functions, which are
singular at the origin. Therefore,

R
(r<a)
Eℓ = A jℓ

(√
2m(E−V0)

ℏ2 r

)
,

2The spherical Bessel and Neumann functions are related to the Bessel functions J by,

jℓ(ρ) =
√

π
2ρ

Jℓ+1/2(ρ) and nl(ρ) = (−1)ℓ+1
√

π
2ρ

J−ℓ−1/2(ρ) ,

where
J ′′ν (ρ) + 1

ρ
J ′ν(ρ) +

(
1− ν2

ρ2

)
Jν(ρ) = 0

is the differential Bessel equation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_CaixaEsferica2.pdf


25.1. PARTICLE IN A CENTRAL POTENTIAL 1383

with a constant A.
The fact that the energy of bound states is negative, together with the third boundary
condition, selects the Hankel functions of the first type for the outside region, since
they are those which converge at infinity,

R
(r>a)
Eℓ = B h

(1)
ℓ

(
ı
√
−2mE

ℏ2 r

)
.

The possible energy values follow from the second boundary condition R
(r<a)
Eℓ (ka) =

R
(r>a)
Eℓ (κa). That is, the continuity of the derivative (or conveniently of the logarith-

mic derivative) requires quantization of the energy. Along with the normalization, this
condition allows the determination of the constants A and B.
b. The case of the well surrounded by infinite walls follows from the conditions E −
V0 ≪ −E,−V0. Obviously, R

(r>a)
Eℓ = 0, such that we can impose the following bound-

ary conditions to the Bessel functions,

REℓ(ka) = jℓ(ka) = 0 .

Each Bessel function with the index ℓ has several zero crossings corresponding to main
quantum numbers n. We use zero crossings of the spherical Bessel functions to find

0 5 10 15 20

ρ

-0.5

0

0.5

1

j �

� = 0
1
2
3

Figure 25.3: (code) Bessel functions.

the energy spectrum and the wavefunctions: Calling un,ℓ the n-th zero of jℓ we get,

Enℓ =
u2n,ℓℏ2

2ma2
.

The zero points generally have no analytical expression. However, for the particular
case ℓ = 0 (spherically symmetric orbitals), the spherical Bessel function is j0(x) =
sin x
x , the zeros of which can easily be expressed by un,0 = kπ. The eigenenergies are

consequently,

En0 =
(nπ)2ℏ2

2ma2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Bessel.m
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25.1.5.6 Ex: Particle in a spherical harmonic potential

A quantum particle of mass m is subject to a potential

V = 1
2mω

2(x2 + y2 + z2) .

a. Obtain the energy levels of this particle. That is, determine the eigenvalues of

− ℏ2

2m
∇2ψ + V ψ = Eψ .

b. Consider the fundamental level and the first two excited levels. Set up a table
showing for each of these three levels the energy value, the degeneracy, and the re-
spective states in terms of the quantum numbers.
c. Using

∇2ψ =

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

ℏ2r2

]
ψ

and remembering L̂2Yℓm(θ, ϕ) = ℏ2ℓ(ℓ + 1)Yℓm, write down the differential equation
of item (a) for the radial part of the wavefunction (it is not necessary to solve it).
Identify in this equation the effective potential Veff (r).
d. Solve the differential equation of the previous item for the case where ℓ = 0 and
determine the corresponding eigenvalue. To do this, allow for a solution of the type
e−αr

2

and determine α.

Solution: a. The Hamiltonian with the harmonic potential is separable, that is, we
can solve the one-dimensional equations,

− ℏ2

2m

d2

dx2
ψx(x) +

m

2
ω2ψx(x) = Eψx(x) .

and add the eigenenergies Ex = ℏω
(
nx +

1
2

)
, giving

E = ℏω
(
nx + ny + nz +

3

2

)
.

b. Sorting the states according to (nx, ny, nz) under the condition nx + ny + nz = n
we obtain,

level energy states degeneracy

n = 0 E0 = 3ℏω
2 (0, 0, 0) 1

n = 1 E1 = 5ℏω
2 (1, 0, 0); (0, 1, 0); (0, 0, 1) 3

n = 2 E2 = 7ℏω
2 (1, 1, 0); (1, 0, 1); (0, 1, 1); (2, 0, 0); (0, 2, 0); (0, 0, 2) 6

n En = (2n+3)ℏω
2

(n+1)(n+2)
2

c. We can rewrite the Hamiltonian

H =
p̂2

2m
+
m

2
ω2r2 = −ℏ2∇2

2m
+
m

2
ω2r2 .

Passing this expression into spherical coordinates and using ψ(r) = Rn(r)Ylm(θ, ϕ),
we have,

− ℏ2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r
ψ(r)

)
− L2

ℏ2r2
ψ(r)

]
+
m

2
ω2r2ψ(r) = Eψ(r) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_HarmonicoEsferico.pdf
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from which,

Yℓm

[
− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+

ℏ2ℓ(ℓ+ 1)

2mr2
+
m

2
ω2r2

]
Rn = ERnYℓm ,

from where we can directly read the effective potential:

Veff =
m

2
ω2r2 +

ℏ2ℓ(ℓ+ 1)

2mr2
.

The quantum numbers (n, ℓ,m) are equivalent to (nx, ny, nz).
d. When ℓ = 0, the centrifugal term disappears, and we can eliminate the spherical
functions from the differential equation:

[
− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+
m

2
ω2r2

]
Rn = ERn .

Inserting the function e−αr
2

we obtain,

− ℏ2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
e−αr

2

+
m

2
ω2r2e−αr

2

= − ℏ2

2m

1

r2
∂

∂r

(
−2αr3e−αr2

)
+
m

2
ω2r2e−αr

2

= − ℏ2

2m

1

r2
(
−2αr3

) (
−2αre−αr2

)
− ℏ2

2m

1

r2
e−αr

2 (−6αr2
)
+
m

2
ω2r2e−αr

2

= − ℏ2

2m

[
4α2r2 − 6α

]
e−αr

2

+
m

2
ω2r2e−αr

2

= Ee−αr
2

.

The constant α must satisfy the following equation for all values of r:

− ℏ2

2m

[
4α2r2 − 6α

]
+
m

2
ω2r2 = E ,

which is only possible when

− ℏ2

2m
4α2 +

m

2
ω2 = 0 .

Hence,

α = ±mω
2ℏ

,

and eigenvalues are

E =
3ℏ2

m
α =

3ℏω
2

.
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25.2 Quantum treatment of hydrogen

According to Rutherford’s and Bohr’s planetary atomic model we may imagine an
atom as a very heavy nucleus having a positive electric charge surrounded by a very
light negatively charged charge electronic cloud. Since the nucleus is very small com-
pared to the electronic cloud, we treat it as an entity with mass M and charge Ze,
where Z is the number of protons and corresponds to the order of the element in the
periodic system.

The canonical procedure for calculating all properties of an atom is to establish
its Hamiltonian, that is, to determine the kinetic energies of all components and all
interaction energies between them, and to solve the Schrödinger equation. For each
component we write the kinetic energy,

Tncl =
P 2

2M
and Tele =

Z∑

i=1

p2i
2m

. (25.37)

Here, (R,P) are the nuclear coordinates and (ri,pi) those of the electrons. The ener-
gies that corresponds to the interactions, that is, Coulombian attraction or repulsion,
between the components of the atom are,

Vncl−ele = −
Z∑

i=1

Ze2

4πε0|R− ri|
and Vele−ele =

Z∑

i ̸=j=1

e2

4πε0|ri − rj |
. (25.38)

There are also interactions due to the spin of the particles, which we will deal with
later.

Obviously, the solution to this many-body problem is very complicated. For this
reason, we will in this chapter, based on the Schrödinger equation, calculate the
complete spectrum of the simplest possible atom, hydrogen. This atom consists of a
proton and an electron, only.

Figure 25.4: The hydrogen model applies to other atoms having a single valence electron
occupying a sufficiently large space, that it sees the nucleus together with rest of the electrons
shielding the nucleus as a single positive charge.

25.2.1 Bohr’s model

Let us now turn our attention to the radial part of the Schrödinger equation describing
a particle in a radial potential. We expect that the quantum solutions for the hydrogen
atom are similar to the predictions of Bohr’s model. Following this model, the orbit
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is stable when the attraction force is equal to the centrifugal force. But in addition,
Bohr postulated, that only certain energies are allowed. For the hydrogen atom he
found,

En = −1

2

Ze2

4πε0

1

rn
= − Z2ℏ2

2ma2B

1

n2
= −Z

2e2

4πε0

1

2aBn2
= −Z

2

n2
13.6 eV , (25.39)

with the Bohr radius

aB ≡ 4πε0
ℏ2

me2
. (25.40)

With this equation he was able to explain the spectral observations. Electrons can
only jump from one level to another, while emitting or absorbing a photon. The series
observed in the hydrogen spectrum (En−Em)/ℏ are the Lyman (m = 1), the Balmer
(m = 2), the Paschen (m = 3) an the Brackett series (m = 4).
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Figure 25.5: The hydrogen transitions.

The discussion of the hydrogen atom within quantum mechanics can start from
the radial Schrödinger equation (25.36) with the Coulomb attraction potential,

[
− ℏ2

2m

∂2

∂r2
− Ze2

4πε0r
+

ℏ2ℓ(ℓ+ 1)

2mr2
− E

]
uEℓ(r) = 0 . (25.41)

In order to facilitate comparison with Bohr’s classical model, let us express the energy
in terms of Bohr’s energy, E ≡ En = E1/n

2, and write the radius in units of aB , that
is, r̃ ≡ Zr/aB . This yields,

u′′nℓ(r̃) +

(
−ℓ(ℓ+ 1)

r̃2
+

2

r̃
− 1

n2

)
unℓ(r̃) = 0 . (25.42)

To ensure that for large radii, r → ∞, the solution is finite, we need an asymptotic
behavior like unℓ(r̃ → ∞) = e−r̃/n. To ensure that for small radii, r → 0, the
solution is finite, we need unℓ(r̃ → 0) = r̃ℓ+1. We derive the asymptotic solutions in
Exc. 25.2.3.1. The resulting differential equation only has solutions for an integer and
positive main quantum number n and when ℓ = 0, 1, .., n− 1. That is, in the relation
E = E1/n

2 the parameter n is integer and positive, such that energy levels remain
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Figure 25.6: Level scheme.

degenerate in ℓ and m. This means that Bohr’s postulate of discrete (i.e. quantized)
energy levels is valid (uff!)

Substituting the ansatz,

unℓ(r̃) = Dnℓr̃
ℓ+1e−r̃/nL(r̃) , (25.43)

it’s easy to show (see Exc. 25.2.3.2), that the differential equation (25.42) reduces to,

r̃L′′(r̃) + 2
[
(ℓ+ 1)− 1

n r̃
]
L′(r̃) + 2

[
1− 1

n (ℓ+ 1)
]
L(r̃) = 0 . (25.44)

Still with the abbreviation ρ ≡ 2r̃/n = 2Zr/naB the ansatz

unℓ(ρ) = Dnℓρ
ℓ+1e−ρ/2L(ρ) , (25.45)

leads to the differential equation 3

ρL′′(ρ) + [2(ℓ+ 1)− ρ]L′(ρ) + [n− ℓ− 1]L(ρ) = 0 . (25.46)

The solutions of this differential equation, L
(2ℓ+1)
n−ℓ−1(ρ), are the Laguerre polynomials.

These polynomials are listed in mathematical tables. Using the properties of these
polynomials it is possible to show that the radial functions are orthogonal and can be
normalized (see Exc. 25.2.3.3). Fig. 25.7 shows the curves for the lowest orbitals.

3Laguerre’s associated differential equation is,

ρ∂2ρL
(α)
ν + (α+ 1− ρ)∂ρL

(α)
ν + νL

(α)
ν = 0 .

The Laguerre polynomials are generated by

L
(α)
ν (ρ) =

eρρ−α

α!

dν

dρν

(
e−ρρν+α

)
.
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Figure 25.7: (code) (a,c) Radial wavefunctions Rnℓ(r) and (b,d) square of the radial wave-

functions unℓ(r) for various quantum numbers n and ℓ.

Finally, we can write the complete solutions of the Schrödinger equation Ĥψ = Eψ,

ψnℓm(r, θ, ϕ) =
unℓ(r)

r
Yℓm(θ, ϕ) and En = − ℏ2

2ma2B

Z2

n2
, (25.47)

where n = 1, 2, 3, .. and ℓ = 0, 1, .., n − 1 and m = −ℓ,−ℓ + 1, .., ℓ. Of course, each
energy level n is,

n−1∑

ℓ=0

(2ℓ+ 1) = n2 (25.48)

times degenerate.

From the normalization condition,

1 =

∫

R3

|ψnℓm(r, θ, ϕ)|2d3r (25.49)

=

∫ ∞

0

|unℓ(r)|2dr
∫

R2

|Yℓm(θ, ϕ)|2 sin θdθdϕ =

∫ ∞

0

|unℓ(r)|2dr ,

we obtain the constants,

Dnℓ =

√(
2Z

naB

)3
(n− ℓ− 1)!

2n(n+ ℓ)!
, (25.50)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Laguerre.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Laguerre.m
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and the radial wavefunctions finally read,

Rnℓ(r) = Dnℓ

(
2r̃

n

)ℓ
e−r̃/nL(2ℓ+1)

n−ℓ−1(
2r̃
n ) = Dnℓρ

ℓe−ρ/2L(2ℓ+1)
n−ℓ−1(ρ) , (25.51)

using the previously introduced abbreviations.
Here is a list of the first wavefunctions of the hydrogen atom,

ψ100 = 1√
π

(
Z
aB

)3/2
e−r̃ (25.52)

ψ200 = 1
4
√
2π

(
Z
aB

)3/2
(2− r̃)e−r̃/2

ψ210 = 1
4
√
2π

(
Z
aB

)3/2
r̃e−r̃/2 cos θ

ψ21±1 = 1
8
√
π

(
Z
aB

)3/2
r̃e−r̃/2 sin θe±ıφ

ψ300 = 1
81
√
3π

(
Z
aB

)3/2
(27− 18r̃ + 2r̃2)e−r̃/3

ψ31±1 =
√
2

81
√
3π

(
Z
aB

)3/2
(6− r̃)r̃e−r̃/3 sin θe±ıφ

ψ320 = 1
81
√
6π

(
Z
aB

)3/2
r̃2e−r̃/3(3 cos2 θ − 1) ,

where we use the abbreviation r̃ ≡ Zr/aB . Using these wavefunctions we can now
calculate important eigenvalues such as, for example,

⟨1⟩nℓm = 1 (25.53)

⟨δ(3)(r̃)⟩nℓm =
δℓ,0
πn3

⟨r̃⟩nℓm = n2
[
1 +

1

2

(
1− ℓ(ℓ+ 1)

n2

)]

⟨r̃2⟩nℓm = n4
[
1 +

3

2

(
1− ℓ(ℓ+ 1)− 1

3

n2

)]

⟨r̃3⟩nℓm = n6
[
35

8
− 35

8n2
− 15

4n2
(ℓ+ 2)(ℓ− 1) +

3

8n4
(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)

]

⟨r̃4⟩nℓm = n8
[
63

8
+

35

8n2
(2ℓ2 + 2ℓ− 3) +

5

8n4
5ℓ(ℓ+ 1)(3ℓ2 + 3ℓ− 10) +

12

n8

]

〈
1

r̃

〉

nℓm

=
1

n2〈
1

r̃2

〉

nℓm

=
1

n3(ℓ+ 1
2 )〈

1

r̃3

〉

nℓm

=
n

n4ℓ(ℓ+ 1
2 )(ℓ+ 1)

〈
1

r̃4

〉

nℓm

=
3
2n

2 − 1
2ℓ(ℓ+ 1)

n5(ℓ+ 3
2 )(ℓ+ 1)(ℓ+ 1

2 )ℓ(ℓ− 1
2 )

.
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These results will become important later. In Exc. 25.2.3.4 we will calculate the
eigenvalue ⟨r⟩ for several orbitals |ψnℓm⟩.

25.2.2 The virial theorem

Originally derived for classical mechanics, the virial theorem also holds for quantum
mechanics, as shown for the first time by Fock. We evaluate the commutator between
the Hamiltonian

Ĥ = p̂2/2m+ V (r̂) , (25.54)

and the product of the position operator r̂ with the momentum operator p̂ = −ıℏ∇
of the particle:

[Ĥ, r̂ · p̂] = [Ĥ, r̂] · p̂+ r̂ · [Ĥ, p̂] = −ıℏ p̂
2

m
+ ıℏr̂ · ∇V , (25.55)

using the theorems of Ehrenfest. Therefore, we find for the operator Q̂ = r̂ · p̂ the
commutator,

ı

ℏ
[Ĥ, Q̂] = 2Ekin − r̂ · ∇V . (25.56)

The left side of this equation is precisely −dQ̂/dt, following the Heisenberg equation
of motion. The eigenvalue ⟨dQ̂/dt⟩ of the temporal derivative vanishes in steady state,
therefore we obtain the virial theorem,

2⟨Ekin⟩ = ⟨r̂ · ∇V ⟩ . (25.57)

Example 164 (Virial theorem applied to a central potential): For exam-
ple, for a central potential V (r) ∝ rs we obtain,

2⟨Ekin⟩ = ⟨r̂ · êr ∂V
∂r
⟩ = ⟨r ∂V

∂r
⟩ = s⟨V ⟩ .

In Exc. 25.2.3.5 we calculate the eigenvalues ⟨r−1⟩ and ⟨p2⟩ and we verify the virial
theorem. Finally, in Exc. 25.2.3.6 we calculate transition matrix elements between
different orbitals.

25.2.3 Exercises

25.2.3.1 Ex: Asymptotes of Laguerre’s polynomials

Derive the asymptotic solutions of equation (25.42).

Solution: For r̃ → 0 the approximate equation is,

u′′n,ℓ(r̃)−
ℓ(ℓ+ 1)

r̃2
un,ℓ(r̃) = 0 .

The ansatz un,ℓ = ξ(r̃)r̃ℓ+1 transforms this equation into,

ξ′′(r̃)r̃ + 2(ℓ+ 1)ξ′(r̃) = 0 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_AssimptotasLaguerre.pdf
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which is satisfied in the center (r̃ → 0) for all polynomials ξ(r̃).
For r →∞ the equation becomes,

n2u′′n,ℓ(r̃)− un,ℓ(r̃) = 0 .

The solution of this differential equation is un,ℓ = e±r̃/n, the option with positive sign
being non-normalized.

25.2.3.2 Ex: Laguerre equation

Show that the equation (25.42) transforms with the ansatz (25.43) into equation
(25.44).

Solution: The derivatives of the ansatz are,

∂

∂r̃

unℓ(r̃)

Dnℓ
= (ℓ+ 1)r̃ℓe−r̃/nL(r̃)− 1

n r̃
ℓ+1e−r̃/nL(r̃) + r̃ℓ+1e−r̃/nL′(r̃)

∂2

∂r̃2
unℓ(r̃)

Dnℓ
= r̃ℓe−r̃/n

[
r̃L′′(r̃) + 2(ℓ+ 1)L′(r̃)− 2

n r̃L
′(r̃) + ℓ(ℓ+ 1) 1r̃L(r̃)

− 2
n (ℓ+ 1)L(r̃) + 1

n2 r̃L(r̃)
]
.

With this,

0 = r̃∂2r̃L(r̃) + 2
[
(ℓ+ 1)− 1

n r̃
]
∂r̃L(r̃) + 2

[
1− 1

n (ℓ+ 1)
]
L(r̃) .

25.2.3.3 Ex: Laguerre functions

Using the orthogonality relation of associated Laguerre polynomials,

∫ ∞

0

ραe−ρL(α)
n (ρ)L(α)

m (ρ)dρ =
Γ(n+ α+ 1)

n!
δn,m

∫ ∞

0

ρα+1e−ρL(α)
n ρ2dρ =

(n+ α)!

n!
(2n+ α+ 1) ,

and the recursion formula,

nL(α+1)
n (ρ) = (n− ρ)L(α+1)

n−1 (ρr) + (n+ α)L
(α)
n−1(ρ)

ρL(α+1)
n (ρ) = (n+ α)L

(α)
n−1(ρ)− (n− ρ)L(α)

n (ρ) ,

a. calculate the normalization constant Dn,l for a hydrogen-like atom with atomic
number Z;
b. calculate the mean value

⟨r⟩nlm =
n2aB
Z

[
1 +

1

2

(
1− ℓ(ℓ+ 1)

n2

)]
;

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_EquacaoLaguerre.pdf
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c. calculate the mean value 〈
1

r

〉

nℓm

=
Z

n2aB
.

Solution: a. To obtain the normalization, we write

1 = ⟨1⟩nℓm =

∫
ψ∗nℓmψrℓmd

3r =

∫
RnℓY

∗
ℓmRnℓYℓmr

2 sin θdrdθdϕ

=

∫
|Yℓm|2dΩ

∫ ∞

0

R2
nℓr

2dr =

∫ ∞

0

u2nℓdr =
aB
2Z

∫ ∞

0

(
Dnℓρ

ℓ+1e−ρ/2L(2ℓ+1)
n−ℓ−1(ρ)

)2
dρ .

Using the orthogonality relation of the Laguerre polynomials,

1 =
naB
2
D2
nℓ

∫ ∞

0

ρ(2l+1)+1e−ρL(2ℓ+1)
n−ℓ−1(ρ)

2dρ =
naB
2
D2
nℓ

(n+ ℓ)!

(n− ℓ− 1)!
2n ,

We find

Dnℓ =

(
2Z

naB

)3
(n− ℓ− 1)!

2n(n+ ℓ)!3
.

b. We write,

⟨r⟩nℓm =

∫
ψ∗nℓmrψrℓmd

3r =

∫
RnℓY

∗
ℓmrRnℓYℓmr

2 sin θdrdθdϕ

=

∫
|Yℓm|2dΩ

∫ ∞

0

R2
nℓr

3dr =

∫ ∞

0

R2
nℓr

3dr .

we find the normalization of the radial functions,

Rnℓ(r) = −
(

2Z

naB

)3
(n− ℓ− 1)!

2n(n+ ℓ)!3
ρℓe−ρ/2L2ℓ+1

n+ℓ (ρ) with ρ ≡ 2Z

naB
r .

With this we obtain,

⟨r⟩nℓm =

[
2Z

naB

(n− ℓ− 1)!

2n(n+ ℓ)!3

]2 ∫ ∞

0

ρ2l+3e−ρL2ℓ+1
n+ℓ (ρ)

2 dρ .

which is the desired result.
c. In the same way we write

〈
1

r

〉

nℓm

=

∫
ψ∗nℓm

1

r
ψrℓmd

3r =

∫ ∞

0

R2
nℓrd

3r .

25.2.3.4 Ex: Orbital radii in Bohr’s model

Using the results of 25.2.3.3, obtain the expectation values ⟨r⟩ for the states ψ100, ψ210

and ψ320 of the hydrogen atom. Compare the results with those of Bohr’s model.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ModeloBohr1.pdf
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Solution: We write,

⟨r⟩100 =
a0
Z

3

2
, ⟨r⟩210 =

22aB
Z

5

4
, ⟨r⟩320 =

32aB
Z

7

6
.

The values obtained from Bohr’s model are,

rn =
n2aB
Z

.

That is, the second term containing the angular momentum represents a correction.
But the correction diminishes when n, l→∞.

25.2.3.5 Ex: The virial theorem and Bohr’s model

Calculate, for the state ψ320 of the hydrogen atom, the expectation values ⟨ 1r ⟩, ⟨L
2

r2 ⟩,
and ⟨p2⟩.
From the results, obtain the expectation values for the kinetic and potential energies,
⟨T ⟩ and ⟨V ⟩, and show that, consistent with the virial theorem, ⟨T ⟩ = −(1/2)⟨V ⟩.
Compare the results with Bohr’s model.

Solution: Using the formulas (25.53), we find,

〈
1

r̃

〉

320

=
1

n2
=

1

9
.

Thus, the expectation value of the potential is,

⟨V (r)⟩320 = − Ze
2

4πϵ0

Z

aB

〈
1

r̃

〉

320

= − Z2e2

4πϵ0aB

1

9
= − Z2ℏ

ma2B

1

9
.

Also we can rewrite the kinetic energy operator as the sum of a radial term and a
centrifugal term,

p̂2 = p̂2r +
L̂2

r2
.

The expectation value of the centrifugal term is,

〈
L̂2

r̃2

〉

320

=

〈
1

r̃2

〉

320

ℏ2ℓ(ℓ+ 1) =
6ℏ2

n3(ℓ+ 1
2 )

=
4ℏ2

45
.

To evaluate the radial term we need the wavefunction,

ψ320 =
1

81
√
6π

(
Z

aB

)3/2

r̃2e−r̃/3(3 cos2 ϑ− 1) with r̃ ≡ rZ

aB
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ModeloBohr2.pdf
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We now calculate,

⟨p2r̃⟩320 =

∫
ψ∗320p

2
r̃ψ320d

3r

=
1

8126π

(
Z

aB

)3 ∫ 2π

0

dφ

∫ π

0

(3 cos2 ϑ− 1)2 sinϑdϑ

∫ ∞

0

r̃2e−r̃/3p2r
[
r̃2e−r̃/3

]
r2dr

=
1

8126π
· 2π · 8

5
· (−ℏ2)

∫ ∞

0

r̃4e−r̃/3
1

r̃

(
∂2

∂r̃2
r̃r̃2e−r̃/3

)
dr̃ =

ℏ2

45
.

Thus, the expectation value of the kinetic energy is

⟨Ekin⟩320 =
Z2

a2B

⟨p2r̃⟩320
2m

+
Z2

a2B

1

2m

〈
L2

r̃2

〉

320

=
Z2ℏ2

2ma2B

1

9
= −1

2
⟨V (r)⟩320 ,

in agreement with the virial theorem. We also check that, in agreement with Bohr’s
model,

〈
p̂2

2m

〉

320

+ ⟨V (r)⟩320 = −1

2

Z2e2

4πϵ0aB

1

32
= E3 .

25.2.3.6 Ex: Transition matrix elements

Using the following (non-normalized) wavefunctions of hydrogen, ψ100(r) = e−r̃,
ψ210(r) = r̃e−r̃/2 cos θ and ψ21±1(r) = r̃e−r̃/2 sin θe±ıϕ, calculate the matrix elements
(a) ⟨ψ100|z̃|ψ210⟩, (b) ⟨ψ100|z̃|ψ211⟩, (c) ⟨ψ100|x̃− ıỹ|ψ210⟩, and (d) ⟨ψ100|x̃− ıỹ|ψ211⟩
using the formulae:

∫ ∞

0

x4e−3x/2dx = 256
81 ,

∫ π

0

sin3 xdx = 4
3 ,

∫ π

0

cosx sin2 xdx = 0 ,

∫ π

0

cos2 x sinxdx = 2
3 .

Try to interpret the results.

Solution: a. With z̃ = r̃ cos θ we calculate,

⟨ψ100|z̃|ψ210⟩ =
∫
e−r̃ · z̃ · r̃e−r̃/2 cos θd3r̃

=

∫
z̃r̃e−3r̃/2 cos θr̃2 sin θdθdϕdr̃

=

∫ π

0

cos2 θ sin θdθ

∫ 2π

0

dϕ

∫ ∞

0

r̃4e−3r̃/2dr̃ = 2
3 · 2π · 25681 = 210

35 π .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_TransicaoHidrogenio2.pdf
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b. With z̃ = r̃ cos θ we calculate,

⟨ψ100|z̃|ψ211⟩ =
∫
e−r̃ · z̃ · r̃e−r̃/2 sin θeıϕd3r̃

=

∫
z̃r̃e−3r̃/2 sin θeıϕr̃2 sin θdθdϕdr̃

=

∫ π

0

cos θ sin2 θdθ

∫ 2π

0

eiϕdϕ

∫ ∞

0

r̃4e−3r̃/2dr̃ = 0 .

c. With x̃− ıỹ = r̃ sin θe−ıϕ we calculate,

⟨ψ100|x̃− ıỹ|ψ210⟩ =
∫
e−r̃ · (x̃− ıỹ) · r̃e−r̃/2 cos θd3r̃

=

∫
(x̃− ıỹ)r̃e−3r̃/2 cos θr̃2 sin θdθdϕdr̃

=

∫ π

0

cos θ sin2 θdθ

∫ 2π

0

e−ıϕdϕ
∫ ∞

0

r̃4e−3r̃/2dr̃ = 0 .

d. With x̃− ıỹ = r̃ sin θe−ıϕ we calculate,

⟨ψ100|x̃− ıỹ|ψ211⟩ =
∫
e−r̃ · (x̃− ıỹ) · r̃e−r̃/2 sin θeıϕd3r̃

=

∫
(x̃− ıỹ)r̃e−3r̃/2 sin θeıϕr̃2 sin θdθdϕdr̃

=

∫ π

0

sin3 θdθ

∫ 2π

0

dϕ

∫ ∞

0

r̃4e−3r̃/2dr̃ = 4
3 · 2π · 25681 = 211

35 π .

The matrix elements describe transitions between electronic states induced by dipole
radiation. The selection rules are |∆ℓ| = 1 and ∆m = 0 for linear polarization and
∆m = ±1 for circular polarization (always with respect to the êz-axis). The linear
polarization corresponds to the transition operator ẑ and the circular polarization to
the operator x̂− ıŷ.

25.3 Angular momentum

25.3.1 The orbital angular momentum operator

The definition of orbital angular momentum is adopted from classical mechanics:

l̂ = r̂× p̂ = −ıℏr̂× ∇̂ = −ıℏ

∣∣∣∣∣∣∣

êx êy êz

x y z

∂x ∂y ∂z

∣∣∣∣∣∣∣
. (25.58)

To better understand the properties of the angular momentum operator in quantum
mechanics we will derive in the Excs. 25.3.4.1 and 25.3.4.2 some of its properties.
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Figure 25.8: Illustration of angular momentum in quantum mechanics.

25.3.1.1 Constants of motion

The preceding chapter dealt with the resolution of the radial and angular equations
for the case of a radial potential. The radial equation allowed to calculate the eigenen-
ergies of the Hamiltonian Ĥ,

Ĥ|ψ⟩ = Enℓ|ψ⟩ . (25.59)

We also found the common eigenvalues and eigenfunctions of operators l̂2 and l̂z
[see Eqs. (25.20) and (25.24)]. We now use the notation |ℓ,m⟩ ≡ Yℓm(θ, ϕ) for the
eigenfunctions,

l̂2|ℓ,m⟩ = ℏ2ℓ(ℓ+ 1)|ℓ,m⟩ and l̂z|ℓ,m⟩ = ℏm|ℓ,m⟩ . (25.60)

With this we have,

[Ĥ, l̂2]|ψ⟩ = Ĥℏ2ℓ(ℓ+ 1)|ψ⟩ − l̂2E|ψ⟩ = 0 (25.61)

and [Ĥ, l̂z]|ψ⟩ = Ĥℏm|ψ⟩ − l̂zE|ψ⟩ = 0 .

Therefore, the operators l̂2 and l̂z are constants of motion,

[Ĥ, l̂z] = 0 = [Ĥ, l̂2] . (25.62)

Exc. 25.3.4.3 asks to show explicitly, at the example of an isotropic three-dimensional
harmonic oscillator, that l̂2 and l̂z are constants of motion.

25.3.2 SU(2) algebra of angular momentum and spin

So far, we have solved the angular eigenvalue equation in the spatial representation
for an orbital angular momentum, l̂ = r̂×p̂. But it is not clear, whether every angular
momentum has this representation, which is derived from classical notions. Using the
orbital angular momentum expression (25.58) it is easy to verify,

l̂× l̂ = ıℏ̂l . (25.63)

However, it is not clear a priori, whether any quantity ĵ satisfying

ĵ× ĵ = ıℏ̂j or equivalently [ĵm, ĵn] = ıℏϵkmnĵk (25.64)
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using the Levi-Civita symbol, can be represented like (25.58). In fact, we will see that
the electron has an intrinsic spin with no orbiting charges, and cannot be represented
as an orbital angular momentum. What needs to be done now is to show that (25.64)
generates a consistent algebra even in cases beyond the representation (25.58).

Since ĵ2 and ĵz commute (we show this from Eq. (25.64) in Exc. 25.3.4.4), they
have common eigenfunctions |j,m⟩. We can write the eigenvalues as,

ĵ2|j,m⟩ = ℏ2j(j + 1)|j,m⟩ and ĵz|j,m⟩ = ℏm|j,m⟩ , (25.65)

where, for now, we only know that m is real and j ≥ 0. But since ⟨j,m|̂j2|j,m⟩ ≥
⟨j,m|ĵ2z |j,m⟩, it is clear that j(j + 1) ≥ m2.

25.3.2.1 Rising and lowering operator

Now we introduce the rising operator ĵ+ and the lowering operator ĵ− via

ĵ± ≡ ĵx ± ıĵy such that ĵ− = ĵ†+ . (25.66)

It is easy to check the following relationships

[ĵz, ĵ±] = ±ℏĵ± and [̂j2, ĵ±] = 0 and ĵ∓ĵ± = ĵ2 − ĵ2z ∓ ℏĵz . (25.67)

With this we find

ĵz ĵ±|j,m⟩ = ([ĵz, ĵ±] + ĵ±jz)|j,m⟩ = ℏ(m± 1)ĵ±|j,m⟩ (25.68)

and ĵ2j±|j,m⟩ = ĵ±ĵ
2|j,m⟩ = ℏ2j(j + 1)ĵ±|j,m⟩ .

That is, ĵ±|j,m⟩ is a eigenstate of ĵ2 and ĵz with the eigenvalues j and m ± 1,
respectively, if j±|j,m⟩ ≠ 0. Hence,

ĵ+|j,m⟩ ∝ |j,m+ 1⟩ . (25.69)

In order not to violate the condition m2 ≤ j(j + 1), we need to fix ĵ±|j,±j⟩ = 0.
Therefore, for a specified j, the m can have only one of the 2j + 1 possible values
m = −j,−j+1, .., j. Since 2j+1 is an integer, j can only have values j = 0, 12 , 1,

3
2 , ...

Thus, the eigenvalue equation of the observables ĵ2, ĵ is solved, since we could have
chosen instead of ĵz any one of the components of ĵ, knowing that the others do not
commute with the chosen one.

All spin components ĵz and the scalar ĵ2 can only have discrete eigenvalues. The
smallest unit is ℏ/2. With the normalization ⟨j,m|j′,m′⟩ = δj,j′δm,m′ we have,

⟨j,m|ĵ∓ĵ±|j,m⟩ = ⟨j,m|(̂j2 − ĵ2z ∓ ℏĵz)|j,m⟩ = ℏ2[j(j + 1)−m(m± 1)] , (25.70)

and

ĵ±|j,m⟩ = ℏ
√
j(j + 1)−m(m± 1)|j,m± 1⟩ . (25.71)

In Exc. 25.3.4.5 we calculate the uncertainty of the angular momentum components,
in Exc. 25.3.4.6 we write the operator ĵx in a matrix form, and in Excs. 25.3.4.7 and
25.3.4.8 we calculate projections of the spin of the electron in different directions of
the quantization axis.
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25.3.3 The electron spin

Every angular momentum l̂ generates a magnetic dipole moment µ⃗ℓ ∝ l̂, which in-
teracts with external magnetic fields, V (B⃗) = µ⃗ℓ · B⃗. Inhomogeneous magnetic fields

exert forces on dipole moments, F = −∇(µ⃗ℓ · B⃗), which are detected by the Stern-
Gerlach experiment. This experiment reveals not only the quantization of angular
momentum, but also the presence of semi-integral values for the magnetic quantum
number.

In 1925 Uhlenbeck and Goudsmit proposed that the electron could have an intrinsic
angular momentum with the quantum number s = 1/2. This angular momentum,
called spin, would not correspond to any orbiting mass or charge distribution within
the classical radius of the electron of the type l = r × p. The spin is a purely
quantum phenomenon because it disappears when ℏ → 0. It is believed nowadays
that the electron is actually point-like with no detectable deviation from Coulomb’s
law at any distance. The spin of the electron does not follow from the Schrödinger
equation, but can be included, ad hoc. On the other hand, it is interesting that it is
a necessary consequence of the stringent relativistic derivation of quantum mechanics
by Paul Dirac.

To characterize the spin, we can use the whole SU(2) formalism of the quantum
mechanics of angular momentum:

ŝ× ŝ = ıℏŝ , (25.72)

and

ŝ2| 12 ,± 1
2 ⟩ = ℏ2 3

4 | 12 ,± 1
2 ⟩ , ŝz| 12 ,± 1

2 ⟩ = ±ℏ
2 | 12 ,± 1

2 ⟩ , (25.73)

ŝ± = ℏσ̂± = ℏ| 12 ,± 1
2 ⟩⟨| 12 ,∓ 1

2 | .

The operators σ̂± are the Pauli spin matrices defined in (23.47) for the basis chosen
as,

| 12 ,+ 1
2 ⟩ =

(
1

0

)
and | 12 ,− 1

2 ⟩ = − 1
2

(
0

1

)
. (25.74)

25.3.4 Exercises

25.3.4.1 Ex: Properties of the angular orbital momentum

Show that l̂× l̂ = ıℏ̂l and [l̂x, l̂y] = ıℏl̂z.

Solution: For the x-component we have,

(̂l× l̂)x = [l̂y, l̂z] = (ẑp̂x − x̂p̂z)(x̂p̂y − ŷp̂x)− (x̂p̂y − ŷp̂x)(ẑp̂x − x̂p̂z)
= (ŷp̂z − ẑp̂y)(x̂p̂x − p̂xx̂) = ıℏl̂x ,

where we used [p̂k, x̂m] = −ıℏδkm. For the other components we can do the same
calculation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_PropriedadeAngular1.pdf
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25.3.4.2 Ex: Levi-Civita tensor

a. Demonstrate [l̂k, r̂m] = ıℏr̂nϵkmn where the Levi-Civita tensor is defined by ϵkmn =
1 when (kmn) is an even permutation of (123), ϵkmn = −1 for an odd permutation,
and ϵkmn = 0 when two of the indices are equal.
b. Verify ĵmĵn = 1

4δmn + ı
2ϵkmnĵk.

Solution: a. Using

l̂k = (r̂ × p̂)k = (r̂mp̂n − r̂np̂m)ϵkmn and [p̂k, r̂m] = −ıℏδkm ,

it is easy to show

[l̂k, r̂m] = (r̂mp̂n − r̂np̂m)ϵkmnr̂m − r̂m(r̂mp̂n − r̂np̂m)ϵkmn

= [r̂nr̂mp̂m − r̂np̂mr̂m] ϵkmn = ıℏr̂nϵkmn .

b.

25.3.4.3 Ex: Angular orbital momentum of a harmonic oscillator

Show for an isotropic three-dimensional harmonic oscillator: [Ĥ, l̂2] = [Ĥ, l̂z] = 0.
Make explicit calculations, that is, show

[
p̂2

2m , l̂z

]
= 0 =

[m
2
ω2r̂2, l̂z

]
and

[
p̂2

2m , l̂
2
]
= 0 =

[m
2
ω2r̂2, l̂2

]
.

Solution: In general way, we can show

[
p̂2

2m , l̂z

]
= 1

2m [p̂2x + p̂2y + p̂2z, x̂p̂y − ŷp̂x] = 1
2m [p̂2x, x̂]p̂y −

1

2m
[p̂2y, ŷ]p̂x

= 1
2m

(
p̂xp̂xx̂p̂y − p̂xx̂p̂xp̂y − ıℏp̂xp̂y − [p̂2y, ŷp̂x]

)
= 1

2m (−2ıℏp̂xp̂y + 2ıℏp̂xp̂y) = 0 ,

and in the same way
[
p̂2

2m , l̂
2
]
= 0. For a harmonic potential,

[m
2
ω2r̂2, l̂z

]
=
m

2
ω2[x̂2 + ŷ2 + ẑ2, x̂p̂y − ŷp̂x] =

m

2
ω2[ŷ2, p̂y]x̂−

m

2
ω2[x̂2, p̂x]ŷ

=
m

2
ω2(ŷp̂y ŷx̂+ ŷıℏx̂− p̂y ŷŷx̂− [x̂2, p̂x]ŷ) =

m

2
ω2(2ıℏx̂ŷ − 2ıℏx̂ŷ) = 0 .

25.3.4.4 Ex: Commutation of the absolute value and the components of
the orbital angular momentum

Show [̂j2, ĵ] = 0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_TensorLeviCivita.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_InvariantesHarmonicas.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_PropriedadeAngular2.pdf
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Solution: With ĵ2 = ĵ2x + ĵ2y + ĵ2z and [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ we find, us-

ing the formal definition of angular momentum [ĵm, ĵn] = iℏϵkmnĵk, that

−[ĵ2x, ĵz] = ıℏ(ĵxĵy + ĵy ĵx) = [ĵ2y , ĵz] and [ĵ2z , ĵz] = 0 .

For the components ĵx and ĵy we find the same results.

25.3.4.5 Ex: Uncertainty of angular momentum components

Show that if ĵz is precise, then ĵx and ĵy are imprecise.

Solution: The definition of the operators ĵ± ≡ ĵx ± ıĵy implies that ĵz is an ob-
servable. Therefore,

(∆jz)
2 = ⟨j,m|ĵ2z |j,m⟩ − ⟨j,m|ĵz|j,m⟩2 = 0

(∆jx)
2 = ⟨j,m|ĵ2x|j,m⟩ − ⟨j,m|ĵx|j,m⟩2 = ⟨j,m|ĵ2x|j,m⟩ = 1

4 ⟨j,m|(ĵ+ + ĵ−)
2|j,m⟩

= 1
4 ⟨j,m|ĵ+ĵ− + ĵ−ĵ+|j,m⟩ = ℏ2

2 [j(j + 1)−m2] ≥ ℏ2

2 j .

25.3.4.6 Ex: Matrix representation of the components of the angular
momentum

Calculate the matrix elements of ĵx and ĵ2x in the basis where ĵz is observable. Give
the general formula and examples for j = 1

2 and j = 1.

Solution: We show,

⟨j′,m′|ĵx|j,m⟩ = 1
2 ⟨j′,m′|ĵ+ + ĵ−|j,m⟩

= ℏ
2

√
j(j + 1)−m(m+ 1)δj′,jδm′,m+1 +

ℏ
2

√
j(j + 1)−m(m− 1)δj′,jδm′,m−1 .

Similarly using ĵ2x = 1
4 (ĵ

2
+ + ĵ2− + ĵ+ĵ− + ĵ−ĵ+) = 1

4 (ĵ
2
+ + ĵ2− + 2̂j2 − 2ĵ2z ), we get,

⟨j′,m′|ĵ2x|j,m⟩ = ℏ2

4

√
j(j + 1)− (m+ 1)(m+ 2)

√
j(j + 1)−m(m+ 1)δj′,jδm′,m+2

+ ℏ2

4

√
j(j + 1)− (m− 1)(m− 2)

√
j(j + 1)−m(m− 1)δj′,jδm′,m−2

+ ℏ2

2 [j(j + 1)−m2]δj′,jδm′,m .

For example for j = 1/2 we get,

ĵx = ℏ√
2
σ̂x and ĵ2x = ℏ2

2 I .

And for j = 1 we get,

ĵx = ℏ
2



0 1 0

1 0 1

0 1 0


 and ĵ2x = ℏ2

4



1 0 1

0 2 0

1 0 1


 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_IncertezaAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MatricialAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MatricialAngular.pdf
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25.3.4.7 Ex: Spin-1/2-particle in a magnetic field

Consider a spin-1/2-particle whose magnetic moment is µ⃗ = γs (where γ is a con-
stant). We can describe the quantum state of this particle in terms of the space
generated by the eigenvectors |+⟩ and |−⟩ of the operator ŝz, which measures the
spin projection in z-direction:

ŝz|+⟩ = ℏ
2 |+⟩ , ŝz|−⟩ = −ℏ

2 |−⟩

Initially (t = 0) the particle is in the state ψ(t = 0)⟩ = |+⟩ and is subject to a uniform

magnetic field B⃗ = Bêy, so that:

Ĥ = −µ⃗ · B⃗ = −γBŝy .

a. What are the possible measurements of the spin projection on the y-axis?
b. Find the eigenvectors of ŝy.
c. Get |ψ(t)⟩ at t > 0 in terms of the eigenvectors |+⟩ and |−⟩ defined above.
d. Obtain the mean expectation values of the observables ŝx, ŝy and ŝz as a function
of time.

Solution: a. In any axis the possible projections are: +ℏ/2 and −ℏ/2.
b. We have,

ŝy = ℏ
2

(
0 −ı
ı 0

)
.

With this,

ŝy

(
a

b

)
= ℏ

2

(
−ıb
ıa

)
= ℏ

2

(
a

b

)
=⇒ a = −ıb =⇒ |+y⟩ = b

(
−ı
1

)
.

Normalization, |⟨+y|+y⟩2 = 1, requires,

|+y⟩ = 1√
2

(
−ı
1

)
.

Also,

ŝy

(
a

b

)
=

ℏ
2

(
−ıb
ıa

)
= −ℏ

2

(
a

b

)
=⇒ a = ıb =⇒ |−y⟩ = b

(
ı

1

)
.

Normalization, |⟨−y|−y⟩2 = 1, requires,

|−y⟩ = 1√
2

(
ı

1

)
.

Finally,

|±y⟩ = ∓ ı√
2
|+⟩+ 1√

2
|−⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SpinOrientation.pdf
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c. We have the solution,

|ψ(t)⟩ = e−ıĤt/ℏ|ψ(0)⟩ = eıγBŝyt/ℏ|+⟩ .

We can express |+⟩ in terms of the eigenvectors of ŝy:

|+⟩ = ı√
2
(|+y⟩ − |−y⟩) .

Finally, since ŝy|±y⟩ = ±ℏ
2 |±y⟩ engenders f(ŝy)|±y⟩ = f(±ℏ

2 )|±y⟩,

|ψ(t)⟩ = eıγBŝyt/ℏ ı√
2
(|+y⟩ − |−y⟩) = ı√

2
(eıγBt/2|+y⟩ − e−ıγBt/2|−y⟩) .

Expressing the eigenvectors of ŝy by the eigenvectors of ŝz:

|ψ(t)⟩ = ı√
2
eıγBt/2

(
−ı√
2
|+⟩+ 1√

2
|−⟩
)
− e−ıγBt/2

(
ı√
2
|+⟩+ 1√

2
|−⟩
)

= ı
2

[
−2ı cos γBt2 |+⟩+ 2ı sin γBt

2 |−⟩
]
= cos γBt2 |+⟩ − sin γBt

2 |−⟩ .

d. We want ⟨ψ(t)|ŝi|ψ(t)⟩ with i = x, y, z. We have,

|ψ(t)⟩ =
(

cos γBt2
− sin γBt

2

)
.

Now,

⟨ŝx⟩ =
(
cos − sin

)
ℏ
2

(
0 1

1 0

)(
cos

− sin

)
= ℏ

2 (− cos sin− cos sin) = −ℏ
2 sin(γBt)

⟨ŝy⟩ =
(
cos − sin

)
ℏ
2

(
0 −ı
ı 0

)(
cos

− sin

)
= ℏ

2 (ı cos sin−ı cos sin) = 0

⟨ŝz⟩ =
(
cos − sin

)
ℏ
2

(
1 0

0 −1

)(
cos

− sin

)
= ℏ

2 (cos
2− sin2) = ℏ

2 cos(γBt) .

25.3.4.8 Ex: Spin expectation value for a two-level system

Consider an arbitrary state of a two-level system |ϑ, φ⟩ = cos ϑ2 |+⟩+ eıφ sin ϑ
2 |−⟩ and

calculate the expectation values of the ladder operators ŝ± and of the spin operator
ŝ. Also calculate the expectation values of ŝ2±, ŝ±ŝ∓, ŝ

2
α with α = x, y, z. Finally,

calculate the uncertainties of ŝα and check the uncertainty relation.

Solution: Using ŝ±|∓⟩ = |±⟩, ŝ∓|∓⟩ = 0, and ŝz|±⟩ = ± 1
2 |±⟩, we first calculate,

⟨ϑ, φ|ŝ+|ϑ, φ⟩ =
(
⟨+| cos ϑ2 + ⟨−|e−ıφ sin ϑ

2

)
ŝ+
(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)
= 1

2e
ıφ sinϑ

⟨ϑ, φ|̂s|ϑ, φ⟩ =




1
2 (ŝ+ + ŝ−)
1
2ı (ŝ+ − ŝ−)
1
2 [ŝ+, ŝ−]


 =




1
2 cosφ sinϑ
1
2 sinφ sinϑ

1
2 cosϑ


 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SpinExpectation01.pdf
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Figure 25.9: (code) Illustration of the uncertainties for various states on the Bloch sphere.

We also calculate,

⟨ϑ, φ|ŝ2+|ϑ, φ⟩ = 0 = ⟨ϑ, φ|ŝ2−|ϑ, φ⟩
⟨ϑ, φ|ŝ+ŝ−|ϑ, φ⟩ =

(
⟨+| cos ϑ2 + ⟨−|e−ıφ sin ϑ

2

)
ŝ+ŝ−

(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)
= cos2 ϑ2

⟨ϑ, φ|ŝ−ŝ+|ϑ, φ⟩ = sin2 ϑ2

⟨ϑ, φ|ŝ2x|ϑ, φ⟩ = 1
4

(
ŝ+ŝ− + ŝ+ŝ− + ŝ2+ + ŝ2−

)
= 1

4

⟨ϑ, φ|ŝ2y|ϑ, φ⟩ = 1
4

(
ŝ+ŝ− + ŝ+ŝ− − ŝ2+ − ŝ2−

)
= 1

4

⟨ϑ, φ|ŝ2z|ϑ, φ⟩ =
(
⟨+| cos ϑ2 + ⟨−|e−ıφ sin ϑ

2

)
ŝ2z
(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)
= 1

4 ,

Finally,

⟨ϑ, φ|∆ŝx|ϑ, φ⟩ =
√

1
4 − 1

4 cos
2 φ sin2 ϑ

⟨ϑ, φ|∆ŝy|ϑ, φ⟩ =
√

1
4 − 1

4 sin
2 φ sin2 ϑ

⟨ϑ, φ|∆ŝz|ϑ, φ⟩ =
√

1
4 − 1

4 cos
2 ϑ .

The uncertainty relation demands,

⟨ϑ, φ|∆ŝx|ϑ, φ⟩⟨ϑ, φ|∆ŝy|ϑ, φ⟩ ≥ 1
4 | cosϑ| ,

which can be verified by simple algebraic calculation. The uncertainties are illustrated
in Fig. 25.9.

25.4 Coupling of angular momenta

25.4.1 Singlet and triplet states with two electrons

In this section we first consider the spin states of two electrons, which can be combined
into two groups with well-defined total spin. With this we can understand the energy
spectrum of helium, which is very much dominated by Pauli’s principle and quantum
statistics. The introduced concepts can be extended to atoms with many electrons.

Angular momentum is an important quantum number in the treatment of the
internal structure of atoms. The two electrons in the helium electronic shell each

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Rotation_Uncertainties.m
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contribute a spin of S = 1
2 , which couple to a total angular momentum. Let us

consider, for simplicity, two free electrons. The state of the two-particle system is
an element of the product space of the two Hilbert spaces in which the individual
electrons are described. We will now apply the formalism of Sec. 23.3.9 explicitly to
a pair of electrons. The states that the two electrons can occupy are:

|γ1⟩ =
(
1

0

)
⊗
(
1

0

)
=




1

0

0

0


 ≡ | ↑↑⟩ , (25.75)

|γ2⟩ = | ↑↓⟩ , |γ3⟩ = | ↓↑⟩ , |γ4⟩ = | ↓↓⟩ .

The Pauli matrices act on the spin of the individual electrons. They can be extended
to the product Hilbert space as follows,

ℏ
2 σ̂x ⊗ I2 = ℏ

2

(
0 I2
I2 0

)
, ℏ

2 I2 ⊗ σ̂x = ℏ
2

(
σ̂x 0

0 σ̂x

)
(25.76)

ℏ
2 σ̂y ⊗ I2 = ℏ

2

(
0 ıI2
−ıI2 0

)
, ℏ

2 I2 ⊗ σ̂y = ℏ
2

(
σ̂y 0

0 σ̂y

)

ℏ
2 σ̂z ⊗ I2 = ℏ

2

(
−I2 0

0 I2

)
, ℏ

2 I2 ⊗ σ̂z = ℏ
2

(
σ̂z 0

0 σ̂z

)
.

With these operators we can now build other operators. We first consider the three
components of the total angular momentum,

Ŝk = ℏ
2 (σ̂k ⊗ I2 + I2 ⊗ σ̂k) such that (25.77)

Ŝx = ℏ
2




0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


 , Ŝy = ıℏ

2




0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0


 , Ŝz = ℏ




−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 .

The operator for the square of the absolute value of the total angular momentum is
calculated as follows:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = ℏ2




2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2


 . (25.78)

Now, we look for the eigenvalues of the total angular momentum. The equation for
the eigenvalues of Ŝz,

Ŝz|γk⟩ =MS |γk⟩ , (25.79)
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is already diagonal in the introduced basis {γk} with the eigenvalues,

MS = −ℏ, 0, 0, ℏ . (25.80)

For Ŝ2 the situation is more interesting: The states |γ1⟩ and |γ4⟩ are eigenstates of
S2 for the eigenvalue 2ℏ2, but the states |γ2⟩ and |γ3⟩ are not eigenstates. On the
other hand, we know that the linear combination of two eigenstates with the same
eigenvalue is also a eigenstate. Therefore, the states

|γ̃1⟩ ≡ |γ1⟩ , |γ̃4⟩ ≡ |γ4⟩ , |γ̃a⟩ ≡ 1√
2
(|γ2⟩ − |γ3⟩) , |γ̃s⟩ ≡ 1√

2
(|γ2⟩+ |γ3⟩) ,

(25.81)
are still eigenstates of Ŝz, but they also are eigenstates of Ŝ2, since we can easily
verify,

Ŝ2|γs⟩ = 2ℏ2|γs⟩ and Ŝ2|γa⟩ = 0ℏ2|γa⟩ , (25.82)

using the matrices (25.77). In summary, for the eigenvalue ⟨Ŝ2⟩ = 2ℏ2 there exist the
following three states:

|γ1⟩ Ms = 1

|γ4⟩ Ms = −1
|γs⟩ Ms = 0





triplet , S = 1 (25.83)

For ⟨S2⟩ = 0 there is only one state:

|γa⟩ Ms = 0 singlet , S = 0 . (25.84)

By exchanging the two electrons, the vectors |γ1⟩ and |γ4⟩ retain their shape,
while the mixed vectors change their shape: γ2 ←→ γ3. Under particle exchange |γa⟩
reverses its sign, that is, it is antisymmetric, while |γ1⟩, |γ4⟩ and |γc⟩ conserve their
signs, that is, they are symmetrical.

In summary, the triplet states have the quantum number of the total angular
momentum (with the expected value for Ŝ2 of ℏ2S(S + 1) = 2ℏ2), and they are
symmetrical about the exchange of particles. The singlet state has the quantum
number of the total angular momentum S = 0, and it is antisymmetric about the
exchange of particles. The transition from the original basis {|γ1⟩, |γ2⟩, |γ3⟩, |γ4⟩} to
the new basis {|γ̃1⟩, |γ̃s⟩, |γ̃a⟩, |γ̃4⟩} described by Eqs. (25.81) is done by a unitary
transformation,

|γ̃⟩ = UCGC |γ⟩ with UCGC =




1
1√
2

1√
2

1√
2
− 1√

2

1




, (25.85)

whose components are known as Clebsch-Gordan coefficients. A similar treatment
can be done with bosons, as will be discussed in Sec. 31.1.
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25.4.2 Coupling two spins

We now consider a perturbation of the system which, for some reason, only affects
the first spin. In the absence of the second atom we would have,

Ĥ1 =

(
0 Ω∗

Ω 0

)
. (25.86)

Including the second atom,

Ĥ = Ĥ1 ⊗ I =




Ω∗

Ω∗

Ω

Ω


 . (25.87)

In this case, the perturbation Hamiltonian does not commute with the total angular
momentum,

[Ŝ2, Ĥ] ̸= 0 . (25.88)

Another type of perturbation affects both spin symmetrically (e.g., Dicke superra-
diance with two atoms in the same radiative mode or two counterpropagating modes
in a ring cavity). The interaction Hamiltonian is now the sum of the individual
perturbations,

Ĥ = Ĥ1 ⊗ I+ I⊗ Ĥ1 =




Ω∗ Ω∗

Ω Ω∗

Ω Ω∗

Ω Ω


 . (25.89)

This Hamiltonian commutes with the total angular momentum,

[Ŝ2, Ĥ] = 0 . (25.90)

S now is a good quantum number. Singlet states do not couple with triplets. This
is the idea behind Dicke’s superradiance. The absolute value of the total angular
momentum is conserved. The quantum number S is called Dicke cooperativity [366].
In Exc. 42.5.7.1 we will discuss the coupling of two counterpropagating modes in a
ring cavity. In Sec. 41.1 we will discuss Dicke states.

Example 165 (Two atoms interacting through their dipole moments): As
an example of a system exhibiting coupling of the type described in (25.89) we
consider two two-level atoms j = 1, 2. As long as the atoms do not interact, the
Hamiltonian will be,

Ĥ = ℏω0Ŝz , (25.91)

with Ŝz given by (25.77). Now, if the atoms interact via their dipole moments
with an electromagnetic field assumed to be the same for both atoms,

Ĥint =− q
m
A(r1) · (pxêxσ̂x ⊗ I+ pyêyσ̂

y ⊗ I) (25.92)

− q
m
A(r2) · (pxêxI⊗ σ̂x + pyêyI⊗ σ̂y) ,
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with r1 ≃ r2. By the rules (25.76) we find in matrix notation a Hamiltonian
equivalent to (25.89). Using the abbreviations Ωx ≡ q

m
Axpx, Ωy ≡ q

m
Aypy,

Ω± ≡ Ωx ± ıΩy, and Ω ≡
√

Ω2
x +Ω2

y,

Ĥ =


0 Ω− Ω− 0

Ω+ 0 0 Ω−

Ω+ 0 0 Ω−

0 Ω+ Ω+ 0

 . (25.93)

Using symbolic algebra software we find the eigenvector and eigenvalue matrices,

U =


Ω−
Ω+

−Ω−
Ω+

0
Ω−
Ω+

−
√

Ω−
Ω+

0 −1
√

Ω−
Ω+

−
√

Ω−
Ω+

0 1
√

Ω−
Ω+

1 1 0 1

 and Ê =


−2Ω 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2Ω

 .

(25.94)
Now, we get for the evolution of the various states,

UeıÊtU−1


0

1

1

0

 =


−
√
−Ω−
Ω+

sin 2Ωt

cos 2Ωt

cos 2Ωt√
Ω+

−Ω−
sin 2Ωt

 and UeıÊtU−1


0

1

−1
0

 =


0

1

−1
0

 .

(25.95)

That is, the Hamiltonian (25.92) does not mix antisymmetric singlet states and

symmetric triplet states.

25.4.3 Decoupled and coupled bases

Electrically charged orbiting particles produce a magnetic field. This field can in-
fluence the motion of other particles. In the same way, the spin of an electron can
influence its own orbital motion. That is, angular momenta can couple and interact in
a complicated way. Even to describe the behavior of an atom as simple as hydrogen in
an external field, we need to construct the eigenstates of the total angular momentum
resulting from a coupling of the electron’s intrinsic spin and its orbital motion.

On the other side, we have hitherto considered predominantly hydrogen and
hydrogen-like atoms, that is, atoms with a nucleus and a single (valence) electron.
But in fact atoms can have more than 100 electrons, which complicates the exact de-
scription. In atoms with many electrons, one of the most common coupling schemes
is when the angular momenta of all electrons couple to a total angular momentum,
L̂ =

∑
k l̂k, which then couples to the total spin, Ŝ =

∑
k ŝk, to form the complete

total angular momentum, Ĵ = L̂ + Ŝ. We generally assign total momenta to capital
letters.

Adopting an unbiased notation we study some properties of the total angular
momentum, ĵ ≡ ĵ1+ ĵ2. In Exc. 25.4.5.1 we find that the addition of angular momenta
produces a quantity which is also an angular momentum, but not the subtraction.

The angular momenta of two particles or two angular momenta of different origins
in a single particle represent independent degrees of freedom, [j1, j2] = 0. Without
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interaction between angular momenta the Hilbert spaces are orthogonal:

H1 ⊗H2 =

(
H1 0

0 H2

)
. (25.96)

The eigenfunctions act on a space of dimension, dimH1 · dimH2:

|j1,mj1; j2,mj2⟩ . (25.97)

That is, there is a complete set of commuting operators {̂j21, ĵ1z, ĵ22, ĵ2z}. Therefore,
we can specify quantum numbers j1, j2, mj1, and mj2 simultaneously. On the other

hand, the group {̂j21, ĵ22, ĵ2, ĵz} also represents a complete set of commuting operators,
as shown in Exc. 25.4.5.2. It has the basis

|(j1, j2)j,mj⟩ . (25.98)

To describe the two angular momenta simultaneously, we must opt between the
decoupled picture |j1,mj1; j2,mj1⟩ and the coupled picture |(j1, j2)j,mj⟩. For now,
the choice of the picture makes no difference, but we will see later that there may be
an energy associated with the coupling 4. In this case, as we will show, the choice
of the coupled base is more natural, because generally the energy commutes like
[Ĥ, ĵ2] = 0 = [Ĥ, ĵz] and [Ĥ, ĵ21] = 0 = [Ĥ, ĵ22], but [Ĥ, ĵ1z] ̸= 0 ̸= [Ĥ, ĵ2z].

Figure 25.10: Illustration of the coupling of two angular momenta.

Example 166 (Coupled basis): For example, using the Hamiltonian (25.94)
it is easy to see that,

[Ĥ, (σ̂x ⊗ I)2 + (σ̂y ⊗ I)2 + (σ̂z ⊗ I)2] = 0 = [Ĥ, (I⊗ σ̂x)2 + (I⊗ σ̂y)2 + (I⊗ σ̂z)2]
[Ĥ, σ̂z ⊗ I] ̸= 0 ̸= [Ĥ, I⊗ σ̂z] .

25.4.3.1 Allowed values of total angular momentum

As long as we do not specify an interaction energy between the spins or between spins
and external fields, all states are energetically degenerate. In the decoupled image

4That is, the Hamiltonian of the system does not contain terms of type ĵ1 · ĵ2, but may have
terms proportional to ĵ1 + ĵ2.
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the degeneracy is easily calculated,

# =

j1∑

mj1=−j1

j2∑

mj2=−j2
1 = (2j1 + 1)(2j2 + 1) . (25.99)

Now, we want to find the possible values of j and mj in the coupled picture. The

values of mj follow immediately from ĵ1 + ĵ2 = ĵ,

mj = mj1 +mj2 . (25.100)

With |mj1| ≤ j1 and |mj2| ≤ j2 the values of mj are limited to

|mj | ≤ j1 + j2 . (25.101)

We often know the two angular momenta j1 and j2 and all their projections in the
decoupled base,

|mj1| ≤ j1 and |mj2| ≤ j2 . (25.102)

To find the quantum numbers in the coupled base, we arrange the states ordering
them by their total magnetic quantum number mj . We can, without loosing general-
ity, concentrate on the situation j1 ≥ j2. The following table reproduces the possible
combinations. The x-symbols represent Clebsch-Gordan coefficients:

j

mj1 +mj2 = mj

j

j

j j − 1

j − 1 j − 1

j j − 1 j − 2

j − 2 j − 2 j − 2

j j − 1

−j + 1 −j + 1

j

−j

j1 j2 x

j1 j2 − 1

j1 − 1 j2

x x

x x

j1 j2 − 2

j1 − 1 j2 − 1

j1 − 2 j2

x x x

x x x

x x x

.
.
.

−j1 + 1 −j2
−j1 j2 + 1

x x

x x

−j1 −j2 x

The possible values for j are all those allowing for j ≥ |mj | = |mj1+mj2|, that is,

|j1 − j2| ≤ j ≤ j1 + j2 . (25.103)

Each value of j has the degeneracy 2j+1. Therefore, as will be verified in Exc. 25.4.5.3,
the total degeneracy is,

j1+j2∑

j=|j1−j2|
2j + 1 = (2j1 + 1)(2j2 + 1) . (25.104)

Example 167 (Spin states in the presence of L · S coupling): As an

example we consider two electrons occupying the (5p)2 orbital. That is, both

electrons have si = 1
2
and ℓi = 1. As illustrated in Fig. 25.11, the coupling

first gives S = s1 + s2 = 0, 1 and L = ℓ1 + ℓ2 = 0, 1, 2. Then we determine the

possible values of the total angular momentum J = L + S = 0, 1, 2 depending

on the values of L and S.
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Figure 25.11: Possible spin states of two electrons occupying the (5p)2 orbital. Spin-orbit
coupling L · S leads to a splitting of the energy levels.

25.4.4 Clebsch-Gordan coefficients

Let us now describe how to add two angular momenta, ĵ1 and ĵ2. Since they act on
different degrees of freedom,

[α⃗1 · ĵ1, α⃗2 · ĵ2] = 0 (25.105)

for arbitrary vectors α⃗1 and α⃗2. We have a system of common eigenvectors, |η, j1, j2,m1,m2⟩,
where η are the eigenvalues of other observables commuting with ĵ1 and ĵ2. These
eigenvectors give the values ℏ2j1(j1 + 1) and ℏ2j2(j2 + 1) for the observables ĵ21 and
ĵ22, as well as ℏm1 and ℏm2 for the observables jz1 and jz2. The number of states
is (2j1 + 1)(2j2 + 1). Now we want to construct the eigenstates of the total angular
momentum ĵ = ĵ1 + ĵ2. Since

[̂j, ĵ21] = 0 = [̂j, ĵ22] , (25.106)

there exist common eigenstates |j1, j2, j,m⟩ for the set of observables ĵ21, ĵ
2
2, ĵ

2 and
ĵz. These eigenstates are linear combinations of the individual states,

|(j1, j2)j,m⟩ =
∑

m1,m2

|j1, j2,m1,m2⟩⟨j1, j2,m1,m2|(j1, j2)j,m⟩ (25.107)

=
∑

m1,m2

|j1, j2,m1,m2⟩
(
j1 j2

m1 m2

∣∣∣∣∣
j

m

)
.

The matrix coefficient is called Clebsch-Gordan coefficient. The Clebsch-Gordans
disappear when the conditions 5

|j1 − j2| ≤ j ≤ j1 + j2 and m = −j1 − j2,−j1 − j2 + 1, .., j1 + j2 (25.108)

are not satisfied.

The unitary transformation matrices between decoupled and coupled bases,

|(j1, j2)j,m⟩ = UCGC |j1,m1; j2,m2⟩ , (25.109)

are listed in tables of the Clebsch-Gordan coefficients.

5The Clebsch-Gordans are related to the (3j) de Wigner symbols.
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Example 168 (Clebsch-Gordans for the coupling of two spins 1
2
): For

example, for the system consisting of two 1
2
spins we have,


|( 1

2
, 1
2
)1,+1⟩

|( 1
2
, 1
2
)1, 0⟩

|( 1
2
, 1
2
)0, 0⟩

|( 1
2
, 1
2
)1,−1⟩

 =


1 0 0 0

0
√

1
2

√
1
2

0

0
√

1
2
−
√

1
2

0

0 0 0 1



| 1
2
,+ 1

2
; 1
2
,+ 1

2
⟩

| 1
2
,− 1

2
; 1
2
,+ 1

2
⟩

| 1
2
,+ 1

2
; 1
2
,− 1

2
⟩

| 1
2
,− 1

2
; 1
2
,− 1

2
⟩

 .

In the Excs. 25.4.5.4 and 25.4.5.5 we write all possible states of two angular mo-
menta in decoupled and coupled bases. In Excs. 25.4.5.6, 25.4.5.7, we derive the ma-
trix representation of two spins in the decoupled and the coupled base. In 25.4.5.8,
and 25.4.5.9 we practice the transformation between decoupled and coupled bases, and
in Exc. 25.4.5.10 we verify a rule guaranteeing the unitarity of the Clebsch-Gordan
transformation. Finally in 25.4.5.11, 25.4.5.12, and 25.4.5.13 we study L ·S-coupling.

25.4.4.1 Coupling of three angular moments

Three angular momenta can be coupled in three different configurations: First j1
with j2, then the total spin (j1, j2)j12 with the third one j3. We use the notation
|[(j1, j2)j12, j3]J⟩ or |[(j1, j3)j13, j2]J⟩ or |[(j2, j3)j23, j1]J⟩. The recoupling of three
spins

j1 + j2 = j12

+ +

j3 j3

= =

j13 + j2 = J

(25.110)

is described by {6j} =
{
j1 j3 j13

J j12 j2

}
-symbols, for example,

|[(j1, j2)j12, j3]J⟩ =
∑

j13

{6j}|[(j1, j3)j13, j2]J⟩ . (25.111)

25.4.4.2 Notation for atomic states with LS-coupling

In an atom, the spins of the electrons often couple to a total spin, S =
∑
k sk,

and separately the orbital angular momenta to a total orbital angular momentum,
L =

∑
k lk. These two total spins now couple to a total angular momentum, J = L+S.

When this LS-coupling happens, the following notation is used to characterize the
electronic states in atoms:

2S+1LJ . (25.112)

25.4.4.3 jj-coupling

There is also the case that for each electron its spin couples to its own orbital angular
momentum, jk = lk + sk, before coupling to the total angular momenta of other



25.4. COUPLING OF ANGULAR MOMENTA 1413

electrons, J =
∑
k jk. This is called jj-coupling. In the case of two electrons the

recoupling of the four involved spins

l1 + l2 = L

+ + +

s1 + s2 = S

= = =

j1 + j2 = J

(25.113)

is described by {9j} =





l1 l2 L

s1 s2 S

j1 j2 J




-symbols,

|[(l1, s1)j1, (l2, s2)j2]J⟩ =
∑

L,S

{9j}|[(l1, l2)L, (s1, s2)S]J⟩ . (25.114)

25.4.5 Exercises

25.4.5.1 Ex: Addition/subtraction of angular momenta

Show that ĵ1 + ĵ2 is an angular momentum, but not ĵ1 − ĵ2.

Solution: We find on one hand,

iℏ̂j = iℏ̂j1 ± iℏ̂j2 .

On the other hand, using ĵ1 × ĵ2 = −ĵ2 × ĵ1, we find,

iℏ̂j = ĵ× ĵ = (̂j1 ± ĵ2)× (̂j1 ± ĵ2) = ĵ1 × ĵ1 + ĵ2 × ĵ2 + ĵ1 × ĵ2 + ĵ2 × ĵ1 = iℏ̂j1 + iℏ̂j2 .

Only for the upper signs do we obtain equality of the two above expressions and there-
fore a total angular momentum.

25.4.5.2 Ex: CSCO for coupled angular momenta

Be ĵ = ĵ1 + ĵ2. Show that {̂j21, ĵ22, ĵ2, ĵz} is a CSCO; that is, show that
a. ĵ2 commutes with ĵ21 and ĵ22;
b. ĵ2 does not commute with ĵ1z or ĵ2z and that we can not specify mj1 or mj2 to-
gether with j.

Solution: a. We have,

[j2, j21] = [(j1 + j2)
2, j21] = [j21 + j22 + j1j2 + j2j1, j

2
1] = [j1j2 + j2j1, j

2
1] = 2j2[j1, j

2
1] = 0.

b. We have,
[̂j2, j1z] = [̂j21 + ĵ22 + 2̂j1̂j2, ĵ1z] = 2̂j2 [̂j1, ĵ1z] ̸= 0 .

Therefore, we can not specify mj1 or mj2 together with j.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SubtracaoAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_AdicaoAngular.pdf
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25.4.5.3 Ex: Multiplicity of coupled angular momenta

Verify # = (2j1 + 1)(2j2 + 1) within the coupled representation.

Solution: We have,

2

b∑

j=a

j +

b∑

j=a

1 = 2 (b−a+1)(a+b)
2 + (b− a+ 1) = (b− a+ 1)(a+ b+ 1)

j1+j2∑

j=|j1−j2|
2j + 1 = ([j1 + j2]− [j1 − j2] + 1)([j1 − j2] + [j1 + j2] + 1)

=(j2 + j2 + 1)(j1 + j1 + 1) .

25.4.5.4 Ex: Possible states of two (de-)coupled angular momenta

Find all possible states with the angular momenta j1 = 1 and j2 = 1/2 in decoupled
and coupled pictures.

Solution: In the decoupled image we have,

|j1,mj1; j2,mj2⟩ = |1,+1; 1
2 ,± 1

2 ⟩, |1, 0; 1
2 ,± 1

2 ⟩, |1,−1; 1
2 ,± 1

2 ⟩ .

In the coupled image we have,

|(j1, j2)j,mj⟩ = | 32 (1, 12 ),± 3
2 ⟩, | 32 (1, 12 ),± 1

2 ⟩, | 12 (1, 12 ),± 1
2 ⟩ .

25.4.5.5 Ex: Fine and hyperfine structure of the rubidium atom 85Rb

1. The rubidium atom 85Rb has one valence electron. In the first excited state this
electron has the orbital angular momentum, L = 1. What are the possible states?
2. In the fundamental state of this atom the total electronic angular momentum J
couples with the spin of the nucleus, I = 5/2, to form the total angular momentum
F = J + I. Determine the possible values for the angular momentum F and the
magnetic quantum number mF .

Solution: a. The states are,

2P1/2 with mj = ± 1
2 and 2P3/2 with mj = ± 1

2 ,± 3
2 .

b. The states are,

F = 2 with mF = −2, .., 2 and F = 3 with mF = −3, ..3 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_MultiplicidadeAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_StatesSpins.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_RubidioAngular.pdf
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25.4.5.6 Ex: Expansion of the hyperfine structure of the rubidium atom
87Rb

Determine for the states S1/2 and P3/2 of an atom with nuclear spin I = 3/2 and

hyperfine coupling Ĵ · Î how the eigenstates of the coupled base expand into the de-
coupled base. Do not consider external magnetic fields.

Solution: For the state S1/2, we have J = 1/2 and I = 3/2 which coupled to F = 1, 2.
The transformation is done via,

|(J, I)F,mF ⟩ = |( 12 , 32 )2± 2⟩ = UCGC | ± 3
2 ± 1

2 ⟩ = UCGC
∑

mI ,mJ

|I,mI , J,mJ⟩

that is,




|( 32 , 12 )2,±2⟩
|( 32 , 12 )2,±1⟩
|( 32 , 12 )1,±1⟩
|( 32 , 12 )2, 0⟩
|( 32 , 12 )1, 0⟩




=




1 √
1
4

√
3
4

±
√

3
4 ∓

√
1
4 √

1
2

√
1
2√

1
2 −

√
1
2







| 32 ,± 3
2 ,

1
2 ,± 1

2 ⟩
| 32 ,± 3

2 ,
1
2 ,∓ 1

2 ⟩
| 32 ,± 1

2 ,
1
2 ,± 1

2 ⟩
| 32 ,+ 1

2 ,
1
2 ,− 1

2 ⟩
| 32 ,− 1

2 ,
1
2 ,+

1
2 ⟩




.

For the state P3/2, the transformation is done by

|3± 3⟩ = | ± 3
2 ± 1

2 ⟩

|3± 2⟩ =
√

1
2 | ± 3

2 ± 1
2 ⟩+

√
1
2 | ± 3

2 ± 1
2 ⟩

|3± 1⟩ =
√

1
5 | ± 3

2 ∓ 1
2 ⟩+

√
3
5 | ± 1

2 ± 1
2 ⟩+

√
1
5 | ∓ 3

2 ± 1
2 ⟩

|30⟩ =
√

1
20 | 32 − 3

2 ⟩+
√

9
20 | 12 − 1

2 ⟩+
√

9
20 | − 1

2
1
2 ⟩+

√
1
20 | − 3

2
3
2 ⟩

|2± 2⟩ =
√

1
2 | ± 3

2 ± 1
2 ⟩ −

√
1
2 | ± 3

2 ± 1
2 ⟩

|2± 1⟩ = ∓
√

3
4 | ∓ 1

2 ± 3
2 ⟩ ±

√
1
2 | ± 3

2 ∓ 1
2 ⟩

|20⟩ = 1
2 | 32 − 3

2 ⟩+ 1
2 | 12 − 1

2 ⟩ − 1
2 | − 1

2
1
2 ⟩ − 1

2 | − 3
2
3
2 ⟩

25.4.5.7 Ex: Transition amplitudes between Zeeman sub-states

a. We consider the atom of 87Rb having the nuclear angular momentum I = 3/2.
What are the possible hyperfine states F resulting from a coupling of I with the total
electronic state angular momentum of the ground state 2S1/2? What are the possible
Zeeman sub-states of F?
b. What are the possible hyperfine states F ′ resulting from a coupling of I with the
total electronic angular momentum of the excited state 2P3/2, F

′ = 2? What are the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoAcoplada.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoAcoplada.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SelecaoClebsch.pdf
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possible Zeeman sub-states of F ′?
c. A transition between a ground hyperfine state and an excited hyperfine state can
be described by a coupling of the total angular momentum F with the angular mo-
mentum of the photon κ forming the angular momentum of the excited state F ′. To
see this, we now consider the levels F = 1 and F ′ = 2. Expand the coupled angular
momentum |(F, κ)F ′,mF ′⟩ = |(1, 1)2,mF ′⟩ on a decoupled basis for every possible
value mF ′ . Use the table in Fig. 25.13 to determine the Clebsch-Gordan coefficients.
Note: The Clebsch-Gordans only compare the oscillator strengths of transitions be-
tween Zeeman sub-states of a given set (F, F ′). In order to compare the oscillator
strengths to other transitions (F, F ′) it is necessary to calculate 6j-coefficients.

Solution: a. With J = 1
2 we obtain F = |J − I|, ..J + I = 1, 2 and mF = −F, ..+F

Figure 25.12: Transitions between hyperfine states.

for each F .
b. With J ′ = 3/2 we obtain F ′ = 0, 1, 2, 3 and mF ′ = −F ′, ..+ F ′ for each F ′.
c. We apply the formula (25.107),

|(F, κ)F ′,mF ′⟩ =
+1∑

mκ=−1
|F, κ,mF ′ −mκ,mκ⟩

(
F κ

mF ′ −mκ mκ

∣∣∣∣∣
F ′

mF ′

)
.

Thereby,

|(1, 1)2,±2⟩ =
∑

mκ

|1, 1,±2−mκ,mκ⟩
(

1 1

±2−mκ mκ

∣∣∣∣∣
2

±2

)
=
√
1|1, 1,±1,±1⟩

|(1, 1)2,±1⟩ =
∑

mκ

|1, 1,±1−mκ,mκ⟩
(

1 1

±1−mκ mκ

∣∣∣∣∣
2

±1

)
=
√

1
2 |1, 1,±1, 0⟩+

√
1
2 |1, 1, 0,±1⟩

|(1, 1)2, 0⟩ =
∑

mκ

|1, 1, 0−mκ,mκ⟩
(

1 1

−mκ mκ

∣∣∣∣∣
2

0

)

=
√

1
6 |1, 1,+1,−1⟩+

√
2
3 |1, 1, 0, 0⟩+

√
1
6 |1, 1,−1,+1⟩ .

25.4.5.8 Ex: Gymnastics of angular momentum operators

Consider the problem of adding angular momenta j1 = 1 and j2 = 1/2:
a. What are the possible values of m and j, in which ĵ2|j,m⟩ = j(j + 1)ℏ2|j,m⟩ and

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoSpinorbit2.pdf


25.4. COUPLING OF ANGULAR MOMENTA 1417

jz|j,m⟩ = mℏ|j,m⟩?
b. What are the degeneracy gj1,j2(m)?
c. Find the base states {|j,m⟩}, which are common to the operators j21, j22, j, jz,
expanded in the base {|j1,m1⟩ ⊗ |j2,m2⟩} of the eigenstates of j21, j

2
2, j1z, j2z.

Solution: a. The quantum numbers j and m can have the values,

j = 1/2 with m = ±1/2
or j = 3/2 with m = ±1/2,±3/2 .

b. Every state m can be the result of several combinations of j1 and j2. The states
with m = ±3/2 only correspond to j = j1 + j2 ( fully stretched states), but the states
m = ±1/2 correspond to j = j1 + j2 = 3/2 or j = j1 − j2 = 1/2. Hence, the
degeneracies are g1,1/2(±3/2) = 1 and g1,1/2(±1/2) = 2.
c. The states are

|(j1, j2)j = 3
2 ,m = ± 3

2 ⟩
}
=
{
|j1 = 1,m1 = ±1⟩|j2 = 1

2 ,m2 = ± 1
2 ⟩

|(j1, j2)j = 3
2 ,m = ± 1

2 ⟩
|(j1, j2)j = 1

2 ,m = ± 1
2 ⟩

}
=

{
|j1 = 1,m1 = ±1⟩|j2 = 1

2 ,m2 = ∓ 1
2 ⟩

|j1 = 1,m1 = 0⟩|j2 = 1
2 ,m2 = ± 1

2 ⟩
.

25.4.5.9 Ex: (Un-)coupled bases of the spherical harmonics

Expand the triplet state 3PJ of strontium in a decoupled basis and write down the
transformation matrix between the bases.

Solution: We have

|(L, S)J,MJ⟩ =
∑

mL,mS

(
L S

mL mS

∣∣∣∣∣
J

mJ

)
|L,mL;S,mS⟩ ,

such that,




|(1, 1)2,+2⟩
|(1, 1)2,+1⟩
|(1, 1)1,+1⟩
|(1, 1)2, 0⟩
|(1, 1)1, 0⟩
|(1, 1)0, 0⟩

|(1, 1)2,−1⟩
|(1, 1)1,−1⟩
|(1, 1)2,−2⟩




=




1 √
1/2

√
1/2√

1/2 −
√

1/2 √
1/6

√
1/2

√
1/3√

2/3 0 −
√

1/3√
1/6 −

√
1/2

√
1/3 √

1/2
√

1/2√
1/2 −

√
1/2

1







|1,+1; 1,+1⟩
|1,+1; 1, 0⟩
|1, 0; 1,+1⟩

|1,+1; 1,−1⟩
|1, 0; 1, 0⟩

|1,−1; 1,+1⟩
|1, 0; 1,−1⟩
|1,−1; 1, 0⟩

|1,−1; 1,−1⟩




25.4.5.10 Ex: Properties of Clebsch-Gordan coefficients

Given the momenta j1 and j2, and Cm1,m2
denoting the Clebsch-Gordan coefficients,

prove that
∑
m1,m2

|Cm1,m2 |2 = 1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_GinasticaAngular.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SomaClebsch.pdf
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Solution: The Clebsch-Gordans are defined by,

|j,m⟩ =
∑

m1,m2

|m1,m2⟩⟨m1,m2|j,m⟩ ,

where we left out the j1,2 to simplify the notation. Since the |j,m⟩ and the |m1,m2⟩
are orthogonal,

1 = ⟨j,m|j,m⟩ =
∑

m1,m2,m′
1,m

′
2

⟨j,m|m′1,m′2⟩⟨m′1,m′2|m1,m2⟩⟨m1,m2|j,m⟩

=
∑

m1,m2

|⟨m1,m2|j,m⟩|2 .

25.4.5.11 Ex: Spin-orbit coupling

a. Show that the operator L̂ · Ŝ associated with the spin-orbit coupling, satisfies the
relation L̂ · Ŝ = L̂zŜz + (L̂+Ŝ− + L̂−Ŝ+)/2.
Obtain the matrix representation of the operator L · S, considering the bases:
b. {|mL⟩ ⊗ |mS⟩} of the eigenstates which are common to the operators L̂2, Ŝ2, L̂z,
Ŝz;
c. {|J,M⟩}, which is associated with the operators L̂2, Ŝ2, Ĵ2, Ĵz.
d. Give the explicit matrices for the case L = 1 and S = 1

2 in the representations (b)
and (c) and verify that the two representations yield the same eigenvalue spectrum.

Solution: a. This is trivial using the definition, L̂± ≡ L̂x± iL̂y, and similarly for Ŝ.
b. In the decoupled base,

⟨m′Lm′S |L̂ · Ŝ|mLmS⟩
= ⟨m′Lm′S |L̂zŜz|mLmS⟩+ 1

2 ⟨m′Lm′S |L̂+Ŝ−|mLmS⟩+ 1
2 ⟨m′Lm′S |L̂−Ŝ+|mLmS⟩

= ℏ2mLmSδmL,m′
L
δmS ,m′

S

+ 1
2ℏ

2
√
L(L+ 1) +mL(mL + 1)

√
S(S + 1) +mS(mS − 1)δmL+1,m′

L
δmS−1,m′

S

+ 1
2ℏ

2
√
L(L+ 1) +mL(mL − 1)

√
S(S + 1) +mS(mS + 1)δmL−1,m′

L
δmS+1,m′

S
.

c. In the coupled base,

⟨J ′mJ |L̂ · Ŝ|JmJ⟩ = 1
2 ⟨J ′mJ |Ĵ2 − L̂2 − Ŝ2|JmJ⟩

= 1
2ℏ

2 [J(J + 1)− L(L+ 1)− S(S + 1)] δJ′,mJ ,J,mJ
.

To obtain the eigenvalues of the spin-orbit coupling in the decoupled base we must
diagonalize the matrix. Doing so, we find exactly the eigenvalues resulting form a
calculation in the coupled base.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_AcoplamentoLS.pdf
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d. The matrices are,

⟨m′Lm′S |L̂ · Ŝ|mLmS⟩ = ℏ2

2




|+ 1,+ 1
2 ⟩

|+ 1,− 1
2 ⟩

|0,+ 1
2 ⟩

|0,− 1
2 ⟩

| − 1,+ 1
2 ⟩

| − 1,− 1
2 ⟩




t




+1 0 0 0 0 0

0 −1
√

2 0 0 0

0
√

2 0 0 0 0

0 0 0 0
√

2 0

0 0 0
√

2 −1 0

0 0 0 0 0 +1







| + 1,+1
2
⟩

| + 1,− 1
2
⟩

|0,+1
2
⟩

|0,− 1
2
⟩

| − 1,+1
2
⟩

| − 1,− 1
2
⟩




and ⟨J ′mJ |L̂ · Ŝ|JmJ⟩ = ℏ2

2




| 12 ,+ 1
2 ⟩

| 12 ,− 1
2 ⟩

| 32 ,+ 3
2 ⟩

| 32 ,+ 1
2 ⟩

| 32 ,− 1
2 ⟩

| 32 ,− 3
2 ⟩




t




−2 0 0 0 0 0

0 −2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







| 1
2
,+1

2
⟩

| 1
2
,− 1

2
⟩

| 3
2
,+3

2
⟩

| 3
2
,+1

2
⟩

| 3
2
,− 1

2
⟩

| 3
2
,− 3

2
⟩


 .

The eigenvalues of the first matrix are 1,−2.

25.4.5.12 Ex: Expansion of the spin-orbit coupling

Consider the problem of adding the orbital angular momentum ℓ and a spin 1/2.
Obtain the 2ℓ+1 states |ℓ+1/2,mj⟩, in addition to the 2ℓ states |ℓ−1/2,mj⟩ (which
constitute a common basis for the operators l21, s22, j2, jz), expanded in the base
|m1,m2⟩ of the eigenstates of the operators l2, s2, lz, sz. You can simplify the pro-
cedure by deriving two recurrence relationships from which the desired states follow 6.

Solution: The states are, for all mj = −(ℓ± 1
2 ), .., ℓ± 1

2 ,

|(ℓ, s)j,mj⟩ = |(ℓ, 12 )ℓ∓ 1
2 ,mj⟩ =

∑

ms=±1/2
|ℓ, 12 ,mj −ms,ms⟩

(
ℓ 1

2

mj −ms ms

∣∣∣∣∣
ℓ∓ 1

2

mj

)

= |ℓ, 12 ,mj +
1
2 ,− 1

2 ⟩
(

ℓ 1
2

mj +
1
2 − 1

2

∣∣∣∣∣
ℓ∓ 1

2

mj

)
+ |ℓ, 12 ,mj − 1

2 ,
1
2 ⟩
(

ℓ 1
2

mj − 1
2

1
2

∣∣∣∣∣
ℓ∓ 1

2

mj

)

= |ℓ, 12 ,mj +
1
2 ,− 1

2 ⟩

√
ℓ±m+ 1

2

2ℓ+ 1
+ |ℓ, 12 ,mj − 1

2 ,
1
2 ⟩

√
ℓ∓m+ 1

2

2ℓ+ 1
,

using the formulae (28.5).

25.4.5.13 Ex: External product of two spins

Derive the matrix representation of the spin-orbit coupling operator L · S for L = 1
and S = 1/2 from the definition of the outer product.

6See Cohen-Tannoudji, Vol.2, Complement A X.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ExpansaoSpinorbit1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_SpinOrbitMatrix01.pdf
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Solution: Choosing the base ⟨ℓm| =
(
1 0 −1

)
the matrix representation of the

rising and lowering operators,

l̂+ = ℏ
√
2



0 1 0

0 0 1

0 0 0


 , l̂− = ℏ

√
2



0 0 0

1 0 0

0 1 0




yields the matrix representation of the Cartesian coordinates of l,

l̂x = l̂++l̂−
2 = ℏ√

2



0 1 0

1 0 1

0 1 0


 , il̂y = L̂+−L̂−

2 = ℏ√
2




0 1 0

−1 0 1

0 −1 0


 ,

l̂z = ℏ



1 0 0

0 0 0

0 0 −1


 .

We can verify that l̂2 = l̂2x + l̂2y + l̂2z = ℏ2l(l + 1) = 2ℏ2I3. The matrix representation
of ŝ are simply the Pauli matrices,

ŝx = 1
2

(
0 1

1 0

)
, ŝy = 1

2

(
0 −ı
ı 0

)
, ŝz =

(
1 0

0 −1

)
.

We can verify that ŝ2 = ŝ2x + ŝ2y + ŝ2z = ℏ2s(s + 1) = 3
4ℏ

2I3. The spin-orbit coupling

can now be written l̂ ⊗ ŝ = l̂x ⊗ ŝx + l̂y ⊗ ŝy + l̂z ⊗ ŝz. Choosing the base ⟨ℓm| =(
1,+ 1

2 1,− 1
2 0,+ 1

2 0,− 1
2 −1,+ 1

2 −1,− 1
2

)
the matrix representation of L̂xŜx

in the full Hilbert space reads,

L̂xŜx = ℏ√
2




1

1

1 1

1 1

1

1


 ℏ

2




1

1

1

1

1

1


 = ℏ2

2
√
2




1

1

1 1

1 1

1

1


 .

Similarly,

L̂yŜy = ℏ√
2




−ı

−ı

ı −ı

ı −ı

ı

ı


 ℏ

2




−ı

ı

−ı

ı

−ı

ı


 = ℏ2

2
√
2




−1

1

1 −1

−1 1

1

−1


 ,

and,

L̂zŜz = ℏ




1

1

0

0

−1

−1


 ℏ

2




1

−1

1

−1

1

−1


 = ℏ2

2




1

1

−1

−1


 .
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Finally,

L̂ · Ŝ =




1
2

0 0 0 0 0

0 − 1
2

1√
2

0 0 0

0 1√
2

0 0 0 0

0 0 0 0 1√
2

0

0 0 0 1√
2

− 1
2

0

0 0 0 0 0 1
2


 .

25.4.5.14 Ex: Coupling three spins

Express the states of three coupled 1
2 spins in the uncoupled basis using the Clebsch-

Gordan coefficients. Proceed by first coupling two spins and then coupling the result
to the third spin. Compare the dimensions of the Hilbert spaces in both basis and
discuss your findings.

Solution: We first couple two spins and then couple the result to the third one.
The general procedure is summarized by,

|(j1, j2)j12,m12⟩ =
∑

m1,m2

U
(1/2×1/2)
CGC |j1,m1, j2m2⟩

|(j1, j2)j12, j3)j,m⟩ =
∑

m12,m3

U
(1×1/2)
CGC |(j1, j2)j12,m12, j3,m3⟩

=
∑

m1,m2,m3

U
(1×1/2)
CGC U

(1/2×1/2)
CGC |j1,m1, j2m2, j3,m3⟩ .

For the particular case of spin 1
2 systems, the coupling of spin j1 with j2, we have,


|1,+1⟩
|1, 0⟩
|0, 0⟩
|1,−1⟩

 =


1

1√
2

1√
2

1√
2
− 1√

2

1



|+ 1

2
⟩|+ 1

2
⟩

|+ 1
2
⟩| − 1

2
⟩

| − 1
2
⟩|+ 1

2
⟩

| − 1
2
⟩| − 1

2
⟩

 =


|+ 1

2
⟩|+ 1

2
⟩

1√
2
|+ 1

2
⟩| − 1

2
⟩+ 1√

2
| − 1

2
⟩|+ 1

2
⟩

1√
2
|+ 1

2
⟩| − 1

2
⟩ − 1√

2
| − 1

2
⟩|+ 1

2
⟩

| − 1
2
⟩| − 1

2
⟩

 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Rotation_ThreeCoupledSpins.pdf
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Now, we couple the spin (j1, j2)j12 with the spin j3,



|(( 1
2
, 1
2
)1, 1

2
) 3
2
+ 3

2
⟩

|(( 1
2
, 1
2
)1, 1

2
) 3
2
,+ 1

2
⟩

|(( 1
2
, 1
2
)0, 1

2
) 1
2
,+ 1

2
⟩

|(( 1
2
, 1
2
)0, 1

2
) 3
2
,− 1

2
⟩

|(( 1
2
, 1
2
)1, 1

2
) 1
2
,− 1

2
⟩

|(( 1
2
, 1
2
)1, 1

2
) 3
2
,− 3

2
⟩


=



1 √
1
3

√
2
3√

2
3
−
√

1
3 √

2
3

√
1
3√

1
3
−
√

2
3

1





|1,+1⟩|+ 1
2
⟩

|1,+1⟩| − 1
2
⟩

|0, 0⟩|+ 1
2
⟩

|0, 0⟩| − 1
2
⟩

|1,−1⟩|+ 1
2
⟩

|1,−1⟩| − 1
2
⟩



=



|1,+1⟩|+ 1
2
⟩√

1
3
|1,+1⟩| − 1

2
⟩+

√
2
3
|0, 0⟩|+ 1

2
⟩√

1
3
|1,+1⟩| − 1

2
⟩ −

√
2
3
|0, 0⟩|+ 1

2
⟩√

2
3
|0, 0⟩| − 1

2
⟩+

√
1
3
|1,−1⟩|+ 1

2
⟩√

2
3
|0, 0⟩| − 1

2
⟩ −

√
1
3
|1,−1⟩|+ 1

2
⟩

|1,−1⟩| − 1
2
⟩


=



|+++⟩√
1
3
(|++−⟩+ |+−+⟩ − | −++⟩)√

1
3
(|++−⟩ − |+−+⟩+ | −++⟩)√

1
3
(|+−−⟩ − | −+−⟩+ | − −+⟩)√

1
3
(|+−−⟩ − | −+−⟩ − | − −+⟩)

| − −−⟩


,

where we simplified the notation for the last vector. Apparently, the Hilbert space for
three spins is larger (dimension 23) than the one of a spin 3

2 state, whose dimension
is 6,



|( 1
2
, 1
2
)1, 1

2
) 3
2
,+ 3

2
⟩

|( 1
2
, 1
2
)1, 1

2
) 3
2
,+ 1

2
⟩

|( 1
2
, 1
2
)0, 1

2
) 1
2
,+ 1

2
⟩

?

?

|( 1
2
, 1
2
)0, 1

2
) 3
2
,− 1

2
⟩

|( 1
2
, 1
2
)1, 1

2
) 1
2
,− 1

2
⟩

|( 1
2
, 1
2
)1, 1

2
) 3
2
,− 3

2
⟩


=



1 √
1
3

√
1
3
−
√

1
3√

1
3
−
√

1
3

√
1
3

√
1
3
−
√

1
3

√
1
3√

1
3
−
√

1
3
−
√

1
3

1





|+++⟩
|++−⟩
|+−+⟩
| −++⟩
|+−−⟩
| −+−⟩
| − −+⟩
| − −−⟩


.

This it due to the fact that, apart from the particular coupling ((j1, j2)j12, j3)j, there
are two more coupling schemes, ((j1, j3)j13, j2)j and ((j2, j3)j23, j1)j, which can be
transformed into each other via {6j}-coefficients.
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25.5 Further reading

C. Cohen-Tannoudji, B. Diu, F. Laloe, Wiley Interscience, Quantum mechanics,
vol. 1,2 [276]ISBN

http://isbnsearch.org/isbn/978-0-471-56952-7
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36. CLEBSCH-GORDANCOEFFICIENTS, SPHERICALHARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.

Y 0
1 =

√
3

4π
cos θ

Y 1
1 = −

√
3

8π
sin θ eiφ

Y 0
2 =

√
5

4π

(3

2
cos2 θ − 1

2

)

Y 1
2 = −

√
15

8π
sin θ cos θ eiφ

Y 2
2 =

1

4

√
15

2π
sin2 θ e2iφ

Y −m
ℓ = (−1)mY m∗

ℓ 〈j1j2m1m2|j1j2JM〉
= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d ℓ

m,0 =

√
4π

2ℓ + 1
Y m
ℓ e−imφ

d
j
m′,m = (−1)m−m′

d
j
m,m′ = d

j
−m,−m′ d 1

0,0 = cos θ d
1/2
1/2,1/2

= cos
θ

2

d
1/2
1/2,−1/2

= − sin
θ

2

d 1
1,1 =

1 + cos θ

2

d 1
1,0 = − sin θ√

2

d 1
1,−1 =

1 − cos θ

2

d
3/2
3/2,3/2

=
1 + cos θ

2
cos

θ

2

d
3/2
3/2,1/2

= −
√

3
1 + cos θ

2
sin

θ

2

d
3/2
3/2,−1/2

=
√

3
1 − cos θ

2
cos

θ

2

d
3/2
3/2,−3/2

= −1 − cos θ

2
sin

θ

2

d
3/2
1/2,1/2

=
3 cos θ − 1

2
cos

θ

2

d
3/2
1/2,−1/2

= −3 cos θ + 1

2
sin

θ

2

d 2
2,2 =

(1 + cos θ

2

)2

d 2
2,1 = −1 + cos θ

2
sin θ

d 2
2,0 =

√
6

4
sin2 θ

d 2
2,−1 = −1 − cos θ

2
sin θ

d 2
2,−2 =

(1 − cos θ

2

)2

d 2
1,1 =

1 + cos θ

2
(2 cos θ − 1)

d 2
1,0 = −

√
3

2
sin θ cos θ

d 2
1,−1 =

1 − cos θ

2
(2 cos θ + 1) d 2

0,0 =
(3

2
cos2 θ − 1

2

)

Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

Figure 25.13: Clebsch-Gordan coefficients.



Chapter 26

Periodic systems

Many physical systems treat quantum particles in periodic potential. Examples are
electrons in crystals or cold atoms in optical lattices. The periodicity gives rise to a
wealth of new phenomena, such as Bragg scattering, the formation of energy bands,
Mott insulators, or Bloch oscillations. Various theoretical approaches have been de-
veloped leading to a deep understanding of the features of crystals, metals, and optical
lattices for atomic gases.

In the following sections we will mainly focus on the Bloch model, which is based
on introducing periodic boundary conditions to the Schrödinger equation. In the
Secs. 26.1 we will give a brief introduction into the Bloch model for electrons in
solids, where the periodicity is imposed by the crystalline structure of the material.
We will, however, no go into details leaving a comprehensive treatment to specialized
textbooks [53, 726]. In the Secs. 26.2 we will concentrate on optical lattices for atomic
gases formed by counterpropagating laser beams. The physical realization of these
lattices, which can be realized with nearly perfect periodicity, have permitted the
experimental observation of phenomena which had been elusive in solid state physics.

26.1 The Bloch model for electrons

The motion of an electron inside a crystal is ruled by a spatially periodic potential V (r)
originating from the positively charged crystal atoms and the mean field produced by
the quasi-free electrons,

V (r) = V (r+R) , (26.1)

where R is a vector connecting two arbitrarily chosen atoms of the lattice. With the
Hamiltonian

Ĥ = − ℏ2

2m
∇2 + V (r) (26.2)

we can write the Schrödinger equation,

[Ĥ + V (r)]ψ(r) = Eψ(r) . (26.3)

Since V and ∇ are invariant under translations Utr(R)ψ(r) ≡ ψ(r + R) by a fixed
distance R, where the translation operator has been defined in Eq. (23.181), we have,

ĤUtr(R)ψ(r) = EUtr(R)ψ(r) . (26.4)

1425
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That is, for a non-degenerate eigenvalue 1,

ψ(r+R) = f(R)ψ(r) . (26.5)

This relation holds for all vectors R of the lattice, such that,

f(R1 +R2)ψ(r) = ψ(r+R1 +R2) = f(R1)ψ(r+R2) = f(R1)f(R2)ψ(r) . (26.6)

The relationship f(R1 +R2) = f(R1)f(R2) is satisfied by the ansatz f(R) ≡ eık·R,
where k is an arbitrary vector of reciprocal space. We get the famous Bloch theorem,

ψk(r+R) = eık·Rψk(r) , (26.7)

which represents a necessary condition for any eigenfunction ψk of the Schrödinger
equation with periodic potential. Bloch’s theorem simply postulates that, apart from
a phase factor, the wavefunction has the same periodicity as the potential.

The Bloch function,

ψk(r) ≡ uk(r)eık·r with uk(r+R) = uk(r) , (26.8)

automatically satisfies Bloch’s theorem. That is, the wave function of the electron
ψ is a plane wave eık·r modulated by a function uk having the same periodicity as
the lattice [741]. Although the vector of the electronic wave is arbitrary, it is possible
(and useful) to restrict its value to the first Brillouin zone defined by k ∈ [−π/a, π/a],
where a is an elementary vector of the lattice. The reason is that we can reduce a
wavevector k in a wavefunction trespassing the first Brillouin zone by an appropriate
vector G of reciprocal lattice,

k′ = k+G , (26.9)

yielding,
ψk(r) = uk(r)e

ık·r = uk(r)e
−ıG·reık

′·r . (26.10)

We now define another function uk′(r) ≡ uk(r)e−ıG·r, which also satisfies the require-
ment (26.8), knowing that G ·R = n2π, we see,

uk′(r+R) = uk(r+R)e−ıG·(r+R) = uk(r)e
−ıG·r = uk′(r) . (26.11)

Hence,
ψk(r) = uk′(r)eık

′·r = ψk′(r) . (26.12)

26.1.1 Approximation for quasi-bound electrons

We now assume that the behavior of the electron near an atom is not influenced by
atoms farther apart,

ψk(r) =
∑

i∈lattice
ci(k)ϕ(r−Ri) . (26.13)

That is, we neglect superposition states of the electron at various sites of the lattice.
The atom is subject to a potential Uat(r−Ri) located near the atom at the position

1This also holds true for degenerate eigenvalues if we choose suitable basis of eigenvectors.
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Ri, and it is described by the eigenfunction ϕ(r − Ri) (only defined for the site i)
with energy E0,

[
− ℏ2

2m
∇2 + Uat(r−Ri)

]
ϕ(r−Ri) = E0ϕ(r−Ri) . (26.14)

Even so, the function ψk(r) must satisfy Bloch’s theorem. This is the case when
ci(k) = eık·Ri and therefore,

ψk(r) =
∑

i∈lattice
eık·Riϕ(r−Ri) . (26.15)

Example 169 (Ansatz for a quasi-bound electron wavefunction): The
ansatz (26.15) satisfies Bloch’s theorem because,

ψk(r+Rj) =
∑
i

eık·Riϕ(r−(Ri−Rj)) = eik·Rj
∑
i

eık·(Ri−Rj)ϕ(r−(Ri−Rj)) = eık·Rjψk(r) .

We now calculate the energy E(k) of an electron with the wavevector k inserting
the function ψk(r) of (26.15) in the Schrödinger equation and obtain,

[
− ℏ2

2m
∇2 + U(r)

]∑

i

eık·Riϕ(r−Ri) = E(k)
∑

i

eık·Riϕ(r−Ri) . (26.16)

U(r) is the potential energy of the electron illustrated in Fig. 26.1 together with the
energy Uat(r−Ri) of a free electron.

Substituting the kinetic energy term of (26.16) by the kinetic energy of (26.14),
we calculate,

∑

i

eık·Ri [−Uat(r−Ri) + E0 + U(r)− E(k)]ϕ(r−Ri) = 0 . (26.17)

Now, multiplying this equation with ψ∗k(r) =
∑
j e
ık·Rjϕ∗(r − Rj) and integrating

over the volume of the crystal, we obtain,

[E(k)− E0]
∑

i,j

eık·(Ri−Rj)

∫
ϕ∗(r−Rj)ϕ(r−Ri)dV (26.18)

=
∑

i,j

eık·(Ri−Rj)

∫
ϕ∗(r−Rj)[U(r)− Uat(r−Ri)]ϕ(r−Ri)dV .

The functions ϕ∗(r−Rj) and ϕ(r−Ri) overlap only a little, even for adjacent atoms,
such that we can neglect the terms i ̸= j on the left side. The sum then corresponds
to the number N of sites in the lattice. On the right side we can not neglect the
terms involving other sites, because even if the wavefunctions of adjacent sites overlap
little, the contribution of the potential difference |U(r)− Uat(r−Ri)| is much lower
for r = Ri than for r = Rj . On the other hand, as the wavefunctions ϕ(r − Ri)
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disappear quickly when |r−Ri| > |Rm −Ri|, we can focus on adjacent sites (called
Rm),

N [E(k)− E0] =N

∫
ϕ∗(r−Ri)[U(r)− Uat(r−Ri)]ϕ(r−Ri)dV (26.19)

+N
∑

m=adjacent

eık·(Ri−Rm)

∫
ϕ∗(r−Rm)[U(r)− Uat(r−Ri)]ϕ(r−Ri)dV .

Figure 26.1: Potential energy U(r) of a crystal electron (red) and potential energy UA(r−Ri)
of the electron of a free atom (blue).

Now we further suppose that the eigenfunction ϕ exhibits radial symmetry corre-
sponding to an s orbital. We obtain for the eigenvalues from the Schrödinger equation,

E(k) = E0 − α− γ
∑

m adjacent of i

eık·(Ri−Rm) (26.20)

with α =

∫
ϕ∗(r−Ri)[Uat(r−Ri)− U(r)]ϕ(r−Ri)dV

and γ =

∫
ϕ∗(r−Rm)[Uat(r−Ri)− U(r)]ϕ(r−Ri)dV .

The interpretation is as follows: The combination of the atoms in a lattice produces
an energy displacement α. In addition, it generates a spitting into a continuous band
of energies as a function of reduced wavevector k...

26.1.2 Approximation for quasi-free electrons

Here we assume an essentially homogeneous potential acting on the free electrons
and consider the impact of the periodic lattice as a small perturbation. The periodic
potential can be decomposed into a Fourier series by the vectors G of the reciprocal
lattice,

U(r) =
∑

G

UGe
ıG·r . (26.21)

Consequently, we can make for Bloch functions (26.10) the following periodic ansatz,

ψk(r) = uk(r)e
ık·r with uk(r) =

1√
Vc

∑

G

uG(k)eıG·r , (26.22)

where Vc is the volume of the crystal.
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Without periodic potential, the eigenfunctions would be those of a free particle,

ψk(r) =
1
Vc
eık·r (26.23)

with the eigenenergies

E0(k) = V0 +
ℏ2k2

2m
. (26.24)

Inserting the functions (26.21) and (26.22) in the Schrödinger equation, we obtain,
[
− ℏ2

2m∇2 +
∑

G′′

UG′′eıG
′′·r
]

1√
Vc
eık·r

∑

G′

uG′(k)eıG
′·r = E(k) 1√

Vc
eık·r

∑

G

uG′(k)eıG
′·r ,

(26.25)
that is,

1√
Vc

∑

G′

[
− ℏ2

2m (k+G′)2 − E(k)
]
uG′(k)eı(k+G′)·r + 1√

Vc

∑

G′′

UG′′eıG
′′·r∑

G′

uG′(k)eı(k+G′)·r = 0 .

(26.26)

Now multiplying with 1√
Vc
eı(k+G)·r and integrating over the volume of the crystal

(knowing 1
Vc

∫
Vc
eıG·rdV = δG,0), we obtain,

[
ℏ2

2m (k+G)2 − E(k)
]
uG(k) +

∑

G′

UG−G′uG′(k) = 0 , (26.27)

for any value of G.
To estimate the dependence of the Fourier components uG(k) for G ̸= 0 we insert

the unperturbed eigenenergies into the equation (26.27) only considering, in the sum
over G′, the terms of the first perturbative order, that is, those containing U0 or
u0(k),

ℏ2

2m
[(k+G)2 − k2]uG(k)− U0uG(k) + U0uG(k) + UGu0(k) = 0 (26.28)

uG(k) =
UGu0(k)

ℏ2

2m [k2 − (k+G)2]
. (26.29)

Since the Fourier coefficients UG have, for G ̸= 0, small values, the function uG(k) is
not negligible only for k2 ≃ (k+G)2 that is,

−2k ·G ≃ |G|2 . (26.30)

We now want to find out the meaning of this condition ...
For the coefficients u0(k) and uG(k) we obtain,

[
ℏ2

2mk
2 − E(k)

]
u0(k) + U0u0(k) + U−G(k)uG(k) = 0 (26.31)

[
ℏ2

2mk
2 − E(k)

]
uG(k) + UGu0(k) + U0(k)uG(k) = 0 .

From this follows, [
ℏ2

2mk
2 + U0 − E(k)

]2
= UGU−G = 0 . (26.32)
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Since the potential U(r) is real, U−G = U∗G. Therefore, introducing the eigenenergies
E0(k) of free electrons (26.24),

E(k) = E0(k)± |UG| . (26.33)

Under the influence of the periodic perturbation potential we find at the surfaces of
a Brillouin zone an energy splitting developing a forbidden gap in the spectrum. We
can understand this observation as follows: In the crystal all electronic waves with
wavevectors ending on a surface of a Brillouin zone are reflected by Bragg reflection.
In the example of a one-dimensional lattice we understand that the superposition
of an incident wave (k = nπ/a) with the reflected one (k = −nπ/a) produces a
standing electronic probability density wave ρ being proportional to ρ1 ∝ cos2 nπ/a
or ρ2 ∝ sin2 nπ/a. The charge density ρ1 is maximal at the location of the atom
in this site, which corresponds to an increased interaction energy; the density ρ2 is
minimal at the location of the atom. This explains the splitting.

The Bloch model can explain many properties of metals, semiconductors and in-
sulators.

26.1.3 One-dimensional periodic potentials

In the following, we restrict ourselves to a one-dimensional potential, V (z) = V (z+a),
acting on (the center-of-mass of) atoms. How such potentials can be realized in
practice will be shown in Sec. 26.2. For now, we just assume that we can write the
potential as,

V (z) = −2V0 cos2Kz . (26.34)

In the Fourier expansion, V (z) =
∑
K UKe

ıKz, this potential corresponds to the
Fourier coefficients U0 = −V0 and U±K = −V0

2 ,

V (z) = −V0(1 + 1
2e

2ıkLz + e−2ıkLz) . (26.35)

We also expand the wavefunction into plane waves,

ψ(z) =
∑

q

cqe
ıqz , (26.36)

and we insert these expansions into Schrödinger’s stationary equation Ĥψ = εψ,
yielding, [

−ℏ2
2m

∂2

∂z2
+
∑

K

UKe
ıKz

]∑

q

cqe
ıqz = ε

∑

q

cqe
ıqz . (26.37)

Defining q = k + nK, where k ∈ [−K/2,K/2] and n ∈ Z,
[

ℏ2

2m (nK + k)2 − V0
]
cnK+k − 1

2V0cnK+k−K − 1
2V0cnK+k+K = εcnK+k . (26.38)

In matrix notation,

Ĥc = εc . (26.39)
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where the matrix is around n = ..,−1, 0,+1, ..:

Ĥ =



. . .
ℏ2
2m

(k −K)2 − V0 − 1
2
V0

− 1
2
V0

ℏ2
2m
k2 − V0 − 1

2
V0

− 1
2
V0

ℏ2
2m

(k +K)2 − V0

. . .


, c =



...

ck−K

ck

ck+K
...


.

(26.40)

Figure 26.2: (a) Approximation of a periodic potential by a potential harmonic. (b) Disper-
sion relation in momentum space.

For shallow potentials, V0 ≪ ℏ2K2/2m, we can neglect the coefficients V0 in the
Eq. (26.39) and we find,

ε ≃ ℏ2q2/2m , (26.41)

which corresponds to the dispersion relation for free particles. On the other hand,
looking at the bottom of deep potentials, V0 ≫ ℏ2K2/2m, we can harmonically ap-
proximate the cosine potential by V (z) ≈ −2V0 + m

2 ω
2z2 with ω = K

√
V0/m =

ℏ−1
√
2V0Erec. For this case we expect,

ε ≃ −2V0 + ℏω
(
n+ 1

2

)
. (26.42)

The exact spectrum of eigenvalues ε can be calculated by numerically determining
the eigenvalues of the matrix (26.40) for the first Brillouin zone, k ∈ [−K/2,K/2],
and the above limits are confirmed.

To estimate the width of the forbidden band, we cut out a 2×2 matrix within the
matrix Ĥ and neglect its coupling with the others submatrices,

Ĥs =

(
ℏ2

2m (k −K)2 − V0 − 1
2V0

− 1
2V0

ℏ2

2mk
2 − V0

)
. (26.43)

At the edges of the Brillouin zone, k = 1
2K, we get the eigenvalues ε = ℏ2K2

m −V0± V0

2 ,
that is, the band gap is ∆ε = V0. Bloch’s theorem says that Schrödinger’s equation
can be solved for any Bloch states. These are superpositions of plane wave momentum
states [53],

ψk(z) = eıkzuk(z) , (26.44)
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Figure 26.3: (code) Bloch bands with coupling potential (continuous red line) and with-

out potential, V0 = 0 (dotted black line). The parameters are ωr = (2π) 20 kHz,

ωho = (2π) 12 kHz, λL = 689 nm, and V0 = 0.2ℏωr.

with uk(z) = uk(z + a).

The requirement that ψ(z) satisfies the Schrödinger equation is equivalent to the
condition that c satisfies an eigenvalue equation. Let U be the matrix of the eigenvec-
tors of Ĥ and Ê the diagonal matrix of eigenvalues: Ĥ = U−1ÊU gives ÊUc = εUc,
such that Uc can be understood as eigenvectors.

Alternatively, we define dnK+k ≡ cnK+k+K/cnK+k, consequently Eq. (26.39) be-
comes,

dnK+k−K =
V0

ℏ2

m (nK + k)2 − 2ε− V0(2 + dnK+k)
. (26.45)

26.1.4 Bloch oscillations

A Bloch oscillation is a phenomenon in solid state physics. It is the oscillation of a
particle (e.g., an electron) confined to a periodic potential (e.g. a crystal), when a con-
stant force (e.g., generated by a continuous electric field) acts on it. This phenomenon
is very difficult to observe in solid crystals because, due to electron scattering by de-
fects of the lattice [316, 1007], the coherent evolution is limited to a small fraction
of the Brillouin zone. However, Bloch oscillations were observed in semiconducting
superlattices, in ultrathin Josephson junctions, and with cold atoms in optical lattices
[583, 851].

Let us first show a simple treatment for electrons subject to a constant electric
field E . The one-dimensional equation of motion is,

ℏ
dk

dt
= −eE , (26.46)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochBands.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochBands.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochBands.m
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with the solution,

k(t) = k(0)− eE
ℏ
t . (26.47)

The velocity v of the electron is given by,

v(k) =
1

ℏ
dE
dk

, (26.48)

where E(k) denotes the dispersion relation for a given energy band. We now assume
that it has the following form (tight-binding limit),

E = A cos ak , (26.49)

where a is the lattice parameter and A a constant. Then, v(k) is given by,

v(k) = −Aa
ℏ

sin ak , (26.50)

and the position of the electron by,

x(t) =

∫
v(k(t))dt = − A

eE cos

(
aeE
ℏ
t

)
. (26.51)

This shows, that the electron is oscillating in real space. The oscillation frequency,
called Bloch frequency is given by,

ωblo =
ae|E|
ℏ

. (26.52)

26.1.5 Exercises

26.2 Optical lattices

Periodic potentials for quantum particles can be realized artificially. A prominent
example are optical lattices formed by the interference patterns of intersecting laser
beams. Tuned sufficiently far away from atomic resonances the periodically structured
light field exerts optical forces on the atoms which can be derived from potentials
being proportional to the local light intensity. As these forces are relatively weak,
the kinetic energy of the atoms must be very low (typically µK) to allow for their
impact to be relevant. In many cases, the depth of the optical lattice only allows for a
small number of localized quantum states, so that the quantum nature of the atomic
motion becomes highly relevant. Famous examples are the Bloch oscillations and the
Mott insulating states.

We are not yet prepared to understand, how these potential arise from the light-
atom interaction, as this topic will only be treated in the Secs. 38.2 and in Chp. 42.8.2.
However, this is not necessary to understand many of the features of the atomic
dynamics in optical lattices. We will thus simply impose a known periodic potential
to a cold atomic cloud and study its energetic band structure and the atomic motion.

Various three-dimensional crystalline geometries have been realized and studied
[673, 558, 153]. In the following, we will mainly focus on one-dimensional lattices,
leaving a discussion of phenomena specific to three-dimensional lattices to future
sections.
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26.2.1 Atoms in 1D optical lattices

As already pointed out, a periodic optical potential can be generated by two counter-
propagating plane wave laser beams, e±ıklz, with wavevectors kl and −kl and tuned
to the red side of an atomic transition. In this situation the atoms are attracted to
the maxima of the light intensity, the antinodes,

V (z) = V0

4 |eıklz + e−ıklz|2 = V0

2 [1 + cos(2klz)] . (26.53)

Applying the procedure unfolded in Sec. 26.1.3 to the optical lattice, we expand the
motional atomic wavefunction into plane (Bloch) waves,

ψ(z) =

∞∑

n=−∞
cne

2ıqze2ınklz , (26.54)

where |cn(t)|2 are the population of momentum states separated by 2kl in momentum
space. Inserting this expansion and the potential (26.53), after removing the constant
energy V0/2, into the stationary Schrödinger equation,

Eψ = − ℏ2

2m

∂2ψ

∂z2
+
V0
2

cos(2klz)ψ , (26.55)

we obtain, collecting terms oscillating with the same exponential e2ınklz,

Encn = 4ℏωrec
(
n+

q

kl

)2

cn +
V0
4
(cn+1 + cn−1) , (26.56)

where we defined an abbreviation,

ωrec =
ℏk2l
2m

(26.57)

called recoil frequency 2. The eigenvalue problem (26.56) can be solved numerically
for any value of q, yielding the dispersion relation already exhibited in Fig. 26.3.

To reproduce the dynamics of the matter wave, we start from the time-dependent
Schrödinger equation with the same periodic potential. We again expand the time-
dependent wavefunction into plane waves via,

ψ(z, t) =

∞∑

n=−∞
cn(t)e

2ınklz , (26.58)

and insert this ansatz into the Schrödinger equation,

ıℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂z2
+
V0
4

cos(2klx)ψ , (26.59)

obtaining a set of equations of motion for the expansion coefficients cn,

ċn = −4ıωrecn2cn +
V0
4ıℏ

(cn+1 + cn−1) . (26.60)

The temporal evolution of the coefficients cn(t) can be simulated numerically.

2The reason of the terminology, which will become clear after a study of Sec. 38.2, is that the
ℏωrec is the kinetic energy of an atom having received two units of photonic momenta.
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26.2.2 Bloch oscillations of atoms in 1D optical lattices

Neutral atoms in a vertical optical lattice are accelerated by gravity, and this accel-
erated motion leads to Bloch oscillations [316, 1007]. To treat this case, we could

simply replace the electric force −eE⃗ in the expression (26.52) by the gravitational
force mg and obtain the result,

ωblo =
mgλl
2ℏ

, (26.61)

with the wavelength λl = 2a of the counterpropagating lasers generating the standing
wave.

For didactic reasons, however, let us formulate the problem in the language intro-
duced in the previous section extending the Hamiltonian by the gravitational poten-
tial 3 (see also Exc. 23.5.6.2),

Ĥ = − ℏ2

2m

∂2

∂z2
+
V0
2

cos 2kẑ +mgẑ . (26.62)

We define the transformation U ≡ e−ımgẑt/ℏ and find with (23.167) and (23.213) the
Hamiltonian in the accelerated frame,

H̃ = U†ĤU + ıℏU̇†U =
p̃2

2m
+
V0
4

(
e2ıkẑ + e−2ıkẑ

)
. (26.63)

with
p̃ ≡ p̂−mgt = U†p̂U . (26.64)

Now, we expand the operators using the rules (23.99) and (23.213) 4,

p̃ =

∫
p|p⟩⟨p|dp −→

∑

n

(p+ 2nℏk)|p+ 2nℏk⟩⟨p+ 2nℏk| (26.65)

e2ıkẑ =

∫
|p+ 2ℏk⟩⟨p|dp −→

∑

n

|p+ 2(n+ 1)ℏk⟩⟨p+ 2nℏk| ,

based on the assumption that every atom can only exist in a superposition of discrete
momentum states separated by 2ℏk, but can have an ’offset’ momentum p = mv,
e.g. due to thermal motion. Disregarding thermal motion, we may set in the acceler-
ated frame p = 0. Then,

p̃ =
∑

n

2nℏk|2nℏk⟩⟨2nℏk| and e2ıkẑ =
∑

n

|2nℏk + 2ℏk⟩⟨2nℏk| , (26.66)

such that,

H̃ =
∑

n

4n2ℏωrec|2nℏk⟩⟨2nℏk|+ V0

4

∑

n

(|2nℏk + 2ℏk⟩⟨2nℏk|+ |2nℏk⟩⟨2nℏk + 2ℏk|) .

(26.67)

3For Bose-Einstein condensates, the procedure should be generalized taking into account the
energy of the mean field due to interatomic collisions.

4See also (42.149) and (42.156).
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With the expansion of the wavefunction |ψ̃⟩ =∑n cn|2nℏk⟩ the Schrödinger equation
becomes [1138, 1139],

ıℏ
d

dt
|ψ̃⟩ = ıℏ

∑

n

ċn|2nℏk⟩ (26.68)

=
∑

n

(
4n2ℏωreccn + V0

4 (cn−1 + cn+1)
)
|2nℏk⟩ = H̃|ψ̃⟩ ,

that is,

ċn = −4ın2ωreccn +
V0
4ıℏ

(cn−1 + cn+1) . (26.69)

In the lab frame the wavefunction reads,

|ψ⟩ = U |ψ̃⟩ = e−ımgẑt/ℏ
∑

n

cn|2nℏk⟩ (26.70)

=
∑

n

cn|2nℏk −mgt⟩ =
∑

n

cn|2ℏk(n− νblot)⟩ ,

where we introduced the Bloch frequency,

νblo =
mg

2ℏk
. (26.71)

Finally,

ċn = −4ı(n− νblot)2ωreccn +
V0
4ıℏ

(cn−1 + cn+1) . (26.72)

The center-of-the mass momentum of the atomic matter wave is,

⟨p⟩lab
ℏkl

=
∑

n

n|cn(t)|2 + νblot . (26.73)

The Bloch oscillations can be understood in various pictures. The first one, illus-
trated in 26.4(a), is based on Bragg reflection: A resting atom has infinite de Broglie
wavelength. Being constantly accelerated by gravity, the matter wave reduces its de
Broglie wavelength from∞ to a value, where it becomes commensurate with the peri-
odicity of the standing light wave potential. At this moment Bragg scattering comes
into play, reflecting the atomic motion back into upward direction, and the process
starts over again. The atoms evolve like jumping on a trampoline with a frequency
given by νblo.

To understand the second picture, we need to address a question we have left aside
so far, as this requires a notion of optical forces. It is the question in which way the
matter wave interacts with the standing light wave. For the present discussion, it is
sufficient to know that the atom must have an internal transition capable of scattering
photons from the light beams. As any absorption and emission process transfers a
recoil momentum of ℏkl to the atom, we can understand the Bragg scattering process
as a so-called Raman scattering process: a photon of the laser beam generating the
optical lattice coming from the left is absorbed and re-emitted to the left. This is best
illustrated in the momentum domain sketched in Fig. 26.4(b). This Raman scattering
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transfers twice the photonic recoil to the atom. The requirement for commensurability
of the Broglie wavelength and wavelength of the standing light wave is equivalent to
saying that the matter wave momentum is equal to the recoil of a single photon. In
other words, the matter wave always Bragg-reflected at the edge of a Brillouin zone.

Finally, in the Bloch state picture, the dispersion relation of a free particle is
distorted due to the periodicity of the potential generated by the standing light wave
such as to open a forbidden band. As a consequence, instead of being accelerated
without limits, the atom enters the second Brillouin zone, which is to say that it is
reflected to the other side of the first Brillouin zone.

Figure 26.4: Illustration of Bloch oscillations (a) in real space, (b) in momentum space, and
(c) in the moving frame. You may also run a movie of Bloch oscillations clicking on (watch
movie)!

The additional term, which contains the frequency of the Bloch oscillation νblo,
increases linearly over time. As time goes by, a resonance is crossed when t = −nτblo,
and the crossing is periodically repeated at every n = −1,−2, 0, ... Tracing the
matter wave evolution in the laboratory system, we see that whenever the resonance
is crossed, the momentum undergoes a change of sign corresponding to a reflection
of its motion. We expand the population of the momentum states into plane (Bloch)
waves with |cn(t)|2.

Of course there are some conditions that need to be met to observe Bloch oscil-
lations. The transfer of momentum is efficient only in the rapid adiabatic passage
(ARP) regime characterized by the conditions 2(νblo/ωrec) ≪ (W0/4ωrec)

2 ≪ 16.
The first condition requires that the force that drives the atoms to perform the Bloch
oscillations must be weak enough to avoid transitions between Bloch bands, which
guarantees the adiabaticity of the process. The other condition requires that the
optical lattice be weak enough so that the dynamics involves only two adjacent mo-
mentum states at the same time and the transfer between the two is successful. A
talk on this subject can be watched at (watch talk). Do the Exc. 26.2.3.1.

We will come back to the topic of optical lattices holding matter waves in Sec. 46.4.2
in the context of Mott insulating states of Bose-Einstein condensates.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/QM_Lattices_BlochOscillation_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/QM_Lattices_BlochOscillation_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BlochOscillations
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Figure 26.5: (code) Dynamics of Bloch’s oscillations calculated from Eq. (26.57). (a) The

colored curves show successively populated momentum states. (b) Center-of-mass motion of

the wave packet in the lab frame (red) and in the moving frame (blue). The used parameters

are ωrec = (2π) 4.8 kHz, νblo = 0.05ωrec, and W0 = −0.7ωrec.

26.2.3 Exercises

26.2.3.1 Ex: Purification of Bloch oscillations

Simulations of Bloch oscillations of atoms in an optical lattice for W0 = 0.4ωrec and
0.8ωrec produce the dynamics exhibited in Fig. 26.6. Interpret the different behaviors.

Solution: (a-b) If the lattice is too shallow (W0 = 0.4ωrec), the band gap is too
narrow. The atom is then likely to tunnel into the next Bloch band staying inside
its actual accelerated momentum state. I.e. stationary populations pile up in every
cn. Because the atom is not completely reflected at the edge of the Brillouin zone, its
center of mass begins to drift.
(e-f) If the lattice is too deep (W0 = 1.6ωrec), the atom does not even reach the band
gap. It stays confined to the standing wave potential oscillating like in a harmonic
potential.
(c-d) If the lattice is just right (W0 = 0.8ωrec), the atom is almost completely re-
flected. Fast initial oscillations damp out, because only the fastest atoms undergo
Landau-Zener transitions confining them to the first momentum state c0.
Approximating the lattice by a harmonic oscillator potential,

Udip(z) = −ℏW0

2 cos 2kz ≃ −ℏW0

2 (1 + k2z2) ≡ m
2 ω

2
hoz

2 ,

we expect the vibration frequency,

ωho =
√

2W0ωrec .

Using this formula it is possible to check that the fast vibrations observed in Figs. 26.6
have frequencies that correspond to ωho/2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochDynamics.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_BlochOscillations01.pdf
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Figure 26.6: (code) Dynamics of Bloch oscillations (a-b) for W0 = 0.4ωrec, (c-d) for W0 =

0.8ωrec, and (e-f) for W0 = 1.6ωrec. Furthermore, ωrec = (2π) 4.8 kHz and νblo = 0.05ωrec.

26.2.3.2 Ex: Gaussian approximation for Wannier function

Consider a standing light wave producing a dipolar potential of the shape V (x) =
W0 sin

2 kx = W0

2 − W0

2 cos 2kx with W0 ≫ Erec = (ℏk)2/2m.
a. Approximate the potential of a single lattice site around x = 0 by a harmonic
potential. Calculate for which depth of the dipolar potential the approximated po-
tential supports at least one bound state. What is the spacing of the levels and the
characteristic size of the harmonic oscillator aho. Write down the normalized ground
state wavefunction of the harmonic oscillator.
b. Now, let us consider a 3D cubic lattice made of three identical orthogonal standing
light waves. Approximate the ground state Wannier function of a lattice site by ap-
propriately normalized ground state wavefunctions of a harmonic oscillator. Derive

the formula U3d = 8
πkad

(
W0

Erec

)3/4
starting from,

U3D = g3D
∫
ω4
(0,0)(x, y, z)d

3r

with g3D = 4πℏad
m .

Solution: a. The harmonic approximation for the sinusoidal potential is,

U(x) =W0(kx)
2 + . . . .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochLandauZener.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Lattices_BlochLandauZener.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_PeriodicPotential01.pdf
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With ω ≡
√

2W0k2

m , we can approximate the potential by,

Uho(x) =
m

2
ω2x2 for |x| ≤

√
2ℏU0

mω2
and Uho(x) = 0 else .

The ground state of the harmonic oscillator is,

E0 = ℏω
(
0 +

1

2

)
=

ℏω
2

.

The condition of having at least one bound state, E0 < W0, yields

W0 > E0 =
ℏω
2

=
ℏ
2

√
2W0k2

m
=⇒ W0 >

ℏk
2m

.

This is precisely the energy of the photonic recoil of the light generating the standing
wave. The spacing of the levels is ℏω and the size of the harmonic oscillator is,

aho =

√
ℏ
mω

.

The normalized ground state wavefunction is given by,

ψ0,0(x) = Ce−x
2/2a2ho where C =

1√
aho
√
π
.

b. For the 3D harmonic oscillator the ground state wave function becomes simply,

ψ0,0(r) = Cψ0,0(x)ψ0,0(y)ψ0,0(z) .

With the normalization condition,

1 =

∫ λ/2

−λ/2

∫ λ/2

−λ/2

∫ λ/2

−λ/2
ω0,0(r)d

3r =

(∫ λ/2

−λ/2
C
√
2ahoe

−x̃2

dx̃

)3

= (C
√
2aho)

3

(∫ λ/2

−λ/2
e−x̃

2

dx̃

)3

.

With this, ...

26.2.3.3 Ex: Perturbative treatment of a weak lattice

A weak lattice potential with V0 < Erec can be treated in perturbation theory to moti-
vate the resulting opening of a gap in the refolded energy parabola. The unperturbed
Hamiltonian Ĥ0 = p2/2m contains only the kinetic energy and the perturbation is
V (x) = V0 sin

2(kx) = 1
2V0 − 1

4V0(e
2ıkx + e−2ıkx).

a. Calculate V̂ (x)ϕp(x) and show that ⟨ϕp±ℏk|V̂ |ϕp⟩ are the only non-zero matrix

elements of the perturbation V (x) between the eigenstates of Ĥ0 (which are the or-
thonormal plane waves ϕp = eıpx/ℏ). Neglect the constant term of the potential,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_PeriodicPotential02.pdf
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which only yields a global energy shift.
b. This coupling is relevant around those momenta p, where ϕp has the same energy
ϕp+ℏk or ϕp−ℏk. Show that these momenta are p = ∓ℏk.
c. Consider the perturbed system restricted to the basis {|p = −ℏk⟩, |p = +ℏk⟩} and
give the Hamiltonian as 2× 2 matrix.
d. Diagonalize the matrix and consider the difference of the eigenenergies. Use them
to estimate the size of the gap, that the lattice opens between the two lowest bands.
e. Calculate the eigenstates and interpret them by comparing the probability density
to the lattice potential.

Solution:

26.3 The Kronig-Penney model

The Kronig-Penney model describes the band structure of a lattice. Let us assume a
periodic potential of rectangular wells with valleys of widths a and peaks of widths b,

V (x) = U0θmod(x,a+b)∈[a,a+b] . (26.74)

Inserting into the Schrödinger equation the plane wave ansatz ψ = AeıKx + Be−ıKx

for the wavefunction in the valley, 0 < x < a, and ψ = CeQx + De−Qx in the
peak, −b < x < 0, we obtain ε = ℏ2K2/2m and U0 − ε = ℏ2Q2/2m. Choosing the
constants A,B,C,D such that ψ and ψ̇ are continuous in x = 0, a, we derive, using
the periodicity of the Bloch wave ψ(a < x < a+ b) = ψ(−b < x < 0)eık(a+b),




1 1 −1 −1
ıK −ıK −Q Q

eıKa e−ıKa −e−Qb+ık(a+b) −eQb+ık(a+b)
ıKeıKa −ıKe−ıKa −Qe−Qb+ık(a+b) QeQb+ık(a+b)







A

B

C

D


 = 0 . (26.75)

The determinant of the matrix must be zero, or,

Q2 −K2

2QK
sinhQb sinKa+ coshQb cosKa = cos k(a+ b) . (26.76)

For δ-shaped peaks, we let b = 0 and U0 = ∞ such that Q2ba/2 = P , this simplifies
to,

P

Ka
sinKa+ cosKa = cos ka . (26.77)

The dispersion relation for light is different. According to [864],

−
√
ε+
√
ε
−1

2
sin(
√
εωa/c) sin(ωa/c) + cos(

√
εωa/c) cos(ωa/c) = cos ka . (26.78)

For ε = 1 the equation simplifies to ka = 2ωa/c.
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26.3.1 Photonic density of states

The photonic density of states in free space in three dimensions is evaluated from
[1324],

dN = 2

(
L

2π

)3 ∫
d3k = 2

(
L

2π

)3

k2dk

∫
dϕd cos θ =

L3ω2

π2c3
dω ≡ D(ω)dω . (26.79)

In one dimension,

dN = 2
L

2π
dk =

L

πc
dω . (26.80)

The density is normalized
∫ πc/L
0

D(ω)dω = 1 and the total energy, if all states are

populated, is E ≡
∫ πc/L
0

ωD(ω)dω = πc/L. However, this applies only if ω = ck. If
the dispersion relation is more complicated, for example, inside a cavity or a forbidden
photonic band, ω = ω(k), we must generalize,

D(ω) =
L

π

dk

dω
. (26.81)

Assuming that the dispersion relation is given by the Kronig-Penney model, we obtain
gaps in the density-of-states for those values of ω which do not belong to any k.

ω0

Re θ
   

 

 

 

ρ(ω)

ω 0

Figure 26.7: Dispersion ratio and state density for a one-dimensional optical lattice.

26.3.2 Exercises

26.3.2.1 Ex: Mass of photons in a lattice

The effective mass of particles in a lattice is defined as,

1

m∗
=

1

ℏ2
d2E(k)

dk2
.

Calculate the effective mass of a rubidium atom in a far-detuned optical standing
wave.

Solution: For free electrons, E = ℏ2k2/2m, such that 1/m∗ = 1/m. For free photons
E = ℏk/c, such that 1/m∗ = 0!

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Lattices_KronigPenney01.pdf
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Chapter 27

Approximation methods

Virtually every problem going beyond the potential well, the harmonic oscillator, or
the hydrogen atom without spin and external fields is impossible to solve analytically.
In this chapter we will talk about techniques to solve approximately problems in more
realistic situations. There are a number of methods of which we will discuss the only
following: 1. The stationary or time-dependent perturbation method is useful for
evaluating small perturbations of the system, for example, caused by external electric
or magnetic fields; 2. the variational method, which serves to find and improve trial
wavefunctions, the initial shapes of which are generally motivated by the symmetries
of the system; 3. the semi-classical WKB method; 4. and finally the method of self-
consistent fields, which is an iterative method of solving the Schrödinger equation.

27.1 Stationary perturbations

27.1.1 Time-independent perturbation theory

We first introduce time-independent perturbation theory (TIPT) for multilevel sys-
tems. We separate the Hamiltonian into an unperturbed part,

Ĥ(0)|ψ(0)⟩ = E(0)|ψ(0)⟩ , (27.1)

and perturbations, which are proportional to a small parameters λ,

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) + .. . (27.2)

The perturbed wavefunctions are,

|ψ⟩ = |ψ(0)⟩+ λ|ψ(1)⟩+ λ2|ψ(2)⟩+ .. , (27.3)

and the energies

E = E(0) + λE(1) + λ2E(2) + .. . (27.4)

The contributions ∝ λn are the corrections of order n. The equation we need to solve
now is,

Ĥ|ψ⟩ = E|ψ⟩ . (27.5)

1445
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By inserting all the expansions above and segregating all orders of λk, we find the
following system of equations,

Ĥ(0)|ψ(0)⟩ = E(0)|ψ(0)⟩ (27.6)

(Ĥ(0) − E(0))|ψ(1)⟩ = (E(1) − Ĥ(1))|ψ(0)⟩
(Ĥ(0) − E(0))|ψ(2)⟩ = (E(2) − Ĥ(2))|ψ(0)⟩+ (E(1) − Ĥ(1))|ψ(1)⟩

... .

27.1.1.1 First order energy correction

We now consider eigenstates |ψ(1)
n ⟩ of the perturbed system and expand the first-order

correction of the wavefunction in a linear combination of unperturbed eigenvectors

|ψ(0)
n ⟩ ≡ |n⟩,

|ψ(1)
n ⟩ =

∑

m

|m⟩⟨m|ψ(1)
n ⟩ . (27.7)

We insert this expansion into the second equation (27.6) and multiply with ⟨n|,

⟨n|(Ĥ(0) − E(0)
n )

∑

m

|m⟩⟨m|ψ(1)
n ⟩ = 0 = ⟨n|E(1)

n − Ĥ(1)|n⟩ . (27.8)

We obtain for the first order correction of the energy of unperturbed states,

E(1)
n = ⟨n|Ĥ(1)|n⟩ . (27.9)

As a first example we will calculate in Exc. 27.1.3.1 the first order correction for
the energy of a slightly deformed one-dimensional box potential.

27.1.1.2 First order correction for the wavefunction

Now let us have a look at the first-order correction for the wavefunction again con-
sidering the second equation (27.6),

⟨m|Ĥ(0) − E(0)
n |ψ(1)

n ⟩ = ⟨m|E(1)
n − Ĥ(1)|n⟩ . (27.10)

When n = m, the left side of this equation disappears. Therefore, E
(1)
n −⟨n|Ĥ(1)|n⟩ =

0, and we can restrict to the terms n ̸= m discarding the terms in E
(1)
n ,

⟨m|ψ(1)
n ⟩ =

E
(1)
n δmn − ⟨m|Ĥ(1)|n⟩

Ê
(0)
m − E(0)

n

=
⟨m|Ĥ(1)|n⟩
E

(0)
n − E(0)

m

. (27.11)

We obtain for the first-order correction for the energy of the states,

|ψ(1)
n ⟩ =

∑

m

|m⟩⟨m|ψ(1)
n ⟩ =

∑

m̸=n

|m⟩ ⟨m|Ĥ
(1)|n⟩

Ê
(0)
n − E(0)

m

. (27.12)

This procedure simulates the distortion of the state by blending it with other states.
The perturbation induces virtual transitions to other states. The perturbation is large
when the blended levels are close.
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See Exc. 27.1.3.2. In Exc. 27.1.3.3 we calculate the first order correction due to
the finite extension of the hydrogen nucleus. In Exc. 27.1.3.4 we treat the coupling
of the energy levels of a two-level system as a first order perturbation, and compare
the result with the exact solution. The Stark effect for an electron confined in a box
can be discussed (see Exc. 27.1.3.5) in first order TIPT.

27.1.1.3 Second order correction for the energy

To calculate the second order correction for the energy we expand the second order
correction,

|ψ(2)
n ⟩ =

∑

m

|m⟩⟨m|ψ(2)
n ⟩ , (27.13)

import it into the third equation (27.6) and multiply with ⟨n|,

⟨n|(Ĥ(0)−E(0)
n )

∑

m

|m⟩⟨m|ψ(2)
n ⟩ = ⟨n|(E(2)

n −Ĥ(2))|n⟩+⟨n|(E(1)
n −Ĥ(1))

∑

m

|m⟩⟨m|ψ(1)
n ⟩ .

(27.14)
Now,

∑

m

⟨m|ψ(2)
n ⟩(E(0)

n −E(0)
m )δnm = 0 = E(2)

n −⟨n|Ĥ(2)|n⟩+
∑

m

⟨m|ψ(1)
n ⟩

(
E(1)
n δnm − ⟨n|Ĥ(1)|m⟩

)
.

(27.15)
The left-hand side of this equation disappears. Also, on the right-hand side, for

n ̸= m, the term E
(1)
n δnm disappears, and for n = m the whole parenthesis disappears.

Therefore, we can discard the term E
(1)
n and restrict the sum to terms with n ̸= m.

Inserting the coefficients ⟨m|ψ(1)
n ⟩ calculated in (27.11), we finally obtain,

E(2)
n = ⟨n|Ĥ(2)|n⟩+

∑

m̸=n

⟨n|Ĥ(1)|m⟩⟨m|Ĥ(1)|n⟩
E

(0)
n − E(0)

m

. (27.16)

The first term is similar to the first order correction; the eigenvalue of the second
order perturbation calculated in the base of the unperturbed states. The second term
describes the shift of the energies through possible temporary transitions to other
states.

In Exc. 27.1.3.6 we treat a system of three coupled levels up to the second pertur-
bative order. The Stark effect discussed in Exc. 27.1.3.7 needs the TIPT calculation
up to the second order.

27.1.2 TIPT with degenerate states

Exact calculations show that the effect of a perturbation is larger – but finite – for
degenerate states. On the other hand, from the above expressions for the corrections
of both energies and wavefunctions, we would infer that these corrections can become
very large for small perturbations or even diverge.

Fortunately, the fact that every linear combination of degenerate wavefunctions
is an eigenfunction of the Hamiltonian as well gives us the freedom to choose the
combination, which is most similar to the final form of the perturbed wavefunctions.
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For example, considering a perturbation by a magnetic field it may be advantageous
to expand the spherical functions Ylm on a basis of cylindrical coordinates 1. We
will see in the following that we can solve both problems, the selection of the initial
combination and the prevention of divergent denominators at once, without explicitly
specifying the expansion.

We consider eigenstates |n, ν⟩ with the energy E
(0)
n being r times degenerate with

respect to the quantum number ν, where ν = 1, .., r. All states satisfy

Ĥ(0)|n, ν⟩ = E(0)
n |n, ν⟩ . (27.17)

We construct linear combinations that most resemble the perturbed states

|ψ(0)
nµ ⟩ =

r∑

ν=1

cµν |n, ν⟩ . (27.18)

When the perturbation Ĥ(1) is applied, we assume that the state |ψ(0)
nµ ⟩ is distorted

towards the similar state |ψnµ⟩, and the energy changes from E
(0)
n to Enµ. We now

need the index µ to label the energy, since the degeneracy can be removed by the
perturbation. As before, we write now,

Ĥ = Ĥ(0) + λĤ(1) + .. (27.19)

|ψnµ⟩ = |ψ(0)
nµ ⟩+ λ|ψ(1)

nµ ⟩+ ..

Enµ = E(0)
n + λE(1)

nµ + .. .

The replacement of these expansions in Ĥ|ψnµ⟩ = Enµ|ψnµ⟩, and a collection of the
terms in λ up to first order gives,

Ĥ(0)|ψ(0)
nµ ⟩ = E(0)

n |ψ(0)
nµ ⟩ (27.20)

(E(0)
n − Ĥ(0))|ψ(1)

nµ ⟩ = (E(1)
nµ − Ĥ(1))|ψ(0)

nµ ⟩ .
As before, we try to express the first-order corrections for the wavefunctions

through degenerate unperturbed wavefunctions |ψ(0)
nµ ⟩ and non-degenerate wavefunc-

tions 2 |ψ(0)
m ⟩:

|ψ(1)
nµ ⟩ =

∑

ν

bµν |ψ(0)
nν ⟩+

∑

m

anm|ψ(0)
m ⟩ . (27.21)

Inserting this into the first-order equation (27.20), we obtain,
∑

ν

bµν(E
(0)
n −E(0)

n )|ψ(0)
nν ⟩+

∑

m

anm(E(0)
m −E(0)

n )|ψ(0)
m ⟩ = (E(1)

nµ−Ĥ(1))|ψ(0)
nµ ⟩ . (27.22)

The first term disappears. Inserting the expansion (27.18),
∑

m

anm(E(0)
m − E(0)

n )|ψ(0)
m ⟩ = (E(1)

nµ − Ĥ(1))
∑

ν

cµν |n, ν⟩ , (27.23)

1Another example would be the preference for the coupled base |(l, s)j,mj⟩ in comparison to
the decoupled base |l,ml, s,ms⟩ knowing that the degeneracy in j is lifted, when there is an energy
associated with interacting angular momenta and the degeneracy in mj is lifted, when we apply a
magnetic field.

2Note that we label all states which are not degenerate with the state under investigation |ψ(1)
nµ ⟩

with the index m, even if there are degeneracies between them.
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and multiplying the two sides with ⟨n, µ|, we get zero on the left-hand side, since we
can choose the non-degenerate states to be orthogonal ⟨n, ν|m⟩ = δm,n. Hence,

∑

ν

cµν

[
E(1)
nµ ⟨n, µ|n, ν⟩ − ⟨n, µ|Ĥ(1)|n, ν⟩

]
= 0 . (27.24)

This secular equation (one for each µ) represents, in fact, a set of r linear equations
for the coefficients cµν . The condition for having non-trivial solutions is,

det
(
⟨n, ν|Ĥ(1)|n, µ⟩ − E(1)

nµ δµ,ν

)
µ,ν

= 0 . (27.25)

The solution of this secular determinant yields the solicited energies E
(1)
µ . Now, the

solution of the secular equation (27.24) for each energy value produces those coef-
ficients, which represent the best linear combinations adapted to the perturbation.
Unlike in previous calculations with degenerate states, here we consider linear combi-
nations of vectors of the degenerate subspace prior to switching on the perturbation.

In practice, we apply perturbation theory only to the lowest relevant order. That
is, we only calculate the second order correction if first order corrections vanish. One
famous example is the quadratic Stark effect discussed in Sec. 30.3. In the case of
eigenvalues, which are degenerate in the absence of perturbation, the first order will
always produce a remarkable correction, as in the example of the linear Stark effect,
also discussed in Sec. 30.3. For this reason, we need not discuss higher perturbation
orders in the case of degenerate eigenvalues.

Example 170 (Perturbation in a system with two degenerate states): As
an example, we consider the following Hamiltonian,

Ĥ =

(
∆ Ω

Ω ∆

)
.

The exact solution gives the eigenvalues and eigenvectors,

E1 = ∆+Ω , E2 = ∆−Ω , |ψ1⟩ = 1√
2

(
1

1

)
, |ψ2⟩ = 1√

2

(
−1
1

)
.

Now we divide the Hamiltonian into an unperturbed part and a perturbation,

Ĥ ≡ Ĥ(0) + Ĥ(1) =

(
∆ 0

0 ∆

)
+

(
0 Ω

Ω 0

)
.

We get in zero order,

E
(0)
1 = ∆ = E

(0)
2 , |1⟩ =

(
1

0

)
, |2⟩ =

(
0

1

)
,

The application of non-degenerate perturbation theory in first order would give,

⟨1|Ĥ(1)|1⟩ = 0 = ⟨2|Ĥ(1)|2⟩ , |ψ(1)
1 ⟩ = |1⟩

⟨1|Ĥ(1)|2⟩
E

(0)
1 − E(0)

2

→∞← −|ψ(1)
2 ⟩ .
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That is, the correction of the energy vanishes in first order, while the correction
of the wavefunction diverges. Obviously, the |ν⟩ obtained by the diagonalization
of the matrix Ĥ(0) is not adapted to the calculation of the matrix elements Ĥ(1).
Now, applying degenerate perturbation theory, we obtain by the secular deter-
minant,

0 = det
[
⟨ν|Ĥ(1)|µ⟩ − E(1)

µ δµ,ν
]
= det

(
−E(1)

µ Ω

Ω −E(1)
µ

)
= (E(1)

µ )2 − Ω2 ,

eigenvalues are E
(1)
1 = Ω and E

(1)
2 = −Ω allowing the establishment of the

secular equation,

c11
[
E

(1)
1 − ⟨1|Ĥ(1)|1⟩

]
− c12⟨1|Ĥ(1)|2⟩ = c11[Ω− 0]− c12Ω = 0

−c21⟨2|Ĥ(1)|1⟩+ c22
[
E

(1)
2 − ⟨2|Ĥ(1)|2⟩

]
= −c21Ω+ c22[−Ω− 0] = 0 .

We obtain c11 = c12 and c21 = −c22 and with this,

|ψ(0)
1 ⟩ =

∑
ν

c1ν |ν⟩ = c11|1⟩+c12|2⟩ = 1√
2

(
1

1

)
, |ψ(0)

2 ⟩ = c21|1⟩+c22|2⟩ = 1√
2

(
−1
1

)
.

Thus, we can verify that the corrections for the eigenenergies,

E1 = E
(0)
1 +⟨ψ(0)

1 |Ĥ(1)|ψ(0)
1 ⟩ = ∆+Ω , E2 = E

(0)
2 +⟨ψ(0)

2 |Ĥ(1)|ψ(0)
2 ⟩ = ∆−Ω ,

coincides with the exact calculation made at the beginning. The eigenfunctions
|ψ(0)

1 ⟩ should be already corrected in zeroth order, which we verify by calculating,

|ψ(1)
1 ⟩ = |ψ(0)

1 ⟩
⟨ψ(0)

1 |Ĥ(1)|ψ(0)
2 ⟩

E1 − E2
= 0 = |ψ(1)

2 ⟩ .

In Exc. 27.1.3.8 we study a partially degenerate three-level system and the break-
down of the degeneracy due to a perturbation. And in Exc. 27.1.3.9 we will treat a
perturbation in a box potential with degenerate energy levels.

27.1.3 Exercises

27.1.3.1 Ex: One-dimensional well with a deformation in the centre

Consider a one-dimensional potential well between −L/2 and L/2 with infinitely high
walls. In the center of the well is a small deformation,

H(1) =

{
ε for −a2 ≤ x ≤ a

2

0 outside that region .

Calculate the correction for the eigenenergies in first order and discuss the limits
a≪ L and a→ L.

Solution: The energies and wavefunctions for ε −→ 0 are,

E(0)
n =

π2ℏ2n2

2mL2
, ψ

(0)
n=impar(x) =

√
2

L
cos

nπx

L
, ψ(0)

n=par(x) =

√
2

L
sin

nπx

L
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PocoUnidimensional.pdf
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because it is easy to check,

ψ(0)
n (±L/2) = 0 and

2

L

∫ L/2

−L/2
cos2

nπx

L
dx = 1 =

2

L

∫ L/2

−L/2
sin2

nπx

L
dx .

The first order correction is,

E(1)
n = ⟨n|H(1)|n⟩ =

∫ L

0

ψ∗(0)n (x)H(1)(x)ψ(0)
n (x)dx =

2

L

∫ a/2

−a/2
ε

(
cos2 nπxL
sin2 nπxL

)
dx

=
4ε

L

∫ a/2

0

(
1

2
± 1

2
cos

2nπx

L

)
dx =

2ε

L

L

2nπ

∫ nπa/L

0

(1± cos z)dz

= ε

(
a

L
− (−1)n

nπ
sin

nπa

L

)
,

where the upper (lower) signs correspond to the odd (even) n. When a ≪ L, we can

approximate by E
(1)
n=impar ≃ ε2a/L and E

(1)
n=par ≃ 0. Apparently, the perturbation is

stronger when the wavefunction has a large overlap with the perturbation. By analogy
we can consider the strings of a violin. When we perturb the strings near the nodes, we
do not influence the vibration. When we perturb away from the nodes, the frequency

is altered. When a→ L but ε≪ E
(0)
1 , we can approximate by E

(1)
n ≃ ε. In this case,

all energies are shifted up by the same amount.

27.1.3.2 Ex: Perturbation

Show that the scalar product ⟨ψ(0)
n |ψ(1)

n ⟩ (from the first-order correction to the state
of the ’perturbed’ system with the n-th state of the free Hamiltonian), cancels out
when we impose that the ’perturbed’ state |ψ(λ)⟩ be normalized and the the product

⟨ψ(0)
n |ψ(λ)⟩ be real.3

Solution:

27.1.3.3 Ex: Extended nucleus

The expression V (r) = −e2/4πϵ0r for the potential energy of an electron in the hy-
drogen atom implies that the nucleus (the proton) is treated as a point particle. Now
suppose that, on the contrary, the charge of the proton +e is evenly distributed over
a sphere of radius R = 10−13 cm.
a. Derive the modified potential Vm, which corresponds to this distribution of the
nuclear charge.
b. Assume that the wavefunction of the hydrogen atom does not change much due
to the modified potential. Calculate in lowest order in R/aB the average energetic
displacement ⟨∆V ⟩ for the state (n = 1, ℓ = 0,m = 0). How will the energy displace-
ment be in comparison to the states (n = 2, ℓ = 0,m = 0) and (n = 2, ℓ = 1,m = 0)?
c. Calculate in the same way ⟨∆V ⟩ for muonic hydrogen in the ground state.

3See [276], Cap XI, A-2.
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Solution: a. Using Gauss’ law,
∫

∂V

E · dS = 1
ϵ0

∫

V

ρdV with ρ =
e

4πR3/3
,

we obtain for the electric field,

4πr2Er =

{
1
ε0
4π
∫ r
0

e
4πR3/3r

′2dr′ for r < R
e
ε0

for r > R
.

Resolving by Er,

Er =

{
e

4πε0
r
R3 for r < R

e
4πε0r2

for r > R
.

The potentials follow with,

Vm = e

∫
Erdr =

{
e2

4πε0
r2

2R3 + const for r < R

− e2

4πε0r
for r > R

.

Continuity at the position R requires, const = 3e2

4πε02R
. Hence,

Vm =

{
−e2

8πε0R

(
3− r2

R2

)
for r < R

−e2
4πε0r

for r > R
.

b. We consider the difference of this potential from a Coulomb potential,

∆V (r) ≡ Vm(r)− V (r) =

{
− 3e2

8πϵ0R
+ e2r2

8πϵ0R3 + e2

4πϵ0r
for r < R

0 for r > R
.

being a perturbation of the Coulombian case, which has already been solved. Using
perturbation theory we calculate the first-order correction of ground state energy,

∆E
(1)
1 = ⟨ψ100|∆V (r)|ψ100⟩ = 4π

∫ R

0

ψ∗100∆V (r)ψ100r
2dr =

4

10

e2

4πϵ0a3B
R2 .

To solve the integral we can approximate the exponential appearing in the function
ψ100 by e−r̃ ≃ 1, since the radius within which ∆V (r) ̸= 0 is very small: R ≈ aB/104.
We obtain,

∆E
(1)
1

E1
≈ 10−8, which is a very small energy correction. Because of the

smaller ⟨r⟩ and being consequently closer to the nucleus, the fundamental state (100)
is most affected by the finite size of the nucleus. As the other states are further apart,
they will have even smaller corrections of their energies.
The same calculation made for muonic hydrogen gives,

∆Ee
∆Eµ

=

(
aµ
aB

)3

=

(
me

mµ

)3

≈ 1.25 · 10−7 .
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27.1.3.4 Ex: Perturbation of a two-level system

We consider a two-level system. Without perturbation the system would have the

Hamiltonian H(0), the eigenenergies E
(0)
1,2 and the eigenfunctions ψ

(0)
1,2. Now we switch

on a stationary perturbation of the form H(1) = ϵ(|1⟩⟨2|+ |2⟩⟨1|).
a. Calculate the eigenenergies directly solving the perturbed Schrödinger equation.
b. Calculate the perturbed energies using TIPT and compare to the exact calculation
of the eigenenergies.
c. Calculate the eigenstates directly solving the perturbed Schrödinger equation.
d. Calculate the perturbed states using TPIT and compare to the exact calculation
of the eigenfunctions.

Solution: a. We have already dealt with the two-level system with coupling in Exc. 23.4.7.1.
Here we rephrase the problem assuming that the coupling represents a perturbation.
The Hamiltonian is

Ĥ =

(
H

(0)
11 0

0 H
(0)
22

)
+

(
0 H

(1)
12

H
(1)
21 0

)
=

(
E

(0)
1 ε

ε E
(0)
2

)
.

To find the perturbed eigenvalues E
(1)
1,2 we solve the eigenvalue equation det(Ĥ −

E
(1)
± ) = 0, giving

E
(1)
1,2 = 1

2 (E
(0)
1 + E

(0)
2 )± 1

2

√
(E

(0)
1 − E(0)

2 )2 + 4ε2 .

Obviously, for ε→ 0 we get the unperturbed energies. If the distance from unperturbed

levels, ∆E ≡ E(0)
1 −E

(0)
2 , decreases, the perturbation gets more important and causes

a minimum distance E
(1)
1 − E

(1)
2 = 2ε. That is, the perturbation drives the levels

away from each other. This is called avoided crossing. For small perturbations we
can expand,

E
(1)
1,2 = 1

2

(
E

(0)
1 + E

(0)
2

)
± 1

2

(
E

(0)
1 − E(0)

2

)(
1 +

2ε2

∆E2
+ ...

)
≃ E(0)

1,2 ±
ε2

∆E
.

b. Using first-order perturbation theory,

E(1)
n = ⟨ψ(0)

n |Ĥ(1)|ψ(0)
n ⟩ = 0 ,

since H(1) has no diagonal components. In second order,

E(2)
n = ⟨ψ(0)

n |Ĥ(2)|ψ(0)
n ⟩+

∑

m ̸=n

⟨n|Ĥ(1)|m⟩⟨m|Ĥ(1)|n⟩
E

(0)
n − E(0)

m

= 0± ε2

∆E
,

giving the same result as in a Taylor expansion of the exact energies by the perturbation
ε.
c. Now we take a look at the wavefunctions

(
E

(0)
1 H

(1)
12

H
(1)
21 E

(0)
2

)(
cos ζ sin ζ

− sin ζ cos ζ

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
E

(1)
+ 0

0 E
(1)
−

)
.
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We obtain

|ψ(1)⟩ =
(
ψ
(1)
+

ψ
(1)
−

)
=

(
cos ζ sin ζ

− sin ζ cos ζ

)(
ψ
(0)
1

ψ
(0)
2

)
=

(
ψ
(0)
1 cos ζ + ψ

(0)
2 sin ζ

−ψ(0)
1 sin ζ + ψ

(0)
2 cos ζ

)
,

with tan ζ =
2|H(1)

12 |
∆E ≃ ζ. In first order,

ψ
(1)
+ = ψ

(0)
1 cos ζ + ψ

(0)
2 sin ζ ≃ ψ(0)

1 + ζψ
(0)
2 ≃ ψ(0)

1 +
ε

∆E
ψ
(0)
2

and ψ
(1)
− = −ψ(0)

1 sin ζ + ψ
(0)
2 cos ζ ≃ ψ(0)

2 − ζψ
(0)
2 ≃ ψ(0)

2 −
ε

∆E
ψ
(0)
1 .

d. Using first-order perturbation theory,

|ψ(1)
n ⟩ =

∑

m ̸=n
|m⟩ ⟨m|Ĥ

(1)|n⟩
E

(0)
n − E(0)

m

= ±|m⟩ ε

∆E
.

giving the same result as in a Taylor expansion of the exact energies by the perturbation
ε.

-2 -1 0 1 2

ΔE

-2

-1

0

1

2

E

Figure 27.1: Avoided crossing of coupled two levels. Black solid: uncoupled states, blue
dash-dotted: exact solution, red dotted: first order correction TIPT.

27.1.3.5 Ex: Stark effect for an electron in a box

Consider an electron in a one-dimensional box, that is, in a well inside the interval
x ∈ [0, a] delimited by infinite walls. When a uniform electric field E is applied, also
in x-direction, the electron experiences a force equal to −eE , being −e the electron
charge, so that the potential energy inside the box becomes eEx.
a. What is the energy of the ground state of the electron (in first order approxima-
tion)? We can assume that eEa is much smaller than the ground state energy the
electron would have in the absence of electric fields.
b. Use first-order TIPT to get an approximation for the ground state wavefunction
by calculating the first term of the correction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_EletronCaixa.pdf
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Solution: a. In zeroth order we have,

E(0)
n =

π2ℏ2n2

2mea2
and ψ(0)

n (x) =

√
2

a
sin

nπx

a
,

with n = 1. In the first order we obtain for the energy,

E(1)
n = ⟨n|eEx|n⟩ = 2

a
eE
∫ a

0

x sin2
nπx

a
dx =

2

a
eE a

2

4
=
a

2
eE .

b. In the first order we obtain the eigenfunctions,

|ψ(1)
n ⟩ =

∑

m ̸=n
|m⟩ ⟨m|H

(1)|n⟩
E

(0)
n − E(0)

m

=
∑

m ̸=n
|ψ(0)
m ⟩

∫ ∫
⟨m|x⟩⟨x|eEx|x′⟩⟨x′|n⟩d3xd3x′

E
(0)
n − E(0)

m

=
∑

m ̸=n
|ψ(0)
m ⟩

1

E
(0)
n − E(0)

m

2

a
eE
∫ a

0

x sin
mπx

a
sin

πx

a
dx

=
∑

m ̸=n
|ψ(0)
m ⟩

2mea
2

π2ℏ2n2 − π2ℏ2m2

2

a
eE 2mna

2

π2

(−1)m+n − 1

(m2 − n2)2

=
∑

m ̸=n
|ψ(0)
m ⟩

8mea
3eE

π4ℏ2
mn[1− (−1)m+n]

(m2 − n2)3 .

27.1.3.6 Ex: Perturbed 3-level system until second order TIPT

Consider the following perturbed Hamiltonian:

H = H0 +Hλ =



E1 0 0

0 E2 0

0 0 E3


+



0 λ 0

λ 0 λ

0 λ 0


 .

a. Determine the perturbed eigenvalues and eigenfunctions in first order TIPT.
b. Determine the eigenvalues in second order TIPT.

Solution: a. In zeroth order,

E(0)
n = E1,2,3 and |n⟩ = ên .

The eigenvalues in first order are,

E(1)
n = ⟨n|Hλ|n⟩ = ê†nHλên = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_PerturbacaoSegunda.pdf
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The perturbed eigenfunctions in first-order are |ψn⟩ = |n⟩+ |ψ(1)
n ⟩+ ..., where

|ψ(1)
n ⟩ =

∑

m̸=n

|m⟩ ⟨m|Hλ|n⟩
En − Em

|ψ(1)
1 ⟩ = |2⟩

ê†2Hλê1
E1 − E2

+ |3⟩ ê
†
3Hλê1

E1 − E3
= |2⟩ λ

E1 − E2

|ψ(1)
2 ⟩ = |1⟩

ê†1Hλê2
E2 − E1

+ |3⟩ ê
†
3Hλê2

E2 − E3
= |1⟩ λ

E2 − E1
+ |3⟩ λ

E2 − E1

|ψ(1)
3 ⟩ = |1⟩

ê†1Hλê3
E3 − E1

+ |2⟩ ê
†
2Hλê3

E3 − E2
= |2⟩ λ

E3 − E2
.

b. The eigenvalues in second order are,

E(2)
n =

∑

m ̸=n

⟨n|Hλ|m⟩⟨m|Hλ|n⟩
E

(0)
n − E(0)

m

E
(2)
1 =

⟨1|Hλ|2⟩⟨2|Hλ|1⟩
E

(0)
1 − E(0)

2

+
⟨1|Hλ|3⟩⟨3|Hλ|1⟩
E

(0)
1 − E(0)

3

=
λ2

E
(0)
1 − E(0)

2

.

27.1.3.7 Ex: Stark effect for a charge in a harmonic oscillator

Consider a charged harmonic oscillator, immersed in a uniform electric field E , de-
scribed by the Hamiltonian Ĥ(1) = Ĥ + eE x̂, being Ĥ = p̂2/2m + mω2x̂2/2 the
Hamiltonian of the free one-dimensional oscillator, and e the charge of the oscillator.
a. Obtain, through TIPT, the eigenenergies (first and second order corrections). Com-
pare the results obtained by TIPT with the analytical ones 4.
b. Same thing for a perturbation of the form ρmω2x̂2/2.
c. Same thing for a perturbation σℏωx̂3.

Solution: a. We already calculated in Exc. 24.6.6.9 the influence of a constant force
on a harmonic oscillator,

Ĥ(1)|ψ(1)
n ⟩ = E(1)

n |ψ(1)
n ⟩ , |ψ(1)

n (x)⟩ = |ψn(x− b)⟩ , E(1)
n = En −

m

2
ω2b2 ,

with b ≡ eE/mω2. With TIPT we calculate the first order correction,

E(1)
n = ⟨n|Ĥ(1)|n⟩ = eE⟨n|x̂|n⟩ = 0 .

In second order,

E(2)
n = ⟨n|Ĥ(2)|n⟩+

∑

m̸=n

⟨m|Ĥ(1)|n⟩⟨n|Ĥ(1)|m⟩
E

(0)
n − E(0)

m

= e2E2
∑

m̸=n

|⟨m|x̂|n⟩|2
ℏω(n−m)

.

4See [276], Complement A XI.
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With
⟨m|x̂|n⟩ = aho√

2
⟨m|â+ â†|n⟩ = aho√

2
(
√
nδm,n−1 +

√
n+ 1δm,n+1) ,

we find,

E(2)
n = e2E2 a

2
ho

ℏω

[
n

2
+
n+ 1

−2

]
= −1

2
b2m2ω4 ℏ

mω

1

ℏω
= −m

2
ω2b2 .

This coincides with the exact result calculated above.
b. With a quadratic perturbation, the exact solutions will be,

En = ℏω(1 + ρ)(n+ 1/2) .

With TIPT, we calculate the first order correction,

E(1)
n = ⟨n|Ĥ(1)|n⟩ = ρ

m

2
ω2⟨n|x̂2|n⟩ = ρ

m

2
ω2a2ho(n+ 1/2) =

ρ

2
ℏω(n+ 1/2) =

ρ

2
E(0)
n .

In second order, with

⟨m|x̂2|n⟩ =
√
n(n− 1)δm,n−2+

√
n2δm,n+

√
(n+ 1)(n+ 1)δm,n+

√
(n+ 1)(n+ 2)δm,n+2

we find

⟨m|x̂2|n⟩ = a2ho
2
⟨m|(â+ â†)(â+ â†)|n⟩

=
a2ho
2

(√
n(n− 1)δm,n−2 + nδm,n + (n+ 1)δm,n +

√
(n+ 1)(n+ 2)δm,n+2

)

E(2)
n = ⟨n|Ĥ(2)|n⟩+

∑

m ̸=n

⟨m|Ĥ(1)|n⟩⟨n|Ĥ(1)|m⟩
E

(0)
n − E(0)

m

=
m2

4
ρ2ω4

∑

m̸=n

|⟨m|x2|n⟩|2
ℏω(n−m)

=
m2

4
ρ2ω4 a

4
ho

4

1

ℏω

(
n(n− 1)

n− (n− 2)
+

(n+ 1)(n+ 2)

n− (n+ 2)

)
= −ρ

2

8
ℏω(n+ 1/2) = −ρ

2

8
E(0)
n .

c. We calculate

E(1)
n = ⟨n|Ĥ(1)|n⟩ = σℏω⟨n|x̂3|n⟩ ∝ ⟨n|(â+ â†)3|n⟩ = 0 ,

and

E(2)
n = (σℏω)2

∑

m ̸=n

|⟨m|x̂3|n⟩|2

E
(0)
n − E(0)

m

=
σ2ℏω
23

a6ho
∑

m ̸=n

|⟨m|(â†)3 + 3(â†)2â+ 3â† − 3â+ 3â2â† + â3|n⟩|2
n−m

=
σ2ℏ4

8m3ω2

∑

m̸=n

1

n−m
∣∣∣
√
(n+ 3)(n+ 2)(n+ 1)δm,n+3 +

√
n(n− 1)(n− 2)δm,n−3+

+3
√
n2(n+ 1)δm,n+1 +

√
n(n+ 1)2δm,n−1

∣∣∣
2

=
σ2ℏ4

8m3ω2

[
− 1

3 (n+ 3)(n+ 2)(n+ 1) + 1
3n(n− 1)(n− 2)− 3n2(n+ 1) + 3n(n+ 1)2

]

= − σ2ℏ4

4m3ω2
.
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27.1.3.8 Ex: Three-level system with degeneracy

Consider the following Hamiltonian Ĥ(0) and its perturbation Ĥ(1)

Ĥ(0) + Ĥ(1) =



∆ 0 0

0 ∆ 0

0 0 ∆′


+



0 Ω 0

Ω 0 Ω

0 Ω 0


 .

Calculate the corrections for the eigenvalues and eigenfunctions up to first order.

Solution: For the unperturbed system we have (E
(0)
n − Ĥ(0))|n, ν⟩ = 0, that is,

⟨1, 1|Ĥ(0))|1, 1⟩ = ⟨1, 2|Ĥ(0)|1, 2⟩ = ∆ and ⟨2|Ĥ(0)|2⟩ = ∆′ ,

where ν is the degenerate quantum number. Applying the non-degenerate TIPT, we

would get (E
(1)
n − Ĥ(1))|n, ν⟩ = 0,

⟨1, 1|Ĥ(1))|1, 1⟩ = ⟨1, 2|Ĥ(1)|1, 2⟩ = ⟨2|Ĥ(0)|2⟩ = 0 .

The first two eigenvalues are degenerate. To find the first-order corrections in this
subspace, we calculate,

0 = det
[
⟨n, ν|Ĥ(1))|n, µ⟩ − E(1)

nµ δµ,ν

]
= det

[(
0 Ω

Ω 0

)
−
(
E(1) 0

0 E(1)

)]
= (E(1))2−Ω2 .

That is, the corrections for the eigenvalues are E(1) = ±Ω. The corrections for the

eigenfunctions follow with
∑
n cµν [E

(1)
nµ ⟨n, µ|n, ν⟩ − ⟨n, µ|Ĥ(1))|n, ν⟩] = 0, that is,

c11[Ω− ⟨1|H(1)|1⟩] + c12[−⟨1|H(1)|2⟩] = c11Ω− c12Ω = 0

c21[−⟨2|H(1)|1⟩] + c22[−Ω− ⟨2|H(1)|2⟩] = −c21Ω− c22Ω = 0 .

Therefore, the normalized eigenfunctions are,

|ψ(0)
1 ⟩ = c11|1⟩+ c12|2⟩ = 1√

2



1

1

0


 and |ψ(0)

2 ⟩ = c21|1⟩+ c22|2⟩ = 1√
2




1

−1
0


 .
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27.1. STATIONARY PERTURBATIONS 1459

Finally we obtain the corrections for the eigenvalues ⟨ψ(0)
n,µ|H(1)|ψ(0)

n,µ⟩,

⟨ψ(0)
1 |Ĥ(1)|ψ(0)

1 ⟩ = 1
2



1

1

0




T 

0 Ω 0

Ω 0 Ω

0 Ω 0






1

1

0


 = Ω

⟨ψ(0)
2 |Ĥ(1)|ψ(0)

2 ⟩ =
1

2




1

−1
0




T 

0 Ω 0

Ω 0 Ω

0 Ω 0







1

−1
0


 = −Ω

⟨ψ(0)
3 |Ĥ(1)|ψ(0)

3 ⟩ =



0

0

1




T 

0 Ω 0

Ω 0 Ω

0 Ω 0






0

0

1


 = 0 .

Thus, the energies of the perturbed Hamiltonian are: E
(0)
1 +E

(1)
1 = ∆+Ω,∆−Ω,∆′.

Finally, the wavefunctions are up to first order,

|ψ(1)
1 ⟩ =

∑

m̸=1

|ψ(0)
1 ⟩
⟨ψ(0)
m |Ĥ(1)|ψ(0)

1 ⟩
E

(0)
1 − E(0)

m

= |ψ(0)
1 ⟩
⟨ψ(0)

2 |Ĥ(1)|ψ(0)
1 ⟩

E
(0)
1 − E(0)

2

+ |ψ(0)
1 ⟩
⟨ψ(0)

3 |Ĥ(1)|ψ(0)
1 ⟩

E
(0)
1 − E(0)

3

=
1

(∆ + Ω)− (∆− Ω)
1√
2



1

1

0


 1√

2




1

−1
0






0 Ω 0

Ω 0 Ω

0 Ω 0


 1√

2



1

1

0




+
1

(∆ + Ω)−∆′
1√
2



1

1

0






0

0

1






0 Ω 0

Ω 0 Ω

0 Ω 0


 1√

2



1

1

0


 =

Ω

2(∆−∆′ +Ω)



1

1

0




|ψ(1)
2 ⟩ = |ψ

(0)
2 ⟩
⟨ψ(0)

1 |Ĥ(1)|ψ(0)
2 ⟩

E
(0)
2 − E(0)

1

+ |ψ(0)
2 ⟩
⟨ψ(0)

3 |Ĥ(1)|ψ(0)
2 ⟩

E
(0)
2 − E(0)

3

=
−Ω

2(∆−∆′ − Ω)




1

−1
0




|ψ(1)
3 ⟩ = |ψ

(0)
3 ⟩
⟨ψ(0)

1 |Ĥ(1)|ψ(0)
3 ⟩

E
(0)
3 − E(0)

1

+ |ψ(0)
3 ⟩
⟨ψ(0)

2 |Ĥ(1)|ψ(0)
3 ⟩

E
(0)
3 − E(0)

2

=
−
√
2Ω2

(∆′ −∆)2 − Ω2



0

0

1


 .

Note that we can alternatively separate the Hamiltonian as follows,

Ĥ(0) + Ĥ(1) =



∆ Ω 0

Ω ∆ 0

0 0 ∆′


+



0 0 0

0 0 Ω

0 Ω 0


 .

the advantage being that, already without perturbation, the eigenvalues E
(0)
n are not

degenerate:

|1⟩ =



1

1

0


↔ E

(0)
1 = ∆+Ω , |2⟩ =




1

−1
0


↔ E

(0)
1 = ∆−Ω , |3⟩ =



0

0

1


↔ E

(0)
3 = ∆′ .
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In this case none of the first order corrections contributes: ⟨n|Ĥ(1)|n⟩ = 0.

27.1.3.9 Ex: Perturbation in a 3D well with degeneracy

Consider a particle confined to a three-dimensional, infinite cubic well described by
the potential energy V (x, y, z) = 0 for 0 < x < a, 0 < y < a and 0 < z < a and
V (x, y, z) =∞ outside this region. We know that the particle’s stationary states are

Ψ
(0)
nx,ny,nz (x, y, z) =

(
2
a

)3/2
sin
(
nxπ
a x

)
sin
(nyπ

a y
)
sin
(
nzπ
a z
)
, being nx, ny, nz positive

integers. The associated energies are E
(0)
nx,ny,nz = π2ℏ2

2ma2 (n
2
x + n2y + n2z). Note that the

ground state is not degenerate while the first excited state is three times degener-
ate. Consider that the particle in this box is subject to a perturbation of the shape
H(1) = V0 for 0 < x < a/2 and 0 < y < a/2 and H(1) = 0 outside this region.
a. Obtain the first-order correction for the ground state energy.
b. Obtain the first-order correction for the (degenerate) energy of the first excited
state, in addition to the optimal base (which follows from the linear combinations of
degenerate states) which most closely approximates the perturbed states.

Solution: a. The perturbation potential increases by V0 in a quarter of the box. The
ground state is not degenerate. Therefore, the first order correction for the ground
state is simply,

E
(1)
0 = ⟨111|H(1)|111⟩ =

(
2
a

)3
V0

∫ a/2

0

sin2 πxa dx

∫ a/2

0

sin2 πya dy

∫ a

0

sin2 πza dz =
V0

4 ,

such that the corrected value is,

E
(1)
0 = E

(1)
0 + V0

4 .

b. For the first excited state we need the complete degenerate TIPT machinery. We
start by constructing the matrix, Wµν = ⟨µ|H(1)|ν⟩, com µ, ν ∈ {(211), (121), (112)}.
We find,

W211,211 =W121,121 =W112,112 = V0

4

W121,112 =
(
2
a

)3
V0

∫ a/2

0

sin2 πxa dx

∫ a/2

0

sin πy
a sin 2πy

a dy

∫ a

0

sin 2πz
a sin πz

a dz = 0

W211,112 = 0 ,

because the integral in z vanishes.

W211,121 =
(
2
a

)3
V0

∫ a/2

0

sin πx
a sin 2πx

a dx

∫ a/2

0

sin πy
a sin 2πy

a dy

∫ a

0

sin πz
a dz =

16
9π2V0 .

Therefore,,

W = V0

4



1 0 0

0 1 (8/3π)2

0 (8/3π)2 1


 .
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The characteristic equation in W/V0 gives the eigenvalues

w1 = 1 , w2,3 = 1± (8/3π)2 .

In first-order the corrected value for the first excited state, therefore, is

E
(1)
1 = E

(0)
1 +

V0
4
wk .

That is, the perturbation removes the degeneracy to three distinct levels. If we had
applied non-degenerate TIPT, we would have concluded that the first-order correction
would be the same for all three states. The non-persturbed ’good’ states are linear
combinations of the form

|ψ(0)⟩ = α|112⟩+ β|211⟩+ γ|121⟩ .

where the coefficients form the eigenvectors of the matrix W ,

W |ψ(0)⟩ =



1 0 0

0 1 (8/3π)2

0 (8/3π)2 1






α

β

γ


 = w



α

β

γ


 = w|ψ(0)⟩ .

For w = 1, we obtain α = 1, β = γ = 0 and for w = 1 ± (8/3π)2 we obtain α = 0,
β = ±γ = 1/

√
2. Therefore the good states are,

|ψ0⟩ = |112⟩, 1√
2
(|211⟩ ± |121⟩) .

27.1.3.10 Ex: Vanishing perturbation orders

Show that it is impossible to design a perturbation Hamiltonian of the form,

Ĥ = Ĥ(0) + Ĥ(1) =



0 0 0

0 E2 0

0 0 E3


+




0 Ω12 Ω13

Ω∗12 0 Ω23

Ω∗13 Ω∗23 0




such that the first and second order corrections vanish.

Solution: The first order corrections E
(1)
n = ⟨n|Ĥ(1)|n⟩ obviously vanishes. For

the second order corrections to vanish,

0 = E(2)
n =

∑

m̸=n

⟨n|Ĥ(1)|m⟩⟨m|Ĥ(1)|n⟩
E

(0)
n − E(0)

m

,

we have to guarantee,

0 =
|Ω12|2
−E2

+
|Ω13|2
−E3

, 0 =
|Ω12|2
E2

+
|Ω23|2
E2 − E3

, 0 =
|Ω13|2
E3

+
|Ω23|2
E3 − E2

.
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Resolving the first equation by E3 and substituting into the third, we obtain,

E3 = −|Ω13|2
|Ω12|2

E2 , 0 = |Ω12|2 + |Ω13|2 + |Ω23|2 ,

which is impossible to satisfy.

27.2 Variational method

27.2.1 The Rayleigh fraction

Let us assume that we want to calculate the ground state energy Eg of a system

described by a Hamiltonian Ĥ, but we do not know the wavefunction, and we do
not know how to solve the Schrödinger equation. If at least we had a good idea of
the generic form of the solution (Gaussian, sinusoidal, ..), we could choose a trial
function with a free parameter and optimize this parameter minimizing the energy,
which ought to be minimal for the ground state. This is precisely the idea of the
variational method. Note that the variational method only works for the ground
state.

For any function ψ we know that the Rayleigh fraction E satisfies,

Eg ≤
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ ≡ E , (27.26)

not only when ψ is the wavefunction of an excited state, but even when it represents
a (imperfect) trial to the ground state. Assuming normalized wavefunctions we can
discard the denominator ⟨ψ|ψ⟩ = 1. To verify the theorem, we expand the function ψ
into orthonormal (unknown) eigenfunctions, |ψ⟩ =∑n cn|ψn⟩. Since ψ is normalized,

1 = ⟨ψ|ψ⟩ =
∑

m,n

⟨ψm|c∗mcn|ψn⟩ =
∑

n

|cn|2 . (27.27)

In the same way,

⟨ψ|Ĥ|ψ⟩ =
∑

m,n

⟨ψm|c∗mĤcn|ψn⟩ =
∑

n

En|cn|2 . (27.28)

As the ground state is that of the lowest energy, Eg ≤ En, we have demonstrated the
relationship (27.26)

Eg = Eg
∑

n

|cn|2 ≤
∑

n

En|cn|2 = ⟨Ĥ⟩ . (27.29)

In practice, the ansatz ψα for the ground state allows us to calculate an energy
that must be minimized via

∂⟨ψα|Ĥα|ψα⟩
∂α

= 0 . (27.30)

In the Excs. 27.2.3.1 and 27.2.3.2 we will approach the fundamental state of a
quartic potential and a harmonic oscillator, respectively, by trying several trial wave-
functions and optimizing their free parameters.
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27.2.2 Rayleigh-Ritz method

A modification of the variational method is the Rayleigh-Ritz method. Here, instead
of using a trial function, we use a linear combination of eigenfunctions with variable
coefficients: |ψ⟩ = ∑

k ck|k⟩. These variables are then optimized to minimize the
Rayleigh fraction,

Eg ≤
∑
k,m c

∗
kcm⟨k|Ĥ|m⟩∑

k,m c
∗
kcm⟨k|m⟩

= E , (27.31)

where we assume real coefficients and eigenfunctions. For this, the derivatives with
respect to all coefficients must vanish:

0 ≡ ∂E
∂cq

=

∑
k,m

∂
∂cq

c∗kcm⟨k|Ĥ|m⟩∑
k,m c

∗
kcm⟨k|m⟩

−
∑
k,m c

∗
kcm⟨k|Ĥ|m⟩

∑
k,m

∂
∂cq

c∗kcm⟨k|m⟩
(∑

k,m c
∗
kcm⟨k|m⟩

)2

=

∑
k,m c

∗
kδqm⟨k|Ĥ|m⟩∑

k,m c
∗
kcmδkm

− E
∑
k,m c

∗
kδqmδkm∑

k,m c
∗
kcmδkm

=
∑

k

c∗k⟨k|Ĥ|q⟩ − Ec∗q , (27.32)

using the definition of E (27.31). For the expression ∂E/∂c∗q we get analogous results.
Hence,

0 =
∑

m

cm(⟨q|Ĥ|m⟩ − E⟨q|m⟩) . (27.33)

The condition for the existence of solutions is that the secular determinant disappears,

0 = det(⟨q|Ĥ|m⟩ − E⟨q|m⟩) . (27.34)

The solution of this equation leads to a set of values E , and the lowest value, Emin,
is the best approximation for the ground state energy. The coefficients of the wave-
function are obtained by solving the eigenvalue equation (27.33) with Emin.

In Exc. 27.2.3.3 we derive the regression formulas for a linear least squares fit from
a Rayleigh-Ritz variational. In Exc. 27.2.3.4 we will use the Rayleigh-Ritz method to
estimate the effect of a finite nuclear mass of the hydrogen atom on the energy levels.
In Exc. 27.2.3.5 we will use the Rayleigh-Ritz method to find the maximum number
of atoms allowing for a stable Bose-Einstein condensate made of atoms subject to an
attractive interatomic force.

27.2.3 Exercises

27.2.3.1 Ex: Variational method applied to a quartic potential

Determine the ground state energy of the quartic potential V (x) = bx4 making the

variational ansatz ψα(x) = (α/π)1/4e−αx
2/2. Formulae:

∫ ∞

−∞
e−x

2

dx =
√
π ,

∫ ∞

−∞
x2e−x

2

dx = 1
2

√
π ,

∫ ∞

−∞
x4e−x

2

dx = 3
4

√
π
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Solution: The ansatz is already normalized, since

⟨ψα|ψα⟩ =
√
α

π

∫ ∞

−∞
e−αx

2

dx = 1 .

The energy follows from,

⟨ψα|Ĥ|ψα⟩ =
√
α

π

∫ ∞

−∞
e−αx

2/2

(
− ℏ2

2m

d2

dx2
+ bx4

)
e−αx

2/2dx

= − ℏ2

2m

√
α

π

∫ ∞

−∞
(−α+ α2x2)e−αx

2

dx+ b

√
α

π

∫ ∞

−∞
x4e−αx

2

dx =
ℏ2α
4m

+
3b

4α2
.

The energy is minimal when,

0 =
d⟨ψα|Ĥ|ψα⟩

dα
=

d

dα

(
ℏ2α
4m

+
3b

4α2

)
=

1

4

ℏ2α3 − 6bm

mα3
.

Hence, α =
(
6bm
ℏ2

)1/3
and,

⟨ψα|Ĥ|ψα⟩ =
3

4

(
3bℏ2

4m2

)1/3

.

27.2.3.2 Ex: Variational method applied to the harmonic oscillator

Obtain, through the variational method, the ground state energy of the one-dimensional

harmonic oscillator described by the Hamiltonian Ĥ = − ℏ2

2m
d2

dx2 + 1
2mω

2x2, and the
corresponding wavefunction from the test functions
a. ψ(x) = Ae−αx

2

being α a constant;
b. ψ(x) = A/(x2 + β2) being β a constant;
c. ψ(x) = A cos(πx/a) between the limits ±a/2 being a a constant.

Solution: a. Normalization requires

1 = |A|2
∫ ∞

−∞
e−2αx

2

dxA = |A|2
√

π

2α
.

Now,

⟨Ĥ⟩ = − ℏ2

2m
|A|2

∫ ∞

−∞
e−αx

2 d2

dx2
e−αx

2

dx+
m

2
ω2|A|2

∫ ∞

−∞
e−αx

2

x2e−αx
2

dx

= − ℏ2

2m

√
2α

π

∫ ∞

−∞
2αe−2αx

2 (−1 + 2αx2
)
dx+

m

2
ω2

√
2α

π

∫ ∞

−∞
e−2αx

2

x2dx

=
ℏ2

2m

√
2α

π
(2α)1/2

∫ ∞

−∞
e−x

2

dx+

(
− ℏ2

2m

√
2α

π
(2α)2 +

m

2
ω2

√
2α

π

)
1

(2α)3/2

∫ ∞

−∞
e−x

2

x2dx

=
ℏ2

2m

√
2α

π
(2α)1/2

√
π +

(
− ℏ2

2m

√
2α

π
(2α)2 +

m

2
ω2

√
2α

π

)
1

(2α)3/2
1

2

√
π =

ℏ2α
2m

+
mω2

8α
.
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Now we vary Ĥ by α,

0 =
d

dα
⟨Ĥ⟩ = d

dα

(
ℏ2α
2m

+
mω2

8α

)
=

ℏ2

2m
− mω2

8α2
,

and we estimate ⟨Ĥ⟩ at the position of the minimum, α = mω
2ℏ ,

⟨Ĥ⟩ = ℏω
2

.

b. Normalization requires

1 = |A|2
∫ ∞

−∞

1

(x2 + β2)2
dx = |A|2

[
1

2

x

β2(x2 + β2)
+

1

2β3
arctan

x

β

]∞

−∞
=

π

2β3
.

With this

⟨Ĥ⟩ = − ℏ2

2m
|A|2

∫ ∞

−∞

1

x2 + β2

d2

dx2
1

x2 + β2
dx+

m

2
ω2|A|2

∫ ∞

−∞

1

x2 + β2
x2

1

x2 + β2
dx

= − ℏ2

2m

2β3

π

∫ ∞

−∞

6x2 − 2β2

(x2 + β2)4
dx+

m

2
ω2 2β

3

π

∫ ∞

−∞

x2

(x2 + β2)2
dx

= − ℏ2

2m

2β3

π

[
−4

3

x

(x2 + β2)3
− 1

6

x

β2(x2 + β2)2
− 1

4β4

x

x2 + β2
− 1

4β5
arctan

x

β

]∞

−∞

+
m

2
ω2 2β

3

π

[
−1

2

x

x2 + β2
+

1

2β
arctan

x

β

]∞

−∞

=
ℏ2

2m

2β3

π

π

4β5
+
m

2
ω2 2β

3

π

π

2β
=

ℏ2

m4β2
+
m

2
ω2β2 .

Now we vary Ĥ by β,

0 =
d

dβ
⟨Ĥ⟩ = d

dβ

(
ℏ2

m4β2
+
m

2
ω2β2

)
= −1

2

ℏ2 − 2m2ω2β4

mβ3
,

and we estimate ⟨Ĥ⟩ at the position of the minimum, β2 = ℏ√
2mω

,

⟨Ĥ⟩ = ℏω√
2
.

This estimate is
√
2 times larger than the estimate using a Gaussian trial function,

which indicates that the Gaussian ansatz be closer to the exact wavefunction than the
Lorentzian.
c. Normalization requires

1 = |A|2
∫ a/2

−a/2
cos

πx

a
cos

πx

a
dx = |A|2 a

2
.
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With this

⟨Ĥ⟩ = − ℏ2

2m
|A|2

∫ a/2

−a/2
cos

πx

a

d2

dx2
cos

πx

a
dx+

m

2
ω2|A|2

∫ a/2

−a/2
x2 cos2

πx

a
dx

=

√
2

a

2(
ℏ2

2m

π2

a2

∫ a/2

−a/2
cos2

πx

a
dx+

m

2
ω2

∫ a/2

−a/2
x2 cos2

πx

a
dx

)

=
2

a

(
ℏ2

2m

π2

a2
a

2
+
m

2
ω2 a

3

24

π2 − 6

π2

)
=

ℏ2

2m

π2

a2
+
m

2
ω2 a

2

12

π2 − 6

π2
.

Now we vary Ĥ by a,

0 =
d⟨Ĥ⟩
da

=
d

da

(
ℏ2

2m

π2

a2
+
m

2
ω2 a

2

12

π2 − 6

π2

)
=

1

12

−12ℏ2π4 +m2ω2a4π2 − 6m2ω2a4

ma3π2
,

and we estimate ⟨Ĥ⟩ at the position of the minimum, a4 = a4ho
12π4

π2−6 ,

⟨Ĥ⟩ = ℏω
2

√
π2 − 6

3
.

This estimate is
√
(π2 − 6)/3 ≈ 1.14 times larger than the estimate using a Gaussian

trial function, which indicates that the Gaussian ansatz be closer to the exact wave-
function than the cosine.

27.2.3.3 Ex: Linear least squares

Use the Raleigh-Ritz method to derive the regression coefficients for a linear fit
f(xk) = axk + b to a set of data points (xk, yk).

Solution: The sum of the squared deviations is,

χ =

N∑

k=1

[f(xk)− yk]2 =

N∑

k=1

[axk + b− yk]2 .

Its minimum with respect to b is given by,

0 =
∂χ

∂b
=
∑

k

2(axk + b− yk) .

Hence,

b =
1

N

∑

k

yk −
a

N

∑

k

xk = ȳ − ax̄ .

Its minimum with respect to a is now given by,

0 =
∂χ

∂a
=
∑

k

∂

∂a
(axk + b− yk)2 =

∑

k

2(axk − ax̄− yk + ȳ)(xk − x̄) .
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Hence,

a =

∑
k(xk − x̄)(yk − ȳ)∑
k(xk − x̄)(xk − x̄)

=

∑
k(xk − x̄)yk∑
k(xk − x̄)2

.

27.2.3.4 Ex: Effect of finite nuclear mass on hydrogen via Rayleigh-Ritz

Use the Rayleigh-Ritz method to estimate the impact of the finite mass of the nucleus
of the hydrogen atom. To do this, calculate the ground state energy using the exact
Hamiltonian, but a basis of wavefunctions assuming an infinitely heavy nucleus. Only
take into account the states ψ100 and ψ200. Help: Express the exact Hamiltonian
in terms of the infinite-mass Hamiltonian approximating for small corrections of the
reduced mass: m ≡ me/(1 + γ) ≃ (1− γ)me, where γ ≡ me/mp.

Solution: The exact radial Hamiltonian follows from the transformation to the center-
of-mass system,

Ĥm = − ℏ2

2m

d2

dr2
− e2

4πϵ0r
,

where m = (1/me+1/mp)
−1 = me/(1+γ) ≃ (1−γ)me, where γ ≡ me/mp. However,

when we solve the Schrödinger equation for the hydrogen atom, we use the approximate
Hamiltonian Ĥme

substituting m by me. We can rewrite the exact Hamiltonian in
terms of the approximate one:

Ĥm = (1 + γ)Ĥme
+ γ

e2

4πε0r
.

The functions of the 1s and 2s orbitals were derived for the approximate Hamiltonian,

ψ100 =
√

1
πa3B

e−r/aB and ψ200 =
√

1
32πa3B

(
2− r

aB
e−r/2aB

)
,

where aB = 4πϵ0ℏ2

mee2
. That is, the Bohr radius is calculated with the real mass of the

electron and not the reduced mass,

⟨2|Ĥm|1⟩ = (1 + γ)En + γ
e2

4πε0
⟨2| 1r |1⟩ = (1 + γ)En + γ

e2

4πε0
4π

∫
ψ∗200rψ100d

3r =
16E1

27
√
2
γ .

The other elements of the matrix are,

⟨k|m⟩ = δk,m and ⟨1|Ĥm|2⟩ = ⟨2|Ĥm|1⟩ =
16γ

27
√
2
E1

⟨1|Ĥm|1⟩ = (1− γ)E1

12
and ⟨2|Ĥm|2⟩ = (1− γ)E1

22
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_VariacionalHidrogenio.pdf
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with E1 = − mee
4

32π2ϵ20ℏ2 = − ℏ2

2mea2B
and En = E1

n2 . Now,

0 = det(⟨k|Ĥm|m⟩ − E⟨k|m⟩) =
∣∣∣∣∣
⟨1|Ĥm|1⟩ − E ⟨1|Ĥm|2⟩
⟨2|Ĥm|1⟩ ⟨1|Ĥm|1⟩ − E

∣∣∣∣∣

=

∣∣∣∣∣
(1− γ)E1 − E 16

27
√
2
γE1

16
27
√
2
γE1 (1− γ) 14E1 − E

∣∣∣∣∣

=
1

4
E2

1 −
1

2
E2

1γ −
5

4
E1E +

1

4
E2

1γ
2 +

5

4
E1γE + E2 −

27

36
γ2E2

1 ,

with the solutions,

E = E1

(
5

8
(1− γ)± 3

8

√
(1− γ)2 + 213

38
γ2

)
= − ℏ2

2maB2

{
0.999 46

0.249 95
.

The solution with the lower energy is obtained for the + sign, because E1 is negative.
Hence, expanding this solution,

E ≃ E1

(
1− γ +

1

2

213

38
γ2 + ...

)
.

With the proton nucleus, the lowest energy E is just a bit above the energy E1 of the
infinitely heavy nucleus. The coefficients follow from,

c21 + c22 = 1 and c1(⟨1|Ĥm|1⟩ − E) + c2⟨2|Ĥm|1⟩ = 0

and c1⟨1|Ĥm|2⟩+ c2(⟨2|Ĥm|2⟩ − E) = 0 .

We find the solutions c1 = 1.000 00 and c2 = −0.000 54 ≃ −γ. The 2s orbital mixes
a little into the 1s and reduces its amplitude near the nucleus because of the finite
mass.

27.2.3.5 Ex: Collapse of a condensate with attractive interactions

A Bose-Einstein condensate of 7Li may become unstable due to attractive interatomic
force, the scattering length being as = −27.3aB . Consider the radial Gross-Pitaevskii
Hamiltonian derived in Exc. 25.1.5.2 with an external harmonic potential with the
oscillation frequency ωtrp/(2π) = 50 Hz. Using the variational method to determine
the maximum number of atoms allowing for a stable condensate. (Note that the de-
rived minimization condition must be evaluated numerically.)

Solution: We want to minimize the radial Gross-Pitaevskii Hamiltonian,

Ĥα = − ℏ2

2m

d2

dr2
+
m

2
ω2r2 +

g|ϕα(r)|2
r2

,

with ψα(r) =
ϕα(r)
r and g = N 4πℏ2as

m doing the ansatz ψα(r) = Ae−αr
2

. Normaliza-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_CondensadoColabindo.pdf
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Figure 27.2: (code) Chemical potential as a function of the size of the BEC for various

atom numbers between 1000 and 2000 calculated using the variational method (left) and by

numerical integration (right).

tion requests,

1 = ⟨ψα|ψα⟩ = 4π

∫ ∞

0

|ψα(r)|2r2dr = 4π

∫ ∞

0

|ϕα(r)|2dr

= 4π

∫ ∞

0

A2e−2αr
2

r2dr = A2

√
π

2α

3

.

Hence, A2 =
√

2α/π
3
. The ground state energy is now,

µα = ⟨ϕα|Ĥα|ϕα⟩ = 4π

∫ ∞
0

ϕα(r)Ĥαϕα(r)dr

= 4πA2

∫ ∞
0

re−αr
2
[
− ℏ2

2m
(−6α+ 4r2α2) + m

2
ω2r2 + gA2e−2αr2

]
re−αr

2

dr

= 4πA2

α
√
α

6ℏ2α
2m

∫ ∞
0

ζ2e−2ζ2dζ + 4πA2

α2
√
α

(
− 4ℏ2α2

2m
+ mω2

2

)∫ ∞
0

ζ4e−2ζ2dζ + 4πA2

α
√
α
gA2

∫ ∞
0

ζ2e−4ζ2dζ

= 4πA2

α
√
α

6ℏ2α
2m

1
8

√
π
2
+ 4πA2

α2
√
α

(
− 4ℏ2α2

2m
+ mω2

2

)
3
32

√
π
2
+ 4πA2

α
√
α
gA2

√
π

32
= 3ℏ2α

2m
+ mω2

2α
+ g

(
α
π

)3/2
.

Minimizing [262],

0 =
∂µα
∂α

=
∂

∂α

[
3ℏ2α
2m

+
mω2

2α
+ g

(α
π

)3/2]
=

3ℏ2α2 −m2ω2 + 3π−3/2gα
5
2m

2mα2

we obtain

0 = 3ℏ2α2 −m2ω2 + 3π−3/2gα
5
2m .

This equation must be evaluated numerically. The challenge is to find the number of
atoms for which µα has no local minimum. Instead of doing this, here we simply trace
some curves for various atom numbers. The figure above shows the chemical potential
as a function of the size of the condensate σ = α−1/2 for atom numbers between 1000
(lower curve) and 2000 (upper curve).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_CollapseLithium.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_CollapseLithium.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_CollapseLithium.m
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27.3 WKB approximation

The WKB approximation (from Wentzel-Kramers-Brillouin) [197, 751, 1370] is a
method to find approximate solutions for linear differential equations with spatially
variable coefficients. It is typically used for calculations in quantum mechanics where
the wavefunction is reformulated as an exponential semi-classically expanded func-
tion, and then the amplitude or phase is slowly changed. In the following, we present
the WKB approximation applied to the Schrödinger equation and exemplify it in
some canonical systems.

27.3.1 WKB approximation applied to the Schrödinger equa-
tion

Starting from the time-independent Schrödinger equation,

− ℏ2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) , (27.35)

and rewrite it as follows,
d2ψ

dx2
= k(x)ψ(x) . (27.36)

with k(x) =
√
2m[E − V (x)]/ℏ2. For now, we will restrict ourselves to energies

E > V (x). In this scheme, the wavefunctions are usually complex functions, so that
we can write them in polar coordinates, containing an amplitude A(x) and a phase
ϕ(x), which are both real numbers:

ψ(x) = A(x)eıϕ(x) . (27.37)

Substituting this function into the Schrödinger equation we obtain a system of coupled
equations in terms of A(x) and ϕ(x),

A′′ = A
[
(ϕ′)2 − k2

]
and (A2ϕ′)′ = 0 . (27.38)

The equations (27.39) and (27.37) are completely equivalent to the Schrödinger equa-
tion. The second Eq. (27.38) is easy to solve,

A =
C√
ϕ′

, (27.39)

being C a real constant. We can not say the same thing about the solution of the first
Eq. (27.38). In order to solve it we are going to use the WKB approach, assuming
that A varies slowly, so the term A′′ → 0. By doing this approximation we can rewrite
Eq. (27.39) in this way:

(ϕ′)2 = k2 . (27.40)

Solving this last expression we obtain two linearly independent solutions, ϕ′ = ±k.
So we get the expression for the phase:

ϕ(x) = ±
∫
k(x)dx . (27.41)
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We write this indefinite integral, because the constant term can be absorbed by the
constant C. Finally, we obtain the expression for the wavefunction in the WKB
approximation:

ψ(x) =
C√
|k(x)|

e±
∫
|k(x)|dx . (27.42)

Here, taking the absolute value of the wavevector, we have already generalized for the
case that the energy E of the particle is lower than the potential V (x) (classically
forbidden region).

Example 171 (WKB approximation): The WKB approach is a semiclassical
method for the solution of the Schrödinger equation that does not require the
potential to be a perturbation of a soluble problem. Instead, it only assumes
that certain classical quantities having the dimension of an action (energy per
time) are much larger than Planck’s constant. Inserting the ansatz

ψ(x) = AeıS(x)/ℏ ,

into the one-dimensional time-independent Schrödinger equation, we find,

− iℏ
2m
S′′(x) + 1

2m
S′(x)2 + V (x)− E = 0 .

Now we expand the exponent in orders of ℏ,

S(x) = S0(x) + ℏS1(x) +
ℏ2
2
S2(x) + ... ,

and insert it in the above equation. Collecting the orders in ℏ, we find in the
first orders, [

1
2m
S′0(x)

2 + V (x)− E
]
ℏ0 = 0[

− ıℏ
2m
S′′0 (x) +

1
m
S′0(x)S

′
1(x)

]
ℏ1 = 0[

1
2m
S′1(x)

2 − ı
2m
S′′1 (x)

]
ℏ2 = 0 .

The solution of the zeroth order equation, S0(x) = ±
∫ x√

2m[E − V (x′)dx′,
gives

ψ(x) = Ae±
ı
ℏ
∫ x
√

2m[E−V (x′)dx′ .

The WKB approximation can be used to describe continuous potentials (or barri-
ers) by stepwise constant potentials. The transmission |T |2 through these parts can
be obtained by multiplying the individual tunneling probabilities,

ln |T |2 ≃ −2
∫

barrier

κ(x)dx ,

with κ(x) = 1
ℏ
√
2m[V (x)− E].
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Figure 27.3: (a) Potential for which we want to obtain the connection formula. (b) Turning
point.

27.3.2 Connection formulas

Now let us derive the connection formulas that interconnect solutions with E above
and below V (x) at the turning points, precisely those regions where WKB fails. We
will apply the derivation to a generic confining potential shown in Fig. 27.3.

Let us start with the right turning point Fig. 27.3(a)]. First, we shift the coordinate
system so that the turning point coincides with zero, as shown in Fig. 27.3(b). As
seen above, the WKB solutions will be given by the following equations:

ψ(x) ≈





1√
k(x)

[
Beı

∫ 0
x
k(x′)dx′

+ Ce−ı
∫ 0
x
k(x′)dx′

]
if x ≤ 0

1√
k(x)

De−
∫ x
0
|k(x′)|dx′

if x ≥ 0
. (27.43)

In the vicinity of the turning point we approximate the potential by a straight line
(Taylor series expansion up to first order) with the following functional dependence,

V (x) ≈ E + V ′(0)x . (27.44)

The Schrödinger equation for this potential acquires the following format,

d2ψt
dx2

= α3xψt , (27.45)

with α = [ 2mℏ2 V
′(0)]1/3. Through a change of variables, z = αx, we fall back on Airy’s

equation,
d2ψt
dz2

= zψt , (27.46)

having as solution a linear combination of the two solutions of the Airy equation,

ψt(x) = aAi(αx) + bBi(αx) . (27.47)

Now let’s have a look at the WKB solutions in the two regions in the vicinity of
the turning point. In the classically forbidden region we have k(x) = α3/2

√−x, thus
being

∫ x
0
|k(x′)|dx′ = 2

3 (αx)
3/2. Thus, the WKB solution in the classically forbidden

region near the turning point will be given by:

ψ(x) ≈ D√
ℏα3/4x1/4

e−
2
3 (αx)

3/2

. (27.48)
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Using the asymptotic forms of Airy functions in the solution (27.47) we obtain the
following expression for ψt(x),

ψp(x) ≈
a

2
√
π(αx)1/4

e−
2
3 (αx)

3/2

+
b√

π(αx)1/4
e

2
3 (αx)

3/2

, (27.49)

which when compared to equation (27.48) shows us that a =
√

4π
αℏD and b = 0.

Repeating the previous steps in the negative region we see that the WKB solution in
the asymptotic forms of the Airy solutions for approximately linear potentials takes
the following format (with b = 0):

ψ(x) ≈ 1√
ℏα3/4(−x)1/4

[
Beı

2
3 (−αx)3/2 + Ce−ı

2
3 (−αx)3/2

]
, (27.50)

and

ψp(x) ≈
a√

π(−αx)1/4
1

2ı

[
eıπ/4eı

2
3 (−αx)3/2 − e−ıπ/4e−ı 23 (−αx)3/2

]
. (27.51)

When compared, a
2ı
√
π
eıπ/4 = B√

ℏα and − a
2ı
√
π
e−ıπ/4 = C√

ℏα . Having all this infor-

mation we can rewrite the WKB solutions for all positions in the potential, including
the turning points 5:

ψ(x) ≈





2D√
k(x)

sin
[ ∫ x2

x
k(x′)dx′ + π

4

]
, if x ≤ x2

D√
k(x)

e
−
∫ x
x2
|k(x′)|dx′

, if x ≥ x2
. (27.52)

Repeating the process for a decreasing turning point [left turning point of the
potential of Fig. 27.3(a)], we obtain the following expression:

ψ(x) ≈





D′√
k(x)

e−
∫ x1
x
|k(x′)|dx′

, if x ≤ x1
2D′√
k(x)

sin
[ ∫ x

x1
k(x′)dx′ + π

4

]
, if x ≥ x1

. (27.53)

Example 172 (Harmonic oscillator): Now we apply the WKB method to a
well-known system: the harmonic oscillator. We will calculate its energy levels
and the respective eigenfunctions.
Eigenenergies: First, note that for a confining potential, and more specifically
in the region where E ≥ V (x), we have the solutions obtained for the left and
right turning point, these two solutions must match each other, that is,

2D√
k(x)

sin
[ ∫ x2

x

k(x′)dx′ +
π

4

]
≃ 2D′√

k(x)
sin
[ ∫ x

x1

k(x′)dx′ +
π

4

]
,

and hence the zeros of these functions, so the arguments of those sines must be
equal (except for a multiple of π),∫ x2

x

kdx′ +
π

4
= −

∫ x1

x1

kdx′ − π

4
+ nπ (27.54)(∫ x

x1

+

∫ x2

x

)
kdx′ =

(
n− 1

2

)
π∫ x2

x1

kdx′ =
(
n− 1

2

)
π ,

5Note that we shifted the turning point to an arbitrary position x2.
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with n = 1, 2... 6. With this information we take a harmonic potential of the type
V (x) = 1

2
κx2. In this case, the turning points for a given energy E will be at

−
√

2E
κ

and
√

2E
κ
. For this potential we will have that k(x) =

√
2m
ℏ2 (E − 1

2
κx2).

Calculating the integral of k(x) between these two turning points we get,∫ x2

x1

k(x)dx = 2m
ℏ

∫ √2E/k

−
√

2E/k

√
E − 1

2
κx2dx = πE

m

κ
=
(
n− 1

2

)
πℏ ,

isolating E and taking ω =
√
κ/m we have,

E = (n− 1
2
)ℏω ,

with n = 1, 2..., the exact spectrum of the harmonic oscillator, but this is just a

coincidence.

Eigenstates: Now we will calculate the eigenstates of the harmonic oscil-

lator. The eigenfunctions were calculated on a computer. The first graph

(Fig. 27.4) compares the first exact excited state with that obtained using the

WKB method.

Figure 27.4: First excited state calculated accurately and through the WKB approximation.

Note that the WKB approach is very good when x → 0 and x → ∞, regions

where the difference between the oscillator energy and the potential are large

(E ≫ V (x → 0) and E ≪ V (x → ∞)), because in these regions the wave-

length λ(x) acquires the lowest values, since it is proportional to |1/
√
E − V (x)|.

Hence, the spatial region in which the potential needs to be practically constant

is smaller, which explains why the approximation is closer to the exact solu-

tion. In the intermediate regions the difference between E and V (x) begins to

decrease, and the WKB approximation delivers its worst results.

As we increase the energy of the harmonic oscillator, the approximation be-

comes better (for the same reason as discussed in the previous paragraph). The

following graph illustrates this effect for n = 10.

Example 173 (Hydrogen atom): Eigenenergies: For the hydrogen atom
the effective potential is given by,

V (x) = − e2

4πϵ0

1

r
+

ℏ2

2m

l(l + 1)

r2
.

6Note that n ̸= 0, because the integral (27.54) has to be greater than zero.
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Figure 27.5: Wavefunction of the vibrational state n = 10 calculated exactly and using the
WKB approximation.

Note that the WKB method for this case obeys the relation (27.54), hence we
get, ∫ r2

r1

p(r)dr =
√
2m

∫ r2

r1

√
E +

e2

4πϵ0

1

r
− ℏ2

2m

l(l + 1)

r2
dr

=
√
−2mE

∫ r2

r1

1

r

√
−r2 − e2

4πϵ0E
r +

ℏ2
2mE

l(l + 1)dr .

Notice that E < 0. Let us make the following substitution to facilitate algebraic
manipulations,

B = − e2

4πϵ0E
and C = − ℏ2

2mE
l(l + 1) .

The turning points r1 and r2 are given by the following expressions,

r1 =
B −

√
B2 − 4C

2
and r2 =

B +
√
B2 − 4C

2
.

Thus, returning to the integral we will have the following:∫ r2

r1

p(r)dr =
√
−2mE

∫ r2

r1

1

r

√
(r − r1)(r2 − r)dr =

√
−2mEπ

2
(
√
r2 −

√
r1)

2

=
√
−2mEπ

2
(r1 + r2 − 2r1r2) =

√
−2mEπ

2
(B − 2

√
C)

=
π

2

(
− e2

√
2m

4πϵ0
√
−E
− 2ℏ

√
l(l + 1)

)
=
(
n− 1

2

)
πℏ .

Isolating E we obtain the energy spectrum of the hydrogen atom in the WKB
approximation:

E = −m
2ℏ

( e2

4πϵ0

)2 1[
n− 1/2 + l(l + 1)

]2 = − 13.6[
n− 1/2 + l(l + 1)

]2 eV .

For high energies (n≫ l), we recover Bohr’s expression.
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27.3.3 Exercises

27.3.3.1 Ex: Energy levels of hydrogen via WKB

Use the WKB approach to calculate the energy levels of the hydrogen atom.

Solution:

27.4 Time-dependent perturbations

Temporal perturbations typically occur when we suddenly switch on an external field
that influences the motion or spin of the particles, or when the field varies over time,
for example, an electromagnetic field. Let us first study a two-level system subject to
a temporal perturbation.

27.4.1 Two-level systems

We write the perturbation as

Ĥ = Ĥ(0) + Ĥ(1)(t) . (27.55)

As in the case of a stationary perturbation, we write the eigenenergies and -functions
of the unperturbed system as

Ĥ(0)|n⟩ = En|n⟩ . (27.56)

Recalling that this stationary Schrödinger equation was obtained from the time-
dependent Schrödinger equation via a separation ansatz (23.59), the temporal evolu-
tion of these eigenfunctions is given by,

|ψ(0)
n (t)⟩ = |n⟩e−ıEnt/ℏ . (27.57)

For small perturbations we can expect that the ansatz,

|ψ(1)(t)⟩ = a1(t)|ψ(0)
1 (t)⟩+ a2(t)|ψ(0)

2 (t)⟩ , (27.58)

be good. Note that not only do eigenfunctions oscillate, but the coefficients also
depend on time, because the composition of the states can change. The instantaneous
probability of finding the system in state n is |an(t)|2. Importing the above linear
combination into the Schrödinger equation,

[
Ĥ(0) + Ĥ(1)(t)

]
|ψ(1)(t)⟩ = ıℏ

∂

∂t
|ψ(1)(t)⟩ , (27.59)

we find,

a1Ĥ
(0)|ψ(0)

1 ⟩+ a2Ĥ
(0)|ψ(0)

2 ⟩+ a1Ĥ
(1)|ψ(0)

1 ⟩+ a2Ĥ
(1)|ψ(0)

2 ⟩

= ıℏ

[
∂a1
∂t
|ψ(0)

1 ⟩+
∂a2
∂t
|ψ(0)

2 ⟩+ a1
∂|ψ(0)

1 ⟩
∂t

+ a2
∂|ψ(0)

2 ⟩
∂t

]
(27.60)

=⇒ a1Ĥ
(1)|ψ(0)

1 ⟩+ a2Ĥ
(1)|ψ(0)

2 ⟩ = ıℏȧ1|ψ(0)
1 ⟩+ ıℏȧ2|ψ(0)

2 ⟩ ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_.pdf
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because the other terms satisfy the Schrödinger equation of zero order. Replacing the
stationary eigenfunctions,

a1e
−ıE1t/ℏĤ(1)|1⟩+ a2e

−ıE2t/ℏĤ(1)|2⟩ = ıℏȧ1e−ıE1t/ℏ|1⟩+ ıℏȧ2e−ıE2t/ℏ|2⟩ , (27.61)

and multiplying this equation with ⟨1|× and ⟨2|×, we find with the abbreviation
ℏω0 ≡ E2 − E1,

ıℏȧ1 = a1⟨1|Ĥ(1)|1⟩+ a2e
−ıω0t⟨1|Ĥ(1)|2⟩ (27.62)

and ıℏȧ2 = a1e
ıω0t⟨2|Ĥ(1)|1⟩+ a2⟨2|Ĥ(1)|2⟩ .

Frequently, the perturbation induces only a coupling, but does not directly influence
the energies very much, ⟨n|Ĥ(1)|n⟩ ≃ 0,

ȧ1 = a2
e−ıω0t

ıℏ
⟨1|Ĥ(1)|2⟩ and ȧ2 = a1

eıω0t

ıℏ
⟨2|Ĥ(1)|1⟩ . (27.63)

Without perturbation, ⟨m|Ĥ(1)|n⟩ = 0, no dynamics develops; the eigenfunctions
evolve independently.

27.4.2 The time-dependent perturbation method

Now, let us turn our attention to systems with many levels.
In time-dependent perturbation theory (TDPT) we separate the Hamiltonian into

a stationary part and a time-dependent part 7,8,

Ĥ(t) = Ĥ(0) + λĤ(1)(t) . (27.64)

As usual, this Hamiltonian satisfies the Schrödinger equation,

ıℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ . (27.65)

Now, we do a unitary transformation into the interaction picture with S(t) = e−ıĤ
(0)t/ℏ

substituting |ψ(t)⟩ ≡ S(t)|ψI(t)⟩ and Ĥ(1)(t) ≡ S(t)Ŵ (t)S−1(t) in the Schrödinger
equation. This procedure removes the stationary part, as shown in Sec. 23.4.4,

ıℏ
∂

∂t
|ψI(t)⟩ = λŴ (t)|ψI(t)⟩ . (27.66)

If Ŵ (t) is also independent of time, the solution simply is |ψI(t)⟩ = e−ıŴ t/ℏ|ψI(0)⟩.
Otherwise, we integrate the equation,

|ψI(t)⟩ = |ψI(0)⟩+
λ

ıℏ

∫ t

0

Ŵ (τ)|ψI(τ)⟩dτ . (27.67)

7See Becker-Sauter II, p.118ff and [1298], p.104ff. An alternative treatment is found in [816],
p.191ff or in Blochinzew, p.332ff.

8Note that by substituting Ŵ by Ĥ(1), the equation (27.66), ıℏ∂t|ψI(t)⟩ = Ĥ(1)(t)|ψI(t)⟩, cor-
responds to a first-order perturbative approximation, i.e., the perturbation eigenvalues Ĥ(1) are
calculated with the eigenvectors of the unperturbed system. Thus, in first order TDPT we can
substitute Ŵ for Ĥ(1).



1478 CHAPTER 27. APPROXIMATION METHODS

Substituting |ψI(τ)⟩ by |ψI(t)⟩ we iterate this equation,

|ψI(t)⟩ = |ψI(0)⟩+ λ

ıℏ

∫ t

0

Ŵ (τ1)

(
|ψI(0)⟩+ λ

ıℏ

∫ τ1

0

Ŵ (τ2)|ψI(τ2)⟩dτ2
)
dτ1 (27.68)

= |ψI(0)⟩+ λ

ıℏ

∫ t

0

Ŵ (τ1)dτ1|ψI(0)⟩+
(
λ

ıℏ

)2 ∫ t

0

Ŵ (τ1)

∫ τ1

0

Ŵ (τ2)|ψI(τ2)⟩dτ2dτ1⟩

=

[∑N

n=1

(
λ

ıℏ

)n ∫ t

0

Ŵ (τ1)

∫ τ1

0

Ŵ (τ2)...

∫ τn−1

0

Ŵ (τn)dτ1dτ2...dτn

]
|ψI(0)⟩+ o(λN+1) .

This is called the Dyson series. For N = 1, we get the first order of the perturbation
series 9,

|ψI(t)⟩ =
(
1 +

λ

ıℏ

∫ t

0

Ŵ (τ)dτ

)
|ψI(0)⟩ . (27.69)

The stationary states of the unperturbed Hamiltonian are given by Ĥ(0)|f⟩ =
Ef |f⟩. Now, the perturbed states are expanded on this basis, |ψI(t)⟩ =

∑
f |f⟩af (t).

The expansion coefficients are 10,

af (t) = ⟨f |ψI(t)⟩ = ⟨f |ψI(0)⟩+
λ

ıℏ
⟨f |
∫ t

0

S−1(τ)Ĥ(1)(τ)S(τ)|ψI(0)⟩dτ . (27.70)

Now, we assume that the system be initially in the eigenstate |ψI(0)⟩ = |i⟩. The
amplitudes then are,

ai→f (t) = ⟨f |i⟩+
λ

ıℏ

∫ t

0

eıEfτ/ℏ⟨f |Ĥ(1)(τ)|i⟩e−ıEiτ/ℏdτ (27.71)

= δif +
λ

ıℏ

∫ t

0

⟨f |Ĥ(1)(τ)|i⟩eıωifτdτ .

The time-varying potential generates a perturbation causing a variation of the
system’s state. As the energy is not conserved, [∂t, Ĥ(t)] ̸= 0, the time-dependence is
not separable and the system exchanges energy with the potential. In first-order per-
turbation theory we only consider weak perturbations, i.e. the initial state is emptied
only slowly, ai→i(dt) ≃ ai→i(0) = 1. On the other hand, for an initially empty state
f the gain is obviously considerable. For i ̸= f we have,

dai→f (t) = ai→f (t+ dt)− ai→f (t) =
λ

ıℏ
⟨f |Ĥ(1)(t)|i⟩eıωif tdt . (27.72)

This formula is nothing more than a generalization of the formula (27.63) obtained
for a two-level system assuming that the initial state does not deplete considerably.
In Exc. 27.4.5.1 we calculate the dynamics of a harmonic oscillator perturbed by a
decaying force.

9For higher orders,

|ψI(t)⟩ ≈
[∑N

n=1

(
λ

ıℏ

)n (∫ t

0
Ŵ (τ)dτ

)n]
|ψI(0)⟩ = T

[
exp

(
λ

ıℏ

∫ t

0
Ŵ (τ)dτ

)]
|ψI(0)⟩ .

10We could define the coefficients in Schrödinger’s picture, af ≡ ⟨f |ψ⟩, but this would only intro-

duce a phase factor, ai→f → ai→f e
ı(Ef−Ei)t/ℏ, which is unimportant for absolute values |ai→f |2.

This corresponds to a transformation to a rotating system, which will be discussed in Sec. 34.4.1.
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27.4.3 Specific perturbations

27.4.3.1 Sudden switch-on of a constant perturbation

To begin with, we consider a constant perturbation Ĥ(1) suddenly switched on at
t = 0. In Schrödinger’s picture we can rewrite Eq. (27.71),

ai→f (t) = δif +
λ

ıℏ
⟨f |Ĥ(1)|i⟩

∫ t

0

eıωifτdτ = δif +
λ

ıℏ
⟨f |Ĥ(1)|i⟩−1 + eıωif t

ıωif
. (27.73)

We obtain for i ̸= f ,

|ai→f (t)|2 =
λ2

ℏ2
|⟨f |Ĥ(1)|i⟩|2 sin

2(ωif t/2)

(ωfi/2)2
. (27.74)

For long times we calculate the rate 11,

d

dt
|ai→f (t)|2 =

λ2

ℏ2
|⟨f |Ĥ(1)|i⟩|2 sinωfit

ωfi/2

t→∞−→ 2πλ2

ℏ2
|⟨f |Ĥ(1)|i⟩|2δ(ωf−ωi) , (27.75)

where we use the representation of the Dirac function,

δ(x) = lim
t→∞

1
2π

∫ t

−t
eıkxdk = lim

t→∞
t
π sinc xt . (27.76)

The δ-function in (27.75) ensures that, for infinitely sharp steps, transitions are im-
possible, unless the energy of the final state is the same as the one of the initial state.
This points to the fact that infinitely sharp steps are not a realistic physical concept.

In practice, the changes applied to a system are often slow and the observation
times are long, because the frequencies of the transitions are high ωfi/2π ≃ THz.
Let us assume that the perturbation be switched on within a time constant γ−1. In
Exc. 27.4.5.2 we will study how the rapidity of a perturbation influences the transition
rate. We will see via a temporal analysis of |ai→f (t)|2, that for slow variations,
γ ≪ ωfi, the system adiabatically approaches the final situation. For γ ≃ ωfi, the
system receives a shock and exhibits oscillating transients. For γ > ωfi, we observe
violent oscillations with largest amplitudes.

27.4.3.2 Periodic perturbations

We now consider the case of an oscillatory perturbation, for example an electromag-
netic field. In principle, knowledge of the system’s response to periodic perturbations
allows us to treat arbitrary perturbations, since we can expand them in Fourier series.
We first treat transitions between discrete levels, before considering states embedded
in continua,

Ĥ(1)(t) =

{
0 for t < 0

2ℏΩ̂0 cosωt for t ≥ 0
. (27.77)

11We use the trigonometric rule sinx = 2 sin x
2
cos x

2
.
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With the abbreviation Ωfi ≡ ⟨f |Ω̂0|i⟩ the transition rate is,

ai→f (t) = −ıΩfi
∫ t

0

2eıωfiτ cosωτdτ (27.78)

= −ıΩfi
[
eı(ωfi+ω)t−1
ı(ωfi+ω)

0

+
eı(ωfi−ω)t − 1

ı(ωfi − ω)

]
.

The first term being small, we neglect it doing a so-called rotating wave approximation
(RWA). We obtain,

|ai→f (t)|2 = |Ωfi|2
sin2 1

2 (ωfi − ω)t
1
4 (ωfi − ω)2

. (27.79)

This result coincides with the formula (27.74), except that the energy difference be-
tween the states ωfi is shifted by the frequency of the perturbation ω. The quantity
∆fi ≡ ω − ωfi is called a detuning. The transition probability is maximal, when we
are at resonance, that is ∆fi = 0. In this case,

|ai→f (t)|2 −→ |Ωfi|2t2 . (27.80)

This can be seen by expanding the numerator in a Taylor series for small (ωfi − ω)t.
Note, that the probability exceeds 1 for long times, which can not be. In fact, the

restriction to the first order in the Taylor expansion used in the derivation of the last
equation is no longer valid for long times, when (ωfi − ω)t > 1, and we need to take
into account higher orders.

Example 174 (The Rabi formula): Let us now come back to the two-level
system studied in Sec. 27.4.1 and consider a periodic perturbation oscillating at
frequency ω = ω0+∆, where ∆ is called the detuning from the resonance whose
frequency is ω0,

H(1) = −eE(r, t) · r = −eE0ε̂ cos(kz − ωt) · r . (27.81)

Then,

⟨2|H(1)|1⟩ = −eE0 cos(kz − ωt)⟨2|r|1⟩ = ℏΩcos(kz − ωt) , (27.82)

where we call

Ω ≡ −eE0⟨2|r|1⟩
ℏ

(27.83)

the Rabi frequency. With this abbreviation the Eqs. (27.63) become,

ȧ1 = −ıΩa2e−ıω0t cos(kz−ωt) and ȧ2 = −ıΩ∗a1eıω0t cos(kz−ωt) . (27.84)

Neglecting fast-rotating terms doing the so-called rotating wave approximation
(RWA) and choosing the position of the atom to be z = 0 we derive,

ȧ1 ≃ − ıΩ
2
a2e

ı∆t and ȧ2 ≃ − ıΩ
∗

2
a1e
−ı∆t , (27.85)

which coincides with the formulas derived in Sec. 27.4.1. With the equations
of motion we can, starting from initial values for a1(0) and a2(0), calculate the
temporal evolution.
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We solve this system of differential equations by differentiating one and substi-
tuting the other,

ä2 = −ıȧ1Ω
2

∗
e−ı∆t − a1∆Ω∗

2
e−ı∆t = −|Ω|

2

4
a2 − ı∆ȧ2 . (27.86)

We find solutions via the ansatz a2 = e−ı∆t/2(AeıGt/2+Be−ıGt/2). The equation
for a2 yields,

( ı
2
G− ı

2
∆)2Aeı(G−∆)t/2 + (− ı

2
G− ı

2
∆)2Beı(−G−∆)t/2 (27.87)

= − |Ω|2
4

(Aeı(G−∆)t/2 +Beı(−G−∆)t/2

− ı∆
[
( ı
2
G− ı

2
∆)Aeı(G−∆)t/2 + (− ı

2
G− ı

2
∆)Beı(−G−∆)t/2

]
.

Separating the parts in A and in B we obtain two equations with the same
result,

G2 = |Ω|2 +∆2 . (27.88)

G is called the generalized Rabi frequency. Using the initial conditions, a1(0) = 1
and a2(0) = 0, we can fix one of the coefficients A and B, since a2(0) = A+B =
0,

a2 = 2ıAe−ı∆t/2 sin G
2
t . (27.89)

We now import this solution into the differential equation for a1,

ȧ1 = −ıΩ
2
a2e

ı∆t = ΩAeı∆t/2 sin G
2
t . (27.90)

The integral is,

a1(t) =

∫ t

0

ΩAeı∆t
′/2 sin G

2
t′dt′ = −2A

Ω∗
eı∆t/2

(
G cos G

2
t− ı∆sin G

2
t
)
. (27.91)

Using the normalization condition,

1 = |a1|2 + |a2|2 =

∣∣∣∣−2A

Ω∗
eı∆t/2

(
G cosGt− ı∆sin G

2
t
)∣∣∣∣2 + ∣∣∣2ıAe−ı∆t/2 sinGt∣∣∣2

=
4A2

|Ω|2
(
G2 cos2 G

2
t+∆2 sin2 G

2
t
)
+ 4A2 sin2 G

2
t = 4A2 G

2

|Ω|2 . (27.92)

Hence, A = |Ω|/2G. In general, we can choose Ω real, and the final solution is,

a1(t) = −eı∆t/2
(
cos G

2
t+ −ı∆

G
sin G

2
t
)

and a2(t) =
ıΩ
G
e−ı∆t/2 sin G

2
t .

(27.93)

This results has already been obtained in Exc. 23.4.7.1 using an exact (i.e. not

perturbative) calculus. When the energies En are degenerate, under the in-

fluence of the perturbation, the populations of the system oscillate with the

Rabi frequency Ω. When the energies are different, the oscillation frequency

G is higher, but the amplitude decreases as well. The initially empty state

never reaches unitary population. In Exc. 27.4.5.3 we calculate the time re-

quired to allow the perturbation to invert the population of a two-level system,

in Exc. 27.4.5.4 we study the maximum achievable inversion as a function of

detuning, and in Exc. 27.4.5.5 we analyze the dynamics of a system subject to

sequences of pulses.

In Exc. 27.4.5.6 we show a derivation using the Laplace transformation method.
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0 1 2 3 4

Ωt (π)

0

0.5

1

|a 2
(t
)|2

Figure 27.6: (code) Probability |a2(t)|2 for the atom to be in the excited state for Ω = Γ

and ∆ = 0 (blue), ∆ = Γ (green), and ∆ = 2.5Γ (red). Time is in units of 1/Γ.

27.4.3.3 Transitions to continuous levels

When there are several final states, f ∈ F , the formula (27.79) must be generalized.
The total transition probability,

Pi→F (t) =
∑

f∈F
|ai→f (t)|2 , (27.94)

corresponds to the probability of the initial state |i⟩ to be depleted. When the final
state lies within a continuum, the sum in (27.94) must be replaced by an integral.
With the density of states written in the form ρ(E), where ρ(E)dE is the number of
states found in the energy range between E and E + dE, the transition probability
is 12,

Pi→F (t) =
∫ Emax

Emin

|ai→f (t)|2ρ(Ef )dEf , (27.95)

where E ∈ [Emin, Emax] is the regime of energies within reach of the periodic pertur-
bation. Now, plugging in the expression (27.79),

Pi→F (t) =
∫ Emax

Emin

|Ωfi|2
sin2 1

2ℏ (Efi − E)t
1

4ℏ2 (Efi − E)2
ρ(Ef )dEf . (27.96)

Again using the representation (27.76) of the Dirac function with the substitution
x ≡ (Efi − E)/2ℏ, we obtain after sufficiently long times 13,

Pi→F (t) =
∫ Emax

Emin

|Ωfi|2t2
π

t
δ(
Efi−E

2ℏ )ρ(Ef )dEf = 2πℏt|Ωfi|2ρ(Ei + E) . (27.97)

The transition rate is,

dPi→F (t)
dt

= πℏ|Ωfi|2ρ(Ei + E) . (27.98)

12With ρ(E) ≡∑f∈F δ(Ef − E) the integral is converted back into a sum.
13Remember δ(ax) = 1

a
δ(x).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_RabiOscillations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_RabiOscillations.m
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For a narrow distribution of final energies E centered around Ef we may substitute
the density of states by a δ-distribution, ρ(E) = δ(E − Ef ), so that,

dPi→F
dt

=
2π

ℏ
|⟨f |Ĥ(1)|i⟩|2δ(Efi − E) , (27.99)

where we went back to the definition of the perturbation Hamiltonian (27.77). This
expression is called Fermi’s Golden rule. In Exc. 27.4.5.7 we will calculate the photo-
electric effect.

27.4.3.4 Continuous frequency distribution

To derive Eq. (27.79), we considered perturbations with fixed oscillation frequencies.
To handle frequency distributions ϱ(ω), we must generalize this equation by calculat-
ing the integral,

|ai→f (t)|2 = |Ωfi|2
∫
ϱ(ω)

sin2 1
2 (ωfi − ω)t

1
4 (ωfi − ω)2

dω (27.100)

≃ |Ωfi|2tϱ(ωfi)
∫ ∞

−∞
sinc2xdx = πt|Ωfi|2ϱ(ωfi − ω) ,

again using the representation (27.76) of the Dirac function. The approximation
ϱ(ω) = ϱ(ωfi) can be used if the width of the sinc function is much narrower than
the frequency distribution, which is the case for sufficiently long times, t≫ π/2∆fi.

27.4.4 Transition rates for higher-order perturbations

The evolution from an initial state |i⟩ that the system occupies at time t0 to some
final state |ψ⟩, which may be a superposition, occupied at time t, is ruled by the
solution of the Schrödinger equation,

|ψ⟩ = e−ıĤ(t−t0)/ℏ|i⟩ . (27.101)

The probability to encounter |ψ⟩ in a given state |f⟩ is |⟨f |ψ⟩|2, and the transition
rate is simply the derivative of this. The transition rate out of the initial state into
any other final state is, consequently

1

τ
=
∑

f

d

dt
|⟨f |e−ıĤ(t−t0)/ℏ|i⟩|2 . (27.102)

From this formula we can already see, that at short times, when we can expand the
exponential to first order, we will recover the results of (27.72).

Let us now consider a time-independent perturbation in the Schrödinger picture,

Ĥ(t) = Ĥ(0) + Ĥ(1) , (27.103)

where the time dependence is entirely left to the wavefunction. Now, we expand the

propagator e−ıĤ(t−t0) in a perturbative series 14. Unfortunately, generally [Ĥ(0), Ĥ(1)] ̸=
14We drop the ℏ = 1 for the following calculation to simplify the notation.
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0, so that we cannot simply assume e−ıĤt ̸= e−ıĤ
(0)te−ıĤ

(1)t. But we can calculate,

ı
d

dt
eıĤ

(0)te−ıĤt = −Ĥ(0)eıĤ
(0)te−ıĤt + eıĤ

(0)tĤe−ıĤt = eıĤ
(0)tĤ(1)e−ıĤt . (27.104)

Integrating both sides and resolving for e−ıĤt,

e−ıĤt = e−ıĤ
(0)t

{
eıĤ

(0)t0e−ıĤt0 − ı
∫ t

t0

eıĤ
(0)t1Ĥ(1)e−ıĤt1dt1

}
. (27.105)

We want to analyze a steady-state situation, that is, we assume that the interaction
as gradually built up in an infinitely remote past. Hence, we can set Ĥ = Ĥ(0) for
t0 → −∞,

e−ıĤt = e−ıĤ
(0)t

{
1− ı

∫ t

−∞
eıĤ

(0)t1Ĥ(1)eεt1e−ıĤt1dt1

}
, (27.106)

where the term eεt1 , with ε → 0, is inserted to guarantee a smooth switch-on. We
iterate,

e−ıĤt = e−ıĤ
(0)t

{
1− ı

∫ t

−∞
eıĤ

(0)t1Ĥ(1)eεt1×

× e−ıĤ
(0)t

[
1− ı

∫ t1

−∞
eıĤ

(0)t2Ĥ(1)eεt2e−ıĤt2dt2

]
dt1

} . (27.107)

We calculate the matrix elements up to second order substituting Ĥ with Ĥ(0) in the
last integral,

⟨f |e−ıĤt|i⟩ (27.108)

≃ ⟨f |e−ıĤ(0)t

{
1− ı

∫ t

−∞
eıĤ

(0)t1Ĥ(1)eεt1e−ıĤ
(0)t1

[
1− ı

∫ t1

−∞
eıĤ

(0)t2Ĥ(1)eεt2e−ıĤ
(0)t2dt2

]
dt1

}
|i⟩

= e−ıωfit⟨f |i⟩ − ıe−ıωf t

∫ t

−∞
eıωf t1⟨f |Ĥ(1)|i⟩eεt1e−ıωit1dt1

− e−ıωf t1

∫ t

−∞
eıωf t1⟨f |Ĥ(1)eεt1e−ıωit1

∑
m

|m⟩⟨m|
∫ t1

−∞
eıĤ

(0)t2Ĥ(1)|i⟩eεt2e−ıωit2dt2dt1 .

where we separated the perturbation orders and inserted
∑
m |m⟩⟨m| = 1 using the
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closure relation. Using the time-independence of Ĥ(1),

⟨f |e−ıĤt|i⟩ ≃ e−iωfitδfi − ıe−ıωf t⟨f |Ĥ(1)|i⟩
∫ t

−∞
e(ıωf−ıωi+ε)t1dt1 (27.109)

− e−ıωf t
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
∫ t

−∞
e(ıωf−ıωi+ε)t1

∫ t1

−∞
e(ıωm−ıωi+ε)t2dt2dt1

= e−ıωfitδfi − ıe−ıωf t⟨f |Ĥ(1)|i⟩ e
(ıωf−ıωi+ε)t

ı(ωf − ωi) + ε

− e−ıωf t
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
∫ t

−∞
e(ıωf−ıωm+ε)t1 e

(ıωm−ıωi+ε)t1

ı(ωm − ωi) + ε
dt1

= e−ıωfitδfi − ı⟨f |Ĥ(1)|i⟩ e(−ıωi+ε)t

ı(ωf − ωi) + ε

− e−ıωf t
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
ı(ωm − ωi) + ε

∫ t

−∞
e(ıωf−ıωi+2ε)t1dt1

= e−ıωfitδfi − ı⟨f |Ĥ(1)|i⟩ e(−ıωi+ε)t

ı(ωf − ωi) + ε
−
∑
m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
ı(ωm − ωi) + ε

e(−ıωi+2ε)t

ı(ωf − ωi) + 2ε
.

These three terms represent the zeroth, first, and second perturbation orders of the
propagation operator (27.101). They are also called Feynman propagators. Now, we
can calculate the transition rate up to second order,

1

τ
=

d

dt

∑

f

∣∣∣⟨f |e−ıĤt|i⟩
∣∣∣
2

(27.110)

= lim
ε→0

∑

f

∣∣∣∣∣⟨f |Ĥ
(1)|i⟩ −

∑

m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
−ıı(ωm − ωi)− ıε

∣∣∣∣∣

2
d

dt

∣∣∣∣
e(−ıωi+ε)t

ı(ωf − ωi) + ε

∣∣∣∣
2

=
∑

f

∣∣∣∣∣⟨f |Ĥ
(1)|i⟩ −

∑

m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
(ωm − ωi)

∣∣∣∣∣

2

lim
ε→0

2εe2εt

(ωf − ωi)2 + ε2
.

The last fraction is a representation of the δ-function. Reintroducing ℏ, we finally
obtain,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣⟨f |Ĥ
(1)|i⟩+ 1

ℏ
∑

m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|i⟩
ωi − ωm

∣∣∣∣∣

2

δ(ωf − ωi) . (27.111)

The first term is Fermi’s Golden rule, the second order corresponds to the Kramers-
Heisenberg formula, which serves to describe Thomson, Rayleigh and Raman scat-
tering. The generalization of this transition rate to all perturbation orders can be
written,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣⟨f |
(
Ĥ(1) +

1

ℏ
∑

m

Ĥ(1)|m⟩⟨m|Ĥ(1)

ωi − ωm
+ ... (27.112)

+
1

ℏn−1
∑

m1,...,mn−1

Ĥ(1)|m1⟩⟨m1|...|mn−1⟩⟨mn−1|Ĥ(1)

(ωi − ωm1
)...(ωi − ωmn−1

)


 |i⟩

∣∣∣∣∣∣

2

δ(ωfi) .
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Figure 27.7: Graphical illustration of the various transitions orders. From left to right:
absorption, Raman transition via an intermediate virtual state |m1⟩, three-photon process
via two intermediate virtual states |m1⟩ and |m2⟩.

27.4.5 Exercises

27.4.5.1 Ex: Perturbed harmonic oscillator

Consider a one-dimensional harmonic oscillator (HO) initially prepared (t = −∞)
in the ground state |0⟩ of the unperturbed Hamiltonian H(0) = ℏωâ†â, such that
H(0)|n⟩ = En|n⟩ with En = nℏω.
a. Through the expression, af (t) ≈ 1

iℏ
∫ tf
ti
Wfie

iωfitdt, and the perturbative Hamil-

tonian W (t) = −eExe−t2/τ2

(x is the position operator of the HO), applied between
t = −∞ and t = +∞, calculate the probability of the system to be in the excited
state |n⟩, specifying n, at t = +∞. Analyze the result.

b. Do the same for a shape-changing perturbation, W (t) = Λx2e−t
2/τ2

.

Solution: a. For this perturbation, the probability is,

Pn = |⟨n|ψ⟩|2 = |a0→n(∞)|2 =

∣∣∣∣δ0n +
1

ıℏ

∫ ∞

−∞
⟨n|W |0⟩eıωn0tdt

∣∣∣∣
2

=

∣∣∣∣δ0n −
1

ıℏ
eE
∫ ∞

−∞
⟨n|x̂|0⟩e−t2/τ2

eıωn0tdt

∣∣∣∣
2

=

∣∣∣∣δ0n −
eE
ıℏ
aho√
2
δn1

∫ ∞

−∞
e−t

2/τ2

eıωtdt

∣∣∣∣
2

=

∣∣∣∣δ0n −
eE
ıℏ
aho√
2
δn1
√
πτe−τ

2ω2/4

∣∣∣∣
2

=

∣∣∣∣δ0n + ıδn1

√
πeEτ√
2mℏω

e−τ
2ω2/4

∣∣∣∣
2

,

such that,

P0→1 =
πe2E2τ2
2mℏω

e−τ
2ω2/2 .

To obtain transitions, the time scale τ of the perturbation must be adapted to provide
Fourier components near the transition frequency. The rate is maximal for τ =

√
2/ω.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_OsciladorPerturbado.pdf


27.4. TIME-DEPENDENT PERTURBATIONS 1487

b. For this perturbation the probability is

Pn =

∣∣∣∣δ0n +
1

ıℏ
Λ(1− δ0n)

∫ ∞

−∞
⟨n|x̂2|0⟩e−t2/τ2

eıωn0tdt

∣∣∣∣
2

=

∣∣∣∣δ0n +
Λ

ıℏ
a2ho
2

2δn2

∫ ∞

−∞
e2iωte−t

2/τ2

dt

∣∣∣∣
2

=

∣∣∣∣δ0n +
Λ

ıℏ
a2ho
2

2δn2
τ
√
π√
2
e−τ

2ω2

∣∣∣∣
2

=

∣∣∣∣δ0n −
ı
√
πΛτ√
2mω

δn2e
−τ2ω2

∣∣∣∣
2

.

such that,

P0→1 =
πΛ2τ2

2m2ω2
e−2τ

2ω2

.

27.4.5.2 Ex: Impact of the rapidity of a perturbation

Here we consider a slow variation,

Ŵ (t) =

{
0 for t < 0

W0(1− e−γt) for t ≥ 0
,

with γ ≪ ωfi.
a. Calculate the transition rate for long times, t≫ γ−1.
b. Analyze the transition rate at a given time as a function of γ.

Solution: Review this exercise!!!
We calculate,

ai→f (t) =
⟨f |Ŵ0|i⟩

ıℏ

∫ t

0

(1− e−γτ )eıωfiτdτ =
⟨f |Ŵ0|i⟩

ıℏ

[
eıωfit − 1

ıωfi
+
e−γt+ıωfit − 1

γ − ıωfi

]
.

For γ ≪ ωfi we neglect the γ in the denominator,

ai→f (t) ≃
⟨f |Ŵ0|i⟩
ℏωfi

eıωfit
[
−1 + e−γt

]
.

a. For long times, t≫ γ−1, we get,

ai→f (t)
γt≫0−→ ⟨f |Ŵ0|i⟩

ℏωfi
(−eıωfit) ,

which joins the limit of the time-independent perturbation theory (27.12),

|ai→f (t)|2 γt≫0−→
∣∣∣∣∣
⟨f |Ĥ(1)|i⟩|

ℏωfi

∣∣∣∣∣

2

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_TransicaoLenta.pdf
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Figure 27.8: Transition rate for fixed t = 1 as a function of γ.

b. At a given time, the transition rate is,

d|ai→f |2
dt

=

∣∣∣∣∣
⟨f |Ĥ(1)|i⟩|

ℏωfi

∣∣∣∣∣

2

(2γe−γt − 2γe−2γt) .

27.4.5.3 Ex: Rabi oscillation

The population of a degenerate two-level system be initially in state |1⟩. What should
be the duration of a perturbation to transfer the population to state |2⟩?

Solution: Since ω0 = 0, the population of state |2⟩ is,

|a2(t)|2 =
Ω2

G2
sin2Gt = sin2 Ωt .

For the sinus to reach 1, we need to wait for the time t = π/2Ω 15.

27.4.5.4 Ex: Rabi method

Free atoms be illuminated by light pulses characterized by the Rabi frequency Ω,

whose pulse area is (i)
t∫
0

Ω dt = π and (ii) = 2π. For which frequency tuning

∆ = ω − ω0 the excited state population is maximum? Draw the spectral profile
of the population in the range −5 < ∆/Ω < 5.

Solution: The Schrödinger equation gives,

∂

∂t
|ψ⟩ =

(
0 1

2Ω
1
2Ω −∆

)
|ψ⟩ .

Deriving the second line and inserting it into the first one, we get,

15This is called π-pulse, because the frequency of Rabi is often defined asΩ/2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_Lecture1Rabi.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_Lecture1Rabimethod.pdf
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Figure 27.9: (code) Rabi fringes for (blue) a π-pulse and (red) a 2π-pulse.

c̈2 = i∆ċ2 − 1
4Ω

2c2 .

The trial c2(t) = c20 + c2+e
ıχt + c2−e−ıχt gives the characteristic equation,

−χ2 +∆χ+ 1
4Ω

2 = 0 .

With the initial conditions c2(0) = 0 the solution is,

c2(t) = c2(0)e
ı∆t/2(eıGt/2 − e−ıGt/2) ,

where G ≡
√
∆2 +Ω2. Here, |c2|2 = ρ22 is the population of the upper state. There-

fore,
|c2|2 ∝ 2− 2 cos(Gt) = 4 sin2 1

2Gt .

Considering, in particular, n = π, 2π, the solution becomes,

|c2|2 =
Ω2

G2
sin2 1

2G
2t =

1

1 + (∆/Ω)2
sin2

1

2

√
1 + (∆/Ω)2nπ .

27.4.5.5 Ex: Ramsey fringes

a. Consider a two-level atom illuminated by a π
2 -pulse of nearly resonant light, G ≃ Ω,

and calculate the ground and excited state amplitudes.
b. How do the amplitudes evolve after the pulse if the detuning ∆ is small but non-
zero?
c. Derive the solution for |a2(t)|2 of the equations (27.63) for the resonant case (∆ = 0)

assuming the following initial conditions, a2(0) =
eıϕ√
2
and a2(t =

π
2Ω ) = 0 if ϕ = 0.

d. Discuss the case of two consecutive π
2 -pulses separated by a time interval T .

Solution: a. We exploit Eqs. (27.93), which holds for the initial condition that the
atoms be in their ground state,

a1(t) = −eı∆t/2
(
cos

G

2
t+
−ı∆
2G

sin
G

2
t

)
and a2(t) =

ıΩ

G
e−ı∆t/2 sin

G

2
t .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_RabiFringes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_Lecture1Ramsey.pdf


1490 CHAPTER 27. APPROXIMATION METHODS

Inserting G ≃ Ω = π
2t we get after the first pulse,

a1(
π
2Ω ) = −

1√
2

and a2(
π
2Ω ) =

ı√
2
.

b. The coherence precesses according to,

a1(t) = −
1√
2
eı∆T/2 and a2(t) =

ı√
2
e−ı∆T/2 .

c. We use the same ansatz as in Eq. (27.87),

a2 = e−ı∆t/2(AeıGt/2 +Be−ıGt/2) .

Inserting the first initial condition, a2(0) ≡ eıϕ√
2
= A + B, we get for the resonant

case,

a2 = AeıΩt/2 +
(
eıϕ√
2
−A

)
e−ıΩt/2 .

Now, we use the second initial condition setting ϕ = 0,

0 ≡ a2(t =
π

2Ω
) = Aeıπ/4 +

(
1√
2
−A

)
e−ıπ/4 ,

yielding A = eıπ/4

2 . Hence,

a2 ≃
eıπ/4

2
eıΩt/2 +

(
eıϕ√
2
− eıπ/4

2

)
e−ıΩt/2

and

|a2|2 = 1− cosϕ .

d. Setting ϕ ≡ ∆T we see that the excited state population after the Ramsey pulse
sequence oscillates with the free precession time period T .

27.4.5.6 Ex: Two-level atom via Laplace transformation

Solve the problem of a two-level atom interacting with a laser using the Laplace trans-
formation method.

Solution: We consider the two-level system |ψ(t)⟩ = a(t)|1⟩+ b(t)|2⟩ with the Hamil-
tonian in the rotating wave approximation,

Ĥ = Ĥ(0) + V̂ =

(
0 c.c.

1
2Ωe

ıωt ω0

)
= ω0|2⟩⟨2|+ 1

2Ωe
−ıωt|2⟩⟨1|+ c.c. .

Entering into Schrödinger’s equation, |ψ̇(t)⟩ = − ı
ℏĤ(t)|ψ(t)⟩, yields,

ȧ|1⟩+ ḃ|2⟩ = − ı
ℏ
[
ω0|2⟩⟨2|+ 1

2Ωe
−iωt|2⟩⟨1|+ 1

2Ωe
ıωt|1⟩⟨2|

]
[a|1⟩+ b|2⟩] .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_DoisniveisLaplace.pdf
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Follows,
ȧ = − ıΩ2 eıωtb and ḃ = − ıΩ2 e−ıωta− ıω0b .

And by Laplace transformation,

pã(p)− a(t0) = − ıΩ2 b̃(p− ıω) and pb̃(p)− b(t0) = − ıΩ2 ã(p+ ıω)− ıω0b̃(p) .

Now substitute p→ p+ ıω and define ∆ ≡ ω − ω0, G =
√
Ω2 +∆2,

b̃(p) =
(p+ ıω0)b(t0)− ıΩ

2 a(t0)

(G/2)2 + [p+ ı(ω0 +∆/2)]
2 .

The backward transformation is,

b(t) = e−ı(ω0+∆/2)t

{
b(0) cos

Gt

2
− ı

G
[Ωa(0) + ∆b(0)] sin

Gt

2

}
.

The population of the excited level is precisely ρ22(t) = |b(t)|2. In the same way we
obtain the population of the ground level,

ã(p) =
(p− ıω0)a(t0)− ıΩ

2 b(t0)

(p− ı∆)p+ (Ω/2)2
,

and

a(t) = eı(∆/2)t
{
a(0) cos

Gt

2
− ı

G
[Ωb(0) + ∆a(0)] sin

Gt

2

}
.

We consider the particular case, Ω = 0. The atom precedes in an unperturbed way,

a(t) = a(0) and b(t) = b(0)e−ıωt .

27.4.5.7 Ex: Photoelectric effect

A hydrogen atom ground state in the ground state 1s is placed in an electric field
E(t) = E0 cosωt, such thatW (t) = −er·E(t) =W0e

−ıωt+W †0 e
ıωt withW0 = er·E0/2.

Find, via Fermi’s Golden rule,

R =
2π

ℏ
|⟨f |W (t)|i⟩|2ρ(Ef − Ei ∓ ℏω) ,

using the density of states ρ(Ek)dEk = V/(2π)3k2dkdΩ, the probability per unit
of time for the atom to be ionized, by exciting from the ground state ψ100(r) =
e−r/aB/(πa3B)

1/2 to the state described by the plane wave ψk(r) = e−ık·r/V 1/2. Sim-
plify the calculation by assuming E0 = E0êz and k = kêz.

Solution: Transforming into the rotating system we realize that only one of the
components e±ıωt is resonant, such that we can discard the other:

W (t) =W0e
−ıωt .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_EfeitoFotoeletrico.pdf
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Without loss of the generality we now choose E0 = E0êz,

⟨f |Ŵ0|i⟩ =
∫

R3

d3r′
eık·r

′

√
V

eE0z′
2

1√
πa3B

e−r
′/aB

=
1√
V

eE0
2

1√
πa3B

∫ ∞

0

dr′r′2
∫

R2

dΩ′eık·r
′
r′ cos θ′e−r

′/aB .

We need to expand the plane wave in terms of the spherical harmonics,

eık·r
′
= 4π

∞∑

ℓ=0

ℓ∑

m=−ℓ
ıℓjlkr

′[Y mℓ (θ, ϕ)]∗Y mℓ (θ′, ϕ′) .

Inserting this above,

⟨fŴ0|i⟩ =
4πeE0

2(V πa3B)
1/2

∞∑

ℓ=0

ıℓ
∫ ∞

0

dr′r′3e−r
′/aBjl(kr

′)
ℓ∑

m=−ℓ
[Y mℓ (θ, ϕ)]∗

∫

R2

dΩ′Y mℓ (θ′, ϕ′) cos θ′ .

Writing cos θ′ as a function of the harmonics, cos θ′ =
(
4π
3

)1/2
[Y 0

1 (θ, ϕ)]
∗, due to the

orthogonality of the spherical harmonics, we can simplify,

∫

R2

dΩ′Y mℓ (θ′, ϕ′) cos θ′ =
(
4π
3

)1/2 ∫

R2

dΩ′[Y 0
1 (θ, ϕ)]

∗Y mℓ (θ′, ϕ′) = δl,1δm,0 .

This causes the matrix element to be,

⟨fŴ0|i⟩ =
2πıeE0 cos θ
(V πa3B)

1/2

∫ ∞

0

dr′r′3e−r/aB
(
sin kr′

k2r′2
− cos kr′

kr′

)
.

We use the following tabulated integrals,

∫ ∞

0

dr′r′e−r/aB sin kr′ =
2ka3B

(1 + k2a2B)
2

and

∫ ∞

0

dr′r′2e−r/aB cos kr′ =
2a3B(1− 3k2a2B)

(1 + k2a2B)
3

.

Therefore the radial integral is,

∫ ∞

0

dr′r′3e−r/aB
(
sin kr′

k2r′2
− cos kr′

kr′

)
=

8ka5B
(1 + k2a2B)

3
,

and the matrix element,

⟨fŴ0|i⟩ = 16ıeE0 cos θ
(
πa5B
V

)1/2
8kaB

(1 + k2a2B)
3
.

For the density of states we calculate, ρ(Ek)dEk = ρ(Ek)
ℏ2

m kdk ≡ V
(2π)3 k

2dkdΩ, yield-
ing

ρ(Ek) =
V

(2π)3
mek

ℏ2
dΩ .
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The transition rate now becomes,

dR

dΩ
=

2π

ℏ2
V

(2π)3
mek

ℏ2
256πe2E20a5B cos2 θ

V

(kaB)
2

(1 + (kaB)2)6
=

64E20a3B cos2 θ

π

(kaB)
3

(1 + (kaB)2)6
.

With the energy of the ground state of hydrogen,

E1 = − ℏ2

2mea2B
≡ ℏω0 ,

and energy conservation,

ℏω =
ℏ2k2

2me
+ ℏω0 ,

we derive the abbreviation (kaB)
2 = ω−ω0

ω0
which allows rewriting of the transition

rate as,

dR

dΩ
=

4πε064E20a3B
ℏ

ω6
0

ω6

(
ω

ω0
− 1

)3/2

cos2 θ .

Only need to integrate over the solid angle,
∫
dΩcos2 θ = 4π/3,

R =
256E20a3B

3ℏ
ω6
0

ω6

(
ω

ω0
− 1

)3/2

.

The frequency dependency is shown in the figure. Note, that the rate is zero directly
above the ionization threshold. .

0 1 2 3

ω/ω0

0

0.5

1

R

Figure 27.10: Photoelectric effect

27.4.5.8 Ex: Kicked harmonic oscillator in second order perturbation

Consider a one-dimensional harmonic oscillator initially in its ground state kicked
via the Ĥ(1)(t) = eıkx̂Θ(t), as discussed in Sec. 24.6.2. Calculate the transition rate
(27.102) to the final state |f⟩ = |0⟩ in first and second order perturbation theory.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_SecondorderPerturbations01.pdf
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Solution: The transition rate is given as,

1

τ
=

d

dt
|⟨f |e−ıĤ(t−t0)/ℏ|0⟩|2 =

2π

ℏ2

∣∣∣∣∣⟨f |Ĥ
(1)|0⟩+

∑

m

⟨f |Ĥ(1)|m⟩⟨m|Ĥ(1)|0⟩
ωi − ωm

∣∣∣∣∣

2

δ(ωf−ωi) .

From (3.113) with α = ıkaho/
√
2,

⟨f |eikx̂|0⟩ = ⟨f |α⟩ = e−|α|
2/2 α

f

√
f !

.

Hence, in first order,

1

τ0→f
=

2π

ℏ2
|⟨f |eıkx̂|0⟩|2δ(ωf − ωi) =

2π

ℏ2
e−|α|

2 |α|2f
f !

δ(ωf − ωi) f=0−→ 2π

ℏ2
e−|α|

2

.

In second order,

1

τ0→f
=

2π

ℏ2

∣∣∣∣∣
∑

m

⟨f |eıkx̂|m⟩⟨m|eıkx̂|0⟩
ωi − ωm

∣∣∣∣∣

2

δ(ωf − ωi) f=0−→ 2π

ℏ2

∣∣∣∣∣
∑

m

|⟨m|α⟩|2
ωi − ωm

∣∣∣∣∣

2

δ(0)

=
2π

ℏ2
e−2|α|

2

∣∣∣∣∣
∑

m

|α|2m
m!

1

ωi − ωm

∣∣∣∣∣

2

δ(0) .

27.4.5.9 Ex: Dynamic Stark shift induced by blackbody radiation

Calculate the dynamic Stark shift induced by blackbody radiation at T = 300K on
the 1mHz large strontium intercombination line at 698 nm.

Solution:

27.5 Further reading

C. Cohen-Tannoudji, B. Diu, F. Laloe, Wiley Interscience, Quantum mechanics,
vol. 1,2 [276]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/QuantumMechanics/Sol_QM_Approximation_DynamicStark01.pdf
http://isbnsearch.org/isbn/978-0-471-56952-7


Chapter 28

Appendices to ’Quantum
Mechanics’

This chapter compiles some fundamental functions and polynomials, which are rele-
vant in quantum theory.

28.1 Quantities and formulas in quantum mechan-
ics

28.1.1 Atomic units

A system of units commonly used in atomic physics is the one of atomic units. This
system is based on the system of Gaussian units (CGS) 1 defined by,

ecgs = e/
√
4πε0 , aB = 1/α× ℏ/mec = ℏ2/mee

2
cgs , ℏ = 1 . (28.1)

With this fixing we give the energy in terms of e2cgs/aB , the wavevector in terms of
1/aB , the distance in terms of aB and the mass in terms of me, such that,

Ẽ = E/(e2cgs/aB) , (28.2)

k̃ = kaB ,

R̃ = R/aB ,

µ̃ = µ/me .

This notation simplifies formulas in atomic physics. For example:

k =
√

2µ
ℏ2 (E − V ) becomes k̃ =

√
2µ̃(Ẽ − Ṽ ) , (28.3)

V = C6
e2cgsa

5
B

R6 becomes Ṽ = C6

R̃6
.

1See script on Electrodynamics (2023).
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28.2 Clebsch-Gordan and Wigner symbols

28.2.1 Clebsch-Gordan symbols

Clebsch-Gordan coefficients are used to describe spin coupling 2,

⟨j1,m1; j2,m2|(j1j2)j,m⟩ =
(
j1 j2

m1 m2

∣∣∣∣∣ jm
)

= (−1)j1−j2+m
√

∆(j1j2j)× (28.4)

×
√

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!∑
t

(−1)t
t!(−j2 +m1 + j + t)!(−j1 −m2 + j + t)!(j1 + j2 − j − t)!(j1 −m1 − t)!(j2 +m2 − t)!

.

28.2.2 {3j}-symbols

The Clebsch-Gordans are related to Wigner’s {3j}-symbols,

(
j1 j2

m1 m2

∣∣∣∣∣
j

m

)
= (−1)−j1+j2−m

√
2j + 1

(
j1 j2 j

m1 m2 −m

)
, (28.5)

with the abbreviation,

∆(j1j2j3) ≡
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!
. (28.6)

Particular {3j}-symbols are,

(
j1 j2 j

0 0 0

)
=

(−1)(j1+j2+j)/2
j1/2 + j2/2 + j/2 + 1

√
∆(j1j2j)

∆( j12
j2
2
j
2 )

, (28.7)

and (
0 j j

0 0 0

)
=

(−1)j√
2j + 1

. (28.8)

28.2.3 {6j}-symbols

{6j}-symbols describe the recoupling of two spins. They can be evaluated by,

{
j1 j2 j3

J1 J2 J3

}
=
√

∆(j1j2j3)∆(j1J2J3)∆(J1j2J3)∆(J1J2j3)
∑

t

(−)t(t+ 1)!

f(t)
,

(28.9)
where,

f(t) = (t− j1 − j2 − j3)!(t− j1 − J2 − J3)!(t− J1 − j2 − J3)!(t− J1 − J2 − j3)! (28.10)

(j1 + j2 + J1 + J2 − t)!(j2 + j3 + J2 + J3 − t)!(j3 + j1 + J3 + J1 − t)! .
2See [60], p.111 or [1298], p.119.
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28.2.4 {9j}-symbols

{3j}-symbols describe the recoupling of three spins. They can be evaluated by,





j1 j2 J12

j3 j4 J34

J13 J24 J





=
∑

g

(−)2g(2g+1)

{
j1 j2 J12

J34 J g

}{
j3 j4 J34

j2 g J24

}{
J13 J24 J

g j1 j3

}
.

(28.11)
{9j}-symbols satisfy the following orthogonality relation,

∑

J12,J34

Ĵ12Ĵ34Ĥ13Ĥ24





j1 j2 J12

j3 j4 J34

H13 H24 J









j1 j2 J12

j3 j4 J34

J13 J24 J





= δJ13H13
δJ24H24

.

(28.12)

28.3 Functions and polynomials

28.3.1 The Gauss function

Indefinite integrals:

∫ ∞

−∞
e−ax

2

dx =
√
π/a and

∫ ∞

0

xne−ax
2

dx =
Γ(n+1

2 )

2a
n+1
2

. (28.13)

Higher momenta:

∫ x1

x0

e−ax
2

dx = xe−ax
2
∣∣∣
x1

x0

+ 2a

∫ x1

x0

x2e−ax
2

dx . (28.14)

28.3.2 Bessel functions

The integral definition of the Bessel function, the von Neumann function, and the
Hankel function of the first and second kind are:

Jk(x) =
1

π

∫ π

0

cos(kτ − x sin τ)dτ =
1

2π

∫ π

−π
eı(x sin τ−kτ)dτ (28.15)

Nk(x) = ...

H
(1,2)
k = Jk ± ıNk .

The derivative,

2
dJk(x)

dx
= Jk−1(x)− Jk+1(x) . (28.16)

Sum rules (empirically found),

∞∑

k=−∞
Jk(x) =

∞∑

k=−∞
Jk(x)

2 = 1 ̸=
∞∑

k=−∞
|Jk(x)|2 . (28.17)
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The spherical Bessel function, the spherical von Neumann function, and the spher-
ical Hankel function of the first and second kind are defined by:

jk(x) =

√
π

2x
Jk+1/2(x) (28.18)

nk(x) =

√
π

2x
Nk+1/2(x) = (−1)k+1

√
π

2x
J−k−1/2(x)

h
(1,2)
k = jk ± ınk .

The series,

jk(x) = (−x)k
(
1

x

d

dx

)k
sinx

x
, nk(x) = −(−x)k

(
1

x

d

dx

)k
cosx

x
. (28.19)

The derivative,

j′k(x) =
k

x
jk(x)− jk+1(x) . (28.20)

28.3.3 Hermite polynomials

The definition of the Hermite polynomials:

Hn(x) =

(
2x− d

dx

)n
· 1 = (−1)nex2 dn

dxn
e−x

2

=
2n√
π

∫ ∞

−∞
(x+ ıt)ne−t

2

dt (28.21)

Hen(x) ≡ 2−n/2Hn(x) .

Orthogonality and normalization:

∫ ∞

−∞
e−x

2

Hm(x)Hn(x)dx =
√
π2nn!δmn . (28.22)

Recursion:

d

dx
Hn(x) = 2Hn−1(x) (28.23)

d

dx
e−x

2

Hn(x) = e−x
2

Hn+1(x)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) .

Particular values:

H2n+1(0) = 0 (28.24)

H2n+1(0) = (−1)n2n(2n− 1)!!
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Series:

H2n(x) =

∞∑

k=0

(2n)!

(2k)!

(−1)n−k
(n− k)! (2x)

2k (28.25)

H2n−1(x) =
∞∑

k=0

(2n+ 1)!

(2k + 1)!

(−1)n−k
(n− k)! (2x)

2k+1

Hn(x) = n!

int(n/2)∑

k=0

1

k!

(−1)k
(n− 2k)!

(2x)n−2k .

28.3.4 Laguerre polynomials

The definition of the Laguerre polynomials is:

L(m)
n (x) ≡ exx−m

m!

dn

dxn
(e−xxn+m) (28.26)

Ln ≡ L(0)
n (x) .

Series:

L(m)
n (x) =

n∑

k=0

(
n+m

n− k

)
(−x)k
k!

. (28.27)

Recursion:

d

dx
L(m)
n (x) = −L(m+1)

n−1 (x) . (28.28)

Related functions:

umn(ε) ≡ e−ε
2 · (ıε)n−m ·

√
m!
n! · Ln−mm (ε2) (28.29)

umn(0) ≈ (ıε)n−m ·
√

n!
m!(n−m)!2

un+1,n(0) ≈ ıε ·
√
n+ 1 .

Fourier transforms:

∫ ∞

−∞
e−ax

2

x2k cosxp · dx = (−1)k√π
2k
√
a2k+1

· ep2/4a ·He2k(p/
√
2a) (28.30)

∫ ∞

−∞
e−x

2/2x2mL2m
n (x2) cosxp · dx = (−1)m√π√

2n!
· e−p2/2 ·Hen(p)Hen+2m(p)

∫ ∞

−∞
e−x

2/2x2m+1L2m+1
n (x2) sinxp · dx = (−1)m√π√

2n!
· e−p2/2 ·Hen(p)Hen+2m+1(p)

∫ ∞

−∞
e−ax−bpf(|x− p|) · dxdp = 1

a+b

[∫ ∞

−∞
e−axf(x)dx+

∫ ∞

−∞
e−bpf(p)dp

]
.
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28.3.5 Legendre polynomials

The definition of Legendre polynomials is:

Pn(x) ≡
1

2nn!

dn

dxn
(x2 − 1)n (28.31)

P (−m)
n (x) ≡ (1− x2)m/2 d

m

dxm
Pl(x) .

Series:

P (m)
n (x) =

(−1)m(n+m)!

2mm!(n−m)!
(1−x2)m/2

[
1− (n−m)!(m+n+1)!

1!(m+1)!
1−x
2 +

+ (n−m)!(n−m+1)!(m+n+1)!(m+n+2)!
2!(m+1)!(m+2)!

(
1−x
2

)2 − ...

]
.

(28.32)

28.3.6 Spherical harmonics

The definition of spherical harmonics is [1368]:

Yℓm(ϑ, φ) ≡
√

2ℓ+ 1

4π

√
(ℓ− |m|)!
(ℓ+ |m|)!P

|m|
ℓ (cos(ϑ)eimφ . (28.33)

The lowest spherical harmonics are:

Y
(0)
0 = 1

2

√
1
π Y

(1)
0 = 1

2

√
3
π cos θ

Y
(1)
±1 = ∓ 1

2

√
3
2π sin θe±iϕ Y

(2)
0 = 1

4

√
5
π (3 cos

2 θ − 1)

Y
(2)
±1 = ∓ 1

2

√
15
2π sin θ cos θe±iϕ Y

(2)
±2 = 1

4

√
15
2π sin2 θe±2iϕ

(28.34)

28.3.7 Vector spherical harmonics

The definition of vector spherical harmonics is [1368]:

Yjℓm(r) ≡ (−1)1−ℓ−m
√
2j + 1

∑

q

(
ℓ 1 j

m− q q −m

)
Yℓ m−q(ϑ, φ)êq . (28.35)

28.3.7.1 The Gamma function

The definition of the Gamma function is:

Γ(x+ 1) = xΓ(x) , Γ(1/2) =
√
π . (28.36)

28.3.8 Riemann zeta-function

The definition of the Riemann zeta-function is,

gη(1) = ζ(η) , (28.37)
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where,

gη(z) =

∞∑

t=1

± (±z)t
tη

=
1

Γ(η)

∫ ∞

0

xη−1dx
z−1ex ± 1

, (28.38)

is also called the Bose/Fermi function. The upper sign holds for bosons, the lower for
fermions. The Sommerfeld expansion,

∫ ∞

0

g(x)dx

ex−y + 1
=

∫ y

0

g(x)dx+

∫ ∞

0

g(y + x)η−1dx
ex + 1

−
∫ x

0

g(y − x)η−1dx
ex + 1

(28.39)

≈
∫ y

0

g(x)dx+
π2

6
g′(x) + ...

holds for z ≫ 1 and yields,

fη(e
y) ≈ xη

Γ(η + 1)

(
1 +

π2η(η − 1)

6x2
+

7π4η(η − 1)(η − 2)(η − 3)

360x4
+ ...

)
. (28.40)

For small z both functions converge towards,

cη(z) =
1

Γ(η)

∫ ∞

0

xη−1dx
z−1ex

= cη−1(z) = z . (28.41)

The derivative is,

∂fη(Z)

∂Z
=

∂

∂Z

∞∑

t=1

− (−Z)t
tη

=

∞∑

t=1

(−Z)t−1
tη−1

=
1

Z

∞∑

t=1

− (−Z)t
tη−1

=
fη−1(Z)

Z
, (28.42)

or,

∂fη(Z)

∂Z
=

1

Γ(η)

∂

∂Z

∫ ∞

0

xη−1dx
Z−1ex + 1

=
1

Γ(η)

∫ ∞

0

xη−1Z−2exdx
(Z−1ex + 1)2

(28.43)

=
1

ZΓ(η)

∫ ∞

0

xη−1
d

dx

−1
Z−1ex + 1

dx =
η − 1

ZΓ(η)

∫ ∞

0

xη−2

Z−1ex + 1
dx =

fη−1(Z)
Z

.

28.4 Further reading

I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products [532]ISBN

http://isbnsearch.org/isbn/978-0-123-73637-6
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Part IV

Atomic and Molecular
Physics
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Chapter 29

Electron spin and the atomic
fine structure

The energy structure of hydrogen calculated by Bohr’s model from the non-relativistic
Hamiltonian agrees very well with the experimental measurements. However, in high-
resolution experiments, small deviations were observed as energy shifts and splittings
of spectral lines. These deviations, called fine structure, were not predicted by theory,
which suggests that there are weak additional effects that do not strongly affect the
position of the spectral lines but remove the energy degeneracy of the orbital quantum
number ℓ: E = En,ℓ.

As a possible explanation we have the fact that the electrons present relativistic
mass and momentum. In order to estimate the relevance of relativistic corrections
let us estimate the electron velocity in the fundamental hydrogen states given by
E1 = −ℏ2/2mea

2
B . Using the definitions of the Bohr radius, aB = 4πε0ℏ2/(mee

2),
and the fine structure constant

α ≡ e2

4πϵ0ℏc
≃ 1

137
, (29.1)

we obtain,

v =

√
2E1

me
=

ℏ
meaB

=
e2

4πε0ℏ
= αc , (29.2)

which shows that the electron velocity is very high and that relativistic effects may
indeed be not negligible.

29.1 The Dirac equation

29.1.1 The Klein-Gordon equation for bosons

The Schrödinger equation for a free particle is based on the non-relativistic energy-
momentum dispersion relation,

E =
p2

2me
. (29.3)

and the definitions of the quantum operators for energy and momentum,

E = ıℏ
∂

∂t
and p = −ıℏ∇ . (29.4)

1505
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As already discussed in Sec. 23.1.2 we can, in order to find a relativistic wave equation,
try the approach of inserting the quantum operators into the relativistic energy-
momentum relation 1.

E2 = c2p2 +m2
ec

4 . (29.5)

We obtain, [
1

c2
∂2

∂t2
−∇2 +

(mec

ℏ

)2]
ψ = 0 . (29.6)

This is the Klein-Gordon equation. The stationary solution of this equation is a
spherical wave,

ψ = ψ0
1

r
e−2πr/λC , (29.7)

where λC = h/mec is the Compton wavelength. We show this in Exc. 29.1.5.1. For
example, in the case of heavy bosonic particles, such as a field of π-mesons, ψ is the
Yukawa potential.

In the framework of the standard model, it is believed that matter is composed
of two fundamental types of particles, bosons and fermions. Bosons are exchanged
between fermions conveying the interaction between them. A typical example is
the one of two electrons whose Coulomb interaction is mediated by the exchange
of photons. Bosons obey the Klein-Gordon equation, fermions the Dirac equation
derived in the following section.

29.1.2 The Dirac equation for fermions

In 1928 Paul Dirac, at the age of 26, developed an approach to a relativistic wave equa-
tion which differed from the Klein-Gordon equation. Motivated by the observation
that the photon, being the relativistic particle par excellence, obeys a linear energy-
momentum relation of the form ω = ck, he attempted to derive a linear dispersion
relation in E and p for heavy particles via the following ansatz:

E = α0mec
2 + α1cpx + α2cpy + α3cpz . (29.8)

Replacing energy and momentum with their respective operators 2,

ıℏ
∂

∂t
ϕ = α0mec

2ϕ− ıcℏ
(
α1

∂

∂x
+ α2

∂

∂y
+ α3

∂

∂z

)
ϕ . (29.9)

We must now ensure that the relativistic energy-momentum condition (29.5) be sat-
isfied.

Example 175 (Derivation of the Dirac equation): Taking the square on
the right-hand side of the equation (29.9),

[α0mec
2 − ıcℏ(α1∂x + α2∂y + α3∂z)][α0mec

2 − ıcℏ(α1∂x + α2∂y + α3∂z)]

= m2
ec

4α2
0 − icℏmec

2[(α0α1 + α1α0)∂x + (α0α2 + α2α0)∂y + (α0α3 + α3α0)∂z]

− c2ℏ2[α2
1∂

2
x + α2

2∂
2
y + α2

3∂
2
z ]

− c2ℏ2[(α1α2∂x∂y + α2α1∂y∂x) + (α2α3∂y∂z + α3α2∂z∂y) + (α3α1∂z∂x + α1α3∂x∂z)] .

1Using the covariant notation with pµ ≡ (E/c,p): pµpµ = E2/c2 − p2 = m2
ec

2 is a Lorentz
invariant.

2We introduce the abbreviation ∂k ≡ ∂
∂xk
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For this expression to be identical to the relativistic energy-momentum condition
(29.5),

m2
ec

4 − c2ℏ2[∂2
x + ∂2

y + ∂2
z ] ,

we need to postulate for all i = 0, .., 4, that αiαj + αjαi = 2δij .

Obviously, the condition
[αi, αj ]+ = 2δij (29.10)

can not be satisfied if the αi are numbers. The idea of Dirac was to interpret the
variables αi as matrices. These matrices act as operators on appropriate states, which
are no longer scalar wavefunctions but vectors. Each component of the vector is a
wavefunction in the usual sense. The Hilbert space is extended to be the product
space of the usual spatial wavefunctions and a finite-dimensional vector space.

Example 176 (Calculation with matrices of operator): To give an idea
of how the algebra works we consider a general situation. As the operator we
choose the product, (

0 1

1 0

)
∂

∂x

and as the wavefunction vector we choose,(
eık1x

eık2x

)
.

Applying the operator on the state vector we get,(
0 1

1 0

)
∂

∂x

(
eık1x

eık2x

)
=

(
0 ∂

∂x
∂
∂x

0

)(
eık1x

eık2x

)
=

(
0 + ∂

∂x
eık2x

∂
∂x
eık1x + 0

)
=

(
ık2e

ık2x

ık1e
ık1x

)
.

The matrices αi must satisfy the condition (29.10). It is possible to show that this
requires at least four-dimensional matrices of the following form:

α0 =

(
−I 0

0 I

)
and αj =

(
0 σj

σj 0

)
, (29.11)

where j = x, y, z = 1, 2, 3. In this notation the components of the matrices are
themselves matrices, i.e. the Pauli spin matrices defined in (23.47). The state vector
must also have four dimensions,

⃗⃗
Φ(r, t) =

(
ϕ⃗(r, t)

χ⃗(r, t)

)
with ϕ⃗(r, t) =

(
ϕ1(r, t)

ϕ2(r, t)

)
and χ⃗(r, t) =

(
χ1(r, t)

χ2(r, t)

)
.

(29.12)
ϕj are called large components, χj are called small components. This designation is
explained later. Combining the matrices αj to a three-dimensional vector α⃗, we can
now write the Dirac equation (29.9) like,

ıℏ∂t
⃗⃗
Φ(r, t) =

(
mec

2α0 + cα⃗ · p
) ⃗⃗
Φ(r, t) . (29.13)
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Or, using the notation (29.11) and combining the Pauli matrices σj to a three-
dimensional vector σ⃗, we can write the Dirac equation as:

ıℏ
∂

∂t

(
ϕ⃗

χ⃗

)
=

[
mec

2

(
−I 0

0 I

)
+ c

(
0 σ⃗ · p

σ⃗ · p 0

)](
ϕ⃗

χ⃗

)
. (29.14)

The non-diagonal matrix, (
0 σ⃗ · p

σ⃗ · p 0

)
(29.15)

couples large and small components.

Example 177 (Covariant and relativistically invariant form of Dirac’s
equation): To demonstrate its relativistic invariance it is useful to rewrite the
Dirac equation in a way in which time and space appear on equal footings. For
this we introduce new matrices,

γ0 ≡ α0 and γk = γ0αk . (29.16)

We obtain,

γ0 =

(
−I 0

0 I

)
and γk =

(
0 σk

−σk 0

)
. (29.17)

We also define another important matrix by,

γ5 ≡ ıγ0γ1γ2γ3 =

(
0 I
I 0

)
. (29.18)

With this, using Einstein’s notation 3, the Dirac equation (29.12) adopts the
form,

ıℏγµ∂µψ −mcψ = 0 . (29.19)

The complete system is summarized in the Minkowski metrics of time-space in
the form,

[γµ, γν ]+ = 2ηµν , (29.20)

for µ, ν = 0, .., 5, that is, all matrices γk anticommute.
The Dirac equation can now be interpreted as an eigenvalue equation, where
the rest mass is proportional to the eigenvalue of a momentum quadrivector,
the proportionality constant being the speed of light:

Popψ = mcψ , (29.21)

Using ∂
/
in the Feynman slash notation, which includes the γ-matrices, as well

as a summation over the components of the spinor in the derivative, the Dirac
equation becomes:

ıℏ∂
/
ψ −mcψ = 0 . (29.22)

A fundamental theorem states that, if two distinct sets of matrices are given,
which both satisfy Clifford’s relations, then they are connected to each other by
a similarity transformation:

γ′µ = S−1γµS . (29.23)

3∂0 ≡ 1
c
∂t
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If, in addition, the matrices are all unitary, as is the case of Dirac’s set, then S
is unitary,

γ′µ = U†γµU . (29.24)

29.1.2.1 Anti-particles

Disregarding for a moment the non-diagonal matrix, the Dirac equation separates
into two independent equations,

ıℏ
∂ϕ⃗

∂t
= mec

2ϕ⃗ and ıℏ
∂χ⃗

∂t
= −mec

2χ⃗ . (29.25)

These are eigenenergy equations with the eigenvalues mec
2 and −mec

2. The state
with negative energy is interpreted as anti-particle. Therefore, the non-diagonal ma-
trix mixes particles and anti-particles. We will study in Exc. 29.1.5.2 the so-called
Zitterbewegung as a solution of the Dirac equation.

29.1.2.2 Particles and anti-particles in the non-relativistic limit

To reduce the Dirac equation to the non-relativistic Schrödinger equation, we first
need to get rid of the rest energy. To do so, we separate a fast oscillation, whose
frequency corresponds to the rest mass of the electron via the following ansatz, where
u and v vary slowly in time:

⃗⃗
Φ(r, t) = e−ıω0t

(
u(r, t)

v(r, t)

)
, ℏω0 = mec

2 , (29.26)

with the temporal derivative,

ıℏ
˙⃗
Φ⃗ =

[
mec

2

(
u

v

)
+ ıℏ

(
u̇

v̇

)]
e−ıω0t . (29.27)

We insert this into the Dirac equation,

[
mec

2

(
u

v

)
+ ıℏ

(
u̇

v̇

)]
e−ıω0t =

[
mec

2

(
u

−v

)
+ cσ⃗ · p

(
v

u

)]
e−ıω0t (29.28)

finally obtaining,

ıℏu̇ = c(σ⃗ · p)v , ıℏv̇ = c(σ⃗ · p)u− 2mec
2v . (29.29)

Since u and v only vary slowly in time, the derivatives on the left-hand side are small
quantities. However, the condition that both derivatives must zero is too strong,
because it leads to the trivial solution u = 0 and v = 0. We find the first non-trivial
solution by the condition v̇ = 0. The second equation then becomes,

v =
1

2mec
(σ⃗ · p)u . (29.30)
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Inserted into the first equation,

ıℏu̇ = c
(σ⃗ · p)2
2mec

u . (29.31)

We need, therefore, to evaluate the expression (σ⃗ · p)2,

σ⃗ · p =

(
pz px − ıpy

px + ıpy −pz

)
and (σ⃗ · p)2 = p2

(
1 0

0 1

)
. (29.32)

Inserted into the differential equation (29.31) for u we obtain precisely the Schrödinger
equation for a free particle,

ıℏu̇ =
p2

2me
u . (29.33)

Let us return to the question, why we call u the strong component. We have from
the equation (29.30),

v†v =
1

(2mec)2
(σ⃗ · p)2u†u =

1

2mec2
p2

2me
u†u , (29.34)

and since p2

2me
≪ mec

2 follows immediately v†v≪ u†u.
In this non-relativistic approximation the components u are much larger than the

components v. The mixture between particles and antiparticles only matters when
p2

2me
≃ mec

2, resp., 1
2mev

2 ≃ mec
2 or |v| ≃ c. The electron only receives small

positronic contributions as it approaches the speed of light. In the ground state of
the hydrogen atom the electron has a velocity of of v = αc ≃ c/137. That is, the
contribution of the weak components is small, but present.

Example 178 (Vanishing rest mass): Let us note that for the case of van-
ishing rest mass, me = 0, the Dirac equation (29.14) dramatically simplifies.
Taking the time derivative of the upper equation (29.14) and inserting the lower
equation (29.14), we find,

1

c2
∂2

∂t2
ϕ⃗ =

1

c2
cσ⃗ · p
ıℏ

∂

∂t
χ⃗ = − (σ⃗ · p)2

ℏ2
ϕ⃗ = −p2

ℏ2
ϕ⃗ = ∇2ϕ⃗ . (29.35)

I.e. we recover a Helmholtz type wave equation.

29.1.2.3 The spin

We consider the operator defined by [372, 373],

ŝ ≡ ℏ
2 σ⃗ , (29.36)

and we calculate the commutation relations between its components. From the defi-
nitions of the Pauli matrices (23.47) we obtain the rule,

[ŝx, ŝy] =
ℏ2

4

(
0 1

1 0

)(
0 ı

−ı 0

)
− ℏ2

4

(
0 ı

−ı 0

)(
0 1

1 0

)
=

ℏ2

4

(
−2ı 0

0 2ı

)
= ıℏŝz .

(29.37)
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In general terms the following holds true: [si, sj ] = ϵijkıℏsk. It is interesting to com-

pare this with the commutation relation for the orbital angular momentum [l̂i, l̂j ] =

ϵijkıℏl̂k. The coincidence suggests a generalization of the concept of angular mo-
mentum: We now call angular momentum operator every three-dimensional vector
operator satisfying this commutation relation 4. We consider the eigenvalue equation
for ŝz, which is incorporated in the Dirac equation,

ŝzϕ⃗ = ℏ
2

(
−1 0

0 1

)(
ϕ1

ϕ2

)
= msℏ

(
ϕ1

ϕ2

)
. (29.38)

The eigenvalues are obviously ms = ± 1
2 . The angular momentum related to the

matrices S is obviously half-integer. We are dealing here with a new type of angular
momentum, which is not included in the usual definition of orbital angular momentum
L = r × p. The new angular momentum is called intrinsic angular momentum or
spin of the particle. The spin represents a new structure or dimension additional to
space comparable to the polarization of light. The photons of a circularly polarized
light beam also contribute to an intrinsic angular momentum, which however in this
case is integer.

In Exc. 29.1.5.3 we will see that neither l̂z nor ŝz are constants of motion of the
Hamiltonian (29.14), but the sum ĵz ≡ l̂z + ŝz,

[ĵz, Ĥ] = 0 . (29.39)

29.1.2.4 The stationary Dirac equation

By a similar treatment as in the Schrödinger equation one can deduce a stationary
Dirac equation (29.13) via a separation of the time variable. Making for the time an
exponential ansatz,

ϕ⃗(r, t) = ϕ⃗(r)e−ıEt/ℏ and χ⃗(r, t) = χ⃗(r)e−ıEt/ℏ , (29.40)

we obtain coupled stationary equations for the large and small components,

(E −mec
2)ϕ⃗(r) = cσ · pχ⃗(r) and (E +mec

2)χ⃗(r) = cσ · pϕ⃗(r) . (29.41)

29.1.3 The relativistic electron in a central Coulomb field

29.1.3.1 Minimal coupling

In atomic physics we are mainly interested in electrons bound to a potential (e.g.,
generated by an atomic nucleus), that is, we must introduce electromagnetic forces
into the Dirac equation. Therefore, we now consider the interaction of a charged
particle with an electromagnetic field given by the vector potential A and by the
electrostatic potential U , such that the electric and magnetic fields,

E⃗ = −∇U − ∂A

∂t
and B⃗ = ∇×A , (29.42)

4This concept can be derived from the requirement of symmetry under rotation of space as
discussed in Sec. 23.5.
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allow to calculate the Coulomb-Lorentz force. In the Hamiltonian formulation of
electrodynamics the interaction can be described simply by the transition 5,

p̂ −→ p̂− qA ≡ π⃗ and Ĥ −→ Ĥ + qU . (29.43)

called the minimal coupling. We briefly mentioned this already in Sec. 23.5.4, and the
rules will be derived in Sec. 30.1. In addition to the substitution of the momentum,
we must add the scalar potential qU , and we obtain the Dirac equation for a particle
inside an applied electromagnetic field,

ıℏ
˙⃗
Φ⃗ =

(
mec

2α0 + cα⃗ · π⃗ + qU
) ⃗⃗
Φ , (29.44)

in generalization of Eq. (29.13).

29.1.3.2 Solving the stationary Dirac equation

Let us, for now, disregard external magnetic fields, A = 0. Then, the stationary Dirac
equation (29.41) becomes,

[E − qU(r)−mec
2]ϕ⃗(r) = cσ · pχ⃗(r) (29.45)

[E − qU(r) +mec
2]χ⃗(r) = cσ · pϕ⃗(r) .

For the Coulomb potential,

qU(r) = − 1

4πϵ0

e2

r
(29.46)

the Dirac equation can be solved algebraically [374, 541, 548, 471] 6. The calculation
is more complicated than the resolution of the Schrödinger equation for hydrogen
derived in Secs. 25.1.4 and 25.2.1 and will be sketched in the following.

Example 179 (Dirac equation in spherical coordinates): The goal of the
following calculation is to express the Dirac equation for an electron in a central
Coulomb field in spherical coordinates, i.e. r and pr = −ıℏ∂r instead of p. The
starting point is the Dirac equation (29.14),

ıℏ∂t ⃗⃗Φ(r, t) = Ĥ
⃗⃗
Φ(r, t) , (29.47)

with the Hamiltonian in the minimal coupling (29.43),

Ĥ ≡ mec
2α0 + cα⃗ · [p− qA(r)] + qU(r) (29.48)

with A = 0 and U(r) = − e2

4πε0r
.

We adopt the standard procedure from non-relativistic physics, which consists
in rewriting the Hamiltonian in terms of observables, which commute with the
Hamiltonian 7.

5In quadrivetorial notation: πµ = pµ − qAµ with pµ =

(
E/c

p

)
and Aµ =

(
U/c

A

)
.

6See also http://einstein.drexel.edu/∼bob/Term Reports/Whitehead 3.pdf
7Typical examples are the Hamiltonian of the harmonic oscillator (24.75) written in terms of

n̂ ≡ â†â or the Hamiltonian of the hydrogen atom (25.34) written in terms of L2.

http://einstein.drexel.edu/~bob/Term_Reports/Whitehead_3.pdf
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The goal is to calculate the quantity α⃗ · p appearing in the above Hamiltonian.
As a first steps we define the following quantities,

L ≡ r× p satisfying L× L = ıℏL

S ≡ ℏ
2
ς⃗ ≡ ℏ

2
γ5α⃗

J ≡ L+ S

ℏj′ ≡ α0(γ5α⃗ · L+ ℏ)

rε ≡ α⃗ · r

. (29.49)

remembering that γ5 = −ıα1α2α3 =

(
0 I
I 0

)
is the transformation exchanging

particles and anti-particles. The first important relationship we have to derive
is,

(α⃗ ·B)(α⃗ ·C) = (B ·C) + ıγ5α⃗ · (B×C) . (29.50)

It holds for [α⃗,B] = 0 = [α⃗,C] and will be proven in 29.1.5.4. Exploiting this
relationship, we see that the scalar quantity ε satisfies,

ε2 =
1

r2
(α⃗ · r)2 =

1

r2
[r · r+ ıα⃗ · (r× r)] = 1 . (29.51)

Furthermore, with the definition of j′ we show,

rεα⃗ · p = (α⃗ · r)(α⃗ · p) = r · p+ ıγ5α⃗ · (r× p) (29.52)

= r · p+ ıγ5α⃗ · L = rpr + ıα0ℏj′ − ıℏ ,

where the relationship r · p = rpr is verified in Exc. 29.1.5.5(c). Hence,

α⃗ · p = ε

(
pr +

ıℏ(α0j
′ − 1)

r

)
, (29.53)

The final radial Hamiltonian is,

Ĥ = mec
2α0 + cε

(
pr − ıℏ

r

)
+
ıcεα0ℏj′

r
− e2

4πε0r
. (29.54)

For now the choice of the quantities ε and j′ must seem arbitrary, so we will
have to discover their properties. We will see that j′ is a non-zero integer related
to the total angular momentum j. The following properties will be proven in
Exc. 29.1.5.5(a) and (b),

(ℏj′)2 = J2 + ℏ2
4

(29.55)

[ℏj′, Ĥ]− = [ε, Ĥ]− = [α0, Ĥ]− = 0 .

Hence, we got a collection of radial variables being constants of motion of the

Dirac Hamiltonian.

Example 180 (Resolving the spherical Dirac equation): We will now
search a solution to the spherical Dirac equation with the Hamiltonian (29.54).
Noticing that the matrix α0 is diagonal and the matrix ε counter-diagonal (just
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like the Dirac matrices α⃗), we may break down the stationary radial Dirac equa-
tion into 2 by 2 matrices. Using the fact that ε commutes with all other terms
and anti-commutes with α0 and that ε−1 = ε† is a unitary transformation, we
may go to a new basis via,(

mec
2 − e2

4πε0r
−ıcpr − c ℏr − c

ℏj′
r

icpr + c ℏ
r
− c ℏj′

r
−mec

2 − e2

4πε0r

)(
ϕ⃗

εχ⃗

)
= E

(
ϕ⃗

εχ⃗

)
. (29.56)

Substituting α = e2

4πε0ℏc
and a± ≡ ℏ

mec∓E/c (that is, ±mec
2 − E ≡ ± ℏc

a±
), we

find, (
1
a+
− α

r
− d
dr
− j′+1

r

d
dr
− j′−1

r
− 1
a−
− α

r

)(
ϕ⃗

εχ⃗

)
= 0 . (29.57)

Assuming the existence of solutions of the form,(
ϕ⃗

εχ⃗

)
=
e−r/a

r

(
f⃗

g⃗

)
, (29.58)

where a ≡ √a+a− = ℏ
(
m2
ec

2 − E2

c2

)−1

[that is, d
dr

e−r/a

r
= e−r/a

r

(
− 1
a
− 1

r

)
],

we find, (
1
a+
− α

r
− d
dr
− 1

a
− j′

r

d
dr
− 1

a
− j′

r
− 1
a−
− α

r

)(
f⃗

g⃗

)
= 0 . (29.59)

Next we expand the unknown function f⃗ and g⃗ as series,

f⃗(r) =

∞∑
s=−∞

fsr
s and g⃗(r) =

∞∑
s=−∞

gsr
s . (29.60)

These are then substituted into our system of equations. In order for the equa-
tion to go to zero as required, each term in the resulting series must separately
go to zero. The coefficient of the rs terms are,

fs
a+
− αfs+1 − (s+ 1 + j′)gs+1 +

gs
a

= 0 (29.61)

gs
a−
− αgs+1 − (s+ 1− j′)fs+1 +

fs
a

= 0 .

These can be combined by multiplying the first equation (29.61) by a and and
the second by a− and then subtracting the former from the latter. Exploiting
a
a+

=
a−
a
, this gives us an expression directly relating the fs coefficients with

the gs coefficients,

[αa− a+(s− j′)]fs + [αa− + a(s+ j′)]gs = 0 . (29.62)

To obtain the values of the coefficients we consider the boundary conditions.
The functions f⃗(r) and g⃗(r) must go to zero at r = 0, because the functions

ϕ⃗ and χ⃗ would otherwise diverge there due to the r−1 term. This means that
there is some smallest s below which the series does not continue. We call this
s0, and it has the property,

fs0−1 = gs0−1 = 0 . (29.63)
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Plugging this into the equations (29.61), we find,

αfs0 + (s0 + j′)gs0 = 0 (29.64)

αgs0 − (s0 − j′)fs0 = 0 .

Combining these equations we can write the value s0 in a very simple form,

s0 =
√
j′2 − α2 . (29.65)

This places a lower bound on the series. Note that this bound becomes imaginary
if α > j′. This will be discussed in more detail shortly.
The upper bound of the series is also useful. It can be shown that the series must
terminate if the energy eigenvalue is to be less than mec

2 [374]. The implication
of this result is that if the series terminates at index s1 such that,

fs1+1 = gs1+1 = 0 . (29.66)

Then, using equations (29.61) and (29.62), we have,

s1
a

=
1

2

(
1

a−
− 1

a+

)
α =

E

ℏc
α , (29.67)

where we have used the definitions of the coefficients a± to expand them. Squar-
ing this expression and expanding a using its definition, we get,

s21

(
mec

2 − E2

c2

)
= α2E

2

c2
. (29.68)

This can be solved for the energy eigenvalues,

E = ±mec
2

(
1 +

α2

s21

)−1/2

. (29.69)

Note that the ’negative energy’ solution corresponds to positron energy levels.
From here forward, we drop the negative root and look only at the electron
solution.
The two end points of the series, the indices s0 and s1 are separated by an
integer number of steps. Calling this integer n′ we can write,

s1 = n′ + s0 = n′ +
√
j′2 − α2 . (29.70)

Plugging this into (29.69) gives a result for the energy eigenvalues in terms of
only the two quantum numbers n′ and j′,

En′,j′ = mec
2

1 + α2(
n′ +

√
j′2 − α2

)2

−1/2

.

This is the final result quoted for the energy eigenvalues of the hydrogenic atom
by Dirac [374]. It turns out that later developments in the field [541, 548] prefer
to use an equivalent set of quantum numbers that maps more closely to the
familiar ones. The number j′ is closely related to the total angular momentum
quantum number j. j′ has the range 1, 2, 3, while j has the range 1

2
, 3

2
, 5

2
. It

is natural, and in fact correct, to make the identifications,

j′ = j + 1
2
, (29.71)
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and
n′ = n− j′ = n− j − 1

2
, (29.72)

for the principal quantum number n [541]. Combining these two adjustments
with equation (29.71), we get the Sommerfeld fine-structure formula,

En,j = mec
2

1 + α2(
n− j − 1

2
+
√

(j + 1
2
)2 − α2

)2

−1/2

, (29.73)

with j =
∣∣ℓ± 1

2

∣∣ and ℓ = 0, 1, ... The derivation of the form of the actual wave

functions ϕ⃗(r) and χ⃗(r) is very tedious [541] and will not be reproduced here.

The energy predicted by the Sommerfeld fine-structure formula (29.73) depends
on two quantum numbers. The degeneracy of the orbital angular momentum j is
lifted, and the new quantum number besides the main quantum number n is that of
the total angular momentum j. The intransparent expression can be expanded by α,

En,j ≃ mec
2

[
1− α2

2n2
− α4

2n3

(
1

j + 1/2
− 3

4n

)]
. (29.74)

The second term reproduces the energy of Bohr’s model, but there are correction
terms proportional to α4. We will show in Secs. 29.1.4, that the energy levels, called
fine structure, result from several relativistic corrections of different origins.

In the expression (29.74) for the electron energy in the Coulomb potential, the last
term is positive and proportional to 1/n4. It describes relaxation of the binding due
to the contribution of weak components. The term containing the quantum number
j is called the spin-orbit coupling. To better understand this contribution we must
first analyze more deeply the matrices σ⃗.

29.1.3.3 Dirac’s Hamiltonian in the sub-relativistic limit

Defining the energy E′ = E − mec
2, the stationary Dirac equation (29.45) for an

electron of charge q = −e in an external electrostatic potential U(r) can be written,

[E′ − qU(r)]ϕ⃗ = cσ⃗ · pχ⃗ and [E′ − qU(r) + 2mec
2]χ⃗ = cσ⃗ · pϕ⃗ . (29.75)

resolving the second equation for the wavefunction χ⃗ and substituting it into the first,

E′ϕ⃗ = qU(r)ϕ⃗+ σ⃗ · p 1

2me

(
1 +

E′ − qU(r)

2mec2

)−1
σ⃗ · pϕ⃗ . (29.76)

In the non-relativistic limit,

E′ − qU ≃ p2

2me
≪ mec

2 , (29.77)

we get by Taylor expansion of the second term in the bracket,

E′ϕ⃗ ≃ qU(r)ϕ⃗+ σ⃗ · p 1

2me

(
1− E′ − qU(r)

2mec2

)
σ⃗ · pϕ⃗ . (29.78)
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Now, σ⃗ ·p is an operator entity, which acts on the subsequent operators and wavefunc-
tions. We thus have to apply the product rule, (σ⃗ · p)V ψ = V (σ⃗ · p)ψ + [(σ⃗ · p)V ]ψ,
to the first occurrence of operator this operator in equation (29.76),

E′ϕ⃗ ≃ qU(r)ϕ⃗+ 1
2me

(
1− E′−qU(r)

2mec2

)
(σ⃗ · p)2 ϕ⃗+ q

4m2
ec

2 [(σ⃗ · p)U(r)](σ⃗ · p)ϕ⃗ . (29.79)

In the following we will make use of a general relationship which is similar to (29.50),

(σ⃗ ·B)(σ⃗ ·C) = (B ·C) + ıσ⃗ · (B×C) . (29.80)

It holds for [σ⃗,B] = 0 = [σ⃗,C] and will be demonstrated in Exc. 29.1.5.4. The
relationship yields,

(σ⃗ · p)2 = p2 and [σ⃗ · pU(r)](σ⃗ · p) = pU(r) · p+ ıσ⃗ · [pU(r)× p] , (29.81)

so that expressing the momentum operator by p = −ıℏ∇ wherever it acts on the
potential,

E′ϕ⃗ ≃ qU(r)ϕ⃗+ 1
2me

(
1− E′−qU(r)

2mec2

)
p2ϕ⃗− ℏ2q

4m2
ec

2∇U(r) ·∇ϕ⃗+ ℏ
4m2

ec
2 σ⃗ · [∇U(r)×p]ϕ⃗ .

(29.82)
Also, with U(r) = U(r),

∇U(r) =
∂U

∂r
∇r = ∂U

∂r

r

r
and ∇U(r) · ∇ =

∂U

∂r
êr · ∇ =

∂U

∂r

∂

∂r
. (29.83)

We get,

E′ϕ⃗ = qU(r)ϕ⃗+
1

2me

(
1− E′ − qU(r)

2mec2

)
p2ϕ⃗− ℏ2

4m2
ec2

∂qU

∂r

∂

∂r
ϕ⃗+

ℏq
4m2

ec2
σ⃗ ·
[
1

r

∂U

∂r
r× pϕ⃗

]
≃
(

p2

2me
+ qU(r)− p4

8m3
ec2

+
q

2m2
ec2

1

r

∂U

∂r
s · l− ℏ2q

4m2
ec2

∂U

∂r

∂

∂r

)
ϕ⃗ . (29.84)

where we again applied the non-relativistic approximation (29.77) in the second line
and made use of the definitions s = ℏ

2 σ⃗ and l = r × p. The term in the bracket can
be used as the Hamiltonian allowing to calculate the fine structure as first-order per-
turbations to the non-relativistic energy levels obtained from non-relativistic theory,

Ĥ ≃ p2

2me
− 1

4πε0

e2

r
− p4

8m3
ec

2
− e

2m2
ec

2

1

r

∂U

∂r
s · l− ℏ2e

4m2
ec

2

∂U

∂r

∂

∂r
. (29.85)

The first two terms are those arising from Bohr’s atom model, the third one is a
correction due to the relativistic velocity of the electron, the forth comes from the
electron’s spin-orbit coupling, and the fifth is called the Darwin term. All contri-
butions represent perturbations to the non-relativistic Schrödinger theory of Bohr’s
atom and will be discussed extensively in Secs. 29.2. We will show in 29.1.5.6 that l̂2,
ŝ2, and ĵ2 are constants of motion of the above Hamiltonian.
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29.1.4 The Pauli equation

When we calculated the electron’s energy in the Coulomb potential (29.85), we only
considered the electrostatic potential of the nucleus, letting the potential vector A be
zero. As long as we do not apply an external magnetic field this is correct, because the
internal magnetism of the atom is already completely enclosed in the Dirac equation.
On the other hand, we know that the atom contains moving charges, that is, currents
which generate magnetic fields 8. Furthermore, the spins of the electron and of the
proton produce magnetic moments, which ought to interact with the magnetic fields.
Hence, the existence of magnetic effects in an atom is to be expected.

These magnetic effects can be discussed in a more transparent way applying a
Schrödinger-like equation with minimal coupling to electromagnetic fields (29.43) to

a two-component spinor ϕ⃗. This Schrödinger-like equation can be obtained from
Dirac’s equation (29.75) via a stronger non-relativistic approximation, which consists
in completely neglecting the weak component [E′ − qU(r)]χ⃗. On the other hand, we
allow for the existence of magnetic fields via the substitution p → π⃗. The equation
for the strong component (29.76) then becomes,

E′ϕ⃗ = qU(r)ϕ⃗+
(σ⃗ · π⃗)2
2me

ϕ⃗ . (29.86)

We can again apply the formula (29.80) to calculate,

(σ⃗ · π⃗)2ψ = π⃗2ψ + ıσ⃗ · (π⃗ × π⃗)ψ = π⃗2ψ + ıqσ⃗ · [−p×A(r)−A(r)× p]ψ (29.87)

= π⃗2ψ − ℏqσ⃗ · {∇ × [A(r)ψ] +A(r)×∇ψ}
= π⃗2ψ − ℏqσ⃗ · [∇×A(r)]ψ = [p− qA(r)]2ψ − ℏqσ⃗ · B⃗(r)ψ .

In the case of an electron (e = −q) we obtain the so-called Pauli equation,

E′ϕ⃗ =

[
1

2me
(−ıℏ∇+ eA)

2
+

eℏ
2me

σ⃗ · B⃗ − eU(r)

]
ϕ⃗ , (29.88)

which corresponds to a Schrödinger-like equation for a two-component spinor ϕ⃗ with
the Hamiltonian,

Ĥ ≃ p2

2me
− 1

4πε0

e2

r
− ıℏe

2me
(∇ ·A+A · ∇) + e

me
s · B⃗ , (29.89)

neglecting terms in A2. Note however, that the kinetic energy is calculated with the
momentum projected onto the spin, σ⃗ · π⃗. The third term can be simplified within the
Coulomb gauge ∇ ·A = 0 yielding,

Ĥint =
e

me
(A · p) . (29.90)

The Pauli equation serves for a classical (non-relativistic) approach to the elec-
tron’s spin-orbit coupling, as we will see below and in the discussion of the fine
structure in Sec. 29.2.2.

8The spin of the electron does not generate a magnetic field, in contrast to the angular momentum
caused by its orbital motion. It only interacts with the environment through the requirement of
symmetrization for being a fermion.
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29.1.4.1 Dipole moment of the orbital angular momentum

The rotational motion of a charge, −e, creates a current I, corresponding to a current
density,

j(r′) = Iêϕδ(r − r′)δ(z′) = −e
v

2πr
δ(r − r′)δ(z′) . (29.91)

Hence, the dipole moment caused by the circular motion of an electron is,

µ⃗ℓ =
1

2

∫

V

r× j(r′)d3r′ (29.92)

=
1

4π
r×

∫ 2π

0

dϕ′
∫ ∞

−∞
dz′
∫ ∞

0

r′dr′
−ev
r
δ(r − r′)δ(z′) = −1

2 er× v =
−e
2me

l ,

with the angular momentum l = r × mev. The quotient γe ≡ −e/2me is called
gyromagnetic ratio of the electron. We often use the Bohr magneton, µB ≡ ℏe/2me,
which represents the elementary unit of spin,

µ⃗ℓ
µB

= −gl
l

ℏ
. (29.93)

The g-factor of a system having any angular momentum l is defined as a proportion-
ality constant between the normalized dipole moment and the normalized angular
momentum. gℓ ≡ µℓ

ℓµB
= 1 takes into account possible corrections between our classi-

cal derivation and quantum mechanics.

29.1.4.2 Pauli’s model of spin-orbit coupling

The aim of this section is to demonstrate the relationship between the spin-orbit
coupling term in Dirac’s Hamiltonian (29.85) and the spin-magnetic field coupling
term in Pauli’s Hamiltonian (29.89).

A comparison of Pauli’s expression with the energy of a magnetic moment in the
field B⃗,

Ĥℓs = −µ⃗s · B⃗ , (29.94)

suggests the following connection between the spin and the magnetic moment:

−µ⃗s · B⃗ =
eℏ
2me

σ⃗ · B⃗ =
e

me
s · B⃗ . (29.95)

We conclude, that the electron carries, besides mass, charge and spin, also a magnetic
dipole moment,

µ⃗s
µB

= − e

meµB
s = −2 s

ℏ
, (29.96)

For the g-factor of the electron, we obtain ge = 2 9. Neutron and proton are also
fermions with spin 1

2 , but they do not obey the Dirac equation! Their g-factors are

9The exact value is ge ≡ µs
sµB

= 2.002319314... The deviation ge − 2 ≃ α
π

− 0.164α
2

π2 is due to

the coupling of the spin to the fluctuations of the electromagnetic vacuum. We need to use quantum
electrodynamical methods to calculate the corrections.
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gproton = 5.5858 and gneutron = −3.8261. The large deviation from g = 2 points to
the existence of an internal structure.

The rapid motion of the electron within the electrostatic field E⃗ of the nucleus pro-
duces, following the theory of relativity, in the electron’s reference frame a magnetic
field B⃗′ with which the electronic spin can interact. As we will show in Exc. 29.1.5.7,
the field seen by the electron can be approximated in first order in v/c by,

B⃗′ ≃ v

c2
× E⃗ . (29.97)

With this the interaction energy (29.94) becomes,

Ĥℓs = −µ⃗s · B⃗′ =
e

mec2
s · (v × E⃗) = − e

m2
ec

2
s · (p×∇U) (29.98)

= − e

m2
ec

2
s ·
(
p× r

r

∂U

∂r

)
= − 1

m2
ec

2r
s · l∂V (r)

∂r
,

with V (r) = −eU(r).
The resulting interaction energy coincides, apart from a factor 1

2 [1299], with the
one obtained in the from Dirac’s equation (29.85). The deviation, called Thomas fac-
tor, is due to the necessity to transform back into the inertial system of the nucleus.
This transformation, called Thomas precession, must be done by a Lorentz trans-
formation, which is not trivial with electron continuously changing its propagation
direction on its circular orbit. The transformation introduces the additional factor of
1
2

10.

29.1.5 Exercises

29.1.5.1 Ex: Yukawa potential

Show, that Yukawa’s potential satisfies the Klein-Gordon equation.

Solution: We have,

1

r2
∂

∂r
r2
∂

∂r

emcr/ℏ

r
=
m2c2

ℏ2
e2πmcr/h

r
.

29.1.5.2 Ex: Zitterbewegung

Zitterbewegung is a hypothetical rapid motion of elementary particles, in particular
electrons, that obey the Dirac equation. The existence of such motion was first pro-
posed by Erwin Schrödinger in 1930 as a result of his analysis of the wave packet
solutions of the Dirac equation for relativistic electrons in free space, in which an
interference between positive and negative energy states produces what appears to be
a fluctuation (at the speed of light) of the position of an electron around the median,

10This is a kinematic effect in space-time: the Lorentz transformations for systems moving with
non-collinear velocities can not simply be concatenated, but must be rotated, too [471, 659].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_PotencialYukawa.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices00.pdf
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with a frequency of 2mec
2/ℏ, or approximately 1.6 · 1021 rad/s. For the hydrogen

atom, the Zitterbewegung produces the Darwin term which plays the role in the fine
structure as a small correction of the energy level of the s-orbitals.
Use the Heisenberg equation to derive, from Dirac’s Hamiltonian, equations of motion
for the position operator r̂ and the ’velocity operator’ ˆ⃗α. Solve the equation of motion
and identify the Zitterbewegung.
Zitterbewegung of a free relativistic particle has never been observed experimentally.
However, it has been simulated twice. First, with a trapped ion, by putting it in
an environment such that the non-relativistic Schrödinger equation for the ion has
the same mathematical form as the Dirac equation (although the physical situation
is different) [503]. Then, in 2013, it was simulated in a setup with Bose-Einstein
condensates [778].

Solution: For a free electron, the time-dependent Dirac equation (29.13) is writ-
ten as,

Ĥ
⃗⃗
Φ(r, t) = ıℏ

∂
⃗⃗
Φ

∂t
(r, t) ,

where
⃗⃗
Φ(r, t) is the wavefunction (bispinor) of the electron, and Ĥ = mec

2α0 + cα⃗ ·p
is Dirac’s Hamiltonian. The Heisenberg picture implies that any operator Q̂ obeys the
equation,

−ıℏ∂Q̂
∂t

= [Ĥ, Q̂] .

In particular, the time-dependence of the position operator is given by

ℏ
∂r(t)

∂t
= ı[Ĥ, r] = ℏcα⃗ ,

where r(t) is the position operator at time t. The above equation shows that the
operator α⃗ can be interpreted as a ’velocity operator’. To add time-dependence to α⃗,
one implements the Heisenberg picture, which says,

α⃗(t) = eıĤt/ℏα⃗e−ıĤt/ℏ .

The time-dependence of the velocity operator is given by

ℏ
∂α⃗(t)

∂t
= ı[Ĥ, α⃗]− = ımec

2[α0, α⃗]− + c[α⃗ · p, α⃗]− .

This expression can be simplified using [αm, αn]+ = 2δmn for all m,n = 0, .., 3, since
with k = 1, .., 3,

ı[Ĥ, αk] = ımec
2[α0, αk]− + ıc[αnpn, αk]−

= 2ımec
2α0αk + ıcpn[αn, αk]−

= 2ımec
2α0αk + 2ıcpnαnαk(1− δnk)

= −2ımec
2αkα0 + 2ıcpk − 2ıcαkαnpn

= 2ıcpk − 2ımec
2αkα0 − 2ıcαkα⃗ · p

= 2ı
[
cpk − αk(mec

2α0 + cα⃗ · p)
]
= 2ı(cpk − αkĤ) .
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With this we get,

ℏ
∂α⃗(t)

∂t
= 2ı(cp− α⃗Ĥ) .

Now, because both p and Ĥ are time-independent, the above equation can easily be
integrated twice to find the explicit time-dependence of the position operator. First:

α⃗(t) =
(
α⃗(0)− cpĤ−1

)
e−

2ıĤt
ℏ + cpĤ−1 ,

and finally

r(t) = r(0) + c2pĤ−1t+ 1
2 ıℏcĤ

−1(α⃗(0)− cpĤ−1)
(
e−2ıĤt/ℏ − 1

)
.

The resulting expression consists of an initial position, a motion proportional to time,
and an unexpected oscillation term with an amplitude equal to the Compton wave-
length, hc/Ĥ ≃ h/mec ≡ λC . That oscillation term is the so-called Zitterbewegung.
The Zitterbewegung term vanishes on taking expectation values for wave-packets that
are made up entirely of positive- (or entirely of negative-) energy waves. This can
be achieved by taking a Foldy-Wouthuysen transformation. Thus, we arrive at the
interpretation of the Zitterbewegung as being caused by interference between positive-
and negative-energy wave components.

29.1.5.3 Ex: Constants of motion of Dirac’s Hamiltonian 1

Show that L̂z with L̂ ≡ r× p̂ and Ŝz with Ŝ ≡ ℏ
2γ5α⃗ defining γ5 ≡ −ıα1α2α3 are not

constants of motions, but Ĵ = L̂+ Ŝ, that is,

[Ĥ, Ĵz] = [Ĥ, L̂z + Ŝz] = 0 . (29.99)

Solution: Explicitly we have Ŝz = ℏ
2

(
σz 0

0 σz

)
. Now we calculate with Dirac’s

Hamiltonian (29.13),

[Ĥ, L̂z] = [mec
2α0

0
+ cα⃗ · p, L̂z] =

∑

k

cαkpk(xpy − ypx)− c(xpy − ypx)αkpk

= cα1pxxpy − cxpyα1px − cα2pyypx + cypxα2py = −ıℏc(α1py − α2px)

= −ıℏc(α⃗× p)z .

Hence, [Ĥ,L] = −ıℏcα⃗ × p. With αj = α−1j = α†j for all j = 1, .., 3 and for γ5 it is
obvious to verify,

γ5α3α1 = ıα2 = −α1γ5α3 , α2γ5α3 = ıα1 = −γ5α3α2 .

With this,

[Ĥ, Ŝz] = [mec
2α0

0
+ cα⃗ · p, γ5Ŝz] =

∑

k

cαkpk
ℏγ5
2 α3 − ℏγ5

2 α3cαkpk

= ℏ
2 c(α1γ5α3 − γ5α3α1)px +

ℏ
2 c(α2γ5α3 − γ5α3α2)py

= ℏ
2 c(−ıα2 − ıα2)px +

ℏ
2 c(ıα1 + ıα1)py = ℏcıα1py − ıℏcα2px = ıℏc(α⃗× p)z .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices01.pdf
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Comparing the results of the two calculations, we conclude,

[Ĥ, Ĵz] = [Ĥ, L̂z + Ŝz] = 0 .

29.1.5.4 Ex: Calculating with Dirac matrices

a. Prove that, if [B, σ⃗] = 0 = [C, σ⃗] where σ⃗ are the Pauli matrices, then,

(σ⃗ ·B)(σ⃗ ·C) = B ·C+ıσ⃗ · (B×C) . (29.100)

b. Prove that, if [B, α⃗] = 0 = [C, α⃗] where α⃗ are the Dirac matrices, then,

(α⃗ ·B)(α⃗ ·C) = B ·C+ıγ5α⃗ · (B×C) . (29.101)

c. Show that the spin defined as,

S = ℏ
2 ς⃗ where ς⃗ ≡ γ5α⃗ = I⊗ σ⃗ (29.102)

obeys different commutation rules than the Dirac matrices.
d. Conclude that,

(ς⃗ ·B)(ς⃗ ·C) = B ·C+ıς⃗ · (B×C) . (29.103)

Solution: a. Using [σk, σm]+ = 2δkm we derive,

(σxBx + σyBy + σzBz)(σxCx + σyCy + σzCz)

=
∑

j

σ2
jBjCj + σyByσzCz + σzBzσyCy + σzBzσxCx + σxBxσzCz + σxBxσyCy + σyByσxCx

= B ·C+ σyσz(B×C)x + σzσx(B×C)y + σxσy(B×C)z

= B ·C+ ıσx(B×C)x + ıσy[(B×C)y + ıσz(B×C)z .

b. Using [αi, αj ]+ = 2δij we derive,

(αxBx + αyBy + αzBz)(αxCx + αyCy + αzCz)

=
∑

j

α2
jBjCj + αyByαzCz + αzBzαyCy + αzBzαxCx + αxBxαzCz + αxBxαyCy + αyByαxCx

= B ·C+ αyαz(B×C)x + αzαx(B×C)y + αxαy(B×C)z

= B ·C+ ıγ5αx(B×C)x + ıγ5αy[(B×C)y + ıγ5αz(B×C)z .

c. Using the commutation rules for m,n = 0, .., 3,

[αm, αn]+ = 2δmn and [γ5, α0]+ = 0 = [γ5, α⃗]− = 0 ,

we deduce for m,n = 1, .., 3,

[ςm, ςn]+ = [αm, αn]+ = 2δmn and [ς⃗ , α0]− = 0 = [α⃗, α0]+ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices02.pdf
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On the other hand,

[ςm, ςn]− = ıℏ(I2 ⊗ σm)(I2 ⊗ σn)− ıℏ(I2 ⊗ σn)(I2 ⊗ σm)

= ıℏ(I2 ⊗ σmσn)− ıℏ(I2 ⊗ σnσm) = ıℏI2 ⊗ [σm, σn]

= ıℏϵkmn(I2 ⊗ σk) = ıℏϵkmnςk ,

and

[αm, αn]− = [γ5ςm, γ5ςn]− = [ςm, ςn]− = ıℏϵkmnςk
= ıℏϵkmnγ5αk ̸= ıℏϵkmnαk .

d. Follows trivially from (b) and (c).

29.1.5.5 Ex: Constants of motion of Dirac’s Hamiltonian 2

In this exercise we will prove the relationships (29.55):
a. Prove,

(ℏj′)2 = J2 + ℏ2

4 . (29.104)

b. Prove,
[ℏj′, Ĥ]− = 0 . (29.105)

c. Prove,

r · p = −ıℏr ∂
∂r

. (29.106)

d. Prove,
[ε, Ĥ]− = 0 . (29.107)

Solution: a. We start inserting the definition of ℏj′ ≡ [α0(γ5α⃗ · L+ ℏ),

(ℏj′)2 = [α0(γ5α⃗ · L+ ℏ)]2

= (α0γ5α⃗ · L)(α0γ5α⃗ · L) + (α0ℏ)(α0γ5α⃗ · L) + (α0γ5α⃗ · L)(α0ℏ) + ℏ2α2
0 .

Using the commutation rules [αm, αn]+ = 2δmn for m,n = 0, .., 3 and [γ5, αm]− = 0
for m = 1, 2, 3, but [γ5, α0]+ = 0, we can simplify,

(ℏj′)2 = (α⃗ · L)(α⃗ · L) + 2ℏγ5α⃗ · L+ ℏ2

= L · L+ ıγ5α⃗ · (L× L) + 2ℏγ5α⃗ · L+ ℏ2

using the formula (29.101). Using L× L = ıℏL we find,

(ℏj′)2 = L2 + ℏγ5α⃗ · L+ ℏ2 = (L+ ℏγ5α⃗) · L+ ℏ2 ,

and substituting J = L+ ℏ
2γ5α⃗,

(ℏj′)2 =
(
J+ ℏ

2γ5α⃗
)
·
(
J− ℏ

2γ5α⃗
)
+ ℏ2 = J2 − ℏ2

4 α⃗
2 + ℏ2 = J2 + ℏ2

4 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices03.pdf
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where we finally used α⃗ · α⃗ = 3 11.
b. Using the formula derived in 29.1.5.3 we find quickly,

(α⃗ · p)(α⃗ · L) = p · L 0
+ ıα⃗ · (p× L)

(α⃗ · L)(α⃗ · p) = L · p 0
+ ıα⃗ · (L× p) .

The premisses for the formula (29.100) to be applicable, [αj , pj ] = 0 = [αj , Lj ] are
satisfied, because αj are constants and pj and Lj are scalars. With this, respecting
[xk, pm] = ıℏδkm,

(α⃗ · p)(α⃗ · L) + (α⃗ · L)(α⃗ · p) = ıα⃗ · (p× L)+ıα⃗ · (L× p)

= ıαxpyLz − ıαxpzLy + ıαxLypz − ıαxLzpy + ...terms in αy and αz

= ıαxpy(xpy − ypx)− ıαxpz(zpx − xpz) + ıαx(zpx − xpz)pz − ıαx(xpy − ypx)py+
+ ...terms in αy,z

= ıαxxp
2
y − ıαxxp2y + ıαxxp

2
z − ıαxxp2z − ıαxpyypx − ıαxpzzpx + ıαxzpxpz + ıαxypxpy+

+ ...terms in αy,z

= ıαx[y, py]px + ıαx[z, pz]px + ...terms in αy,z

= −2ℏαxpx + ...terms in αy,z = −2ℏα⃗ · p .

This result can be rewritten as,

[α⃗ · p, α⃗ · L+ ℏ]+ = 0 .

Consequently,
[α⃗ · p, α0(γ5α⃗ · L+ ℏ)]− = [α⃗ · p, ℏj′]− = 0 .

It is easy to see,

[ℏj′,mec
2α0]− = 0 =

[
ℏj′,− e2

4πε0r

]
.

Finally, [ℏj′, Ĥ]− = 0 .
c. Using the representation of the gradient in spherical coordinates,

r · p = rêr · (−ıℏ)
(
êr

∂

∂r
+

êθϑ

r

∂

∂ϑ
+

êθφ

r sinϑ

∂

∂φ

)
= −ıℏr ∂

∂r
.

d. It is easy to see,

rεα0 = α⃗ · rα0 = α⃗α0 · r = −α0α⃗ · r = −α0α⃗ · r = −α0rε .

We also calculate,

[α⃗·r, r·p] = (α⃗·r)(r·p)−(r·p)(α⃗·r) = α⃗·[r(r·p)−(r·p)r] = α⃗·[r, r·p] = α⃗·(r·[r,p]) = ıℏα⃗·r ,
or [rε, rpr]− = ıℏεr. Hence,

[
ε, ε

(
pr − ı

ℏ
r

)]

−
= 0 .

11Not to confuse with α⃗†α⃗ = 1.
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29.1.5.6 Ex: Constants of motion in the L · S-coupling

Consider a particle of mass µ described by the Hamiltonian Ĥ = − ℏ2

2µ∇2 + V (r) +

ξ(r)L · S, being V (r) a central potential, L and S its orbital angular momentum and
spin.
a. Obtain the commutation relations [L, Ĥ], [S, Ĥ] and [L+S, Ĥ] for the cases with-
out and with spin-orbit interaction ξ(r)L · S introduced by relativistic corrections.
b. Calculate [L2, Ĥ], [S2, Ĥ] and [J2, Ĥ].

Solution: a. Without spin-orbit interaction we have,

[L,− ℏ2

2µ∇2 + V (r)] = [S,− ℏ2

2µ∇2 + V (r)] = [J,− ℏ2

2µ∇2 + V (r)] = 0 .

This is obvious, since we know [Lz, Ĥ0] = 0, and since without spin-orbit interaction
the atom is completely round, the same has to be valid for any other axis: [Lx, Ĥ0] =
[Ly, Ĥ] = 0. With interaction,

[L, H] = [L,− ℏ2

2µ
∇2 + V (r) + ξ(r)L · S] = ξ(r)[L, LxSx + LySy + LzSz]

= ξ(r)










Lx

Ly

Lz


 , Lx


Sx +






Lx

Ly

Lz


 , Ly


Sy +






Lx

Ly

Lz


 , Lz


Sz





= ıℏξ(r)S× L ,

using [Lx, Ly] = ıℏLz. Analogously,

[S, Ĥ] = ıℏξ(r)L× S .

Finally,

[J, Ĥ] = [J,− ℏ2

2µ
∇2 + V (r) + ξ(r)L · S] = ξ(r)

2
[J,J2 − L2 − S2] = 0 .

Using the results of Excs. 25.4.5.2 and 25.4.5.11.
b. In the same way,

[L2, Ĥ] = L · [L, Ĥ] + [L, Ĥ] · L = ıℏξ(r)L · (S× L) + ıℏξ(r)(S× L) · L = 0 .

In the same way,

[S2, Ĥ] = 0 = [J2, Ĥ] .

29.1.5.7 Ex: Magnetic field generated by the orbiting proton at the
location of the electron

Calculate the magnetic field generated by the orbiting proton as it is perceived by the
electron.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_DiracMatrices06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RelativisticHydrogen01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RelativisticHydrogen01.pdf
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Solution: In relativistic mechanics defined by the metric and Lorentz transform,

ηµν ≡




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 , Λµν ≡




γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ




where β ≡ v/c and γ ≡ 1/
√

1− β2, the Maxwell field tensor is given by

Fµν ≡




0 − 1
c E⃗x − 1

c E⃗y − 1
c E⃗z

1
c E⃗x 0 −B⃗z B⃗y
1
c E⃗y B⃗z 0 −B⃗x
1
c E⃗z −B⃗y B⃗x 0


 .

With this we can calculate the transformed field in an inertial system,

F ′µν = Λ α
µ FαβΛ

β
ν = ηµηΛ

ηαFαβΛ
βκηκν

=




0 −γc E⃗x + γβB⃗y −γc E⃗y − γβB⃗x − 1
c E⃗z

γ
c E⃗x − γβB⃗y 0 −B⃗z −γ βc E⃗x + γB⃗y
γ
c E⃗y + γβB⃗x B⃗z 0 −γ βc E⃗y − γB⃗x

1
c E⃗z γ βc E⃗x − γB⃗y γ βc E⃗y + γB⃗x 0


 ,

giving at low velocities (γ → 1) and knowing v = vzêz,

E⃗ ′ =



E⃗ ′x
E⃗ ′y
E⃗ ′z


 =



E⃗x − βcB⃗y
E⃗y + βcB⃗x
E⃗z


 =



E⃗y + vyB⃗z − vzB⃗y
E⃗y + vzB⃗x − vxB⃗z
E⃗z + vxB⃗y − vyB⃗x


 = E⃗ + v × B⃗

B⃗′ =



B⃗′x
B⃗′y
B⃗′z


 =



B⃗x + β

c E⃗y
B⃗y − β

c E⃗x
B⃗z


 =



B⃗x + 1

c2 vzE⃗y − 1
c2 vyE⃗z

B⃗y + 1
c2 vxE⃗z − 1

c2 vzE⃗x
B⃗z + 1

c2 vyE⃗x − 1
c2 vxE⃗y


 = B⃗ +

v

c2
× E⃗ .

The first equation is the Lorentz force. The second only becomes important for rel-
ativistic velocities. Thus, the field seen by the electron can be approximated in first
order in v/c by,

B⃗′ ≃ v

c2
× E⃗ .

29.2 Fine structure of hydrogen-like atoms via TIPT

The wave equation that simultaneously satisfies the requirements of quantum mechan-
ics and special relativity is the Dirac equation. In free space including electromagnetic
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interactions it describes all massive particles of semi-integer spin with parity as a sym-
metry, such as electrons and quarks. It was the first theory to fully explain special
relativity in the context of quantum mechanics. The Dirac equation describes the fine
structure of the hydrogen spectrum in a completely rigorous manner. The equation
also implied the existence of a new form of matter, antimatter, previously unsus-
pected and unobserved. The equation also justifies a posteriori the introduction of
spinors, that is, of the vector wavefunctions introduced by Pauli in a heuristic way.
We have seen in the last section that, in the limit of high but non-relativistic veloci-
ties, the Dirac equation adopts the form of a Schrödinger equation with the modified
Hamiltonian (29.85),

Ĥ = Ĥ0 + Ĥrl + Ĥℓs + Ĥdw + Ĥlamb (29.108)

=

(
p2

2me
− Ze2

4πε0r

)
− p4

8m3
ec

2
+

1

2m2
ec

2

1

r

dV

dr
l · s+ πℏ2

2m2
ec

2

Ze2

4πε0
δ3(r) + Ĥlamb .

We will discuss the various terms in the following sections. Note that the expression
for the Darwin term differs from that of (29.85). We will see in Exc. 29.2.6.1, that
they are, in fact, equivalent.

29.2.1 Correction for relativistic velocities

The first correction in the expression, Ĥrl in Eq. (29.108), comes from the expansion
of the relativistic energy for small velocities up to second order,

Ekin =
√
p2c2 +m2

ec
4 ≃ mec

2 +
p2

2me
− p4

8m3
ec

2
+ ... . (29.109)

The correction is of the order of magnitude,

Hrl

H0
=

p4

8m3
ec

2

p2

2me

=
v2

4c2
≃ α2

4
≈ 0.01% . (29.110)

Due to the degeneracy of these states, it would be appropriate to use perturbation
theory with degenerate states. However, as Ĥrl only depends on spatial coordinates
commuting with l and s, the degeneracy is not very important, since Ĥrl is already
diagonal in the base |n, ℓ,m⟩, that is, ⟨n, ℓ,m|n′, ℓ′,m′⟩ = δℓℓ′δmm′ . Starting from,

Ĥrl = −
p4

8m3
ec

2
= − 1

2mec2

(
p2

2me

)2

= − 1

2mec2

(
Ĥ0 +

Ze2

4πε0r

)2

(29.111)

= − 1

2mec2

(
Ĥ0 −

2Enn
2

r̃

)2

,

with r̃ ≡ Zr
aB

and using as an abbreviation the energies of hydrogen following Bohr’s
model,

En = ⟨n, ℓ|Ĥ0|n, ℓ⟩ = −
Z2e2

4πε0

1

2aBn2
= −mec

2

2

Z2α2

n2
. (29.112)
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We have

∆Erl = ⟨n, ℓ|Ĥrl|n, ℓ⟩ (29.113)

= − 1

2mec2

[
⟨n, ℓ|Ĥ2

0 |n, ℓ⟩ − ⟨n, ℓ|
4Enn

r̃
Ĥ0|n, ℓ⟩+ ⟨n, ℓ|

(
2Enn

r̃

)2

|n, ℓ⟩
]

=
Z2α2

4Enn2

[
E2
n − 4E2

nn
2 1

n2
+ 4E2

nn
4 1

n3(ℓ+ 1
2 )

]
,

using the eigenvalues calculated in (25.53). Finally, we obtain the following relativistic
correction,

∆Erl = En(Zα)
2

[
1

n(ℓ+ 1
2 )
− 3

4n2

]
. (29.114)

Obviously, the degeneracy with respect to the angular momentum ℓ is lifted by this
correction.

29.2.2 Correction due to spin-orbit coupling

The second correction, Ĥℓs in the expression (29.108), called spin-orbit interaction,
is a relativistic correction due to the fact that the electron moves rapidly within the
electrostatic field E⃗ generated by the nucleus. Considering the fundamental orbit
and the fact that the angular momenta are of the order of ℏ we can estimate the
importance of this effect,

Hℓs

H0
=

1
2m2

ec
2
1
r

e2

4πε0r2
l · s

p2

2me

≃
1

2m2
ec

2
e2

4πε0
1
a3B

ℏ2

e2

4πε0aB

=
1

2m2
ec

2

ℏ2

a2B
=
α2

2
≈ 0.01% . (29.115)

Example 181 (Classical derivation of the spin-orbit interaction): In
the following, we will derive the expression from classical arguments borrowed
from electrodynamic theory. Seen from the rest system of the electron being
at position x = 0, it is the proton that orbits around the electron. This orbit
creates a current, −j(r′), which generates a magnetic field. Following the Biot-
Savart’s law the potential vector and the amplitude of the field are,

A(x) =
µ0

4π

∫
V

−j(r′)d3r′
|x− r′| , (29.116)

respectively,

B⃗(x) = ∇x ×A(x) =
µ0

4π

∫
V

(x− r′)× j(r′)

|x− r′|3 d3r′ (29.117)

= −µ0

4π

∫ ∞
−∞

dz′
∫ ∞
0

r′dr′
∫ 2π

0

dϕ
(x− r′)× v

|x− r′|3
Ze

2πr
δ(r − r′)δ(z′)

=
Zeµ0

4π

(x− r)× v

|x− r|3 ,

where we replaced the expression for the current density (29.91). With the
expression for the Coulomb potential between the electron and the proton and
its radial derivative,

V (r) =
−Ze2
4πε0r

,
1

r

dV (r)

dr
=

Ze2

4πε0r3
, (29.118)
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we have at the position of the electron,

B⃗(0) = Zeµ0

4π

−r× v

r3
= −ε0µ0

e

r× v

r

dV (r)

dr
(29.119)

= − 1

ec2
r× v

r

dV (r)

dr
= − 1

emec2r

dV (r)

dr
l .

The advantage of introducing the potential V is, that this expression also holds
for more complicated atoms with many electrons, where the potential may devi-
ate considerably from the Coulombian potential. Note, that the magnetic field
is very strong, B ≃ ξ(aB)ℏ/µB ≈ 5 T. Inserting the magnetic field into Pauli’s
expression (29.94) together with the magnetic moment of the spin (29.96),

Ĥℓs = −µ⃗s · B⃗(0) = 1

m2
ec2

s · l1
r

dV (r)

dr
. (29.120)

where we still have to apply the corrective Thomas factor of 1
2
.

The interaction operator can be written,

Ĥℓs = ξ(r)l · s , (29.121)

with the abbreviation,

ξ(r) ≡ −1
2m2

ec
2r

dV

dr
= − Ze2

8πε0m2
ec

2

1

r3
=
EnZ

2α2n2

ℏ2
1

r̃3
, (29.122)

with r̃ ≡ Zr/aB and using the formulas (25.53).
After the introduction of the spin, the Hilbert space of the particles’ wavefunctions

must be extended. The wavefunctions are now products of spatial wavefunctions and
spin eigenvectors:

|n, ℓ,mℓ,ms⟩ = Rnℓ(r)Yℓm(θ, ϕ)

(
s1

s2

)
. (29.123)

The new Hilbert space is the tensorial product of position space and spin space. The
radial Hamiltonian for the hydrogen atom including the centrifugal term and the
spin-orbit coupling now takes the form:

Ĥ =
p2

2m
+ V (r) +

l2

2mer2
+ ξ(r)l · s . (29.124)

We may again consider the energy term Vℓs as a small perturbation, and calculate
it using unperturbed wavefunctions,

∆Eℓs = ⟨n, ℓ, s,mℓ,ms|Vℓs|n, ℓ, s,mℓ,ms⟩ = ⟨n, ℓ|ξ(r)|n, ℓ⟩⟨ℓ, s,mℓ,ms|s·l|ℓ, s,mℓ,ms⟩ .
(29.125)

Assuming a Coulombian potential, we first look at the radial part (29.122), which can
easily be calculated using the formulae (25.53),

⟨n, ℓ|ξ(r)|n, ℓ⟩ = EnZ
2α2n2

ℏ2
1

n3ℓ(ℓ+ 1
2 )(ℓ+ 1)

. (29.126)
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To diagonalize the angular part of the Hamiltonian, we need the common wavefunc-
tions of l2 and l · s. We can rewrite the coupling term as:

l · s = 1
2 (j

2 − l2 − s2) . (29.127)

In the common eigensystem of j2, l2, and s2 the Hamiltonian, therefore, is diagonal.
We know the basis of this system from the theory of the addition of angular momenta.
The states of the basis are linear combinations of the functions |n, ℓ,mℓ,ms⟩. Since
the spins precess around each other, ℓz and sz are not good observables, the non-
coupled base is not appropriate. But s2, l2, and j2 are good observables. In the
coupled basis {n, (ℓ, s)j,mj},

⟨n, (ℓ, s)j,mj |s · l|n, (ℓ, s)j,mj⟩ = ℏ2

2 [j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)] . (29.128)

Since j = ℓ± 1/2, we find that every level splits into two levels, one with the energy
Enℓ+ℓζnℓ and the degeneracy 2ℓ+2 and the other with the degeneracy Enℓ−(ℓ+1)ζnℓ
with the degeneracy 2ℓ, where we introduced the abbreviation,

ζnℓ ≡ ℏ2

2 ⟨ξ(r)⟩ . (29.129)

All in all, we get an energy correction due to the spin-orbit interaction of,

∆Eℓs = −En(Zα)2
j(j + 1)− ℓ(ℓ+ 1)− 3

4

2nℓ(ℓ+ 1/2)(ℓ+ 1)
. (29.130)

Note, that the coupling l ·s lifts the degeneracy with respect to l, but not with respect
to ℓz (see Fig. 29.1). As we have already seen in Exc. 29.1.5.6, in the presence of an
energy associated with the coupling l · s, only the total angular momentum l+ s is a
constant of motion.

29.2.3 Non-local electron-core interaction

Let us now discuss the third correction in the expression (29.108). The electron-
nucleus interaction that we have considered so far is local, that is, the interaction
at the point r sensed by the electron depends essentially on the field at that point
in space. However, when relativistic theory is correctly applied, the electron-nucleus
interaction becomes non-local, and the electron is then affected by all values of the
nuclear field in a region around r 12. The size of this region is of the order of the
Compton wavelength of the electron, λC/2π ≡ ℏ/mec. This correction was introduced
by Sir Charles Galton Darwin through a substitution in the Dirac equation that solved
the problem of normalization of the wavefunction.

Imagine that instead of the potential V (r), the potential of the electron is given
by the integral, ∫

f(r′)V (r+ r′)d3r′ , (29.131)

12The smearing out of the electron’s position is also known as Zitterbewegung. See Exc. 29.1.5.2.
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where f(r′) is a radially symmetric and normalized density-type function that takes
significant values only in the vicinity of r within a volume (λC/2π)

3 centered at r′ = 0.
Expanding the potential V (r+ r′) near the origin,

V (r+ r′) = V (r) + [r′ · ∇r]V (r) + 1
2! [r
′ · ∇r]2V (r) + ... , (29.132)

and inserting into the integral,∫
f(r′)V (r+ r′)d3r′ (29.133)

= V (r)

∫
f(r′)d3r′ +

∫
r′f(r′)d3r′ · ∇rV (r) + 1

2!

∫
r′2f(r′)[êr′ · ∇r]2d3r′V (r) + ...

= V (r) + 0 + 1
2!

∫
r′2f(r′)d3r′∇2V (r) + ... .

The second term is null due to the parity of f(r′) and the third produces the Darwin
correction using V (r) = V (r). Letting the function be constant within the volume,
f(r) ≃ f0, and with the normalization,

1 =

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

f(r)dxdydz = f0

(
ℏ
mec

)3

, (29.134)

we get the integral
∫
r2f(r)d3r =

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

∫ ℏ/2mec

−ℏ/2mec

f(r)r2dxdydz =

(
ℏ

2mec

)2

. (29.135)

Also,

∇2V (r) = −e∇2 Ze

4πε0r
= −eϱ(r)

ε0
= −Ze

2δ3(r)

ε0
. (29.136)

Hence,
∫
f(r′)V (r+ r′)d3r′ = − Ze2

4πε0r
+

πℏ2

2m2
ec

2

Ze2

4πε0
δ3(r) + ... , (29.137)

which is precisely the electrostatic energy with the Darwin correction in the expres-
sions (29.85) and (29.108).

To estimate the importance of this effect we inserting the wavefunctions (25.52)
evaluated at the origin,

⟨Ĥdw⟩ =
∫
d3rψ∗nℓm(r)

πℏ2

2m2
ec

2

Ze2

4πε0
δ3(r)ψnℓm(r) (29.138)

=
πℏ2

2m2
ec

2

Ze2

4πε0
|ψn00(0)|2δℓ0δm0 =

πℏ2

2m2
ec

2

Ze2

4πε0

Z3

πn3a3B
δℓ0 .

We obtain,

Hdw

H0
=

πℏ2

2m2
ec

2
Ze2

4πε0
1

πa3B
e2

4πε0aB

=
ℏ2

2m2
ec

2

Z

a2B
=
α2

2
≈ 0.01% . (29.139)

Darwin’s correction vanishes for angular momentum l > 0, such that,

∆Edw = ⟨Ĥdw⟩ = −En
(Zα)2

n
δℓ0 . (29.140)
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29.2.4 Summary of the corrections

Combining the l · s and relativistic corrections, we obtain,

∆Efs = ∆Erl +∆Eℓs +∆Edw (29.141)

= En(Zα)
2

[
1

n(ℓ+ 1
2 )
− 3

4n2

]
− En(Zα)2

j(j + 1)− ℓ(ℓ+ 1)− 3
4

2nℓ(ℓ+ 1
2 )(ℓ+ 1)

− En(Zα)2

= En(Zα)
2





1
nj − 3

4n2 − j(j+1)−(j− 1
2 )(j+

1
2 )− 3

4

2n(j− 1
2 )j(j+

1
2 )

− 1 para ℓ = j − 1
2

1
n(j+1) − 3

4n2 − j(j+1)−(j+ 1
2 )(j+

3
2 )− 3

4

2n(j+ 1
2 )(j+1)(j+ 3

2 )
− 1 para ℓ = j + 1

2

= En(Zα)
2

[
1

n(j + 1
2 )
− 3

4n2
− 1

]
.

That is, the levels are now degenerate in j (see Fig. 29.1) 13. Obviously the levels
which are most affected by relativistic corrections are those with low values of n and
ℓ.

Figure 29.1: Hydrogen levels.

The levels are labeled by nℓj . For example, the state 3d5/2 has the main quantum
number n = 3, the orbital angular momentum ℓ = 2, and the total angular momentum
j = 5/2. For large n or j the fine structure disappears. The new energy scheme is
shown in Fig. 29.1. We note that, taking into account all relativistic corrections (but
without the Lamb shift), we still have a partial degeneracy of the quantum number j.
For example, the states 2s1/2 and 2p1/2 have the same energy. This is a particularity
of the hydrogen atom.

29.2.5 Lamb shift

Only remains to discuss the fourth correction, Ĥlamb in the expression (29.6). The
origin of the Lamb shift lies in quantum electrodynamics. Being due to the quantum
nature of the electromagnetic field, this correction is not predicted within the Dirac
equation.

We may imagine the Coulomb force between charged particles being mediated by
a continuous exchange of virtual photons. But each isolated charge also continuously
emits and reabsorbs virtual photons, with the result that the position of the electron
is smeared over a region of 0.1 fm. This reduces the overlap between the electronic

13It is interesting that the quantum treatment presented here, including relativistic corrections,
coincidentally agrees with the corrections of Arnold Johannes Wilhelm Sommerfeld.
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orbits and the nucleus. Hence, the Lamb shift causes corrections that are stronger
for small n and small ℓ. For example in hydrogen, the 2p1/2 is 4.4 · 10−6 eV = 1GHz
below the 2s1/2 (see Fig. 29.1).

29.2.6 Exercises

29.2.6.1 Ex: The Darwin term

Show that the expressions for the Darwin correction (29.85) and (29.108) are equiva-
lent.

Solution: The Darwin term in (29.85) is given as,

Ĥdw = − ℏ2e
4m2

ec
2

∂U(r)

∂r

∂

∂r
= − ℏ2e

4m2
ec

2
∇U(r) · ∇ .

The expectation value is,

⟨Hdw⟩ =
∫
ψ∗(r)∇U(r) · ∇ψ(r)d3r =

∫
∇ψ∗(r)U(r)ψ(r)dS

0
−
∫
∇ [ψ∗(r)∇U(r)]ψ(r)d3r

= −
∫

[∇ψ∗(r)]∇U(r)ψ(r)d3r −
∫
ψ∗(r)

[
∇2U(r)

]
ψ(r)d3r .

Hence, ∫
ψ∗(r)∇U(r) · ∇ψ(r)d3r = − 1

2

∫
ψ∗(r)

[
∇2U(r)

]
ψ(r)d3r .

Therefore, we can rewrite the Darwin term as,

Ĥdw = −1

2

−ℏ2
4m2

ec
2
∇2eU =

ℏ2

8m2
ec

2

−Ze2
ε0

δ3(r) =
πℏ2

2m2
ec

2

Ze2

4πε0
δ3(r) .

29.3 Hyperfine structure

Rutherford’s measurements suggested a point-like and infinitely heavy atomic nu-
cleus. In fact, the mass is finite and the nuclear charge is distributed over a finite
volume and often in a non-isotropic manner, which leads to multipolar interactions
with the electrons. In addition, many nuclei have a spin that can interact with the
magnetic moment of the electrons. The energy corrections due to these effects are
called hyperfine structure 14.

Because many of the following considerations will remain valid for many-electron
systems to be discussed later, we will switch to a notation denoting by L the total
orbital angular momentum of the electronic shell, S the total spin of the electronic
shell, and J the total angular momentum of the electronic shell, remembering that
for hydrogen S = ℏ

2 σ⃗.

14See [276] p. 1229 and [1329] p. 23 for further reading.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RelativisticHydrogen00.pdf
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29.3.1 Coupling to the nuclear spin

29.3.1.1 Dipole moment of the nuclear spin

The nucleus may also have an angular momentum interacting with the angular mo-
mentum of the electrons. However, the momentum depends inversely on the masses.
That is, the angular momentum of the nucleus is µN/µB = me/mp ≃ 10−3 times
smaller, where µN = ℏe/2mp is an abbreviation called nuclear magneton. Thus, we
can assume that the interaction between the nucleus and the electron will not inter-
fere with the L · S-coupling between the orbital angular momentum and the spin of
the electron. The spin of the nucleus will be oriented along the total momentum of
the electrons J. However, this interaction will have the ability to lift the hydrogen
degeneracy, even though the splitting will only be hyperfine. Indeed, the order of
magnitude of hyperfine splitting is 10−6 eV.

Analogously to the expressions (29.93) and (29.96), we write the dipole moment
of the nucleus,

µ⃗I
µN

=
e

2mpµN
gpI = gp

I

ℏ
, (29.142)

where gp ≡ µI/I is once again a factor taking into account possible corrections be-
tween the classical derivation and quantum mechanics 15.

29.3.1.2 Hyperfine splitting

In the derivation of the Pauli equation (29.89) from the Dirac equation (29.76) we
discarded non-relativistic terms and reintroduced electronic spin-orbit coupling by
hand allowing for A(r, t) ̸= 0. By an analogous calculation directly applied to the
Dirac equation we may unravel the hyperfine structure. Instead of setting the vector
potential to A(r, t) = 0, as we did in (29.45), we now generalize the Dirac equation
(29.76),

E′ϕ⃗ = qU(r)ϕ⃗+ σ⃗ · π⃗ 1

2me

(
1 +

E′ − U(r)

2mec2

)−1
σ⃗ · π⃗ϕ⃗ . (29.143)

Assuming ⟨qA⟩ ≪ ⟨p⟩, we may only retain terms to the lowest order in A and neglect

terms containing qAE′−U(r)
2mec2

. Using the result of the calculation (29.87),

(σ⃗ · π⃗)(σ⃗ · π⃗) = [p− qA]2 − ℏqσ⃗ · B⃗ , (29.144)

we find the generalization of the total energy (29.85),

Ĥ ≃ [p− qA(r)]2

2me
− 1

4πε0

e2

r
− p4

8m3
ec

2
− e

2m2
ec

2

1

r

∂U

∂r
S·L− ℏ2e

4m2
ec

2

∂U

∂r

∂

∂r
− ℏq
2me

σ⃗·B⃗(r) ,
(29.145)

and expanding the bracket

[p− qA]2 ≃ p2 − qp ·A− qA · p = p2 − 2qA · p (29.146)

15In fact, the proton factor g is anomalous, gp = 5.58, which reduces the fraction µl/µI . For the
neutron we have: gn = −3.83
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in the Coulomb gauge, we see that two new terms are added to the energy called the
hyperfine structure,

Ĥ = ĤB + Ĥfs + Ĥhfs

with Ĥhfs = ĤLI + ĤSI =
e
me

A(r) · p+ 2µB

ℏ S · B⃗(r)
, (29.147)

with µ⃗S = − e
me

S.
Up to now we did not say anything about the origin of the magnetic field. We

only notice that any magnetic field will interact with the electron’s orbit and with its
spin. We now make use of our knowledge that the proton has a spin of its own which
produces, at the position of the electrons, a magnetic vector potential,

A(r) =
µ0

4π

µ⃗I × r

r3
, (29.148)

interacting with the angular momentum of the electron L in the form,

ĤLI =
e

me
A · p̂ =

e

me

µ0

4πr3
(µ⃗I × r) · p (29.149)

=
e

me

µ0

4πr3
µN
ℏ
gp(I× r) · p =

µ0

2πr3
µB
ℏ
µN
ℏ
gpL · I ,

using the definition of Bohr’s magneton.
In addition, the potential vector (29.148) generated by the nuclear spin produces

a magnetic field [659],

B⃗ = ∇×A =
µ0

4πr3
[3(µ⃗I · r̂)r̂− µ⃗I ] + 2

3µ0µ⃗Iδ
3(r) , (29.150)

as will be shown in Exc. 29.3.3.1. This field interacts with the spin of the electron S
in the form,

ĤSI = −µ⃗S · B⃗ = − µ0

4πr3
[3(µ⃗I · r̂)(µ⃗S · r̂)− (µ⃗S · µ⃗I)]− 2

3µ0µ⃗S · µ⃗Iδ3(r) (29.151)

=
µ0

4πr3
µB
ℏ
ge
µN
ℏ
gp [3(I · r̂)(S · r̂)− (S · I)] + 2

3µ0geµB
S

ℏ
· gpµN

I

ℏ
δ3(r) ,

inserting the expressions (29.96) and (29.142). The first term gives the energy of
the nuclear dipole in the field due to the electronic orbital angular momentum. The
second term gives the energy of the ’finite distance’ interaction of the nuclear dipole
with the field due to the electron spin magnetic moments. The final term, often known
as the Fermi contact term relates to the direct interaction of the nuclear dipole with
the spin dipoles and is only non-zero for states with a finite electron spin density at
the position of the nucleus (those with unpaired electrons in s-subshells).

We now discuss the two cases in which L = 0 or L ̸= 0 separately in the following
subsections [276, 1128, 659].

29.3.1.3 Orbital angular momentum L = 0

For vanishing orbital angular momenta, L = 0, we only need to consider the con-
tribution ĤSI . Furthermore, this contribution will be dominated by the Dirac term,
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because the s-orbitals have a high probability at the nuclear region, but fall off quickly
at larger distances. Hence,

ĤSI ≃ 2
3µ0geµB

S

ℏ
· gpµN

I

ℏ
δ3(r) . (29.152)

Defining the complete total angular momentum of the atom,

F ≡ I+ S , (29.153)

we calculate from (29.151),

∆Eℓ=0
hfs = ⟨(S, I)F,mF |ĤSI |(S, I)F,mF ⟩ =

2µ0gegpµBµN
3ℏ2

⟨S · I⟩⟨δ3(r)⟩ (29.154)

= 2
3µ0gegpµBµN [F (F + 1)− I(I + 1)− S(S + 1)]

∫
ψ∗n00(r)δ

3(r)ψn00(r)d
3r

= 2
3µ0gegpµBµN [F (F + 1)− I(I + 1)− S(S + 1)]

∣∣∣∣ 1√
π

(
Z
naB

)3/2∣∣∣∣
2

.

As an example consider the hyperfine structure of the state 1s1/2 of the hydrogen

atom. With J = I = 1
2 and Z = n = 1 we obtain (see Exc. 29.3.3.2),

∆EL=0
hfs (F = 1)−∆Eℓ=0

hfs (F = 0) = 2
3µ0geµBgpµN 2 1

π

(
Z
naB

)3
(29.155)

=
2gegpm

2
ec

2

3mp
α4 ≈ (2πℏ) · 1.420GHz .

The experimental value is 1.4204057518GHz. This frequency corresponds to the spec-
tral line used in radio astronomy, where the measurement of the angular distribution
of this radiation allows the mapping of the spatial distribution of interstellar hydrogen.

29.3.1.4 Orbital angular momenta L ̸= 0

In the case L ̸= 0 both contributions, ĤSI and ĤLI have to be considered, however,
we may neglect the Dirac term, because the orbitals with orbital angular momentum
have vanishing probabilities at the nuclear region. Combining the two terms (29.149)
and (29.151), we obtain,

ĤJI = ĤLI + ĤSI =
µ0

4πr3
µB
ℏ
ge
µN
ℏ
gp [3(I · r̂)(S · r̂) + L · I− S · I] (29.156)

=
µ0

4πr3
µB
ℏ
ge
µN
ℏ
gpN · I ,

introducing N as a quantity that only depends on the electronic shell:

N ≡ 3(S · r̂)r̂+ L− S . (29.157)

Generalizing the complete total angular momentum of the atom (29.153),

F ≡ I+ J , (29.158)
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is useful for calculating the coupling I · J = 1
2 (F

2 − I2 − J2). Now, as the L · S-
coupling is strong, we project the two angular momenta onto the total electronic
angular momentum J,

N −→ N · J
|J|

J

|J| , I −→ I · J
|J|

J

|J| . (29.159)

We get for the coupling between the projected spins (29.159) of the electronic layer
and the nucleus,

N · I −→ (N · J)(I · J)
|J|2 =

(N · J)(F2 − I2 − J2)

2|J|2 . (29.160)

We calculate

∆EL̸=0
hfs = ⟨((L, S)J, I)F,mF |ĤJI |((L, S)J, I)F,mF ⟩ (29.161)

=
µ0

4π

µB
ℏ
ge
µN
ℏ
gp

〈
N · I
r3

〉

−→ µ0

4π

µB
ℏ
ge
µN
ℏ
gp

N · J[F (F + 1)− I(I + 1)− J(J + 1)]

2J(J + 1)

(
Z

aB

)3
n

n4L(L+ 1
2 )(L+ 1)

.

Introducing the interval factor,

AJ ≡
µ0

4π

µB
ℏ
ge
µN
ℏ
gp

(
Z

aB

)3
N · J

2J(J + 1)

n

n4L(L+ 1
2 )(L+ 1)

, (29.162)

as a quantity that only depends on the electronic shell, we can write

∆EL̸=0
hfs = AJ

2 [F (F + 1)− J(J + 1)− I(I + 1)] . (29.163)

Note, that the J · I-coupling breaks the degeneracy of J in the hydrogen atom, but
not of Jz. We can derive the following interval rule,

∆EF+1 −∆EF = AJ(F + 1) . (29.164)

Besides the magnetic interaction between the angular momenta of the nucleus
and the electronic shell there is an interaction between the nucleus, when it is not
spherically symmetric, and the shell. This interaction causes deviations from the
interval rule and an additional splitting of the hyperfine states.

29.3.2 Electric quadrupole interaction

The fact that the nucleus is not perfectly spherical gives rise to new electron-nucleus
corrections that are called quadrupolar interaction. The starting point is,

Ĥqud = −
1

4πϵ0

e2

|re − rN |
− 1

4πϵ0

e2

|re|
, (29.165)
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where re is the electronic coordinate and rN is the nuclear coordinate, both having
their origin in the center mass of the nucleus. For re > rN this interaction can be
obtained after several mathematical steps as [860],

Ĥqud = BJ
3(̂I · Ĵ)(2Î · Ĵ+ 1)− 2Î2Ĵ2

2I(I − 1)2J(J − 1)
, (29.166)

where BJ is called the constant of the quadrupolar electron-nucleus interaction. With
this expression we can calculate,

∆Equd = ⟨IJKmK |Ĥqud|IJKmK⟩ = BJ

3
2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
,

(29.167)
where K ≡ 2⟨Ĵ · Î⟩ = F (F + 1) − I(I + 1) − J(J + 1). It is important to remember
that a nucleus with I = 0 or I = 1

2 has no quadrupole moment, BJ = 0. Also for
J = 1

2 there will be no contribution.

Joining the contributions Ĵ · Î of Eq. (29.163) and the quadrupolar contribution
(29.167), the hyperfine structure can be described by,

∆Ehfs = ∆EJI +∆Equd (29.168)

=
AJ
2
K +

BJ
8IJ(2I − 1)(2J − 1)

[3K(K + 1)− 4I(I + 1)J(J + 1)] ,

where the constants AJ and BJ depend on the atom and the total electronic angular
momentum.
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Table 29.1: List of atomic data [1245] showing the natural linewidth of the D2 line,
frequencies of the D1 and D2 lines, and the hyperfine splitting.

Element γD2/2π D1 D2 νHFS [S1/2]

[ MHz] [ cm−1] [ cm−1] [ MHz]

1H 99.58 82264.000 82264.366 1420.4
2H 99.58 82264.000 82264.366
6Li 5.92 14901.000 14901.337 228.2
7Li 5.92 14901.000 14901.337 803.5

23Na 10.01 16956.000 16973.190 1771.6
39K 6.09 12985.170 13042.876 461.7
40K 6.09 12985.170 13042.876 -1285.8
41K 6.09 12985.170 13042.876 254.0
85Rb 5.98 12578.920 12816.469 3035.7
87Rb 5.98 12578.920 12816.469 6834.7
133Cs 5.18 11182.000 11737.000 9192.6
135Cs 5.18 11182.000 11737.000

In Excs. 29.3.3.3 and 29.3.3.4 we determine the hyperfine structures of sodium and
rubidium atoms.

29.3.3 Exercises

29.3.3.1 Ex: Field of a magnetic moment

a. Calculate the vector potential A(r) and the magnetic dipole moment µ⃗ produced
by an orbiting electron by Biot-Savart’s law using the expansion of |r− r′|−1 in Leg-
endre polynomials.
b. Calculate the magnetic field B⃗(r).

Solution: a. We parametrize the current of a loop around the z-axis by,

j(r′) = Iêϕδ(z
′)δ(ρ′ −R) .

With this, the vector potential is,

A(r) =
µ0

4π

∫

V

j(r′)
|r− r′|d

3r′ =
µ0I

4π

∫

V

δ(z′)δ(ρ′ −R)
|r− r′| dρ′êϕ′ρ′dϕ′dz′ =

µ0I

4π

∮

C

ds′

|r− r′| ,

using êϕ′ρ′dϕ′ = ds′. We expand the integral in terms of Legendre polynomials,

1

|r− r′| =
1√

r2 + r′2 − 2rr′ cos θ′
=

1

r
√
1− 2 r

′

r cos θ′ + r′2

r2

=
1

r

∞∑

n=0

Pn(cos θ
′)

(
r′

r

)n
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_CampoMomentomagnetico.pdf
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Table 29.2: Hyperfine constants of some alkaline atoms.

atom n AJ(n
2S1/2) AJ(n

2P1/2) AJ(n
2P3/2) BJ(n

2P3/2)

[MHz·h] [MHz·h] [MHz·h] [MHz·h]
1H, I = 1

2 1 1420 46.17 −3.07 −0.18
7Li, I = 3

2 2 401.75 46.17 −3.07 −0.18
3 13.5 −0.96

23Na, I = 3
2 3 885.82 94.3 18.65 2.82

4 202 28.85 6.00 0.86
85Rb, I = 5

2 5 1011.9 120.7 25.029 26.03

6 239.3 39.11 8.25 8.16
87Rb, I = 3

2 5 3417.3 409.1 84.852 12.510

6 809.1 132.5 27.70 3.947

where θ′ is the angle between the vectors r and r′ and r′ = ρ′. With this, the vector
potential is,

A(r) =
µ0I

4π

∞∑

n=0

1

rn+1

∮

C

Pn(cos θ
′)r′nds′ =

µ0I

4πr

∮

C

1ds′ +
µ0I

4πr2

∮

C

r′ cos θ′ds′ + ... .

The monopole term vanishes, while the dipole term is (considering a vector r within
the x-y plane, such that θ′ = ϕ− ϕ′),

A(r) =
µ0I

4π

1

r2

∮

C

r′ cos(ϕ− ϕ′)êϕ′r′dϕ′ =
µ0I

4πr2
R2

∮

C

cos(ϕ− ϕ′)



− sinϕ′

cosϕ′

0


 dϕ′

=
µ0

4π

1

r3
IπR2



−r sinϕ
r cosϕ

0


 =

µ0

4π

µ⃗× r

r3
,

with

r =



r sin θ cosϕ

r sin θ sinϕ

r cos θ


 and µ⃗ = IπR2êz .

b. The magnetic field is,

B⃗ = ∇×A =
µ0

4π
∇×

(
µ⃗× r

r3

)
= µ0

4π

[(
r
r3 · ∇

)
µ⃗

0

− (µ⃗ · ∇) r
r3 + µ⃗

(
∇ · r

r3

)
− r

r3 (∇ · µ⃗)
0
]
.

Now we calculate on one hand for the x-component of the first non-vanishing term,

(µ⃗ · ∇) x
r3

= µ⃗·
(
∇ x

r3

)
= µ⃗·

(
x∇ 1

r3
+

1

r3
∇x
)

= µ⃗·
(
xêr

∂

∂r

1

r3
+

1

r3
êx

)
= µ⃗·

(
xêr
−3
r4

+
1

r3
êx

)
,
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so that,

−(µ⃗ · ∇) r
r3

=
1

r3
[3(µ⃗ · êr)êr − µ⃗] .

However, this result only holds for r > 0, because the derivation only holds for this
case. For r > 0 the other term vanishes,

µ⃗
(
∇ · r

r3

)
= µ⃗4πδ3(r) −→ 0 .

The problem can be resolved by noticing that the average magnetic field on a finite
sized sphere is known, and that the field must be obtained by volume integration of
B⃗dip(r) even in the limit of infinitesimally small r. This can be achieved by adding a
δ-function term normalized such that,

B̄ =
2µ0µ⃗

4πR3
=

2
3µ0µ⃗

∫
R3 δ

3(r)d3r
4π
3 R

3
.

With this we finally obtain (see 15.4.2.10),

B⃗ =
µ0

4πr3
[3(µ⃗ · r̂)r̂− µ⃗] + 2

3
µ0µ⃗δ

3(r) .

29.3.3.2 Ex: Probability for finding the electron near the nucleus

Calculate the expectation value ⟨δ(3)(r)⟩nℓm for encountering the electron of a hydro-
gen atom close to the nucleus.

Solution: With,

ψnℓm(r, ϑ, φ) = Rnℓ(r)Yℓm(ϑ, φ)

Rnℓ(r) =

√(
2Z

naB

)3
(n− ℓ− 1)!

2n(n+ ℓ)!

(
2r̃

n

)ℓ
e−r̃/nL(2ℓ+1)

n−ℓ−1(
2r̃
n )

Yℓm(ϑ, φ) =
1√
2π
Pmℓ (cosϑ)

√
2ℓ+ 1

2

(ℓ−m)!

(ℓ+m)!
eımφ ,

we find, using the formula (28.27),

Rn0(0) =

√(
Z

naB

)3(
2

n

)2

L
(1)
n−1(0)δℓ,0

=

√
Z

naB

3
2

n

n−1∑

k=0

(
n

n− 1− k

)
(−0)k
k!

δℓ,0 =

√
Z

naB

3

2δℓ,0 ,

and

Y00(ϑ, φ) =
P 0
0 (cosϑ)

2
√
π

=
1

2
√
π
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_HyperfineStructure01.pdf
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and hence,

⟨δ(3)(r)⟩nℓm = |ψnℓm(0)|2 =
1

π

(
Z

naB

)3

δℓ,0 .

29.3.3.3 Ex: Hyperfine structure of sodium

Determine the hyperfine structure of the 2S and 2P states of the sodium atom in-
cluding energy shifts. See Tab. 34.1 for the hyperfine constants AJ and BJ .

Solution: With I = 3
2 the state 2S1/2 has two hyperfine levels, F = 1, 2. The

quadrupole coefficient vanishes,

∆Ehfs =
AJ
2
K =

885.82MHz

2
K ,

such that

∆Ehfs(
23Na,2 S1/2, F = 1)

K=−5/2−→ −5

4
· 885.82MHz

∆Ehfs(
23Na,2 S1/2, F = 2)

K=3/2−→ 3

4
· 885.82MHz

∆Ehfs(
23Na,2 S1/2, F = 2)−∆Ehfs(

23Na,2 S1/2, F = 1) = 2AJ = 1771.64MHz .

The state 2P1/2 has two hyperfine levels, F = 1, 2. The quadrupole coefficient van-
ishes,

∆Ehfs =
AJ
2
K =

94.3MHz

2
K ,

such that

∆Ehfs(
23Na,2 P1/2, F = 1)

K=−5/2−→ −5

4
· 94.3MHz

∆Ehfs(
23Na,2 P1/2, F = 2)

K=3/2−→ 3

4
· 94.3MHz

∆Ehfs(
23Na,2 P1/2, F = 2)−∆Ehfs(

23Na,2 S1/2, F = 1) = 2AJ = 188.6MHz .

The state 2P3/2 has four hyperfine levels, F = 0, 1, 2, 3. The quadrupole coefficient
does not vanish,

∆Ehfs =
AJ
2
K +

BJ [3K(K + 1)− 4I(I + 1)J(J + 1)]

8I(2I − 1)(2J − 1)

=
18.65MHz

2
K +

2.82MHz[3K(K + 1)− 225
4 ]

48
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_SodioHiperfino.pdf
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such that

∆Ehfs(
23Na,2 P3/2, F = 0)

K=−15/2−→ −15
4
· 18.65MHz−135

256
· 2.82MHz

∆Ehfs(
23Na,2 P3/2, F = 1)

K=−11/2−→ −11
4
· 18.65MHz−223

256
· 2.82MHz

∆Ehfs(
23Na,2 P3/2, F = 2)

K=−3/2−→ −3
4
· 18.65MHz−303

256
· 2.82MHz

∆Ehfs(
23Na,2 P3/2, F = 3)

K=9/2−→ 9

4
· 18.65MHz−209

256
· 2.82MHz .

We verify that
∑
F (2F + 1)∆Ehfs(

23Na,2S+1 LJ , F ) = 0.

29.3.3.4 Ex: Hyperfine structure of rubidium

Given the following energy distances νF,F ′ of the hyperfine levels of the rubidium
isotopes 87Rb and 85Rb [104],

87Rb, S1/2 splits into ν1,2 = 6834.7MHz
87Rb, P3/2 splits into ν0,1 = 72.3MHz, ν1,2 = 157.1MHz, ν2,3 = 267.2MHz
85Rb, S1/2 splits into ν1,2 = 3035.7MHz
85Rb, P3/2 splits into ν1,2 = 29.4MHz, ν2,3 = 63.4MHz, ν3,4 = 120.7MHz ,

calculate the positions of the barycenters.

Solution: The rubidium hyperfine structure is,

87Rb, S1/2 gives Ebc =
1̂+2̂ν1,2
1̂+2̂

= 4272.1MHz

87Rb, P3/2 gives Ebc =
0̂+1̂ν0,1+2̂ν0,2+3̂ν0,3

0̂+1̂+2̂+3̂
=

(1̂+2̂+3̂)ν0,1+(2̂+3̂)ν1,2+3̂ν2,3
0̂+1̂+2̂+3̂

= 302.5MHz

85Rb, S1/2 gives Ebc =
2̂+3̂ν2,3
2̂+3̂

= 1771.2MHz

85Rb, P3/2 gives Ebc =
1̂+2̂ν1,2+3̂ν1,3+4̂ν1,4

1̂+2̂+3̂+4̂
=

(2̂+3̂+4̂)ν1,2+(3̂+4̂)ν2,3+4̂ν3,4
1̂+2̂+3̂+4̂

= 113.3MHz .

29.3.3.5 Ex: Two particles

Consider a two-particle system of masses µ1 and µ2, exposed to a central potential
V (r) and an interaction potential V (|r1 − r2|) which only depends on the distance
between the particles. The Hamiltonian of the system in the interaction representa-

tion is H = H1 + H2 + V (|r1 − r2|) with Hℓ = − ℏ2

2µℓ
∇2
ℓ + V (rℓ), ℓ = 1, 2, ... Show

that the individual angular momenta Lℓ are not, in general, constants of the motion,
unlike the total angular momentum L = L1 + L2.

Solution: We have,

[Ĥ, L̂2
1] = [V (|r1 − r2|), (r̂1 × p̂1)

2] ̸= 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_RubidioHiperfino.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_MomentoangularDuasparticulas.pdf
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Figure 29.2: Rb hyperfine structure.

On the other side,

[Ĥ, (L̂1 + L̂1)
2] = [V (|r1 − r2|), (r̂1 × p̂1 + r̂2 × p̂2)

2] ̸= 0 .

We showed in the derivation of the radial Schrödinger equation (25.34), that the given
Hamiltonian can be transformed into relative coordinates.

29.4 Exotic atoms

’Normal’ atoms consist of a nucleus made of protons and neutrons and an electronic
shell. But other two-particle systems are possible, e.g. where the nucleus or electron
is replaced by another hadron or lepton (anti-proton, positron, muon, etc.). Such a
system is called exotic atom. Atoms in Rydberg states also belong to this category.

29.4.1 Positronium and muonium

Positronium (e+e−) is a hydrogen-like system consisting of leptons, that is, an electron
and a positron, which is the antiparticle of the electron. The muonium (µ+e−) is
similar to positronium, except that here the positron is replaced by a muon whose
mass is mµ+ = 207me. Leptons are, according to the present understanding, particles
without internal structure. Both systems are unstable: the two particles annihilate
each other producing γ-photons. The energy levels and orbits of the two particles
are similar to that of the hydrogen atom. However, because of the reduced mass, the
frequencies of the spectral lines are less than half of the corresponding hydrogen lines.

The fundamental state of positronium, like that of hydrogen, has two possible
configurations depending on the relative orientation of the electron and positron spins.
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The singlet state with antiparallel spins (S = 0,Ms = 0) is known as para-positronium
(p-Ps) and denoted by 1S0. It has an average lifetime of

τ =
2ℏ

mec2α5
= 124.4 ps (29.169)

and decays preferably in two gamma rays with energy of 511 keV each (in the center-
of-mass). The triplet state with parallel spins (S = 1,Ms = −1, 0, 1) is known as
ortho-positronium (o-Ps) and denoted as 3S1. It has an average life of 138.6 ns, and
the most common form of decay produces three photons. Other forms of decay are
negligible. For example, the decay channel producing five photons is 10−6 times less
likely. Measurements of these lifetimes and the positronium energy levels have been
used in precision tests of quantum electrodynamics.

While the precise calculation of the positronium energy levels is based on the
Bethe-Salpeter equation, the similarity between positronium and hydrogen allows for
an approximate estimate. In this approach, the energy levels are suppodsed to be
different from those of hydrogen because of the difference in the value of the reduced
mass µ, used in the energy equation. Since µ = me/2 for positronium, we have

En = − µq4e
8h2ϵ20

1

n2
= −1

2

meq
4
e

8h2ϵ20

1

n2
=
−6.8 eV
n2

. (29.170)

A di-positronium molecule, that is, a system of two bound positronium atoms,
has already been observed. Positronium in high energy states has been conjectured
to become the dominant form of atomic matter in the universe in the very distant
future if the proton decay becomes tangible.

29.4.2 Hadronic atoms

In contrast to leptons (such as the electron e−, the positron e+ and the muons µ+

and µ−) that participate only in electromagnetic interactions and weak interactions,
hadrons also participate in strong (nuclear type) interactions. There are two types of
hadrons, baryons (such as the proton p and antiproton p̄, the neutron n and antineu-
tron n̄, hyperons Σ, Ξ, ...) that have semi-integer spin and behave like fermions and
mesons (like the π-meson, K-meson, ...) that have an integer spin. Every negatively
charged hadron can be used to form a hydrogen-type hadronic atom. These systems
contain a nucleus and negative hyperon and are known as hyperonic atoms. All of
these are unstable and due to the fact that they have a sufficiently long lifetime, some
of their spectral lines have now been observed.

Since the hadrons interact strongly with the nucleus, the theory developed for hy-
drogen systems (in which only exist Coulomb interaction) can not be directly applied.
In this way the values shown in Tab. 29.3 give only an estimate of the ’radius’ and
the ionization potential of the hadronic atoms pπ−, pκ−, pp̄ and pΣ−.

29.4.3 Muonic hydrogen

The muon mass is mµ = 207me. When a muon is attached to a proton we have

muonic hydrogen. Its size is smaller because of the reduced mass aµ = aB
1/me

1/mµ+1/mp
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Table 29.3: Main features of some exotic atoms.

system reduced mass radius ’a’ Ip

pe− 1836/1837 ≈ 1 ≈ aB = 1 e2/2aB ≈ 0.5

e+e− 0.5 2 0.25

µ+e− 207/208 ≈ 1 1 0.5

pµ− ≈ 186 5.4 · 10−3 93

pπ− ≈ 238 4.2 · 10−3 119

pκ− ≈ 633 1.6 · 10−3 317

pp̄ ≈ 928 1.1 · 10−3 459

pΣ− ≈ 1029 9.7 · 10−3 515

and the binding energy and the energies of excitation are greater for the same reason.
F.ex. while for H = p+e− the transition 2S − 2P1/2 is at 10 eV ≜ 121 nm, for p+µ−

it is at 1900 eV. Muonic atoms are interesting because they have amplified Lamb
shifts, hyperfine interactions, and quantum electrodynamical corrections. Therefore,
the displacement due to the finite distribution of charges in the proton rp = 0.8 fm
should influence the spectrum. While in p+e− the 2S level is shifted upward by the
Lamb shift by a value of 4.4 × 10−6 eV, in p+µ− it is shifted down by a value of
0.14 eV. In Exc. 29.4.5.2 we calculate the spectrum of the muonic hydrogen and in
Exc. 27.1.3.3 we compare the energy corrections due to the finite extension of the
nuclei for muonic and for standard hydrogen in first order TIPT.

29.4.4 Rydberg atoms

An atom excited to a state whose main quantum number is very high is called Rydberg
atom. These atoms have a number of peculiar properties, including high sensitivity to
electric and magnetic fields, long decay times, and wavefunctions that approximate
classical electron orbits. The inner electrons protect the outer electron from the
electric field of the nucleus such that, from a distance, the electric potential looks
identical to that seen by the electron of a hydrogen atom.

Despite its flaws, Bohr’s atom model is useful in explaining these properties. In
Exc. 22.1.6.6 we derive Bohr’s expression for the orbital radius in terms of the principal
quantum number n:

r =
4πϵ0n

2ℏ2

e2m
. (29.171)

Thus, it is clear why Rydberg atoms have peculiar properties: the radius goes as n2

(such that for example the state with n = 137 of hydrogen has a radius of ∼ 1 mm)
and the geometric cross section goes as n4. Thus, Rydberg atoms are extremely large,
with loosely bound valence electrons that are easily perturbed or ionized by collisions
or external fields.

Since the binding energy of a Rydberg electron is proportional to 1/r, and therefore
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falls as 1/n2, the spacing between energy levels falls as

∆E = E1

(
1

(n+ 1)2
− 1

n2

)
n→∞−→ E1

(
− 2

n3
+

3

n4
+ ...

)
(29.172)

leading to less and less spaced levels. These Rydberg states form the Rydberg series.

29.4.4.1 Correspondence principle in Rydberg atoms

To calculate the oscillation frequency of an electron confined to a proton, we use the
classical planetary model,

mω2
n =

e2

4πϵ0r
and mωr2 = nℏ . (29.173)

Eliminating r,

ωn =
me4

(4πϵ0)2n3ℏ3
. (29.174)

Radiation of this frequency will be emitted by an atomic antenna. On the other hand,
the Bohr model predicts frequencies between orbitals,

ωn =
En+1 − En

ℏ
=

me4

2(4πϵ0)2ℏ2

(
1

(n+ 1)2
− 1

n2

)
n→∞−→ me4

2(4πϵ0)2ℏ2
2

n3
. (29.175)

29.4.4.2 Production of Rydberg atoms

In the hydrogen atom only the ground state (n = 1) is actually stable. Other states
must be excited by various techniques such as electron impact or charge exchange. In
contrast to these methods, which produce a distribution of excited atoms at various
levels, the optical excitation method allows to produce specific states, but only for
alkali metals whose transitions fall into frequency regimes which are accessible to
lasers.

29.4.4.3 Potential in a Rydberg atom

The valence electron in a Rydberg atom with Z protons in the nucleus and Z − 1
electrons in closed layers sees a spherically symmetric Coulomb potential:

Ucou = − e2

4πε0r
. (29.176)

The similarity of the effective potential ’seen’ by the outer electron and the authentic
hydrogen potential suggests a classical treatment within the planetary model. There
are three notable exceptions:

• An atom can have two (or more) electrons in highly excited states with com-
parable orbital radii. In this case, the electron-electron interaction gives rise to
a significant deviation from the hydrogen potential. For an atom in a multiple
Rydberg state the additional term Uee includes a sum over each pair of highly
excited electrons:

Uee =
e2

4πε0

∑

i<j

1

|ri − rj |
. (29.177)
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• If the valence electron has very low angular momentum (interpreted classically
as an extremely eccentric elliptical orbit), it can pass close enough to the nucleus
to polarize it, giving rise to an additional term,

Upol = −
e2αd

(4πε0)2r4
. (29.178)

• If the outer electron penetrates the inner electronic shells, it sees more of the
charge of the nucleus and therefore feels a larger force. In general, the modifi-
cation of the potential energy is not simple to calculate and should be based on
some knowledge of the nucleus’ geometry.

In hydrogen the binding energy is given by:

EB = −E1

n2
. (29.179)

The binding energy is weak at high values of n, which explains the fragility of the
Rydberg states that can easily be ionized, e.g. by collisions.

Additional terms modifying the potential energy of a Rydberg state require the
introduction of a quantum defect, δℓ, in the expression for the binding energy:

EB = − E1

(n− δℓ)2
. (29.180)

The long lifetimes of Rydberg states with high orbital angular momentum can be
explained in terms of overlapping wavefunctions. The wavefunction of an electron in
a state with high ℓ (large angular momentum, ’circular orbit’) has little overlap with
the wavefunctions of the internal electrons and therefore stays relatively unperturbed.
Also, the small energy difference between adjacent Rydberg states decreased the decay
rate according to the result (34.40).

29.4.4.4 Rydberg atoms in external fields

The large distance between the electron and ionic nucleus in a Rydberg atom gives
rise to an extremely large electric dipole moment d. There is an energy associated
with the presence of an electric dipole in an electric field E⃗ , known as Stark shift,

ES = −d · E⃗ . (29.181)

Depending on the sign of the projection of the dipole moment onto the vector of the
local electric field, the energy of a state increases or decreases with the intensity of the
field. The narrow spacing between adjacent levels n in the Rydberg series means that
the states can approach degeneracy even for relatively weak fields. Theoretically, the
force of the field in which a level crossing would occur (assuming no coupling between
the states) is given by the Inglis-Teller limit,

FIT =
e

12πε0a20n
5
. (29.182)

In hydrogen the pure Coulomb potential does not couple the Stark states of an n
level, which results in a real crossover. In other elements, deviations from the ideal
1/r-potential allow for avoided crossings.
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29.4.5 Exercises

29.4.5.1 Ex: Positronium

Calculate and compare the fine and hyperfine structure of positronium.

Solution: The energy between states 1S1/2, F = 0 and 1S1/2, F = 1 is 5.9 · 10−6 eV.
The energy between states 3S1 (ortho) and 1S0 (para) is 8.9 · 10−4 eV.

29.4.5.2 Ex: Muonic hydrogen

Muonic hydrogen consists of a proton and a negatively charged muon. Calculate the
binding energy of the ground state of muonic hydrogen in eV and write down the
ground state’s wavefunction.

Solution: Following Bohr’s model the hydrogen energy spectrum is,

En = − ℏ2

2ma2B

1

n2
with aB = 4πϵ0

ℏ2

me2
,

where m is the reduced mass. In the case of the electron we have m = 0.9995me. The
mass of the muon is approximately mµ = 207me. Thus, in the case of the muon we
have m = 0.8981mµ. The ground state energy is,

Eµ1 ≃ −2.82 keV with aB ≃ 2.56 · 10−13 m .

29.5 Further reading

T. Mayer-Kuckuk, Atomphysik, Teubner Studienbücher (1985) [860]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_ExoticPositronium.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Spin_HidrogenioMuonico.pdf
http://isbnsearch.org/isbn/978-3-519-33042-4


Chapter 30

Atoms with spin in external
fields

The atomic fine structure was derived in the last chapter under the assumption that
all electric and magnetic fields arise from the motion and spin of the electrons in the
atomic shell and the nuclear spin. In this chapter, we will extend the treatment to
include the reaction of the electrons to external electrostatic or electromagnetic fields.
In this context, we will discuss the Zeeman and the Stark effect.

30.1 Charged particles in electromagnetic fields

30.1.1 Lagrangian and Hamiltonian of charged particles

A charge subject to an electromagnetic field feels the Lorentz force,

F = qE⃗ + qṙ× B⃗ , (30.1)

where

E⃗ = −∇Φ− ∂A

∂t
and B⃗ = ∇×A , (30.2)

where Φ and A are called scalar and vector potential, respectively.

It is important to realize here, that the momentum p not only involves the momen-
tum of the particle mv, but the field also carries a momentum qA(r). As we learned
in electrodynamics it is possible to derive the Lorentz force from a Lagrangian for the
electronic motion,

L(ri, ṙi) =
m

2
ṙ2 − qΦ(r) + qṙ ·A(r) . (30.3)

With this aim we first determine the momentum by,

pi =
∂L
∂ṙi

= mṙi + qAi , (30.4)

and the Hamiltonian by,

H =
∑

i
piṙi −L(ri, ṙi) = (mv+ qA) · ṙ− m

2
ṙ2 + qΦ− qṙ ·A =

m

2
v2 + qΦ . (30.5)

1551
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That is,

H(ri, pi) =
1

2m
(p− qA)2 + qΦ . (30.6)

The following equations hold,

ṙi =
∂H
∂pi

and ṗi = −
∂H
∂ri

. (30.7)

The first equation is easily verified by inserting the Hamiltonian (30.5). The second
leads to the Lorentz force,

Fi = mv̇i = ṗi − qȦi = −
∂H
∂ri
− qȦi = qEi + q(v × B⃗)i , (30.8)

where the last step of the derivation will be shown in the Exc. 30.1.3.1 using the
Coulomb gauge ∇ ·A = 0.

30.1.2 Minimal coupling

Note that the same result (30.6) can be obtained by a canonical substitution,

mv −→ p− qA and H −→ H+ qΦ . (30.9)

This substitution rule, called minimal coupling, can be applied in quantum mechanics,

mv̂ −→ −ıℏ∇− qA and Ĥ −→ Ĥ + qΦ . (30.10)

In the case of the electron (q = −e) trapped in a central Coulomb potential

qΦ = − Ze2

4πε0r
and in the presence of any magnetic potential A, we thus obtain,

Ĥ =
me

2
v̂2 + qΦ =

−ℏ2
2me
∇2 − ıℏe

2me
A · ∇ − ıℏe

2me
∇ ·A+

e2A2

2me
+ qΦ . (30.11)

The fourth term called diamagnetic term is quadratic in A and usually so small
that it can be neglected. The second and third terms describe the interaction of the
electron through its momentum p̂ with the potential vector A produced by magnetic
moments inside the atom or outer magnetic fields. Within the Coulomb gauge we
have (∇ ·A)ψ = (A · ∇)ψ + ψ(∇ ·A) = (A · ∇)ψ, such that,

Ĥint =
e
me

A · p̂ . (30.12)

Example 182 (Interaction Hamiltonian in dipolar approximation): Note
that the Hamiltonian (30.11) has been obtained from a gauge transformation in
(23.229). With the particular choice for the gauge field,

χ(r, t) ≡ −A(r, t) · r ,

assuming that the potential only weakly varies in space, such that,

∇χ(r, t) ≃ −A(r, t) and
∂χ(r, t)

∂t
= −r · ∂A(r, t)

∂t
= −r · E⃗(r, t) ,



30.1. CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS 1553

we get with d ≡qr,

Ĥ =
1

2me
(p̂− qA+∇χ)2 + qΦ+ q

∂χ(r, t)

∂t
(30.13)

≃ p̂2

2me
+ qΦ− d · E⃗(r, t) .

This is the interaction Hamiltonian in the dipolar approximation.

30.1.3 Exercises

30.1.3.1 Ex: Lagrangian of an electron in the electromagnetic field

a. Show that the Lagrangian (30.3) reproduces the Lorentz force (30.1).
b. Show that the Hamiltonian (30.5) reproduces the Lorentz force (30.1).

Solution: a. Starting from the Lagrangian (30.3) we derive,

∂L
∂ṙi

= mvi + qAi and
∂L
∂ri

= −q∂iΦ+ ∂iv ·A .

Exploring the Lagrange equation,

d

dt

∂L
∂ṙi

=
∂L
∂ri

we calculate,

Fi = mv̇i =
d

dt

∂L
∂ṙi
− q dAi

dt
=
∂L
∂ri
− q dAi

dt
= −q∂iΦ+ ∂iv ·A− q

dAi
dt

.

Using,

dA

dt
=
∂A

∂t
+ (v · ∇)A and ∇(v ·A) = v × (∇×A) + (v · ∇)A ,

we obtain,

F = mv̇ = −q∇Φ+ qv × (∇×A) + q(v · ∇)A− q ∂A
∂t
− q(v · ∇)A = qE⃗ + qv × B⃗ .

b. Inserting the Hamiltonian (30.5) into the equation (30.7) we obtain,

Fi = −
∂

∂ri

[∑
j

1

2m
(pj − qAj)2 + qΦ

]
− qȦi = q

∑
j

1
m (pj − qAj)∂iAj − q∂iΦ− qȦi

= q
∑

j
vj∂iAj − q∂iΦ− qȦi .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_LagrangianoEletron.pdf
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We derive using dA
dt = ∂A

∂t + (v · ∇)A,

F = q



v2∂1A2 + v3∂1A3 + v1∂1A1

v3∂2A3 + v1∂2A1 + v2∂2A2

v1∂3A1 + v2∂3A2 + v3∂3A3


− q∇Φ− q ∂A

∂t
− q(v · ∇)A

= q



−∂tA1 + v2(∂1A2 − ∂2A1)− v3(∂3A1 − ∂1A3)

−∂tA2 + v3(∂2A3 − ∂3A2)− v1(∂1A2 − ∂2A1)

−∂tA3 + v1(∂3A1 − ∂1A3)− v2(∂2A3 − ∂3A2)


− q∇Φ

= −q∇Φ− q ∂A
∂t

+ qv × (∇×A) = qE⃗ + qv × B⃗ .

30.2 Interaction with magnetic fields

30.2.1 Normal Zeeman effect of the fine structure

The dipole moments of atoms can interact with external magnetic fields. The inter-
action leads to a shift of levels, which depends on the magnetic quantum number.
Thus, the ultimate degeneracy in the energetic structure of the atom is lifted. This
is called Zeeman splitting. We consider a uniform magnetic field B⃗ = Bêz with the
potential vector,

A = 1
2 B⃗ × r = −B2 (−yêx + xêy) . (30.14)

Thus the interaction energy between the electron and the field is given by the Hamil-
tonian (30.12),

V̂zee(B) = − ıℏe
me

A · ∇ = − ıℏe
2me

(B⃗ × r) · ∇ = − ıℏe
2me
B⃗ · (r×∇) (30.15)

= − e

2me
B⃗ · L̂ = −µB

ℏ
gLL̂ · B⃗ = −µ⃗L · B⃗ = −µB

ℏ
L̂zB ,

with gL = 1 using the relation (29.93), µ⃗L = e
2me

L, between the angular momentum of
the electron and the resulting magnetic moment. This relationship holds for an atom
without spin (two electrons can couple their spins to a singlet state) and no hyperfine
structure (or an unresolved hyperfine structure). The energies are therefore,

∆Ezee(B) = −
µB
ℏ
B⟨n,L,mL|L̂z|n,L,mL⟩ = −µBmLB . (30.16)

In the Excs. 30.2.8.1 and 30.2.8.2 we represent the interaction between an atomic
angular momentum and a magnetic field in different bases characterized by different
quantization axes.

30.2.2 Anomalous Zeeman effect

The anomalous Zeeman effect occurs when the ensemble of electrons has a spin. Using
the already known expressions for the dipole moments of the orbital momentum and
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the spin of the electron, we obtain for the magnetic dipole moment,

ˆ⃗µJ = ˆ⃗µL + ˆ⃗µS =
µB
ℏ
gLL̂+

µB
ℏ
gSŜ =

µB
ℏ

(L̂+ 2Ŝ) , (30.17)

with gL = 1 and gS = ge = 2. We can see that the dipole moment of the atom is not
parallel to the total momentum, Ĵ = L̂+ Ŝ.

When the magnetic field is weak, V̂ls ≫ V̂zee(B), the total momentum Ĵ will be a
good observable. Therefore, we must first project the momenta L̂ and Ŝ onto Ĵ,

L̂ −→
(
L̂ · Ĵ
|J|

)
Ĵ
|J| and Ŝ −→

(
Ŝ · Ĵ
|J|

)
Ĵ
|J| , (30.18)

before projecting the result onto the B⃗-field. The potential is,

V̂zee(B) = − ˆ⃗µJ · B⃗ = −µB
ℏ

(L̂+ 2Ŝ) · B⃗ −→ −µB
ℏ

[(
L̂ · Ĵ
|J|

)
Ĵ
|J| · B⃗ + 2

(
Ŝ · Ĵ
|J|

)
Ĵ
|J| · B⃗

]
= − µB

ℏ|J|2
[
L̂ · Ĵ+ 2Ŝ · Ĵ

]
Ĵ · B⃗ = − µB

ℏ|J|2
1

2

[
Ĵ2 + L̂2 − Ŝ2 + 2(Ĵ2 + Ŝ2 − L̂2)

]
Ĵ · B⃗

= −µB
ℏ

1

2

3Ĵ2 − L̂2 + Ŝ2

|Ĵ|2
Ĵ · B⃗ . (30.19)

And the energy is,

∆Ezee(B) =
〈
µB
ℏ

(
1 +

J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)
Ĵ · B⃗

〉
. (30.20)

Introducing the Landé factor,

gJ ≡ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)]

2J(J + 1)
, (30.21)

we can write

∆Ezee(B) = −
µB
ℏ
gJ⟨Ĵz⟩B = −µBgJmJB . (30.22)

This expression describes the anomalous Zeeman effect, for which S ̸= 0. For the
normal Zeeman effect, for which the spin is zero, we find again gJ = 1.

Figure 30.1: Coupling angular moments for the effect (a) Normal Zeeman effect, (b) anoma-
lous Zeeman effect, (c) Paschen-Back effect, (d) Zeeman effect of the hyperfine structure,
and (e) Paschen-Goudsmith effect.
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30.2.3 Paschen-Back effect and intermediate magnetic fields

A very strong external magnetic field (> 1 T), such that V̂ls ≪ V̂zee(B), can break
the L̂ · Ŝ-coupling. Both spins L̂ and Ŝ now couple separately to the field,

L̂ −→
(
L̂ · B⃗|B⃗|

)
B⃗
|B⃗| and Ŝ −→

(
Ŝ · B⃗|B⃗|

)
B⃗
|B⃗| . (30.23)

Therefore,

V̂pb(B) = −
µB
ℏ

(L̂+ 2Ŝ) · B⃗ −→ −µB
ℏ

[(
L̂ · B⃗|B⃗|

)
B⃗
|B⃗| + 2

(
Ŝ · B⃗|B⃗|

)
B⃗
|B⃗|

]
· B⃗ , (30.24)

such that

∆Epb(B) = −µB(mL + 2mS)B . (30.25)

This is the Paschen-Back effect.

The derivations we have made so far have focused on simple situations well de-
scribed by CSCOs in various coupling schemes. The projections on the different
quantization axes [the total spin (30.18) in the Zeeman case or the applied magnetic
field (30.23) in the Paschen-Back case] ensure that the Hamiltonians V̂ls and V̂zee(B)
in these CSCOs are described by diagonal matrices. However, in regimes intermediate
between Zeeman and Paschen-Back, V̂ls ≃ V̂zee(B), it is generally not possible to find
a diagonal representation.

In order to calculate the energy spectrum in intermediate regimes we must, there-
fore, determine all the components of the matrix,

V̂ls + V̂zee(B) = ξ(r)L̂ · Ŝ+
µB
ℏ

(L̂+ 2Ŝ) . (30.26)

Using L̂± ≡ L̂x ± ıL̂y and Ŝ± ≡ Ŝx ± ıŜy, we can easily rewrite the energy in the
following way,

V̂ls + V̂zee(B) = ξ(r)
(
L̂zŜz +

1
2 L̂+Ŝ− + 1

2 L̂−Ŝ+

)
+
µB
ℏ

(L̂+ 2Ŝ) · B⃗ . (30.27)

This operator acts on the uncoupled states,

∆Els +∆Ezee(B) (30.28)

= ⟨L′m′L;S′m′S |ξnl(L̂zŜz + 1
2
L̂+Ŝ− + 1

2
L̂−Ŝ+) + µB(L̂z + 2Ŝz)B|LmL;SmS⟩

= ℏ2ξnl
(
mLmSδmL,m

′
L
δmS ,m

′
S
+ 1

2
L+S−δmL,m

′
L
−1δmS−1,m′

S
+ 1

2
L−S+δmL−1,m′

L
δmS ,m

′
S
−1

)
+ ℏµB(mL + 2mS)BδmL,m

′
L
δmS ,m

′
S
,

with the abbreviations L± ≡
√
L(L+ 1)−mL(mL ± 1). The energies are now the

eigenvalues of this matrix. The factor ξnl is usually determined experimentally by
letting B = 0. In Exc. 30.2.8.3 we calculate the re-coupling of the spins of two
electrons in an external magnetic field.
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Figure 30.2: Transition between the Zeeman regime and the Paschen-Back regime for the
case L = 1 and S = 1/2.

30.2.4 Zeeman effect of the hyperfine structure

When the energy of the interaction with the magnetic field is comparable to the
hyperfine interactions, but much weaker than that of the fine interactions, the fields
do not disturb the coupling between the total electronic momentum Ĵ and the spin
of the nucleus Î. Hence, J, I, F, and mF are good quantum numbers. Therefore, to
calculate the interaction energy,

V̂hfs + V̂zee(B) = V̂hfs − ˆ⃗µF · B⃗ , (30.29)

where ˆ⃗µF is the total magnetic momentum,

ˆ⃗µF = ˆ⃗µJ + ˆ⃗µI = −
µB
ℏ
gJ Ĵ+

µN
ℏ
gpÎ . (30.30)

we project the nuclear spin and the total electronic momentum separately in the
direction of F̂,

Ĵ −→
(
Ĵ · F̂
|F|

)
F̂
|F| and Î −→

(
Î · F̂
|F|

)
F̂
|F| . (30.31)

Note the negative sign in (30.30) due to the negative charge of the electron. The
Landé factor gJ [see (30.21)] is the one caused by the coupling of the orbital angular
momentum L̂ and the electron spin Ŝ and depends on the state under consideration.
Thereby,

V̂zee(B) =
[
−µB

ℏ
gJ

(
Ĵ · F̂
|F|

)
F̂
|F| +

µN
ℏ
gp

(
Î · F̂
|F|

)
F̂
|F|

]
B⃗ (30.32)

=

(
− µB

ℏ|F̂|2
gJ Ĵ · F̂+

µN

ℏ|F̂|2
gpÎ · F̂

)
(B · F̂z) .

Using Ĵ · F̂ = 1
2 (F̂

2 + Ĵ2 − Î2) and Î · F̂ = 1
2 (F̂

2 − Ĵ2 + Î2) we write,

V̂zee(B) = −
µB
ℏ
gJ

F̂2 + Ĵ2 − Î2

2|F|2 BF̂z + gp
µN
ℏ

F̂2 − Ĵ2 + Î2

2|F̂|2
BF̂z , (30.33)
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such that
∆Ehfs +∆Ezee(B) ≃ ∆Ehfs + µBgFmFB , (30.34)

using the Landé factor gF for the state F ,

gF ≃ gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
− gp

µN
µB

F (F + 1)− J(J + 1) + I(I + 1)

2F (F + 1)
,

(30.35)
where the second term can be neglected.

The splitting of electronic states with the momentum F̂ into 2F + 1 sublevels
mF = −F, .., F is called Zeeman effect of the hyperfine structure. The result (30.32)
only applies to weak magnetic fields. For strong fields the Zeeman splitting becomes
a Paschen-Back splitting of the hyperfine structure.

30.2.5 Paschen-Back effect of the hyperfine structure

When the interaction with the magnetic field exceeds the hyperfine interaction, the
nuclear spin Î decouples from the total momentum Ĵ, and both couple separately to
the external magnetic field,

Ĵ −→
(
Ĵ · B⃗|B⃗|

)
B⃗
|B⃗| and Î −→

(
Î · B⃗|B⃗|

)
B⃗
|B⃗| . (30.36)

The Zeeman effect of the hyperfine structure becomes a hyperfine structure of the
Zeeman effect, also called Paschen-Back effect of the hyperfine structure or Paschen-
Goudsmith effect. We can diagonalize the potential on a basis, where I,mI , J , and
mJ are good quantum numbers. Using the expression (29.168) but disregarding the
quadrupolar contribution to the hyperfine interaction, BJ ≃ 0, we obtain,

V̂hfs + V̂zee(B) = V̂hfs − (ˆ⃗µJ + ˆ⃗µI
≃ 0

) · B⃗ ≃ AJ
ℏ2

Ĵ · Î− ˆ⃗µJ · B⃗ (30.37)

−→ AJ
ℏ2

(
Ĵ · B⃗B

)
B⃗
B ·
(
Î · B⃗B

)
B⃗
B − µJzB =

AJ
ℏ2
Ĵz Îz +

µB
ℏ
gJ ĴzB ,

where we neglect the interaction of the dipole moment of the nucleus with the external
magnetic field, µ⃗I ≃ 0. We obtain for strong magnetic fields,

∆Ehfs +∆Ezee(B) ≃ AJmJmI + µBgJmJB . (30.38)

The re-coupling of the state |FmF ⟩ to |mImJ⟩ in strong magnetic fields is described
by Clebsch-Gordan coefficients,

|FmF ⟩ =
∑

mI+mJ=mF

|mImJ⟩⟨mImJ |FmF ⟩ . (30.39)

Example 183 (Nuclear magnetic resonance): In Eq. (30.37) we have ne-
glected the nuclear dipole moment for being small in comparison to the electronic
one. Taking it into account, we get an additional term V̂nmr,

V̂hfs+ V̂zee+ V̂nmr =
AJ
ℏ2

Ĵ · Î+ µ⃗J · B⃗+ µ⃗I · B⃗ =
AJ
ℏ2
Ĵz Îz+µJzB+µIzB . (30.40)



30.2. INTERACTION WITH MAGNETIC FIELDS 1559

Considering a hydrogen atom 1H in a B⃗ = 10T strong magnetic field, we have
the following hierarchy of energies:

∆Ezee(B) = µBgemJ ≃ h · 140GHz (30.41)

∆Ehfs(B) ≃ h · 1.4GHz

∆Enmr(B) = µNgpmI ≃ h · 213MHz ,

where ge = 2.002.. is the g-factor of the electron and gp = 5.586.. of the proton.
Now, in large molecules the most electrons are paired, such that Ĵ = 0. In that
case, we are left with the interaction between the nuclear spin and the applied
magnetic field,

∆Enmr(B) = µNgImIB , (30.42)

where the g-factor of the nucleus gI must be looked up in data tables. This

is the regime where nuclear magnetic resonances (NMR) can be excited with a

large variety of applications in spectroscopy and imaging.

30.2.6 Hyperfine structure in the intermediate field regime

Knowing the dipolar magnetic AJ and quadrupolar BJ interval factors, it is possible
to calculate the Zeeman shift of the hyperfine structure in magnetic fields intermediate
between the Zeeman and Paschen-Back regimes. For this, we must determine all the
components of the matrix V̂hfs+ V̂zee(B) and calculate the eigenvalues. The relevant
terms of the Eqs. (29.168) and the Eq. (30.36) are,

V̂hfs + V̂zee(B) =
AJ
ℏ2

Î · Ĵ+
BJ
ℏ2

6(̂I · Ĵ)2 + 3Î · Ĵ− 2Ĵ2Î2

2I(2I − 1)2J(2J − 1)
+ gJµBB⃗ · Ĵ− gIµN B⃗ · Î .

(30.43)
We develop the complete matrix representation of this Hamiltonian within the

uncoupled base, where mJ ,mI are good quantum numbers, introducing the abbre-
viations I± ≡

√
I(I + 1)−mI(mI ± 1) and I±± ≡

√
I(I + 1)− (mI ± 1)(mI ± 2).

The SU(2) algebra provides useful expressions, Î · Ĵ = ÎzĴz +
1
2 (Î+Ĵ− + Î−Ĵ+). The

elements of the matrix are,

⟨m′Im′J |Hhfs +HB |mImJ⟩ =
[
AJ + 3BJ

2I(2I−1)2J(2J−1)

]
× (30.44)

×
{
mImJδm′

I
mI
δm′

J
mJ

+ 1
2
I+J−δm′

I
mI+1δm′

J
mJ−1 +

1
2
I−J+δm′

I
mI−1δm′

J
mJ+1

}
+ 6BJ

2I(2I−1)2J(2J−1)
⟨m′Im′J |

(
I·J
ℏ
)2 |mImJ⟩

+
[
−BJ2I(I+1)J(J+1)

2I(2I−1)2J(2J−1)
+ (gJmJ − gIµNmI)µBB

]
δm′

I
mI
δm′

I
mI

where

⟨m′Im′J |
(

Î·Ĵ
ℏ

)2
|mImJ⟩ =

[
(mImJ)

2 + 1
4I

2
−J

2
+ + 1

4I
2
+J

2
−
]
δm′

I mI
δm′

J mJ
+ (30.45)

+ 1
2 (m

′
Im
′
J +mImJ) I+J−δm′

I mI+1δm′
J mJ−1+

+ 1
2 (m

′
Im
′
J +mImJ) I−J+δm′

I mI−1δm′
J mJ+1+

+ 1
4I+J−I++J−−δm′

I mI+2δm′
J mJ−2+

+ 1
4I−J+I−−J++δm′

I mI−2δm′
J mJ+2 .
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The matrix ⟨m′Im′J |Hhfs +HB |mImJ⟩ is divided into 2F + 1 diagonal blocks, each
labeled mF . The total number of levels is,

∑

F=|I−J|,..,I+J
2F+1 = (2I+1)(2J+1) =

∑

mF=|−F,..,F |


 ∑

mI=|−I,..,I|, mJ=|−J,..,J|, mI+mJ=mF

1


 .

In this form the matrix can be programmed, e.g. using computational software
such as MATLAB, and all eigenvalues of the Hamiltonian for any state 2S+1XJ and
nuclear spin I can be calculated numerically. Obviously, the eigenvalues follow from
a diagonalization of the matrix and do not depend on the chosen base. Fig. 30.3
shows the result obtained for 6Li (I = 3

2 ) in the state 2s 2P3/2 knowing that AJ/h =
−1.17 MHz and BJ = 0.
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Figure 30.3: (code) Hyperfine and Zeeman structure of the state 2P3/2 of 6Li.

Example 184 (Fully stretched states): It is interesting to analyze the so-
called fully stretched Zeeman states defined by F = I + J and |mF | = F . For
these states, the spin K defined in (29.167) becomes,

K ≡ 2⟨Ĵ · Î⟩ = F (F + 1)− I(I + 1)− J(J + 1)

= (I + J)(I + J + 1)− I(I + 1)− J(J + 1) = 2JI ,

and the hyperfine structure (29.168) becomes,

∆Ehfs =
AJ
2
K+

BJ
8I(2I − 1)J(2J − 1)

[3K(K+1)−4I(I+1)J(J+1)] = AJIJ+
BJ
4
.

That is, the hyperfine structure does not depend on the F quantum number
at any B-field amplitude, which means that the mJ , mI , and mF will be good
quantum numbers at arbitrary B-field strengths. So see this, we calculate the
Landé-factor (30.35),

gF = gJ
J

F
− gJ µN

µB

I

F
,

and consider the particular Zeeman state mF = F , mJ = J , and mI = I,

V̂hfs + V̂zee(B) = AJIJ + BJ
4

+ gJµBB⃗ · Ĵ− gIµN B⃗ · Î
= AJIJ + BJ

4
+ µBgFmFB = AJIJ + BJ

4
+ (µBgJJ − µNgJI)B .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Staticfields_HyperLithium.m
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The energy displacement of the fully stretched states is always linear in the

magnetic field. We can also look at the matrix elements I+ = 0 and I− =
√
2I

and note that all non-diagonal terms vanish.

When one of the spins, J or I, is equal to 1/2 only two possible hyperfine states
exist: F = I ± J . For this case there is an approximate analytic formula called the
Breit-Rabi formula [81], which will be derived in Exc. 30.2.8.4,

∆Ehfs +∆Ezee(B) = ⟨AJ

ℏ2 Î · Ĵ+ gJµBB⃗ · Ĵ− gIµN B⃗ · Î⟩ (30.46)

= −AJ
4

+ µNgNmFB ±
AJ(I +

1
2 )

2

√
1 +

4mF

2I + 1
x+ x2 ,

with the abbreviation x ≡ 2(µBgJ−µNgI)B
AJ

. Resolve also Exc. 30.2.8.5.

Atoms with paired electrons have no spin and therefore no magnetic dipole mo-
ment. For example, helium or strontium in their ground state 1S0. These systems are
diamagnetic due to the Hamiltonian term (30.11) being quadratic in B⃗, as we shall
see in Exc. 30.2.8.6.

30.2.7 Landau levels in two-dimensional systems subject to
magnetic fields

Magnetic field can also have interesting effects in artificial atoms, e.g. quantum
dots. An important example is the formation of Landau levels. We consider a two-
dimensional system of non-interacting particles with charge q and spin S confined to
an area A = LxLy in the x-y plane. We apply a uniform magnetic field,

B⃗ = Bêz (30.47)

along the z axis. The Hamiltonian of this system is,

Ĥ = 1
2m (p̂− qÂ)2 , (30.48)

where p̂ is the operator of the canonical momentum and Â is the potential vector,
related to the magnetic field by B⃗ = ∇× Â. The vector potential,

A = 1
2



−By
Bx
0


 (30.49)

reproduces the field (30.47). However, we have the freedom in choosing the potential
vector, given by the gauge transformation, to add the gradient of a scalar field, for
example,

χ ≡ 1
2Bxy =⇒ ∇χ = 1

2



By
Bx
0


 =⇒ A′ ≡ A+∇χ = Bxêy . (30.50)
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The potential vector A′ gives the same magnetic field and only changes the general
phase of the wavefunction, but the physical properties do not change. In this gauge,
which is called Landau gauge, the Hamiltonian is,

Ĥ =
p̂2x
2m

+
1

2m

(
p̂y −

qB
c
x̂

)2

. (30.51)

The operator p̂y commutes with this Hamiltonian, since the ŷ operator is absent due
to the choice of the gauge. Thus, the operator p̂y can be replaced by its eigenvalue
ℏky. Hence, by introducing the cyclotron frequency,

ωc ≡
qB
mc

, (30.52)

we obtain,

Ĥ =
p̂2x
2m

+
mω2

c

2

(
x̂− ℏky

mωc

)2

. (30.53)

This is exactly the Hamiltonian of the quantum harmonic oscillator, except that the
minimum of the potential is displaced in position space by the value,

x0 ≡
ℏky
mωc

. (30.54)

To find the energies, we note that the translation of the potential of the harmonic
oscillator does not affect the energies. The energies of this system are therefore
identical to those of the standard quantum harmonic oscillator,

En = ℏωc
(
n+ 1

2

)
, (30.55)

for n ≥ 0. Since the energy does not depend on the quantum number ky, we will
have degeneracy. To derive the wavefunctions, we remember that p̂y commutes with
the Hamiltonian. Then the wavefunction splits into a product of eigenstates of the
momentum in y-direction and eigenstates of the harmonic oscillator |ϕn⟩ shifted by a
value x0 in x-direction:

Ψ(x, y) = eıkyyϕn(x− x0) . (30.56)

That is, the state of the electron is characterized by two quantum numbers, n and ky.
Each set of wavefunctions with the same n is called Landau level. Effects due

to Landau levels are only observed, when the average thermal energy is lower than
the separation of the energy levels, which means that low temperatures and strong
magnetic fields are required. Each Landau level is degenerate, because of the second
quantum number ky, which can adopt the values,

ky =
2πN

Ly
, (30.57)

with N ∈ N. The allowed values of N are further restricted by the condition that the
center of mass of the oscillator, x0, must be physically inside the system, 0 ≤ x0 < Lx.
Using (30.54) this gives the following range for N ,

0 ≤ N <
mωcLxLy

2πℏ
. (30.58)
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For particles with charge q = Ze, the upper limit in N can simply be written as a
ratio of fluxes,

Z
Φ

Φ0
=
ZBLxLy
(hc/e)

= Nmax , (30.59)

where Φ0 = h/2e is the fundamental flux quantum and Φ = BA the flux through the
system (with area A = LxLy). Thus, for particles with spin S, the maximum number
of particles per Landau level is,

Nmax = Z(2S + 1)
Φ

Φ0
. (30.60)

30.2.7.1 Integer and fractional quantum Hall effect

In general, Landau levels are observed in electronic systems with Z = 1 and S = 1/2.
As the magnetic field increases, more and more electrons can fit a certain Landau level.
The occupation of the highest Landau level ranges from entirely full to entirely empty,
leading to oscillations in various electronic properties (see de Haas-van Alphen effect,
Shubnikov-de Haas effect and quantum Hall effect. The most direct observation of the

Figure 30.4: Scheme of the Quantum Hall effect.

Landau levels is done via the quantum Hall effect. To discuss this effect let us briefly
recapitulate the Hall effectoriginally studied in Sec. 15.1.1. In the scheme of Fig. 30.4,
charges are deviated by the Lorentz force exerted by an applied magnetic field B⃗ from
a driven current density jx into a current density jy until a sufficient amount of surface
charge density has accumulated to generate an electric field exerting a Coulomb force
on the charges which neutralizes the Lorentz force, F = q(E⃗ + v× B⃗) = 0. Resolving
this condition by v, we obtain for the current density,

j = ϱqv = ϱq
E
B êx = ς E⃗ , (30.61)

where the last equation is Ohm’s law and

ς =

(
ςxx ςxy

−ςxy ςyy

)
and ϱ = ς−1 =

1

ς2xx + ς2yy

(
ςxx −ςxy
ςxy ςyy

)
(30.62)

the conductivity and the resistivity, respectively. The Hall resistivity does therefore
depend linearly on the magnetic field,

ϱxy =
E
j
=
B
ϱq

. (30.63)
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In two-dimensional systems this is, however, not observed. Instead, plateaus
emerge whenever the magnetic field is ramped across a value where a new Landau
level is possible binding one more electron,

ϱxy =
2πℏ
e2

1

ν
with ν ∈ Z . (30.64)
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Figure 30.5: (code) Scheme of the quantum Hall effect.

30.2.8 Exercises

30.2.8.1 Ex: Zeeman effect with different quantization axes

The Zeeman effect can be described in several ways depending on the choice of the
quantization axis. Consider a magnetic field B⃗ = Bxêx and calculate the interaction
Hamiltonian V (B) = −µ⃗J · B⃗
a. choosing the quantization axis êx in the direction of the magnetic field,
b. choosing the quantization axis êz perpendicular to the direction of the magnetic
field.

Solution: a. Choosing the quantization axis êx in the direction of the magnetic field,
the interaction Hamiltonian becomes,

V (B) = − 1
ℏµBBxĴx = − 1

ℏµBBx
∑

mx,m′
x

|J,m′x⟩⟨J,m′x|Ĵx|J,mx⟩⟨J,mx| ,

with the matrix elements,

⟨J,m′x|Ĵx|J,mx⟩ = ℏmxδm′
x,mx

.

For the example of a spin J = 1/2, we have,

V (B) = − 1
2µBBx

(
1 0

0 −1

)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Staticfields_QuantumHallEffect.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EixoQuantizacao1.pdf
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with the eigenvalues,

⟨V (B)⟩ = ∓ 1
2µBBx for |ψ±⟩ = | 12 ,± 1

2 ⟩x .
b. Now we choose the quantization axis êz perpendicular to the direction of the mag-
netic field,

V (B) = − 1
ℏµBBxĴx = − 1

ℏµBBx
∑

mz,m′
z

|J,m′z⟩⟨J,m′z|Ĵ+ + Ĵ−|J,mz⟩⟨J,mz| ,

with the matrix elements,

⟨J,m′z|Ĵ+ + Ĵ−|J,mz⟩
= ℏ

√
J(J + 1)−mz(mz + 1)δm′

z,mz+1 + ℏ
√
J(J + 1)−mz(mz − 1)δm′

z,mz−1 .

For the example of a spin J = 1/2, we have,

V (B) = − 1
2µBBx

(
0 1

1 0

)

with the eigenvalues ⟨V (B)⟩ = ∓ 1
2µBBx for the eigenvectors |ψ±⟩ = 1√

2
| 12 , 12 ⟩z +

1√
2
| 12 ,− 1

2 ⟩z.

30.2.8.2 Ex: Zeeman shift and quantization axes

Choosing the fixed quantization axis êz and a magnetic field B⃗(r) in an arbitrary
direction, calculate the Hamiltonian of the Zeeman interaction with an angular mo-
mentum J = 1 and show that the energy shift depends only on absolute value |B⃗(r)|.

Solution: The energy is,

V (B) = −µ⃗J · B⃗ = − 1
ℏµB(BxĴx + ByĴy + BzĴz)

= − 1
ℏµB

∑

mz,m′
z

|J,m′z⟩
[
1
2Bx⟨J,m′z|(Ĵ+ + Ĵ−)|J,mz⟩

+ 1
2ıBy⟨J,m′z|(Ĵ+ − Ĵ−)|J,mz⟩+ Bz⟨J,m′z|Ĵz|J,mz⟩

]
⟨J,mz|

= −µB
∑

mz,m′
z

|J,m′z⟩
[
1
2 (Bx − ıBy)

√
J(J + 1)−mz(mz + 1)δm′

z,mz+1

+ 1
2 (Bx + ıBy)

√
J(J + 1)−mz(mz − 1)δm′

z,mz−1 + Bzmzδm′
z,mz

]
⟨J,mz| .

For an angular momentum J = 1 we have,

V (B) = −µB




Bz 1√
2
(Bx − ıBy) 0

1√
2
(Bx + ıBy) 0 1√

2
(Bx − ıBy)

0 1√
2
(Bx + ıBy) −Bz




with the eigenvalues ⟨V (B)⟩ = 0,∓µB |B⃗|.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EixoQuantizacao2.pdf
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30.2.8.3 Ex: Coupling of two electrons

Consider a two-electron system.
a. Show that the operator (ℏA/ℏ2)̂s1 · ŝ2 distinguishes the triplet from the singlet
states.
b. Consider now, that the electrons are exposed to a magnetic field B applied in the di-
rection êz, so that they acquire the interaction energies with the field (µBB/ℏ)(g1ŝ1z+
g2ŝ2z). Obtain the matrix associated with the total Hamiltonian and demonstrate
that in the regime ℏA≫ µBB, the representation that favors the total momentum is
more adequate.
c. Show that in the regime ℏA≪ µBB, it is convenient to use the representation that
privileges the individual spins of the total momentum.
d. Analyze the intermediate regime ℏA ≃ µBB.

Solution: a. We first deal with the case of strong spin-spin coupling, ℏA ≫ µBB.
We have,

Vss =
ℏA
ℏ2 ŝ1 · ŝ2 = ℏA

2ℏ2 (Ŝ
2 − ŝ21 − ŝ22) .

This gives,

Vss|(s1, s2)S,mS⟩ = ℏA
2 [(s1 ± s2)(s1 ± s2 + 1)− s1(s1 + 1)− s2(s2 + 1)]|(s1, s2)S,mS⟩

= ℏA

{
+2s1s2

−2(s1 + 1)s2

}
|(s1, s2)S,mS⟩ .

The upper line corresponds to the triplet state, the lower state to the singlet state.
b. The coupling of the spins to the magnetic field is analogous to the discussion of the
Zeeman effect and the Paschen-Back effect. In the case of strong spin-spin coupling,
the energy of the spin-spin coupling is unaffected, such that we obtain the Zeeman
effect,

Vzee(B) = − ˆ⃗µS · B⃗ = −µB
ℏ

(g1ŝ1 + g2ŝ2) · B⃗ = −µBB
ℏ

(
g1

ŝ1 · Ŝ
ˆ⃗
S2

+ g2
ŝ2 · Ŝ
ˆ⃗
S2

)
Ŝ · B⃗

= −µB
2ℏ

g1(S
2 + s21 − s22) + g2(S

2 + s22 − s21)

ˆ⃗
S2

Ŝ · B⃗

= −µB
2ℏ

(g1 + g2)(s1 ± s2)(s1 ± s2 + 1) + (g1 − g2)s1(s1 + 1) + (g2 − g1)s2(s2 + 1)

(s1 ± s2)(s1 ± s2 + 1)
Ŝ · B⃗

= −µBB
2ℏ

4Ŝz ,

using g1 = g2 = 2. This gives the total energy,

[Vss + Vzee(B)]|(s1, s2)S,mS⟩ =
[
ℏA

{
+2s1s2

−2(s1 + 1)s2

}
− 2µBBmS

]
|(s1, s2)S,mS⟩ .

c. For weak spin-spin coupling, ℏA≪ µBB, we have,

Vss =
ℏA
ℏ2

ŝ1 · ŝ2 =
ℏA
2ℏ2

(
ŝ1 · B⃗
B2

)
B⃗ ·
(
ŝ2 · B⃗
B2

)
B⃗ =

ℏA
2ℏ2

ŝ1z ŝ2z ,
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Figure 30.6: Zeeman splitting of coupled electrons.

giving
Vss|s1,m1; s2,m2⟩ = ℏA

2 m1m2|s1,m1; s2,m2⟩ .

The reaction to a magnetic field is now that of the Paschen-Back effect,

VPB(B) = − ˆ⃗µS · B⃗ = −µBB
ℏ (g1ŝ1z + g2ŝ2z) = − 2µBB

ℏ (ŝ1z + ŝ2z) ,

using g1 = g2 = 2. This gives,

[Vss + Vzee(B)]|s1,m, 1; s2,m2⟩ =
[ℏA

2 m1m2 − 2µBB(m1 +m2)
]
|s1,m1; s2,m2⟩ .

d. For an intermediate spin-spin coupling, ℏA ≃ µBB, we have,

Vss + Vzee(B) = ℏA
ℏ2 ŝ1 · ŝ2 − µBB

ℏ (g1ŝ1z + g2ŝ2z)

= ℏA
ℏ2

(
ŝ1z ŝ2z +

1
2 ŝ1+ŝ2− + 1

2 ŝ1−ŝ2+
)
− µBB

ℏ (g1ŝ1z + g2ŝ2z) .

This gives,

⟨s′1,m′1; s′2,m′2|[Vss + Vzee(B)]|s1,m1; s2,m2⟩
= ℏA

(
m1m2δm1,m′

1
δm2,m′

2
+ 1

2s1+s2−δm1,m′
1−1δm2−1,m′

2
+ 1

2s1−s2+δm1−1,m′
1
δm2,m′

2−1
)

− µBB(g1m1 + g2m2)δm1,m′
1
δm2,m′

2
,

with sk± ≡
√
sk(sk + 1)−mk(mk ± 1). Choosing the base |m1,m2⟩ =




1/2, 1/2

1/2,−1/2
−1/2, 1/2
−1/2,−1/2




and with gk = 2, sk = 1
2 we find the following matrix representation,

Vss + Vzee(B) =




1
4ℏA− 2µBB 0 0 0

0 − 1
4ℏA

1
2ℏAs1−s2+ 0

0 1
2ℏAs1+s2− − 1

4ℏA 0

0 0 0 1
4ℏA+ 2µBB


 ,
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with s1−s2+ = s1+s2− = 1. The characteristic equation is,

0 = det [Vss+Vzee(B)] = (14ℏA−2µBB−E)( 14ℏA+2µBB−E)
[
(− 1

4ℏA− E)2 − ( 12ℏA)
2
]
.

The eigenvalues are,
E = 1

4ℏA± 2µBB,− 3
4ℏA,

1
4ℏA .

This is nothing more than the Breit-Rabi formula for the specific case that both spin
are 1

2 , that is, all states are fully stretched.

30.2.8.4 Ex: Breit-Rabi formula

Derive the analytical Breit-Rabi formula for the hyperfine structure (30.46) supposing
J = 1

2 .

Solution: The purpose is to diagonalize the following matrix,

⟨m′Im′J |Vhfs + Vzee(B)|mImJ⟩ = ⟨m′Im′J |AJ

ℏ2 I · J+ gJµBB⃗ · J− gIµN B⃗ · I|mImJ⟩
= ⟨m′Im′J |AJ(IzJz +

(
1
2I+J− + 1

2I−J+
)
+ gJµBBJz − gIµNBIz|mImJ⟩ .

Now, since J = 1
2 we know that there are only two hyperfine states F = I±J = I± 1

2 .
We also know mF = mI +mJ and mJ ± 1

2 . Using the formula,

Ĵ±|mI ,mJ⟩ = ℏ
√
J(J + 1)−mJ(mJ ± 1)|mI ,mJ ± 1⟩ ,

we find,
Ĵ±|mI ,± 1

2 ⟩ = 0 and Ĵ±|mI ,∓ 1
2 ⟩ = |mI ,∓ 1

2 ⟩ .
With this, we can calculate the components of the matrix:

⟨m′I , 1
2
|Vhfs + Vzee(B)|mI ,

1
2
⟩ = (AJmI

1
2
+ ℏgJµBB 1

2
− ℏgIµNBmI)δm′

I
mI

=
[
AJ
2
(mF − 1

2
) + ℏ

2
(gJµB − gIµN )B − ℏgIµNBmF

]
δm′

I
mI

⟨m′I ,− 1
2
|Vhfs + Vzee(B)|mI ,− 1

2
⟩ = (−AJmI

1
2
− ℏgJµBB 1

2
− ℏgIµNBmI)δm′

I
mI

=
[
−A

2
J
2
(mF + 1

2
)− ℏ

2
(gJµB − gIµN )B − ℏgIµNBmF

]
δm′

I
mI

⟨m′I , 1
2
|Vhfs + Vzee(B)|mI ,− 1

2
⟩ = AJ

2

√
I(I + 1) +mI(mI − 1)δm′

I
mI−1

= AJ
2

√
I(I + 1) + (m2

F − 1
4
)δm′

I
mI−1

⟨m′I ,− 1
2
|Vhfs + Vzee(B)|mI ,

1
2
⟩ = AJ

2

√
I(I + 1) +mI(mI + 1)δm′

I
mI+1

= AJ
2

√
I(I + 1) + (m2

F − 1
4
)δm′

I
mI+1 .

The eigenvalues of this 2× 2 matrix are,

∆Ehfs +∆Ezee(B) = −AJ

4 − gIµNBmF ± AJ

4

√
−1 + 8m2

F + 4A2
JI(I + 1) + 4mFx+ x2 ,

with the abbreviation x ≡ 2(µBgJ−µNgI)B
AJ

. This is the Breit-Rabi formula. Note
that the derivation can also be made in the base |(I, J), F,mF ⟩ using the formula
I · J = 1

2 (F
2 − J2 − I2).
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30.2.8.5 Ex: Reciprocal pollution of the Paschen-Back and Zeeman
regimes

a. Determine the interaction matrix ⟨m̃Jm̃I |V̂hfs + V̂zee(B)|mJmI⟩ of an atom with
electron spin J and nuclear spin J in the decoupled base without considering the
quadrupolar terms.
b. Determine the interaction matrix explicitly for the case of 6Li (I = 1) in its ground
state 2S1/2 (AJ = h · 152.137 MHz) for a magnetic field of B = 100 G.
c. For the system defined in (b) determine the eigenvalues E(B) of the interaction
matrix and the eigenvectors |α(B)⟩ on the decoupled base |mJmI⟩.
d. For the system defined in (c) determine the eigenvectors |α(B)⟩ in the coupled base
|FmF ⟩.
e. How good are the selection rules for transitions S1/2 − P3/2 in the intermediate
regime between Zeeman and Paschen-Back? We start by calculating the Zeeman
shifts for both levels (s denotes the structure S1/2, p the structure P3/2)

B⟨ms
Jm

s
I |Hhfs +HB |ms

Jm
s
I⟩B = Es(B)

B⟨mp
Jm

p
I |Hhfs +HB |mp

Jm
p
I⟩B = Ep(B) .

For the level P3/2 the interval factor is less. In particular for 6Li it is so small
that we are immediately in the Paschen-Back scheme. This means that the matrix

∞⟨m̃p
Jm̃

p
I |mp

Jm
p
I⟩B = δmp

J ,m̃
p
J
δmp

I ,m̃
p
I
is diagonal. The element of the transition matrix

is then,

B⟨mp
Jm

p
I |T (Eκ)

q |ms
Jm

s
I⟩B

=
∑
m̃s

J
m̃s

I

∑
m̃

p
J
m̃

p
I

∞⟨m̃p
Jm̃

p
I |mp

Jm
p
I⟩B ∞⟨m̃s

Jm̃
s
I |ms

Jm
s
I⟩B ∞⟨m̃p

Jm̃
p
I |T (Eκ)

q |m̃s
Jm̃

s
I⟩∞

=
∑
m̃s

J
m̃s

I

∞⟨m̃s
Jm̃

s
I |ms

Jm
s
I⟩B ∞⟨mp

Jm
p
I |T (Eκ)

q |m̃s
Jm̃

s
I⟩∞ .

The matrix elements in the pure Zeeman regime can be expressed by [Deh07, un-
published],

⟨F pmp
F |T (Eκ)

q |F sms
F ⟩ =0 ⟨mp

Jm
p
I |T (Eκ)

q |ms
Jm

s
I⟩0

=

(
Js κ Jp

ms
J sign(mp −ms) −mp

J

)2{
Jp Js κ

F s F p I

}2
(2F s + 1)(2Jp + 1)(2κ+ 1)

2I + 1
.

Discuss the pure Paschen-Back regime via ∞⟨mp
Jm

p
I |T

(Eκ)
q |ms

Jm
s
I⟩∞.

Solution: a. The level shifts in a magnetic field are calculated in a regime, where mJ

and mI are good quantum numbers. Therefore, the diagonalization of the interaction
matrix gives the eigenvalues (Zeeman shifts), and in strong magnetic fields, the cor-
responding eigenvectors are orthonormal. As the quadrupole interaction can usually
be neglected, BJ = 0, we get,

Ĥhfs + ĤB = AJ

ℏ2 I · J+ gJµBB⃗ · J− gIµN B⃗ · I .
The elements of the matrix are,

⟨m̃Im̃J |Ĥhfs + ĤB |mImJ⟩ = (gJmJ − gIµNmI)µBBδm̃I ,mI
δm̃J ,mJ

+AJ
{
mImJδm̃I ,mI

δm̃J ,mJ
+ 1

2I+J−δm̃I ,mI+1δm̃J ,mJ−1 +
1
2I−J+δm̃I ,mI−1δm̃J ,mJ+1

}
.
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b. In particular, for the given system we obtain,

⟨m̃Im̃J |Ĥhfs + ĤB |mImJ⟩ =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,

using the following base: {|mJ ,mI⟩} = {| 12 , 1⟩, | 12 , 0⟩, | 12 ,−1⟩, | − 1
2 , 1⟩, | − 1

2 , 0⟩, | −
1
2 ,−1⟩}.
c. We express the eigenfunctions corresponding to the eigenvalues by,

|α(B)⟩ =
∑

mJmI

|mJmI⟩⟨mJmI |α(B)⟩ .

We find, for example, for the ground state 6Li S1/2,

|αPB,1(150G)⟩ = 0.987|mJ = − 1
2 ,mI = 1⟩+ 0.162|mJ = 1

2 ,mI = 0⟩
|αPB,2(500G)⟩ = 0.999|mJ = − 1

2 ,mI = 1⟩+ 0.055|mJ = 1
2 ,mI = 0⟩ .

d. We express the eigenfunctions corresponding to the eigenvalues by,

|α(B)⟩ =
∑

mJmI

|mJmI⟩⟨mJmI |α(B)⟩ =
∑

mJmI

∑

FmF

|FmF ⟩⟨FmF |mJmI⟩⟨mJmI |α(B)⟩ ,

where ⟨FmF |mJmI⟩ are the Clebsch-Gordans and the ⟨mJmI |α(B)⟩ were determined
in (c). We find, for example, for the ground state 6Li S1/2,

|αZ,1(150G)⟩ = 0.xxx|F = 0,mF = 0⟩+ 0.yyy|F = 1,mF = 0⟩
|αZ,1(500G)⟩ = 0.xxx|F = 0,mF = 0⟩+ 0.yyy|F = 1,mF = 0⟩ .

e.

30.2.8.6 Ex: Diamagnetism of the ground states of H atoms

Calculate the quadratic Zeeman effect for the ground state of the hydrogen atom
caused by the (usually neglected) diamagnetic term of the Hamiltonian in first order
TPIT. Write down the energy shift as ∆E = −χ2B2 assuming a constant magnetic
field in order to obtain the diamagnetic susceptibility χ.

Solution: The diamagnetic term of the interaction Hamiltonian with electromagnetic
fields is,

Ĥint =
e2A2

2m
.

Assuming a homogeneous magnetic field, A = B
2 (yêx− xêy) = B

2 ρêϕ with ρ = r sin θ,
we make a first coarse approximation substituting ρ by aB,

⟨Ĥint⟩ap ≃ B2
e2a2B
8m

≈ hB2 96mHz/G
2
.
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The theoretical value is 5.5 mHz/G2. For a better estimate based on the 1s orbital
wavefunction, ψ100 = 1√

π
(Z/aB)

3/2e−Zr/aB . We get for the first electron,

⟨ψ100|Ĥint|ψ100⟩ =
e2B2
8m

Z3

πa3B

∫

R3

e−Zr/aBρ2e−Zr/aBd3r

=
e2B2
8m

Z3

πa3B
2π

∫ π

0

sin3 θdθ

∫ ∞

0

e−uu4du
(aB
2Z

)5

=
e2B2
8m

Z3

πa3B
2π

4

3
24
(aB
2Z

)5
=

8e2B2a2B
mZ2

=
64

Z2
⟨Ĥint⟩ap .

Hence,

χ = −16e2a2B
mZ2

.

30.3 Interaction with electric fields

30.3.1 Stark Effect

Electric fields interact with the electrons of the atom. Describing the atom by its
dipole moment, according to (30.13), the interaction energy is,

V̂stark = −d̂ · E⃗ . (30.65)

This is the Stark effect. This effect is usually weak, and its observation requires strong
fields or high spectral resolution. Stationary perturbation theory TIPT gives,

E(1)
n = ⟨ψ(0)

n | − d̂ · E|ψ(0)
n ⟩ = eEz

∫

R3

z|ψ(0)
n |2d3r = 0 , (30.66)

with d = −er and E⃗z = Ezêz. This only applies when the states have well-defined
parity and are NOT degenerate in ℓ. When they ARE degenerate in ℓ, which is the
case of hydrogen, the states have no defined parity (−1)ℓ. For example, the states
s and p contributing to the same state |ψn,j⟩ have different parities. In this case,
the condition (30.66) is not automatically satisfied, and the first perturbation order
yields a value. This is the case of the linear Stark effect. In the Excs. 30.3.2.1 and
30.3.2.2 we explicitly calculate the Stark energy shift for a hydrogen atom subject to
an electric field.

Other atoms do not have this degeneracy, and we must calculate the quadratic
Stark effect in second order TIPT,

|ψ(1)
n ⟩ = eEz

∑

n′ ̸=n
|ψ(0)
n′ ⟩
⟨ψ(0)
n′ |ẑ|ψ(0)

n ⟩
En − En′

. (30.67)

and

E(2)
n = e2E2z

∑

n′ ̸=n

|⟨ψ(0)
n′ |ẑ|ψ(0)

n ⟩|2
En − En′

. (30.68)
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To simplify the matrix elements, we separate the radial part from the angular part,

⟨ψ(0)
n′ |ẑ|ψ(0)

n ⟩ = ⟨n′J ′m′J |ẑ|nJmJ⟩ =
∫ ∞

0

r3Rn′J′RnJdr

∫
Y ∗J′m′

J

z
rYJmJ

dΩ . (30.69)

The radial part, written as

⟨n′JJ ′||ẑ||nJJ⟩ ≡
∫ ∞

0

r3Rn′
JJ

′RnJJdr , (30.70)

and called the irreducible matrix element, no longer depends on the magnetic quantum
number. On the other hand, the angular part may be expressed by Clebsch-Gordan
coefficients, as will be discussed more extensively in Sec. 34.2.3. The result is called
Wigner-Eckart theorem,

⟨n′JJ ′m′J |ẑ|nJJmJ⟩
⟨n′JJ ′||ẑ||nJJ⟩

=

∫
Y ∗J′m′

J

z
rYJmJ

dΩ =
1

2J ′ + 1

(
J 1 J ′

mJ 0 −m′J

)
. (30.71)

With [ẑ, L̂z] = 0, which was shown in Exc. 25.3.4.2, and obviously [ẑ, Ŝz] = 0 we
find,

0 = ⟨J ′m′J |[ẑ, Ĵz]|JmJ⟩ = (mJ −m′J)⟨J ′m′J |ẑ|JmJ⟩ . (30.72)

This means that for mJ ̸= m′J , the matrix elements ⟨J ′m′J |ẑ|JmJ⟩ should disappear.
Therefore, the matrix is diagonal inmJ . We consider dipole transitions with |J−J ′| ≤
1 1,

(
J 1 J + 1

mJ 0 −mJ

)
=

(J + 1)2 −m2
J

(2J + 1)(J + 1)
, (30.73)

(
J 1 J

mJ 0 −mJ

)
=

m2
J

J(J + 1)
,

(
J 1 J − 1

mJ 0 −mJ

)
=

J2 −m2
J

J(2J + 1)
.

States with the same |mJ | lead to the same quadratic Stark effect,

∆E ∼ A+B|mJ |2 . (30.74)

The factors A and B depend on the main quantum number n and also on L, S, J .
Moreover, they depend on the energy distance of all contributing levels, because of the
denominator in the perturbation equation (30.67). Only levels with different parity
(−1)L contribute. The formulae (30.73) will be derived explicitly in Exc. 30.3.2.3.

30.3.2 Exercises

30.3.2.1 Ex: Stark effect in hydrogen

Consider the hydrogen atom immersed in a uniform electric field E⃗ applied along the
êz-direction. The term corresponding to this interaction in the total Hamiltonian

1For it is possible to show that ⟨n′JJ ′||ẑ||nJJ⟩ = 0 for |J − J ′| > 1.
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is Ĥ(1) = −eE⃗ ẑ. For typical electric fields produced in laboratory, the condition
Ĥ(1) ≪ Ĥ0, which allows the use of TIPT, is satisfied. The effect of the perturbation
Ĥ(1), called Stark effect, is the removal of the degeneracy of some of the hydrogen
atom states. Calculate the Stark effect for the state n = 2.

Solution: Before explicitly calculating the elements of the perturbation matrix, we
note that the perturbation matrix has nonzero components only between states of op-
posite parity. As we are considering the level n = 2, the relevant states are ℓ = 0 and
ℓ = 1. Hence,

⟨n′ℓ′m′|ẑ|nℓm⟩ = 0 for ℓ = ℓ′ .

In addition, knowing

0 = ⟨n′ℓ′m′|[L̂z, ẑ]|nℓm⟩ = (m−m′)⟨n′ℓ′m′|ẑ|nℓm⟩ ,

we deduce that,
⟨n′ℓ′m′|ẑ|nℓm⟩ = 0 para m ̸= m′ .

Therefore, by choosing the basis as
(
2s 2p,m = 0 2p,m = 1 2p,m = −1

)
, we ob-

tain the matrix,

Ws =




0 ⟨2s|W |2p,m = 0⟩ 0 0

⟨2p,m = 0|W |2s⟩ 0 0 0

0 0 0 0

0 0 0 0


 .

We calculate explicitly,

⟨ϕ200|z|ϕ100⟩ =
aB
32π

∫ ∞

0

∫ π

0

∫ 2π

0

r̃e−r̃/2 cos θ r̃ cos θ (2− r̃)e−r̃/2r̃2 sin θdθdϕdr̃

=
aB
16

∫ 1

−1
cos2 θd(cos θ)

∫ ∞

0

(2− r̃)r̃4e−r̃dr̃ = aB
16

2

3
(−72) = −3aB .

The characteristic equation for degenerate TIPT gives,

0 = det(Ws − Eδℓℓ′δmm′) = E2(E2 −W 2
s ) ,

such that we get four energies,

E = 0,±3eaB |E⃗ | .

Note that the matrix element is linear in |E⃗ |. Therefore, this correction is called the
linear Stark effect. Transforming into the base diagonalizing the perturbation, we
obtain the four vectors,

|2p,m = ±1⟩ and 1√
2
|2p,m = 0⟩ ± |2s,m = 0⟩ .
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30.3.2.2 Ex: Stark effect in the 1s hydrogen level

Calculate the Stark shift of the hydrogen ground state by taking into account the
contributions of the excited states n = 2, 3, ...

Solution: The energy term in second order perturbation theory for the 1s state of
hydrogen is given by,

E(2) = e2E2
∑

n ̸=1,ℓ,m

|⟨100|z|nℓm⟩|2
E1 − En

,

where En is the eigenvalue associated with |nℓm⟩ taken from Bohr’s model. As there
are states |nℓm⟩ with parity opposite to |100⟩, the term E(2) will not be zero and there
will, in fact, be a quadratic contribution to the energy shift, which will be negative
because E1 − En < 0. An upper limit for the magnitude of this reduction can be
obtained, noting that |E1 − En| ≥ ∆E, where ∆E ≡ |E1 − E2| and hence,

|E(2)| ≤ e2E2
∆E

∑

n ̸=1,ℓ,m

⟨100|z|nℓm⟩⟨nℓm|z|100⟩

=
e2E2
∆E
⟨100|z


 ∑

n ̸=1,ℓ,m

|nℓm⟩⟨nℓm|


 z|100⟩ ,

Using the completeness relation for the base |nℓm⟩,
∑

n ̸=1,ℓ,m

|nℓm⟩⟨nℓm| = I− |100⟩⟨100| ,

the inequality can be written in the form,

|E(2)| ≤ e2E2
∆E

[⟨100|z2|100⟩ − ⟨100|z|100⟩2] ,

As mentioned above, ⟨100|z|100⟩ = 0, and the other term can be easily calculated,

⟨100|z2|100⟩ =
∫
dΩsin θ cos2 θ

∫
drr4

(
e−r/aB√
πa3B

)2

= a2B .

Replacing the value ∆E = 3e2/32πϵ0aB, the limit for the reduction of energy is
obtained,

|E(2)| ≤ 32π

3
ϵ0a

3
BE2 ≃ 10.667πϵ0a

3
BE2 .

To obtain the real energy correction from the starting equation, the matrix elements
of z must be calculated,

⟨100|z|nℓm⟩ =
∫
d3rR∗nℓ(r)Y

∗
ℓm(θ, ϕ)(r cos θ) 1√

4π
R10(r) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EfeitoStark2.pdf
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where ⟨r|nℓm⟩ = Rnℓ(r)Yℓm(θ, ϕ). Using cos θ =
√

4π
3 Y10(θ, ϕ), we obtain,

⟨100|z|nℓm⟩ =
∫
drr3R∗nℓ(r)R10(r)

∫
dΩY ∗ℓm(θ, ϕ) 1√

3
Y10(θ, ϕ) ,

and with the orthogonality relations for the spherical harmonics, the angular part is
easily solved,

⟨100|z|nℓm⟩ = δℓ1δm0√
3

∫
drr3R∗nℓ(r)R10(r) ,

Therefore, the second order energy correction is given by,

E(2) =
−8πϵ0aBE2

3

∑

n ̸=1

[(∫
drr3R∗nℓ(r)R10(r)

)2
n2

n2 − 1

]
.

The calculation of the radial integrals in general is not trivial, but the result for the
sum can be estimated by taking the first terms. For example, for n = 1, ..., 4, we have
the radial wavefunctions,

R10(r) =
2√
a3B

e−r/aB , R21(r) =
1

2
√

6a3B

r

aB
e−r/2aB

R31(r) =
4

81
√
6a3B

(
6− r

aB

)
r

aB
e−r/3aB , R41(r) =

1

8
√

15a3B

(
r2

8a2B
− 5r

2aB
+ 10

)
,

and the integrals result in,

∫ ∞

0

drr3R21(r)R10(r) =
28

34
√
6
aB ,

∫ ∞

0

drr3R21(r)R10(r) =
34

26
√
6
aB

∫ ∞

0

drr3R21(r)R10(r) =
2833

55
√
15
aB .

With these terms, the energy shift is,

E(2) =
−8πϵ0aBE2

3
(2.220 + 0.300 + 0.157 + ..) ≃ −7.139πϵa3BE .

The exact result for this energy correction is −9πϵ0a3BE [136].

30.3.2.3 Ex: Stark effect

Derive the Eqs. (30.73) from the formula (28.5).

Solution: We have
(
J 1 J ′

mJ 0 −mJ

)
= (−1)J−1+mJ

√
(J + 1− J ′)!(J − 1 + J ′)!(−J + 1 + J ′)!

(J + J ′ + 2)!
×

×
∑

t

(−1)t
√
(J +mJ)!(J −mJ)!(J ′ −mJ)!(J ′ +mJ)!

t!(mJ − 1 + J ′ + t)!(−J + J ′ + t)!(J + 1− J ′ − t)!(J −mJ − t)!(1− t)!
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Staticfields_EfeitoStark3.pdf
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For J ′ = J − 1 we have

(
J 1 J − 1

mJ 0 −mJ

)
= (−1)J−1+mJ

√
2!(2J − 2)!

(2J + 1)!

×
∑

t

(−1)t
√
(J +mJ)!(J −mJ)!(J − 1−mJ)!(J − 1 +mJ)!

t!(mJ − 2 + J + t)!(t− 1)!(2− t)!(J −mJ − t)!(1− t)!
×

(
J 1 J − 1

mJ 0 −mJ

)2

=
2

(2J + 1)(2J)(2J − 1)

[
J2 −m2

J

]
.

For J ′ = J we have

(
J 1 J

mJ 0 −mJ

)
= (−1)J−1+mJ

√
(2J − 1)!

(2J + 2)!

∑

t

(−1)t(J +mJ)!(J −mJ)!

t!2(1− t)!2(mJ − 1 + J + t)!(J −mJ − t)!
(
J 1 J

mJ 0 −mJ

)2

=
4

(2J + 2)(2J + 1)2J
m2
J .

For J ′ = J + 1 we have

(
J 1 J + 1

mJ 0 −mJ

)
= (−1)J−1+mJ

√
(J + 1− J ′)!(J − 1 + J ′)!(−J + 1 + J ′)!

(J + J ′ + 2)!
×

×
∑

t

(−1)t
√
(J +mJ)!(J −mJ)!(J ′ −mJ)!(J ′ +mJ)!

t!(mJ − 1 + J ′ + t)!(−J + J ′ + t)!(J + 1− J ′ − t)!(J −mJ − t)!(1− t)!
(
J 1 J + 1

mJ 0 −mJ

)2

=
2

(2J + 3)(2J + 2)(2J + 1)

[
(J + 1)2 −m2

J

]
.

30.4 Further reading

T. Mayer-Kuckuk, Atomphysik, Teubner Studienbücher (1985) [860]ISBN

http://isbnsearch.org/isbn/978-3-519-33042-4


Chapter 31

Atoms with many electrons

31.1 Symmetrization of bosons and fermions

Quantum mechanics must be formulated in a way to avoid any possibility of dis-
tinguishing identical particles. However, the language of mathematics automatically
assigns a particle to a wavefunction; for example, ψa(x1) is the wavefunction a of
particle 1 and ψb(x2) the wavefunction b of particle 2. In the absence of interactions,
the total wavefunction, Ψ = ψa(x1)ψb(x2), solves the Schrödinger equation of two
particles. Now, by changing the coordinates of the particles we get a different state
Ψ′ = ψa(x2)ψb(x1)

1. This erroneously suggests that the wavefunction of a parti-
cle plays the role of a label (or ’soul’) characterizing the particle beyond its set of
quantum numbers. Why this is a problem, we will see in the following example 2.

Example 185 (Indistinguishability of particles): We consider a system of
two non-interacting spinless particles in an infinite potential well. The total
wavefunction is,

Ψ(1,2) ≡ ψa(x1)ψb(x2) = C cos
naπx1
L

cos
nbπx2
L

(31.1)

with the energy,

Ea,b =
π2n2

a

2mL2
+

π2n2
b

2mL2
.

For observable quantities, such as |Ψ(1,2)|2, we must ensure, |Ψ(1,2)|2 = |Ψ(2,1)|2,
that is,

C2 cos2 naπx1
L

cos2 nbπx2
L

= C2 cos2 naπx2
L

cos2 nbπx1
L

,

1We note that the states are orthogonal, because∫
Ψ∗(1,2)Ψ(2,1)dx1dx2 =

∫
ψ∗a(x1)ψ

∗
b (x2)ψa(x2)ψb(x1)dx1dx2

=

∫
ψ∗a(x1)ψb(x1)dx1

∫
ψ∗b (x2)ψa(x2)dx2 = δna,nb .

2Ultimately, all this is simply a consequence of the uncertainty principle, which forbids us to
specify a wavefunction as a function of two non-commuting coordinates: We have to choose one
coordinate on which the wavefunction depends and treat the other as a quantum number, for ex-
ample, ψk(r) = eık·r or ψn(x) = cos nπx

L
. When we now exchange the coordinates of two particles

without changing their quantum numbers, we get obviously different states. In classical physics, the
wavefunction of a particle would be written ψ(x, p). If two classical particles are not distinct by any
other mean, an exchange of all their coordinates would reproduce exactly the same state.

1577
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but this is not valid for na ̸= nb. If na = nb, we have ψa = ψb. That is, the
particles stay in the same state, and we do not need to worry about indistin-
guishability:

Ψ(2,1) = ψa(x2)ψb(x1) = Ψ(1,2) and Ea,b = Eb,a .

However, the fact that this state is never observed with two electrons shows,

that theory must be corrected to allow a true description of reality. Will deepen

this argument in Exc. 31.1.3.1.

We need to construct the total wavefunction in another way. Let us consider linear
combinations of Ψ(1,2),

ΨS,A ≡ 1√
2
(Ψ(1,2) ±Ψ(2,1)) = 1√

2
[ψa(x1)ψb(x2)± ψa(x2)ψb(x1)] . (31.2)

This symmetrized wavefunction (or anti-symmetrized) represents a trick to eradicate
the label sticking to the particles. For, under position exchange described by the
operator Pxψa(x1)ψb(x2) ≡ ψa(x2)ψb(x1), the (anti-)symmetrized functions behave
like 3,

PxΨS,A = ±ΨS,A while PxΨ(1,2) = Ψ(2,1) ̸= ∓Ψ(1,2) . (31.3)

The (anti-)symmetrized function solves the Schrödinger equation, as well. As [Ĥ,Px] =
0, we can say that the system exhibits an exchange symmetry or exchange degeneracy
upon particle exchange. Observables such as Ψ∗S,AΨS,A stay conserved, for example,
the probability

|ΨS,A|2 = 1
2

[
|ψa(x1)ψb(x2)|2 + |ψa(x2)ψb(x1)|2

]
(31.4)

± 1
2 [ψ

∗
a(x1)ψ

∗
b (x2)ψa(x2)ψb(x1) + ψ∗a(x2)ψ

∗
b (x1)ψa(x1)ψb(x2)] = Px|ΨS,A|2

does not change, when we exchange x1 for x2. For x1 = x2, we observe,

|ΨS,A|2 = |ψa(x)ψb(x)|2 ± |ψa(x)ψb(x)|2 . (31.5)

That is, for a symmetric system, the probability of finding two particles at the same
location is doubled, whereas for an anti-symmetric system, this probability is zero.

Wolfgang Pauli showed that the (anti-)symmetric character is related to the spin
of the particles. Particles with integer spin called bosons must be symmetric. Par-
ticles with semi-integer spin called fermions must be anti-symmetric. Electrons are
fermions. Therefore, in an atom, they can not be in the same state (location), but
must be distributed over a complicated shell of orbitals. We note, that this applies
not only to elementary particles, but also to composed particles such as, for exam-
ple, atoms. We will determine in Exc. 31.1.3.2 the bosonic or fermionic character of
several atomic species.

31.1.1 Pauli’s Principle

Two electrons with anti-parallel spins can be separated by inhomogeneous magnetic
fields, even if they are initially in the same place. Therefore, they are distinguishable

3To guarantee |PxΨ(1,2)|2 = |Ψ(1,2)|2, we have PxΨ(1,2) = eıϕΨ(1,2). From this, PxPxΨ(1,2) =
e2ıϕΨ(1,2) = Ψ(1,2). Hence, PxΨ(1,2) = ±Ψ(1,2).
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and the wavefunction need not be anti-symmetric. But if we exchange the spin along
with the position, the particles must be indistinguishable. This must be taken into
account in the wavefunction by assigning a spin coordinate, ψa(x1, s1). The exchange
operator should now be generalized,

Px,sΨ(1,2) ≡ Px,sψa(x1, s1)ψb(x2, s2) = ψa(x2, s2)ψb(x1, s1) = Ψ(2,1) . (31.6)

We now assume that the electrons not only do not interact with each other, but
there is also no interaction between the position and the spin of each electron. That is,
for a while we will discard L ·S-coupling 4. We can then write the total wavefunction
of an electron as the product of a spatial function, ψ(x), and a spin function, χ(s) =
α ↑ +β ↓, where α and β are probability amplitudes of finding the electron in the
respective spin state, such that,

ψ(x, s) = ψ(x)χ(s) . (31.7)

For two particles, the total spin function is,

X(1,2) = χa(s1)χb(s2) . (31.8)

The (anti-)symmetrized version is

XS,A = 1√
2
(X(1,2) ±X(2,1)) = 1√

2
[χa(s1)χb(s2)± χa(s2)χb(s1)] , (31.9)

as we have already seen in Sec. 25.4.1. Since there are only two spin directions, there
are four possibilities to attribute the spins ↑ and ↓ to the functions χm(sn),

XS =





↑↑ = χ1,1

1√
2
(↑↓ + ↓↑) = χ1,0

↓↓ = χ1,−1

and XA = 1√
2
(↑↓ − ↓↑) = χ0,0 (31.10)

For the total wavefunction, which must be anti-symmetric for electrons, there are two
possibilities,

ΘA =


ΨSXA = 1

2
(Ψ(1,2) +Ψ(2,1))(X(1,2) −X(2,1)) = 1√

2
[ψa(x1)ψb(x2) + ψa(x2)ψb(x1)]χ0,0

ΨAXS = 1
2
(Ψ(1,2) −Ψ(2,1))(X(1,2) +X(2,1)) = 1√

2
[ψa(x1)ψb(x2)− ψa(x2)ψb(x1)]


χ1,1

χ1,0

χ1,−1

.

(31.11)

That is, the two electrons may be in a triplet state with the anti-symmetric spatial
wavefunction, or in a singlet state with the symmetric spatial wavefunction 5.

How to generalize these considerations to N particles? The symmetric wavefunc-
tions contain all permutations of the label ak, where we understand by ak the set of
quantum numbers unambiguously specifying the state of the particle k,

ΘS = N
∑

Px,sak

ψa1(x1)...ψaN (xN ) , (31.12)

4In the case of L · S-coupling, the total wavefunction can not be written as a product of spatial
and spin functions, but it must be anti-symmetric anyway.

5In the coupled image, the total spin S = s1+s2 can have the following values S = |s1−s2|, .., s1+
s2 = 0, 1. In the case S = 0 the magnetic quantum number can only have one value (singlet),mS = 0.
In the case S = 1 it can have three values mS = −1.0,+1 (triplet) (see Exc. 30.2.8.3).
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with a normalization factor N 6. The (anti-)symmetrized wavefunction is obtained
from the Slater determinant,

ΘA = 1
N ! detψak(xn) =

1
N !

∣∣∣∣∣∣∣∣

ψa1(x1) · · · ψa1(xN )
...

. . .
...

ψaN (x1) · · · ψaN (xN )

∣∣∣∣∣∣∣∣
. (31.13)

This function satisfies

Px,sΘA,(1,..,i,j,..,N) = ΘA,(1,..,j,i,..,N) = −ΘA,(1,..,i,j,..,N) . (31.14)

The Slater determinant is zero, when two sets of quantum numbers are identical,
ai = aj . For example, for two electrons in an electronic shell, |ni, li,mi, si⟩ =
|nj , lj ,mj , sj⟩. This is Pauli’s strong exclusion principle:

The total wavefunction must be antisymmetric with respect to the ex-
change of any pair of identical fermions and symmetrical with respect to
exchange of any pair of identical bosons.

Pauli’s weak exclusion principle (usually sufficient for qualitative considerations) says
that two fermions in identical states can not occupy the same region in space. That
is, their Broglie waves interfere destructively, as if Pauli’s principle exerted a repulsive
interaction on the particles. This ’force’ has a great impact on the phenomenology of
the bonds between atoms, as we will discuss in the following sections.

31.1.2 Consequences for quantum statistics

The indistinguishability of quantum particles has interesting consequences on the
statistical behavior of bosons and fermions. This becomes obvious when we consider
two particles 1 and 2 being able to adopt two different states a and b. Distinguishable
particles can be in one of the following four states,

Ψ = {ψa(x1)ψa(x2), ψa(x1)ψb(x2), ψb(x1)ψa(x2), ψb(x1)ψb(x2)} (31.15)

with the same probability of p = 1/4. When the quantum particles approach each
other, x1 ≃ x2, they must become indistinguishable. Bosonic indistinguishable parti-
cles can stay in one of the following three states,

Ψ = {ψa(x1)ψa(x2), 1√
2
[ψa(x1)ψb(x2) + ψb(x1)ψa(x2)], ψb(x1)ψb(x2)} (31.16)

with the same probability of p = 1/3. Finally, fermionic indistinguishable particles
can only be in one state,

Ψ = { 1√
2
[ψa(x1)ψb(x2)− ψb(x1)ψa(x2)]} (31.17)

with the probability of p = 1. We see that a simple two-particle system already
exhibits qualitative modifications of its statistical behavior. These differences generate

6It is possible to show N =

√
Πm

k=1
nk!

N !
, where nk is the population of state ψak , that is, the

number of particles with the same set of quantum numbers ak.
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different physics as we deal with systems of large numbers of particles, as we can see
in the cases of the free electron gas and the Bose-Einstein condensate.For a broader
discussion, see Chap. 50.1.

We finally note a result of the standard model of particle physics assigning a
fermionic character to all fundamental constituent particles of matter while the me-
diators of fundamental forces are always bosons.

31.1.3 Exercises

31.1.3.1 Ex: Indistinguishability of particles

Consider the observable quantity
∫ L/2
0

∫ L/4
0
|Ψ(x1, x2)|2dx1dx2 for the case of the

wavefunction defined in (31.1) and show, that it does depend on particle exchange.

Solution: We use the normalized wavefunctions ψk(xm) =
√

2
L cos nkπxm

L with k =

a, b and m = 1, 2, and we consider the orbitals na = 1 and nb = 2. The probability∫ L/2
0

∫ L/4
0
|Ψ(1,2)|2dx1dx2 is certainly an observable. However, because of,

∫ L/2

0

∫ L/4

0

|ψa(x1)ψb(x2)|2dx1dx2 =
2

L

∫ L/2

0

∫ L/4

0

cos2
πx1
L

cos2
2πx2
L

dx1dx2 =
1

16

2 + π

π
L

̸=
∫ L/2

0

∫ L/4

0

|ψa(x2)ψb(x1)|2dx1dx2 =
2

L

∫ L/2

0

∫ L/4

0

cos2
πx2
L

cos2
2πx1
L

dx1dx2 =
1

16
L ,

it is not equal to
∫ L/2
0

∫ L/4
0
|Ψ(2,1)|2dx1dx2.

31.1.3.2 Ex: Bosonic and fermionic isotopes

Consulting an isotope table determine the bosonic or fermionic character of the fol-
lowing atomic species: 87Sr, 86Sr, 87Rb, 39K, and 40K.

Solution:

31.1.3.3 Ex: Interference of bosons and fermions

a. Consider two clouds of ultracold bosonic atoms (BECs at temperature T = 0)
moving into opposite direction with velocities v± = ±v, respectively. Describe the
matter wave interference pattern.
b. Repeat the consideration for the case of (i) fermionic clouds and (ii) only two coun-
terpropagating atoms. Is matter wave interference possible at all for fermions?

Solution: a. Neglecting the finite spatial extension and assuming the same number of
atoms in both bosonic clouds, we describe the condensates as plane matter waves. We
expect matter wave interference pattern with the periodicity 2πℏ/mv. Repeating the
experiment the interference pattern will always have the same periodicity, but different
phases. The total symmetrized wavefunction is Ψ(1, 2) = ... ...

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_Symmetrize01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_BosonFermion01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_BosonFermion02.pdf
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Table 31.1: Nuclear spin, ground state, and quantum statistical nature of some atomic
species.

atom I ground state type
6Li 0 2S1/2 fermion
7Li 3

2
2S1/2 boson

23Na 3
2

2S1/2 boson
39K 3

2
2S1/2 boson

40K 0 2S1/2 fermion
87Sr 7

2
1S0 fermion

88Sr 0 1S0 boson
85Rb 5

2
2S1/2 boson

87Rb 3
2

2S1/2 boson
133Cs 9

2
2S1/2 boson

b. In the case of fermions, the total anti-symmetrized wavefunction is Ψ(1, 2) = ...,
hence, two fermions can interference. However, as the phase of the patterns for each
pair of colliding atoms is arbitrary, no overall interference patterns will form.
Nevertheless, fermions can interfere with themselves in matter wave interferometers
[853, 344].

31.2 Helium

The simplest atom to discuss Pauli’s principle is helium. The helium atom has a
charged nucleus Z = +2e and mass mHe ≈ 4mH .

31.2.1 The ground state

The ground state of the helium atom brings together the two electrons, that is, (1s)2.
To treat the helium atom, we can, as a first trial, describe the atom by the Bohr
model, assuming independent electrons. Neglecting the electronic repulsion term
(which depends on r12 = |r1 − r2|), we can separate the total wavefunction:

Ψ(r1, r2) = Ψ1(r1)Ψ2(r2) , (31.18)

and we get two Schrödinger equations, the Hamiltonian being equal to the one of
hydrogen-like atoms:

[
− ℏ2

2µ
∇2
i −

e2

4πε0

Z

ri

]
Ψi(ri) = E(i)

n Ψi(ri) , (31.19)

with i = 1, 2. For hydrogen-like atoms we have,

E = E(1)
n + E(2)

n = EBZ
2

(
1

n21
+

1

n22

)
, (31.20)
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with EB = −13.6 eV. With this, we get the energy for the ground state:

EHe(1s) = −2Z2EB = −108.8 eV . (31.21)

The value predicted by Bohr’s model is far from experimental reality: The ioniza-
tion energy measured for the first electron is 24.6 eV, for the second 54.4 eV, totalizing
a binding energy for two electrons of −78.983 eV . This corresponds to an error of
about 38%. The lower energy of the first electron is due to the shielding of the nucleus
by the second.

31.2.1.1 First-order perturbation of the energy

Treating the repulsion term between the electrons as a perturbation [60] and using the
eigenfunctions of hydrogen atoms |n, ℓ,mℓ⟩, the total wavefunction is |n1, ℓ1,mℓ1 ;n2, ℓ2,mℓ2⟩,
we obtain as first order TIPT correction for the energy:

∆E = ⟨n1, ℓ1,mℓ1 ;n2, ℓ2,mℓ2 |
e2

4πε0r12
|n1, ℓ1,mℓ1 ;n2, ℓ2,mℓ2⟩ . (31.22)

This correction is called the Coulomb integral and has the value:

∆E =
e2

4πε0

∫
|Ψn1,ℓ1,mℓ1

(r1)|2
(

1

r12

)
|Ψn2,ℓ2,mℓ2

(r2)|2dV1dV2 . (31.23)

This integral is always positive. The term |Ψn1,ℓ1,mℓ1
(r1)|2dV1 is the probability of

finding the electron inside the volume element dV1 and, when multiplied by −e, gives
the charge associated with that region. Thus, the integral represents the Coulombian
interaction energy of the confined charges within the two volume elements dV1 and
dV2. ∆E is the total contribution to the potential energy. Calculating the Coulomb
integral for the ground state, which will be done in Exc. 31.2.3.1, we obtain,

∆E =
5Z

4

(
e2

4πε02aB

)
=

5Z

4
EB , (31.24)

with aB the Bohr radius. ∆E corresponds to 34 eV. Thus, the ground state energy
is EHe(1s) = −108.8 eV+34 eV = −74.8 eV. Comparing with the experimental value
of −78.983 eV we have an error around 5.3%.

31.2.1.2 Shielding of the nuclear charge

We can make the approximation in which we consider that each electron moves in a
Coulombian potential, with respect to the nucleus, shielded by the charge distribution
of the other electron [352]. The resulting potential will be generated by an effective
charge ζe ≡ (Z −B)e. The quantity B ∈ [0, 1] is called the shielding constant.

The first electron feels a total nuclear charge Ze, while the second feels an effective
nuclear charge ζe. We exchange Z for ζ in the energy term for hydrogen-like atoms,

En = −ζ EB
n2

, (31.25)
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and the energy for the ground state becomes, assuming total shielding, B = 1,

E = E1 + E2 = −Z2EB − ζ2EB = −4EB − EB = −5EB = −67.5 eV . (31.26)

Comparing with the experimental value of −78.983 eV we have an error around 15%.
For a shielding constant of around B = 0.656 the experimental value is reproduced.
This means that the effective nuclear charge felt by the second electron is only partly
shielded by the former. The TPIT method (31.22) and the shielding concept (31.25)
can be combined in a variational calculation, where the effective charge ζ is the vari-
ational parameter. In Exc. 31.2.3.2 we study the reciprocal shielding of the electrons
at the example of the helium-type ion H−.

31.2.2 Excited states

Let us now investigate the excited states of helium, in particular those, where only one
electron is excited, the other one being in the ground state, (1s)1(2s)1 and (1s)1(2p)1.
All energies are considerably higher (weaker binding) than predicted by Bohr’s model
with Z = 2, because of the interaction with the other electron. Also, the (2s) and
(2p) levels are no longer degenerate, because the electrostatic potential is no longer
Coulombian (see Fig. 31.1).

Figure 31.1: Helium levels for the excitation of the first electron and allowed singlet and
triplet transitions. Note that the state (1s)↑↑ does not exist.

As we have seen in the discussion of the fine structure of hydrogen, the energy of
the l · s-coupling given by (29.130) is ∝ En(Zα)

2 ∝ Z4. For helium which still has
a small Z, the energy of the coupling is weak (∼ 10−4 eV), so that we can count
on a direct coupling of the spins of the two electrons. If in an excited state the
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orbits of the electrons are different, we can construct combinations of symmetric or
antisymmetric spatial wavefunctions ΨS,A, are therefore combinations XA,S of anti-
parallel or parallel spins. When the spins are parallel (S = 1), the spatial wavefunction
is antisymmetric, when they are antiparallel (S = 0), it is symmetric. From the
symmetry of the wavefunction depends the energy of the Coulombian interelectronic
interaction, because in the symmetric state the average distance of the electrons
is much smaller than in the antisymmetric state, where the total spatial function
disappears for zero distance. Consequently, the configuration (1s)1(2s)1 has two states
with S = 0 and S = 1, with energy ES=0 > ES=1. Likewise, all configurations are
split, as shown in Fig. 31.1. The energy difference (∼ 0.6 eV) is considerable and
larger than the energy of fine structure interaction. This explains why the two spins
first couple to a total spin, s1 + s2 = S, before this spin couples to the total orbital
angular momentum, S+ L = J. This is the L · S-coupling.

31.2.2.1 Exchange energy

The energy difference between the two states S = 0 and S = 1 is called exchange
energy. It comes out of a first-order perturbation calculation. For example, for the
two possible states (1s)1(2s)1, we write the total anti-symmetric wavefunctions,

ΘA± = 1√
2
[ψ100(r1)ψ200(r2)± ψ100(r2)ψ200(r1)] · χA,S , (31.27)

where the (+) sign holds for χA (S = 0) and the (−) sign for χS (S = 1). The energies
are,

∆ES,A = 1
2

∫
dr31

∫
dr32Θ

∗A
±

e2

4πε0|r1 − r2|
Θpm

A (31.28)

= 1
2

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
[|ψ100(r1)|2|ψ200(r2)|2 + |ψ100(r2)|2|ψ200(r1)|2]

± 1
2

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
2ψ∗100(r1)ψ

∗
200(r2)ψ100(r2)ψ200(r1)

≡ ∆Ecoulomb ±∆Eexchange .

The first integral,

∆Ecoulomb =

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
|ψ100(r1)|2|ψ200(r2)|2 , (31.29)

is the Coulomb energy (31.23) between the electronic orbitals. We note that this part
can be calculated from the Hamiltonian using non-symmetrized orbitals. The second
integral,

∆Eexchange =

∫
dr31

∫
dr32

e2

4πε0|r1 − r2|
ψ∗100(r1)ψ

∗
200(r2)ψ100(r2)ψ200(r1) , (31.30)

called exchange energy corresponds to the interference terms of the symmetrization
and must be added or subtracted according to their symmetry character. It is inter-
esting to note that up to this point the spin does not enter directly into the helium
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Hamiltonian,

ĤS,A =
p21
2m

+
p22
2m

+ V (r1) + V (r2) + V (|r1 − r2|)±∆Eexchange , (31.31)

but only through the symmetry character of the spatial wavefunction. On the other
hand, on a much smaller energy scale, the spin enters through the L · S-interaction.

The potential is not spherically symmetric, the term r12 depends on the angle
between r1 and r2. Thus, the total wavefunction Ψ(r1, r2) is not separable into a
radial and an angular part. By consequence, unlike for hydrogen, the Schrödinger
equation with the Hamiltonian (31.21) has no analytical solution.

Example 186 (TIPT for excited helium states): We consider the two
electrons of a helium atom occupying different orbits described by wavefunc-
tions denoted by ψa(1) ≡ ψn1,ℓ1,mℓ1

(r1) and ψb(2) ≡ ψn2,ℓ2,mℓ2
(r2). Applying

the Hamiltonian without the interelectronic interaction term, the total states
Θ = ψa(1)ψb(2) and ψa(2)ψb(1) have the same energy Ea + Eb. To calculate
the energy correction, we use TIPT for degenerate states. We have to calcu-
late the secular determinant det(⟨n, ν|H(1)|n, µ⟩ − E(1)

n,µδµ,ν). The terms of the
perturbation matrix H(1) are:

H
(1)
11 = ⟨ψa(1)ψ(2)|

e2

4πε0r12
|ψa(1)ψb(2)⟩

H
(1)
22 = ⟨ψa(2)ψb(1)| e2

4πε0r12
|ψa(2)ψb(1)⟩

H
(1)
12 = ⟨ψa(1)ψb(2)| e2

4πε0r12
|ψa(2)ψb(1)⟩ = H

(1)
21 .

The terms J ≡ H
(1)
11 = H

(1)
22 are Coulomb integrals. The term K ≡ H

(1)
12 is

called exchange integral:

K =
e2

4πε0
⟨ψa(1)ψb(2)| 1

r12
|ψa(2)ψb(1)⟩ .

Hence, as J and K are positive, the determinant is:∣∣∣∣∣J − E K

K J − E

∣∣∣∣∣ = 0 ,

yielding,

E(1) = J ±K .

That is, the states that were previously degenerate with energy E = Ea + Eb
are now split into two states with energies E = Ea + Eb + J ± K. And the
corresponding eigenfunctions are:

ΨS,A(1, 2) =
1√
2
[ψa(1)ψb(2)± ψb(1)ψa(2)] .

This result shows that the repulsion between the two electrons breaks the degen-

eracy (of separable functions written in product form) into states with an energy

difference 2K. Note that the eigenfunctions are symmetric, which is discussed

in the next section.
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31.2.2.2 The spectrum of helium

So far we have seen that, if the electrons are in the same orbital, we have an energy
term E = 2Ea + J and, when they are in different orbitals, we have E = Ea + Eb +
J ±K, with a separation between levels of 2K.

In practice, we consider only the excitation of one electron, because the energy to
excite the two electrons exceeds the ionization energy of the helium atom. To find
the selection rules for transitions between symmetric and antisymmetric states, we
calculate the dipole moment of the transition. For a two-electron system the dipole
moment is d̂ = −er1 − er2, which is symmetric with respect to a permutation of the
two electrons. The matrix element for the dipolar transition is:

⟨ΨA|d̂|ΨS⟩ = −e
∫

Ψ∗A(r1, r2)(r1 + r2)Ψ
S(r1, r2)dV1dV2 . (31.32)

If we exchange the electrons, the above integral changes sign, because ΨA(r1, r2)
changes sign. But the integral can not depend on the nomenclature of the integration
variables, so it must be zero. The transition between a symmetric and an antisymmet-
ric state can not occur. Looking at the spin wavefunction in Θ = ΨSχA or ΨAχS , we
find that transitions are only allowed between singlet states or between triplet states.
That is, there is a selection rule for the spin postulating ∆S = 0 7,8.

Because of the differences observed in the singlet and the triplet spectrum of
helium, illustrated in Fig. 31.1, it was first believed that they belong to different
atomic species, called para-helium and ortho-helium. A chemical analysis showed
later that it was the same element.

31.2.3 Exercises

31.2.3.1 Ex: Helium atom

Compare the measured binding energy with the prediction of Bohr’s model consider-
ing the inter-electronic interaction up to first order TIPT.

Solution: Here, we consider the perturbation due to the Coulomb interaction be-
tween the electrons,

Vee =
−e2

4πε0|r1 − r2|
.

We focus on the ground state. As the total spatial wavefunction must necessarily be
symmetrical (the orbitals of the electrons are identical), the total spin is antisymmet-

7Moreover, transitions between the states 1S0 and 3S1 are impossible, because they violate the
selection rule for the angular momentum, ∆L = ±1.

8We can understand the selection rules as follows: As long as the wavefunction can be written as
a product, Θ = Ψ(x)χ(s), the symmetry character is preserved for the two functions separately. The
eigenvalues of the operators Px and Ps are then good quantum numbers. But this only holds for
weak L · S-coupling. The electric dipole operator for the transition does not act on the spin (which
prevents the recoupling S = 1 ↔ S = 0 via E1-radiation) and also does not act on the symmetry
character of the orbitals (which prevents transitions ΨS ↔ ΨA).
In principle, this holds for any species of atoms with two valence electrons. In reality however, the
influence of the L ·S-coupling grows with Z, which weakens the interdiction of the intercombination
transition. In this case, only the operator Px,s yields good eigenvalues.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_AtomoHelio.pdf
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ric. The list (25.52) gives us the radial wavefunction ψ100,

ΘA = ψ100(r1)ψ100(r2)χ00 =
1

π

(
Z

aB

)3/2

e−Zr1/aB
1

π

(
Z

aB

)3/2

e−Zr2/aB× ↑↓ .

The perturbation energy calculated with unperturbed wavefunctions is,

E
(1)
1 = ⟨ΘA|Vee|ΘA⟩

=

〈
1

π

Z3/2

a
3/2
B

e−Zr1/aB
1

π

Z3/2

a
3/2
B

e−Zr2/aB

∣∣∣∣∣ e2

4πε0|r1 − r2|

∣∣∣∣∣ 1π Z3/2

a
3/2
B

e−Zr1/aB
1

π

Z3/2

a
3/2
B

e−Zr2/aB

〉

=
e2

4πε0

1

π4

Z6

a6B

∫ ∫
e−2Z(r1+r2)/aB

|r1 − r2|
d3r1d

3r2 = mc2α2aB
1

32π4

Z

aB

∫ ∫
e−r̃1−r̃2

|̃r1 − r̃2|
d3r̃1d

3r̃2

=
mc2α2Z

32π4

∫ 2π

0

dφ2

∫ ∞
0

dr̃2r̃
2
2

∫ π

0

dϑ2 sinϑ2

∫ 2π

0

dφ1

∫ ∞
0

dr̃1r̃
2
1

∫ π

0

dϑ1 sinϑ1
e−r̃1−r̃2

|̃r1 − r̃2|
.

We write the distance between the electrons in spherical coordinates,

|̃r1 − r̃2|
=
√

(r̃1 sinϑ1 cosφ1 − r̃2 sinϑ2 cosφ2)2 + (r̃1 sinϑ1 sinφ1 − r̃2 sinϑ2 sinφ2)2 + (r̃1 cosϑ1 − r̃2 cosϑ2)2

=
√
r̃21 + r̃22 − 2r1r2 [sinϑ1 sinϑ2 cos(φ1 − φ2) + cosϑ1 cosϑ2] = R .

Since the two orbitals are spherical, we can solve the angular integrals in ϑ2, φ1, φ2

letting ϑ2 = φ1 = φ2 = 0 at a distance

R =
√
r̃21 + r̃22 − 2r̃1r̃2 cosϑ1 with

dR

dϑ1
=
r̃1r̃2 sinϑ1

R
.

Hence,

E
(1)
1 =

mc2α2Z

32π4
8π2

∫ ∞

0

dr̃2r̃
2
2

∫ ∞

0

dr̃1r̃
2
1

∫ π

0

dϑ1 sinϑ1
e−r̃1−r̃2

R

=
mc2α2Z

32π4
8π2

∫ ∞

0

dr̃2r̃
2
2

∫ ∞

0

dr̃1r̃
2
1

∫ r̃1+r̃2

r̃1−r̃2
dR

e−r̃1−r̃2

r̃1r̃2

=
mc2α2Z

4π2

∫ ∞

0

dr̃2r̃2e
−r̃1

∫ ∞

0

dr̃1r̃1(r̃1 + r̃2 − r̃1 + r̃2)e
−r̃2 =

mc2α2Z

π2

= .. =
5

4

m

2
c2α2Z = 34.0 eV .

The corrected energy, E1 = (−108.8 + 34.0) eV = −74.8 eV is much closer to the
measured value.

31.2.3.2 Ex: Shielding in helium

The helium atom (or helium-like atoms such asH−) has two interacting electrons in its
composition, which means that these systems have no exact solution. To circumvent
this problem we have to come up with a series of approximate methods for calculating
their eigenstates and their respective eigenenergies. Among these methods, a widely

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_KationHidrogen.pdf
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used one, due mainly to its ease and practicality, is the variational method, in which we
calculate the fundamental state of a given problem through a test function that is not
a solution of the original problem. This method, when applied to a helium atom, uses
as test function the solution of the problem without coulombian interaction between
the electrons, which only feel the interaction with the original charge of the nucleus.
However, this method could be further improved if we considered an effective nuclear
charge, due to its interaction with the electrons themselves, and then obtaining the
test function. Apply this correction to the case of helium. Interpret the result. Help:

∫
sin θ2√

r21 + r22 − 2r21r
2
2 cos θ2

dθ2 =

√
r21 + r22 − 2r21r

2
2 cos θ2

r1r2
and

〈1
r

〉
=

Z

aB
.

Solution: This is the Hamiltonian of a helium-type atom (2 electrons) subjected
to a nuclear charge of Z0e:

Ĥ = − ℏ2

2m
(∇2

1 +∇2
2)−

e2

4πε0

(Z0

r1
+
Z0

r2
− 1

|r1 − r2|
)
.

The term that prevents this problem from being calculated exactly is given by Vee:

Vee =
e2

4πε0

1

|r1 − r2|
.

Applying the variational method in the traditional way, we would use the following
test function:

ψMV (r1, r2) =
Z3
0

πa3B
e−Z0(r1+r2)/aB ,

which is the solution of the Hamiltonian with Vee = 0. But since we want to obtain
the shielding effects in the problem, we will rewrite the Hamiltonian in the following
format,

Ĥ = − ℏ2

2m
(∇2

1 +∇2
2)−

e2

4πε0

(Z
r1

+
Z

r2

)
+

e2

4πε0

[Z − Z0

r1
+
Z − Z0

r2
+

1

|r1 − r2|
]
.

Now the test function of the variational method will be the solution of a problem of
non-interacting electrons, but now with a nucleus having an effective charge different
from the original one. The test function acquires a similar format as the previous
one, but with Z0 replaced by Z.

ψMV (r1, r2) =
Z3

πa3B
e−Z(r1+r2)/aB .

Note that the adjustment parameter in this test function is Z, so we will minimize
the energy in relation to Z. Once we have the test function at hand, we proceed with
the variational method, calculating the mean value of H,

⟨H⟩ = 2Z2E1 + 2(Z − Z0)
e2

4πε0

〈1
r

〉
+ ⟨Vee⟩ ,
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with ⟨1/r⟩ being the expectation value of 1/r in the ground state ψ100 of a hydrogen-
type atom with charge Z.

e2

4πε0

〈1
r

〉
=

e2

4πε0

Z

aB
= ⟨V (r)⟩ = −2E1 ,

and E1 = −13.6eV . Now we have to calculate the mean value of Vee:

⟨Vee⟩ =
e2

4πε0

( Z3

πa3B

)2 ∫ e−2Z(r1+r2)/aB

|r1 − r2|
d3r1d

3r2

=
e2

4πε0

( Z3

πa3B

)2 ∫ e−2Z(r1+r2)/aB

√
r21 + r22 − 2r21r

2
2 cos θ2

d3r1d
3r2 .

Let us first calculate the integral in r2. Without loss of generality we can rotate
the coordinate system in r2 such that its z-axis points along r2, which facilitates
integration. The integral in ϕ2 is equal to 2π, the integral in θ2 is given by,
∫ π

0

sin θ2√
r21 + r22 − 2r21r

2
2 cos θ2

dθ2 =
1

r1r2

(√
r21 + r22 + 2r21r

2
2 −

√
r21 + r22 − 2r21r

2
2

)

=
1

r1r2
[(r1 + r2)− |r1 − r2|] =

{
2/r1, if r2 < r1

2/r2, if r2 > r1
.

Taking again the radial part r2 we will have,

= 4π
( 1

r1

∫ r1

0

e−2Zr2/aBr22dr2 +
∫ ∞

r1

e−2Zr2/aBr2dr2
)

=
πa3B
8Zr1

[
1−

(
1 +

2r1
aB

)
e−4r1/aB

]
.

Hence, ⟨Vee⟩

⟨Vee⟩ =
e2

4πε0

Z2

πa3B

∫ [
1−

(
1 +

2r1
aB

)
e−4r1/aB

]
e−4r1/aBr1 sin θ1dr1dθ1dϕ1

=
5Z

8aB

e2

4πε0
= −5Z

4
E1 .

The average energy can then be written,

⟨H⟩ = [2Z2 − 4Z(Z − Z0)− 5
4Z]E1 = [−2Z2 + 4ZZ0 − 5

4Z]E1 .

Minimizing ⟨H⟩ we obtain,

∂⟨H⟩
∂Z

= [−4Z + 4Z0 − 5
4 ]E1 = 0 ,

yielding Z = Z0 − 5
16 . Thus, for He, Z0 = 2, the effective charge is Z ≈ 1.68. This

result seems to be correct, because it is the negatively charged electrons of the ion,
which cause the effective charge to be less than the original charge. This phenomenon
is known as core shielding.
The correction of the energy is,

E = ⟨Φ|Ĥ|Φ⟩ = −2E0

(
Z − 5

16

)2
= −77.46 eV .

This gives an error around 1.9% compared to the experimental value of −78.983 eV.
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31.3 Electronic shell structure

The interelectronic interaction and the need to antissimetrize the wavefunction of
the electrons both contribute to excessively increase the complexity of multielectronic
atoms. The Hamiltonian describing a multielectronic atom of atomic number Z,

Ĥ = Ekin+Vncl−ele+Vele−ele =
Z∑

i=1

p2i
2m
−

Z∑

i=1

Ze2

4πε0|ri|
+

Z∑

i<j=1

e2

4πε0|ri − rj |
, (31.33)

is extremely complicated to solve, even for the simplest case (Z = 2) we must use
approximation methods.

31.3.1 TIPT method

Note that, if we assume independent electrons (Vele−ele = 0), that is, each electron
moves independently of the others within the electrostatic potential generated by the
nucleus and the other Z−1 electrons, the problem would be solvable: We could solve
the Schrödinger equation for a product state of all the electronic wavefunctions, and
we would know the eigenfunctions and individual eigenenergies of each electron (as
for the hydrogen atom). In principle, we should use antisymmetric wavefunctions,
but as a first approach we can choose to only respect Pauli’s weak principle, that
is, assign an individual and unique set of quantum numbers to each electron. The
total energy would be the sum of the energy of every electron, and the associated
physical eigenstates would be obtained by means of an antisymmetrization of the
tensor product of the multielectronic state.

Thus, as a first approximation, we use the states of individual electrons (orbital
approximation) and consider Vele−ele(|ri− rj |) as a perturbation making use of time-
independent perturbation theory. However, this term is not small enough to justify
this procedure, since approximating

Vncl−ele ≃
Z2e2

aB
and Vele−ele ≃

Z(Z − 1)e2

2aB
, (31.34)

we realize that Vele−ele/Vncl−ele varies between 1
4 for Z = 2 and 1

2 for Z ≫ 1/2.
For this reason the use of alternative methods to describe multielectronic atoms is
necessary. Nevertheless, the set of quantum numbers derived from Bohr’s atomic
model are still the same as those used for many-electron atoms, and the orbitals are
used as starting points for more sophisticated methods.

To calculate most of the atomic properties we need reasonably realistic potentials.
The most important terms of the Hamiltonian are the Coulombian potential between
the nucleus and the electrons, Vne, being naturally spherical, and the interaction
potentials between the electrons, Vee, which we will try to approximate by a spherical
potential and treat the deviations caused by the approximation afterward. Knowing
the effect of the shielding of the nucleus by electronic charges, we already know the
asymptotes (see Fig. 31.2),

Veff = − Ze2

4πε0r
for r → 0 and Veff = − e2

4πε0r
for r →∞. (31.35)
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Figure 31.2: (code) External potential (shielded Coulombian) Vcl ∝ e2

r
(blue, upper curve),

interior potential (non-shielded Coulombian for Z = 4) Vbl ∝ Ze2

r
(green, lower curve), and

effective potential (red, middle curve).

31.3.2 Thomas-Fermi model for an electron gas

A first approach to getting a reasonable effective potential Veff is provided by the
Thomas-Fermi model. This is a semi-classical model that aims to roughly describe the
total energy of the electrons as a density functional of atomic/molecular electrons. It
serves as a basis for more sophisticated methods aiming at determining the electronic
structure, such as density functional theory (DFT), and the wavefunctions determined
by this method often serve as a starting point for the Hartree method discussed below.
One of the important predictions of the Thomas-Fermi model is that the average
radius of an atom depends on the nuclear charge as R̄ ∝ Z−1/3.

The Thomas-Fermi model allows us to understand the electronic configuration of
the fundamental states and provides the basis for the periodic system of elements. In
this model, the electrons are treated as independent particles, on one side forming an
effective radial electric potential, on the other side being subjected to this potential.
Instead of requiring anti-symmetry of the wavefunction, it is only necessary to ensure
that all electrons are distinguished by at least one quantum number. The orbitals of
complex atoms are similar to the wavefunctions of hydrogen. So, we can use these
quantum numbers n, ℓ, mℓ, and ms for every electron.

However, the effective radial potential depends very much on the species and is
quite different from the Coulomb potential. So, the degeneracy in ℓ is lifted. In
general, electrons with small ℓ are more strongly bound, because they have a higher
probability of being near the nucleus, where the potential is deeper (see Fig. 31.2).
The same argument explains why electrons with small n are more strongly bound.
We will discuss these effects in more depth in Sec. 31.4.1 by comparing the excitation
levels of the valence electron in different alkalis.

31.3.2.1 Density of states in the Fermi gas model

Even though the real potential sensed by the electrons bound to a nucleus is very
different from the three-dimensional well, we can roughly imagine that the atom is
subdivided into small volumes, understood as box potentials, all filled with electrons.
From this we can calculate the distribution of the electronic charge, such that the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_PotencialEfetivo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_PotencialEfetivo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_PotencialEfetivo.m
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average local energy is homogeneous and the electronic cloud in equilibrium. The
distribution, in turn, serves to determine the shape of the electrostatic potential
which, when subdivided into small volumes filled with electrons, produces the same
charge distribution. This principle is called self-consistency.

According to the Fermi gas model, we consider an infinite potential well, that we
gradually fill up with electrons. The Pauli principle allows us to place at most two
electrons in each orbital,

Ψ = ψ1,↑(x1)ψ1,↓(x2)ψ2,↑(x3)ψ2,↓(x4) · .. . (31.36)

This total wavefunction satisfies the weak Pauli principle, but is obviously not anti-
symmetric. The approximation is good, when the interaction between the electrons
is negligible. Otherwise, we need to consider the exchange energy terms. This model,
called Fermi gas model, is often used to describe the behavior of electrons that can
freely move within the conductance band of a metal.

We divide the atom into small volumes (cells) containing uniformly distributed
non-interacting electrons, whose total number is N , and we analyze each cell in-
dividually. The whole volume can be modeled by a box potential: V (r) = 0 for
0 ≤ x, y, x ≤ L and V (r) = ∞ in all other places. In this case we find the possible
states {|nx, ny, nz⟩} with nx, ny, nz = 1, 2, 3 and the single electron energies,

Enx,ny,nz =
π2ℏ2

2meL2
(n2x + n2y + n2z) =

ℏ2

2me
k2
nx,ny,nz

, (31.37)

where k2
nx,ny,nz

= k2x + k2y + k2z = (nxπ
L )2 + (

nyπ
L )2 + (nzπ

L )2. Each set of values
k = (kx, ky, kz) corresponds to an accessible state of the system, and each state is
associated with a volume element (π/L)3 in k-space. Defining the density of states
η(E), we can express the total number of states below a particular energy E by,

n(E) =

∫ E

0

η(E′)dE′ ≡ 1

(2π)3

∫
d3rd3k =

L3

(2π)3
4π

∫
k2dk (31.38)

=
L3

(2π)3
4π

(
2me

ℏ3

)3/2 ∫ E

0

√
E′dE′ =

L3

3π2

(
2meE

ℏ3

)3/2

.

η(E)dE is the number of states with energies between E and E + dE.
At temperature T = 0 K all N electrons are in their energetically lowest available

state, obeying the Pauli exclusion principle and considering the spin. The energy of
the N -th electron (the most energetic one) is then called the Fermi energy EF . That
is, below EF all states are occupied, and all states above EF are unoccupied. The total
energy is given by the sum of the energies of the N less energetic states, and the final
physical state is given by the antisymmetrization of the corresponding wavefunction.
With the formula (31.38), we can express the Fermi energy via n(EF ) ≡ N , such that,

EF =
ℏ2

2meL2
(3π2N)2/3 , (31.39)

so that the density of states can be expressed as,

η(E) =
dn(E)

dE
=

L3

2π2

(
2me

ℏ2

)3/2

E1/2 =
3N

2

E1/2

E
3/2
F

. (31.40)
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31.3.2.2 Thomas-Fermi energy

Fermi’s box potential trick allowed us to model the impact of Pauli’s principle on
the spatial distribution of fermions in a restricted volume, but we did not take into
account yet the fact that electrons are charged and will interact. Hence, the energy
calculated so far is purely kinetic and will have to be complemented by potential
energy.

The total kinetic energy of the electrons with the system in its ground state is,

Etot =

∫ EF

0

Eη(E)dE =
L3

2π2

(
2me

ℏ2

)3/2 ∫ EF

0

E3/2dE (31.41)

=
L3

5π2

(
2me

ℏ2

)3/2

E
5/2
F =

ℏ235/3π4/3

10me
L3

(
N

L3

)5/3

= CL3ρ5/3 ,

where ρ ≡ N/L3 is the density of electrons per unit volume and C just a proportion-
ality constant. Now understanding ρ as a quantity depending on position in space,
we calculate the total number of electrons as,

N =

∫

R3

ρ(r)d3r , (31.42)

and the kinetic energy density by,

ukin(r) = Cρ5/3(r) , (31.43)

such that the total kinetic energy of the electrons in the electronic shell is,

T [ρ] = C

∫
ρ5/3(r)d3r . (31.44)

The potential associated with the electron-nucleus interaction is,

Vep[ρ] = −
Ze2

4πε0

∫
ρ(r′)
r′

d3r′ =
∫
Vp(r

′)ρ(r′)d3r′ , (31.45)

with the electrical potential generated by the nucleus,

Φp(r) =
Vp(r)

−e =
Ze

4πε0

1

r
(31.46)

The potential associated with the electron-electron interaction is,

Vee[ρ] =
1

2

e2

4πε0

∫
ρ(r)ρ(r′)
|r− r′| d

3rd3r′ =
∫
Ve(r

′)ρ(r′)d3r′ , (31.47)

with the electrical potential generated by the electron cloud,

Φe(r) =
Ve(r)

−e = −1

2

e

4πε0

∫
ρ(r′)
|r− r′|d

3r′ (31.48)

Thus, the total energy (Thomas-Fermi energy) can be written as a functional of the
electronic density of the atom,

HTF [ρ] = T [ρ] + Vep[ρ] + Vee[ρ] . (31.49)
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31.3.2.3 Electronic density and the Thomas-Fermi equation

Exploiting the variational principle, we are interested in the electronic density ρ(r)
which minimizes the Thomas-Fermi energy. We can perform this process via Lagrange
multipliers under the constraint, that the number of electrons remains constant in the
atom. Thus,

0 = δ

{
HTF [ρ]− µ

(∫
ρ(r)d3r −N

)}
. (31.50)

Inserting the Thomas-Fermi energy (31.49) we calculate,

µ =
δ

δρ(r)

{
Cρ5/3(r) + Vp(r)ρ(r) + Ve(r)ρ(r)

}
= 5

3Cρ
2/3(r)+Vp(r)+Ve(r) . (31.51)

Resolving for the electronic density,

ρ(r) =

(
3

5C

)3/2

[µ− Vp(r)− Ve(r)]3/2 . (31.52)

The above expression is called the Thomas-Fermi equation and describes the electron
density of the atom in its ground state. The expression (31.48) can be rewritten as a
Poisson equation,

∇2Ve(r) =
e2

2ε0
ρ(r) , (31.53)

so that,

∇2Ve(r) =
e2

2ε0

(
3

5C

)3/2

[µ− Vp(r)− Ve(r)]3/2 . (31.54)

For the effective potential introduced via Veff = Vp + Ve, we find,

∇2Veff (r) = ∇2

(
− Ze2

4πε0

1

r

)
+∇2Ve(r) (31.55)

= −Ze
2

ε0
δ3(r) +

e2

2ε0

(
3

5C

)3/2

[µ− Veff (r)]3/2 .

We note that, with (31.50), we can identify the Lagrange multiplier µ as a chemical
potential. In particular, for non-interacting neutral atoms, we have µ = 0. In addition,
since for an atom both the potential and the electronic density must have spherical
symmetry, we can write for r ̸= 0,

1

r

∂2

∂r2
[rVeff (r)] =

e2

2ε0

(
3

5C

)3/2

[−Veff (r)]3/2 . (31.56)

We now make the ansatz,

Veff (r) ≡ −
Z

r
χ(αr) setting α ≡ 3e4/3

5Cε
2/3
0

Z1/3 . (31.57)

This transforms the expression (31.56) into,

∂2

∂r2
χ(αr) = − e2

Zε0

(
3Z

5C

)3/2
χ3/2(αr)

r1/2
, (31.58)



1596 CHAPTER 31. ATOMS WITH MANY ELECTRONS

or, substituting x ≡ αr,
d2χ

dx2
= −χ

3/2

x1/2
. (31.59)

It is important to note the last equation does not depend on the parameter Z,
thus being a general result for any neutral atom. The function χ(x) is determined
numerically, but we can analyze its asymptotic values given the expected behavior
of the effective potential Veff (r): for r → 0 we expect that Veff (r) = Vp(r), hence
χ(0) = 1. On the other hand, for r → ∞, we expect Veff (r) = 0, hence χ(∞) = 0.
Do the Exc. 31.3.5.1.

With χ(x) known, we obtain the charge density ρ(x), and hence we are able to
calculate the total energy of the atom under investigation. Thus, it is possible to
show that [60],

HTF [ρ] = −0.7687
e2

4πε0aB
Z7/3 . (31.60)

It is important to highlight some points:

1. The result holds for neutral atoms.

2. There is no electronic shell structure assumed; apart from the fact that the
kinetic energy was derived in a way as to respect Pauli’s principle, the whole
calculation was done within the laws of classical electromagnetism; no quantum
mechanics was involved and, hence, no set of quantum numbers has been found.

3. Apart from the Pauli principle used to calculate the density of states (31.40),
quantum statistical effects of identical particles (such as wavefunction anti-
symmetrization) are not taken into account.

A more refined model which deals with third criticism and, in addition, is closer to
density functional theory (DFT) is the Thomas-Fermi-Dirac model.

31.3.3 Hartree method

The effective potential obtained from the Thomas-Fermi model can serve as a start-
ing point for quantum treatments. Assuming that all electrons are subject to the
same effective potential Veff , we numerically solve the Schrödinger equation for each
electron independently,

Ĥi =

(
− ℏ2

2m
∇2
i + Veff

)
ψi(ri) = eiψi(ri) . (31.61)

With this we calculate all energies and eigenfunctions (only the radial parts are of
interest) minimizing the total energy and respecting the weak Pauli principle, that is,
we classify the states in the order of increasing energies ei and fill them successively
with electrons. For the total wavefunction we obtain,

(
N∑

i=1

Ĥi

)
ΨN = EnΨN with ΨN = ψ1 · .. · ψN and En =

N∑

i=1

ei . (31.62)
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With the eigenfunctions we calculate the charge densities e|ψj(rj)|2. We integrate the
interaction energy between these charge densities and the potentials exerted by the
nucleus and all other electrons j ̸= i to obtain an effective potential that represents
an improved estimation for the electronic mean field,

Veff ←− −
Ze2

4πε0ri
+
∑

j ̸=i

∫
d3rj

e2

4πε0|ri − rj |
|ψj(rj)|2 . (31.63)

We replace that potential in the Schrödinger equation, and repeat the whole process
from the beginning, until the total energy

∑
i ei does not get any lower. This self-

consistent method is called Hartree method. Fock improved these calculations using
antisymmetric wavefunctions for the valence electrons. This method is called Hartree-
Fock method.

31.3.4 Hartree-Fock method

The Hartree-Fock method used to treat atomic or molecular many-body systems aims
at obtaining the electronic wavefunction of the system. Dealing with anti-symmetrized
wavefunctions, it represents a refinement of the Hartree method. The method is
based on the variational principle and on the assumption that we can write the global
wavefunction as a Slater determinant, with each electron occupying a specific orbital
state (spin-orbital) and interacting with an effective potential stemming from the
electrons which occupy other orbitals. Instead of solving the Schrödinger equation, we
must now solve a set of equations called Hartree-Fock equations of the type F̂ψk(1) =
ϵkψk(1). The method is performed iteratively until convergence of the atomic orbitals
and their respective energies is reached. The procedure is then called self-consistent :
Starting from an initial trial global wavefunction we calculate the effective potential
in each orbital and a new set of wavefunctions which, in turn, generate a new effective
potential. This new potential is then used in a new set of Hartree-Fock equations.

31.3.4.1 Hartree-Fock equations

To start with, we write the Hamiltonian (31.33) of a multi-electronic atom as [60],

Ĥ =

Z∑

i=1

ĥi +
1
2

∑

i ̸=j
V̂ij , (31.64)

where ĥi is the Hamiltonian only of the electron i, and V̂ij is the interaction term
between the electrons i and j. To implement the method we must suppose that the
multi-electronic state can be written as the product of the individual states of each
electron:

Ψ′(1, ..., Z) = ψ1(1)ψ2(2)...ψZ(Z) , (31.65)

where ψi(1) = ϕi(r1)χ(α) = ψαi (r1) represents the spin-orbital state of electron 1, that
is, the spatial wavefunction of the electron in the state i and with spin α. However, due
to the symmetrization postulate, the physical state of the system must be expressed
by a Slater determinant,

Ψ(1, ..., Z) =
1√
Z!

det [ψ1(1)ψ2(2)...ψZ(Z)] . (31.66)
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Now, we use the variational principle to minimize the expectation value of the ground
state energy by varying the functions ψk(n). In this way, the correct orbitals are those
that minimize the energy. The expectation value is written as,

E = ⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|
Z∑

i=1

ĥi|Ψ⟩+ ⟨Ψ| 12
∑

i ̸=j
V̂ij |Ψ⟩ . (31.67)

It is possible to show that,

⟨Ψ|
Z∑

i=1

ĥi|Ψ⟩ =
Z∑

i=1

⟨ψi|ĥi|ψi⟩ and (31.68)

⟨Ψ| 12
∑

i ̸=j
V̂ij |Ψ⟩ = 1

2

Z∑

i,j

[⟨ψiψj |V̂ij |ψiψj⟩ − ⟨ψjψi|V̂ij |ψjψi⟩] .

Hence,

E =

Z∑

i=1

⟨ψi|ĥi|ψi⟩+ 1
2

Z∑

i,j

[⟨ψiψj |V̂ij |ψiψj⟩ − ⟨ψjψi|V̂ij |ψjψi⟩] . (31.69)

The above expression can be minimized via Lagrange multipliers under the constraint
that the states are orthogonal ⟨ψi|ψj⟩ = δij ,

δ



⟨Ψ|Ĥ|Ψ⟩ −

∑

i,j

ϵij [⟨ψiψj |V̂ij |ψiψj⟩ − ⟨ψjψi|V̂ij |ψjψi⟩]



 (31.70)

Thus, we obtain the following set of Hartree-Fock equations:

F̂ψk(1) = ϵkψk(1) where F̂ = ĥ1 +
∑

i

(2Ĵi − K̂i) (31.71)

is the Fock operator and ϵk is the energy associated with the spin-orbital ψk. The
operator Ĵi, called Coulomb operator, represents the mean potential sensed by electron
1 in the orbital k due to the presence of electron 2 in the orbital i:

Ĵiψk(1) =

{∫
ψ∗i (2)V12ψi(2)dr2

}
ψk(1) . (31.72)

The operator K̂i, denominated exchange operator, is a consequence of the symmetriza-
tion process and therefore a purely quantum effect, that is, without classical analogue:

K̂iψk(1) =

{∫
ψ∗i (2)V12ψk(2)dr2

}
ψk(1) . (31.73)

Once we know all wavefunctions, the energies of the orbitals can be obtained in the
following way:

∫
dr1ψ

∗
k(1)

{
ĥ1 +

∑

i

(2Ĵi − K̂i)

}
ψ∗k(1) = ϵk

∫
dr1ψ

∗
k(1)ψk(1) = ϵk , (31.74)
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that is,

ϵk =

∫
dr1ψ

∗
k(1)ĥ1ψ

∗
k(1) +

∑

i

(2Ĵki − K̂ki) , (31.75)

where,

Ĵki =

∫
dr1ψ

∗
k(1)Ĵiψk(1) is the Coulomb integral (31.76)

K̂ki =

∫
dr1ψ

∗
k(1)K̂iψk(1) is the exchange integral .

The total atomic energy can be calculated by,

E = 2
∑

k

ϵk −
∑

k,i

(2Ĵki − K̂ki) . (31.77)

Furthermore, if assuming that, taking an electron away from the orbital ψk the elec-
tronic distribution remains unchanged, it is possible to associate the energy ϵk with
the ionization energy of the electron in this orbital, Ik ≃ ϵk. This equality is known
as Koopman’s theorem.

31.3.5 Exercises

31.3.5.1 Ex: Effective potential in the Thomas-Fermi model

Calculate numerically and plot the effective potential in the Thomas-Fermi model
from the differential equation (31.59) for Z = 40 [1419].

Solution: We rewrite the equations as,

d

dt

(
χ′

χ

)
=

(
−χ3/2/x1/2

χ′

)
.

Fig. 31.3 shows the calculated Thomas-Fermi potential and comparisons with the
Coulombian nuclear and shielded potentials.
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Figure 31.3: (code) (red) Effective potential in the Thomas-Fermi potential compared to the

Coulombian nuclear (blue) and shielded (green) potentials.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_ShellStructure01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_ThomasFermiPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Multielectron_ThomasFermiPotential.m
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31.4 The periodic system of elements

Completely filled principal layers n, ℓ are isotropic, ΨN (r) = Ψ(r), as we will show
in Exc. 31.4.4.1. It is important to distinguish three different energetic sequences:
1. Tab. 31.6 shows, for a given atom, the excited orbitals of the last electron. 2. The
energy sequence shown in Tab. 31.7 tells us in which orbital the next electron will be
placed, when we go to the next atom in the periodic table 31.9 which has one more
proton in the nucleus. 3. The inner electrons are subject to different potentials and,
hence, follow a different sequence energetic sequence: While for the inner electrons
we find,

En,ℓ < En,ℓ+1 ≪ En+1,ℓ , (31.78)

the sequence is partially inverted for the outermost electron. Note that it is the
outermost electrons that determine the chemical reactivity of the atom. The sequence
is illustrated in Fig. 31.5.

Noble gases have small radii, high excitation energies and high ionization energies.
The outermost electrons in a noble gas atom must overcome a large energy gap to
any higher quantum numbers. Halogens have strong electro-affinities, since the outer
electron layer (nmax) is incomplete and therefore malleable, such that an electron
approaching the halogen perceives the nuclear charge through a partially transparent
shield. Alkalis are similar to hydrogen and have excitation energies in the optical
regime. Their fundamental state 2S1/2 is determined by a single valence electron in
the ℓ = 0 orbital. Unlike hydrogen, excitation energies are highly dependent on ℓ,
since orbits with small ℓ correspond to eccentric ellipses and have higher probabilities
to be in the unshielded region −Z2e2/r than orbits with large ℓ, who spend more
time in the shielded region −e2/r. For the same reason, energies corresponding to
larger n resemble more those of the hydrogen spectrum.

31.4.0.1 Inner shell electrons

The interior shell structure of the atoms can be analyzed by X-ray scattering. Elec-
trons decelerated by atoms emit a continuous spectrum called Bremsstrahlung, but
they can also expel electrons from the inner layers leaving a hole behind. When a
hole is filled by cascades of electrons falling down from higher layers, the atom emits
a specific X-ray spectrum (≈ 104 eV). The selection rules ∆ℓ = ±1 and ∆j = ±1
split the lines in two components. X-ray spectra of neighboring elements in the pe-
riodic table are very similar, because the inner layers not being shielded, they see a
potential close to ∝ Z2/r. Therefore, the Z-dependency of inner energy levels along
a horizontal rows in the periodic table is more or less ω ∝ Z2, as predicted by Bohr’s
atomic model.

31.4.1 Electronic shell model

In the Fermi gas model, each of the energy levels contains several states, and each of
these states can be occupied by a single electron, according to the Pauli principle. In
this way, we obtain the electronic configuration for the atoms of the periodic system.
In this picture, the energies of the ground states of the elements, normalized by 1/Z2,
can be arranged in the scheme of Fig. 31.4.
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Figure 31.4: Periodic order.

This only works for atoms with up to 18 electrons. When the layer 3p is completely
filled, the next to be occupied is not 3d but the 4s. The new scheme is illustrated
in Fig. 31.5. The anomalies beginning at Z = 18 arise due to electron-electron
interaction. The real potential evolves from one to the other Coulombian potential,
as distance from the nucleus is increased, as illustrated in Fig. 31.2. Near the nucleus,
the electrons shield the positive charge less than for large distances r. Thus, those
states that have a high probability near the nucleus are energetically lowered. That
is,

E2s < E2p and E6s < E6p < E6d . (31.79)

The degeneracy of the orbital angular momentum in the Schrödinger model is thus
lifted. The shielding is, as can be seen in the example of the excited states of lithium,
a large effect in the range of some eV.

Figure 31.5: Illustration of the sequence of filling the orbitals with electrons.

The shielding also accounts for the anomalies in the periodic system, such as in
K or Ca. Since E4s < E3d, the 4s state is filled before the 3d. Similar anomalies
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also occur in Rb (5s), Cs (6s), and Fr (7s). In rare earths the shielding effect is even
more pronounced. Here, the energy of the state 6s is even below the energy of the
4f , which means that the shells 6s, 5s, 5p, and 5d protect the 4f shell very well 9.
Resolve Exc. 31.4.4.2.

31.4.1.1 Alkalines

The electronic shell structure of alkalines consists of a completed noble gas shell and
an additional valence electron. Their spectrum is therefore very similar to hydrogen.
An empirical approach can be stressed to describe this feature,

En,ℓ = −
µEGc

2

2

Z2α2

(n−∆n,ℓ)2
, (31.80)

where µEG is the reduced mass relative to the noble gas shell and ∆n,ℓ is called
quantum defect. The quantum defect is tabulated for most alkaline states and is
particularly important for low energy states. For sodium, for example, the values are:

ℓ n = 3 n = 4 n = 5 n = 6

s 1.37 1.36 1.35 1.34

p 0.88 0.87 0.86 0.86

d 0.10 0.11 0.13 0.11

f - 0.00 -0.01 0.008

For states with a large angular momentum, the quantum defect disappears. In
these states, the electron is far from the nucleus and the potential is similar to that of
hydrogen. Alkalines are currently widely studied in quantum optics laboratories, for
being comparatively simple, but having a sufficiently rich structure to be interesting.
The fundamental electronic transitions typically lie in the visible and near-infrared
spectral range and can be excited with comparatively simple laser sources. The
lifetime of excited states is typically longer than 20 ns, which corresponds natural
linewidths of approximately (2π) 10MHz.

31.4.1.2 Excited states

The experimentally easiest and most precise approach to determining orbital energies
consists in measuring excitation spectra of valence electrons. The diagram of Fig. 31.6
compares such excitation spectra for various alkaline atoms. Although this is not to
be confused with the binding energies of valence electrons of different atoms, it gives
us a qualitative idea of the impact of shielding and indicates, which orbital will be
occupied by the additional valence electron of the next species in the periodic table.

9An example of this is Nd:YAG (Neodymium in Yttrium Aluminum Garnet). In this crystal,
optical transitions can be excited within the 4f shell of the Nd. However, these transitions are only
allowed due to perturbations of the crystalline field. The very strong shielding ensures a long life of
the excited state. For this reason this crystal is an excellent laser material.
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Figure 31.6: Comparison of the excitation energies of the valence electron for several alkaline
atoms. Grey line are meant to guide the eye.

31.4.2 LS and jj-coupling

Following Hund’s rule, the L · S-coupling is energetically favorable compared to the
j · j-coupling, which means that the spins of the outermost electrons, that is, the
electrons outside of filled subshells (n, ℓ), prefer to orient their spins in parallel in
order to anti-symmetrize the spatial wavefunctions and thus maximize the distance
between the electrons. Every sub-layer of the series shown in Fig. 31.5 must be filled
in the listed order before placing new electrons in the next layer.

In the case of helium, we have seen that the Pauli principle first determines the
relative orientation of the electron spins. The spins si of the individual electrons
therefore add up to a total angular momentum S. The orbital angular momenta li also
adopt a relative orientation. It is determined by a residual spherically non-symmetric
Coulomb interaction: A certain combination L of orbital angular momenta leads to a
certain spatial distribution of the electrons and thus to a certain electrostatic energy
distribution.

The total spin S and the total orbital angular momentum L subsequently couple
to a total angular momentum J very similar to the l · s spin-orbit coupling in single
electron systems. States with different J then have the respective energies that the



1604 CHAPTER 31. ATOMS WITH MANY ELECTRONS

Figure 31.7: Illustration of Hund’s rule.

total spin S adopts in the field generated by the total orbital angular momentum L 10.

The above coupling scheme is called Russel-Saunders coupling or LS-coupling. It
works well when the spin-orbit coupling of individual electrons is small. In this case,
intercombination is forbidden, which means that there can be no electromagnetic
transition between states with different spins (see the case of metastable helium in
Sec. 31.2.2).

Since ELS ≃ (Zα)4 ≃ Z4, as shown in (29.130), for heavy atoms, the coupling
of an electronic spin to its own orbital momentum grows strongly with Z, as well
as the symmetrization and the exchange energy, which mutually orient the spins,
and the residual Coulomb interaction, which mutually couples the angular orbital
momenta. In this case, the orientation of Li relative to Si delivers more energy than
the exchange energy and the residual energy cost. Hence, the spin and the orbital
angular momentum of an individual electron couple first,

ji = li + si . (31.81)

We obtain a new Hamiltonian of fine structure of the form,

HFS ∝ ji · jj . (31.82)

10In addition, there are the small contributions due to li · lj-coupling and to si · sj-coupling, where
i ̸= j.
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Figure 31.8: Hierarchy of coupling energies at the example of two electrons out of closed
shells, (2p)(3d), under the presumption of perfect jj-coupling (left) or LS-coupling (right).

Pure jj-coupling only exists for very heavy nuclei. Normally, we have a so-called
intermediate coupling, which is a mixture of LS and jj-coupling. This can consider-
able relax the intercombination prohibition. When the coupling is pure, we have the
following dipolar selection rules:

LS-coupling: ∆S = 0, ∆L = ±1, ∆ℓ = ±1
jj-coupling: ∆j = 0,±1 for one e−, ∆j = 0 for all others
In addition we have for the two couplings: ∆J = 0,±1, but J, J ′ = 0 is forbidden,

∆mJ = 0,±1 when ∆J = 0 but mJ ,mJ′ = 0 is forbidden.

31.4.3 Summary of contributions to the atomic energy levels

The total Hamiltonian of a single atom is composed of the kinetic energy of the
nucleus and the electrons, of various interaction potentials between the nucleus and
the electrons, and of interactions with various types of external electromagnetic fields.

Ĥ = − ℏ2

2m
∇2
R +

N∑

i=1

(
− ℏ2

2m
∇2
ri

)
+ V (r1, s1, .., rN , sN ) + Vext . (31.83)

Of course, with the presence of other atoms, other interactions may generate other
relevant contributions to the Hamiltonian.

The following interactions contribute to the potential V : The Coulomb interac-
tions,

Vncl−ele = −
Z∑

i=1

Ze2

4πε0|r− ri|
and Vele−ele =

Z∑

i<j=1

e2

4πε0|ri − rj |
, (31.84)

the antisymmetry of the wavefunction, that is, exchange integrals,

Vsym , (31.85)
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the energies of spin-orbit couplings,

Vls = −
Z∑

i=1

1

e2m2c2
1

|r− ri|
dVcl
dri

(li · si) , (31.86)

the energies of spin-spin couplings,

Vss =

Z∑

i̸=j=1

e2

m2

[
σi · σj
|ri − rj |3

− 3
[σi · (ri − rj)][σj · (ri − rj)]

(ri − rj)5

]
, (31.87)

the energies of orbit-orbit couplings,

Vll =

Z∑

i ̸=j=1

cij(li · lj) , (31.88)

interactions between the spin of the electrons and the nuclear spin and between the
orbital angular momentum of the electrons and the nuclear spin,

Vhfs =
A

ℏ2
J · I , (31.89)

and relativistic corrections.

Vrel , (31.90)

In addition, static external fields may displace energy levels and can influence the
internal coupling of angular momenta and spins,

Vext = −d · E⃗ , − µ⃗ · B⃗ . (31.91)

What quantum numbers are good depends on the relative amplitudes of intra-
atomic interactions:
Case 1: fine structure with L ·S-coupling plus Zeeman splitting of hyperfine structure:
Vncl−ele, V rele−ele ≫ V aele−ele, Vsym ≫ Vℓs ≫ Vhfs ≫ VB the quantum number are
|ni, ℓi,L,S,J,F,mF ⟩.
Case 2: fine structure with j · j-coupling plus Zeeman splitting of hyperfine structure:
Vncl−ele, V rele−ele ≫ Vℓs ≫ V aele−ele, Vsym ≫ Vhfs ≫ VB the quantum number are
|ni, ℓi, ji,J,F,mF ⟩.
Case 3: fine structure with L ·S-coupling plus hyperfine structure of Zeeman splitting:
Vncl−ele, V rele−ele ≫ V aele−ele, Vsym ≫ Vℓs ≫ VB ≫ Vhfs the quantum number are
|ni, ℓi,L,S,J,mJ ,mI⟩.
Case 4: fine structure with L·S-coupling plus Paschen-Back splitting of fine structure:
Vncl−ele, V rele−ele ≫ V aele−ele, Vsym ≫ VB ≫ Vℓs ≫ Vhfs the quantum number are
|ni, ℓi,L,S,mL,mS ,mI⟩.



31.4. THE PERIODIC SYSTEM OF ELEMENTS 1607

Vncl−ele splitting in n

coarse structure ↓
Vele−ele splitting in ℓ

↓
Vsym splitting in S ↘

↓ Vls splitting in ji

fine structure Vee splitting in L ↓
↓ Vsym, Vele−ele splitting in J

VLS splitting in J ↙
↓

hyperfine structure Vhfs splitting in F

↓
Zeeman effect VLS splitting in mF

31.4.4 Exercises

31.4.4.1 Ex: Filled electronic shells

Show at the example of hydrogen that completely filled electronic layer are isotropic.

Solution: An addition theorem for spherical harmonics states that,

Pℓ(êx · êy) =
4π

2ℓ+ 1

ℓ∑

m=−ℓ
Yℓm(êy)Y

∗
ℓm(êx) ,

where Pℓ is the Legendre polynomial of degree ℓ. In particular, for êy = êx,

ℓ∑

−ℓ
|Yℓm|2dΩ =

2ℓ+ 1

4π
.

31.4.4.2 Ex: Electronic excitation levels of alkaline

Explain why
a. state [Li] (2s)2S1/2 has lower energy than [H] (2s)2S1/2;
b. state [Li] (2s)2S1/2 has lower energy than [Li] (2p)2PJ ;
c. state [Na] (4s)2S1/2 has lower energy than [Na] (3d)2DJ .

Solution: Looking at Fig. 31.6, we see:
a. The nucleus is shielded by a filled (1s)2 orbital, so that we could expect equivalence
of both systems. However, the (2s) valence electron still has a large probability of
being near the nucleus, so that the shielding is only partial. The stronger attraction
of the Z = 3 charge of the nucleus lowers the energy of the valence electron.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_MultiElectron01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Multielectron_MultiElectron02.pdf
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b. Higher orbital quantum numbers ℓ≫ 0 have lower probabilities of near the nucleus,
so that the shielding is more effective.
c. Same reason as in (b), only that the energy correction is now so large that the ’nat-
ural’ ordering according to the main quantum number of Bohr’s model is inverted.

31.5 Further reading

P.W. Atkins and R.S. Friedman, (3rd ed. Oxford University (2001), Molecular Quan-
tum Mechanics [60]ISBN

I.N. Levine, Allyn and Bacon, 7th ed. Pearson (1983), Quantum Chemistry [796]ISBN

J.I. Steinfeld, The MIT Press, Cambridge (2005),Molecules and Radiation [1252]ISBN

B.H. Bransden, C.J. Joachain, John Wiley & Sons (1983), Physics of Atoms and
Molecules [190]ISBN

p-table, Periodic Table http

http://isbnsearch.org/isbn/978-0-199-54142-3
http://isbnsearch.org/isbn/978-0-321-80345-0
http://isbnsearch.org/isbn/978-0-486-44152-8
http://isbnsearch.org/isbn/978-0-582-35692-4
https://ptable.com/
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Figure 31.9: Periodic table.
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Chapter 32

Molecular dimers

In systems of many particles (gases, fluids, or solids) interatomic interactions must
be considered. These interactions usually have electrostatic origins, but generally can
not be given in the form of closed expressions. For example, the collision of two atoms
i and j can occur in a multitude of channels, that is, interaction potentials V (ri−rj).
Interatomic forces do not only govern collisions, but can sustain molecular bound
states. This introduces new degrees of freedom in the systems of many particles
through possible excitations of vibration or rotation movements.

10 20 30 40 50 60

R (aB)

-200

0

200

400

600

E
(c
m

−
1
)

1Σ+
g ,

3Σ+
u

1Πg,
3Πu

1Πu,
3Πg

1Σ+
u ,

3Σ+
g

S1/2 + P3/2

S1/2 + P1/2

Figure 32.1: (code) Example of an interatomic potential spaghetti: The lowest states of the

molecule 85Rb2.

In this course, we will not go beyond homo- or heteronuclear dimers, that is,
molecules consisting of two identical or different atoms.

1611
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Figure 32.2: Approximations made in the molecular physics.

32.1 Molecular binding

32.1.1 Ionic and covalent binding

There are two fundamental ways of binding two atoms together, the ionic bond and
the covalent bond 1. The ionic bond is ruled by the quantities electroaffinity (EA),
electronegativity (EN), and ionization energy (IE):

• Ionization energy: This energy is needed for the release of an electron by a
neutral atom, e.g. Na + 5.1 eV→ Na+ + e−.

• Electroaffinity: This energy is released by the capture of an electron by a
neutral atom, e.g. Cl + e− → Cl− + 3.8 eV.

• Electronegativity: This quantity measures the stability of a valence orbital,
e.g. that of fluorine (3.98) is more stable than that of cesium (0.79), such that
fluorine holds its electrons tighter than cesium.

At short distances, the exchange of an electron between atoms can decrease energy.
The so-called ionic bond is then sustained by the Coulombian attraction between two
ions, and the binding energy can be estimated through electrostatic interaction.

Example 187 (Ionic binding in NaCl): For example, a sodium and a chlorine
atom gain energy by forming a molecule,

(32.1)

Na + 5.1 eV→ Na+ + e−

Cl + e− → Cl− + 3.8 eV

Na+ +Cl− → NaCl + 4.9 eV

−−−−−−−−−−−−−−−−−−−
Na + Cl→ NaCl + (−5.1 + 3.8 + 4.9) eV .

1We are not considering metallic bonds nor hydrogen bridge bonds, here.
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The molecules are polar and, therefore, have a permanent electric dipole moment.
The bond has no preferential direction, since each atom is perfectly isotropic. There-
fore, this type is well suited for the construction of crystalline lattices.

Figure 32.3: Scheme for (a) ionic binding of NaCl and (b) covalent binding of H2.

To understand covalent bond, we consider the example H+
2 and estimate the in-

teraction energy for each distance R between the nuclei. In this case, in contrast to
atoms, the spherical symmetry is broken, and therefore the energy degeneracy with
respect to parity is abolished, that is, for wavefunctions ψ(−x) = ±ψ(x) the energies
vary differently with R. The even wavefunction, which has an increased probability of
the electron of being between the nuclei, is binding, which means that the interaction
potential exhibits a minimum at a certain distance. The odd wavefunction, which
disappears between the nuclei, is anti-binding, which means that the interaction po-
tential is repulsive at all distances. In fact, an electron located at the center between
two positive charges can overcome the Coulomb repulsion between the nuclei, whose
mutual distance is twice. Obviously, the energy can not fall below that of the fun-
damental state of He+, being approximately −4 × 13.6 eV. With two electrons, as
in the case of the neutral molecule H2, the anti-parallel orientation of the spins, ↑↓,
allows us to place the two electrons in the same orbital, while for parallel orientation,
↑↑, we expect anti-binding. Each electron without a partner in an orbital can form a
covalent bond, for example, phosphorus [P]=[Ne]3s23p↑↑↑ has three available orbitals
corresponding to different magnetic quantum numbers. The covalent bond is direc-
tional (sp1, sp2, or sp3 hybridization), which is essential for the molecular structure
such as in CH4. Do the Exc. 32.1.6.1.

32.1.2 Born-Oppenheimer approximation and the H+
2 molecule

The Born-Oppenheimer approximation in molecular physics consists in considering,
at first, the positions of the nuclei as being fixed in space. This allows us to study the
stationary states of the electrons subject to the potential created by the nuclei for a
given internuclear distance R. Varying R, the electronic energies (computed for a fixed
R) remain the same, because the electronic wavefunctions adjust instantaneously due
to their mass being much lower than that of the nuclei. The non-varying electronic
energies play the role of interaction potential energies between the nuclei [60].
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32.1.2.1 Separation of the center-of-mass

Let us consider two heavy masses, Ma,b = M separated by a distance R and inter-
acting through a potential Vnn(R). Furthermore, there is a light-weighted mass me

interacting with the other masses through Vne(r). The Hamiltonian is,

Ĥ =
−ℏ2
2M
∇2
a+
−ℏ2
2M
∇2
b+
−ℏ2
2me
∇2
e+Vnn(|Ra−Rb|)+Vne(|Ra−Re|)+Vne(|Rb−Re|) .

(32.2)
We transform to the center-of-mass system of the two heavy masses anchored at

Figure 32.4: System with two heavy and one light mass.

X ≡ MaRa+MbRb

M = 1
2 (Ra +Rb). The distance of the heavies is R ≡ Ra −Rb, and

the coordinate of the light mass counting from the center-of-mass is r = Ra− 1
2R−Re.

Introducing the reduced mass of the heavies Mr =
M
2 ,

[−ℏ2
2M
∇2
X +

−ℏ2
2Mr

∇2
R + Vnn(R) +

−ℏ2
2me
∇2
r + Vne(|r+ R

2 |) + Vne(|r− R
2 |)
]
Θ(X)Ψ(R,Re)

= EtotΘ(X)Ψ(R,Re) , (32.3)

Here, we made the ansatz for the total wavefunction Ψ = Θ(X)Ψ(R,Re), assuming
that the center-of-mass is only determined by the heavy masses,

−ℏ2
2M
∇2
XΘ(X) = EcmΘ(X) (32.4)

[−ℏ2
2Mr

∇2
R + Vnn(R) +

−ℏ2
2me
∇2
r + Vne(|r+ 1

2R|) + Vne(|r− 1
2R|)

]
Ψ(R,Re) = EΨ(R,Re) ,

where Etot = Ecm + E.

32.1.2.2 Adiabatic approximation

The Born-Oppenheimer approximation now consists in assuming that the movement
of the heavies is independent of the position of me, which allows us to separate the
corresponding wavefunction ϕ via the ansatz Ψ(R,Re) = ψ(R, r)ϕ(R). On the other
hand, the orbital ψ of the light mass me does not change much, when we vary the
distance of the heavies, ∇Rψ(R, r) ≃ 0. This is only valid, as long as the heavies are
inert on the time scale of the movement of me. Therefore, we can approximate the
second derivative,

∇2
R[ψ(R, r)ϕ(R)] = ϕ(R)∇2

Rψ(R, r) + 2[∇Rϕ(R)] · [∇Rψ(R, r)] + ψ(R, r)∇2
Rϕ(R)

≃ ψ(R, r)∇2
Rϕ(R) , (32.5)
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postulating that the first two terms are negligible compared to the third. We can now
separate the second equation (32.4) in two parts, the first being,

[−ℏ2
2me
∇2
r + Vne(|r+ 1

2R|) + Vne(|r− 1
2R|)

]
ψ(r,R) = ε(R)ψ(r,R) . (32.6)

We solve this equation for the electronic degree of freedom r by choosing a fixed
internuclear distance R, and we substitute in the second expression (32.4), which
gives,

[−ℏ2
2Mr

∇2
R + Vnn(R) + ε(R)

]
ϕ(R) = Eϕ(R) . (32.7)

Treating the interatomic distance R as a fixed parameter, the solution of Eq. (32.6)
provides the electronic orbitals and their energies ε(R). The Born-Oppenheimer po-
tential is composed of the electrostatic repulsive potential of the nuclei and the kinetic
energy of the electron, Vnn(R) + ε(R). In other words, the presence of the electrons
generates an additional interaction energy between the nuclei. By inserting this com-
plete interatomic potential into Eq. (32.7), we can determine its vibrational structure
ϕvib(R).

Fig. 32.5 shows an example of binary effective nuclear potentials, as a function of
the distance R between the two nuclei. Each curve corresponds to a different solution
of the electronic equation, that is, to a different electronic state. In many cases, such
nuclear potentials have a stable equilibrium region. The bound states located in these
regions are molecular bound states of two atoms.

Figure 32.5: Effective nuclear potentials for the interaction between two rubidium atoms
(Rb2).

In practice, the calculation of adiabatic Born-Oppenheimer potentials is difficult
and makes it the subject of sophisticated theories, such as the molecular orbital model
or the valence bond model 2. We study in Exc. 32.1.6.2 a generalization of the Born-
Oppenheimer approximation.

2Note that the Born-Oppenheimer approximation is no longer good in the presence of relativistic
or spin-orbit coupling effects.
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32.1.3 Linear combination of orbitals and the H2 molecule

In the following we will discuss the electronic structure of the simplest neutral molecule:
H2. For the low electron states of this molecule, the Born-Oppenheimer approxima-
tion is totally satisfactory, that is, we want to solve a Schrödinger type equation (32.6),
but with two electrons. We are, therefore, interested in the electronic Hamiltonian,

Ĥ = − ℏ2

2me
(∇2

1 +∇2
2) +

e2

4πε0

(
1
Rab
− 1
|r1−Ra| −

1
|r1−Rb| −

1
|r2−Ra| −

1
|r2−Rb| +

1
r12

)
,

(32.8)
where ’1’ and ’2’ denote the two electrons and ’a’ and ’b’ the nuclei.

This problem can not be solved analytically. The standard procedure begins with
choosing a suitable basis, i.e. a very compact basis which does not depend on the
configuration of the molecule. That is, we want the basis to be composed of functions
that do not depend on the distance between the two nuclei, Rab, to avoid calculations
for different bond lengths.

The most natural basis functions are the available atomic orbitals of the individual
hydrogen atoms. When the bond length is too large, the system approaches the limit
of two non-interacting hydrogen atoms. In this case, the electron wavefunction can
be approximated by the product of atomic orbitals (AO) of atom ’a’ and atom ’b’.
Therefore, the smallest basis that gives us a realistic picture of the fundamental state
of the H2 molecule must comprise two functions: |1sa⟩ and |1sb⟩. For finite bond
lengths, it is advisable to allow the AOs to polarize and deform in response to the
presence of the other electron (and the other nucleus). However, the |1sa⟩ and |1sb⟩
functions do not have to be exactly the hydrogenic eigenfunctions. It is sufficient
to require them to be similar to the 1s orbitals and be centered on them. Since the
actual shape of the orbitals is not yet fixed, we will give all the expressions in abstract
matrix form, leaving the spatial integration for once the shape of the orbitals has been
specified. This is the method of linear combination of atomic orbitals (LCAO).

32.1.4 Molecular orbital theory

We are now in a position to discuss the basic principles of the molecular orbital method
(MO), which is the basis of the theory of the electronic structure of real molecules.
The first step in any MO approach is to separate the Hamiltonian into two parts,
one part describing the electrons ’1’ and ’2’ separately and one part counting for the
interaction between them:

Ĥ = ĥ(1) + ĥ(2) + V̂12 +
e2

4πε0

1

Rab
with (32.9)

ĥ(i) = −ℏ2∇i
2me

− e2

4πε0

(
1

|ri −Ra|
+

1

|ri −Rb|

)
and V̂12 =

e2

4πε0

1

r12
,

where i = 1, 2. We must remember that, within the BO approximation, Rab is just
a number. We choose the Hamiltonian h(i) as the one-electron part of the complete
Hamiltonian in matrix representation on the minimum basis:

(
⟨1sa|ĥ|1sa⟩ ⟨1sa|ĥ|1sb⟩
⟨1sb|ĥ|1sa⟩ ⟨1sb|ĥ|1sb⟩

)
≡
(
ϵ hab

hab ϵ

)
, (32.10)
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defining the average one-electron energy ϵ ≡ ⟨1sa|ĥ|1sa⟩ and the non-diagonal cou-

pling (often called resonance integral) hab ≡ ⟨1sa|ĥ|1sb⟩ = ⟨1sa|ĥ|1sb⟩. We can im-
mediately diagonalize this matrix, the eigenvalues and the eigenvalues being:

ϵ± = ϵ± hab and |ϕ±⟩ ∝ 1
2 (|1sa⟩ ± |1sb⟩) . (32.11)

The one-electron effective Hamiltonian eigenstates are called molecular orbital (MO).
They are one-electron wavefunctions delocalized over the spatial regions of the molecule.

ha hb

Figure 32.6: Illustration of the atomic orbitals.

We need to first normalize the MOs, which is more complicated than it might
seem, because the AOs are not orthogonal. For example, when the atoms approach
each other, their AOs may have the shape shown in Fig. 32.6. However, by defining
the overlap integral by S ≡ ⟨1sa|1sb⟩, we can normalize as follows:

|ϕ±⟩ = 1√
2(1±S)

(|1sa⟩ ± |1sb⟩) , (32.12)

since,

⟨ϕ±|ϕ±⟩ = 1
2(1±S) (⟨1sa|1sa⟩ ± ⟨1sa|1sb⟩ ± ⟨1sb|1sa⟩+ ⟨1sb|1sb⟩) = 1 . (32.13)

These eigenfunctions merely show the symmetry of the molecule. The two hydrogen
atoms are equivalent and, therefore, the eigenorbital must give equal weight to each
1s orbital. Thus, our choice of the one-electron Hamiltonian does not really mat-
ter that much, because every one-electron Hamiltonian exhibiting the symmetry of
the molecule would give the same molecular orbitals. For historical reasons, |ϕ+⟩ is
denoted by |σ⟩ and |ϕ−⟩ by |σ∗⟩.

The second step in MO theory consists of constructing the determinant from the
MOs corresponding to the wanted states. For illustration we will look at the lowest
singlet state constructed from molecular orbitals. We note that hab < 0, such that
|σ⟩ has an energy inferior to |σ∗⟩. Neglecting the interaction, the lowest singlet state,

|ΦMO⟩ = |σ⟩|σ∗⟩ , (32.14)

is the molecular ground state of H2. To estimate the validity of the approximation,

we calculate the expectation value of the energy,
∣∣∣⟨σ|⟨σ∗|Ĥ|σ⟩|σ∗⟩

∣∣∣, decomposing the

wavefunction into spin and spatial parts, noting that the spin part is normalized:
∣∣∣⟨σ|⟨σ∗|Ĥ|σ⟩|σ∗⟩

∣∣∣ = ⟨σ(1)|⟨σ(2)|Ĥ|σ(1)⟩|σ(2)⟩⟨Φspin|Φspin⟩ (32.15)

= ⟨σ(1)|⟨σ(2)|Ĥ|σ(1)⟩|σ(2)⟩ .
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and this is the MO ground state for H2.  How good an approximation 
is it?  Well, we can compute the expectation value of the energy, 

σσσσ
el

Ĥ  as follows.  First, we decompose the wavefunction 

into spatial and spin parts and note that the spin part is normalized: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )21ˆ21

21ˆ21ˆ

σσσσ

σσσσσσσσ

el

spinspinelel

H

HH

=

ΦΦ=
 

Then, we note that ( ) ( ) ABel RVhhH /1ˆ2ˆ1ˆˆ
12 +++=  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) σεσσ

σσσσσσσσ

≡=

=

11ˆ1

2211ˆ1211ˆ21

h

hh
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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=

22ˆ2
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hh
 

( ) ( ) ( ) ( ) σσσσσσ JV ≡21ˆ21 12  

Taken together, these facts allow us to write: 

AB

AB

MOMOMOMOMOMOMOMO

R
J

R
Vhhh

1
2

1ˆˆˆˆ
12211

++=

+ΨΨ+ΨΨ+ΨΨ=ΨΨ

σσσε
 

Each of the first two terms is energy of a single electron (either 1 or 2) 

in the field produced by the nuclei ( ĥ ) while the third is the average 
repulsion of the two electrons. Note that the second and third terms 
are both positive, so binding has to arise from the one-electron piece. 
This is the MO energy for the ground state of H2.  For a reasonable 
choice of the 1s-like basis 
functions – it turns out to be 
more convenient to fit the 
exponential decay of the 
hydrogenic orbitals to a sum 
of Gaussians- we can use a 
computer to compute the 
unknowns above ( σε  and σσJ ) 

and plot the total energy as a 
function of RAB, we get the 
result pictured at right.  The 
exact adiabatic energy 

Figure 32.7: Total energy as a function of interatomic distance.

Hence, with (32.10) we get,

⟨σ(1)|⟨σ(2)|ĥ(2)|σ(1)⟩|σ(2)⟩ = ⟨σ(1)|σ(1)⟩⟨σ(2)|h(2)|σ(2)⟩ = ⟨σ(2)|h(2)|σ(2)⟩ ≡ ϵσ
⟨σ(1)|⟨σ(2)|ĥ(1)|σ(1)⟩|σ(2)⟩ = ⟨σ(1)|h(1)|σ(1)⟩⟨σ(2)|σ(2)⟩ = ⟨σ(1)|h(1)|σ(1)⟩ ≡ ϵσ
⟨σ(1)|⟨σ(2)|V̂12|σ(1)⟩|σ(2)⟩ ≡ Jσσ . (32.16)

Putting these facts together, we can write,

⟨ΦMO|Ĥ|ΦMO⟩ = ⟨ΦMO|ĥ1|ΦMO⟩+ ⟨ΦMO|ĥ2|ΦMO⟩+ ⟨ΦMO|V̂12|ΦMO⟩+
e2

4πε0Rab

= 2ϵσ + Jσσ +
e2

4πε0Rab
. (32.17)

Each of the first two terms represents the energy of a single electron (either 1 or 2)

in the field produced by both the nuclei (ĥ), while the third is the average repulsion
between the two electrons. Note that the first and second term are both positive,
such that the bond must come from the one-electron part. This is the MO energy
for the ground state of the H2. We can try a more reasonable ansatz for the 1s-
type basis functions 3 by determining the unknown quantities from above (ϵσ and
Jσσ) numerically and plot the total energy as a function of Rab (blue dotted curve
in Fig. 32.7). The exact adiabatic energy function determined from experimental
data (solid black curve) agrees well at low energies. Summarizing the results with
some key numbers, we note that MO theory predicts a bond distance of 0.072 nm
in reasonable agreement with the exact value of 0.074 nm. We can also compare the

3It turns out that it is more convenient to adjust the exponential decomposition of the hydrogenic
orbitals to a sum of Gaussians.
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binding energies,

De = EH2(Requil)− 2EH . (32.18)

MOs theory predicts a binding energy of 5.0 eV compared to the experimental value
of 4.75 eV. In view of the simplicity of the wavefunction and the absence of adjustable
parameters the agreement is not so bad. Unfortunately, far away from the equilibrium
distance, we have an unpleasant surprise: the molecule does not dissociate into two
hydrogen atoms!

1s

yb

1s

1s

|y|

1s s1s

s1s
*

ya

2

y

ybya y

|y|2

H H H2

E

Figure 32.8: Illustration of MO theory for a dimer of two equal atoms, each one with a
valence electron in the atomic 1s orbital: When the atoms approach, the atomic orbitals
form new molecular binding and anti-biding orbitals.

To get an idea of what is happening near dissociation, we expand the fundamental
MO state in terms of AO configurations:

|ΦMO⟩ ∝ |σ(1)⟩|σ(2)⟩|Φspin⟩ (32.19)

= 1
2(1+S) (|1sa(1)⟩+ |1sb(1)⟩)(|1sa(2)⟩+ |1sb(2)⟩)|Φspin⟩

= 1
2(1+S) (|1sa(1)⟩|1sa(2)⟩+ |1sa(1)⟩|1sb(2)⟩+ |1sb(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sb(2)⟩)|Φspin⟩ .

The two terms in the middle of the last line, called covalent configurations, are exactly
what we expect near dissociation: one electron in each hydrogen atom. However, the
first and last term (which are called ionic configurations) correspond to having two
electrons in one atom and none in the other, which gives us H+ and H− at dissoci-
ation! Since the weight of these terms is fixed, it is obvious that we got the wrong
wavefunction (and therefore the wrong energy) when dissociating the molecule. Near
the equilibrium point, the ionic terms contribute significantly to the true wavefunc-
tion, such that the MO theory is good at this point. But it is always terrible at
dissociation.
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32.1.5 Valence binding

An alternative to MO theory represents the valence bond theory (VB). Here, we use
significantly more physical intuition and discard the ionic configurations from the MO
wavefunction. Thus, the VB ground state wavefunction is:

|Ψ⟩ ∝ |1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩√
2

| ↑ (1)⟩| ↓ (2)⟩+ | ↓ (1)⟩| ↑ (2)⟩√
2

≡ |Ψspace⟩|Ψspin⟩ . (32.20)

VB theory assumes that this wavefunction is a good approximation to the true wave-
function at all binding distances and not only at large distances Rab. To verify this
approximation, we can calculate the average energy for this VB state. First, we
normalize the VB wavefunction,

⟨Ψ|Ψ⟩ = ⟨Ψspace|⟨Ψspin|Ψspace⟩|Ψspin⟩ = ⟨Ψspace|Ψspace⟩ (32.21)

= 1
2 (⟨1sa(1)|⟨1sb(2)|+ ⟨1sb(1)⟨1sa(2)|) (|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩)

= 1
2 (⟨1sa(1)|1sb(2)|1sa(1)⟩|1sb(2)⟩+ ⟨1sa(1)|1sb(2)|1sb(1)⟩|1sa(2)⟩
+⟨1sb(1)|1sa(2)|1sa(1)⟩|1sb(2)⟩+ ⟨1sb(1)|1sa(2)|1sb(1)⟩|1sa(2)⟩)

= 1
2 (1 + S2 + S2 + 1) = 1 + S2 .

Therefore, the correctly normalized VB wavefunction is:

|ΨV B⟩ =
1

2
√
1 + S2

(|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩) (| ↑ (1)⟩| ↓ (2)⟩ − | ↓ (1)⟩| ↑ (2)⟩) .
(32.22)

Now we want to calculate ⟨Ĥel⟩ for this state. We note that the spin part does not
matter, since the Hamiltonian is independent of spin:

⟨ΨV B |Ĥ|ΨV B⟩ = ⟨Ψspin|⟨Ψspace|Ĥ|Ψspace⟩|Ψspin⟩ (32.23)

= ⟨Ψspace|Ĥ|Ψspace⟩⟨Ψspin|Ψspin⟩ = ⟨Ψspace|Ĥ|Ψspace⟩ .

The only remnant of the spin state is the fact that the spatial wavefunction is sym-
metric, which is only possible when the spin part is antisymmetric. Treating each
term in ⟨Ĥ⟩ separately,

⟨Ψ|ĥ1|Ψ⟩ = 1
2 (⟨1sa(1)|⟨1sb(2)|+ ⟨1sb(1)|1sa(2)|) ĥ1 (|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩)

= 1
2

(
⟨1sa(1)|1sb(2)|ĥ1|1sa(1)⟩|1sb(2)⟩+ ⟨1sa(1)|1sb(2)|ĥ1|1sb(1)⟩|1sa(2)⟩

+⟨1sb(1)|1sa(2)|ĥ1|1sa(1)⟩|1sb(2)⟩+ ⟨1sb(1)|1sa(2)|ĥ1|1sb(1)⟩|1sa(2)⟩
)

= 1
2 (ϵ+ Shab + ϵ+ Shab) , (32.24)

or,

⟨ΨV B |ĥ1|ΨV B⟩ =
ϵ+ Shab
1 + S2

. (32.25)
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Since the two electrons are identical, the elements of the ĥ2 are the same as those of
ĥ1. The only remaining term is the average value of the interaction:

⟨Ψ|V̂12|Ψ⟩ = 1
2 (⟨1sa(1)|⟨1sb(2)|+ ⟨1sb(1)|1sa(2)|) V̂12 (|1sa(1)⟩|1sa(2)⟩+ |1sb(1)⟩|1sa(2)⟩)

(32.26)

= 1
2

(
⟨1sa(1)|1sb(2)|V̂12|1sa(1)⟩|1sb(2)⟩+ ⟨1sa(1)|1sb(2)|V̂12|1sb(1)⟩|1sa(2)⟩

+ ⟨1sb(1)|1sa(2)|V̂12|1sa(1)⟩|1sb(2)⟩+ ⟨1sb(1)|1sa(2)|V̂12|1sb(1)⟩|1sa(2)⟩
)
.

The second and third terms are the same. They are called exchange integrals, because
the ’bra’ orbitals have switched order as compared to the ’kets’:

K = ⟨1sa(1)|1sb(2)|V̂12|1sb(1)⟩|1sa(2)⟩ = ⟨1sb(1)|1sa(2)|V̂12|1sa(1)⟩|1sb(2)⟩ .
(32.27)

The first and forth terms are also the same. They are called Coulomb integrals,
because they seem to be due to the Coulomb interaction between two charge densities:

J = ⟨1sb(1)|1sa(2)|V̂12|1sa(1)⟩|1sb(2)⟩ = ⟨1sa(1)|1sb(2)|V̂12|1sb(1)⟩|1sa(2)⟩ . (32.28)

Therefore, we have the result,

⟨ΨV B |V̂12|ΨV B⟩ =
J +K

1 + S2
. (32.29)

Adding all terms, we get:

⟨ΨV B |Ĥ|ΨV B⟩ = ⟨ΨV B |ĥ1|ΨV B⟩+ ⟨ΨV B |ĥ2|ΨV B⟩+ ⟨ΨV B |V̂12|ΨV B⟩+
1

Rab

= 2
ϵ+ Shab
1 + S2

+
J +K

1 + S2
+

1

Rab
. (32.30)

The Coulomb and exchange terms are positive. Nuclear repulsion is clearly positive.
Thus, the only terms that lead to binding in this picture are the average energy of
an electron ϵ and the resonance integral hab. If the first term is dominant, the bond
is due to electronic delocalization, since an electron located near one of the atoms
would only contribute the atomic value to ϵ, which does not imply a bound state. If
hab is large, the bond involves some resonance character, which can be related to the
familiar concept of resonance between different Lewis point structures.

A numerical evaluation of all integrals gives the potential curve presented in
Fig. 32.7 for VB theory. As expected, this simple VB wavefunction gives the cor-
rect dissociation threshold, where MO theory fails. In addition, the accuracy of the
simple VB result is surprisingly good even near the equilibrium distance: The VB
predicts a bond distance of 0.071 nm (compared to the correct value of 0.074 nm)
and De = 5.2 eV (compared to 4.75 eV). Thus, the VB wavefunction also gives a
good agreement without adjustable parameters. But more importantly, it indicates a
way of improving the wavefunction whenever we encounter an obvious error: in this
case, we saw that the description of the dissociation was weak, and we constructed a
VB ansatz curing the problem. This approach to VB is often generalized as follows
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when dealing with polyatomic molecules. We write the wavefunction as a product of
a spatial part and a spin:

|Ψ⟩ = |Ψspace⟩|Ψspin⟩ . (32.31)

The main assumption in VB theory is that the spatial part can be well represented
by a product of atomic-like functions. For example, for water, we would immediately
write a spatial part as:

|Ψspace⟩ ≃ |1sHa⟩|1sHb
⟩|1sO⟩|1sO⟩|2sO⟩|2sO⟩|2pxO⟩|2pxO⟩|2pyO⟩|2pyO⟩ . (32.32)

However, there are two things wrong with this wavefunction. First, we know that
atomic orbitals hybridize in a molecule. Therefore, we need to make appropriate
linear combinations of AOs (in this case sp3 hybrids) to obtain the hybridized AOs.
In this case, the four sp3 hybrids can be written symbolically as:

|sp3⟩ = cs,i|2s⟩+ cx,i|2px⟩+ cy,i|2py⟩+ cz,i|2pz⟩ . (32.33)

and therefore, a more appropriate spatial configuration is:

|Ψspace⟩ ≃ |1sHa
⟩|1sHb

⟩|1sO⟩|1sO⟩|sp31O⟩|sp31O⟩|sp32O⟩|sp32O⟩|sp33O⟩|sp34O⟩ . (32.34)

The other problem with this state is that it lacks the adequate symmetry to describe
fermions; the general state must be antisymmetric. In the case of two electrons this
concept is easy to apply - singlets have symmetric space parts and triplets antisym-
metric ones. However, in the case of many electrons, the rules are not so simple;
in fact, the time of numerical computation grows exponentially with the number of
electrons.

Formally, we will leave the derivation at this point to defining an operator A which
’antisymmetrizes’ the wavefunction. In this case,

|Ψspace⟩ ≃ A
[
|1sHa

⟩|1sHb
⟩|1sO⟩|1sO⟩|sp31O⟩|sp31O⟩|sp32O⟩|sp32O⟩|sp33O⟩|sp34O⟩

]
.

(32.35)
In general, the results of VB theory are very accurate for small systems, where it can
be applied. The predicted bond lengths are rather short, and the binding energies
tend to be too small, but the results are nevertheless qualitatively excellent. In ad-
dition, the correct hybridized atomic orbitals fall directly off the calculation, giving a
good qualitative insight. Also, note that the atomic configurations should not change
(or very little) when the geometry of the molecule changes (since the orbitals depend
on the atom and not on the molecular structure). Therefore, these VB wavefunctions
have a strong connection to the diabatic states discussed above. However, the ex-
ponential amount of time that one must invest to perform these calculations makes
them impractical for most molecules of interest.

32.1.6 Exercises

32.1.6.1 Ex: Classical model of the covalent binding

Consider the molecule H+
2 with the two nuclei separated by 1 nm and an electron

located in the middle between the nuclei. Calculate the electrostatic force acting on
the nuclei.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_MolecularBond01.pdf
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32.1.6.2 Ex: Beyond the Born-Oppenheimer approximation for molecules

For molecules, the Born-Oppenheimer approximation may fail in some situations.
Therefore, it is common to use another approach known as Born-Huang. To illustrate
this approach, we consider a diatomic molecule in the laboratory frame.
a. Write down the many-body Hamiltonian of the molecule in atomic units.
b. If we change the coordinate system to the position of the center-of-mass of the
nuclei of the molecule, we eliminate the dependency on the global translation of the
molecule. The Hamiltonian is now given by,

− ∇
2
R

2µAB
−
∑

i,j

1

2M
∇i∇j −

∑

i

∇2
i

2
+ V

where that the Coulombian interactions are included in the fifth term. Write down
the time-independent Schrödinger equation for this molecule.
c. The Born-Huang approximation consists in assuming that the total wavefunction
can be expanded on a basis of wavefunctions of the nuclei and the electrons, that is,

Ψ(r,R) =
∑

k

|χk(R)⟩|ϕk(r,R)⟩ ,

where χ and ϕ are the wavefunctions of the nuclei and the electrons, respectively.
For the Schrödinger equation calculated in the previous item, use the Born-Huang
approximation and obtain the set of coupled equations
{∑

k

[
− 1

2µAB

(
∇2
R + ⟨ϕk|∇2

R|ϕk⟩+ 2⟨ϕk|∇R|ϕk⟩.∇R|
)]
−

∑

k


 1

2M


∑

i,j

⟨ϕi|∇i.∇j |ϕk⟩


+

1

2

∑

i

⟨ϕi|∇2
i |ϕk⟩ − ⟨ϕi|V |ϕk⟩|





 |χk⟩ = E

∑

k

|χk⟩

which includes, although approximately, the kinetic energy of nuclei and electrons.
Help: Use ∇2(αβ) = α∇2β + β∇2α+ 2∇α · ∇β.
d. Make a brief comparison between the Born-Huang approximation (and the coupled
equations obtained in the previous equation) and the Born-Oppenheimer approxima-
tion.

Solution: a. We have the kinetic energies of nucleus A, nucleus B and the electrons.
We also consider the coulombian interaction nucleus-nucleus, nucleus-electron, and
electron-electron. Therefore the Hamiltonian is given by,

Ĥ = − ∇
2
A

2MA
− ∇

2
B

2MB
−
∑

i

∇2
i

2
+

1

2

∑

i ̸=j

1

|ri − rj|
+
∑

i=A,B

∑

j

Zi
|rj −Ri|

+
ZAZB
R

,

being MA and MB the nuclear masses, ZA e ZB the charges of the nuclei, R the
relative coordinate between the nuclei, and ∇i the kinetic energy of the electron i.
b. The time-independent Schrödinger equation is given by,


− ∇

2
R

2µAB
−
∑

i,j

1

2M
∇i∇j −

∑

i

∇2
i

2
+ V


 |Ψ(R, r)⟩ = E|Ψ(R, r)⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_MolecularBond02.pdf
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c. The Schrödinger equation obtained in the previous item is:

− ∇

2
R

2µAB
−
∑

i,j

1

2M
∇i∇j −

∑

i

∇2
i

2
+ V


∑

k

|χk⟩|ϕk⟩ = E
∑

k

|χk⟩|ϕk⟩ ,

where V contains all Coulomb interactions. Using that

∇2
R|χk⟩|ϕk⟩ = (∇2|χk⟩)|ϕk⟩+ |χk⟩(∇2|ϕk⟩) + 2|∇χk⟩ · ∇|ϕk⟩

in the Schrödinger equation

∑

i

[
− 1

2µAB

(
|ϕi⟩∇2

R|χi⟩+ |χi⟩∇2
R|ϕi⟩+ 2∇R|ϕi⟩.∇R|χi⟩

)]

−
∑

k


 1

2M


∑

i,j

∇i · ∇j |ϕk⟩


 |χk⟩+

1

2
|χk⟩

∑

i

∇2
i |ϕk⟩ − V |ϕk⟩|χk⟩


 = E

∑

k

|ϕk⟩|χk⟩

multiplying with |ϕn⟩ and considering that the base is orthonormal,

∑

i

[
− 1

2µAB

(
⟨ϕn|ϕi⟩∇2

R|χi⟩+ |χi⟩⟨ϕn|∇2
R|ϕi⟩+ 2⟨ϕn|∇R|ϕi⟩.∇R|χi⟩

)]

−
∑

k


 1

2M


∑

i,j

⟨ϕn|∇i · ∇j |ϕk⟩


 |χk⟩+

1

2
|χk⟩

∑

i

⟨ϕn|∇2
i |ϕk⟩ − ⟨ϕn|V |ϕk⟩|χk⟩


 = E

∑

k

⟨ϕn|ϕk⟩|χk⟩

∑

i

[
− 1

2µAB

(
∇2
R|χi⟩+ |χi⟩⟨ϕn|∇2

R|ϕi⟩+ 2⟨ϕn|∇R|ϕi⟩ · ∇R|χi⟩
)]

−
∑

k


 1

2M


∑

i,j

⟨ϕn|∇i.∇j |ϕk⟩


 |χk⟩+

1

2
|χk⟩

∑

i

⟨ϕn|∇2
i |ϕk⟩ − ⟨ϕn|V |ϕk⟩|χk⟩


 = E

∑

k

|χk⟩ .

Hence, since, ⟨ϕn|ϕi⟩ = δni
{∑

k

[
− 1

2µAB

(
∇2
R + ⟨ϕk|∇2

R|ϕk⟩+ 2⟨ϕk|∇R|ϕk⟩.∇R|
)]

−
∑

k


 1

2M


∑

i,j

⟨ϕi|∇i.∇j |ϕk⟩


+

1

2

∑

i

⟨ϕi|∇2
i |ϕk⟩ − ⟨ϕi|V |ϕk⟩|





 |χk⟩ = E

∑

k

|χk⟩ .

d. In the Born-Oppenheimer approximation, the electrons do not influence the kinetic
energy of the nuclei and the Hamiltonian becomes completely separable into one part
due to the nuclei and another part due to the electrons. In the Born-Huang approxi-
mation the wavefunction of the nuclei depends on the wavefunctions of the electrons,
which results in a system of coupled equations, but which contains information about
the kinetic energy of the nuclei and how the electrons modify that energy. Although
more complicated to solve than the equations obtained under the Born-Oppenheimer
approximation, the Born-Huang approximation is the starting point for systems that
require an approximation that takes into account non-adiabatic effects.
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32.1.6.3 Ex: Classical model of the covalent bond

Calculate the energies of the ground state and the last bound state of the potential
Vn = − C

rn for any n.

Solution:

32.1.6.4 Ex: Homonuclear collision

We consider the example of homonuclear collisions of 85Rb atoms. For ground state
collisions in the channel 3Σ+, |f = 2,mf = −2⟩, the long-range part of the poten-
tial is fixed by C6 = 4550, C8 = 550600, and C10 = 7.67 × 107 [300, 1108], where
Rm = 9.8aB , Dm = 0.13, and Bm = 1/2.5aB . The potentials can be merged at a
given distance Rt = 27.6aB . Prepare a plot of potential.

Solution: In atomic units: The green curve shows the short-range Morse poten-

5 10 15 20 25 30

R (aB)

-2

-1

0

V
(R

)
(c
m

−
1
)

×104

Figure 32.9: Short range potential.

tial, the blue curve shows the long-range potential, and the black curve the combined
potential around the distance Rt, that is, at very large distances.

32.2 Rovibrational structure of molecular potentials

The separation of the motion of the nuclei from the electronic dynamics made in the
Born-Oppenheimer approximation led to equations (32.6) and (32.7). In a preceding
section we analyzed in detail the equation (32.6) with the objective of understanding
the phenomenon of molecular binding.

In the following section we will analyze the equation (32.7), which determines the
motion of the nuclei. By separating the radii and angular parts of the motion, we will
discover vibrational and rotational states.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_MolecularBonds01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_ColisaoHomonuclear1.pdf


1626 CHAPTER 32. MOLECULAR DIMERS

32.2.1 The radial and angular equations

The interaction between two identical atoms is described by the following Hamilto-
nian, where Mr = (M−1a +M−1b )−1 =M/2 is the reduced mass of the nuclei,

Ĥ =
P2

2Mr
+ Vmol(R) with Vmol(R) =

e2

4πϵ0R
+ VBO(R) . (32.36)

The interaction potential Vmol is composed of a repulsive internuclear Coulomb force
and a Born-Oppenheimer adiabatic potential due to the interaction of the electrons
with each other and with the two nuclei 4. The kinetic energy is that of the relative
motion (the center-of-mass motion has already been separated in Sec. 32.1.2, such that
this inertial system is free of translational kinetic energy). In spherical coordinates,

P2

2Mr
ϕ(R) = − ℏ2

2Mr

[
1

R

∂2

∂R2
[Rϕ(R)] +

1

R2

L̂2

ℏ2
ϕ(R)

]
. (32.37)

The wavefunction can be separated into an angular part and a radial part, ϕ(R) =
Rv(R)Yℓm(θ, ϕ). The angular part, which was discussed in Sec. 25.1.3, describes a
rigid rotation of the homonuclear atoms around their center-of-mass with the rotation
energy,

Vℓ(R) =
L2

2MrR2
=

ℏ2ℓ(ℓ+ 1)

2MrR2
, (32.38)

also called centrifugal barrier. The radial part is ruled by,

[
− ℏ2

2Mr

∂2

∂R2
+ Vℓ(R) + VBO(R)

]
uv(R) = Euv(R) , (32.39)

where uv(R) = rRv(R) is the radial wavefunction of nuclear motion. The interatomic
potential causes a motion of vibration. The vibrational states of the adiabatic poten-
tial are quantized and characterized by a well-defined vibrational energy. We will
discuss the ro-vibrational structure in the following sections.

32.2.1.1 Rotational and vibrational bands

Molecules have much more degrees of freedom than atoms. For example, the atoms of
a molecular dimer may vibrate inside the mutual interaction potential. In the center-
of-mass system we can imagine these vibrations as oscillations of an atom with reduced
mass and quantized energy. The molecule can rotate and have a momentum of inertia.
These degrees of freedom contribute energies to the molecule’s Hamiltonian, either
directly or through interactions with other degrees of freedom. Therefore, molecular
spectra are characterized by a much greater complexity.

However, the energy regimes of the strongest excitations are quite different. A
typical range for binding energies (depth of the interatomic potential) is ∆Ep ≃

4We note here that at great distances other forces called van der Waals forces dominate the
interatomic interaction. These will be discussed in Sec. 32.3.
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Figure 32.10: Molecular energy scales.

20..200 THz (0.1..1 eV) 5. Electronic excitations occur in the regime ∆Ee ≃ 100..1000 THz
(1..10 eV). The spacing between vibrational excitations typically is Ev+1−Ev ≃ THz
(0.01 eV). Finally, the rotational excitations are on the scale of Eℓ+1−Eℓ ≃ 100 MHz
(10−6 eV). Since at room temperature (a gas of molecules in thermal equilibrium
at T = 300 K) the energy is on a scale of 2.5 × 10−2 eV, the degree of freedom of
the electronic excitation is frozen, while a wide distribution of vibrational and rota-
tional states can be excited (e.g. by intermolecular collisions). The large difference of
scales facilitates their separation and, therefore, the identification of the origin of the
observed states in experimental measurements.

32.2.2 Vibrational molecular states

The potential energy of a molecule grows when the nuclei are displaced from their
equilibrium positions. When the displacement, x ≡ R − Re is small, we can expand
the potential energy,

Vmol(x) = Vmol(0) +
dVmol(0)

dx
x+

1

2

d2Vmol(0)

dx2
x2 + .. . (32.40)

The equilibrium energy is not of interest here, and the first derivative disappears in
equilibrium. Therefore,

Vmol(x) ≃ 1
2k

2x2 with k ≡ d2Vmol(0)

dx2
. (32.41)

Using the effective mass we can write the Hamiltonian,

Ĥmol = −
ℏ2

2m1

d2

dx21
− ℏ2

2m2

d2

dx22
+ 1

2kx
2 = − ℏ2

2Mr

d2

dx2
+ 1

2kx
2 . (32.42)

The energy spectrum of this degree of freedom, therefore, is

Ev = ℏω(v + 1
2 ) . (32.43)
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Figure 32.11: (code) Many potentials are approximately harmonic at the center such as,

for instance, the Morse potential (blue). The red curve shows the approximate harmonic

potential.

with ω =
√
k/Mr. That is, at the bottom of deep potentials, the energy levels are

equidistant.

32.2.2.1 Anharmonic vibrations in the Morse potential

For larger displacements we can no longer despise the anharmonic terms in the Taylor
expansion. A better approximation is the Morse potential. This potential (blue in
Fig. 32.11), unlike the harmonic potential (red in Fig. 32.11), is characterized by an
asymptote for large interatomic distances. Therefore, it is often used as an analytical
approximation to molecular potentials,

Vmorse = De(1− e−a(R−Re))2 , (32.44)

where r is the interatomic distance, re the equilibrium bond distance, De the depth
of the potential measuring from the dissociation limit, and a a parameter controlling
the range of the potential. At the bottom of the potential we can make the harmonic
approximation, Vmorse(R) ≃ k

2 (R−Re)2 with k = 2a2De. Rewriting the potential in
the form,

Ṽ (R) ≡ V (R)−De = De(e
−2a(R−Re) − 2e−a(R−Re)) , (32.45)

we see, that it is a combination of a short-range repulsive potential and long-range
attractive potential (similar to the Lennard-Jones’s potential).

The calculation of the energy spectrum of this potential is more difficult [317],

Ev = ℏω(v + 1/2)− ℏωχe(v + 1/2)2 −De, (32.46)

with ωχe ≡ ℏa2
2Mr

and ω ≡
√
k/Mr, but the availability of an analytical expression

is interesting for the calibration of numerical methods. The second term of the ex-
pression (32.46), which is proportional to the anharmonicity constant χe, becomes
dominant at high excitations. The potential is finite with a dissociation energy of,

D0 = De − E0 . (32.47)

5Electronically excited states (that is, one of the valence electrons moves to an excited orbital)
are more weakly bound, because the electrons are not in the most binding orbital.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_Morse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_Morse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_Morse.m
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The number of vibrational states is limited v = 0, 1, .., vmax. With E < 0, we find,

vmax <
1
xe
− 1

2 . (32.48)

Example 188 (Morse potential): To solve the Schrödinger equation(
− ℏ2

2m

∂2

∂R2
+ V (R)

)
Ψ(v) = EvΨ(v) ,

it is convenient to introduce new variables,

x ≡ aR , λ ≡
√
2mDe
aℏ

, εv ≡ 2m

a2ℏ2
Ev ,

such that,(
− ∂2

∂x2
+ V (x)

)
Ψn(x) = εnΨn(x) with V (x) = λ2

(
e−2(x−xe) − 2e−(x−xe)

)
.

The eigenvalues and eigenfunctions are [317]:

εn = 1− 1
λ2

(
λ− n− 1

2

)2
= 2

λ
(n+ 1

2
)2− 1

λ2 (n+
1
2
)2 and Ψn(z) = Nnz

λ−n− 1
2 e−

1
2
zL(2λ−2n−1)

n (z) ,

where z = 2λe−(x−xe) e Nn =
[
n!(2λ−2n−1)

Γ(2λ−n)

] 1
2
and,

L(α)
n (z) =

z−αez

n!

dn

dzn
(
zn+αe−z

)
=

Γ(α+ n+ 1)/Γ(α+ 1)

Γ(n+ 1)
1F1(−n, α+ 1, z) ,

is the generalized Laguerre polynomial. The matrix elements of the spatial
operator x̂ are (assuming m > n and N = λ− 1

2
),

⟨Ψm|x|Ψn⟩ = 2(−1)m−n+1

(m− n)(2N − n−m)

√
(N − n)(N −m)Γ(2N −m+ 1)m!

Γ(2N − n+ 1)n!
.

In the original variables the eigenenergies are:

Ev = ℏω(v + 1/2)− [ℏω(v + 1/2)]2

4De
,

where v is the vibrational quantum number and ω = a
√

2De
m

. The energy

difference between adjacent levels decreases with v,

Ev+1 − Ev = ℏω − (ℏω)2 v + 1

2De
.

This fact describes well the vibrational structure of non-rotating molecules.
However, the equation fails above some value of v > vmax, where Evmax+1 −
Evmax is zero or negative,

vmax =
2De − ℏω

ℏω
.

This failure is due to the finite number vmax of bound states in the Morse

potential. For energies above vmax all energies are possible, and the equation

for Ev is no longer valid.
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32.2.2.2 Vibrational selection rules

Electromagnetic fields of the type E1, e.g., black body radiation, can induce transi-
tions between vibrational states and redistribute their populations such as to establish
a thermal equilibrium. However, as the stronger transitions are induced by dipole mi-
grations of charges, we need to analyze in more detail the selection rules imposed on
the dipole moment ⟨f |d|i⟩.

The states which are relevant for vibrational transitions are specified by |ϵ, v⟩,
where ϵ denotes the electronic state of the molecule, since the vibrational spectrum
depends on the electronic structure. The Born-Oppenheimer approximation allows us
to consider the slow vibrations separately from the dynamics of the electrons. The
time scale for electronic transitions is 1/∆Ee = 10−16 s-1, and for a nuclear vibration
it is 1/∆Ev = 10−13 s-1. For each internuclear distance the electrons form an adapted
stationary state, minimizing their energy for that distance. This is equivalent to
the formation of an adiabatic interaction potential between the nuclei on which the
nuclei can vibrate. To find out which vibrational transitions are possible, we need to
calculate the matrix,

⟨ϵ′, v′|d̂|ϵ, v⟩ = ⟨v′|d̂ϵ|v⟩ . (32.49)

The dipole moment, dϵ = ⟨ϵ|d̂|ϵ⟩, of the molecule depends on the distance of the
nuclei, since the electronic orbitals |ϵ⟩ depend on distance. Therefore, we can expand,

d̂ = d̂0 +
dd̂0

dx
x̂+

1

2

d2d̂0

dx2
x̂2 + .. . (32.50)

Therefore, the transition matrix is,

⟨ϵ′, v′|d̂|ϵ, v⟩ = d̂0δv,v′ +
dd̂0

dx
⟨v′|x̂|v⟩+ d2d̂0

dx2
⟨v′|x̂2|v⟩+ .. . (32.51)

The first term disappears, that is, transitions can only occur, when the dipole moment
varies with the distance. Therefore, homonuclear dimers do not undergo vibrational
transitions.

For heteronuclear molecules with electronic charges that do not depend on the
interatomic distance, the dipole moment varies linearly with small displacements. In
this case, we only need the second term of the expansion. Within the harmonic
approximation, the position operator can be expressed by, x̂ ∝ â + â†. Therefore,
only transitions ∆v = ±1 are possible. However, due to anharmonicities, higher
order terms, x̂n ∝ (â+ â†)n become influential, and transitions with ∆v = ±2,±3, ..
become possible.

Thus, in anharmonic potentials, the vibrational selection rules are replaced by the
concept the overlapping wavefunctions called Franck-Condon factor.

Raman spectroscopy is a very useful tool to analyze ro-vibrational spectra. In this
method, inelastic Raman scattering gives rise to Stokes and anti-Stokes lines in the
spectrum at frequencies corresponding to ∆v = ±1,±2. The ground state spectrum
is asymmetric, because of the absence of the lower state. In homonuclear dimers, the
nuclear spins have a major impact on the Raman spectra. Parity considerations show
that there can only be odd or even lines.
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32.2.3 The Franck-Condon principle

The intensity of molecular transitions are, qualitatively, described by the Franck-
Condon principle, whose classical formulation goes as follows:

The jump of an electron in a molecular transition occurs during a very
small time compared to the time scale of the nuclear motion, so that imme-
diately after the jump, the nuclei remain practically at the same positions
and at the same velocities as before the jump [614].

For this reason, the transitions are drawn vertically in the scheme of potentials shown
in Fig. 32.12(right). To yield considerable rates, transitions must occur when the
nuclear velocities in the two coupled states are similar, which is the case at the
classical turning points. At these points, the wavefunctions are maximal 6.

10 15 20 25 30
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×10−4

Figure 32.12: (Left, code) Molecular wavefunctions in a potential for three different
vibrational states. (Right) Pictorial representation of the classical statement of the
Franck-Condon principle. Transition (a) has high intensity (or probability), because
here both, the position and the relative velocity of the nuclei do not change. Transi-
tions (b) and (c) are unlikely, because they necessitate either a change in the position
of the nuclei (case b) or in velocity (case c).

With this Franck-Condon principle, we can determine which are the strongest
transitions between vibrational levels of a molecule, as represented in Fig. 32.12(left).
In particular, we are interested in transitions between vibrational levels of different
electronic states.

The exact transition probabilities are calculated via the square module of the
transition dipole moment (TDM). The TDM is an out-of-diagonal matrix element of
the electric dipole operator M, given by:

MAB = ⟨Ψ(A)|M̂|Ψ(B)⟩ , (32.52)

being |Ψ(A)⟩ and |Ψ(B)⟩ two molecular states.

6Note that the presence of a hyperfine structure can modify the selection rules.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AM_Molecule_FourierGrid.m
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Still within the Born-Oppenheimer approximation, we can split the dipole moment
operator into two terms, a nuclear and an electronic term, according to:

M̂(r,R) = M̂e(r,R) + M̂n(R) . (32.53)

Thus, the TDM is:

MAB =

∫
Ψ(A)∗M̂Ψ(B)dRdr (32.54)

=

∫
M̂eψ

(A)∗
e ψ(B)

e ψ(A)∗
n ψ(B)

n dRdr +

∫
M̂nψ

(A)∗
n ψ(B)

n

∫
ψ(A)∗
e ψ(B)

e drdR .

Since the electronic wavefunctions of different states are orthogonal, it follows that∫
ψ
(A)∗
e ψ

(B)
e dr = 0, canceling the second term.

Looking at the first term, we note that the electronic dipole moment M̂e(r,R)
also depends on the nuclear coordinates as a parameter. The quantum formulation
of the Franck-Condon principle consists in stating that, in a molecular state, the
electronic dipole moment varies little with the nuclear coordinates. Thus, along with
the condition of the Born-Oppenheimer approximation, we can split the first TDM
term into electronic and nuclear integrals:

MAB =

∫
M̂eψ

(A)∗
e ψ(B)

e dr

∫
ψ(A)∗
n ψ(B)

n dR . (32.55)

Thus, we have a comparative expression for the transition probability given by:

PAB ∝ |MAB |2 =

∣∣∣∣
∫

M̂eψ
(A)∗
e ψ(B)

e dr

∣∣∣∣
2 ∣∣∣∣
∫
ψ(A)∗
n ψ(B)

n dR

∣∣∣∣
2

. (32.56)

The second factor in equation (32.56) is called Franck-Condon factor. When we
study the transitions between two electronic states, this factor compares the intensities
of the transitions between distinct pairs of vibrational levels.

Example 189 (Ultracold molecules): Ultracold molecules have been pro-

posed for a variety of applications, such as ultra high resolution spectroscopy

[867], test of fundamental laws of physics [350, 1159], quantum computation

[349] and others[236]. Most of these applications, however, require that the

molecular sample be in a single quantum state. This is an experimental chal-

lenge, since molecules have more degrees of freedom than atoms, such as rotation

and vibration.

To create a sample of molecules trapped in the ground state of vibration, a

possible method is to first produce the molecules from ultracold atoms using a

process called photo association, and then pump these molecules to the vibra-

tional ground state.

Photoassociation consists in the excitation of a pair of free atoms to the bound

state of an excited electronic potential by the absorption of a photon. The pair

then decays by spontaneous emission either back to the state of two free atoms

(which is not desirable), or to a bound state of the fundamental electronic po-

tential. For Rb2 molecules, photoassociation is efficient at certain frequencies
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[875], with the A1Σ+
u potential as the excited state (see Fig. 32.13).

Soon after being formed, the molecules are usually in levels of high vibrational

energy (around ν ≈ 80), because these levels connect best (high Franck-Condon

overlap) to the excited state. The transfer of population to the fundamental

state of vibration is done by ’optical pumping’.

Vibrational cooling via optical pumping can be done by irradiating a broad fre-

quency band of light that excites transitions to vibrational levels of the excited

nuclear potential. These excited states are chosen such that their Franck-Condon

overlap with the ground states of lower vibrational energy is larger. As a con-

sequence, a molecule sent to an excited state returns with higher probability

to a level of lower vibrational energy. The absorption and emission cycles are

repeated, until the molecules reach the fundamental vibrational state.

Figura 3: Esquema da fotoassociação para formar moléculas de Rb2. No processo a), o par de átomos
livres absorve um fóton da radiação incidente, formando um estado ligado no potencial excitado.
Em seguida, em b), a molécula recém-formada decai por emissão espontânea para estados ligados do
potencial fundamental, ou ainda pode retornar a um estado de dois átomos livres.

4 Detecção molecular & alguns resultados

O método mais direto que utilizamos para se detectar moléculas se baseia na ionização molecular.
Aplica-se um campo elétrico na amostra molecular, e coloca-se um detector de íons na direção do
campo. Partículas que se ionizem adquirem uma carga líquida, sendo atraídas pelo campo e caindo
no detector de íons. Para promover a ionização de moléculas, aplica-se a luz de um laser pulsado
na amostra, cuja frequência pode ionizar as moléculas via processo de vários fótons (razão pela qual
a técnica recebeu o nome de "REMPI- resonantly enhanced multiphoton ionization). As moléculas
ionizadas pelo laser pulsado caem no detector em um intervalo de tempo bem de�nido após os pulsos
de luz, de forma que conhecendo os instantes em que os pulsos foram emitidos, é possível olhar apenas
para as moléculas e ignorar a maioria dos íons esporádicos que caem no detector.

Outra vantagem desse método de detecção é que a frequência de ionização depende do nível vi-
bracional das moléculas que se deseja ionizar. Ou seja, variando-se a frequência do laser ionizante,
encontramos diversos picos de intensidade de ionização, referente aos diversos estados vibracionais
em que as moléculas da amostra se encontram. Por essa razão, uma varredura do laser de ionização
pode ser chamada de "espectro vibracional", sendo este essencial para o nosso trabalho, pois de fato
desejamos estimar a população de moléculas que está (ou não) no estado fundamental de vibração.

Na �gura 5, encontra-se um espectro vibracional numa janela espectral relativamente curta, feito em
nosso laboratório. A esta fase, éramos capazes de promover um considerável resfriamento vibracional
das moléculas, sem contudo alcançar uma população macroscópica no nível fundamental de vibração.
Neste espectro, foi capaz de se identi�car um pico de ionização partindo do nível vibracional ν = 4 do
estado eletrônico fundamental.

5

Figure 32.13: Photoassociation scheme to form Rb2 molecules. In process (a), a pair of
free atoms absorbs a photon of the incident radiation, forming a bound state in the excited
potential. Then, in (b), the newly formed molecule decays by spontaneous emission to a
bound state of the fundamental potential, or it can return to a state of two free atoms.

32.2.4 Rotational progression

Until now we neglected the centrifugal energy (32.38),

Vℓ(R) =
L2

2MrR2
=

ℏ2ℓ(ℓ+ 1)

2MrR2
. (32.57)

As we shall now see, this energy creates a substructure of the vibrational levels.

The moments of inertia in the three axes of space are,

Iqq =
∑

i

mir
2
i (q) . (32.58)
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The kinetic energy of the rotation is,

Erot =
1
2

∑

q=1,2,3

mqv
2
q =

1
2

∑

q=1,2,3

Iqqω
2
q =

L2
x

2Ixx
+

L2
y

2Iyy
+

L2
z

2Izz
, (32.59)

with the angular momentum Lq = Iqqωq.
Many molecules have a symmetry axis, such that there are two different moments

of inertia, I⊥ ≡ Ixx = Iyy and I∥ ≡ Izz. Interpreting angular momenta as quantum
operators,

Ĥ =
L̂2

2I⊥
+

(
1

2I∥
− 1

2I⊥

)
L̂2
z . (32.60)

We must first consider the rotation of the molecule relative to the symmetry axis
of the molecule. Forgetting external fields we calculate the energy of the molecule
associated with the observables L̂2 with the quantum number ℓ and L̂z with the
quantum number K. We find the eigenvalues,

E(ℓ,K,Mℓ) =
ℏ2ℓ(ℓ+ 1)

2I⊥
+

(
1

2I∥
− 1

2I⊥

)
ℏ2K2 = Bℓ(ℓ+ 1) + (A−B)K2 , (32.61)

with ℓ = 0, 1, .., K = −ℓ, .., ℓ, and Mℓ = −ℓ, .., ℓ and introducing the rotational
constants, A ≡ ℏ2/2I∥ and B ≡ ℏ2/2I⊥. We then analyze this equation in the context
of applying an external field that defines both, the direction ê′z in the laboratory as
well as the projection of the angular motion L̂2 on this direction, mℓ. That is, we
have two axes, the internuclear axis êz and the rotation axis of the molecule ê′z.

Each level |ℓ,mℓ⟩ is 2(2ℓ + 1) times degenerate, because K = −ℓ, .., ℓ and K can
be positive or negative. Each level ℓ contains 2ℓ + 1 states. Note that for spherical
molecules, A = B, and the degree of freedom K disappears. In Exc. 32.2.6.2 we
calculate the rotational spectrum of a homonuclear diatomic molecule.

The rotational constant can be approximated by,

Erot =
ℏ2ℓ(ℓ+ 1)

2Mr⟨R2⟩ , (32.62)

where
√
⟨R2⟩ is the expectation value for the outer turning point of the vibrational

level. As an example, the rotational constant for the vibrational state of 87Rb2 which
is 5.9 cm−1 below the dissociation limit is Bv = νℓ=1

rot − νℓ=0
rot = 81 MHz. To be more

precise, we would need to calculate ⟨R2⟩v = ⟨ψv|R2|ψv⟩.
Transitions between vibrational levels occur together with rotational transitions

∆ℓ = ±1. Therefore, the frequencies of transitions depend on the rotational constant
Bv, which depends on the vibrational state. The energies of the molecule are,

Ev,ℓ = ℏω(v+1/2)−ℏωxe(v+1/2)2+ ..+hcBvℓ(ℓ+1)−hcDvℓ
2(ℓ+1)2+ .. . (32.63)

Under the influence of a rapid rotation, the atoms of the molecule are subjected to
centrifugal force and, hence, are further away from each other 7.

Since at ambient temperatures many rotational levels are populated, we experi-
mentally observe many lines known as P -branch, when ∆ℓ = −1, as Q-branch, when
∆ℓ = 0, and as R-branch, when ∆ℓ = 1. See Exc. 32.2.6.3.

7See [60], p.326
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32.2.4.1 Rotational selection rules

For transitions between electronic states, the selection rules are ∆r = 0,±1. Rota-
tional transitions can occur between levels ∆r = ±1. ∆r = 0 is not allowed, because
it violates the conservation of parity. Note also that the nuclear isotope influences
the ro-vibrational levels via the reduced mass.

We consider a linear molecule in the state |ϵ, ℓ,Mℓ⟩, where ϵ denotes the electronic
and vibrational state of the molecule. To find out which transitions are possible, we
need to calculate the matrix,

⟨ϵ′, ℓ′,M ′ℓ|d|ϵ, ℓ,Mℓ⟩ = ⟨ℓ′,M ′ℓ|dϵ|ℓ,Mℓ⟩ , (32.64)

with dϵ = ⟨ϵ|d|ϵ⟩. Here, we apply the Born-Oppenheimer approximation, which
allows us to separate the dynamics of the electrons and also the vibrations of the
molecule, because these movements are so fast, that they are always in a steady state,
adiabatically following the slow movement of the rotation.

The selection rules can now be derived from the Wigner-Eckart theorem,

⟨ℓ′,M ′ℓ|dϵ|ℓ,Mℓ⟩|2
|⟨ℓ′ ∥ dϵ ∥ ℓ,Mℓ⟩|2

=
1

2ℓ′ + 1

(
ℓ 1 ℓ′

mℓ κ −m′ℓ

)
. (32.65)

We find ∆ℓ = 1 e ∆Mℓ = 0,±1. See Exc. 32.2.6.4.

32.2.5 Computation of vibrational states

32.2.5.1 Localization energy

One consequence of Heisenberg’s uncertainty relation is that a certain localization
energy is always required to localize a particle. As an example, we consider the
attractive potential,

V = − C

Rzα
. (32.66)

The space available for the particle is limited between the classical turning point,

which for a given energy is rt =
(
C
|E|

)1/α
. The momentum corresponding to this

energy is kt =
(

2m|E|
ℏ2

)1/2
. Heisenberg’s uncertainty relation requires ktrt > 2, that

is, at least half of the wavelength must fit within the potential (between 0 and rt) at
the height of the bound state. Therefore,

|E|1−2/α > 2ℏ2

mC2/α
. (32.67)

For a Coulomb potential, with α = 1 and C = e2/4πε0, we obtain the energy of
the ground state of the hydrogen atom,

E > E1 = − e2

4πε02aB
, (32.68)

but there is no state higher than all others. That is, all energies En = E1/n
2 exist.
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For α = 2, we do not get a condition for the energy. For the Casimir-Polder
potential, α = 3, we obtain,

E < − 8ℏ6

m3C2
. (32.69)

This means that, in contrast to the Coulomb potential, the binding energy must be
lower than a certain limit.

32.2.5.2 The LeRoy-Bernstein method

The LeRoy-Bernstein method allows us to estimate the highest bound levels. It only
applies near the dissociation limit, where the semi-classical formula of quantization is
valid,

v +
1

2
=

√
8Mr

ℏ2

∫ R1

0

dR
√
E(v)− V (R) . (32.70)

Inserting the potential

V (R) = De −
C

Rn
, (32.71)

we get

E(v∗) = De −
(
(n− 2)Γ

(
1 + 1

n

)

2Γ
(
1
2 + 1

n

) (v∗ + vD)

) 2n
n−2 (

h2n

(2πMr)
n
C2

) 1
n−2

, (32.72)

where v∗ is a number counting the vibrational levels from the top to the bottom
starting at the dissociation limit.

0 1 2 3 4
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Figure 32.14: (code) Highest vibrational states obtained by the LeRoy-Bernstein method.

32.2.5.3 Open channels

For a given interatomic potential V (R), neglecting the spin structure [690], the relative
wavefunction of a two-atom system satisfies the Schrödinger equation,

[
− 1

2µ∆+ V (R)
]
ψ(R) = Eψ(R) . (32.73)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_NearFieldLeRoyBernstein.m


32.2. ROVIBRATIONAL STRUCTURE OF MOLECULAR POTENTIALS 1637

Separating the radial and angular contributions, ψ(R) ≡ Y (ϑ, φ)f(R)/R, we obtain,

[
− 1

2µ

∂2

∂R2
+ V (R) +

l(l + 1)

2µR2

]
f(R) = Ef(R) . (32.74)

Now, we introduce the local wavevector, k(R) =
√
2µ[E − V (R)]− l(l + 1)/R2 and

write,
f ′′ = −k2f . (32.75)

This differential equation can be solved numerically [see Fig. 32.15(a)].

Figure 32.15: (code) (a) Numerical computation of the relative wavefunction for a low energy

collision, E ≳ 0 and ℓ = 0. The blue curve shows the interatomic Li-Rb potential (a)3Σ,

the red curve illustrates the relative Broglie wavefunction of the molecule. The asymptote

of this extrapolated wavefunction (green curve) cuts the abscissa at as = −120aB , which
is just the scattering length for collisions in this channel. (b) Numerical computation of

the wavefunction for a vibrational state. The potential is an interpolation (black) between

a short-range Morse potential (green), and a long range potential (blue). The red curve

illustrates the relative wavefunction for the ninth vibrational state (counting from ground

state).

32.2.5.4 Bound states

For bound states, we must simultaneously satisfy the eigenvalue problem. We can,
for example, guess an eigenvalue E, calculate the associated wavefunction f(R),
check whether it diverges for R → ∞, and vary E until f(R) no longer diverges.
Fig. 32.15(b) shows the wavefunction of a vibrational state obtained by solving the
Schrödinger equation and adjusting the energy until the function stops diverging in
the classically forbidden range.

32.2.5.5 The Fourier grid method

Another, extremely rapid, numerical method for determining the spectrum of vibra-
tional states of a potential, is the Fourier grid method. It is based on the discretization
of the Hamiltonian along the interatomic potential. We write the Hamiltonian as,

Hψ(R) = [T (R) + V (R)]ψ(R) = Eψ(R) , (32.76)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoLiRbLivreLigado.m
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and put it in a matrix form using the set of functions of the basis ϕi(Rj) = δ(Ri−Rj)
with i = 1, .., N , where Ri = R0+i(RN−R0)/N . This problem has N eigenvalues Ei.
The Fourier grid method now evaluates the kinetic energy at each point in the grid.
We insert the local terms Hii = H(Ri) and the non-local terms Hij = H(Ri, Rj) into
the Hamiltonian, as well as the potential energies Vij = V (Ri)δij . The kinetic energy
is the inverse Fourier transform from momentum space of Trs = T (kr)δrs = (k2r/2µ)δrs
and becomes [884, 847, 395],

Hij =
π2

4µ(RN −R1)2
(−1)i−j

(
1

sin2 π(i−j)2N

− 1

sin2 π(i+j)2N

)
for i ̸= j (32.77)

Hij =
π2

4µ(RN −R1)2

(
2N2 + 1

3
− 1

sin2 πi
2N

)
+ V (Ri) for i = j .

To improve the wavefunction, we can interpolate,

ψ(q) =
∑n

j=1
ψ(qj) sinc

π(q − qj)
∆q

. (32.78)

The method can be extended to coupled channels σ = A,B via,

H{iσ}{jτ} = Tijδστ + Vστ (Ri)δij . (32.79)

The Hamiltonian has the general form,

H =

(
T 0

0 T

)
+

(
VA 0

0 VB

)
+

(
WAA WAB

WAB WBB

)
, (32.80)

where all matrices Vk and Wk are diagonal 8.

32.2.6 Exercises

32.2.6.1 Ex: Transitions between vibrational states

Calculate the dipole moment between two arbitrary vibrational states of (a) a har-
monic potential and (b) a Morse potential.

Solution:

32.2.6.2 Ex: Rotational spectrum of diatomic molecules

Calculate the rotational spectrum for a diatomic molecule from the result (32.59).

Solution: We consider a diatomic molecule with R the distance between atoms and
the symmetry axis êz. The moments of inertia are then,

Ixx = Iyy =MrR
2 , Izz = 0 ,

8Note that the Fourier grid method can be improved by using a grid with spacings adjusted to
the potential gradient [739, 1304, 804].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_TransicaoVibracional.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_EspectroRotacional1.pdf
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Figure 32.16: (code) Numerical computation of the wavefunction using the Fourier grid

method at example of the interatomic potential Li-Rb (1)1Π. (a) Short range Morse potential

(green), long range (blue), interpolation (black) and [743]. (b) Vibrational wavefunctions,

(c) external turning point (red) and center of mass (green), (d) rotational progression, and

(e) Franck-Condon overlap with the tenth vibrational state.

where µ−1 ≡ M−11 +M−12 . The moment Izz disappears because the spatial extent of
atoms is negligible. For this case,

A =
ℏ

4πcI∥
=∞ and B =

ℏ
4πcMrR2

.

This means that the excitations of rotations about the symmetry axis are inaccessible
and frozen to the ground state K = 0. Hence,

E(J,MJ) =
ℏ2

2MrR2
J(J + 1) .

32.2.6.3 Ex: Ro-vibrational spectrum

Determine the frequency spectra of ro-vibrational transitions for the branches P , Q,
and R.

Solution:

32.2.6.4 Ex: Rotational spectrum

Determine the rules and the spectrum of rotational transitions for a spherical molecule.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_EstadoFourierGrid.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_EspectroRovibracional.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_EspectroRotacional2.pdf
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Solution:

32.3 Van der Waals forces and spin coupling

The individual atoms have a complex substructure due to the angular momenta of the
electronic motion, its spins and the nuclear spin. All of these angular momenta can
interact, couple and generate new energy terms, which need to be taken into account
when calculating the various potentials of interatomic interaction,

Ĥ =
P2

2Mr
+Vcoulomb(R)+

∑

k=1,2

(
V

(k)
hfs + V (k)

zeeman

)
+Vdipole,spin−spin(R)+Vdipole,spin−orbit(R) .

(32.81)
The Coulomb interaction for interacting alkaline gases can be expressed as:

Vcoulomb(R) = V S=0
coulombPS=0 + V S=1

coulombPS=1 . (32.82)

The projectors PS=0,1 will be required to expand the Hilbert space for the degrees of
freedom of the spins.

The van der Waals forces include all intermolecular forces. These are long-range
forces that occur between permanent and induced atomic dipoles ∼ 1/r6 9

32.3.1 Analytical models for short and long-range potentials

In general, the potentials are estimated by ab initio Hartree-Fock calculations. A
short-range potential, or Morse potential, can be approximated by,

Vmorse = Dm

([
1− e−Bm(R−Rm)

]2
− 1

)
. (32.83)

Here, Bm is the width of the minimum, Rm the position of the minimum, Dm the
length. A long-range potential can be written,

Vvdw(R) = De −
C6

R6
− C8

R8
− C10

R10
. (32.84)

De is the energy of dissociation. The van der Waals coefficients Ck, which determine
the potential shape at large distances, can be calculated using other methods with
higher precision. To obtain a closed formula, the short and long range parts can be
joined by,

V = VmorseF + Vvdw(1− F ) , (32.85)

where F ≡ e−(R/Rt)
10

.

9They also occur, in a pure form, in optical resonators such as in the Casimir effect. Since the
lowest frequency in a cavity is ω =

√
2πc/L, the zero point energies inside and outside the cavity are

different. This causes an attractive force between the cavity mirrors ∼ 1/r3, 1/r4.
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The situation is different for collisions of identical atoms in excited states, which
has a much larger range because of the resonant interaction between dipoles. In this
case, an additional Movre-Pichler potential dominated by a coefficient C3 arises,

V evdw = V emovre + V edispersion . (32.86)

In contrast, excited state collisions of different species are purely short ranged.

32.3.2 Spin coupling in dimers, molecular quantum numbers

We consider two interacting alkaline atoms, each being described by a set of quantum
numbers of internal angular momenta, they couple their spins:

li angular momentum of the individual atom (32.87)

si electronic spin

ii nuclear spin

li + si = ji total electronic angular momentum

ji + ii = fi total angular momentum .

When the atoms approach each other, at intermediate distances, they couple their
spins:

ℓ ⊥ êz molecular rotation (32.88)

Λ ≡ |ML|êz projection of L onto the interatomic êz

Σ ≡MS êz projection of S onto the interatomic êz

Ω ≡ Λ+Σ projection of L+ S onto the interatomic êz .

At short distances, they form a molecular dimer described by the quantum numbers:

L = l1 + l2 total electronic angular momentum (32.89)

S = s1 + s2 electronic spin

I = i1 + i2 nuclear spin

f = f1 + f2 total angular momentum or (L,S)k+ I

J = Ω+ ℓ

F = f + ℓ .

The quantum numbers couple like,

l1 + l2 = L
êz−→ Λ

+ + + +

s1 + s2 = S
êz−→ Σ

= = = =

j1 + j2 = j
êz−→ Ω + ℓ = J

+ + + +

i1 + i2 = I I

= = = =

f1 + f2 = f + ℓ = F

(32.90)
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Obviously, the atomic angular momentum is no longer a conserved quantity, but
its projection onto the interatomic molecular axis is. The various possibilities how L,
S, and j are projected onto the internuclear axis or directly couple to the rotational
angular momentum ℓ are handled by Hund’s cases (a) to (e). The spin coupling is
described by {9j}-symbols, as discussed below.

32.3.3 Hund’s coupling cases

The coupling force between atomic spins depends on the distance between the atoms.
Due to the variety of spins appearing in atoms, there are many possibilities how they
can couple. These were classified by Hund into five cases.

Figure 32.17: Hund’s coupling cases.

32.3.3.1 Hund’s case (a)

The molecular interaction is so strong that L and S couple to the z-axis instead of
coupling to each other. This case is analogous to the Paschen-Back effect,

L→ Λ and S→ Σ (32.91)

((Λ,Σ)Ω, ℓ)J .

A common notation is to label the states Λ = Σ,Π,∆, .... That is, in the symbol
X(2S+1ΛΩ)

±
σ , where σ = g, u is the inversion symmetry, X,A,B, .. and a, b, .. are

the singlet and triplet series starting from the lowest energy levels. An alternative
notation is to assign labels ordered by energy X = (1), (2), ... Finally, ± is the
symmetry upon reflection. For example, X1Σ+

g .
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32.3.3.2 Hund’s case (b)

L is projected onto the z-axis before coupling to ℓ. The resulting angular momentum
afterward directly couples to S.

L→ Λ (32.92)

((L, ℓ)k,S)J .

32.3.3.3 Hund’s case (c)

L and S couple together instead of projecting themselves onto the z-axis. This case
is analogous to the Zeeman effect,

(L,S)j→ Ω (32.93)

(Ω, ℓ)J .

A common notation is to label the states by Ω = 0, 1, 2, .... That is, in the symbol
X(Ω)±s , the letter X = 1, 2, .. is a label ordered by energy. For example 2(0−g ).

32.3.3.4 Hund’s case (d)

L is not projected on the z- axis, but directly couples to the rotational angular
momentum. The resulting angular momentum afterward only couples to the S

((L, ℓ)k, )J . (32.94)

32.3.3.5 Hund’s case (e)

L and S mutually couple as in the case (c), but are not projected on the z-axis, but
couple directly with ℓ, which is quantized,

((L,S)j, ℓ)J . (32.95)

32.3.4 Molecular hyperfine struture

The scattering length in specific channels can be expressed via singlet and triplet
scattering lengths,

a|f1,mf1⟩+|f2,mf2⟩ = PS=0as + PS=1at . (32.96)

The projectors are PS = |⟨S|(f1f2)f⟩|. According to [213, 889] the recoupling from
the uncoupled hyperfine representation into the short range representation is given
by,

⟨SmS ImI ℓ
′mℓ′ |f1mf1 f2mf2 ℓmℓ⟩ = δℓℓ′δmℓm′

ℓ

∑

f,mf

⟨SmS ImI |fmf ⟩⟨f1mf1 f2mf2|fmf ⟩×

×





s1 s2 S

i1 i2 I

f1 f2 f





√
ŜÎ f̂1f̂2

(
1− (1− δf1f2)(−1)S+I+ℓ√

2− δf1f2

)
. (32.97)

The last bracket is dropped for unsymmetrized recoupling. We will study examples of
spin recoupling in the ground state channels in Exc. 32.3.5.1, 32.3.5.2, and 32.3.5.3.
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32.3.5 Exercises

32.3.5.1 Ex: Spin recoupling of identical 87Rb ground state channels

a. Unravel the molecular hyperfine structure of identical 87Rb ground state channels.
b. Project the collisional channels |f1mf1 f2mf2⟩ = |1− 1 1− 1⟩ and |22 22⟩ on the
singlet and triplet potentials, S = 0, 1.

Solution: a. With hyperfine structure we get for 87Rb: According to Fig. 32.18 the
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Figure 32.18: Hyperfine recoupling scheme.

levels f = 1, 3, 4 have pure triplet character, while f = 0, 2 have singlet admixtures.
In the presence of hyperfine structure the potential curves split further. Collisions
may occur on several levels simultaneously.
We test the recoupling procedure on 87Rb, for which the following projectors are known
[296]: a|2,2⟩+|2,2⟩ = 0as+1at and a|1,−1⟩+|1,−1⟩ =

3
16aS+

13
16at. Now considering atoms

with nuclear spin i1 = i2 = 3/2 in their electronic ground states, s1 = s2 = 1/2, col-
liding in identical channels, f1 = f2 and mf1 = mf2,

⟨SmS ImI |f1mf1 f1mf1⟩ =
∑

f

(
S I f

mS 2mf1 −mS −2mf1

)
×

×
(
f1 f1 f

mf1 mf1 −2mf1

)


1
2

1
2 S

3
2

3
2 I

f1 f1 f




f̂1

√
ŜÎ ,

where we used mf = mf1 +mf2 = mS +mI and the fact that the sum of the lower
row of a Clebsch-Gordan must be zero.
b. In the following, we calculate projections of the collisional channels |f1mf1 f2mf2⟩ =
|1−1 1−1⟩ and |22 22⟩ on the singlet and triplet potentials, S = 0, 1, separately. For
this it suffices to calculate the above projections for various sets of I = |i1− i2|..i1+ i2
and mI = −I..I. The number mS = min(max(mf −mI ,−S), S) is fixed by the pre-
vious ones. And the sum runs over f = max(|f1 − f2|, |I − S|)..min(f1 + f2, I + S).
Doing so, we obtain in the singlet channel (here f = I),

⟨0mS ImI |22 22⟩ = 0 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_HyperRecoupling01.pdf
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which gives PS=0 = 0, and

⟨0mS ImI |1− 1 1− 1⟩ = ⟨00 2− 21− 1 1− 1⟩ = 1
4

√
3 ,

which gives PS=0 = 3/16. Similarly, for the triplet states, S = 1,

⟨1mS ImI |22 22⟩ = ⟨11 33|22 22⟩ = 1 ,

which gives P1=0 = 1, and

⟨1mS ImI |1− 1 1− 1⟩ =





⟨1 + 1 3− 3|1− 1 1− 1⟩ = 0.75

⟨1 + 0 3− 2|1− 1 1− 1⟩ = −0.4330
⟨1− 1 1− 1|1− 1 1− 1⟩ = −0.1581
⟨1− 1 3− 1|1− 1 1− 1⟩ = 0.1936

,

which gives PS=1 =
∑
I,mI
|⟨1mS ImI |1− 1 1− 1⟩|2 = 13/16.

32.3.5.2 Ex: Spin recoupling of 6Li87Rb ground state channels

a. Unravel the molecular hyperfine structure of 6Li87Rb ground state channels.
b. Project the collisional channels on short range potentials.

Solution: As a second example consider 6Li 87Rb collisions. Apparently the cou-
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Figure 32.19: Hyperfine recoupling for heteronuclear collisions.

pling is diagonal in f , neglecting spin-spin interactions,

(f6f87)f −→
(SI)f ↓
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We start again from the general expression, but now insert the Li (label 1) and Rb
(label 2) data,

⟨SmS ImI |f1mf1 f2mf2⟩ =
∑

f

(
S I f

mS mI −mf1 −mf2

)
×

×
(
f1 f2 f

mf1 mf2 −mf1 −mf2

)


1
2

1
2 S

1 3
2 I

f1 f2 f





√
ŜÎ f̂1f̂2 .

b. Setting S = 0 = mS, we get for the various channels,

⟨00 ImI | 32 3
2 22⟩ = 0

which gives PS=0 = 0, and

⟨00 ImI | 12 − 1
2 1− 1⟩ = ⟨00 3

2 − 3
2 | 12 − 1

2 1− 1⟩ = 0.4564

which gives PS=0 = 0.2083. Setting S = 1, we get,

⟨1mS ImI | 32 3
2 22⟩ = ⟨11 5

2
5
2 | 32 3

2 22⟩ = 1 ,

and

⟨1mS ImI | 12 − 1
2 1− 1⟩ =





⟨1 + 1 5
2 − 5

2 | 12 − 1
2 1− 1⟩ =

√
1
2

⟨1 + 0 5
2 − 3

2 | 12 − 1
2 1− 1⟩ = −

√
1
5

⟨1 + 0 3
2 − 3

2 | 12 − 1
2 1− 1⟩ = −0.0913

⟨1− 1 5
2 − 1

2 | 12 − 1
2 1− 1⟩ =

√
1
20

⟨1− 1 3
2 − 1

2 | 12 − 1
2 1− 1⟩ = 0.0745

⟨1− 1 1
2 − 1

2 | 12 − 1
2 1− 1⟩ = − 1

6

,

which gives PS=1 =
∑
I,mI
|⟨1mS ImI | 12 − 1

2 1− 1⟩|2 = 0.7917.

32.3.5.3 Ex: Hyperfine structure of 6Li23Na and 6Li87Rb

a. Unravel the molecular hyperfine structure of 6Li23Na and 6Li87Rb bound state.
b. How about the open channels?

Solution: a. The rank of the whole matrix follows from the following table:

⟨|V |S,mS , i6,m6, i87,m87⟩ (0, 0)(1,−1..1)( 32 ,− 3
2 ..

3
2 ) (1,−1..1)(1,−1..1)( 32 ,− 3

2 ..
3
2 )

(0, 0)(1,−1..1)( 32 ,− 3
2 ..

3
2 ) 12× 12

(1,−1..1)(1,−1..1)( 32 ,− 3
2 ..

3
2 ) 36× 36

For example, 6Li87Rb collisions in S = 1 produce the curves in Fig. 32.20 [1242] using
the tabulated values for ik, ahf,k and gk [43].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Molecule_HyperRecoupling03.pdf
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We consider 6Li and the ground state |1/2,∓1/2⟩ and 23Na in |1,∓1⟩. For the com-
bined open channel we simply use the Breit-Rabi formula. According to [1242] using
S = 1, i6 = 1 and i23 = 3/2, ahf,6 = 152.1368 MHz and ahf,23 = 885.8131 MHz,
and furthermore EB = −5550 MHz. With gS = 2.000..., g6 = −0.000447 and
g23 = −0.000804. The results can simply transferred to 87Rb, in the same set of

-2000 -1000 0 1000 2000
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ν
z
ee
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H
z)

Figure 32.20: (code) Ground state level shift in a magnetic field for LiRb collisions. The

binding energy is fitted to EB = −5550 MHz. The dotted line denotes the open channel.

Only those states with mf = mf1 +mf2 = −3/2 are shown for B < 0 and mf = 3/2 for

B > 0.

quantum numbers, but with a different hf splitting, ahf,87 = 3417.3413 MHz, a differ-
ent nuclear g-factor, g87 = −0.000995, and obviously a different orbital energy EB.
Note that the (i1, i2)I coupling easily breaks up in a magnetic field. The magnetic field
dependence of bound states is thus primarily determined by the total electronic spin.
Singlet states S = 0 do not shift, triplet states S = 1 split up into three hyperfine
multiplets [1242].
b. The total energy of a Zeeman-shifted open channel is just the sum of the Zeeman-
shifted energy of the individual colliding atoms.

32.4 Further reading

et al., [?]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_HfsBreitLiRb.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_HfsBreitLiRb.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_HfsBreitLiRb.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Molecule_HfsBreitLiRb.m
http://doi.org/
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Chapter 33

Collisions

Until now, we mostly restricted our studies to individual atoms or molecules. In
practice, however, we investigate atomic or molecular gases by spectroscopic methods.
The constituents of thermal gases are constantly in motion. They are subject to
Doppler-shifts of their spectral lines and they collide with each other. Colliding
atoms often get so close, that the electronic orbitals affect each other, which leads to
distortions of the interaction potentials, spectral lineshifts and modifications of the
interatomic forces. These are the topics to be addressed in the present chapter.

Figure 33.1: Atoms may interact via exchange of (a) virtual photons or (b) real photons.

33.1 Motion of interacting neutral atoms

The following sections, devoted to the relative motion of two neutral atoms, are
adapted from J. Walraven’s excellent lectures on Quantum Gases available at [1355].
The atoms are presumed to move slowly, typically at large separation, and to interact
pair wise through a potential of the Van der Waals type. The term slowly refers to,

kthermr0 ≪ 1 where λtherm =
2π

ktherm
=

√
2πℏ2
mkBT

(33.1)

is the thermal de Broglie wavelength and r0 the range of the interaction potential.
As the Van der Waals interaction gives rise to elastic collisions, the total energy
of the relative motion is conserved in time. As the potential energy vanishes at
large interatomic separation the total energy is usually expressed in the form E =
ℏ2k2/2mr. This implies that also the wavenumbers for the relative motion before
and after the collision must be the same and shows that, far from the potential
center, the collision can only affect the phase of the wavefunction - not its wavelength.
Apparently, the appearance of a shift in phase relative to the free atomic motion

1649
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provides the key to the quantum mechanical description of elastic collisions. This
being said, we postpone the discussion of the actual collisional behavior to Sec. 33.2.
First we prepare ourselves for this discussion by analyzing the stationary states for
the motion in the presence of an interaction potential.

An important simplifying factor in the description of ultracold collisions is the
emergence of universal behavior in the relative motion of the atoms. The latter
applies to low-energy collisional states as well as to weakly bound states. Universal
means in this context that, asymptotically (for r ≫ r0), the wavefunctions become
independent of the details of the interaction potential but can be characterized in
terms of a few parameters, each representing some characteristic length scale of the
collisional system. In other words, very different short-range physics can give rise to
the same scattering behavior. From a theory point of view this universality has the
enormous advantage that the essential features of ultracold collisions can be described
with the aid of simple model potentials for which analytical solutions can be obtained.

In our analysis of the collisional motion three characteristic length scales will
appear, the interaction range r0 the scattering length a and the effective range re, each
expressing a different aspect of the interaction. The range r0 is the distance beyond
which the interaction may be neglected even for k → 0. The second characteristic
length, the s-wave scattering length a, acts as an effective hard-sphere diameter. It
is a measure for the interaction strength and determines the collision cross section in
the limit k → 0 as will be elaborated on in Sec. 33.2. The third characteristic length,
the effective range re expresses how the potential affects the energy dependence of
the cross section and determines when the k → 0 limit is reached.

The s-wave scattering length is the central parameter for the theoretical description
of bosonic quantum gases. It determines both the thermodynamic and the collisional
properties of these gases. In single-component fermionic gases the s-wave scattering
length plays no role because the wavefunction for the relative motion of the atoms
has to be antisymmetric. In two-component fermionic gases this restriction is absent
for collisions between atoms of different components. As a consequence, in these
systems the inter-component s-wave scattering length determines the collision related
properties - for instance the thermalization rate.

In Sec. 33.1.1 we show how the phase shift appears as a result of interatomic
interaction in the wavefunction for the relative motion of two atoms. For free particles
the phase shift is zero. An integral expression for the phase shift is derived. In
Sec. 33.1.2 and beyond we specialize to the case of low-energy collisions (kr0 ≪ 1).
The basic phenomenology is introduced and analyzed for simple model potentials like
the hard-sphere (Sec. 33.1.2) and the spherical well (Sec. 33.1.3), where the existence
of a short range is manifest. For the discussion of arbitrarily shaped potentials, we
refer to the script [1355].
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33.1.1 The collisional phase shift

33.1.1.1 Schrödinger equation

The starting point for the description of the relative motion of two atoms at energy
E is the Schrödinger equation (25.33),

[
1

2mr

(
p2r +

L2

r2

)
+ V (r)

]
ψ(r, ϑ, φ) = Eψ(r, ϑ, φ) . (33.2)

Here mr is the reduced mass of the atom pair and V (r) the interaction potential. As
discussed in Sec. 25.1.3 the eigenfunctions ψ(r, ϑ, φ) can be separated in a radial and
a angular part, ψ = Rℓ(r)Yℓm(ϑ, φ), where the functions Yℓm are spherical harmonics
and the functions Rℓ(r) satisfy the radial wave equation,

[
ℏ2

2mr

(
− d2

dr2
− 2

r

d

dr
+
ℓ(ℓ+ 1)

r2

)
+ V (r)

]
Rℓ(r) = ERℓ(r) . (33.3)

By the separation procedure the angular momentum term is replaced by a repulsive
effective potential,

Vrot(r) =
ℏ2ℓ(ℓ+ 1)

2mrr2
, (33.4)

representing the rotational energy of the atom pair at a given distance and for a given
rotational quantum number ℓ. In combination with an attractive interaction it gives
rise to a centrifugal barrier for the radial motion of the atoms. This is illustrated in
Fig. 33.2 for the example of hydrogen.

Figure 33.2: Example showing the high-lying bound states near the continuum of the singlet
potential 1Σ+

g (the bonding potential) of the hydrogen molecule; v and J are the vibrational
and rotational quantum numbers, respectively. The dashed line shows the effect of the
J = 3 centrifugal barrier. The presence of a rotational barrier gives rise to an exponential
suppression of the radial wavefunction for r < rtp and is negligible at distances where the
interaction becomes noticeable r ≪ r0.
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To analyze the radial wave equation we introduce reduced energies,

ε =
2mrE

ℏ2
=

{
k2 for k > 0

−κ2 for k < 0
and Ṽ (r) =

2mrV (r)

ℏ2
, (33.5)

choosing k and κ as real positive number. This puts Eq. (33.3) in the form,

R′′ℓ +
2

r
R′ℓ +

[
ε− Ṽ (r)− ℓ(ℓ+ 1)

r2

]
Rℓ = 0 . (33.6)

With the substitution uℓ(r) = rRℓ(r) it reduces to a 1D Schrödinger equation,

u′′ℓ +

[
ε− Ṽ (r)− ℓ(ℓ+ 1)

r2

]
uℓ = 0 . (33.7)

33.1.1.2 Low-energy limit: the s-wave regime

For two atoms with relative angular momentum ℓ > 0 there exists a distance rtp,
called the classical turning point, below which the rotational energy exceeds the total
energy E,

k2 =
ℓ(ℓ+ 1)

r2tp
. (33.8)

This is illustrated in Fig. 33.2. In the classically inaccessible region of space (r < rtp)
the radial wavefunction is exponentially suppressed 1. Combining Eq. (33.8) with the
condition (33.1) we obtain the inequality,

kr0 =
√
ℓ(ℓ+ 1)

r0
rtp
≪ 1 , (33.9)

which implies that, for ℓ ̸= 0, the classical turning point is found at a distance much
larger than the range r0 of the interaction. As the range r0 defines the distance beyond
which the potential can be neglected, this inequality shows that the radial motion is
not affected by the presence of the potential V (r) in the radial wave equation. The
notable exception is the case ℓ = 0, where the barrier is absent and the potential gives
rise to a substantial distortion of the radial waves. In other words, for kr0 ≪ 1 phase
shifts (i.e. scattering) can only arise from collisions with zero angular momentum.
The range of collision energies where the inequalities (33.9) are valid is called the
s-wave regime.

33.1.1.3 Free particle motion

We first have a look at the case of free particles or particles in a homogeneous
potential, V (r) = V0. By introducing the dimensionless variable ϱ = kr, where
k ≡

√
2m(E − V0)/ℏ2, the radial wave equation (33.6) can be rewritten in the form

of the spherical Bessel differential equation,

R′′ℓ +
2

ϱ
R′ℓ +

[
1− ℓ(ℓ+ 1)

ϱ2

]
Rℓ = 0 . (33.10)

1At this point we exclude tunneling through the barrier and the occurrence of shape resonances.
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Here, the derivatives are with respect to the new variable.
The general solution of Eq. (33.10) for angular momentum ℓ is a linear combina-

tion of two particular solutions, one regular with amplitude Aℓ, the spherical Bessel
function jℓ(ϱ), and one irregular with amplitude Bℓ, the spherical Neumann function
nℓ(ϱ):

Rℓ(ϱ) = Aℓjℓ(ϱ) +Bℓnℓ(ϱ) = cℓ[cos ηℓ jℓ(ϱ) + sin ηℓ nℓ(ϱ)] , (33.11)

where the new parameters cℓ and ηℓ, defined by

Aℓ ≡ cℓ cos ηℓ and Bℓ ≡ cℓ sin ηℓ , (33.12)

represent the amplitude cℓ and the asymptotic phase ηℓ of the wavefunction. Note
that this equation is singular in the origin except for the case of vanishing phase shifts.
Therefore, in the case of free particles we require ηℓ = 0 for all angular momentum
values ℓ. This implies that the general solution reduces to the regular one,

Rℓ(ϱ) = cℓ cos ηℓ jℓ(ϱ) . (33.13)

33.1.1.4 Significance of the phase shifts

To investigate the effect of a short-range interaction potential V (r) we return to the
radial wave equation (33.6). As the potential is of short range it may be neglected for
r ≫ r0 and the general solutions coincide with those of the spherical Bessel equation,

Rℓ(k, r) −→
r≫r0

cℓ[cos ηℓ jℓ(kr) + sin ηℓ nℓ(kr)] . (33.14)

For r ≫ 1/k the spherical Bessel and Neumann functions assume their asymptotic
form and we find,

Rℓ(k, r) −→
kr→∞

cℓ
kr

[cos ηℓ sin(kr − 1
2ℓπ) + sin ηℓ cos(kr − 1

2ℓπ)] (33.15)

=
cℓ
kr

sin(kr + ηℓ − 1
2ℓπ) .

where we introduced a the constant ηℓ representing the asymptotic phase shift. For a
given value of k this phase shift fixes the general solution of the radial wavefunction
Rℓ(k, r) up to an ℓ dependent normalization constant cℓ. Note that in view of the
k dependence of the phase shift, Rℓ is a function of k and r rather than a function
of the product kr. Whereas in the case of free particles the phase shifts must all
vanish, in the presence of the interaction they provide the proper asymptotic form
of the distorted waves. The non-zero asymptotic phase shift is the signature of the
interaction at short distance; the motion becomes free-particle like (undistorted) only
at large distance from the scattering center. In elastic scattering the relative energy
ℏ2k2/2m is conserved; hence, asymptotically also k and the de Broglie wavelength.
This leaves only the asymptotic phase of the wave to be affected.

Example 190 (Scattering matrix): Rewriting Eq. (33.15) in complex nota-
tion,

Rℓ(k, r) ≃
r→∞

cℓ
2k
i

e−iηℓ e−i(kr− 1
2
ℓπ)

r
− eiηℓ e

i(kr− 1
2
ℓπ)

r

 , (33.16)
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we see that for r → ∞ the stationary solution Rℓ(k, r) can be regarded as
an ’incoming’ spherical wave interfering with an ’outgoing’ spherical wave. It
is convention to choose the phase of the normalization constant such that the
phase of the incoming wave is zero,

Rℓ(k, r) ≃
r→∞

c′ℓ
2k
i

[
e−ikr

r
− e−iℓπe2iηℓ e

ikr

r

]
, (33.17)

Apart from the sign, the ratio of the phase factors of the outgoing over the
incoming wave is,

Sℓ = e2iηℓ . (33.18)

This quantity is called the scattering matrix (S matrix) or, better, the l-wave

contribution to the S matrix. Being unitary it does not suffer from the diver-

gences of the ratio Bℓ/Aℓ = tan ηℓ. In the present context the name scattering

matrix is a bit heavy because we only have a single matrix element (1×1 matrix).

The term matrix finds its origin in the description of scattering of particles with

an internal degree of freedom (like spin), for which the phase factor is replaced

by a unitary matrix.

33.1.2 Hard-sphere potentials

We now turn to analytical solutions for model potentials in the limit of low energy.
We first consider the case of two hard spheres of equal size. These can approach each
other to a minimum distance equal to their diameter a. For r ≤ a the radial wave
function vanishes, Rℓ(r) = 0: Outside the hard sphere we have free atoms, V (r) = 0,
with relative wave number k = [2mrE/ℏ2]1/2. Thus, for r ≤ a the general solution for
the radial wave functions of angular momentum ℓ is given by the free atom expression
(33.11), which asymptotically this takes the form (33.15) of a phase-shifted spherical
Bessel function,

Rℓ(k, r) = cℓ[cos ηℓ jℓ(kr) + sin ηℓ nℓ(kr)] ≃
r→0

cℓ
kr

sin(kr + ηℓ − 1
2ℓπ) . (33.19)

To determine the phase shift we require as a boundary condition that Rℓ(k, r) vanishes
at the surface of the hard sphere (see Fig. 33.3),

cos ηℓ jℓ(ka) + sin ηℓ nℓ(ka) = 0 . (33.20)

Hence, the phase shift follows from the expression,

tan ηℓ =
jℓ(ka)

nℓ(ka)
. (33.21)

This expression allows to derive asymptotic expressions (for ka≪ 1 and for ka≫ 1)
for the radial wave function (33.19), as will be shown in Exc. 33.1.5.1.

33.1.2.1 s-wave phase shifts for hard spheres

For the case ℓ = 0, inserting the analytical expressions for the Bessel and von Neu-
mann function, (33.19) becomes without approximation,

R0(k, r) =
c0
kr

(cos η0 sin kr + sin η0 cos kr) =
c0
kr

sin(kr + η0) . (33.22)
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Figure 33.3: (code) Radial wavefunctions (ℓ = 0) for various values of k (down to the

k → 0 limit) in the case of a hard sphere potential. The boundary condition is fixed by the

requirement that the wavefunction vanishes at the edge of the hard sphere, R0(ka) = 0.

The phase shift follows from the boundary condition R0(k, a) = 0, which can be
written in the form,

cos η0 sin ka+ sin η0 cos ka = 0 . (33.23)

Hence, the phase shift is

η0 = −ka . (33.24)

With this expression Eq. (33.22) reduces to

R0(k, r) =
c0
kr

sin[k(r − a)] . (33.25)

This expression is exact for any value of k, as announced above. The linear k de-
pendence of η0 simply expresses its definition in which the shift of the wave (by a) is
compared to the de Broglie wavelength λdB , η0 = −2πa/λdB . As a consequence the
phase shift vanishes for k → 0,

lim
k→0

η0(k) = 0 . (33.26)

This result is obvious when comparing the finite shift a to the diverging wavelength
λtherm. Interestingly, in the limit k → 0 the expression (33.25) becomes k indepen-
dent,

R0(r) ∼
k→0

1− a

r
for a ≤ r ≪ 1/k . (33.27)

This important result is illustrated in Fig. 33.3. In the limit k → 0 the wavefunction
is essentially constant throughout space (up to a distance 1/k →∞ at which it starts
to oscillate), except for a small region of radius a around the potential center.

33.1.3 Spherical wells with a flat bottom

The second model potential to consider is the spherical well of range r0 sketched in
Fig. 33.4,

Ṽ (r) =

{
2mrV0/ℏ2 = Ṽ0 = −κ20 for r ≤ r0
0 for r > r0

. (33.28)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_HardcorePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_HardcorePotential.m
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Here |U0| = κ20 is called the well depth (κ0 is chosen to be real and positive, κ0 > 0).
The energy of the continuum states is given by ε = k2. In analogy, the energy of the
bound states is written as,

εb = −κ2 . (33.29)

We now have to solve the radial wave equation (33.6) with the spherical well potential
(33.28). Since the potential is constant inside the well (r ≤ r0) the wavefunction has
to be free-particle like with the wave number given by,

K+ =
√

2mr(E − V0)/ℏ2 =
√
κ20 + k2 . (33.30)

As the wavefunction has to be regular in the origin, inside the well it is given by,

Rℓ(r) = Cℓjℓ(K+r) for r ≤ r0 , (33.31)

where Cℓ is a normalization constant. This expression holds for E > V0 (both E > 0
and E ≤ 0).

Outside the well (r > r0) we have for E > 0 free atoms, Ṽ (r) = 0, with relative
wavevector k = [2mrE/ℏ2]1/2. Thus, for r > r0 the general solution for the radial
wave functions of angular momentum ℓ is given by the free atom expression (33.11),

Rℓ(k, r) = cℓ[cos ηℓ jℓ(kr) + sin ηℓ nℓ(kr)] for r > r0 . (33.32)

0 1 2 3 4 5

r/r0

0

0.5

1

1.5

2

R
�(
r)

Figure 33.4: (code) (Left) Scheme of the flat bottom potential. (Right) (a) Radial
wavefunctions for square wells: (a) continuum state (ε = k2 > 0); (b) Zero energy
state (ε = k2 = 0) in the presence of an asymptotically bound level (ε = −κ2 = 0);
(c) bound state (ε = −κ2 < 0). Note the continuity of R0(r) and R′0(r) at r = r0.
The wavefunctions are not normalized and are shifted relative to each other only for
reasons of visibility.

The full solution [see Fig. 33.4(a)] is obtained by the continuity conditions for
Rℓ(r) and R

′
ℓ(r) at the boundary r = r0. These imply continuity of the logarithmic

derivative with respect to r,

K+
j′ℓ(ϱi)
jℓ(ϱi)

=
R′ℓ(r)
Rℓ(r)

∣∣∣∣
r=r0

= k
cos ηℓ j

′
ℓ(ϱe) + sin ηℓ n

′
ℓ(ϱe)

cos ηℓ jℓ(ϱe) + sin ηℓ nℓ(ϱe)
, (33.33)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomPotential.m
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where we defined the abbreviations ϱi ≡ K+r0 and ϱe ≡ kr0. This ratio suffices to
determine ηℓ independently of the normalization constants Cℓ and cℓ. Once the phase
shift is known, the relation between Cℓ and cℓ follows from the continuity condition
for Rℓ(r). Furthermore, it shows that the asymptotic phase shift ηℓ can take any
(real) value depending on the depth of the well. In view of the importance of the S
matrix in scattering theory Sec. 33.2, it is advantageous to determine e2iηℓ rather than
ηℓ itself. Expressing sin ηℓ and cos ηℓ in terms of eiηℓ and e−iηℓ Eq. (33.33) becomes,

K+∂ϱ ln jℓ(ϱi) = k
e2iηℓh

(2)′
ℓ (ϱe) + h

(1)′
ℓ (ϱe)

e2iηℓh
(2)
ℓ (ϱe) + h

(1)
ℓ (ϱe)

, (33.34)

with the definition of the Hankel functions of the first and second kind: h
(1,2)
ℓ ≡ jℓ ±

inℓ. Solving for e2iηℓ this leads to the following expression for the ℓ-wave contribution
to the S matrix,

e2iηℓ = −h
(1)
ℓ (ϱe)

h
(2)
ℓ (ϱe)

K+∂ϱ ln jℓ(ϱi)− k∂ϱ lnh(1)ℓ (ϱe)

K+∂ϱ ln jℓ(ϱi)− k∂ϱ lnh(2)ℓ (ϱe)
, (33.35)

where the expression ∂ϱ ln stands for the logarithmic derivative. This expression may
look a bit heavy, but is valuable as it represents the exact result for arbitrary ℓ.
In Exc. 33.1.5.2 we simplify this formula for ℓ = 0. As the formula (33.35) lacks
transparency from the physical point of view, we analyze in the coming sections the
case ℓ = 0 directly discussing the radial wavefunctions uℓ.
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Figure 33.5: (code) The s-wave scattering length a normalized on r0 as a function of the

depth of a spherical square potential well (blue curve). Note that, typically, a ≃ r0 (green

line), except near the resonances at κ0r0 = (n+ 1
2
)π being an integer.

33.1.3.1 s-wave scattering (E > 0)

The analysis of spherical well potentials becomes particularly simple for the case
ℓ = 0. Let us first consider the case E > 0, for which the radial wave equation can
be written as a 1D-Schrödinger equation (33.7) of the form,

u′′0 + [k2 − Ṽ (r)]u0 = 0 . (33.36)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomScattLength.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomScattLength.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_FlatBottomScattLength.m
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The solution is,

u0(kr) =

{
C0 sin(K+r) for r ≤ r0
c0 sin(kr + η0) for r > r0

. (33.37)

To determine η0(k) it is sufficient to apply the boundary condition for continuity of
the logarithmic derivative at the edge of the well,

u′0
u0

∣∣∣∣
r=r0

= K+ cotK+r0 = k cot(kr0 + η0) . (33.38)

Note that this expression coincides with the general result given by Eq. (33.33) for
the case ℓ = 0; i.e. the boundary condition of continuity for u′0/u0 coincides with that
for R′0/R0, as we know from a calculation left to Exc. 33.1.5.3. Furthermore, for a
vanishing potential (κ0 → 0) we have K+ → k and the boundary condition properly
yields a zero phase shift (η0 = 0).

At this point we introduce the effective hard-sphere diameter a(k) to describe, in
analogy with Eq. (33.24), the behavior of the phase shift,

η0(k) ≡ −ka(k) . (33.39)

By this procedure we extract the linear k dependence as well as the negative sign from
the phase shift. This is a good idea because the linear k-dependence does not arise
from the potential but simply from the definition of the phase in which, as discussed
earlier, the shift of the wave is compared to the de Broglie wavelength. In the limit
k → 0, we have K+r0 → κ0r0 and with the definition,

a ≡ lim
k→0

a(k) = − lim
k→0

η(k)/k (33.40)

the boundary condition (33.38) becomes,

u′0
u0

∣∣∣∣
r=r0

= κ0 cotκr0 =
1

r0 − a
. (33.41)

Solving for a we find,

a = r0

(
1− tan γ

γ

)
, (33.42)

where the dimensionless positive quantity,

γ ≡ κ0r0 (33.43)

is called the well parameter. As shown in Fig. 33.5, the value of a can be positive,
negative or zero depending on the value of γ. Therefore, rather than using the pictorial
term effective hard-sphere diameter the name scattering length is used for a. Next to
the range, the scattering length represents the second characteristic length that can be
associated with the interaction potential. As the name suggest, it is a measure for the
scattering behavior of atoms, and we elaborate on this in Sec. 33.2. Also, in Sec. ??
we will show that a is also a measure for the effective strength of the interaction.

Fig. 33.5 and Eq. (33.42) show that a is typically a quantity of the size of r0,
although for γ = tan γ it is zero and for γ = (ν + 1

2 )π, with ν being an integer,
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it diverges. The latter condition points to a resonance phenomenon occurring when
(with increasing γ) a new bound level enters the potential well. For the square
well potential the scattering length is mostly positive; it is negative in the regions
with γ < tan γ, which become narrower for increasing γ. This unlikely occurrence
of negative a is atypical for the general case; e.g. for Van der Waals potentials the
probability to find a negative scattering length is 25% .

For r ≥ r0 the radial wavefunction corresponding to Eq. (33.37) is of the form,

R0(k, r) =
c0
kr

sin[kr − ka(k)] . (33.44)

Recalling the definitions (33.39) and (33.40) we find that for k → 0 this radial wave-
function becomes k-independent,

R0(r) ∼
k→0

1− a

r
for r0 < r ≪ 1

k
. (33.45)

The latter two expressions for the radial wavefunction have the same formal appear-
ance as the hard sphere results (33.25) and (33.27). However, whereas the diameter
of the hard-sphere has a fixed value, the scattering length for the well depends on γ.
As shown in Fig. 33.6, for positive scattering length the s-wave has a characteristic
node at r = a; for negative scattering length this becomes a virtual node.

Importantly, because Eq. (33.45) reaches the asymptotic value 1 only for distances
r ≫ a, the use of this equation in the modeling of dilute gases is only justified if a is
much smaller than the interparticle spacing,

na3 ≪ 1 . (33.46)

Otherwise, the interaction with neighboring atoms will distort the relative motion
of the colliding pair. This violates the binary scattering approximation on which
Eq. (33.45) is based. The dimensionless quantity na3 is called the gas parameter.
When its value is small, the gas is called nearly ideal or weakly interacting 2.

33.1.3.2 Bound s-levels (E ≤ 0)

Let us turn to the case E ≤ 0. We shall show that the divergences of the scattering
length obtained by analyzing the continuum states (E > 0) result from the appearance
of the next bound s-level when increasing the well parameter. The 1D Schrödinger
equation takes the form,

u′′0 + [−κ2 − Ṽ (r)]u0(r) = 0 . (33.47)

where ε = −κ2 is the discrete energy eigenvalue of a bound state with ℓ = 0. The
solutions are of the type (see Fig. 33.30),

u0(k, r) =

{
C0 sinK−r for r ≤ r0
c0e
−κr for r ≤ r0

(33.48)

2Note that weakly interacting does not mean that that the potential is ’shallow’. Any gas can be
made weakly interacting by making the density sufficiently small.
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Figure 33.6: Reduced radial wavefunctions u0(r) for continuum states (ε > 0) in the k → 0
limit for increasing well depth near the threshold value κ0r0 = (n + 1

2
)π: (a) presence of

an almost bound state (a < 0); (b) presence of zero-energy resonance (κvb = 0, a → ±∞);
(c) presence of a weakly bound state (a > 0); (d) deeper binding of the least bound state.
For r > r0 the wavefunction is given by u0(r) = c0(r − a); hence, the value of a is given
by the intercept with the horizontal axis. This gives rise to a characteristic node at r = a,
which is real for a > 0 (just as for hard spheres of diameter a), but virtual for a < 0. The
wavefunctions are not normalized.

where κ > 0 because the bound state wavefunction has to be normalized. The bound
state energy is obtained by requiring the continuity of the logarithmic derivative when
connecting the inner part of the wavefunction to the outer part,

u′0(r)
u0(r)

∣∣∣∣
r=r0

= K− cotK−r0 = −κ , (33.49)

where κ > 0 and

K− = [2mr(E − V0)/ℏ2]1/2 = (κ20 − κ2)1/2 . (33.50)

With decreasing γ, the least bound level disappears in the limit κ→ 0, K− → κ0. In
this limit Eq. (33.49) reduces to,

u′0(r)
u0(r)

∣∣∣∣
r=r0

= κ0 cotκ0r0 =
κ→0

0 , (33.51)

Increasing from zero the vibrational levels appear sequentially for

γ = (v + 1
2 )π , (33.52)

where v = 0, 1, .., rmax is the vibrational quantum number. This shows that a mini-
mum well parameter (γ = π/2) is required to bind the first state 3. For the least-bound
level, vmax, we have,

(vmax +
1
2 )π = Int ( γπ − 1

2 ) (33.53)

and the total number of bound s levels follows with,

Nb = vmax + 1 = Int ( γπ + 1
2 ) . (33.54)

3This conclusion cannot be extended to lower dimensions; in two dimensions bound states appear
for arbitrarily shallow potentials.
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The relation between κ and v for a given vibrational level depends on the ratio κ/K−
and is given by

cotK−r0 = − κ

K−
. (33.55)

Note that this relation corresponds to K−r0 ≃ (vmax+
1
2 )π for the least-bound state
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Figure 33.7: (code) Appearance and increase of binding of the first three bound levels for

increasing well depth. The quadratic dependence near threshold is universal (i.e. independent

of the well shape). The full crossover curve is obtained by numerical solution of Eq. (33.49)

and corresponds to a π/2 phase shift of K+r0 near threshold. The dashed line shows the

increase in well depth.

(κ/K− ≪ 1) and to K−r0 ≃ (vmax + 1)π for deeply bound levels (K−/κ≪ 1), as is
illustrated in Fig. 33.8(a).

33.1.3.3 Weakly bound s-level: halo states

For weakly bound s levels (0 < κr0 ≪ 1) we have K− → κ0 and Eq. (33.49) may be
approximated by

u′0(r)
u0(r)

∣∣∣∣
r=r0

= κ0 cotκ0r0 = −κ , (33.56)

Furthermore, we recall that in the presence of a weakly bound s-level the scattering
length is large and positive, a ≫ r0. From Eq. (33.41) we recall that for k → 0 the
logarithmic derivative also satisfies the relation

u′0(r)
u0(r)

∣∣∣∣
r=r0

= κ0 cotκ0r0 =
1

r0 − a
≃ −1

a
, (33.57)

Interestingly, for a ≫ r0 the logarithmic derivative of the continuum states becomes
independent of r0 and κ0; i.e. it becomes independent of the shape of the potential well.
As we shall see it only depends on the well parameter γ and not on the well shape.
This points to a universal limiting shape of the wavefunction for large scattering
length. As is sketched in Fig. 33.8(b), for decreasing κ the least-bound state turns
into a halo state; i.e. for κr0 ≪ 1 most of the probability of the bound state is found
in the classically inaccessible region outside the potential well, thus surrounding the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LeastBoundStates.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LeastBoundStates.m
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LeastBoundStates.m
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potential center like a halo. This behavior holds for arbitrary short-range potentials.

Figure 33.8: Bound states oscillate inside the well and decay exponentially outside the well:
(a) the boundary condition depends on the ratio κ/K−; (b) a slight reduction of the well
depth can turn the least bound state into a halo state.

With Eqs. (33.56) and (33.57) we have obtained two expressions for κ0 cotκ0r0 and
arrive at the conclusion that in the presence of a weakly bound state the scattering
length is given by,

a ≃
κ→0

1/κ . (33.58)

This expression reveals the tight relation between the binding energy of the least-
bound state, given by Eq. (33.29), and the scattering length,

Eb = −
ℏ2κ2

2mr
−→
κ→0
− ℏ2

2mra2
. (33.59)

33.1.3.4 s-wave resonances in the continuum: The Breit-Wigner formula

To obtain the k-dependence of the phase shift for large but otherwise arbitrary well
parameter (γ ≫ 1) we rewrite the boundary condition (33.38) in the form,

η0(k) = −kr0 + arctan
kr0

K+r0 cotK+r0
≡ ηbg + ηres . (33.60)

The first term of (33.60) is called the background contribution to the phase shift
and the second term the s-wave resonance contribution. Note that the background
contribution shows the same phase development as we found in Sec. 33.1.2 for hard
spheres. The phase development of the resonance contribution is shown in Fig. 33.9(a)
for the case of a large well parameter slightly detuned from the threshold value (at
γ = 31.5π ≈ 98.960169) such that the scattering length is negative (∆γ = −0.5).
For potentials with γ ≫ 1 the argument of the arctangent is predominantly small,
kr0/|K+r0 cotK+r0| ≪ 1, because

K+r0 = κ0r0(1 + k2/κ20)
1/2 > γ ≫ 1 . (33.61)

However, the argument of the arctangent diverges when cotK+r0 passes through zero;
i.e. for

K+r0 = (ṽ + 1
2 )π , (33.62)
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Figure 33.9: (code) (a) Resonance contribution to the s-wave phase shift η0(k) for a large

well parameter slightly detuned from the threshold value (at γ = 31.5π), such that the scat-

tering length is negative (∆γ = −0.5): The linear shift of the background contribution is

not included in the plot. Note that the π phase jumps arise from the modulo-π representa-

tion of the arctangent and do not represent an observable phenomenon; the physical phase

increases monotonically and equals ηres =
1
2
(modulo π) at the center of the resonances; (b)

contribution of the resonances to the effective hard sphere diameter a(k) = −η0(k)/k. As

(in this example) the lowest resonance is not close to threshold the resonant enhancement is

small, |ares(k)| = r0 ≪ 1.

where ṽ is an integer called the resonance index. This divergence is observed as a
small resonant enhancement of a(k), as shown in Fig. 33.9(b). The physical phase
is a continuous function of k, which changes by π when sweeping across the reso-
nance. Because the arctangent remains finite for cotK+r0 = 0 also the resonant
phase shift remains finite, having the value ηres(k) =

1
2π (modulo π) at the center of

each resonance.
In the remainder of this section we shall analyze the width and separation of the

s-wave resonances for the case γ ≫ 1. Since K+ ≥ κ0 ≥ K−, we have,

ṽ ≥ γ
π − 1

2 ≥ vmax , (33.63)

which shows that for γ ≫ 1 the value of ṽ is large (ṽmin ≥ ṽmax ≫ 1). Hence, the
resonance numbering starts where the numbering of bound states ends. To discuss
the resonances we denote the wavevectors k and K+ at resonance by kres and Kres ≡√
κ20 + k2res, respectively. The resonance energies εres = k2res satisfy the condition,

εres = K2
res − κ20 = (ṽ + 1

2 )π(
π
r0
)2 − κ20 ≥ 0 . (33.64)

The exceptional case for which the equal sign applies (ṽ = vmax) corresponds to a
resonant bound state (κ = 0) and the resonance is called a resonance at threshold or
zero-energy resonance (kres = 0).

Let us first analyze s-wave resonances for large well parameters (ṽ = vmax) and
far from threshold, (κ = 0). The energy spacing between two subsequent resonances
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_ResonantPhaseshift.m


1664 CHAPTER 33. COLLISIONS

-1000 -500 0 500 1000 1500 2000 2500

k2r20

0

0.5

1

si
n
2
η
re
s
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Figure 33.10: (code) (a) Transition from bound states to Breit-Wigner s-wave resonances

plotted for ∆γ = −0.5 with respect to the threshold at γ = 31.5π (same conditions as

Fig. 33.9). The bound states are indicated as zero-width spikes at energies ε = −κ2, with

κ following from Eq. (33.49). For ε > 0 the plot is based on Eqs. (33.60). The width of

the resonances increases with the square root of the energy. Note that the band of energies

typical for the quantum gases (kr0 ≪ 1) corresponds to a narrow zone, unresolved on the

energy scale of the plot.

is,

∆εres = ε(ṽ+1)
res − ε(ṽ)res = 2(ṽ + 1)π

2

r20
≃ 2πγ

r20
. (33.65)

To analyze a given resonance we expandK+ cotK+r0 about the point of zero crossing.
For this purpose we introduce the notation,

K+ =
√
κ20 + (kres + δk)2 = Kres +

δk kres
Kres

, (33.66)

where δk = k−kres is called the detuning from resonance. Thus, restricting ourselves
to the low-energy (but not zero energy) s-wave resonances (1 < kresr0 ≪ Kresr0 ≃ γ),
we may approximate K+ cotK+r0 ≃ Kres cotK+r0. Expanding cotK+r0 about the
zero crossing at K+r0 = (ṽ+1/2)π and retaining only the linear term we obtain (see
Problem 3.4),

Kres cotK+r0 = −δk kresr0 . (33.67)

Hence, the diverging argument of the arctangent becomes,

tan ηres =
k

K+ cotK+r0
≃ − 1

δk r0
=
−(k + kres)

(k2 − k2res)r0
≃ −2kres/r0

ε− ε0
. (33.68)

The expansion (33.66) is valid over the full range of the resonant change in phase
provided the following condition holds,

δk r0 ≪
Kres

kres
≃ γ

kresr0
, (33.69)

which is satisfied for the lowest resonances as long as the well parameter is sufficiently
large (γ ≫ kresr0). As long as δk ≪ kres we may further approximate k ≃ kres. With
these approximations and after restoring the dimensions, Eq. (33.68) can be written
as a function of the energy E = ℏ22k2/2mr,

tan ηres =
k

K+ cotK+r0
≃ −Γ2

ε− εres
, (33.70)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_BreitWigner.m
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where
Γ/2 = 2kres/r0 (33.71)

is called the spectral width of the resonance. Comparing the expressions for Γ and
∆Eres we find that for given r0 the width Γ is independent of γ, whereas the resonance
spacing is proportional to γ . Thus, only for sufficiently large well parameters (γ ≫ 1)
the spectral width becomes smaller than the resonance spacing,

Γ≪ ∆εres ⇐⇒ kresr0 ≪ πγ . (33.72)

Knowing the tangent of ηres, we readily obtain the sine and Eq. (33.70) is replaced
by the Breit-Wigner formula,

sin2 ηres =
(Γ/2)2

(ε− ε0)2 + (Γ/2)2
. (33.73)

For optical resonances this energy dependence is known as the Lorentz lineshape. Note
that Γ corresponds to the full-width-at-half-maximum (FWHM) of this line shape.
The lowest energy resonances are plotted in Fig. 33.10 along with the highest-energy
bound states.

The resonance near threshold (almost bound level) deserves special attention, as
this type of resonance is the only one that can play an important role within the band
of energies relevant for the quantum gases (kr0 ≪ 1). Fig. 33.10 shows that near
the threshold (at γ = 31.5π) the resonance narrows down and becomes asymmetric,
which means that the Breit-Wigner lineshape is lost. Using Eq. (33.54) we calculate
ṽ = 31. The narrow line is reminiscent of a bound level but the scattering length is
negative (see Fig. 33.10). Under these conditions the wavefunction has a virtual node
at r = −|a| (see Fig. 33.30). Accordingly, the level is called a virtual level and the
wavefunction is said to represent a virtual bound state. In analogy with the bound
states its energy is written as ε = κ2res, where κ is to be defined later.

33.1.4 Other types of potentials

33.1.4.1 Zero-range potentials

An important model potential is obtained by considering a spherical well in the zero-
range limit r0 → 0. As illustrated in Fig.33.11, it is possible to construct a zero-range
well in such a way that the long-range properties of the wavefunction are unaffected;
i.e. the scattering length a and the binding energy ε = −κ2 of the least-bound state
remain unchanged.

For E < 0 this can be demonstrated with the aid of the boundary condition
(33.49),

−κ = K− cotK−r0 . (33.74)

Reducing the radius r0 the value of the binding energy ε = −κ2, can be conserved by
increasing κ0. In the limit r0 → 0 the well depth should diverge in accordance with,

− κ

K−
= cotK−r0 → 0 . (33.75)

This condition is satisfied for K−r0 ≃ π/2. To elucidate this point we consider the
least-bound level with vibrational quantum number v = vmax, for which K−r0 =
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Figure 33.11: Wavefunctions corresponding to the same binding energy (ε = −κ2) plotted
for three different values of r0. Outside r0 the wavefunctions fall off exponentially, always
with the same decay exponent κ; this is the essence of the Bethe-Peierls boundary condition.
The dashed lines show the extrapolation for r → 0. (a) reference case; (b) for κr0 ≪ 1 most
of the probability density of a bound state is found outside the well (halo state); (c) for
zero-range potentials (κr0 = 0) the oscillating part of the wavefunction is compressed into
a delta function and only the decaying exponent remains (universal limit). Note that these
wavefunctions do not share the same normalization.

(vmax + 1/2)π. Reducing r0 by a factor of 2 the wavenumber K− has to be doubled
to conserve the number of nodes in the wavefunction (i.e. to conserve vmax). This
means that the kinetic energy inside the well has to increases by a factor 4. Since for
the least-bound level we have K−r0 ≃ γ, it means that in this case the binding energy
can be conserved at effectively constant well parameter. Obviously, the freedom to
conserve (for decreasing r0) the binding energy of one of the levels can only be used
once. It does not hold for the other levels because the level separation diverges with
κ0. In the zero range limit the potential only supports a single bound state and the
wavefunction of that state is given by,

R0(r) = c0
e−κr

r
for r > 0 , (33.76)

and with κ > 0. Unit normalization,
∫
r2R2

0(r)dr = 1, is obtained for c0 =
√
2κ. For

E > 0 we can arrive at the same conclusion. The boundary condition for k →0 and
given value of r0 is given by Eq. (33.41), which we write in the form,

1

r0 − a
= κ0 cotκ0r0 . (33.77)

Reducing the radius r0, the scattering length a can be conserved by increasing κ0. In
the limit r0 → 0 the well depth should diverge in accordance with,

− 1

κ0a
= cotκ0r0 → 0 . (33.78)

This is again satisfied for κ0r0 ≃ π/2. In the zero-range limit the radial wavefunction
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for k → 0 is given by,

R0(k, r) =
1

kr
sin[k(r − a)] for r > 0 , (33.79)

which implies R0(k, r) ≃ 1− a/r for 0 < r ≪ 1/k.

33.1.4.2 Bethe-Peierls boundary condition

Note that Eq. (33.76) is the solution for E < 0 of the 1D-Schrödinger equation in the
zero-range approximation,

u′′0 − κ2u0 for r > 0 , (33.80)

under the boundary condition,

u′0
u0

∣∣∣∣
r→0

= −κ . (33.81)

The latter relation is called the Bethe-Peierls boundary condition and was first used
to describe the deuteron, the weakly bound state of a proton with a neutron [?]. It
shows that for weakly bound states the wavefunction has the universal form of a halo
state, which only depends on the binding energy, ε0 = −κ2 (see Fig. 33.11).

For E > 0 the 1D-Schrödinger equation in the zero-range approximation is given
by,

u′0 + k2u0 = 0 for r > 0 . (33.82)

The general solution is u0(k, r) = c0 sin[kr + η0]. Using the Bethe-Peierls boundary
condition we obtain,

k cot η0(k) = −κ , (33.83)

which yields after substituting η0(k → 0) ≃ −ka the universal relation between the
scattering length and the binding energy in the presence of a weakly bound s-level,
ε0 = −κ2 = −1/a2.

33.1.4.3 Power-law potentials

The general results obtained in the previous sections presumed the existence of a finite
range of interaction, r0. Thus far this presumption was based only on the heuristic
argument presented in Sec. ??. To derive a proper criterion for the existence of a
finite range and to determine its value r0 we have to analyze the asymptotic behavior
of the interatomic interaction [929]. For this purpose we consider potentials of the
power-law type,

V (r) = −Cs
rs

, (33.84)

where Cs = V0r
s
c is the power-law coefficient, with V0 ≡ |V (rc)| ≡ ℏ2κ2c/2mr the well

depth. These power-law potentials are important from the general physics point of
view, because they capture major features of interparticle interactions.

For power-law potentials, the radial wave equation (33.6) takes the form,

R′′ℓ +
2

r
R′ℓ +

[
k2 +

κ2cr
s
c

rs
− ℓ(ℓ+ 1)

r2

]
= 0 . (33.85)
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Figure 33.12: (code) Dependence of the scattering length on the potential depth.

Because this equation can be solved analytically in the limit k → 0 it is ideally suited
to analyze the conditions under which the potential V (r) may be neglected and thus
to determine r0. To solve Eq. (33.85) we look for a clever substitution of the variable
r and the function Rℓ(r) to optimally exploit the known r dependence of the potential
in order to bring the differential equation in a well-known form. To leave exibility in
the transformation we search for functions of the type,

Gℓ(x) = r−νRℓ(r) , (33.86)

where the power ν is to be selected in a later stage.

33.1.4.4 Computation of the scattering length

The scattering length depends on the binding energy Ev of weakly bound states. If a
is positive and much greater than the range of the potential, then [542, 465] (33.59),

Ev = −
ℏ2

2mra2
. (33.87)

More precisely, for a potential behaving at long range as,

V = −C6

R6
, (33.88)

we get,

Ev = −[(vD − v)H(mr, C6)]
−1/3 , (33.89)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_TuneScattlengthSimul.m


33.1. MOTION OF INTERACTING NEUTRAL ATOMS 1669

where vD is the vibrational quantum number at the dissociation limit and H a con-
stant. Also,

a =
Γ(3/4)

2
√
2Γ(5/4)

(
2µC6

ℏ2

)1/4 [
1− tanπ(vD + 1

2 )
]
. (33.90)

33.1.4.5 Second method

It yields for γ = α, β,
d2

dR2 εγ(R) = 2mrV (R)εγ(R) . (33.91)

Successive approaches start with ε
(0)
α = R and ε

(0)
β = 1 and get superior orders via,

d2

dR2 ε
(k+1)
γ (R) = 2mrV (R)ε(k)γ (R) . (33.92)

We define δ
(k)
γ ≡ ε(k)γ − ε(k−1)γ starting with δ

(0)
γ = ε

(0)
γ , such that,

d2

dR2 δ
(k+1)
γ (R) = 2mrV (R)δ(k)γ (R) . (33.93)

δα(R → ∞) = δβ(R → ∞) = 0. Since εα = limk→∞ ε
(k)
α , the wavefunction is thus

obtained from,

U(R) = α(1 + δ(1)α + δ(2)α + ..) + β(R+ δ
(1)
β + δ

(2)
β + ..) . (33.94)

This long-range expression must match the short-range value at a certain point R0:

U(R0) = αεα(R0) + βεβ(R0) . (33.95)

U ′(R0) = α d
dRεα(R0) + β d

dRεβ(R0)

and

a = −β
α

=
U(R0)

d
dRεα(R0)− U ′(R)εα(R0)

U(R0)
d
dRεβ(R0)− U ′(R)εβ(R0)

=

d
dR

εα(R0)
U(R0)

d
dR

εβ(R0)
U(R0)

. (33.96)

Let us consider a specific potential,

V (R) =
1

2
BRmre−ηR −

(
C6

R6
+
C8

R8
+
C10

R10

)
fc(R) (33.97)

fc(R) = θ(Rc −R)e−(Rc/R−1)2 + θ(R−Rc) .

At very long range we have V (R) ≃ −C6

R6 , such that,

δ(k+1)
γ =

∫ R

0

2mrV δ
(k+1)
γ dR = δ(k)γ (∞)−

∫ ∞

R

−2mrC6

R6
δ(k)γ dR (33.98)

= 2mrC6

∫ ∞

R

δ
(k)
γ

R6
dR .

In particular,

δ(1)α = 2mrC6
−1
4R4

, δ(2)α = (2mrC6)
2 −1
4 · 9R9

(33.99)

δ
(1)
β = 2mrC6

1

5R5
, δ

(2)
β = (2mrC6)

2 1

5 · 10R10
.
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33.1.4.6 Third method

To estimate the scattering length for a particular interaction consult [844, ?, 989].
Following [844] we write the Schrödinger equation in atomic units as,

d2U

dR2
= 2mrV (R)U(R) . (33.100)

The ansatz U(R) = αεα(R) + βεβ(R) with εα(R → ∞) = R and εβ(R → ∞) = 1
shows that a = −β/α is the desired scattering length.

33.1.4.7 Fourth method

The equation for the accumulated phase follows from the Schrödinger equation,

ϕ(r0) ≡
∫ r0

∞
k(r)dr (33.101)

k2(r) =
2mr

ℏ2

√
E − V (r)− ℏ2l(l + 1)

2mrr2
.

According to [989] we start resolving,

d

dR
δk,0(R) = −k−1V (R) sin2[kR+ δk,0(R)] . (33.102)

33.1.4.8 Pseudo potentials

As in the low-energy limit (k → 0) the scattering properties only depend on the
asymptotic phase shift it is a good idea to search for the simplest mathematical
form that generates this asymptotic behavior. The situation is similar to the case of
electrostatics, where a spherically symmetric charge distribution generates the same
far field as a properly chosen point charge in its center. Not surprisingly, the suitable
mathematical form is a point interaction. It is known as the pseudo potential and
serves as an important theoretical Ansatz at the two-body level for the description of
interacting many-body systems [436, 641]. The existence of such pseudo potentials is
not surprising in view of the zero-range square well solutions discussed in Sec. 33.6.2.

As the pseudo potential cannot be obtained at the level of the radial wave equation,
we return to the full 3D Schrödinger equation for a pair of free atoms,

(∇2 + k2)ψk(r) = 0 , (33.103)

where k =
√
2mrE/ℏ2 is the wavenumber for the relative motion. Restricting our-

selves to s-wave collisions we derived earlier the solution of this equation as being
given by ψk(r) = c0

kr sin kr. However, we are now looking a solution of the type
(33.37), which includes a phase shift η0,

ψk(r) =
c0
kr

sin(kr + η0) . (33.104)

Inserting this expression into the wave equation (33.103) we encounter the problem
that the solution is irregular in the origin when η0 ̸= 0. Apparently, we need to
complement the wave equation by a (pseudo-)potential to remove this problem.
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Our claim is now that the operator,

− 4π

k cot η0
δ3(r)

∂

∂r
r (33.105)

is the wanted s-wave pseudo potential Ṽ (r). That is, the wave equation,

(
∇2 + k2 +

4π

k cot η0
δ3(r)

∂

∂r
r

)
ψk(r) = 0 (33.106)

lets the phase-shifted wavefunction (33.104) be regular at the origin.
The presence of the delta function makes the pseudo-potential act as a boundary

condition at r = 0,

4πδ3(r)

k cot η0

[
∂

∂r
rψk(r)

]

r=r0

= 4πδ3(r)
c0
k

sin η0 (33.107)

= −4πδ3(r)c0
k

sin(ka) ≃
k→0
−4πac0δ3(r) ,

where we used the expression for the s-wave phase shift, η0 = −ka. This is the alter-
native boundary condition we were looking for. Substituting this into Eq. (33.106)
we obtain the inhomogeneous equation

(∇2 + k2)ψk(r) ≃
k→0
−4πac0δ3(r) . (33.108)

This inhomogeneous equation has the solution (33.104), as demonstrated in Exc. 33.1.5.4.
For functions f(r) with regular behavior in the origin we have 4,

[
∂

∂r
rf(r)

]

r=0

= f(0) + r

[
∂

∂r
f(r)

]

r=0

= f(0) , (33.109)

and the pseudo potential takes the form of a delta function potential 5,

Ṽ (r) = − 4π

k cot η0
δ3(r) ≃

k→0
4πaδ3(r) , (33.110)

or, equivalently, restoring the dimensions,

V (r) =
g

2
δ3(r) with g =

4πℏ2

mr
. (33.111)

4Note that the wavefunction ψk is irregular,

δ3(r)
∂

∂r
[rψk(r)] = δ3(r)

∂

∂r

(
r
c0 sin(kr + η0)

kr

)
= δ3(r)c0 cos[k(r − a)] =

k→0
c0δ

3(r) .

On the other hand,

δ3(r)
∂

∂r
[rψk(r)] = δ3(r)

c0 sin(kr + η0)

kr
= δ3(r)

c0 sin[k(r − a)]

kr
=
k→0

c0δ
(3)(r)[1− a

r
] .

5Note that the dependence on the relative position vector r rather than its modulus r is purely
formal as the delta function restricts the integration to only zero-length vectors. This notation is used
to indicate that normalization involves a 3-dimensional integration,

∫
δ3(r)d3r. Pseudo potentials

do not carry physical significance but are mathematical constructions that can chosen such that they
provide wavefunctions with the proper phase shift.
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This expression, for na3 ≪ 1 valid in the zero energy limit, is convenient for calculating
the interaction energy, as will be shown in Sec. ??.

33.1.4.9 Coupling of potentials

When molecular potentials cross and couple via collisions, via radiative coupling, or
via a Feshbach resonance (cf. Sec. 33.4.2), new adiabatic potentials are formed. These
are obtained as the r-dependent eigenvalues of the coupling Hamiltonian,

Ĥcpl =

(
V1(R) Ω

Ω V2(R)

)
. (33.112)

Such calculations are known as coupled channels calculations.

r

V

Figure 33.13: (code) The coupling of molecular potentials (solid lines) generates new adia-

batic potentials (dash-dotted lines).

33.1.5 Exercises

33.1.5.1 Ex: Asymptotic radial function for hard-sphere potentials

Using asymptotic expressions for the Bessel and von Neumann functions derive the
radial function Rℓ(k, r) for the two limiting cases ka≪ 1 and ka≫ 1.

Solution: i. For ka≪ 1 the phase shift can be written as,

tan ηℓ ≃
k→0
− 2ℓ+ 1

[(2ℓ+ 1)!!]2
(ka)2ℓ+1 ≃

k→0
ηℓ ,

and the radial wavefunction becomes,

Rℓ(k, r) ≃
r→∞

cℓ
kr

sin

(
kr − 2ℓ+ 1

[(2ℓ+ 1)!!]2
(ka)2ℓ+1 − 1

2ℓπ

)
.

In particular, for s-waves we find

R0(k, r) ≃
r→∞

cℓ
kr

sin[k(r − a)] .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_CoupledPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_CoupledPotentials.m
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ii. For ka≫ 1 we find,

tan ηℓ ≃
k→∞

− tan(ka− 1
2ℓπ) =⇒ ηℓ ≃

k→∞
−ka+ 1

2ℓπ ,

and for the radial wavefunction,

Rℓ(k, r) ≃
r→0

cℓ
kr

sin[k(r − a)] .

Note that this expression is independent of ℓ; i.e. for large k all wavefunctions are
shifted by the diameter of the hard sphere. This is only the case for hard-sphere
potentials.

33.1.5.2 Ex: s-wave collision on flat bottom potentials

Simplify the scattering matrix (33.35) for the collisional flat bottom potential for the
case of s-wave collisions.

Solution: We start from the expression (33.35) specifying ℓ = 0,

e2iη0 = −h
(1)
0 (ϱe)

h
(2)
0 (ϱe)

K+∂ϱ ln j0(ϱi)− k∂ϱ lnh(1)0 (ϱe)

K+∂ϱ ln j0(ϱi)− k∂ϱ lnh(2)0 (ϱe)
,

Coming from inside the potential we have at the boundary ϱi = K+r0,

j0(ϱi) =
sin ϱi
ϱi

=⇒ ∂ϱ ln j0(ϱi) =
j′0(ϱi)
j0(ϱi)

= cot ϱi −
1

ϱi
.

Coming from outside the potential we have at the boundary ϱe = kr0,

n0(ϱe) = −
cos ϱe
ϱe

=⇒ h
(1)
0 (ϱe) = j0(ϱe) + in0(ϱe) = −

ieiϱe

ϱe

=⇒ h
′(1)
0 (ϱe) =

i+ ϱe
ϱ2e

eiϱe =⇒ ∂ϱ lnh
(1)
0 (ϱe) = −

1− iϱe
ϱe

=⇒ h
(1)
0 (ϱe)

h
(2)
0 (ϱe)

= −e2iϱe .

With this, the S matrix becomes,

e2iη0 = e2iϱe
K+

(
cot ϱi − 1

ϱi

)
+ k 1−iϱe

ϱe

K+

(
cot ϱi − 1

ϱi

)
+ k 1+iϱe

ϱe

= e2ikr0
K+ cotK+r0 − ik
K+ cotK+r0 + ik

=⇒ η0 = kr0 +
1

2i
ln
K+ − ik tanK+r0
K+ + ik tanK+r0

= kr0 − arctan
k tanK+r0

K+
,

using arctanx = i
2 ln

1−ix
1+ix .

Alternatively, we may derive the same results from the continuity condition for the
radial wavefunction u0(r), which reads,

K+
cos ϱi
sin ϱi

=
u′0(r0)
u0(r0)

= k
cos η0 cos ϱe + sin η0 sin ϱe
cos η0 sin ϱe − sin η0 cos ϱe

,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms02.pdf
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which can also be written as,

K+ cot ϱi = k cot(ϱe − η0) ,

or

η0 = kr0 − arctan
k tanK+r0

K+
.

With the definition of the scattering length we get,

η0
k

= r0 −
1

k
arctan

k tan(
√
k2 + κ20+r0)√
k2 + κ20

−→
k→0

r0 −
tanκ0r0
κ0

≡ a .

33.1.5.3 Ex: Equivalence of boundary conditions

Show that the radial wavefunction Rℓ and uℓ satisfy equivalent boundary conditions
at the surface of the spherical box potential.

Solution: The goal is to show that the following two boundary conditions are equiv-
alent,

lim
r↗r0

R′ℓ(r)
Rℓ(r)

= lim
r↘r0

R′ℓ(r)
Rℓ(r)

⇐⇒ lim
r↗r0

u′ℓ(r)
uℓ(r)

= lim
r↘r0

u′ℓ(r)
uℓ(r)

.

This can be seen from,

u′ℓ(r)
uℓ(r)

=
rR′ℓ(r) +Rℓ(r)

rRℓ(r)
=
R′ℓ(r)
Rℓ(r)

+
1

r
.

33.1.5.4 Ex: Derivation of a linear expansion

Derive the linear expansion (33.67).

Solution: We calculate the linear expansion of Kres cotK+r0 near the zero crossing
at K+r0 = (ṽ+1/2)π, where cotK+r0 = 0: This follows from the derivative evaluated
at K+r0 = (ṽ + 1/2)π:

dKres cotK+r0
dδk

∣∣∣∣
K+r0=(ṽ+1/2)π

= −kresr0|
sin

2

K+r0|
∣∣∣∣∣
K+r0=(ṽ+1/2)π

== −kresr0 .

Multiplying the derivative with δk we obtain the desired result.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms04.pdf
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33.1.5.5 Ex: Pseudo-potential for s-wave scattering

Verify the equation (∇2 + k2)ψk(r) = 4πδ3(r) 1k sin η0 by direct substitution of the
solution (33.104) setting c0 = 1.

Solution: Integrating (33.108) by over a small sphere V of radius ϵ about the origin
we have, ∫

V

(∇2 + k2)
1

kr
sin(kr + η0)d

3r = −4π

k
sin η0 .

Here we used
∫
V
δ3(r)d3r for an arbitrarily small sphere about the origin. The second

term on the l.h.s. of the last equation vanishes,

4πk lim
ϵ→0

∫ ϵ

0

r sin(kr + η0)dr = 4πk sin η0 lim
ϵ→0

ϵ = 0 .

The first term follows with the divergence theorem (Gauss theorem),

lim
ϵ→0

∫

V

∇2 1

kr
sin(kr + η0)d

3r = lim
ϵ→0

∮

S
dS · ∇ 1

kr
sin(kr + η0)

= lim
ϵ→0

4πϵ2
(
1

ϵ
cos(kr + η0)−

1

kϵ2
sin(kr + η0)

)
= −4π

k
sin η0 .

33.2 Scattering theory

In this chapter we discuss scattering by time independent potentials satisfying rV (r →
∞)→ 0, that is short-range potentials. Such a potential may have attractive regions
supporting bound states with energy E < 0. Here, however, we only consider states
E > 0. Since the potential is supposed independent of time, ∂tĤ = 0, we will focus
on time-independent problems,

Ĥψk(r) = Ekψk(r) , (33.113)

with Ĥ = p2/2m + V (r) and Ek = ℏ2k2/2m. The boundary conditions are given
by the scattering geometry in such a way that at long distances the wavefunction
behaves as (see Fig. 33.14),

ψk(r) ∼ eik·r + fk(Ω)
eiksr

r
. (33.114)

For elastic scattering processes we have ks = k. The scattering amplitude fk(Ω)
depends on the energy Ek and on the scattering solid angle. Experimentally, we
scatter individual particles described by wave packets. Since the scattering theory is
linear, we can describe the packets by superpositions of stationary solutions ψk

6.

6Note that k is not a quantum number, since ψk contains momentum components ̸= k.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_CollideAtoms05.pdf
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Figure 33.14: Scattering of incident light (wavevector k0) by a potential V .

33.2.1 Lippmann-Schwinger equation

In order to consider the example of two particles involved in a collision we may go
into the center-of-mass system (using reduced masses), fix the origin of the coordinate
system on one of the particles, and analyze the trajectory of the second particle inside
the interaction potential.

The scattering theory is based on Green’s method, which we already know from
electrostatics. So, let us start of a brief reminder of the use of the Green’s function
as a method to solve electrostatic problems.

Example 191 (Green’s method in electrostatics): From Maxwell’s third
equation we obtain,

∇2ϕ(r) = −ε−1
0 ρ(r) .

Being defined by,

∇2G(r) = δ3(r) ,

the Green function is,

G(r) =
−1
4π

1

|r| .

With this, we find the solution of the Maxwell equation,

ϕ(r) =
(
−G ⋆ ε−1

0 ρ(r)
)
(r) = − 1

ε0

∫
V

ρ(r0)G(r−r0)d3r0 =
1

4πε0

∫
V

ρ(x)

|r− x|d
3x ,

known as Poisson’s law.

33.2.1.1 Green’s method in quantum mechanics

Green’s method can be used to solve Schrödinger’s equation with the boundary condi-
tion (33.114). We start from the reduced stationary Schrödinger equation (33.113) [1298],

(∆ + k2)ψk(r) =
2m
ℏ2 V (r)ψk(r) . (33.115)

This equation is not a common eigenvalue problem, since any energy Ek generates a
solution. The equation (33.115) is a partial inhomogeneous differential equation with
the left side describing free propagation and the right side describing a source that
depends on the solution. Such differential equations are usually solved using Green’s
functions. We choose a point source and we solve,

(∆ + k2)G(r, k) = δ3(r) , (33.116)
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along with the boundary conditions. The solution takes the form [151],

G(r, k) = − 1

4π

eik|r|

|r| , (33.117)

such that,

ψk(r) = eik·r +
(
G ⋆ 2m

ℏ2 V ψk

)
(r) = eik·r + 2m

ℏ2

∫

V

d3r′G(r− r′, k)V (r′)ψk(r
′) .

(33.118)
The equation (33.118) is called Lippmann-Schwinger equation. Of course, this equa-
tion does not solve, but only reformulate the problem taking into account the bound-
ary conditions. It is more appropriate for an implementation of approximations. See
Exc. 33.2.7.1 and 33.2.7.2.

Now let us consider the far field, r → ∞, to verify the asymptotic behavior and
find an expression for fk(Ω) as a function of V (r). For r →∞ we can approximate

k|r− r′| = kr
√
(êr − r′/r)2 = kr

√
1− 2êr · r′/r + (r′/r)2 ≃ kr − k′ · r′ ≃ kr ,

(33.119)
with k′ ≡ kêr. With this the Lippmann-Schwinger equation (33.118) becomes,

ψ(r)→ eik·r − 2m

ℏ2

∫

V

1

4π

eik|r−r
′|

|r− r′| V (r′)ψ(r′)d3r′ (33.120)

= eik·r − 2m

4πℏ2
eikr

kr

∫

V

e−ik
′·r′V (r′)ψ(r′)d3r′ ≡ ψin + fk(Ω)

eikr

r
,

giving, in comparison with the expression (33.114), the scattering amplitude,

fk(Ω) =
2m

4πℏ2

∫

V

e−ik
′·r′V (r′)ψ(r′)d3r′ . (33.121)

Starting from the wavefunctions ψin ≡ eik·r and ψs ≡ fk(Ω)eikr/r we can calculate
the current densities,

Jin =
ℏ

2mi
(ψ†in∇ψin − c.c.) =

ℏk
m

(33.122)

Js =
ℏ

2mi
(ψ†s∂rψs − c.c.)êr =

ℏk′

m

1

r2
|fk(Ω)|2 +O(r−3) .

The number dI(Ω) of particles scattered per second into the solid angle dΩ is
simply dI(Ω) = |Js|r2dΩ. With this we can calculate the differential effective cross
section defined by the ratio between dI(Ω) and the number |Jin| of incident particles
per second,

dσ

dΩ
≡ dI(Ω)

|Jin|dΩ
= |fk(Ω)|2 . (33.123)

Finally we define the total effective cross section,

σ =

∫
dΩ|fk(Ω)|2 . (33.124)
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33.2.2 Wave packets

We now let a wave packet defined at a time t = t0,

ψ(r, t0) =

∫
d3k

(2π)3
ake

ik·r , (33.125)

impinge on a scattering potential. The amplitude ak be concentrated around k0,
such that the wave packet approaches the scatterer with the velocity v0 = ℏk0/m.
The time evolution of the wavefunction ψ(r, t) determines the signal measured by a
detector at a later time t = t0. Our task is to determine ψ(r, t > t0). The scattered
states ψk solving the Schrödinger equation (33.113) are complete in the space of the
extended wavefunctions, and we can write the temporal evolution as,

ψ(r, t) =

∫
d3k

(2π)3
Akψk(r)e

−iEk(t−t0)/ℏ . (33.126)

At time t0 the results (33.125) and (33.126) must match. To verify this, we write
(33.125) replacing the plane wave eik·r using the Lippmann-Schwinger equation (33.118)
with Green’s function (33.117), and then we compare the coefficients,

ψ(r, t0) =

∫
d3k

(2π)3
ak

[
ψk(r) +

m

2πℏ2

∫
d3r′

eik|r−r
′|

|r− r′| V (r′)ψk(r
′)

]
. (33.127)

The scattering process is illustrated in Fig. 33.15. To simplify the calculation of

Figure 33.15: Scattering of wave packet at a potential.

the second term in this equation, we assume that ψk is smooth, that is, there are no
resonances, such that we can approximate, ψk ≃ ψk0

. With k ≃ k · êk0 we obtain,

∫
d3k

(2π)3
ake

ik|r−r′|ψk(r
′) =

∫
d3k

(2π)3
ake

ik·(êk0
|r−r′|)ψk0(r

′) (33.128)

(33.125)
= ψ(êk0 |r− r′|, t0)ψk0(r

′) .

Here, ψ(êk0 |r− r′|, t0) is the incident wave package evaluated to the right, where by
definition it is ≃ 0. The expression (33.127) therefore has the form,

ψ(r, t0) =

∫
d3k

(2π)3
akψk(r) , (33.129)

and a comparison of the coefficients with (33.126) gives, Ak = ak. Finally, we evaluate
ψ(r, t) at the time of detection t > t0 to understand, that the above stationary analysis
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is actually physically correct. According to (33.126) we have,

ψ(r, t) =

∫
d3k

(2π)3
Akψk(r)e

−iEk(t−t0)/ℏ (33.130)

(33.120)(33.125)≃ ψ0(r, t) +

∫
d3k

(2π)3
ak
eikr

r
fk(Ω)e

−iEk(t−t0)/ℏ .

Hence, ψ0(r, t) describes the evolution of the wave packet without scatterer,

ψ0(r, t) =

∫
d3k

(2π)3
ake

ik·r

︸ ︷︷ ︸
ψ(r,t0)

e−iEk(t−t0)/ℏ . (33.131)

If fk it’s smooth around k = k0, which allows us to place this amplitude (fk ≃ fk0)
in front of the integral, and with k ≃ k · k̂0 we obtain,

ψ(r, t)
t large
=⇒ ψ0(r, t)︸ ︷︷ ︸

packet not scattered

+
fk0(Ω)

r
ψ0(k̂0r, t)

︸ ︷︷ ︸
packet scattered

. (33.132)

The scattering process is illustrated in Fig. 33.15: According to the last equation
the scattering process involves the superposition of the non-scattered packet and a
packet scattered in the direction Ω. The latter involves the amplitude Ψ0(k̂0r, t) of
a packet propagating in forward direction, which only needs to be evaluated at the
right time and distance. This packet will then be multiplied with the amplitude
describing the angular dependency fk0 ; the angle, therefore, only appears through
this amplitude and not in the wavefunction ψ0. In two situations the above analysis
can not be applied :

• when V is long-ranged, f.ex., V = 1/r,

• when the incident energy Ek is resonant.

33.2.3 Born approximation

The Lippmann-Schwinger equation suggests the following perturbative iteration called
Born series [151],

ψ(r) = ψi(r) +
(
G ⋆ 2m

ℏ2 V ψ
)
(r) (33.133)

= ψi(r) +
2m
ℏ2 (G ⋆ V ψi)(r) +

(
2m
ℏ2

)2
[G ⋆ V (G ⋆ V ψi)](r)

= ψi(r) +
2m
ℏ2

∫

V

G(r− r′)V (r′)ψi(r
′)d3r′

+
(
2m
ℏ2

)2 ∫

V

G(r− r′)V (r′)G(r− r′′)V (r′′)ψi(r
′′)d3r′d3r′′ .

In the so-called Born approximation we consider only the first perturbation order,
and inserting a plane wave, ψi(r) = eikz/(2π)3/2, we obtain,

ψ(r) =
eikz

(2π)3/2
− m

(2π)3/22πℏ2

∫

V

eik|r−r
′|

|r− r′| V (r′)eikz
′
d3r′ . (33.134)
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The asymptotic behavior r ≫ r′, it follows with (33.119) using z′ = r′ ·êz and defining
ks = kêr e ki = kêz,

ψ(r) ≃ eikz

(2π)3/2
− m

(2π)3/22πℏ2

∫

V

eik(r−r·r
′/r)

r
V (r′)eik·r

′
d3r′ (33.135)

=
eikz

(2π)3/2
+

m

(2π)3/22πℏ2
eikr

r

∫

V

V (r′)ei(ki−ks)·r′d3r′

≡ 1

(2π)3/2

(
eikz +

eikr

r
f(ki, ks)

)
,

with

f(ki, ks) ≡
m

2πℏ2

∫

V

V (r′)ei(ki−ks)·r′d3r′ = − m

2πℏ2
⟨ks|Ṽ |ki⟩ .

33.2.4 Spherical potentials

For spherically symmetric scattering potentials, V (r) = V (r), the Hamiltonian Ĥ =
p2/2m+ V (r) commutes with the rotation operators Uω⃗ = e−iω⃗·L/ℏ around any axis
êω⃗. Therefore, we can separate the angular problem and decompose the scattering
problem following the irreducible representations of the rotation group. This partial
wave decomposition can be written,

ψk(r) =

∞∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)Rl(r) , (33.136)

where the factor (2ℓ + 1)iℓ is a convention facilitating the calculation later on. By
inserting this separation ansatz for the radial and angular variables into the stationary
Schrödinger equation (33.113), we obtain the radial Schrödinger equation,

[
∂2

∂r2
− ℓ(ℓ+ 1)

r2
+ k2

]
rRℓ(r) =

2m

ℏ2
V (r)rRℓ(r) , (33.137)

where ψk must satisfy the boundary conditions (33.114). Fortunately, we can also
expand the incident wave by partial waves 7,

eikz = eir cos θ =

∞∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ) . (33.138)

We now use the result (33.138) to find the boundary conditions for the radial

waves Rℓ. In the infinity we have rV (r)
r→∞−→ 0. For this reason,

Rℓ(r)
r→∞−→ αℓ[h

(2)
ℓ (kr) + sℓh

(1)
ℓ (kr)] , (33.139)

7For the more general case of arbitrary vectors k e r, we use the addition theorem for Yℓm and
express Pℓ(cos θ) by spherical functions,

eik·r = 4π

∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(kr)Y
∗
ℓm(Ωk)Yℓm(Ωr) .
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where the Hankel functions h
(1,2)
ℓ (kr) ∼ e±i(ρ−(ℓ+1)π/2) describe, respectively, incident

(h
(2)
ℓ ) and outgoing (h

(1)
ℓ ) spherical waves.

To determine the coefficients αℓ and sℓ we note first that, without potential, V (r) =
0, the solution of the radial equation (33.137) is known,

Rℓ(r) = jℓ(kr) =
1
2 [h

(2)
ℓ (kr) + h

(1)
ℓ (kr)] , (33.140)

such that αℓ =
1
2 and sℓ = 1. For V (r) ̸= 0 the incident wave h

(2)
ℓ is the same, but

not the incident h
(1)
ℓ , which results in sℓ ̸= 1. However, particle number conservation

requires that the number of particles entering the potential is equal to the number of
particles coming out. That is, the total radial flow must be,

0 = jℓr(r) =
ℏ

2im
[R∗ℓ∂rRℓ −Rℓ∂rR∗ℓ ] =

ℏ
4mkr2

[|sℓ|2 − 1] , (33.141)

approximating 2Rℓ ≃ e−i(kr+wℓ

kr + sℓ
ei(kr+wℓ

kr . Hence, |sℓ| = 1, that is,

sℓ = e2iδℓ(k) , (33.142)

where δℓ(k) is the scattering phase. The scattering phase determines the solution
of the scattering problem, because it fixes the scattering amplitude: Evaluating the
solution (33.136) in the asymptotic limit by the formula (33.138),

ψk(r) ∼ 1
2

∞∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)[h
(2)
ℓ (kr) + e2iδℓh

(1)
ℓ (kr)] (33.143)

= eik·r + 1
2

∞∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)[e
2iδℓ − 1]h

(1)
ℓ (kr) = eik·r + fk(θ)

eikr

r
,

we obtain the scattering amplitude in the form 8

fk(θ) =
1
k

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ)e
iδℓ sin δℓ . (33.144)

We call
e2iδℓ − 1

2ik
=
eiδℓ sin δℓ

k
≡ fℓ (33.145)

the amplitude of the partial wave [1363, 186].

33.2.5 Scattering phase and length

In summary, we can, within the Born approximation, express the collisional state of
any type of particles by isotropic potentials,

ψ(r) ∼ eik·r + eikr

r
fk(Ω) . (33.146)

8Com h
(1)
ℓ ∼ (−i)ℓ+1 eikr

kr
.
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The scattering cross section can be written,

σ =

∫
dΩ|fk(Ω)|2 = 1

k2

∫
dΩ|

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ) sin δℓ|2 (33.147)

=
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ = 4π
∑

ℓ

(2ℓ+ 1)|fℓ|2 .

The quantity

σℓ =
4π

k2
(2ℓ+ 1) sin2 δℓ =

4π

k2
(2ℓ+ 1)|fℓ|2 (33.148)

is called effective partial cross section. Obviously, σℓ ≤ 4π
k2 (2ℓ + 1) holds. The phase

shift e2iδℓ has a simple physical interpretation: We consider the function,

eiδℓjℓ(kr + δℓ) =
eiδℓ
2 [h

(2)
ℓ (kr + δℓ) + h

(1)
ℓ (kr + δℓ)] (33.149)

∼ eiδℓ

2

[
(−i)ℓei(kr+δℓ)

kr + δℓ
+

(+i)ℓe−i(kr+δℓ)

kr + δℓ

]
kr≫δℓ−→ 1

2 [h
(2)
ℓ + e2iδℓh

(1)
ℓ ] ∼ Rℓ .

Now comparing the case V = 0 giving Rℓ(r) = jℓ(kr) with the case V ̸= 0 giving
Rℓ(r) ∼ eiδℓjℓ(kr + δℓ), we notice that a positive displacement, δℓ > 0, pulls the
wavefunction into the potential, while a negative displacement, δℓ < 0, pushes the
wavefunction out, as illustrated in Fig. 33.16.

Figure 33.16: Phase shift δℓ(k) of the scattered wavefunction. (a) An attractive potential
increases the kinetic energy and the wavefunction oscillates faster, which causes a positive
phase shift and a negative scattering length. (b) A repulsive potential slows down the wave-
function oscillation and produces a positive scattering length. (c,d) In an attractive potential
deep enough to support vibrational states, the wavefunction performs several oscillations.
The sign of the scattering length then depends on the distance of the last bound state to
the continuum.
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Table 33.1: List of scattering length for various alkaline species.

Element amixeds atriplets atripletp BFB,s−wave BFB,p−wave
[aB ] [aB ] [aB ] [ G] [ G]

1H 1.23
2H −6.8
6Li −35 160, 186, 215
7Li 10 −27.3

23Na 52 85
39K 118 81.1
40K 158 1.7 −100 200 200
41K 225 286
85Rb −450 −363 156
87Rb 105 109.3 685.43, 911.74, 1007.34
133Cs −240 −350
135Cs 163 138

33.2.6 Optical theorem

Consider the amplitude for forward scattering f(0) by writing its imaginary part as,

Im f(0) = 1
k

∑

k

(2ℓ+ 1)Pℓ(cos θ) sin
2 δℓ
∣∣
θ=0

= 1
k

∑

k

(2ℓ+1) sin2 δℓ ≡
k

4π
σ . (33.150)

With this we obtain the optical theorem,

σ = 4π
k Im f(0) . (33.151)

The deeper meaning of the optical theorem is the conservation of particle number:
The flux of scattered particles, (ℏk/m)σ = Isct, must be extracted from the incident
flux I0 by scattering, and therefore, is missing in the forward direction. It is the
interference of the scattered wave with the incident wave, which diminishes the non-
scattered wave and therefore creates a shadow of the scatterer in the forward direction.
The particles missing in the shadow of the scatterer are precisely those that have been
scattered. This is the message of the optical theorem, which is always valid in the
absence of possible (inelastic) processes leading to trapping or a transformation of the
particles.

33.2.6.1 Born approximation for the scattering phase

The scattering problem can be considered as solved when we know the scattering
amplitude fk(θ), since this quantity gives us the flux measured by the detector. Now,
fk(θ) is known, when we know the scattering phases δℓ,k. These are, in general,
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determined by integrating the radial equation (33.137). Here, we expect that only
angular momenta ℓ < kR0 (R0 is the range of potential) produce significant phase
shifts. Particles with larger angular momenta have collision parameters b ∼ ℓ/k
out of the potential reach. We notice that partial s-waves are always scattered,
whereas partial p-waves (or higher) are only weakly scattered when the energy is
weak, E < ℏ2/2mR2

0. In these cases an approximate calculation of δℓ is sufficient:

We insert (33.136) and eikz =
∑
ℓ
1
2

√
4π(2ℓ+ 1)

∫ 1

−1 dzPℓ(z)e
ikz into (33.121) and

integration over Ω′ yields,

fk(θ) =
2m

4πℏ2

∫

V

e−ik
′·r′V (r′)ψ(r′)d3r′ (33.152)

= − 2m
ℏ2

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)

∫ ∞

0

dr r2V (r)jℓ(kr)Rℓ(r) .

Comparing this formula with (33.144) we find,

eiδℓ sin δℓ = − 2mk
ℏ2

∫ ∞

0

dr r2V (r)jℓ(kr)Rℓ(r)
Rℓ≃jℓ≃ − 2mk

ℏ2

∫ ∞

0

dr r2V (r)j2ℓ (kr) .

(33.153)
The result (33.153) is the Born approximation for the scattering phase δℓ(k). Note
that Rℓ ≃ jℓ is not a good approximation, in ranges where V is large and Rℓ strongly
suppressed (f.ex., inside hard cores). For ℓ large we have jℓ ∼ rℓ, and δℓ is small for
a limited potential V (r).

33.2.6.2 Analyticity of sℓ(E)

We consider a short-range potential that disappears at r > R0. The radial solution
out of the reach of the potential will then be given by,

Rℓ(r) =
1
2 [h

(2)
ℓ (kr) + sℓh

(1)
ℓ (kr)] , (33.154)

while for r < R0 the solution Rℓ must be found by integrating the radial equation
(33.137). The scattering phase sℓ must be chosen in a way that Rℓ and ∂rRℓ be
continuous at R0. The normalization factor vanishes in the logarithmic derivative,
such that,

γℓ ≡ ∂r lnRℓ|R−
0
=

1

Rℓ

∂Rℓ
∂r

∣∣∣∣
R−

0

=
∂rh

(2)
ℓ + sℓ∂rh

(1)
ℓ

h
(2)
ℓ + sℓh

(1)
ℓ

∣∣∣∣∣
R+

0

. (33.155)

Now 9

sℓ − 1 =
2(∂r − γℓ)jℓ
(γℓ − ∂r)h(1)ℓ

∣∣∣∣∣
R0

(33.156)

or with sℓ − 1 = 2i
cot δℓ−i expressing δℓ by γℓ,

cot δℓ =
(∂r − γℓ)nℓ
(∂r − γℓ)jℓ

∣∣∣∣
R0

. (33.157)

9We have for the spherical Hankel functions: h
(1,2)
ℓ (x) = jℓ(x)± iyℓ(x).
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The partial effective cross section is,

σℓ =
4π

k2
(2ℓ+ 1) sin2 δℓ =

4π

k2
2ℓ+ 1

1 + cot2 δℓ
. (33.158)

Analyzing the expressions for sℓ(cot δℓ) and σℓ(cot δℓ) we find that

• for cos δℓ = i the scattering phase sℓ has a pole and σℓ →∞;

• for cos δℓ = 0 the scattering phase is sℓ − 1 and σℓ = 4π(2ℓ+ 1)/k2 is maximal.

The poles of sℓ are just the bound states: A bound state asymptotically satisfies

Rℓ(r) ∼ h
(1)
ℓ (iκr) ∝ e−κr with the binding energy EB = −ℏ2κ2/2m. The condition

of continuity is given by,

γℓ =
∂rh

(1)
ℓ

h
(1)
ℓ

∣∣∣∣∣
R0

, (33.159)

and the insertion into the general continuity condition (33.157) gives,

cot δℓ =
h
(1)
ℓ ∂rnℓ − nℓ∂rh(1)ℓ
h
(1)
ℓ ∂rjℓ − jℓ∂rh(1)ℓ

= i . (33.160)

In the same way the zero crossings of cot δℓ correspond precisely to the scattering
resonances. To see this, we expand around a resonance,

cot δℓ(E) ≃ cot δℓ(Er)−
1

sin2 δℓ

dδℓ
dE

∣∣∣∣
Er

(E−Er) = −
dδℓ
dE

∣∣∣∣
Er

(E−Er) ≡ −
2

Γr
(E−Er) ,

(33.161)

defining the width Γr = 2
∂Eδℓ

∣∣∣
Er

of the resonance peak in the effective section σℓ in

the form,

σℓ =
4π

k2
(2ℓ+ 1)

(Γr/2)
2

(E − Er)2 + (Γr/2)2
. (33.162)

See Fig. 33.17,

sℓ − 1 =
−iΓr

E − (Er − iγr/2)
. (33.163)

The scattering phase δℓ increases by π. The value δℓ(E = 0) gives the number of
bound states, δℓ(0) = nℓligadoπ.

33.2.7 Exercises

33.2.7.1 Ex: Green’s method

Show that, knowing the solution of (33.116), that is, knowing the Green function, we
can write the solution of the scattering problem (33.115) as,

ψk(r) = eik·r + 2m
ℏ2

∫
d3r′G(r− r′, k)V (r′)ψk(r) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_MetodoGreen.pdf
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und einsetzen in die allgemeine Stetigkeitsbedingung (6.62) ergibt

cot δl =
h(1)

l ∂rnl − nl ∂rh
(1)
l

h(1)
l ∂rjl − jl ∂rh

(1)
l

h
(1)
l =jl+inl= i. (6.66)

Ebenso entsprechen die Nullstellen von cot δl gerade den Streuresonanzen:
wir entwickeln um die Resonanz herum,

cot δl(E) ≈ cot δl(Er)−
1

sin2 δl

dδl

dE

∣∣∣∣
Er

(E − Er)

= −dδl

dE

∣∣∣∣∣
Er

(E − Er) (6.67)

↓ mit: Γr =
2

∂Eδl

∣∣∣
Er

≡ − 2
Γr

(E − Er). (6.68)

Damit erhalten wir einen Resonanzpeak der Breite Γr im partiellen Wir-
kungsquerschnitt σl mit der Form

σl =
4π

k2
(2l + 1)

(Γr/2)2

(E − Er)2 + (Γr/2)2
, (6.69)

vgl. Abb. 6.6. Die Streuamplitude sl(E) hat einen Pol in der 2. Riemann-

σ l

(   +1)n

EC

E E

πn

π

lδ

ErrE

Er

Γr
Γr

Γ /2r−i

Abb. 6.6: Resonanzpeak der Breite Γr: Links der Wirkungsquerschnitt σl(E)
und rechts die Streuphase δl(E); in der Mitte ist die Lage des Poles in der
komplexen E-Ebene skizziert.

Ebene der komplexen Energieebene,

sl − 1 =
−iΓr

E − (Er − iΓr/2)
; (6.70)

Figure 33.17: Peak of the resonance of width Γr: (Left) effective cross section σℓ(E), (right)
scattering phase δℓ(E), and (center) scheme of the position of the pole in the complex energy
plane E.

Solution: The solution of the homogeneous equation is just the incident wave and
the solution of the inhomogeneous equation is the scattered wave. To show that this
integral equation is equivalent to the problem (33.115) we define the free Hamiltonian
Ĥ0 ≡ p2/2m and we apply the operator (Ek − Ĥ0) to the integral equation:

(Ek − Ĥ0)ψk(r) = (Ek − Ĥ0)e
ik·r + 2m

ℏ2

∫
d3r′(Ek − Ĥ0)G(r− r′, k)V (r′)ψk(r)

=

∫
d3r′δ3(r− r′, k)V (r′)ψk(r) = V (r)ψk(r) .

33.2.7.2 Ex: Green’s function

Calculate the Green function of the equation (33.116).

Solution: We make a Fourier transform of this equation,
∫
d3re−iq·r(E − Ĥ0)G(q, k) =

∫
d3re−iq·r ℏ2

2mδ(r)

(
E − ℏ2q2

2m

)
G(q, k) = ℏ2

2m

G(q, k) =
ℏ2

2m(E − ℏ2q2/2m)
=

1

2mE/ℏ2 − q2 .

Transforming back,

G(r, k) =
1

(2π)3

∫
d3q

eiq·r

2mE/ℏ2 − q2 =
1

(2π)2

∫ ∞

0

∫ π

0

eiqr cos θ

2mE/ℏ2 − q2 q
2 sin θdθdq

=
1

(2π)2

∫ ∞

0

q2

2mE/ℏ2 − q2
∫ −1

1

eiqrzdzdq =
−1

(2π)2

∫ ∞

0

q2

2mE/ℏ2 − q2
eiqr − e−iqr

iqr
dq

=
−1

ir(2π)2

∫ ∞

−∞

qeiqr

2mE/ℏ2 − q2 dq .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_FuncaoGreen.pdf
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This integral can be solved by the theorem of the residue,

G(r, k) = −e
√
2mEr/ℏ

4πr
.

33.2.7.3 Ex: Rutherford scattering

Consider the scattering of a particle of charge Q by a static charge distribution
ρ(r) = ρ0e

−αr totaling the charge Q′. Derive from (33.136) the formula (22.10)
describing the Rutherford scattering.

Solution: We consider the scattering of a particle of charge Q by a static charge
distribution

∫
ρ(r′)d3r′ = Q′,

Q′ =
∫
ρ0e
−αrd3r = 4πρ0

∫ ∞

0

r2e−αrdr

= −4πρ0
(
r2

α
+

2r

α2
+

2

α3

)
e−αr

∣∣∣∣
∞

0

=
8πρ0
α3

.

Gauss’ law requires, ∇2V = −4πρ(r). Introducing the Fourier transform of the charge
distribution,

ρ̃(q) =

∫
d3re−iq·rρ(r) ≡ Q′F (q) ,

where we defined the form factor F (q) 10. Thus the Fourier transform of Gauss’s law
is,

q2Ṽ (q) = 4πQQ′F (q) .

We calculate [1298],

ρ̃(q) =

∫
d3rρ0e

−αre−iq·r = 2π

∫
r2drd(cos θ)ρ0e

−αre−iqr cos θ = 2π

∫
r2drρ0e

−αr e
−iqr − eiqr
−iqr

=
2π

iq
ρ0

∫
rdre−αreiqr + c.c. =

2πρ0
iq

(
− ∂

∂α

)∫
drei(q+iα)r + c.c.

=
2πρ0
q

(
− ∂

∂α

){
1

q + iα
+ c.c.

}
= 4πρ0

(
− ∂

∂α

)
1

q2 + α2
=

8πρ0α

(q2 + α2)2
.

Therefore,

F (q) =
ρ̃(q)

ρ̃(0)
=

(
α2

q2 + α2

)2

.

Inserting into the equations (33.136) and (33.124) we obtain the effective differential
section in the Born approximation,

dσ

dΩ
=

4m2Q2Q′2

(ℏ2q2)2
|F (q)|2 .

10Always holds F (0) = 1

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_EspalhamentoRutherford.pdf
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This shows that we can use measurements of effective cross sections to determine form
factors and therefore charge distributions.
Particularly for the case α → ∞, when the density distribution describes a point
potential by the form factor F (q) = 1, we get the effective differential cross section,

dσ

dΩ
=

4m2Q2Q′2

(ℏ2q2)2
=

4m2Q2Q′2

(p′ − p)4
=
m2Q2Q′2

4p4 sin4 θ2
,

since p · p′ = p2 cos θ. This is Rutherford’s famous scattering formula. It holds not
only within the Born approximation, but follows from an exact quantum or classical
derivation.

33.2.7.4 Ex: Scattering length for hard-core potentials

Calculate the scattering length for a spherical box barrier and a spherical box poten-
tial as a function of potential depth (see also Excs. 25.1.5.4 and 25.1.5.5 and [1354]).

Solution: Do first for V = 0 introduce dephasing for V ̸= 0, Rℓ(r) =
1
2

[
h
(1)
ℓ (kr) + Sℓh

(2)
ℓ (kr)

]
.

Schrödinger ψ = u
r ,

∂2u
∂r2 ≡ 0 yields for r → 0 u(r) = c(r − as) and for r →∞ yields

u(r) = c′ sin(kr + δ0). Hence, δ0 = −kas hard sphere.

33.3 Cold atomic collisions

Modern techniques developed in the area of atomic optics allow to cool atomic gases
to temperatures well below 1 µK. We use the expansions jℓ ∼ xℓ/(2ℓ + 1)!! and
nℓ ∼ (2ℓ− 1)!!/xℓ+1 in the equation (33.157), and obtain for kR0 ≪ 1,

cos δℓ ≃
2ℓ+ 1)!!(2ℓ− 1)!!

(kR0)2ℓ+1

ℓ+ 1 +R0αℓ(E)

ℓ−R0αℓ(E)
. (33.164)

A coarse approximation leads to

cos δℓ =
cos δℓ
sin δℓ

δℓ≪1≃ 1

sin δℓ
≃ 1

(R0k)2ℓ+1
, (33.165)

that is,
sin δℓ ≃ (R0k)

2ℓ+1 . (33.166)

In other words, the scattering phases decrease rapidly, in the regime of cold collisions,
with increasing ℓ, and ℓ = 0 type collisions dominate,

k cot δ0
αℓ(E)≃αℓ(0)≃ −1 +R0α0(0)

R2
0αℓ(E)

. (33.167)

The s-wave scattering length defined by,

as ≡
R2

0αℓ(E)

1 +R0α0(0)
=

sin δ0
k

(33.168)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_ScatteringLength01.pdf
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then it is the only relevant parameter of the collision. For R0α0 ≫ 1 we find a ≃ R0.
For example, for a hard sphere we have Rℓ(R0) = 0, αℓ = ∞, a = R0 > 0 and
cot δ0 = −1/kR0. For small kR0 we obtain δ0 ≃ −kR0 < 0, which corresponds to
a negative phase shift for the repulsive potential, as expected. The effective cross
section is,

σ0 =
4π

k2
1

1 + cot2 δ0
≃ 4π

k2 + 1/a2s
. (33.169)

In comparison to the effective cross section for higher angular momenta, σℓ ∝ sin2 δℓ
k2

behaves like,

σℓ ∝ R2
0(R0k)

4ℓ → 0 . (33.170)

In contrast, we find that the scattering at low energies has an s-wave character, σ
being dominated by σ0,

σ(E = 0) = 4πa2s . (33.171)

For a hard sphere (a = R0) we find an effective cross section four times larger than
classically expected (σcl = πR2

0).

a
s

V r( )

r

Figure 33.18: The cold collision can be described by a hard core potential.

In summary, for kinetic energies below the centrifugal barrier, only s-wave colli-
sions are significant. The higher-order partial waves are frozen behind the centrifugal
barrier. That is, the energy of cold collisions is not enough to excite a rotational
motion, not even the one with the lowest rotational energy allowed by quantum me-
chanics. Such a collision is called cold collision or s-wave collision.

The relative wavefunction tends asymptotically to ψ(R)
R→∞−→ k−1dB sin [kdB(R− a)] T→0−→

R − a. This means that for temperatures so low that the length of the Broglie wave
of the relative motion is much longer than the potential range k−1dB ≫ Rturning, the
scattering becomes independent of temperature, and the scattering length a becomes
well defined 11

Generally, a repulsive interaction potential corresponds to a positive scattering
length and an attractive potential to a negative one. However, if the attractive po-
tential supports bound states, the value of the scattering length depends on the energy
of the last bound state with respect to the dissociation threshold [1354, 1355].

11At temperatures at which the trajectory of atoms is described by de Broglie waves the only
difference between an atom before and after an elastic collision is the phase shift δ0 of this wave.
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33.3.1 Collision cross section, unitarity regime

Note that the scattering length a may have a value quite different from re, especially
in the presence of a Feshbach resonance. The meaning of universality, |a| ≫ re, is
that short-range properties play no role in the dynamics.

At low temperatures, kre → 0, we have the equation (33.169). In contrast, in the
unitarity limit, k →∞, but re → 0, we have,

σ =
8π

k2
, (33.172)

and the cross section becomes independent of atomic particularities. What the equa-
tion (33.169) says is, that the maximum attainable cross-section is limited to the
smallest of the values 8πa and 8π/k. Even though a(B) can be increased to divergent
values near a Feshbach resonance, for finite collision energies it will never exceed an
effective value aeff = 1/

√
a2 + 1/k2. For a thermal gas, k = ℏ−1

√
2πmkBT , while

for a pure condensate k = 2π/L, where L is the size of the condensate. Therefore,
the effective scattering length can not exceed the size of the condensate. Unitarity

also means that the kinetic energy exceeds the binding energy, kBT ≡ ℏ2k2

2m ≤ ℏ2

2ma2 .

10−2 100 102

T (μK)

10−12

10−10

10−8

10−6

σ
(c
m

2
)

Figure 33.19: (code) Temperature dependence of the collision cross section for various scat-

tering lengths. For higher scattering lengths, the unitarity limit is reached at lower temper-

atures.

The collision rate depends on the density, temperature and collisional cross section
[711],

γcoll.peak =
√
2σelastv̄n0 , (33.173)

γcoll.aver = γcoll.peak/2
√
2 .

Note that at the unitary limit, as v̄ ∝
√
T , we have that σelas ∝ T and n0 ∝ r̄−3 ∝

T−3/2, such that the collision rate is independent of temperature.
At low temperatures, k → 0, the delocalization of the colliding particles is greater

than its short-range structure. This is the Wigner threshold law [1374, 1363]. For
elastic collisions of neutral ground state atoms, the cross section (33.169) becomes
temperature-independent. Thus, the rate coefficient decreases as ⟨σv̄⟩ ∝

√
T , while

the collision rate increases as ⟨σv̄n0⟩ ∝ T−1.
For inelastic collisions, σ ∝ T−1. For three-body collisions see [424].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Unitarity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Unitarity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Unitarity.m
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33.3.2 Collisions between identical particles

We consider collisions of two identical particles. Separating the center-of-mass coor-
dinates, R = r1 + r2, from the relative ones, r = r1 − r2, we see that R is symmetric
and r antisymmetric in r1 and r2. We separate the wavefunction into orbital and spin
parts,

Ψ(x1, x2) = eiP·Rψ(r)χ(s1, s2) . (33.174)

For indistinguishable particles the result of the scattering has the asymptotic form,

ψ(r) ∼ eik·r + f(θ)
eikr

r
. (33.175)

33.3.2.1 Spin 0 bosons

For bosons with spin 0 we have χ = 1 and, because of the symmetry of Ψ, holds
ψ(r) = ψ(−r). Consequently, we must symmetrize the result of the scattering. We
make use of the fact that the exchange of particles via r → −r in polar coordinates
corresponds to the transformation θ → π − θ, r → r,

ψ ∼ (eik·r + e−ik·r) + [f(θ) + f(π − θ)]e
ikr

r
. (33.176)

For the effective differential cross section we obtain,

dσ

dΩ
= |f(θ) + f(π − θ)|2 = |f(θ)|2 + |f(π − θ)|2 + 2Re [f∗(θ)f(π − θ)] . (33.177)

The first two terms are classical. The third (interference) term appears because of
quantum statistics. The angles showing up in (33.177) are illustrated in Fig. 33.20.
For bosons, the interference terms double the cross section as compared to the classical
case, when θ = π/2,

dσ

dΩ
= 4|f(π2 )|2 . (33.178)

314 KAPITEL 12. IDENTISCHE TEILCHEN

Für den differentiellen Wirkungsquerschnitt erhalten wir

dσ

dΩ
= |f(θ) + f(π − θ)|2

= |f(θ)|2 + |f(π − θ)|2︸ ︷︷ ︸
klassische Terme

+2Re [f∗(θ)f(π − θ)].︸ ︷︷ ︸
Interferenzterme

(12.80)

Die Interferenzterme erscheinen als Folge der Teilchen-Statistik. Die in
(12.80) auftretenden Winkel sind in Abbildung 12.5 dargestellt. Durch die
Interferenzterme verdoppelt sich für Bosonen im Fall θ = π/2 der Wirkungs-
querschnitt gegenüber dem klassischen Resultat,

θ =
π

2
:

dσ

dΩ
= 4|f(π/2)|2. (12.81)

θ π − θ

Abb. 12.5: Die Symmetrisie-
rung der Streuwellenfunktion
erzeugt zwei Trajektorien mit
Streuwinkeln θ und π − θ die
kohärent zu addieren sind.

Für eine zentralsymmetrisches Potential V (r) gehen wir zur Partialwellen-
darstellung über,

f(θ) =
∑

l

il(2l + 1)flPl(cos θ)

↓ Pl(cos θ) = (−1)lPl(cos(π − θ))

f(θ) + f(π − θ) = 2
∑

l gerade

il(2l + 1)flPl(cos θ), (12.82)

und finden, dass nur gerade Drehimpulse l vorkommen (für ungerade l wech-
selt das Legendre Polynom das Vorzeichen und die Beiträge vernichten sich
gegenseitig).

Spin-1/2 Fermionen: Im Falle der Spin-1/2 Fermionen sind zwei Fälle
möglich:

Figure 33.20: The symmetrization of the collision wavefunction produces two paths with
angles θ and π − θ, which must be added coherently.

For the isotropic potential V (r) we use the partial wave representation,

f(θ) =
∑

ℓ

iℓfℓPℓ(cos θ) . (33.179)
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With Pℓ(cos θ) = (−1)ℓPℓ(π − cos θ) we get,

f(θ)− f(π − cos θ) = 2
∑

ℓpar

iℓfℓPℓ(cos θ) , (33.180)

and we find that only even angular momenta appear 12

33.3.2.2 Spin 1/2 fermions

In the case of fermions with spin 1
2 two situations are possible 13:

1. The singlet spin state χs =
1√
2
[(| ↑↓⟩−| ↓↑⟩] is antisymmetric and, consequently,

the orbital part,
ψ(r) = ψ(−r) (33.181)

must be symmetric. The cross section is the same as for spin 0 bosons,

dσ

dΩ

∣∣∣∣
s

= |f(θ) + f(π − θ)|2 . (33.182)

2. The triplet spin states,

χs =





| ↑↑⟩
1√
2
(| ↑↓⟩+ | ↓↑⟩)
| ↓↓⟩

(33.183)

require an antisymmetric orbital wavefunction, ψ(r) = −ψ(−r), and we obtain
a scattering amplitude, f(θ)→ f(θ)−f(π−θ), which only contains odd angular
momenta ℓ. With this, the cross section becomes,

dσ

Ω

∣∣∣∣
t

= |f(θ)− f(π − θ)|2 θ=π/2= 0 , (33.184)

Note that polarized fermions only scatter in channels of odd angular momenta:
cold bosonic atoms show a contact potential due to s-wave collisions (33.180)),
polarized fermionic atoms only interact weakly in the p-channel. In the case of
a statistically mixed ensemble of non-polarized fermions we have a the weighted
average,

dσ

dΩ
=

3

4

dσ

Ω

∣∣∣∣
t

+
1

4

dσ

Ω

∣∣∣∣
s

= |f(θ)|2 + |f(π − θ)|2 −Re [f∗(θ)f(π − θ)] . (33.185)

33.3.2.3 Molecular spectra

Here we consider rotational spectra of low energies Erot = ℏ2ℓ(ℓ+1)/2Θ≪ Eeletronico ∼
eV . In slow time scales we can consider the electronic shell to be rigid. We look at
two examples of molecules with bosonic and fermionic nuclei:

12For ℓ odd the Legendre polynomial changes sign, and the contributions vanish.
13This is analogous to the case of helium, where the spatial function of the state 2s2 ↑↑ is always

antisymmetric, but for the 2s ↑ 2p ↑ exist symmetric spatial orbitals.
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• Molecules (C12)2: the nuclei are 0-spin bosons, so only collisions with even ℓ
are allowed.

• Molecules H2: the nuclei are spin-
1
2 fermions, so we have for a spin wavefunction,

χ = χs : ℓ = even, para-hydrogen, χ = χt : ℓ = odd, ortho-hydrogen. (33.186)

The transformation of ortho-hydrogen into para-hydrogen is difficult (the nuclei
being well shielded), such that we observe two types of gases with,

Erot,para = 0,
3

Θ
,
10

Θ
,
21

Θ
, ...Erot,orto =

1

Θ
,
6

Θ
,
15

Θ
, ... . (33.187)

33.3.3 Collisions between hot atoms

Angular moments with ℓ ≤ kR0 should contribute a lot to σ, since the collision param-
eter is inside R0. For a hard sphere we have αℓ = ∞ and cot δℓ = nℓ(kR0)/jℓ(kR0).
With the asymptotic expressions of jℓ and nℓ we obtain cot δℓ ∼ − cot(kR0 − ℓπ/2),
that is, δ∼ − kR0 + ℓπ/2 (+π). With these scattering phases we can calculate the
scattering cross section,

σ ≃ 4π
k2

kR0∑

ℓ=0

(2ℓ+ 1) sin2 δℓ (33.188)

≃ 4π
k2

kR0∑

ℓ=0

(ℓ+ 1) cos2[kR0 − (ℓ+ 1)π/2] + ℓ sin2(kR0 − ℓπ/2)

= 4π
k2

kR0∑

ℓ=0

ℓ(cos2 +sin2) = 4π
k2
kR0(kR0 + 1)

2
= 2πR2

0 , (33.189)

which is the double of the classical value.

33.3.4 Photoassociation during ultracold collisions

Ultra-cold collisions are an interesting example of how light can control the result of
inelastic or reactive collisions. Here we discuss as a specific example the photoasso-
ciation, which illustrates the utility of the dressed states pictures. The upper panel
of Fig. 33.22 shows schematic curves of (bare) potentials relevant to our discussion.
Two atoms in the ground state form a relatively shallow molecular ground state char-
acterized by electrostatic dispersion

V1(r) = −
C6

R6
. (33.190)

or long-range van der Waals potential. Two other molecular states arise from the
interaction of an excited atom with the ground state atom. The predominant term of
the interaction is the potential of resonant dipole-dipole interactions,

V2,3(r) = −∓
C3

R3
. (33.191)
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Figure 33.21: (a) Bound state for ℓ = 0. (b) Bound state for ℓ > 0 in a potential including
the centrifugal barrier ℏ2ℓ(ℓ+1)/2mr2. (c) Resonances for ℓ = 0 are broad and possibly not
defined with Γr > Er. A defined resonance with Γr < Er requires that |∂Eα0| be large. (d)
For ℓ > 0 we obtain narrow resonances called shape resonances, because the decay of the
state is suppressed by the centrifugal barrier.

which gives rise to an attractive and a repulsive potential. The R−3 dependence of the
resonant dipole interaction means that the associated potentials greatly modify the
asymptotic level even at internuclear distances where the ground state van der Waals
potential is still relatively shallow. The photoassociation process involves a slow ap-
proach of two identical ground state atoms. A mono-modal optical field, tuned to the
red of the atomic resonance, is applied. When the two atoms reach an internuclear
distance RC such that the energy of the applied field ℏωC exactly coincides with the
potential difference V2(Rc)− V1(Rc), the probability of transferring population from
the fundamental molecular state to the excited molecular state is maximal. This
molecular resonance is sometimes called Condon point. The conventional way of cal-
culating this probability follows the procedure elaborated in Sec. ?? for a two-level
atom. First, we would solve the time-independent molecular Schrödinger equation
to obtain the molecular wavefunctions. Then, write down the coupled differential
equations by describing the time dependence of the expansion coefficients of the rel-
evant molecular wavefunctions, solve for the coefficients and calculate the square of
their absolute values. Finally, we would need to integrate the transition probability
inside a region ∆R around the Condon point, where the transition probability is not
be negligible. The dressed states picture allows to reduce this rather laborious pro-
gram, essentially, to a problem of a curve crossing of two levels. The bottom panel
of Fig. 33.22 illustrates the photoassociation in the dressed states picture. The basis
states are now product states made up of the field and the molecular levels. Further-
more, we approximate the molecular states themselves as products of atomic states.
This approximation is justified by the long range, weakly perturbative influence of
the van der Waals and resonant dipoles interactions. Calling the ground and excited
states |1⟩ and |2⟩, respectively, we have

|1, n⟩ = |1∥1⟩|n⟩ , (33.192)



33.3. COLD ATOMIC COLLISIONS 1695

and for the field-molecule excited state

|2, n− 1⟩ = |2∥1⟩|n− 1⟩ . (33.193)

The two molecular curves intersect at the Condon point and optically couple to the
applied field. This optical coupling produces an avoided crossing near RC and mixes
the states of the molecule-field basis. The well-known Landau-Zener formula (LZ)
expresses the probability of traversing from one adiabatic molecular state to another
as a function of the interaction strength, the relative velocity of the collision partners,
and the relative slopes of the two curves. The probability of LZ is given by,

exp
2π⟨1, n|Ω2 |2, n− 1⟩
v
∣∣ d
dR∆V12(RC)

∣∣ , (33.194)

where v is the relative radial velocity of the approaching particles and d
dR∆V12(RC)

is the difference of slopes of the two non-interacting potentials at the Condon point.
The dipole-field interaction operator Ω must be taken with the dipole of the molecular
transition. A reasonable approximation is to take the moment of molecular transition
as twice the atomic moment and average over the whole space. The result is,

exp

2π√
3
⟨1, n|Ωat|2, n− 1⟩
v
∣∣ d
dR∆V12(RC)

∣∣ , (33.195)

where Ωat denotes the atomic operator of the dipole-field interaction. In the case of

a crossing of an essentially flat potential V1 and V2(R) = −C3

R

3
, the absolute value of

the derivative of the slope difference is,

∣∣ d
dR∆V12(RC)

∣∣ = 3C3

R3
C

. (33.196)

Resolve Exc. 33.3.13.1.

Figure 33.22: (Above) Molecular states resonantly coupled by a light field at the Condon
point. (Below) Same coupling of the molecular states represented by an avoided intersection
in the dressed states basis.
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33.3.5 Ground state collisions

33.3.6 Hyperfine structure

We consider the scheme (32.90), we set lj = 0, and concentrate on s-waves, ℓ = 0,

s1 + s2 = S
ẑ−→ Ω

+ + +

i1 + i2 = I

= = =

f1 + f2 = f

(33.197)

At short distances the coupling ((S, I)f1, f2)f breaks up and a ((s1, s2)S, I)f coupling
emerges. This does not hold for fully stretched spin states f1 + f2 = f , because f
is a good quantum number at all distances (and small enough magnetic fields). In
contrast mf is a good quantum number at all distances and at all fields.

In order to obtain the potentials coupled by hyperfine interaction, we first calculate
for a single vibrational level the relative wavefunctions |ψ(f1,f2)f (R)⟩ from the known
perturbed but uncoupled potentials V (R) + Vhf , where,

Vhf = hahf,1s1·i1 + hahf,2s2·i2 . (33.198)

The antisymmetric part is negligible [1339], so that Vhf ≃ 1
2hahf,1S · i1+ 1

2hahf,2S · i2.
Then couple the channels via,

|ψ(S,I)f (R)⟩ = A
∑

f1,f2

√
ŜÎ f̂1f̂2





s1 s2 S

i1 i2 I

f1 f2 f




|ψ(f1,f2)f (R)⟩ (33.199)

|ψ(f1,f2)f (R)⟩ = A−1
∑

S,I

√
ŜÎ f̂1f̂2





s1 s2 S

i1 i2 I

f1 f2 f




|ψ(S,I)f (R)⟩ .

which satisfies the orthogonality relation (see Tables in 28.2).

33.3.7 Scattering length in specific channels

The scattering length in specific channels can be expressed via singlet and triplet
scattering length,

a|f1,mf1⟩+|f2,mf2⟩ = PS=0as + PS=1at . (33.200)

The projectors are PS = |⟨S|(f1f2)f⟩|. According to [213] or [889] the recoupling
from the uncoupled hyperfine representation into the short range representation is
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given by,

⟨SmS ImI ℓ
′mℓ′ |f1mf1 f2mf2 ℓmℓ⟩ = δℓℓ′δmℓm′

ℓ

∑

f,mf

⟨SmS ImI |fmf ⟩⟨f1mf1 f2mf2|fmf ⟩×

(33.201)

×





s1 s2 S

i1 i2 I

f1 f2 f





√
ŜÎ f̂1f̂2

(
1− (1− δf1f2)(−1)S+I+ℓ√

2− δf1f2

)
.

The last bracket is dropped for unsymmetrized recoupling. Calculations have been
done for 87Rb collisions and for 6Li87Rb collisions. It turns out that the fully stretched
states have pure triplet character.

Note that in strong magnetic fields the coupling (i1, i2)I easily breaks up, and the
recoupling to be considered is rather ⟨SmS mi1 mi2 ℓ

′mℓ′ |f1mf1 f2mf2 ℓmℓ⟩.

33.3.8 Hyperfine coupling in magnetic fields

33.3.8.1 Zeeman splitting of bound states

The splitting of the bound state is described by [1339],

H+
int = V +

hf + VZeeman (33.202)

= EB +
1

2
hahf,1S · i1 +

1

2
hahf,2S · i2 + µBB(gSS+ g1i1 + g2i2) ,

such that,

⟨m′i1m′i2m′S |Hhfs +HB |mSmi2mi1⟩ (33.203)

= EB + (gSmS + gi1mi1 + gi2mi2)µBBδm′
i1 mi1

δm′
i2 mi2

δm′
S mS

+ 1
2h(ahf,1mi1mS + ahf,2mi2mS)δm′

i1 mi1
δm′

i2 mi2
δm′

S mS

+ 1
4hahf,1(i1,+S−δm′

S mS+1δm′
i1 mi1−1 + i1,−S+δm′

i1 mi1−1δm′
S mS+1)δm′

i2 mi2

+ 1
4hahf,2(i2,+S−δm′

S mS+1δm2 mi2−1 + i2,−S+δm′
i2 mi2−1δm′

S mS+1)δm′
i1 mi1

.

For an example on how to evaluate the matrix at various magnetic fields and obtain
the hyperfine structure of a bound state in the Zeeman and the Paschen-Back regime,
we propose the systems 6Li23Na and 6Li87Rb.

33.3.8.2 Magnetic dipole interaction

Reads,

Vdd =
µ0

4πR3
[µ1 · µ1 − 3(µ2 ·R)(µ2 ·R)] (33.204)

neglecting nuclear spin.

33.3.8.3 Second-order spin-orbit interaction

First-order spin-orbit interaction disappears for ground state collisions. But second-
order spin-orbit interaction may occur. These lead to inelastic losses (see next sec-
tion).
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33.3.8.4 Selection rules

The selection rules for bosonic homonuclear collisions are,

S = 0, .., s1 + s2 (33.205)

I = 0, .., i1 + i2

fj = |ij − sj |, .., ij + sj

|I − S| ≤ F ≤ I + S

|f1 − f2| ≤ F ≤ f1 + f2

(−1)I = (−1)S for all F

(−1)f1 = −(−1)f2 for all odd F .

What does they look like for fermions? What does they look like for heteronuclear
collisions?

33.3.9 Inelastic collisions

33.3.9.1 Spin changing collisions

These have their origin in spin exchange and spin dipole-dipole processes. Spin
exchange occurs when the colliding electronic clouds overlap. At short distances
the ((S, I)f1, f2)f breaks up and a ((s1, s2)S, I)f coupling remixes, as shown in
Exc. 32.3.5.1. Hence, collisions between atoms |f1,mf1⟩|f2,mf2⟩ are subject to
spin exchange induced by coupling of the spin states via the exchange interaction,
e.g. |2, 1⟩|2, 1⟩ → |2, 2⟩|2, 0⟩. Typical exchange rates are on the order of 10−10 cm3/s.

Since f is a good quantum number at all distances (for B = 0), spin exchange
processes conserve ℓ and f . Hence, the fully stretched spin states f1 + f2 = f cannot
decay into other states, except by higher-order processes, such as dipolar relaxation.
Consequently, the relaxation rates for |2, 2⟩+ |2, 2⟩ or |1,−1⟩+ |1,−1⟩ states are only
on the order of 10−15 cm3/s.

The cross section for inelastic spin exchange collisions is [1367, 296],

σ =Mifπ(at − as)2 , (33.206)

where,

Mif =


 ∑

mS ,I,mI

(CS=0C
′
S=0 − CS=1C

′
S=1)



2

(33.207)

C = ⟨S,mS ; I,mI |F1m1;F2m2⟩ .

See also [1207]. The reason for the above dependence can be understood as follows.
as and at determine the energy of the last bounds states of the singlet and triplet
potentials. The more those energies are different, the stronger the coupling ∝ |Et −
Es|−1. An alternative, physical picture is given in [215].
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33.3.9.2 Dipolar relaxation

The fully stretched spin states, such as 87Rb |f = 2,mf = 2⟩ are expected to be quite
stable. However, relativistic effects (retardation?) (and 2nd order spin-orbit coupling)
break the degeneracy of the molecule-fixed projection |Ω| = 0, 1 of the 3Σ potential
[889]. When the atoms approach their spins recouple, i.e. from [(s1, i1)f1 , (s2, i2)f2]f
towards [(s1, s2)s , (i1, i2)i]f as described by the 9j coefficients Eq. (33.197). Due to
the symmetry of the problem, f and its projection mf are good quantum numbers
at all distances. However, if there is a higher-order admixture of the orbit lj , the
symmetry is broken, and the quantum number depends on the coupling schemes.
Consequently, transitions between differentmf become possible, i.e. dipolar relaxation
may change f , mf or ℓ = 0, e.g. a collision can be s-wave in the entrance and d-wave
in the exit channel.

33.3.9.3 Three-body collisions

The trapped low-field seeking alkali gases are metastable versus 3-body recombination.
3-body recombination is the combination of two colliding atoms to a dimer in presence
of a third atom receiving the excess energy as kinetic energy and results in trap loss
of the molecule and of the atom. They are suppressed as the gas gets more and
more dilute since the rate goes like n3. There might be interesting 3-body resonance
phenomena like the Efimov state predicted for Helium droplets [407], [801] and recently
seen in experiment [750, 1267, 186, 828].

3-body recombination is in contrast to the more controlled way of creating molecules
via photoassociation or coherent free-bound coupling.

Ultracold collisions are crucial for BEC. They provide the thermalizing elastic
collisions necessary for evaporative cooling, they are the cause for the condensate
self-energy and give rise to nonlinearities in the condensate dynamics. But they
are also interesting by themselves. The spectrum of two-body collisions exhibits
interesting features like shape- and Feshbach resonances [300, 648]. Their analysis
facilitates detailed conclusions on the nature of the interaction potentials. Three body
collisions are important to investigate, because they constitute a decay mechanism of
the intrinsically metastable system that represents a trapped Bose-gas.

Three body collisions are not a quantum statistical effect and don’t require the
presence of a BEC, but they occur only at very high densities comparable to those
necessary for BEC. It should be possible to detect them in photoassociation (PA)
spectra. Photoassociation provides a tool to explore the level structure of excited
states by shining in a laser with frequency ν tuned between the colliding channel
and a vibrational bound level of the excited state potential. Since the excited state
preferentially decays into the continuum, where the atoms have high kinetic energy,
the transition rate may be monitored via trap losses. Or we can shine in an additional
laser that further excites the excited atoms into the ionized continuum where they
can be registered by an ion detector.

Three-body photoassociation processes should reveal themselves by additional
lines in the two-body photoassociation spectra. Those lines should only appear at
very high densities and their strength should scale as the density cubed,

Rb+Rb+Rb+ hν → Rb∗3 . (33.208)
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33.3.9.4 Other processes

Majorana spin flips and collisions involving higher partial waves ℓ can eventually lead
to spin relaxation. In Eq. (32.90) we see that f is not necessarily a good quantum
number in contrast to F , |2, 2⟩|2, 2⟩ → |2, 1⟩|2, 0⟩+Erot. However, the particles must
tunnel across the centrifugal barrier, which sets temperature constraints.

33.3.9.5 Collisions between fermions

Very cold three-body collisions are suppressed for fermions, because two of them
necessarily must have the same quantum state, which violates the Pauli exclusion
principle. This is useful for employing Feshbach resonances to form molecular BECs
made of fermions.

33.3.10 Excited states collisions

33.3.10.1 Adiabatic potentials

We consider the scheme (32.90), we set I = 0, and we concentrate on s-waves, ℓ = 0,

l1 + l2 = L
ẑ−→ Λ

+ + + +

s1 + s2 = S
ẑ−→ Σ

= = = =

j1 + j2 = j
ẑ−→ Ω

(33.209)

The spin-orbit interaction splits the potential curves. The recoupling is described by,

|ψ(L,S)j(R)⟩ ∼
∑

j1,j2

√
L̂Ŝj1j2





l1 l2 L

s1 s2 S

j1 j2 j




|ψ(j1,j2)j(R)⟩ . (33.210)

33.3.10.2 Homonuclear collisions

Let us consider the example of the fine structure in homonuclear 87Rb collisions.
Without hyperfine, rotational and Zeeman splitting the recoupling goes like illustrated
in Fig. 33.23.

From Fig. 33.23 we see that the molecular states are remixed at long range: Every
state 0−g , 0

−
u , 0

+
g , 0

+
u , 1g, 1u, 2g, 2u has several molecular states to which it connects,

e.g. 0−g connects within the fine structure to (2)3Σ+
g and (2)3Πg. Those multiplets

form a closed interacting subspace. According to Movre and Pichler [930, 1305] we
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Figure 33.23: Movre coupling scheme.

get with ∆ = E(2P3/2)− E(2P1/2) =
3
2Aso,

0−σ =

(
E(3Πσ)− 1

3∆
√
2
3 ∆

−
√
2
3 ∆ E(3Σ+

σ )

)
, 0+σ =

(
E(3Πσ)− 1

3∆ −
√
2
3 ∆

−
√
2
3 ∆ E(1Σ+

σ )

)

(33.211)

1σ =



E(3Πσ)

1
3∆ − 1

3∆
1
3∆ E(1Πσ) − 1

3∆

− 1
3∆ − 1

3∆ E(3Σ+
σ )


 , 2σ =

(
3Πσ

)
.

At short range the potentials approximately go like,

E(1Σ+
g ), E(3Σ+

u ) ∝ 2C3/R
3 (33.212)

E(1Πu), E(3Πg) ∝ C3/R
3

E(1Πg), E(3Πu) ∝ −C3/R
3

E(1Σ+
u ), E(3Σ+

g ) ∝ −2C3/R
3 .

Inserting the short range potentials and defining X = σC3/3∆R
3, Y = E/∆ and
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σ = + for g and − for u,

0−σ =

(
3X + 1

3

√
2
3√

2
3 −6X + 2

3

)
, 0+σ =

(
3X + 1

3

√
2
3√

2
3 6X + 2

3

)
(33.213)

1σ =



3X + 1

3
1
3 − 1

3
1
3 −3X + 1

3 − 1
3

− 1
3 − 1

3 −6X + 2
3


 , 2σ = (3X + 1) .

Note that the structure looks very much like the transition from the Zeeman to the
Paschen-Back regime, where X plays the role of the magnetic field and Y the level
shift. The characteristic equations are,

Y 2 − (1− 3X)Y − 18X2 = 0 for 0−σ

Y 2 − (1 + 9X)Y + (4X + 18X2) = 0 for 0+σ

Y 3 + (−2 + 6X)Y 2 + (1− 8X − 9X2)Y + (2X + 6X2 − 54X3) = 0 for 1σ

Y − (1 + 3X) = 0 for 2σ
(33.214)

33.3.11 Heteronuclear collisions

For a collision in the channel 6Li P 87Rb S we get the {9j}-symbol,





l6 l87 L

s6 s87 S

j6 j87 j





=





0 1 1
1
2

1
2 S

1
2 j87 j → Ω





. (33.215)

We thus expect a fine structure j87 = 1
2 ,

3
2 at long range and exchange interactions

S = 0, 1 at short range. For the projection onto the internuclear axis |L− S| ≤ Ω ≤
L+ S.

Let Vk(R) be the uncoupled potentials and,

∆kl(R) = Dkl +Akl

(
[1− e−Bkl(R−Rkl)]2 − 1

)
(33.216)

the spin-orbit functions modeled as Morse potentials, where Dkl is related to the

fine-structure splitting, Dkl =
1
3 (Ek − El), for diagonal and, Dkl =

√
2
3 (Ek − El), for

off-diagonal elements. For heteronuclear molecules like 6Li87Rb we have matrices like
[129, 128],

H |3Σ+⟩ |3Π⟩ |1Σ+⟩ |3Π⟩ |3Σ+⟩ |1Π⟩ |3Π⟩ |3Π⟩

⟨3Σ
+

Ω=0−
| V (3Σ) ∆cb

√
2

⟨3Π
Ω=0−| ∆cb

√
2 V (3Π) − ∆bb

⟨1Σ
+

Ω=0+
| V (1Σ)(−2∆bb) −∆bb

⟨3Π
Ω=0+

| −∆bb V (3Π)
(
+∆bb

)

⟨3Σ
+
Ω=1

| V (3Σ) ∆cB ∆cb
⟨1ΠΩ=1| ∆cB V (1Π) −∆bB
⟨3ΠΩ=1| ∆cb −∆bB V (3Π)

⟨3ΠΩ=2| V (3Π) + ∆bb

(33.217)
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Figure 33.24: Movre type spin-orbit recoupling scheme for heteronuclear molecules.

for every fine structure. For example, there is a matrix for the two 6Li S1/2
87RbP1,3/2

asymptotes and another one for the 6Li P1/2,3/2
87Rb S1 asymptotes. Additional

terms enter via rotational effects [129].
Concretely,

∆bb(R→∞) =
1

3
(E3/2 − E1/2) (33.218)

∆cB(R→∞) =
1

3
(E3/2 − E1/2)

∆bB(R→∞) =
1

3
(E3/2 − E1/2)

∆cb(R→∞) =
1

3
(E3/2 − E1/2) .

33.3.11.1 Inelastic trap losses

Between ground and excited states fine changing collisions and radiative escape are
possible. Between two ground states only hyperfine changing collisions may occur.

The nature of the collision process, whether it is a one- 14, two-, or three-body
collision, reveals itself via the temporal behavior of trap losses. Using the abbrevia-

14By one-body collision we mean collisions with atoms of the background gas.
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Figure 33.25: (code) Adiabatic potentials.

tion,

⟨η⟩ ≡ 1

N

∫
η(r)n(r)d3r , (33.219)

we can write the loss rates due to inelastic one-, two-, and three-body collisions,

B⟨1⟩N , K⟨n⟩N , L⟨n2⟩N . (33.220)

the prefactors depend on the collision velocity (that is, the temperature of the sample)
and atomic parameters (for example, the collision cross section for two-body collisions,
which may itself depend on temperature). Hence, the total number of trapped atoms
evolves according to,

Ṅ = −B⟨1⟩N −K⟨n⟩N − L⟨n2⟩N . (33.221)

Assuming a gaussian density distribution,

n(r) =
N

(2π)3/2r̄3
e−r

2/2r̄2 , (33.222)

we calculate,

Ṅ = −BN − K

(4π)3/2r̄3
N2 − L

33/2(2π)3r̄6
N3 . (33.223)

Fig. 33.26 shows a simulation of Eq. (33.223).
For condensates in the Thomas-Fermi limit [1227] found the following differential

equations for two- and three-body collisions,

Ṅ

N
= −Gc2N2/5 − 1

τ
and

Ṅ

N
= −Lc3N4/5 − 1

τ
. (33.224)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbPotentialAdiabatic.m
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Figure 33.26: (code) One-, two-, and three-body losses.

33.3.12 Heteronuclear electric dipole moment

The electric dipole moment of a dimer is highest for big mass difference, as in the case
of LiRb and for low vibrational quantum number [744, 63]. The electric dipole moment
determines the rate for spontaneous and black-body radiation, n̄ = (e−βℏω − 1)−1,
induced transitions between rovibrational states [745], Γtotvlm = Γspntvlm + Γbbvlm. With
the transition rate between individual levels,

Γαvlm→v′l′m′ =
8π

3

ω3

hc3
|⟨|d|⟩|2 , (33.225)

we can estimate the rates for spontaneous emission,

Γspntvlm =
∑

v′l′m′
Γemvlm→v′l′m′ , (33.226)

and for black-body radiation,

Γbbvlm =
∑

v′l′m′

n̄Γemvlm→v′l′m′ +
∑

v′′l′′m′′

n̄Γabsvlm→v′′l′′m′′ . (33.227)

Note that selection rules require |l − l′| ≤ 1 and |m−m′| ≤ 1, rotational transitions
are inhibited by small ω3, spontaneous emission is high for intermediate levels for
which on one hand ω3 is large enough and enough final states are available.

From calculations of the R-dependence of the electric dipole moments [63] the
dipole moment of a specific vibrational state is easily estimated from,

d =

∫
ψ(R)Rψ(R)dR∫
ψ(R)ψ(R)dR

. (33.228)

In electric fields the dipole moments will lead to Stark shifts. For |d| = 1 Debye
in a field of 1 V/m we expect a Stark shift of HStark ≈ 500 kHz. It may be possible
to measure this by photoassociation spectroscopy. Note also that since homonuclear
dimers do not have a permanent electric dipole moment, transitions between vibra-
tional ground states are forbidden.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_InelasticLosses.m


1706 CHAPTER 33. COLLISIONS

10 20 30

R (aB)

-0.02

-0.01

0

V
(a
.u
.)

10 20 30

R (aB)

-6

-4

-2

0

d
ip
ol
e
m
om

en
t

(D
eb
y
e)

0 50

N

-6

-4

-2

0

d
ip
ol
e
m
om

en
t

(D
eb
y
e)

Figure 33.27: (code) (a) Dipole moment at the example of LiRb as a function of interatomic

distance. (b) Dipole moment at the example of LiRb as a function of vibrational quantum

number.

33.3.13 Exercises

33.3.13.1 Ex: Photoassociation

Consider a laser focused into a cold, confined cloud of Na atoms at a temperature of
450 µK. For a detuning of 600 MHz, calculate the laser intensity (in W/cm2) required
to produce a 25% probability of photoassociation. The transition moment (a.u.) of
Na is 2.55.

Solution:

33.3.13.2 Ex: Vibrational structure of LiRb

Calculations of the vibrational structures of several ground states of the heteronuclear
molecule LiRb.

Solution: LiRbPotential 1Sigma:
LiRbPotential 3Sigma:
LiRbPotential 1Pi:
LiRbPotential 3Pi:
LiRbPotential 13Delta:
LiRbStatesAdiabatic: Long-range interaction of Li with Rb, splitting at collision,
Hunds Fall (c) via [Movre77].
LiRbStatesCompare: Compares ab-initio and fitted potentials.
LiRbStatesCoupledChannels: Fourier grid for solving a LiRb potential and mean dis-
tance.
LiRbStatesDipolemoment: R-dependent dipolemoment approximated from [Aymar05].
LiRbStatesFit: Fits adapted curve to ab-initio potential.
LiRbStatesFourierGrid: Fourier grid method for a specified LiRb potential.
LiRbStatesFranckCondon: Franck-Condon overlap for a specified LiRb potentials.
LiRbStatesOpenChannel: Finds wavefunction of open channel.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbDipolemoment.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbDipolemoment.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_LiRbDipolemoment.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_PhotoAssociation.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomicMolecular/Sol_AM_Collision_.pdf


33.3. COLD ATOMIC COLLISIONS 1707

LiRbStatesPlot: Plots heteronuclear potentials [Korek00].
LiRbStatesRecouplingHfs: Recoupling due to hyperfine coupling by recoupling wave-
functions using 9j-coefficients.
LiRbStatesRecouplingHfs2,3: Recoupling due to hyperfine coupling by recoupling po-
tentials using 9j-coefficients.
LiRbStatesRecouplingSo: Recoupling due to spin-orbit coupling using 9j-coefficients.
LiRbStatesSolve: Single eigenvalue and eigenstates in a given intervall.
LiRbStatesSpectrum: Complete eigenspectrum.
LiRbStatesSymb9jTest: Tests correctness of 9j-routine (not ready).
LiRbStates 9j: Subroutine returns 9j-coefficients.
LiRbStates 9jHfs: Subroutine returns 9j-coefficients put together as a matrix.
LiRbStates Dipole: Subroutine loads R-dependence of dipole moment.
LiRbStates DGl: Subroutine calculates wavefunction.
LiRbStates Fit: Subroutine fits adapted curve to ab-initio potential.
LiRbStates Grid: Subroutine returns wavefunction matrix using Fourier grid method
for a specified LiRb potential.
LiRbStates GridV: Subroutine like LiRbStates Grid but the potential is provided by
the main program.
LiRbStates Lbl: Subroutine returns nomenclature of a potential.
LiRbStates Par: Subroutine gets parameter of specified LiRb potential.
LiRbStates Pot: Subroutine gets specified LiRb potential.
LiRbStates Rot: Subroutine finds rotational constant, simple.
LiRbStates RotW: Subroutine finds rotational constant, correct.
LiRbStates Trn: Subroutine finds turning point.
LiRbStates Vib: Subroutine counts vibrational quantum number and determines scat-
tering length.
LiRbStates Zeeman: Subroutine generates matrix for hyperfine splitting of LiRb ground
state potentials.
LiRbStates Zeeman2: Subroutine generates matrix for hyperfine splitting of LiRb
ground state potentials.
LiRbScatteringLength: Finds scattering length for a given potential [Weiss00].
LiRbScatteringLength DGl: Subroutine for Runge-Kutta integration.
LiRbScatteringLength2: Finds scattering length for a given potential [Marinescu99].
LiRbScatteringLength2 DGl: Subroutine for Runge-Kutta integration.
LiRbScatteringLength2 Cs: Subroutine for Cs reference potential.
LiRbScatteringVolume: Finds scattering length for a given potential [Ouerdane04].
LiRbScatteringVolume DGl: Subroutine for Runge-Kutta integration.
LiRbMappedGrid: Mapped Fourier grid procedure.
LiRbMappedGrid2,3: Mapped Fourier grid procedure for coupled channels.
LiRbMapped Couple: Subroutine for mapped Fourier grid for coupled channels with
settable coupling.
LiRbWavefunctionWKB: Radial wavefunction at all interatomic distances for the
groundstate potential.
RbPotentialAdiabatic: Long-range interaction of two 87Rb atoms, splitting at colli-
sion, Hunds Fall (c) via [930].
RbPotentialAdiabatic2: Long-range interaction of two 87Rb atoms, splitting at colli-
sion, Hunds Fall (c) via [930].
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33.4 Resonances in cold collisions

33.4.1 Shape resonances

The ’centrifugal’ term can give rise to repulsive walls for attractive potentials. Be-
hind these walls, quasi-bound states can develop and give rise to collision resonances.
That is, resonances emerge in the collision cross section as a function of the collision
temperature called shape resonances.

33.4.2 Feshbach resonances

The so-called Feshbach resonance is due to an energetic match between a collision
channel and a bound molecular state [441, 1301, 1302, 906, 435, 907, 1340]. They
allow to vary the scattering length as almost arbitrarily from zero, where the atomic
cloud turns into an ideal gas, up to values exceeding the total size of the cloud.

Figure 33.28: Classical illustration of a scattering resonance.

The impact of a Feshbach resonance can be understood as a perturbation of the
collisional channel leading to a modification of the depth of the scattering potential.
When this leads to the promotion of one more vibrational state into (or from) the
continuum, this obviously leads to a dramatic modification of the scattering length
as

15

Let us consider two very cold atoms colliding on an attractive interatomic potential
V (R) (see Fig. 33.29,right). At long distances the relative wavefunction is a sine
characterized by the Broglie wave vector kdB . As the atoms approach each other, they
mutually accelerate, and the Broglie wave performs some small and rapid oscillations
within the potential. The number of nodes of the wavefunction within the potential
corresponds to the number of bound vibrational levels that the potential with a given
depth can support. The scattering length as is defined as the phase slip, which the
Broglie wave would acquire during the collision at the boundary kdB →∞.

With the possibility of gradually decreasing the depth of the molecular potential,
at some point the last state below the ionization threshold goes to the continuum of

15Note that the divergence of the scattering length is an artifact of the hard core approximation,
that is, the regularization of the interaction potential, since the matrix T by itself does not diverge.
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Figure 33.29: (a) The Feshbach resonance is due to a coincidence of collisional and bound
channels. (b) Feshbach resonance in 85Rb. The atoms collide in the hyperfine state F = 2,
and the resonant bound state is in the F = 3 multiplet (courtesy [300]).

unbound states, the wavefunction decreases the number of nodes by one unit, while
the scattering cross section crosses a singularity. In fact, the potential V (R) can be
manipulated with the help of radiation fields [435, 161, 907] or, near a collisional Fes-
hbach resonance, by magnetic fields [1302, 1303]. Feshbach resonances were predicted
in nuclear systems [441]. Its recent revival in the context of cold atomic collisions
is due to the prospect of its use for manipulating the scattering length and thus
controlling the mean-field energy of a Bose-Einstein condensate 16
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Figure 33.30: (code) (a) Scattering length and (b) collision cross section upon crossing a

Feshbach resonance. The scattering length can be positive (solid red line) or negative (dashed

blue line). A movie on a simulation of a Feshbach resonance can be watched here (watch

movie).

The collisional Feshbach resonance arises when the energy of the state of two
colliding atoms coincides with the energy of a vibrational molecular level belonging
to a higher energy asymptote (see Fig. 33.29,right). This coincidence can strongly
perturb the collisional channel, because the resonance shifts the phase of the relative
de Broglie wavefunction and allows the atoms to tunnel into the molecular state

16It is even possible to invert the sign of the scattering length. This was a prerequisite for conden-
sation of the atomic species of 85Rb [1109]. In addition, Feshbach resonances are interesting because
they can install a coherent free-bound coupling between an open-channel of colliding atoms and a
bound molecular state of the same atoms, as shown in Fig. 33.29. This coupling can lead to the
creation of molecular condensates.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AM_Collision_TuneScattlengthSimul_Movie.avi
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomicMolecular/AM_Collision_Feshbach.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AM_Collision_TuneScattlengthSimul_Movie.avi
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for a short period of time, the duration of which is determined by the Heisenberg
uncertainty relation. If the sum of the magnetic dipole moments of the atoms is
different from the dipole moment of the molecule, the resonance can be tuned via
external magnetic fields exploring the Zeeman effect. When a Feshbach resonance is
crossed, the scattering length crosses a singularity, as shown in Fig. 33.30(left) 17.

33.4.2.1 Theory of Feshbach resonances

Feshbach resonances [441, 1301, 1302, 906, 435, 907, 1340] result from a coherent
coupling between a collisional channel of free atoms and a quasi-bound molecular
state. To describe this phenomenon, we first consider a global state consisting of two
states located in the subspace of the open channel P and the closed channel Q,

|Ψ⟩ = |ΨP ⟩+ |ΨQ⟩ , (33.229)

with |ΨP ⟩ = P̂ |Ψ⟩ and |ΨQ⟩ = Q̂|Ψ⟩. The projection operators P̂ and Q̂ satisfy the
conditions,

P̂ + Q̂ = 1 and P̂ Q̂ = 0 . (33.230)

Hence, P̂ 2 = P̂ and Q̂2 = Q̂. Applying P̂ to the Schrödinger equation

Ĥ|Ψ⟩ = E|Ψ⟩ (33.231)

and using the above equations, we get,

(E − ĤPP )|ΨP ⟩ = ĤPQ|ΨQ⟩ and (E − ĤQQ)|ΨQ⟩ = ĤQP |ΨP ⟩ , (33.232)

where we defined ĤAB ≡ ÂĤB̂. This equation can be rewritten,

|ΨQ⟩ = (E − ĤQQ)
−1ĤQP |ΨP ⟩ . (33.233)

Replacing this within the first Eq. (33.229),

(E − ĤPP − Ĥ ′PP )|ΨP ⟩ = 0 with Ĥ ′PP = ĤPQ(E − ĤQQ)
−1ĤQP . (33.234)

The term Ĥ ′PP can be interpreted as an effective interaction mediated by a transition
from space P to Q and back to P .

The Hamiltonian of the open channel consists of a part Ĥ0 describing the two indi-
vidual atoms including their Zeeman interactions with a magnetic field, and another
part for the interaction between the two atoms V̂1. With the effective interaction
potential through the bound channel V̂2 ≡ Ĥ ′PP , we have,

(E − Ĥ0 − V̂1 − V̂2)|ΨP ⟩ = 0 . (33.235)

Now ...
Doing a little bit of algebra we find for the scattering length the following expres-

sion:

a = a0 +
ı

2k
ln
E − Em − ı

2Γm

E − Em + ı
2Γm

= a0 +
1

2k
tan−1

Γm(E − Em)

(E − Em)2 + 1
4Γ

2
m

. (33.236)

17Explain better: The additional vibrational state distorting the collisional wavefunction during
the singularity is entering the free-bound coupled-channel potential.
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In reality, the channels are distinct due to their different hyperfine spin coupling.
In general, the combination of the atoms generates a magnetic moment which is
different from that of the molecule, µa ̸= µm. This allows the resonance condition to
be magnetically tuned,

aeff = a0

(
1− ∆B

B −BFB

)
. (33.237)

The background scattering length a0 ≡ (B = 0) determines, on which side of the
singularity the collision cross section σ = 8πa2s goes through zero. The dependence
of as on the magnetic field is monotonically increasing (decreasing), when a0∆B > 0
(a0∆B < 0). Note that ∆B is the distance between the singularity and the field
where the scattering length crosses zero [1108]. Physically, a positive (negative) slope
of the Feshbach resonance means that the energy of the bound state increases more
(less) rapidly with the increase of the magnetic field, than the energy of the open
channel, that is, µm <

∑
µa (µm >

∑
µa) [906]. Note also that the divergence of

the scattering length is an artifact of the hard-core approximation for the interaction
potential, since the T -matrix does not diverge.

33.4.2.2 Magnetic tuning of open and closed channels

The calculation of the Zeeman shift of bound states is relatively simple for a single
channel, but this is an approximation. The Zeeman splitting of the open channel is
simply the sum of the Zeeman structure of the collision partners. Therefore, it can be
treated as shown in Sec. 30.2.4. It is sufficient to calculate the sum of the shifts for
all pairs of individual atoms, νmF

Zeeman(B) + ν
m′

F

Zeeman(B) − νZeeman(0). For example,
for F = 2 we have mF ,m

′
F = −2, ..., 2, that is, we expect nine magnetic sublevels 18.

The Zeeman splitting of bound states has been demonstrated in Sec. 33.3.8. These
calculations are however single-channel calculations and thus approximations.

The selection rule for coupling an open channel with total magnetic quantum
numberMF and a bound channelM ′F isMF =M ′F ±ℓ. I.e. s-wave collisions preserve
the magnetic quantum number.

33.4.2.3 Photoassociative signature of Feshbach resonances

Near a Feshbach resonance the amplitude of the wavefunction is resonantly amplified,
therefore we expect a larger Franck-Condon overlap, a larger transition rate, and a
larger trap loss rate. The PA resonance enhancement has been calculated by [1323]:

KPA(T,∆, B) = ⟨νσPA(E,∆, B)⟩T (33.238)

= λ3therm

∞∑

ℓ=0

(2ℓ+ 1)

∫ ∞

0

|SPA(E, ℓ,∆, B)|2 exp(−E/kBT )d(−E/2πℏ)

ℓ=0−→ λ3therm

∫ ∞

0

1
4γ0γ

res
L

(∆ + E)2 + 1
4γ

2
0

√
E/EresΓ

2

(E − Eres)2 + 1
4Γ

2
exp(−E/kBT )d(−E/2πℏ) .

18We may use this formula to fit the observed Zeeman splitting in the PA line, and calibrate our
magnetic field. The excited 0−g has no hyperfine structure and does not exhibit Zeeman splitting.
The precision of this method of calibration is limited due to line pulling effects induced by overlapping
of rotational states.
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The expression may be understood as a convolution of a Lorentzian term coming
from the PA excitation, a Breit-Wigner resonance term resulting from the Feshbach
enhancement, and a thermal Boltzmann velocity distribution. Experimental data are
only available for the strong 85Rb Feshbach resonance around 160 G [300]. In this
experiment, ...

Eres = (2µatom − µmolecule)(B −B0) ≈ 2.45(B −B0) , (33.239)

where Γ ≈ 2.45∆B, T = 100 µK, γ0/2π = 6 MHz, B0 = 164 G, ∆B = 5.9 G. In this
experiment, the excited state potential has been chosen to be a 0−g state, because of
the absence of a hyperfine structure and therefore HF mixing. The rotational pro-
gression of vibrational states of this potential therefore looks simple and unperturbed.
Figure xy shows the rotational spectrum of .... Higher partial waves contributions are
small due to the low temperature of the atomic cloud.

33.4.2.4 Particular Feshbach resonances

A p-wave Feshbach resonance has been observed (see also Sec. 49.4) in channels of 6Li
[1426, ?] and 40K [1084] collisions. In homonuclear collisions, p-wave resonances occur
in channels |mf ,m

′
f ⟩, which are different form the channels for s-wave collisions. p-

wave resonances are identified via inelastic collisions, since elastic collisions are frozen
out. In heteronuclear collisions both types should be possible in all channels, only at
different B-field values.

Heteronuclear Feshbach resonances have been found (see also Sec. ??).

33.4.3 Efimov states and the exchange interaction

We assert that Efimov states in heteronuclear mixtures with large mass ratios are
atom optical model systems for the very nature of chemical binding, the mechanism
that ties atoms together to molecules. The type of chemical binding depends on
whether the electrons are shared (covalent binding) or not (ionic binding). In the
simplest imaginable molecule, H+

2 , two hydrogen atoms are bound by the exchange
of an electron. In this case, the quantum statistical nature of H does not play a role,
because the direct H-H interaction is dominated by Coulomb repulsion. The repulsion
is overcome by the binding electron orbital, whose quantum nature does not play a
role either, because there is only one electron. The same is true for Rb-Li-Rb with
the difference that the atoms to not react via Coulomb but via short range van der
Waals interactions. Hence, the Rb-Rb interaction is negligible at the long ranges, and
the resonantly enhanced Li-Rb interaction is an exchange interaction.

Efimov states in optical lattices have been discussed [1267, 828].

33.4.3.1 Metals

Is exchange interaction by quasi-free electrons at the base of metallic binding? There
may exist Bose-metals! How to calculate the lattice constant of a metal using the the
Born-Oppenheimer approximation? Metallic binding is the exclusive mechanism for
alkalis. Eb ≈ 1 eV. For transition metals there is additional covalent binding due to
exchange interaction Eb ≈ 9 eV.

How about hydrogen bridge binding?
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Table 33.2: List of famous Feshbach resonances. According to equation as =

abg

(
1− ∆B

B−B0

)
, the slope of as is rising with the increase of B, if agb and ∆B have

the same signal. Otherwise it is decreasing. The resonances marked by p are p-wave
resonances |S,mS , I,mI⟩.

collisional channel collision partner as BFB and [∆B]

[aB ] [ G]

23Na|1,1⟩ idem 51.9 907|1,1,3,1⟩[+x]
85Rb|2,−2⟩ idem −396 155[−11.6]
87Rb|1,1⟩ idem 100 685[?20m], 912[?1m], 1007[?0.2]

?6Li|1/2,1/2⟩ 6Li|1/2,−1/2⟩lf −2160 543[+0.2], 830[+x]

?40K|9/2,−5/2⟩ 40K|9/2,−9/2⟩ 174 224(9.7)

?6Li 7Li 226, 246, 540, 549

?85Rb|2,−2⟩ 87Rb|1,−1⟩ 213 265∗, 397∗

?40K|9/2,−9/2⟩ 87Rb|1,1⟩ −185 492, 512, 543

?6Li|1/2,1/2⟩ 23Na|1,1⟩ 646, 746|1,1,−1,3/2⟩, 759, 796

?6Li|1/2,−1/2⟩ 23Na|1,−1⟩ 12xx|1,1,−1,−3/2⟩
?6Li|1/2,1/2⟩ 87Rb|1,1⟩ ±20 158[±0.4], 881[±1.1], 1078[±8.8]
?7Li|1,1⟩ 87Rb|1,1⟩ ±40
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33.4.3.2 Efimov states

The universal limit is reached, when the van der Waals length ℓ ≡
(
mC6/ℏ2

)1/4
is

largely exceeded by the scattering length a≫ ℓ > 0. This happens in case of Feshbach
resonant enhancement, a = a(B).

For a > 0 a shallow two-body bound state forms, whose energy for large a is given

by E2 = − ℏ2

ma2 . Hence, in the universal limit the dimer binding energy is independent
of the interaction potential. In a Feshbach resonance this universal bound state can
tunnel into a real ”chemical” bound state forming a molecule. For a < 0 there is no
shallow dimer. In this regime three-body losses are only possible via the formation of
deeply bound molecules.

There exist an infinite number of Efimov states with identical dependence on a.
They accumulate at a → ±∞. For a given a however the number of Efimov states
is limited. In the diagram 33.31 an Efimov resonance occurs every time a solid line
crosses the boundary to continuum (shaded line), a∗ = a(|E2| = |E3|). Tuning can
be done via modifying a via a magnetic field near a Feshbach resonance. For a < 0
there are no bound dimers, the Efimov resonance is due to trimers. For a > 0 there
are bound dimers, the Efimov resonance is due to atom-dimer resonances. There is
a lowest Efimov state, which extends into non-universal regions. For this reason the
energy offset of the Efimov series depends on the atomic potentials.

-0.5 0 0.5

1/a

-0.6

-0.4

-0.2

0

0.2

E

Figure 33.31: Spectrum of Efimov states as a function of 1/a.

The energies of the Efimov states are given by the roots of,

sin
(s0
2
ln(mE3/ℏ2κ2s)

)
. (33.240)

Hence, the scaling factor for the distance between Efimov states is eπ/s0 ≃ 22.7, where
s0 ≈ 1.00624 is the root of

s0 cosh
πs0
2
− 8√

3
sinh

πs0
6

= 0 . (33.241)

If one Efimov state is located near a∗ then the others are located near a∗enπ/s0 .
I.e. C(a∗) = C(a∗eπ/s0).
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For binary heteronuclear mixtures the scaling factor for Efimov states can be very
different. In this case it not only depends on the quantum statistical character of
the two atoms (bosons, fermions, or distinguishable atoms), but on the mass ratio of
the mixture and on the size of the various scattering lengths. In general, either the
intraspecies scattering length between the two identical atoms is Feshbach resonantly
enhanced or the interspecies scattering length, but not both simultaneously.

Let us define tan γ12 =
√
(m1 +m2 +m3)m3/m1m1. For R = 0 and replacing

λ1/2 = −s0, the Eq. (389) of Ref. [186] can be written

det




cosh(s0
π
2 ) −2 sinh[s0(π/2−γ12)]

s0 sin(2γ12)
−2 sinh[s0(π/2−γ13)]

s0 sin(2γ13)

−2 sinh[λ1/2(π/2−γ21)]
s0 sin(2γ21)

cosh
(
s0
π
2

)
−2 sinh[s0(π/2−γ23)]

s0 sin(2γ23)

−2 sinh[s0(π/2−γ31)]
s0 sin(2γ31)

−2 sinh[s0(π/2−γ32)]
s0 sin(2γ32)

cosh
(
s0
π
2

)


 = 0 . (33.242)

This holds when all scattering lengths are strong.

Figure 33.32: Various possibilities for Efimov states in binary mixtures of quantum gases.

On the other hand, for the case m1 = m2 ̸= m3 and a13 = a23 ≫ a12, the scaling
factor is given by the root of

s0 cosh
πs0
2
∓ 2 sinh(s0(

π
2 − γ12)

sin 2γ12
= 0 . (33.243)

The upper sign holds if m1,2 are bosons, the lower sign for fermions, and a product
of both terms if the atoms are distinguishable.
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Figure 33.33: Scaling factor as a function of the mass ratio.

The three-body collision rate in the unitarity limit,

L3 =
3C(a)ℏa4

m
, (33.244)
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can be expressed via the recombination length

ρ3 ≡
(
2mL3√

3ℏ

)1/4

. (33.245)

Efimov states can be observed via L3 or evtl. Bragg scattering?
According to [750],

C(a<0) =
4590 sinh 2η−

sin2
(
s0 ln

|a|
a−

)
+ sinh2 η−

, (33.246)

C(a>0) = 67.1e−2η+
[
cos2

(
s0 ln

|a|
a+

)
+ sinh2 η+

]
+ 16.8(1− e−4η+) .

a± describes the non-universal short-range potential, η± the three-body decay rate.
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Figure 33.34: Calculated loss spectra for Cs Efimov trimers.

In the absence of Efimov states, we set a = a−eπ/2s0 and a = a+, respectively and
obtain,

C(a<0) = 4590× 2 tanh η− , (33.247)

C(a>0) = 67.1e−2η+ cosh2 η+ + 16.8(1− e−4η+) .

Hence, three-body losses are scaling with a4 without additional resonances. The decay
via into deep bound states is summarized by the constants η±. Interpolation formula
of Shlyapnikov for two heavy bosons/fermions and a light atom. The interspecies
scattering length is strong,

s0 =
√
.16M/m− 1/4 for bosons and s0 =

√
.16M/m− 9/4 for fermions .

(33.248)

33.5 Light-assisted collisions

33.5.1 Photoassociation

Photoassociation is based on binary collisions. Transitions to excited states are fol-
lowed by spontaneous decay and can be monitored in trap loss experiments. An
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alternative way, which suits especially well for sodium is photoassociative ionization.
The trap loss rate can be expressed as,

ṅ = −2KPAn
2 . (33.249)

The event rate for photoassociation in a thermal cloud with Boltzmann velocity dis-
tribution is:

KPA(T,∆1, I1) =

〈
πv

k2

∑

l

(2l + 1)|S(E, l,∆1, I1)|2
〉

, (33.250)

=
2πℏ
µk

∑

l

(2l + 1)

∫ ∞

0

|S(E, l,∆1, I1)|2e−βEd(βE) ,

where the S-matrix is,

|S|2 =
γ1γs

(E −∆1)2 +
1
4 (γ1 + γs)2

, (33.251)

and γ1 is the spontaneous linewidth and γs(E, l, I1)/2π ≈ Ω2
1 |⟨b1|E, l⟩|2 is the Franck-

Condon overlap between the colliding channel and the excited state bound level.
For cold ultra-cold collisions, we may only consider s-wave collisions, l = 0. In the
regime of Bose-Einstein condensation T ≲ 1 µK and n ≳ 1014 cm−3, we can replace
e−βE → δ(E) and E → 0. The photoassociation rate then simplifies to [216],

KPA(∆1, I1) ≈
2πℏ
µk

γ1γs

∆2 + 1
4 (γ1 + γs)2

. (33.252)

Thus the S-matrix is maximized in resonance and saturation, i.e. ∆1 = E and γs = γ1
so that |S|2 = 1, which case is called the unitarity limit. Note that increasing the
laser power beyond saturation, γs > γ1, decreases the photoassociation efficiency
again because of Autler-Townes splitting [?].

33.5.2 Two-color photoassociation

We can also shine in a second laser frequency tuned between the excited potential
bound state and a ground potential bound state. This second laser power broadens
the resonance and spoils the transition rate for the first laser. Following [161]:

KPA(T,∆1,∆2, I1, I2) =

〈
πv

k2

∑

l

(2l + 1)|S(E, l,∆1,∆2, I1, I2)|2
〉

, (33.253)

where,

|S|2 =
(E −∆2)

2γ1γs

(E −∆+)2(E −∆−)2 + 1
4 (γ1 + γs)2(E −∆2)2

, (33.254)

where,

∆± = 1
2 (∆1 +∆2)± 1

2

√
(∆1 −∆2)2 + 4Ω2

12 . (33.255)
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Note that γs(E, l, I1)/2π ≈ Ω2
1 |⟨b1|E, l⟩|2 and Ω12 = Ω2⟨b1|b2⟩. The one-color signal

follows with Ω12 → 0. Assuming the unitarity limit for the free-bound transition,
∆1 = E and γs = γ1 the two-color signal reads:

|S|2 =
1

1 + Ω4
12/(∆1 −∆2)2γ21

. (33.256)

The width of the two-color spectral lines is mainly limited by the Boltzmann
distribution of kinetic energies in the atomic cloud. At very low temperatures, we
may .... and the two-color resonance dip may be interpreted as a true dark resonance.

Two-color PA lines have been observed for 85Rb in a FORT [491]. In order to
measure this for very low temperatures and even for condensates, one has to switch
to 87Rb in a dark MOT. A technical requirement is, of course, that the two lasers
involved in the Raman process be very stable, at least with respect to each other.
This is easiest achieved by using AOMs, which limits the range of levels to be studied
to a few GHz binding energy.

Another important aspect is the requirement of a reasonable Raman transition
probability, i.e. large Franck-Condon overlap between the collisional and the bound
excited state and between the two bound states. Note also that selection rules hold.

33.5.3 Optical shielding

The adiabatic potential for ground state collisions can be manipulated using light
to admix an another potential. The laser light can either be blue-detuned to the
continuum of states of a repulsive excited state potential or red-detuned to vibrational
resonances of an attractive excited state potential [435, 1349, 1363]. We can also
admix another ground state potential with two-photon Raman transitions.

At cold collisions, the atom undergoes Landau-Zehner transitions between the
mixed states with the probability PLZ = 1−exp(−2πℏΩ2/αv), where α = |d∆/dR|RC

=
|d(Ue(R) − Ug(R))/dR|RC

is the slope of the difference potential evaluated at the
Condon point. In the dressed states picture the dressed potentials display an avoided
crossing. This modification of the collisional potential modifies the dynamics of the
collision and the scattering length.

An example is the phenomenon of optical suppression or shielding. Here, two
colliding atoms are inhibited to approach farther than a certain distance defined by
the resonance condition set by a laser which is blue-detuned to a repulsive excited
potential. The inhibition is probed by a photoassociation laser tuned to a resonance
condition at smaller interatomic distances. The optical shielding scheme can be ex-
tended in the following way. Two lasers, one tuned to a repulsive another to an
attractive excited state potential resonant at different interatomic distances.

33.5.4 Optical Feshbach resonances

We can view the modification of the colliding channel as a changed scattering length.
Or do we introduce a temperature dependence a(T )? Anyway, if the goal is only to
alter the a, we want to avoid spontaneous scattering, i.e. (Ω/∆)2 need to be small.
Unfortunately, the effect of the light on the scattering length also scales with (Ω/∆)2.
So that blue- or red-detuning optical shielding has small impact. An alternative is
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Figure 33.35: Optical shielding and anti-shielding.

resonant enhancement by a bound state for red-detuned shielding. For blue detuning
and large ∆, shielding only works at short range R. This is called an optical Feshbach
resonance [435, 161, 1297]. It can also occur in the microwave regime [907].

We can set up the following non-Hermitian Hamiltonian:
(
−ℏ2/m ·∆R + U(R) Ωξ(R)

Ωξ(R) −ℏ2/m ·∆R + U(R)− ıR− δ

)(
ϕ(R)

ψ(R)

)
= 0 (33.257)

results in a resonance described by the complex scattering length a = a′− ıa′′, where
the real part governs the self energy and the imaginary part the spontaneous losses.

Figure 33.36: Optically induced Feshbach resonances.

33.5.5 Induced dipolar long-range forces

33.5.5.1 Electrostriction

The phenomenon of electrostriction is caused by static polarizability: Dipoles in an
electric field gradient align themselves to the local field and the field gradient causes
forces towards the field minimum. However forces may not only occur between dipoles
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and inhomogeneous external fields, but also between pairs of dipoles. And this holds
even if the dipole are induced by homogeneous fields. In this picture, retardation can
induce electrostrictive long-range forces [?]. To see the effect, Rayleigh or Bragg scat-
tering or superradiance have to be avoided, e.g. by minimizing the overlap between
the dipole radiation pattern and the atomic cloud.

33.5.5.2 Effects due to dipole-dipole interaction

We assume isotropic real dispersion αpol = αpol(k). The Lippmann-Schwinger equa-
tion is an integral equation describing the modification of the local electric field due
to self-interaction including spatial retardation effects,

Eloc(r, t) = Eext(r, t) +
αpol(k)

ε0

∫
d3r′G0(r− r′)n(r′)Eloc(r

′, t) , (33.258)

where G0(r) is the propagation tensor,

1G0(r) =
eıkr

4πr3
[
(δij − 3r̂ir̂j)(1− ıkr)− (δij − r̂ır̂j)(kr)

2
]
. (33.259)

In the first Born approximation Eloc under the integral in Eq. (33.258) is replaced
Eext. The expression is then used to calculate the polarization, which in term is used
to calculate the interaction energy Hind = − 1

2

∫
d3rRe PRe Eext. One obtains,

Ĥind = −
αpol
4

E2
ext

∫
d3rn(r) +

1

2

∫
d3r

∫
d3r′n(r)U(r− r′)n(r′) , (33.260)

where,

U(r) =
Iαpol(k)

2

4πcε20
Ê∗i ÊjVij(k, r) coskr , (33.261)

with Vij(k, r) = −4πRe G0(r).
For G0(r) = 1

3δ(r)13,

Eloc(r, t) = Eext(r, t) +
αpol(k)

3ε0
n(r)Eloc(r, t) , (33.262)

we recover the Clausius-Mossotti formula. For dilute gases nαpol/3ε0 ≪ 1 and may
be neglected. In [1118] it is shown that the Lorentz-Lorenz shift is the same for a
BEC and therefore the quantum degeneracy does not modify the formula.

33.5.5.3 Rotons

The Bijl-Feynman formula links the dispersion relation to the static structure factor,

E(k) ≤ ℏ2k2

2mS(k)
. (33.263)

The equality holds for dilute gases. In generalization to thermal gases the structure
factor is the Fourier transform of pair correlation functions. In the mean-field theory
pair correlations are neglected. However, in the presence of dipole-dipole interactions
this is not the case. Pair correlations lead to a maximum in the structure factor at
quasi-momenta corresponding to the mean interparticle distance. Consequently there
is a minimum in the Bogolubov dispersion relation E(k), called roton.
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Chapter 34

Semiclassical theory of
light-atom interaction

In Part IV of this script we solved the problem of a stationary atom using the for-
malism of quantum mechanics developed in Part III. We now come back to Bohr’s
original idea that transitions between atomic states be induced by absorption and
emission of electromagnetic radiation and develop a semi-classical theory of light-
atom interaction. That is, the atom will be treated as a quantum object, while the
radiation is assumed to obey the rules of classical electrodynamics. The main objec-
tive of this chapter will be to derive an equation describing the temporal evolution of
atoms interacting with a radiation field.

We begin with a perturbative approach to the excitation of atomic transitions in
Sec. 34.1. In quantum mechanics we learned (see in Sec. 27.4) how time-dependent
perturbations, such as suddenly applied force fields or periodic oscillations, can in-
duce transitions between eigenstates. We will not repeat the concepts here. Rather
we will focus on the calculation of transitions rates employing Fermi’s Golden rule
derived in Eq. (27.111). In Secs. 22.2 we introduced the Einstein coefficients A and
B, which we associated with Planck’s spectral distribution of black-body radiation.
This procedure allowed us to connect the coefficients for spontaneous and stimulated
transitions, but did not provide any method to calculate them from the intrinsic prop-
erties of the atoms. The purpose of Sec. 34.2 is to find expressions for the matrix
elements coupling different atomic states using quantum mechanics and relate them
to the Einstein coefficients in order to calculate the rates of absorption and emission
of atomic radiation. In particular, we will dedicate some space to the dipolar ap-
proximation and to the derivation of selection rules allowing to quantify transition
probabilities as a function of the quantum numbers characterizing the atomic states
coupled by radiation.

Perturbation theory can describe the light-atom dynamics only at interaction times
short enough, that the initially occupied atomic states is not noticeably depleted. An
exception is the two-level atom, for which perturbation theory reproduces the exact
results obtained by solving the time-dependent Schrödinger equation. This, however,
only holds as long as spontaneous processes can be neglected. To portray systems
that contain excitation and relaxation processes occurring simultaneously, a theory
based on Schrödinger’s equation is no longer sufficient, because it is only capable of
explaining stimulated processes, such as the absorption of a monochromatic wave.
Dissipative processes, such as spontaneous emission, require a more general approach

1725
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to describe the evolution of a system. A single wavefunction is, in general, not enough
to represent such a system nor to quantify the probabilities associated with each
of its states, but we rather need an ensemble of wavefunctions, which requires the
description of the atom in terms of a density operator. This will be done in Sec. 34.3.

The equations of motion ruling the time evolution of the density operator are
the so-called Bloch equations. They will be derived and studied in Sec. 34.4, and in
Sec. 34.5 we will phenomenologically include spontaneous emission. In Sec. 34.6 we
will discuss line broadening mechanisms and in Sec. 34.7 generalize the Bloch equation
formalism to multilevel systems.

34.1 Perturbative approach to atomic excitation

In a model of an isolated atom, the atomic energy levels are eigenstates of the Hamil-
tonian and describe the system completely, i.e. they do not undergo any evolution.
Transitions between atomic energy levels may, however, be induced by oscillatory
perturbations, such as electromagnetic radiation accelerating bound electrons.

34.1.1 Time-dependent perturbation by a plane wave

Looking at the Hamiltonian (30.11) describing the interaction of a charged particle
with an electromagnetic field, we find that the term A · ∇ ∝ eıωt oscillates with
frequency ω, while the term A2 ∝ e2ıωt oscillates with twice that frequency. We will
only consider the interaction term (30.12), which is linear in A, and we will treat this
term as first-order perturbation by time-dependent perturbation theory (TPDT).

With this scope we separate the Hamiltonian in a stationary part and a time-
dependent part 1,

Ĥ(t) = Ĥ(0) + Ĥint(t) with Ĥint =
e
mA(r, t) · p̂ , (34.1)

where Ĥ(0) contains the kinetic energy and the Colombian potential of Eq. (30.11).
In Sec. 27.4.4, inserting the expansion,

|ψ⟩ =
∑

k

ak(t)|k⟩e−ıEkt/ℏ , (34.2)

along with the Hamiltonian (34.1) in the Schrödinger equation, we obtained the first
order perturbative approximation (27.72). Setting the initial condition to ck(t ≤ 0) =
δki and supposing that the probability of finding the atom initially in the ground state
|i⟩ for short times is 1, we got,

a
(1)
f (t) ≃ 1

ıℏ

∫ t

0

⟨f |Ĥint|i⟩eıωfit
′
dt′ . (34.3)

We now consider a perturbation by an electromagnetic plane wave within the
Coulomb gauge,

Φ = 0 and ∇ ·A = 0 . (34.4)

1The energy of the light field is not considered in the Hamiltonian, because it is treated as classical,
that is, its energy commutes with the other observables of the system.
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The solution of the wave equation can be written,

A(r, t) = A∗0(r)e
ıωt +A0(r)e

−ıωt . (34.5)

For plane waves,

A0(r) = A0e
ık·r (34.6)

and k = ω/c and k ·A0 = 0. With this, it is possible to show (see Exc. 34.1.4.1), that
the energy density is,

u(ω) = ε0
2 E⃗2 + 1

2µ0
B⃗2 = 2ε0ω

2A2
0 . (34.7)

On the other hand, the energy density is proportional to the number of photons N(ω)
inside the volume V ,

u(ω) =
N(ω)ℏω

V
. (34.8)

The intensity corresponds to a flow of energy,

I(ω) = u(ω)c . (34.9)

Separating the polarization ϵ̂ from the amplitude A0,

A = ϵ̂A0e
ık·re−ıωt + c.c. , (34.10)

and inserting the perturbation (34.1) into the approximation (34.3),

a
(1)
f (t) = − e

m

∫ t

0

dt′⟨f |A · ∇|i⟩eıωfit
′
dt′ (34.11)

= − eA0

m ⟨f |eık·rϵ̂ · ∇|i⟩
∫ t

0

dt′eı(ωfi−ω)t′dt′ − eA0

m ⟨f |e−ık·rϵ̂ · ∇|i⟩
∫ t

0

dt′eı(ωfi+ω)t
′
dt′ .

Which one of the two processes described by Eq. (34.11) takes place, depends on the
initial and final energies. For Ef = Ei + ℏω the first term describing the process
of absorption will dominate, for Ef = Ei − ℏω the second term describing emission
prevails.

34.1.2 Absorption and stimulated emission

34.1.2.1 Absorption

We define the matrix element,

Mfi ≡ ⟨f |eık·rϵ̂ · ∇|i⟩ , (34.12)

and concentrate on the absorption process. Defining the detuning by ∆ ≡ ω − ωfi
and evaluating the integral,

∣∣∣∣
∫ t

0

e−ı∆t
′
dt′
∣∣∣∣
2

=

∣∣∣∣
e−ı∆t − 1

−ı∆

∣∣∣∣
2

= 4
sin2 ∆t

2

∆2
≃ 2πtδ(∆) , (34.13)
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at short times (see the formula (27.76)), the absorption probability becomes,

|a(1)f (t)|2 = e2

m2A0(ω)
2|Mfi|2

∣∣∣∣
∫ t

0

dt′eı(ωfi−ω)t′dt′
∣∣∣∣
2

= e2

m2A0(ω)
2|Mfi|22πtδ(∆) .

(34.14)
The δ(∆ = 0) function simply represents conservation of energy. Of course this is
only an approximation not taking into account the finite width of the transition line.

Expressing the field by the intensity (34.10), we obtain the transition rate for
absorption,

W
(ab)
fi =

d

dt
|a(1)f (t)|2 = 2π

(
eA0

m

)2

|Mfi|2δ(ω − ωfi) =
πe2

ε0m2c

I(ω)

ω2
|Mfi|2δ(ω − ωfi) .

(34.15)
We note that the absorption rate is proportional to the intensity of the radiation,
which characterizes a typically linear effect.

If we want to express the rate of absorption by atoms in terms of energy, we simply
multiply Wfi by ℏω and, hence, we can define the cross section for the absorption of
radiative energy as,

σi→f ≡
absorption rate

incident intensity
=

ℏωWfi

I(ω)
=

πe2

ε0m2c

ℏ
ω
|Mfi(ωfi)|2δ(ω − ωfi) . (34.16)

34.1.2.2 Stimulated emission

For Ef = Ei − ℏω the equation describes the process of stimulated emission. Analo-
gously to the calculation of the absorption, we obtain,

W
(st)
if =

πe2

ε0m2c

I(ω)

ω2
|M∗if |2δ(ω + ωfi) , (34.17)

with M∗fi = ⟨f |e−ık·rϵ̂ · ∇|i⟩. Of course,

W
(st)
if =W

(ab)
fi . (34.18)

The fact that, in a coupled atom-radiation system in equilibrium, the radiation field
excites the same number of transitions in absorption i→ f as in stimulated emission
f → i is called the principle of detailed balance.

Obviously, the situation is different, if instead of two states we have several states
that can be excited by radiation or decay.

34.1.3 Spontaneous emission

Absorption and stimulated emission are due to the interaction of an atom with a
radiation field. However, even in the absence of radiation the atom couples to the
field of the electromagnetic vacuum, and an accurate description of the atom must
account for this fact. The total system has different eigenstates and their projection
on the unperturbed eigenstates changes over time, as any excited atomic state has a
constant probability, depending on the coupling to the electromagnetic field, to decay
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to another state. The probability of measuring a specific lifetime thus follows a Poisson
distribution. The decay process caused by atomic interaction with fluctuations of
the electromagnetic vacuum is called spontaneous emission. It is understood in the
framework of quantum electrodynamics, and a thorough discussion is postponed to
Sec. 35.6. Here, we will adopt a preliminary heuristic treatment.

Replacing in Eq. (34.17) the intensity by the number of photons (34.8), we obtain,

W
(st)
if =

πℏe2N(ω)

ε0m2ωV
|Mfi|2δ(ω − ωfi) . (34.19)

In fact, the introduction of the concept of photons already implies the quantization
of the electromagnetic field. Adding to the number of photons a photon representing
the vacuum fluctuations, N(ω) −→ N(ω) + 1, we are able to include spontaneous
emission,

W
(st)
if +W

(sp)
if =

πℏe2[N(ω) + 1]

ε0m2ωV
|Mfi|2δ(ω + ωfi) . (34.20)

This means that even in the absence of a classical radiation field, N(ω) = 0, there

is an emission probability. We note that W
(sp)
if depends on the volume confining the

atom, that is, the cavity, since it describes the transfer of energy to this volume. Here,
it is clear that an argument is still missing, because the transfer rate must depend
in some way on the number of states available to accommodate the emitted photon,
that is, on the density of states within the cavity. The calculation of this density of
states should allow us to evaluate the quantization volume V .

34.1.3.1 Density of states

In Sec. 22.2.2 we calculated the isotropic spectral density of modes per volume (22.53),

ϱ(ω) =
ω2

π2c3
. (34.21)

The density of modes in a specific direction of free space (i.e. no boundary conditions
imposed e.g. by dielectric surfaces) regardless of the mode volume is then given by 2,

∫

4π

ρfree(ω)dΩ = V ϱ(ω) , (34.22)

that is,

ρfree(ω) =
V

(2π)3
ω2

c3
. (34.23)

Thus, the spontaneous emission rate of photons into the solid angle dΩ is,

W(sp)
if dΩ =

(∫

ω

W
(sp)
if ρfree(ω)dω

)
dΩ (34.24)

=

∫

ω

πℏe2

ε0m2ωV
|Mfi|2δ(ω + ωfi)

V

(2π)3
ω2

c3
dω dΩ =

ℏe2

8π2ε0m2c3
|Mfi|2ωfi dΩ ,

2See also (40.40) and (40.88) in Sec. 40.2.1.
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This simplified treatment with only two atomic states considers light as a scalar
field. In fact, light is a vector field and can have two independent orthogonal polar-
izations. The transition matrix may depend on polarization, such that,

W(sp)
if =

ℏe2

8π2ε0m2c3

∫ ∑

λ=1,2

|Mλ
fi|2ωfi dΩ . (34.25)

Example 192 (Natural linewidth of a transition): Be Γ ≡ ∑f W
(sp)
if the

spontaneous decay rate of a state |i⟩. This means that its population is decreas-
ing,

Ṅi = −ΓNi . (34.26)

Since Ni = ⟨ψi|ψi⟩, we have |ψi(t)⟩ = |ψi(0)⟩eıωif t−Γt/2. The Fourier transform
is,

|ξ(ω)⟩ = 1√
2π

∫ ∞
0

|ψi(t)⟩e−ıωtdt = 1√
2π

∫ ∞
0

eıωif t−ıωt−Γt/2dt|ψi(0)⟩ (34.27)

=
1√
2π

lim
t→∞

eı(ωif−ω)t−Γt/2 − 1

ı(ωif − ω)− Γ/2
|ψi(0)⟩ = 1√

2π

1

ı(ω − ωif ) + Γ/2
|ψi(0)⟩ .

The spectrum,

|ξ(ω)|2 =
1

2π

1

(ω − ωif )2 + Γ2/4
, (34.28)

is a Lorentz distribution. Note, that the natural linewidth can be blurred by line

broadening effects, such as the Doppler broadening or collisions between atoms.

These effects will be discussed in the Sec. 34.6.

Excited states can sometimes decay into various states of lower energy. In this

case the linewidth is simply given by the sum of the partial decay rates, since the

convolution of Lorentz distributions LΓk with widths Γk is again a Lorentzian

with the total width Γ =
∑
k Γk.

34.1.4 Exercises

34.1.4.1 Ex: Energy density of plane waves

Derive the result (34.7) for the temporal averages of the squares of the fields E⃗(r, t)2 =

[−∂tA(r, t)]2 and B⃗(r, t)2 = [∇×A(r, t)]2.

Solution: For the plane wave defined by (34.5) and (34.6) we have,

∇ ·A(r, t) = eıωt∇ ·A0e
−ık·r + e−ıωt∇ ·A0e

ık·r = −ık ·A0(e
ıωt−ık·r − e−ıωt+ık·r)

∂A(r, t)

∂t
= ıωA0(e

ıωt−ık·r − e−ıωt+ık·r)

∇×A(r, t) = eıωt∇×A0e
−ık·r + e−ıωt∇×A0e

ık·r = −ık×A0(e
ıωt−ık·r − e−ıωt+ık·r)

and

A(r, t)2 = A2
0(2 + e2ıωt−2ık·r + e−2ıωt+2ık·r) = 2A2

0

[∂tA(r, t)]2 = −ω2A2
0(−2 + e2ıωt−2ık·r + e−2ıωt+2ık·r) = 2ω2A2

0

[∇×A(r, t)]2 = −(k×A0)
2(−2 + e2ıωt−2ık·r + e−2ıωt+2ık·r) = 2(k×A0)

2 = 2k2A2
0 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EnergiaOndasplanas.pdf
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hence for k ·A0 = 0 we have (k×A0)
2 = k2A2

0. Therefore, using the relations (30.2)
for electric and magnetic fields,

u(ω) =
ε0
2
E2+ 1

2µ0
B2 =

ε0
2
∂tA(r, t)

2
+

1

2µ0
∇×A(r, t)

2
= ε0ω

2A2
0+

1

µ0

ω2

c2
A2

0 = 2ε0ω
2A2

0 .

34.2 The dipolar approximation and beyond

34.2.1 Dipolar transitions

So far, we have used the matrix element Mλ
fi(ωfi) without saying how it can be

calculated, nor when it is significant. In many cases of interest the calculation of this
matrix element is considerably simplified by an expansion of the term e−ık·r, which
is part of the matrix element (34.12) 3,

e−ık·r = 1− ık · r− 1
2! (k · r)2 + ... . (34.29)

This expansion is justified by the fact that the wavelength (∼ 600 nm in the visible
spectrum) is much larger than the size of the scattering atom, kaB ≪ 1. The dipolar
approximation supposes,

e−ık·r ≃ 1 , (34.30)

such that we can remove the spatial dependence. In this approximation there is only
an interaction of the electric field of the radiation with the atom via an electric dipole
term d · E⃗ . Thus,

Mλ
fi(ωfi) = ⟨f |e−ık·rϵ̂ · ∇|i⟩ ≃ ϵ̂ ıℏ ⟨f |p̂|i⟩ = ϵ̂ ımℏ ⟨f | ˙̂r|i⟩ . (34.31)

We can calculate the expectation value of the velocity of the moving charge by the
Heisenberg equation using the unperturbed Hamiltonian,

Mλ
fi(ωfi) ≃ ϵ̂ ımℏ ⟨f | 1ıℏ [̂r, Ĥ0|i⟩ = ϵ̂mℏ2 ⟨f |̂rĤ0 − Ĥ0r̂|i⟩ = ϵ̂mℏ2 (Ei −Ef )⟨f |̂r|i⟩ . (34.32)

The interpretation of the last equation is, that the states |i⟩ and |f⟩ are connected
through a displacement of the electronic cloud which, therefore, represents the induc-
tion of an electric dipole during the electronic transition. It is convenient to introduce
the electric dipole moment 4.

dfi ≡ −e⟨f |̂r|i⟩ . (34.33)

As a result, the matrix element becomes,

Mλ
fi(ωfi) ≃ mωfi

eℏ ϵ̂ · dfi (34.34)

3Note however, that doing the dipole approximation via eık·r̂ ≃ 1 also deactivates the operator
function of the recoil operator dipole, eık·r̂ = |p + ℏk⟩⟨k|. For discussions of photonic recoil the
operator character must be maintained even in the dipole approximation, which can be done by
reinserting the recoil operator in the Hamiltonian after the dipole approximation has been applied.

4In the presence of several atoms d = −e∑j rj , where the rj are the radii of the orbits of the
various electrons of the atom.
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and the absorption rate (34.15) is then, in the dipolar approximation,

W
(dp)
fi =

πe2

ε0m2c

I(ωfi)

ω2
fi

|Mfi|2δ(ω − ωfi) (34.35)

=
π

ε0ℏ2c
I(ωfi)|ϵ̂ · dfi|2δ(ω − ωfi) =

4π2α

ℏ
I(ωfi)|ϵ̂ · rfi|2δ(ω − ωfi) .

using the definition of the fine structure constant α = e2/4πε0ℏc.

34.2.1.1 Polarization dependence

Following Eq. (34.34) the absorption rate depends on the orientation of the dipole
moment with respect to the polarization of light, which therefore plays an important
role in this transition. When dfi between two states is zero, the transition via electric
dipole radiation is prohibited. This is not to say that there is no transition, since other
terms of the expansion (34.29) are not necessarily zero, and there may be transitions of
higher multipolar orders. Even the matrix elementMλ

fi(ωfi) being zero for transitions
involving one photon, there is still the possibility of two-photon transitions.

Setting θ as the angle between ϵ̂ and dfi we obtain,

W
(dp)
fi =

π

ε0ℏ2c
I(ωfi)|dfi|2 cos2 θ δ(ω − ωfi) . (34.36)

In case of unpolarized (or randomly polarized) radiation we can replace the angular
distribution cos2 θ by its average value,

cos2 θ =
1

4π

∫ 2π

0

∫ π

0

cos2 θ sin θdθdϕ = 1
3 , (34.37)

such that,

W
(dp,no−pol)
fi =

π

3ε0ℏ2c
I(ωfi)|dfi|2δ(ω − ωfi) . (34.38)

This expression also represents the stimulated emission rate in the electric dipole
approximation.

The total spontaneous emission rate can be obtained from Eq. (34.25) integrating
over all possible orientations,

W(sp)
fi =

ℏe2

8π2ε0m2c3

∫ ∑

λ=1,2

|Mλ
fi|2ωfidΩ (34.39)

= 2
ℏe2

8π2ε0m2c3

∫ 2π

0

∫ π

0

∣∣∣mωfi
eℏ

ϵ̂ · dfi
∣∣∣
2

ωfi sin θdθdϕ

=
e2

4π2ε0ℏc3
ω3
fi|rfi|2

∫ 2π

0

∫ π

0

cos2 θ sin θdθdϕ =
e2

3πε0ℏc3
ω3
fi|rfi|2 ,

such that, for non-polarized light,

W(sp)
fi =

4α

3c2
ω3
fi|rfi|2 =

4α

3c2
ω3
fi|rfi|2 = Γ . (34.40)



34.2. THE DIPOLAR APPROXIMATION AND BEYOND 1733

This is the rate of spontaneous decay of an excited atomic state. It can be measured
experimentally which, in turn, allows the calculation of the induced dipole moment,

dfi =

√
3πε0ℏΓ
k3

. (34.41)

In Exc. 34.2.6.1 we calculate the Rabi frequency from the dipole moment of an
atomic transition and the electric field of a radiation field.

34.2.2 Einstein transition rates

Considering the problem of the transfer of energy between the electromagnetic field
and a sample of atoms in thermal equilibrium, Einstein realized that the processes
of absorption and stimulated emission are not sufficient to understand the radiative
coupling between two energy levels, that is, the coupling is not correctly described
by Fermi’s Golden rule, and we need to introduce the notion of spontaneous emis-
sion. Differently from the derivation of the preceding section, Einstein considered
atoms whose populations of energy states are in thermal equilibrium with the elec-
tromagnetic field of a black-body. With this picture he came to the same result for
the spontaneous emission rate (34.38), as we will show in the following.

The famous Einstein coefficients Afi and Bfi are given by (22.70),

AfiNf =W
(sp)
fi and

Afi
Bfi

=
ℏω3

fi

π2c3
, (34.42)

where Nf is the population of the excited state. This shows that, in fact, spontaneous
emission is a necessary consequence of the interaction of an atom with a thermal bath
(also called reservoir).

We now consider the problem of energy transfer between an electromagnetic field
and a sample of atoms. The rate of absorption of a light field is,

Ri→f ≡ 1
3 Ṗi→f =

π

6ℏ2
E20 |dfi|2ϱ(ωfi) , (34.43)

with W0 = E0dfi and dfi being the transition matrix element between atomic states.

The factor 1
3 comes from the fact that the vector E⃗ of the electric field can have any

polarization, but only polarizations along the direction of the oscillation of the dipole
moment contribute.

For a single atom, the result (34.43) is symmetric with respect to an exchange of the
initial and final states, that is, the rates for absorption and induced emission of light
are the same. For a sample of atoms being in thermal equilibrium, the populations Ni
of the ground state and Nf of the excited state are unequal according to Boltzmann’s
law. Therefore, as we have shown in Sec. 22.2.5,

NfRf→i ̸= NiRi→f . (34.44)

Thus, Einstein came to the conclusion that Fermi’s golden rule correctly describes
absorption, but does not contain all contributions of emission. The rates being related
to the Einstein coefficients by the equation (22.65), we find,

Rf→i = BfiNfu(ωfi) (34.45)
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and

Sf→i = AfiNf =
ℏω3

fi

π2c3
BifNf =

ℏω3
fi

π2c3
Ri→f
u(ωfi)

=
ω3
fi

3πϵ0ℏc3
|dfi|2 , (34.46)

exploiting the relation (22.70).

Example 193 (Line and oscillator strength): Several disciplines such as
spectrometry, spectroscopy and astrophysics have developed their own termi-
nologies to describe absorption and emission of light by matter. We will explain
how the most frequently used parameters are interrelated by placing particular
emphasis on the simplest system, which is the two-level atom with no degener-
acy and no spin.
In addition to the Einstein coefficients A21, B21, and B12, the amplitude of the
transition dipole moments d12 and the absorption cross-section σ0a(ω), three
other quantities are sometimes used to characterize atomic transitions: the os-
cillator strength f , the line strength S, and the spectral absorption cross section
σω. In the following sections, we will connect these different concepts.
The line strength S is defined as the square of the transition dipole moment
summed over all degeneracies of the ground and excited states,

S12 = S21 =
∑

m1,m2

|⟨ψ1,m1 |d|ψ2,m2⟩|2 . (34.47)

The notion of the line strength becomes significant when working with real
atoms characterized by degenerate ground and excited states. In such cases we
need to extend the meaning of d12 and consider transitions between each of the
degenerate sublevels. For a non-degenerate two-level atom, the quantities d12
and A21 are simply related by,

A21 =
ω3
0

3πϵ0ℏc3
d212 . (34.48)

If the lower level would be degenerate, the spontaneous emission rate coefficient
would be given by the sum of all possible deexcitation rates. In this case, d212 is
defined as the sum of the elements of the transition matrix coupling the excited
and the lower states,

d212 =
∑
m1

|⟨ψ1,m1 |d|ψ2⟩|2 . (34.49)

Now, it can be shown that the spontaneous emission rate from any sublevel
of a degenerate excited state toward a lower level (that is, the sum over all
lower sublevels) is the same for all excited sublevels 5 This statement reflects
the intuitively plausible idea that spontaneous emission must be isotropic and
unpolarized, if the sublevels of an excited state are uniformly populated. There-
fore, the insertion of Eq. (34.49) into (34.48) should produce correct results,
even when the excited state is degenerate. Comparing the sum over all upper
and lower degeneracies with the line strength S,

S12 =
∑

m1,m2

|⟨ψ1,m1 |d|ψ2,m2⟩|2 = g2d
2
12 . (34.50)

5This applies to Zeeman sublevels (summing up (3j)-coefficients). Check for other degeneracy
(also summing up {6j}-coefficients)!
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Therefore, the insertion of Eq. (34.50) into (34.48) must be accompanied by a
factor of 1/g2 to correct for the fact that all excited sub-levels radiate at the
same rate. Therefore, using the S12 of Eq. (34.50) the correct expression relating
the transition dipole between degenerate levels to the spontaneous emission rate
is,

S12 = g2
3πϵ0ℏc3

ω3
0

A21 , (34.51)

meaning that the line strength is proportional to the sum of the spontaneous
emission rates A21 from each one of the g2 excited levels toward all fundamental
levels.

For an atom with two levels separated by an energy ℏω0 the oscillator strength
for emission is defined as a measure for the radiative decay rate A21 as compared
to the radiative decay rate γe of a classical electronic oscillator with frequency
ω0:

f21 = −1

3

A21

γe
. (34.52)

In case of degeneracy the oscillator strength for absorption is consequently de-
fined by,

f12 = −g2
g1
f21 =

g2
3g1

A21

γe
. (34.53)

The transitions S ↔ P in real atoms behave roughly as classical oscillators,
that is, A21 ≃ γe. The factor 1

3
in the definition compensates for the triple

degeneracy of the P levels. So, a transition S ↔ P which behaves exactly as a
classical oscillator would be characterized by an oscillator strength for emission
of f21 = − 1

3
and an oscillator strength for absorption of f12 = 1. The classical

expression for γe derived from the Lorentz model is [547],

γe =
e2ω2

0

6πϵ0mec3
. (34.54)

Therefore, in terms of the A21 coefficient and of fundamental constants, the
oscillator strength for absorption is given by,

f12 = A21
2πϵ0mec

3

e2ω2
0

. (34.55)

Oscillator strengths obey certain sum rules that are useful for analyzing the
relative intensities of atomic spectral lines. For example, atoms with single
valence electrons (which are closer to the classical situation) obey the following
sum rule, ∑

k

fik = 1 , (34.56)

where the sum goes over all the excited states reached from the ground state. Al-
kaline atoms are approximately one-electron systems, and the oscillator strength
of the first transition S −→ P is typically of the order of f12 = 0.7− 0.95. The
sum rule tells us that most of the total transition probability for the excitation
of the valence electron is concentrated in the first transition S → P , and that
transitions to higher states will be comparatively weaker. Another sum rule
exists for the excitation and spontaneous emission from excited intermediate
states j: ∑

i<j

fji +
∑
k>j

fjk = Z , (34.57)
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which is called the Thomas-Reiche-Kuhn sum rule. In the form of many elec-
trons [Eq. (34.57)] this rule is very useful, when Z is the number of equivalent
electrons, that is, electrons with the same quantum numbers n, l. Note also,
that the numbers are intrinsically negative. Oscillator strengths are often used
in astrophysics and plasma spectroscopy 6. They are sometimes tabulated as
log gf , where,

g1f12 = −g2f21 ≡ gf . (34.58)

34.2.3 Selection rules and electronic transitions

The selection rules that determine which transitions between two sets of quantum
numbers i → f are allowed, reflect the symmetry properties of the system, e.g. the
conservation of angular momentum (including the spin of the photon) or the change
of parity, which can be understood by the fact that the emission of a photon in a
particular direction must in some way alter the spatial isotropy of the atom. Note
that radially symmetric oscillations of the shape of the charge distribution do not
radiate.

Since the electronic transitions via electric dipole radiation are described by |ϵ̂ ·
rfi|, we expect a strong dependence of the transition rate on the orientation of the
polarization state of the light with respect to the electronic displacement rfi. Let us
express ϵ̂ and rfi in spherical coordinates, which are more adapted to the problem 7.
For an arbitrary vector r we have,

x = r · êx = r sinϑ cosφ , y = r · êy = r sinϑ sinφ , z = r · êz = r cosϑ . (34.59)

Defining,
ê±1 ≡ 1√

2
(∓êx − ıêy) , ê0 ≡ êz . (34.60)

we obtain

r±1 ≡ r · ê± = r · 1√
2
(∓êx − ıêy) = 1√

2
(∓x− ıy) = ∓ 1√

2
r sinϑe±ıφ = r

√
4π
3 Y1,±1(ϑ, φ)

r0 ≡ r · ê0 = r · êz = z = r cosϑ = r
√

4π
3 Y1,0(ϑ, φ) . (34.61)

Now, applying the expansion into spherical coordinates to the polarization, we
get,

ϵ±1 ≡ ϵ̂ · ê± , ϵ0 ≡ ϵ̂ · ê0 . (34.62)

and applying the expansion to the matrix element rfi = ⟨f |r|i⟩ with êq · êq′ = δqq′ , it
is easy to check,

ϵ̂·rfi =
∑

q=0,±1
(ϵ̂·êq)êq·

∑

q=0,±1
(rfi·êq)êq =

∑

q=0,±1
ϵq⟨f |rq|i⟩ =

√
4π
3

∑

q=0,±1
ϵq⟨f |rY1,q|i⟩ .

(34.63)

6To find information about the atomic transition lines see
’http://www.nist.gov/pml/data/asd.cfm’.

7In the presence of a magnetic field it is often useful to choose the quantization axis along the
field direction, because this simplifies the interpretation of π and σ± transitions in terms of light
polarizations (see also Secs. 34.7.4 and 34.8.3).
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The matrix elements are evaluated inserting the ansatz (25.18) separating the radial
from the angular part of the wavefunction, where the angular part is solved by (25.32),

⟨f |rq|i⟩ =
√

4π
3 ⟨nf ℓfmf |rY1,q|niℓimi⟩ (34.64)

=

∫ ∞

0

r3Rnf ,ℓfRni,ℓidr
√

4π
3

∫
Y ∗ℓf ,mf

Y1,qYℓi,mi
dΩ .

The angular integral,

∫
Y ∗ℓf ,mf

Yκ,qYℓi,midΩ =
√

(2ℓi+1)(2ℓf+1)
4π(2κ+1)

(
ℓi κ

0 0

∣∣∣∣∣
ℓf

0

)(
ℓi κ

mi q

∣∣∣∣∣
ℓf

mf

)
, (34.65)

here with κ = 1, is only non-zero, if the values of ℓi,mi, ℓf ,mf and q satisfy certain
conditions called selection rules 8.

The radial integral, together with the coefficients of (34.65) which do not depend
on the magnetic quantum numbers, is called reduced matrix element or irreducible
matrix element with the notation,

⟨nf ℓf ||r||niℓi⟩ ≡
∫ ∞

0

r3Rnf ,ℓfRni,ℓidr
√

(2ℓi+1)(2ℓf+1)
3(2κ+1)

(
ℓi κ

0 0

∣∣∣∣∣
ℓf

0

)
. (34.66)

Defining the electric dipole tensor operator,

Qq1(r) = erq(r) =
√

4π
3 Y1,q(ϑ, φ)er , (34.67)

we can finally write,

⟨nf ℓfmf |Qq1(r)|niℓimi⟩ = ⟨nf ℓf ||er||niℓi⟩
(
ℓi 1

mi q

∣∣∣∣∣
ℓf

mf

)
. (34.68)

This is the Wigner-Eckart theorem. The electric dipole operator is a simpler example
of a tensor operator Qqκ(r) characterizing the transition between atomic states. In
Excs. 34.2.6.2 and 34.2.6.3 we explicitly calculate, for a hydrogen atom subjected to
a magnetic field, components of the electric dipole operator. Resolve Exc. 34.2.6.4.

Selection rules may be violated in higher orders, e.g. by multipolar radiation, as
in the cases of magnetic dipole transitions or electric quadrupole transitions. This
also is the case of the phenomenon of phosphorescence, which is a type of fluorescence
emitted by metastable states.

34.2.3.1 Parity

The parity of a state has been defined as,

Pψnℓm(r) = ψnℓm(−r) = (−1)ℓψnℓm(r) , (34.69)

8Frequently used are the (3j)-symbols connected to the Clebsch-Gordan coefficients by,

⟨jimi, jfmf |J,M⟩ = (−1)ji−jf+M
√
2J + 1

(
ji jf J

mi mf −M

)
.
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as shown above. That is, states with ℓ pair (impair) have even (odd) parity. Now
the integral (34.67) only does not vanish, when ℓi + ℓf + 1 = even. Therefore, dipole
transitions must change the parity of the states. F.ex. transitions S → P would be
possible, while S → S would be prohibited.

34.2.3.2 Angular momentum

The irreducible matrix element (34.66) with κ = 1 is only non-zero, when |ℓf − ℓi| ≤
1 ≤ ℓf + ℓi. That is, dipole transitions can not change the angular momentum by
more than one unit.

34.2.3.3 Magnetic quantum number

In the decomposition (34.68) the Clebsch-Gordan coefficient is only non-zero, when
|q| ≤ 1. That is, dipole transitions can not change the magnetic quantum number by
more than one unit. This can also be seen from,

∫
Y ∗ℓf ,mf

Yκ,qYℓi,mi
dΩ ∝

∫
eı(mi+q−mf )dΩ ∝ δmi+q,mf

. (34.70)

34.2.3.4 Selection rules for emission in certain directions

As shown in Eq. (34.63), the excitation rate induced by a light field depends on the
relative orientation of the laser polarization ϵ̂ and the atomic quantization axis (which

may be set by the orientation of an applied magnetic field B⃗). To take this dependence
into account, we decompose the polarization vector (which can be linear or elliptical)
on a coordinate basis, as shown in Eq. (34.62). Thus, the relative amplitude of the
transitions ∆mJ = 0 is proportional to the projection of the polarization vector
onto the quantization axis, ϵ0 ≡ ϵ̂ · ê0. To estimate the amplitude of the transitions
∆mJ = ±1, we must project onto the coordinates ϵ±1 ≡ ϵ̂·ê±. Note that the direction
of incidence of the beam, given by the wavevector k, does not influence the transition
probability directly (after all, the spatial dependence eık·r was removed by the dipolar
approximation (34.29)); only through the fact, that the polarization is perpendicular
to the propagation vector, ϵ̂ ⊥ k.

Figure 34.1: Selection rules due to polarization ϵ̂ of the incident light. The projection of this
vector onto the axes π = ϵ̂ · ê0 and σ± = ϵ̂ · ê± is proportional to the excitation probability
(and, obviously, also to the emission probability).
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34.2.4 Reduction of the fine and hyperfine structure

In Sec. 34.2.3 we developed the Wigner-Eckart theorem for arbitrary angular momenta
ℓi and ℓf . We will now be more specific identifying them with orbital angular mo-
menta, (ℓi, ℓf ) = (L,L′), total angular momenta of the electron shell, (ℓi, ℓf ) = (J,J′),
or total angular momenta including hyperfine structure, (ℓi, ℓf ) = (F,F′).

34.2.4.1 Summary of selection rules including fine structure

The fine structure is due to a coupling of the type L + S = J. The reduced matrix
element (34.66) can then be recoupled as follows,

⟨J ′,m′J |d̂|J,mJ⟩ = ⟨J ′||d̂||J⟩
(
J κ

mJ q

∣∣∣∣∣ J ′m′J
)

with

⟨(L′, S′)J ′||d̂||(L, S)J⟩ = (−1)J+L′+1+S
√

(2J + 1)(2L′ + 1)

{
L′ L 1

J J ′ S

}
⟨L′||d̂||L⟩

,

(34.71)

where the matrix in the second line represents a so-called {6j}-symbol, and the first
line rewrites the Wigner-Eckart theorem (34.68) for total angular momenta. In this
case,

⟨(L, S)JmJ |er|(L′, S′)J ′m′J⟩ = (−1)J+L′+1+S
√
2J + 1

√
2L′ + 1 × (34.72)

× δS′S

{
L L′ 1

J ′ J S

}(
J ′ 1 J

m′J q −mJ

)
⟨n′L′||er||nL⟩

∝ δS′S

{
L L′ 1

J ′ J S

}(
J ′ 1 J

m′J q −mJ

)(
L′ 1 L

0 0 0

)
,

Electric dipolar transitions are excited by Stark-like perturbations,

V̂stark = −ed · E , (34.73)

where E = E0 cos(k · r−ωt) is the electric field of an electromagnetic oscillating wave
with polarization E0. With d = ezêz, in order to determine which dipole transitions
are possible, we must look at the matrix ⟨J ′m′J |ẑ|JmJ⟩. Applying the Wigner-Eckart
theorem (30.71), it is already possible to determine, between which magnetic quantum
numbers mJ and m′J transitions may occur.

We can compare the amplitudes of the various transitions between states |mJ⟩ and
|m′J⟩ via the Clebsch-Gordan coefficients (see Exc. 30.3.2.1). Again, transitions are
only possible between states for which the corresponding Clebsch-Gordan coefficient
does not zero. Looking at the equations (30.73), we find for dipolar transitions the
following selection rules,

∆J = 0,±1 but (J = 0)→ (J ′ = 0) is prohibited (34.74)

∆mJ = 0,±1 but (mJ = 0)→ (m′J = 0) is prohibited when ∆J = 0 .

In addition, we have for the L · S coupling,

∆S = 0,∆L = ±1 and for the electron undergoing the transition ∆ℓ = ±1 .
(34.75)
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Table 34.1: Allowed transitions: (1-3) rigorous rules, (4-5) LS-coupling, and (6) in-
termediate coupling (https://en.wikipedia.org/wiki/Selection rule).

(E1) (M1) (E2) (M2) (E3) (M3)

(1)
∆J = 0,±1

(∆J = 0 ↮ 0)

∆J = 0,±1,±2

(∆J = 0 ↮ 0, 1; 1
2

↮ 1
2
)

∆J = 0,±1,±2,±3

(0 ↮ 0, 1, 2; 1
2

↮ 1
2
, 3
2
; 1 ↮ 1)

(2) ∆MJ = 0,±1 ∆MJ = 0,±1,±2 ∆MJ = 0,±1,±2,±3

(3) Pf = −Pi Pf = Pi Pf = −Pi Pf = Pi

(4) one e− jump

∆L = ±1

no e− jump

∆L = 0;∆n = 0

none or one e− jump

∆L = 0,±2

one e− jump

∆L = ±1

one e− jump

∆L = ±1,±3

one e− jump

∆L = 0,±2

(5)
if ∆S = 0

∆L = 0,±1

(L = 0 ↮ 0)

if ∆S = 0

∆L = 0

if ∆S = 0

∆L = 0,±1,±2

(L = 0 ↮ 0, 1)

if ∆S = 0

∆L = 0,±1,±2,±3

(L = 0 ↮ 0, 1, 2; 1 ↮ 1)

(6)
if ∆S = ±1

∆L = 0,±1,±2

if ∆S = ±1

∆L = 0,±1,±2,±3

(L = 0 ↮ 0)

if ∆S = ±1

∆L = 0,±1

(L = 0 ↮ 0)

if ∆S = ±1

∆L = 0,±1,±2,±3,±4

(L = 0 ↮ 0, 1)

if ∆S = ±1

∆L = 0,±1,±2

(L = 0 ↮ 0)

In the presence of a strong magnetic field (Paschen-Back regime) breaking up the
L · S-coupling the selection rules are,

∆mS = 0,∆mL = 0,±1 . (34.76)

For j · j-coupling,

∆j = 0,±1 for one electron and ∆j = 0 for all others . (34.77)

For all dipole transitions the parity must change between even and odd.

Example 194 (Transitions allowed and prohibited in the dipolar ap-

proximation): Examples of allowed transitions are 2S1/2 ↔2 P1/2,
1S0 ↔1 P0.

Prohibited transitions are 1S0 ↮3 P1,
2S1/2 ↮2 D3/2, (5s)

2 3P0 ↮ (5s6s) 3P0.

34.2.4.2 Summary of selection rules including hyperfine structure

The fine structure is due to a coupling of the type J + I = F. The reduced matrix
element (34.66) can then be recoupled in a similar way as for the fine structure.
Applying the Wigner-Eckart theorem (25.107) to the hyperfine structure [1368],

⟨F ′,m′F |d̂|F,mF ⟩ = ⟨F ′||d̂||F ⟩
(
F κ

mF q

∣∣∣∣∣ F ′m′F

)
with

⟨(J ′, I ′)F ′||d̂||(J, I)F ⟩ = (−1)F+J′+1+I
√

(2F + 1)(2J ′ + 1)

{
J ′ J 1

F F ′ I

}
⟨J ′||d̂||J⟩

⟨(L′, S′)J ′||d̂||(L, S)J⟩ = (−1)J+L′+1+S
√

(2J + 1)(2L′ + 1)

{
L′ L 1

J J ′ S

}
⟨L′||d̂||L⟩

.

(34.78)

34.2.5 Irreducible tensor operators

Irreducible tensor operators are defined by their commutation relation with the an-
gular momentum J,

[J,T(k)
q ] =

∑

q′

⟨kq|J|kq′⟩T (k)
q′ . (34.79)
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Using the spherical unit vectors ê±1 = 1√
2
(∓êx − ıêy) and ê0 = êz, we can reduce

Cartesian vector operators to first-order tensor operators:

T⃗ =
∑

q

T (1)
q êq resp. T (1)

q = T⃗ · êq . (34.80)

Examples for tensor operators are I(0)0 , ê
(1)
q , J

(1)
q , and Y

(k)
q . The most general tensor

product is defined by:

(T(k) × U(k′))(j)m ≡
∑

q,q′

(
k k′ j

q q′ −m

)
T(k)
q U(k′)

q′ . (34.81)

With this product it is possible to represent scalar, vector or tensor products of higher
ranks,

(T(1) × U(1))
(0)
0 = 1√

3
T⃗ · U⃗ (34.82)

(T(1) × U(1))(1)m = 1√
2
(T⃗× U⃗) · êm

(T(1) × U(1))
(2)
0 = − 1√

6
(3TzUz − T⃗ · U⃗)

(T(1) × U(1))
(2)
±1 = ± 1

2 [(TxUz + TzUx)± ı(TyUz + TzUy)]

(T(1) × U(1))
(2)
±2 = − 1

2 [(TxUx − TyUy)± ı(TxUy + TyUx)] .

34.2.5.1 The Wigner-Eckart theorem

Be T(k)
q an irreducible tensor of rank k. Then, there exists then an irreducible matrix

element ⟨j||T(k)||j′⟩, which does not depend on the Zeeman sublevels:

⟨jm|T(k)
q |j′m′⟩ =

(
j′ k j

m′ q −m

)
1√

2j + 1
⟨j||T(k)||j′⟩ . (34.83)

From the possible values for the Clebsch-Gordan coefficients follow directly the selec-
tion rules for multipolar radiation:

⟨jm|T(k)
q |j′m′⟩ = 0 else E′ − E = ℏω (34.84)

|j′ − j| ≤ k ≤ j′ + j

m′ −m = q

τ ′τ = T .

For tensor products the reduced matrix element can be reduced:

⟨j||(T(k) × U(k′))(l)||j′⟩ = (−)j+ℓ+j′
√
2ℓ+ 1

∑

q

{
k k′ ℓ

j′ j q

}
⟨j||T(k)||q⟩⟨q||U(k′)||ȷ′⟩ .

(34.85)
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In particular, it is possible to show,

⟨j||I(0)||j′⟩ =
√
2j + 1δjj′ (34.86)

⟨j||J(1)||j′⟩ =
√
2j + 1

√
j(j + 1)δjj′

⟨j||Y(k)||j′⟩ = ıj+k+j
′
√
2j + 1

√
2k + 1

√
2j′ + 1

4π

(
j k j′

0 0 0

)
.

34.2.5.2 Matrix element for angular momentum coupling

We consider states |(l, s)j⟩. If the factors T and U of the tensor product act on
different angular momenta, it can be reduced as follows:

⟨(l, s)j||(T(k)×U(k′))(l)||(l′, s′)j′⟩ =
√
2l + 1

√
2j + 1

√
2j′ + 1


l′ s′ j′

k k′ l

l s j

 ⟨l||T(k)||l′⟩⟨s||U(k′)||s′⟩ .

(34.87)

Assuming, in particular, U(k′) ≡ I(0), we get, with T(k) =
(
T(k) × I(0)

)(k)
,

⟨(l, s)j||T(k)||(l′, s′)j′⟩ = (−)l+s+j′+kδss′
√
2j + 1

√
2j′ + 1

{
l l′ k

j′ j s

}
⟨l||T(k)||l′⟩ .

(34.88)
The last equation therefore applies when T(k) only acts on the angular momentum
component ℓ. If on the other hand, T(k) only acts on j, then we obviously have,

⟨(l, s)j||T(k)||(l′, s′)j′⟩ = ⟨j||T(k)||j′⟩ . (34.89)

34.2.6 Exercises

34.2.6.1 Ex: Rabi frequency

From the expression for the dipole moment d and the relationship between the inten-
sity I and the electric field derive the Rabi frequency Ω produced by a laser beam of
intensity I by exciting an atomic dipole transition with the wavelength λ and decay
width Γ.

Solution: The intensity is related to the electric field by,

I = nε0cE⃗21 .
Using the expression for the dipole moment,

d =

√
3πε0ℏΓ
k3

,

we find the Rabi frequency,

Ωn =
dE1
√
n

ℏ
=

1

ℏ

√
3πε0ℏΓ
k3

√
I

nε0c

√
n =

√
3λ2ΓI

ℏω4π2
=

√
σ0ΓI

2ℏω
,

with the optical cross section σ0 = 3λ2

2π .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Frequenciarabi.pdf
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34.2.6.2 Ex: Non-stationary state

Construct a non-stationary hydrogen wavefunction with equal contributions of (n =
1, ℓ = 0,m = 0) and (n = 2, ℓ = 1,m = 1). Calculate the expectation values ⟨|r|⟩ and
⟨r⟩ as a function of time.

Solution: The wavefunction is,

|ψ⟩ = 1√
2
|ψ100⟩+ e−ıω21t

√
2
|ψ211⟩ = 1√

2

1√
π

(
Z
aB

)3/2
e−Zr/aB+ e−ıω21t

√
2

1

8
√
2π

(
Z
aB

)3/2
Zr
aB
e−Zr/2aB sin θeıϕ .

With this and using the result ⟨r̃⟩ = n2aB
Z

[
1 + 1

2

(
1− ℓ(ℓ+1)

n2

)]
we calculate the inte-

gral,

⟨ψ|r|ψ⟩ = 1
2 ⟨ψ100|r|ψ100⟩+ 1

2 ⟨ψ211|r|ψ211⟩+ e−ıω21t

2

∫
ψ100rψ211d

3r + c.c.

= 1
2
12aB
Z

[
1 + 1

2

(
1− 0(0+1)

12

)]
+ 1

2
22aB
Z

[
1 + 1

2

(
1− 1(1+1)

22

)]

+ e−ıω21t

2
1

16π

(
Z
aB

)3 ∫
e−Zr/aB Zr

aB
e−Zr/2aB sin θeıϕd3r + c.c.

= 3aB
4Z + 5aB

2Z + 0 = 13aB
4Z + 0 .

We also calculate the integral,

⟨ψ|r|ψ⟩ = 1
2

∫
|ψ100|2rd3r + 1

2

∫
|ψ211|2rd3r + e−ıω21t

2

∫
ψ100ψ211rd

3r + c.c. .

The first term gives,

1
2

∫ ∞

0

∫ π

0

∫ 2π

0

1
2π

(
Z
aB

)3
e−2Zr/aB



r sin θ cosϕ

r sin θ sinϕ

r cos θ


 r2 sin θdθdϕdr = 0 ,

And the second,

1
2

∫ ∞

0

∫ π

0

∫ 2π

0

1
128π

(
Z
aB

)3 (
Zr
aB

)2
e−Zr/aB sin θ

2



r sin θ cosϕ

r sin θ sinϕ

r cos θ


 r2 sin θdθdϕdr = 0 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TransicaoHidrogenio01.pdf
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such that we are left alone with the third,

⟨ψ|r|ψ⟩ = e−ıω21t

2

∫ ∞
0

∫ π

0

∫ 2π

0

1

16π
√
2

(
Z
aB

)3
Zr
aB
e−3Zr/2aB sin θeıϕ

r sin θ cosϕr sin θ sinϕ

r cos θ

 r2 sin θdθdϕdr + c.c.

= cosω12t

32π
√
2

aB
Z

∫ ∞
0

r̃4e−3r̃/2dr


∫ π
0
sin3 θdθ

∫ 2π

0
cos2 ϕdϕ∫ π

0
sin3 θdθ

∫ 2π

0
sinϕ cosϕdϕ

0



− sinω12t
32π

1√
2

aB
Z

∫ ∞
0

r̃4e−3r̃/2dr


∫ π
0
sin3 θdθ

∫ 2π

0
cosϕ sinϕdϕ∫ π

0
sin3 θdθ

∫ 2π

0
sin2 ϕdϕ

0



= cosω12t
8π

1√
2

aB
Z

∫ ∞
0

r̃4e−3r̃/2dr


4
3

∫ 2π

0
cos2 ϕdϕ

4
3

∫ 2π

0
sinϕ cosϕdϕ

0



+ sinω12t
8π

1√
2

aB
Z

∫ ∞
0

r̃4e−3r̃/2dr


4
3

∫ 2π

0
cosϕ sinϕdϕ

4
3

∫ 2π

0
sin2 ϕdϕ

0


=

27

33
√
2
[êx cosω12t− êy sinω12t] .

34.2.6.3 Ex: Transitions between Zeeman substates

Consider a hydrogen atom immersed in a uniform magnetic field, described by the
Hamiltonian Ĥ = Ĥ(0)+ Ĥ(1), being Ĥ(0) = p̂2/2m+V (r) and H(1) = −(µB/ℏ)L̂ · B⃗
despising the spin 9.
a. Given the initial function, |ψm(0)⟩ = cosα|ϕ000⟩+sinα|ϕ21m⟩, determine its shape
at time t.
b. Calculate the mean value ⟨d⟩m(t) = ⟨ψm(t)|d|ψm(t)⟩ of the electric dipole operator
of the atom d = qR.
c. Analyze the frequencies and polarizations of the emitted radiation by the transition
of the excited states |ϕ21m⟩ to the ground state.

Solution: a. We derive the eigenenergies of the unperturbed Hamiltonian,

En = −EB

n2 with EB = −mec
2

2 α2 .

and eigenfunctions |ϕnℓm⟩ by Bohr’s model. The perturbation causes normal Zeeman
type energy shifts, which we calculate in first order TIPT,

∆E = ⟨ϕnℓm|H(1)|ϕnℓm⟩ = −µBmB .
9See Cohen-Tannoudji, Complemento D VII

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TransicaoHidrogenio02.pdf
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Thus, we have with the stationary perturbation,

|ψm(t)⟩ = e−iE100t/ℏ cosα|ϕ100⟩+ e−iE21mt/ℏ sinα|ϕ21m⟩
where E100 = EB and E21m = EB

4 − µBmB .

Introducing the Larmor frequency ωL ≡ µBB
ℏ and the energy spacing ∆ ≡ E210−E100,

we can write,
|ψm(t)⟩ = cosα|ϕ100⟩+ ei(∆+mωL)t sinα|ϕ21m⟩ .

b. For the dipole moment we now expect,

⟨ψm(t)|d|ψm(t)⟩ = cos2 α⟨ϕ100|qR|ϕ100⟩+ sin2 α⟨ϕ21m|qR|ϕ21m⟩
+ sinα cosαei(∆+mωL)t⟨ϕ100|qR|ϕ21m⟩+ sinα cosαe−i(∆+mωL)t⟨|ϕ21m|qR|ϕ100⟩
= q cos2 α⟨ϕ100|R|ϕ100⟩+ q sin2 α⟨ϕ21m|R|ϕ21m⟩+ q sin 2α cos[(∆ +mωL)t]⟨ϕ100|R|ϕ21m⟩ .

Now, we need to calculate all elements of the matrix by choosing the quantization
axis êz. Obviously,

⟨ϕ100|R|ϕ100⟩ = 0 and ⟨ϕ21m|R|ϕ21m⟩ = 0 .

Besides that,

⟨ϕ210|R|ϕ100⟩ =
aB

4π
√
2

∫ ∞

0

∫ π

0

∫ 2π

0

r̃e−r̃/2 cos θ



r̃ sin θ cosϕ

r̃ sin θ sinϕ

r̃ cos θ


 e−r̃ r̃2 sin θdθdϕdr̃

= êz
aB

2
√
2

∫ 1

−1
cos2 θd(cos θ)

∫ ∞

0

r̃4e−3r̃/2dr̃ = êz
aB

2
√
2

2

3

28

34
= êz

28aB

35
√
2
.

and

⟨ϕ21±1|R|ϕ100⟩ =
aB

8π
√
2

∫ ∞

0

∫ π

0

∫ 2π

0

r̃e−r̃/2 sin θe±ıϕ



r̃ sin θ cosϕ

r̃ sin θ sinϕ

r̃ cos θ


 e−r̃ r̃2 sin θdθdϕdr̃

=
aB

8π
√
2




∫ π
0
sin3 θdθ(

∫ 2π

0
cos2 ϕdϕ± ı

∫ 2π

0
cosϕ sinϕdϕ)∫ π

0
sin3 θdθ(

∫ 2π

0
cosϕ sinϕdϕ± i

∫ 2π

0
sin2 ϕdϕ)∫ π

0
sin2 θ cos θdθ

∫ 2π

0
e±iϕdϕ



∫ ∞

0

r̃4e−3r̃/2dr̃

=
aB

8π
√
2




4
3 (π ± 0ı)
4
3 (0± ıπ)

0


 28

34
= ê±

27aB

35
√
2
.

c. Choosing α ≡ π/4 we get the final result,

⟨d⟩m(t) =
27qaB

35
√
2
cos[(∆ +mωL)t](δm,±1ê± + 2δm,0êz) .

For m = ±1 the dipole moment is circular and ∆ = ∓mωL. For m = 0 the dipole
moment is linear and ∆ = 0.
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d. Assuming that the perturbation is suddenly switched on at time t = 0, we calculate
the transition rates ⟨ϕ100|ψm(t)⟩,

ai→f (t) =
1

ıℏ

∫ t

0

⟨ϕ100|W |ϕ210⟩eıωif τdτ

= ⟨ℓ,m| 1
iℏ

∫ t

0

∫
1

4π
√
2
e−r̃

µB
ℏ

L · B⃗r̃e−r̃/2 cos θd3r̃eıωif τdτ |ℓ,m⟩

=
µB
ıℏ2

1

4π
√
2

∫ t

0

∫
e−r̃ (⟨0, 0|Lx|1, 0⟩B sin θ cosϕ+ ⟨0, 0|Ly|1, 0⟩B sin θ sinϕ

+⟨0, 0|Lz|1, 0⟩B cos θ) r̃e−r̃/2 cos θd3r̃eıωif τdτ = 0 .

The same way,

ai→f (t) =
1

ıℏ

∫ t

0

⟨ϕ100|W |ϕ21±1⟩eıωif τdτ

= ⟨ℓ,m| 1
ıℏ

∫ t

0

∫
1

4π
√
2
e−r̃

µB
ℏ

L · B⃗r̃e−r̃/2 sin θe±ıϕd3r̃eıωif τdτ |ℓ,m⟩

=
µB
ıℏ2

1

4π
√
2

∫ t

0

∫
e−r̃ (⟨0, 0|Lx|1,±1⟩B sin θ cosϕ+ ⟨0, 0|Ly|1,±1⟩B sin θ sinϕ

+⟨0, 0|Lz|1,±1⟩B sin θe±ıϕ
)
r̃e−r̃/2 cos θd3r̃eıωif τdτ

=
µBB
ıℏ

1

4π
√
2

∫ t

0

∫ 2π

0

∫ π

0

(
1√
2
sin θ cosϕ∓ ı√

2
sin θ sinϕ+ 0

)
sin θe±ıϕ sin θdθdϕ

×
∫ ∞
0

e−3r̃/2r̃3dr̃eıωif τdτ = 0 .

34.2.6.4 Ex: Derivation of selection rules

a. Prove [Lk, rm] = ıℏrnϵkmn for an orbital angular momentum.
b. Using the commutator derived in (a) derive the selection rules for transitions
⟨α′L′m′|ε⃗ · r̂|αLm⟩, where ε⃗ is the polarization vector of the radiation field chosen to
be ê0 or ê±.
c. Prove [L̂2, [L̂2, r̂]] = 2ℏ2(r̂L̂2 + L̂2r̂) for an orbital angular momentum L̂.
d. Using the commutator derived in (b) derive the selection rule for L̂2.

Solution: a. We calculate

[L̂x, x̂] = [̂r× p̂x, x̂] = [ŷp̂z, x̂]− [zp̂y, x̂] = 0

[L̂y, x̂] = [̂r× p̂y, x̂] = [ẑp̂x, x̂]− [xp̂z, x̂] = ẑ[p̂x, x̂] = −ıℏẑ
[L̂z, x̂] = [̂r× p̂z, x̂] = [x̂p̂y, x̂]− [ŷp̂x, x̂] = −ŷ[p̂x, x̂] = ıℏŷ ,

resulting in the specified formula.
b. From [880],

0 = ⟨α′L′m′|[L̂z, ẑ]|αLm⟩ = (m′ −m)⟨α′L′m′|ẑ|αLm⟩
= (m′ −m)⟨α′L′m′| − ê0 · r|αLm⟩ ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SelectionRules01.pdf
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we conclude that the operator −ê0 · r only drives transitions between corresponding
Zeeman states: m′ = m. From,

ℏ⟨α′L′m′|ıŷ + x̂|αLm⟩ = ⟨α′L′m′|[L̂z, x̂+ ıŷ]|αLm⟩(m′ −m)⟨α′L′m′|x̂+ ıŷ|αLm⟩
= (m′ −m)⟨α′L′m′| − ê−1 · r|αLm⟩ ,

we conclude that the operator −ê± ·r only drives transitions between adjacent Zeeman
states: m′ = m± 1.
c. We restrict without loss of generality to the x-dimension trying to show [L̂2, [L̂2, x̂]] =
2ℏ2(x̂L̂2 + L̂2x̂). Now,

[L̂2, [L̂2, x̂]] = ... .

d. We have on one hand,

⟨L′m′|[L2, [L2, r̂]]|L,m⟩ = ⟨L′m′|[L4r̂− 2L2r̂L2 + r̂L4]|L,m⟩
= ⟨L′m′|[ℏ4L′2(L′ + 1)2r̂− 2ℏ4L′(L′ + 1)r̂ℏ4L(L+ 1) + r̂ℏ4L2(L+ 1)2]|L,m⟩
= ℏ4[L′(L′ + 1)− L(L+ 1)]2⟨L′m′ |̂r|L,m⟩ .

On the other hand,

⟨L′m′|2ℏ2(r̂L2 + L2r̂)|L,m⟩ = 2ℏ4[L(L+ 1) + L′(L′ + 1)]⟨L′m′ |̂r|L,m⟩ .

By comparison,

0 = [L′(L′ + 1)− L(L+ 1)]2 − 2[L(L+ 1) + L′(L′ + 1)]

= (L′ + L+ 1)2(L′ − L)2 − 2L(L+ 1)− 2L′(L′ + 1)

= (L′ + L+ 1)2(L′ − L)2 − (L′ + L+ 1)2 − (L′ − L)2 + 1

= [(L′ + L+ 1)2 − 1][(L′ − L)2 − 1] .

The first term can only be zero if L = L′ = 0, but this is prohibited since L′ is the
vector sum of L and κ = 1 for the photon, and thus cannot be zero. The second term
is zero only if L = 1. Hence, ∆L = 0,±1 is the selection rule.

34.3 Density matrix

As long as we are only interested in stimulated processes, such as the absorption of
a monochromatic wave, the Schrödinger equation suffices to describe the light-atom
interaction. A problem arises when we want to describe relaxation processes at the
same time as excitation processes. Spontaneous emission (and any other dissipa-
tive process) must therefore be included in the physical description of the temporal
evolution of our light-atom system. In this case, however, our system is no longer
restricted to a single mode of the light field and the two atomic states of excitation.
Spontaneous emission populates a statistical distribution of states of the light field
and leaves the atom in a superposition of many momentum states. This situation
can not be described by a single wavefunction, but only by a distribution of wave-
functions, and we can only expect to calculate the probability of finding the system



1748 CHAPTER 34. SEMICLASSICAL THEORYOF LIGHT-ATOM INTERACTION

within this distribution. The Schrödinger equation, therefore, no longer applies, and
we need to trace the time evolution of a system characterized by a density operator
describing a statistical mixture of quantum states. The equations which describe the
time evolution of the matrix elements of this density operator are the optical Bloch
equations, and we must use them instead of the Schrödinger equation. In order to
appreciate the origin and the physical content of the optical Bloch equations we begin
by reviewing the rudiments of the density matrix theory.

34.3.1 The density operator

We define the statistical operator or density operator 10,

ρ̂ ≡
∑

k

pkP̂k where P̂k ≡ |ψk⟩⟨ψk| , (34.90)

where {|ψk⟩} is a complete set of orthonormal states of the system under study. We
consider a statistical distribution of these states with pj being the probability of
finding |ψj⟩ in the set. Obviously,

∑
k pk = 1. That is, the density operator acts on

a member of the set {|ψk⟩} in a way to extract the probability of finding the system
in |ψj⟩,

ρ̂|ψj⟩ =
∑

k

pk|ψk⟩⟨ψk|ψj⟩ = pj |ψj⟩ . (34.91)

If all members of the set are in the same state, for example |ψk⟩, the density
operator reduces to,

ρ̂ = |ψk⟩⟨ψk| , (34.92)

and the system is in a pure state with pk = δ1k. Each time a quantum state can be
expressed by a single wave function, it is a pure state, but it does not have to be an
eigenstate. Starting from the equation (34.91) we find,

⟨ψk|ρ̂|ψj⟩ = pjδkj . (34.93)

The diagonal elements of the density matrix are the probabilities of finding the system
in |ψj⟩, and assuming that all |ψk⟩ are orthonormal, the non-diagonal elements of the
incoherent sum (34.90) are necessarily zero 11, Besides that,

∑

k

⟨ψk|ρ̂|ψk⟩ = 1 , (34.94)

10In the presence of degeneracy or a continuous spectrum we can generalize the definition:

ρ̂ ≡
∑
k

pkP̂k +

∫
pλP̂λdλ where P̂k ≡

∑
m

|km⟩⟨km| and P̂λ ≡
∫

|λµ⟩⟨λµ|dµ .

Here, m and µ are degenerate quantum numbers, m,n are discrete, and λ, µ are continuous quantum
numbers. The set of quantum numbers is complete, when∑

k,m
|km⟩⟨km| = 1̂ =

∫
|λµ⟩⟨λµ|dλdµ .

The degree of degeneracy of a state |k⟩ is Tr P̂k =
∑
m 1. The probability of finding the system in

the state |k⟩ is ⟨P̂k⟩ = pn
∑
m 1.

11This is simply because we constructed the density operator to be diagonal in the basis {|ψk⟩}.
It does not mean, that the density operator cannot have non-diagonal elements in another basis.
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so that ρ̂ contains all available information about the system, that is, our knowledge
about its state. When the state of the system is unknown, ρ̂ describes the probability
of finding the system in each state. When the state is fully known, ρ̂ describes a pure
state, that is, a vector in the Hilbert space, which is unequivocally determined by a
complete set of observables with their respective quantum numbers.

The properties of the density operator are,

ρ̂ = ρ̂†

⟨ρ̂⟩ ≥ 0

Tr ρ̂ = 1

Tr ρ̂2 ≤ 1

det ρ̂ = 0

ρ̂ = ρ̂2 for a pure state

. (34.95)

Example 195 (Inhomogeneous atomic clouds): For example, a thermal

atomic cloud of N two-level atoms needs in general to be described by a density

operator, because the state of every atom is independent of the state of the

other atoms. If we knew that all atoms behave in the same way, for instance,

when exposed to a radiation field, we could restrict to calculating the evolution

of a single atom and extrapolate to N atoms. However, atomic motion and

interatomic interactions often influence the dynamics.

34.3.1.1 Entropy

In a very general sense, the entropy determines in what direction a reversible process
will take place. It is related to the size of the available phase space on both sides of
the reaction. For example, the coupling of discrete and continuous modes is governed
by entropy considerations.

Entropy measures of the lack of information about a system from which we only
know ⟨Ĥ⟩,

S ≡ −kB⟨ln ρ̂⟩ = −kB Tr (ρ̂ ln ρ̂) . (34.96)

The information entropy (or von Neumann entropy) of statistically independent sys-
tems ρ̂ ≡ ρ̂1 ⊗ ρ̂2 is additive S = S1 + S2. We can also define absolute temperatures
by T−1 ≡ ∂S/∂⟨Ĥ⟩. The entropy of a pure state is 0. Hamiltonian processes conserve
entropy, for they correspond to non-dissipative unitary transformations. On the other
side, relaxation increases the entropy and the phase space volume. Another common
definition is the so-called purity or Renyi entropy,

SR ≡ ⟨1− ρ̂⟩ = 1− Tr (ρ̂2) . (34.97)

Quantum states can exhibit coherences. For example, if we express a state |ψ⟩ on
a basis of eigenstates |1⟩ and |2⟩:

ρ̂ = |ψ⟩⟨ψ| =
(
|⟨ψ|1⟩|2 ⟨1|ψ⟩⟨ψ|2⟩
⟨2|ψ⟩⟨ψ|1⟩ |⟨ψ|2⟩|2

)
. (34.98)
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The evolution of such a state is described by the von Neumann equation,

iℏ∂tρ̂(t) = [Ĥ, ρ̂(t)] . (34.99)

The measurement process is not described by this equation. A pure state will always
remain pure. If the eigenstates do not interact, the density operator will remain
diagonal. The von Neumann equation conserves the properties of hermiticity, ρ̂ = ρ̂†,
completeness, Tr ρ̂ = 1, and purity det ρ̂ = 0.

The density operator for a statistical mixture in a canonical ensemble (where S is
maximum, U is variable, and N is fixed) follows from a variational problem with the
Lagrange parameters δ(S − kBα⟨1̂⟩ − kBβ⟨Ĥ⟩) = 0, since Tr ρ̂ and ⟨Ĥ⟩ are fixed by
boundary conditions. We find,

ρ̂ =
1

Z
e−Ĥ/kBT with Z ≡ Tr e−Ĥ/kBT . (34.100)

We also have the expectation values, ⟨H⟩ = −∂ lnZ/∂β and (∆H)2 = −∂⟨Ĥ⟩/∂β
with the abbreviation β ≡ (kBT )

−1. All quantities are fixed, except the kinetic
energy, which balances the interaction with a heat bath. T is the only equilibrium
parameter. The density operator satisfies a Boltzmann distribution 12,

U = ⟨Ĥ⟩ = p2

2m
= − ∂

∂(1/kBT )
ln

∫
e−p

2/2mkBT dp =
kB
2
T . (34.101)

34.3.2 Matrix formalism

The next step is to develop matrix representations of the density operator by expand-
ing the state vectors |ψk⟩ in a complete orthonormal basis,

|ψk⟩ =
∑

n

cnk|n⟩ =
∑

n

|n⟩⟨n|ψk⟩ , (34.102)

using the completeness relation (23.74), that is,
∑
n |n⟩⟨n| = I, and defining,

cnk ≡ ⟨n|ψk⟩ (34.103)

as the projection of the state vector |ψk⟩ on the basis vector |n⟩. Now, we can write
the density operator matrix representation within the basis {|n⟩} using the definition
of ρ̂ in Eq. (34.90) and replacing the expansions of |ψk⟩ and ⟨ψk| of Eq. (34.102):

ρ̂ =
∑

k

pk|ψk⟩⟨ψk| =
∑

k

pk
∑

m,n

|n⟩⟨n|ψk⟩⟨ψk|m⟩⟨m| =
∑

k

pk
∑

m,n

cnkc
∗
mk|n⟩⟨m| .

(34.104)
The matrix elements of ρ̂ in this representation are

ρnm ≡ ⟨n|ρ̂|m⟩ =
∑

k

pkcnkc
∗
mk (34.105)

12The von Neumann entropy S of a mixture can be expressed in terms of the eigenvalues or in
terms of the trace and the logarithm of the density operator ρ̂. Since ρ̂ is a semi-definite positive
operator, its spectrum λi, given by ρ =

∑
i λi|φi⟩⟨φi| where {|φi⟩} is an orthonormal basis, satisfies

λi > 0 and
∑
λi = 1. Then the entropy becomes S = −∑i λi lnλi = −Tr (ρ ln ρ).
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with the diagonal elements ⟨n|ρ̂|n⟩ =∑k pk|cnk|2 and,

ρ∗nm = ⟨n|ρ̂|m⟩∗ =
∑

k

pkc
∗
nkcmk =

∑

k

pk⟨m|ψk⟩⟨ψk|n⟩ = ⟨m|ρ|n⟩ = ρmn , (34.106)

which means that the operator ρ̂ is Hermitian.

Example 196 (Density operator for a single atom): For a very simple
system such as a single atom with several levels, that without spontaneous
emission can be described by a single wavefunction |ψ1⟩, we can let pk = δ1k.
That is, the equations (34.104) and (34.106) reduce to,

ρ̂ =
∑
m,n

cn1c
∗
m1|n⟩⟨m| and ⟨n|ρ|m⟩ = cn1c

∗
m1 . (34.107)

34.3.3 Measurement and trace

The sum of the diagonal elements of a matrix representing an operator is called the
trace. This quantity represents a fundamental property of the density operator, since
it is invariant with respect to any unitary transformation:

Tr ρ̂ ≡
∑

n

⟨n|ρ̂|n⟩ . (34.108)

With the definition of the density operator (34.90) we can write the Eq. (34.108) as,

Tr ρ̂ ≡
∑

n,k

pk⟨n|ψk⟩⟨ψk|n⟩ . (34.109)

Now, using the completeness relation,

Tr ρ̂ ≡
∑

n,k

pk⟨ψk|n⟩⟨n|ψk⟩ =
∑

k

pk⟨ψk|ψk⟩ = 1 , (34.110)

which shows that the trace of the density operator representation is always 1 regardless
of the basis of the matrix representation.

Example 197 (Density operator for a statistical mixture): Let us imagine
an experiment with a single three-level atom coupling a state |1⟩ to two other
possible states |2⟩ and |3⟩ via a π

2
-pulse, such that one of the two states,

|ψ1⟩ = 1√
2
(|1⟩+ |2⟩) or |ψ2⟩ = 1√

2
(|1⟩+ |3⟩)

be generated with equal probability. We also suppose that the performed ex-
periment doesn’t tell us which one of the two states was generated, so that we
have to describe the system by a density operator,

ρ̂ =
∑
k=1,2

1
2
|ψk⟩⟨ψk| = 1

2

[ |1⟩+ |2⟩√
2

⟨1|+ ⟨2|√
2

]
+ 1

2

[ |1⟩+ |3⟩√
2

⟨1|+ ⟨3|√
2

]
.
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Choosing an obvious basis, we can represent the density operator by a matrix,

ρ̂ =


1
2

1
4

1
4

1
4

1
4

0
1
4

0 1
4

 ,

for which we verify,
ρ̂ = ρ̂† and Tr ρ̂ = 1 ,

but,
ρ̂2 ̸= ρ̂ and Tr ρ̂2 = 5

8
≤ 1 .

Hence the state is not pure.

Expectation values of observables are expressed by,

⟨Â⟩ =
∑

k

pk⟨ψk|Â|ψk⟩ . (34.111)

On the other side,

ρ̂Â =
∑

k

pk|ψk⟩⟨ψk|Â , (34.112)

and in the basis {|n⟩},

⟨n|ρ̂Â|m⟩ = ⟨n|
∑

k

pk|ψk⟩⟨ψk|Â|m⟩ =
∑

k

pk⟨n|ψk⟩⟨ψk|Â|m⟩ =
∑

k

pk⟨ψk|Â|m⟩⟨n|ψk⟩ .

(34.113)
Now, along the diagonal, we have,

⟨n|ρ̂Â|n⟩ =
∑

k

pk⟨ψk|n⟩⟨n|Â|ψk⟩ . (34.114)

With the closure relation in the basis {|n⟩}, we now have 13,

Tr ρ̂Â =
∑

k

pk⟨ψk|Â|ψk⟩ = ⟨Â⟩ . (34.115)

The Eq. (34.115) says that the ensemble average of any dynamic observable Â can be
calculated from the diagonal elements of the operator matrix ρ̂Â: Since the trace is
independent of the basis (this will be shown in Exc. 34.3.5.1), each unitary transfor-
mation taking the matrix representation from a basis {|n⟩} to another one {|t⟩} leaves
the trace invariant. Using the definition of a unitary transformation we can easily
show that the trace of a cyclic permutation of a product is invariant. For example,

Tr [ÂB̂Ĉ] = Tr [ĈÂB̂] = Tr [B̂ÂĈ] , (34.116)

and in particular
Tr [ρ̂Â] = Tr [Âρ̂] = ⟨Â⟩ . (34.117)

In the Excs. 34.3.5.2 and 34.3.5.3 we apply the density operator to pure and mixed
states of a two-level system. In Excs. 34.3.5.4 and 34.3.5.5 we study thermal mixtures
and Exc. 34.3.5.6 Glauber states.

13In the presence of degeneracy or a continuous part of the spectrum we can generalize the definition
of the expectation,

⟨X̂⟩ ≡ Tr ρ̂X̂ =
∑
k,m

⟨km|ρ̂X̂|km⟩ .



34.3. DENSITY MATRIX 1753

34.3.3.1 Measurement process

If an observable Â has a spectral representation Â =
∑
n an|an⟩⟨an| =

∑
n anP̂n, with

P̂n = |an⟩⟨an|, the measurement process will transform the density operator to,

ρ̂′ =
∑

n

P̂nρ̂P̂n . (34.118)

That is, after the measurement, the density operator becomes diagonal on the basis
of the eigenvalues of Â 14, as explained in Sec. 23.2.7. The expression can be thought
of as the mathematical formulation of von Neumann’s state reduction postulate.

We note that the density operator (34.118) describes the whole ensemble after
the measurement. The sub-ensemble corresponding to a particular result an of the
measurement is described by a different density operator,

ρ̂′n =
P̂nρ̂P̂n

Tr [ρ̂P̂n]
. (34.119)

This is true, when |an⟩ is the only eigenvector with the eigenvalue an. If not, P̂n
in the expression (34.119) should be replaced by the projection operator onto the
sub-space of an

15. In Exc. 34.3.5.7 we study the projection of Glauber states and in
Exc. 34.3.5.8 of entangled states.

34.3.3.2 Systems and subsystems

Density operators are very useful for playing with systems and subsystems. Let us, for
instance, assume that we have two quantum systems defined on the Hilbert spaces H1

and H2. The composite system is then the tensor product H1⊗H2. We now suppose
that the compound system is in a pure state, |ψ⟩ ∈ H1 ⊗ H2. If the state can be
written in the form |ψ⟩ = |ψ1⟩⊗ |ψ2⟩, this means that the state of the first subsystem
is |ψ1⟩. However, in general, |ψ⟩ does not decompose like this. Of course, every vector
in H1⊗H2 is a linear combination of tensorial products of H1 and H2. If |ψ⟩ can not
be decomposed as a tensor product, we say that the two systems are entangled. In
this case, there is no reasonable way of associating a pure state |ψ1⟩ ∈ H1 to the state
ψ ∈ H1 ⊗ H2. If, for example, in the case of a two particle wavefunction Ψ(x1, x2)
there is no way to construct a wavefunction (i.e. a pure state) ψ1(x1) describing the
state of the first particle, then Ψ(x1, x2) ̸= ψ1(x1)ψ2(x2).

14A projective measure always increases entropy. The entropy of a pure state is zero, while that
of a mixture is always greater than zero. Therefore, a pure state can be converted into a mixture
by a measurement, but the reverse can not happen. Thus, the action of measuring induces an
irreversible change in the density matrix reminiscent of the collapse of the wavefunction. Strangely,
the measurement reduces the amount of information by quenching the quantum interference of the
compound system in a process called quantum decoherence. A subsystem can be taken from a mixed
state to a pure state only at the price of increasing the von Neumann entropy elsewhere in the global
system.

15In general, assuming that f is a function associating each observable Â with a number f(Â)
(which we may imagine as the expectation value), we can state the following: If f satisfies some
natural properties (such as the one to produce positive values for positive operators), then there

exists a unique density matrix ρ̂, such that f(Â) = Tr (ρ̂Â) for all Â. That is, every reasonable
’family’ of expectation values’ can be represented by a density matrix, which suggests that the
density matrix provides the most general description of a quantum state.
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The point of the discussion is that, even if the total system is in a pure state, the
various subsystems that compose it will normally be in mixed states. On the other
hand, regardless of whether the composite system is in a pure or mixed state, we can
perfectly construct a density matrix that describes the state. Therefore, the use of
density matrices is inevitable. Let ρ̂ be the density matrix of the system composed
of two subsystems. Then the state in H2 is described by a reduced density operator
given by the partial trace of ρ̂ over H2. In the particular case, where the state the
density matrix has the form ρ̂ = ρ̂1 ⊗ ρ̂2, where ρ̂1 and ρ̂2 are the density matrices in
H1 and H2, then the partial trace is simply, Tr H2

ρ̂ρ̂1.

34.3.4 Temporal evolution of the density operator

As shown in Secs. 23.4.2 to 23.4.4, the equations governing the temporal evolution
of a quantum system depend on the choice of the picture, i.e. Schrödinger’s (23.142),
Heisenberg’s (23.148), or the interaction picture (23.155). This, of course, also applies
to a system represented by a density matrix.

Returning to the density operator definition (34.90), we can express its temporal
dependence in terms of time-dependent quantum states and of the time evolution
operator (23.145),

ρ̂(t) =
∑

k

pk|ψk(t)⟩⟨ψk(t)| =
∑

k

pkU(t, t0)|ψk(t0)⟩⟨ψk(t0)|U†(t, t0) . (34.120)

Writing,

ρ̂(t0) =
∑

k

pk|ψk(t0)⟩⟨ψk(t0)| , (34.121)

we see immediately,

ρ̂(t) = U(t, t0)ρ̂(t0)U
†(t, t0) , (34.122)

where, for the common case of a time-independent Hamiltonian,

U(t, t0) = e−ıĤ(t−t0)/ℏ . (34.123)

Now we find the time derivative of the density operator differentiating the two sides
of (34.122) and substituting the Eqs.

dU

dt
=

1

ıℏ
ĤU and

dU†

dt
= − 1

ıℏ
U†Ĥ (34.124)

for the time derivatives U and U†. The result is

dρ̂(t)

dt
=
ı

ℏ
[ρ̂(t), Ĥ] . (34.125)

The commutator itself can be considered as a superoperator acting, not any more on
states but on operators, that is, we can write,

Lρ̂(t) ≡ ı

ℏ
[ρ̂(t), Ĥ] , (34.126)
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where L is called Liouville operator. The equation (34.125) is called Liouville equation
or von Neumann equation. The Liouville equation describes the time evolution of the
density operator which, in turn, describes the distribution of an ensemble of quantum
states. Even though the form of the Liouville equation resembles the Heisenberg
equation, Eq. (34.120) shows that ρ̂(t) is in the Schrödinger picture 16.

34.3.4.1 Transformation to the interaction picture

For a two-level system perturbatively interacting with a light field, the Hamiltonian
can be decomposed as in (23.152) into a stationary part and a time-dependent part,

Ĥ = Ĥatom + Ĥatom:field(t) , (34.127)

where Ĥatom is the part of the Hamiltonian describing the atomic structure and
Ĥatom:field(t) the interaction of the dipole transition with the classical oscillating
electric field. The interaction picture is the natural choice for this type of problem.
In this case, we can transform the density operator into the interaction picture defined
by (23.153),

ρ̃(t) = eıĤatom(t−t0)/ℏρ̂(t0)e
−ıĤatom(t−t0)/ℏ , (34.128)

where the ’tilde’ decoration (replacing the ’hat’) emphasizes, that we are now in the
interaction picture. We look for the time evolution rate of ρ̃(t) analogously to the
Liouville equation. Calculating the time derivatives on both sides of (34.128) and
substituting Eq. (34.125) for dρ̂

dt results in,

dρ̃(t)

dt
=
ı

ℏ
[ρ̃(t), Ĥatom:field(t)] . (34.129)

This equation shows that the time evolution of the density operator in the interaction
picture depends only on the time-dependent part of the total Hamiltonian.

In the following we will derive a ready-to-use form of the Hamiltonian governing
the interaction of a weak single-mode light field with a two-level atom in the dipolar
approximation.

34.3.4.2 Semi-classical two-level atom in the dipolar approximation

According to (34.127) the semi-classical light-atom interaction Hamiltonian comprises
two terms which, in the dipolar approximation, can be written,

Ĥ =

(
0 0

0 ℏω0

)
− d̂ · E⃗(r, t) where d̂ = −er̂ =

(
0 ⟨1|d|2⟩

⟨2|d|1⟩ 0

)
(34.130)

is the dipole operator and

E⃗(r, t) = ϵ⃗

2

[
E0(r)eı(k·r−ωt) + E∗0 (r)e−ı(k·r−ωt)

]
(34.131)

16The Heisenberg equation for the density operator in the Schrödinger picture or the master
equation in the Heisenberg picture are dρ̂H/dt = 0.
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the electric field. Note that via E0(r) → ı
√

ℏω
2ε0V

â, we can quantize the radiation

mode, as will be shown in Sec. 35.1.2. Introducing the Rabi frequencies

ℏΩ(r) ≡ −E0(r)⃗ϵ · ⟨2|d|1⟩ and ℏΘ(r) ≡ −E0(r)⃗ϵ · ⟨1|d|2⟩ (34.132)

as an abbreviation, we can write the Hamiltonian,

Ĥ = ℏ

(
0 Θ(r)

2 eı(k·r−ωt) + Ω∗(r)
2 e−ı(k·r−ωt)

Ω(r)
2 eı(k·r−ωt) + Θ∗(r)

2 e−ı(k·r−ωt) ℏω0

)
.

(34.133)
As shown in Sec. 23.4.5 the transformation from the Schrödinger to Dirac’s interaction
picture, is done via,

Ĥatom:field ≡ U†ĤU + ℏU̇†U with U = e−ıĤatomt/ℏ . (34.134)

Introducing the abbreviation ∆ = ω − ω0 we obtain,

Ĥatom:field =

(
0 ℏ

2Ω
∗(r)e−ı(k·r−∆t)

ℏ
2Ω(r)e

ı(k·r−∆t) 0

)
(34.135)

+

(
0 ℏ

2Θ(r)eı(k·r−ωt−ω0t)

ℏ
2Θ
∗(r)e−ı(k·r−ωt−ω0t) 0

)
≡ Ĥ(slow)

atom:field + Ĥ
(fast)
atom:field .

34.3.4.3 The rotating wave approximation

The transition amplitude in first-order time-dependent perturbation theory is accord-
ing to (27.71),

ai→f (t) =
1

ıℏ

∫ t

0

⟨2|Ĥatom:field(τ)|1⟩dτ =
ℏ
2

1

ıℏ

∫ t

0

[
Ω(r)eı(k·r−∆t) +Θ∗(r)e−ı(k·r−ωt−ω0t)

]
dτ

=
Ω(r)eık·r

2∆
(e−ı∆t − 1) +

Θ∗(r)e−ık·r

2(ω + ω0)

(
e−ı(ω+ω0)∆t − 1

)
(34.136)

≃ Ω(r)eık·r

2∆
(e−ı∆t − 1) ,

where the last step corresponds to the rotating wave approximation. This allows us

to neglect Ĥ
(fast)
atom:field.

34.3.4.4 Transformation into the rotating frame

Now, we further transform into rotating frame using,

H̃atom:field = U†Ĥatom:fieldU + ıℏU̇†U with U =

(
1 0

0 e−ı∆t

)
. (34.137)

This yields,

H̃atom:field =

(
0 ℏ

2Ω
∗(r)e−ık·r

ℏ
2Ω(r)e

ık·r −ℏ∆

)
. (34.138)
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We always can write the Rabi frequency as Ω = |Ω|eıϕ and attribute the phase to
the atomic position if necessary. Locating the atom in the center of the coordinate
system, we finally get,

H̃atom:field =

(
0 ℏ

2Ω
ℏ
2Ω −ℏ∆

)
, (34.139)

yielding the new Liouville equation,

dρ(t)

dt
=
ı

ℏ
[ρ(t), H̃atom:field] . (34.140)

The matrix representation of the Hamiltonian given in this section are given in
the basis of the unperturbed states, but we still need to derive the matrix form of the
Liouville equations (34.125), (34.129), and (34.129) in the various pictures. This will
be the topic of the next section.

34.3.5 Exercises

34.3.5.1 Ex: Trace of an operator

The trace of an operator Â is defined by Tr Â =
∑
n⟨n|Â|n⟩.

a. Show that the trace is independent of the chosen basis!
b. Show that Tr ÂB̂ = Tr B̂Â!

Solution: a. The basis transformation |n⟩ =∑
m
|m⟩⟨m|n⟩ applied to the trace gives,

Tr Â =
∑

n

⟨n|Â|n⟩ =
∑

n,m,m′

⟨n|m⟩⟨m|Â|m′⟩⟨m′|n⟩ =
∑

m,m′

⟨m′|m⟩⟨m|A|m′⟩ =
∑

m

⟨m|Â|m⟩ .

b. Holds Tr ÂB̂ =
∑
n
⟨n|ÂB̂|n⟩ = ∑

n,m
⟨n|Â|m⟩⟨m|B̂|n⟩ = Tr B̂Â.

34.3.5.2 Ex: Pure states and mixtures

Consider a system of two levels coupled by a light mode. The Hamiltonian can be
written (ℏ ≡ 1),

Ĥ =

(
0 1

2Ω
1
2Ω ω0

)
.

Calculate ρ̂, ρ̂2 and ⟨Ĥ⟩ for the following two cases:
a. The atom is in a superposition state, |ψ⟩ = α|1⟩+ β|2⟩ and
b. the atom is a statistical mixture of eigenstates, ρ̂ = µ|1⟩⟨1|+ ν|2⟩⟨2|.

Solution: a. In this case, the system is in a pure state. Therefore, the density

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DensitOperator01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DensitOperator02.pdf
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operator is,

ρ = |ψ⟩⟨ψ| = α|1⟩⟨1|+ β|2⟩⟨2|+ αβ∗|1⟩⟨2|+ α∗β|2⟩⟨1| =
(
|α|2 α∗β

αβ∗ |β|2

)

=

(
⟨1|ρ|1⟩ ⟨1|ρ|2⟩
⟨2|ρ|1⟩ ⟨2|ρ|2⟩

)
=

(
⟨1|ψ⟩⟨ψ|1⟩ ⟨1|ψ⟩⟨ψ|2⟩
⟨2|ψ⟩⟨ψ|1⟩ ⟨2|ψ⟩⟨ψ|2⟩

)
.

Now the trace, which is the sum of the diagonal elements, must be normalized,

Tr ρ̂ = |α|2 + |β|2 = 1 .

The square is,

ρ̂2 =

(
|α|4 + α∗βαβ∗ |α|2α∗β + α∗β|β|2
|α|2αβ∗ + αβ∗|β|2 α∗βαβ∗ + |β|4

)
=

(
|α|2 α∗β

αβ∗ |β|2

)
= ρ̂ .

The expectation value of the Hamiltonian is,

⟨Ĥ⟩ = Tr ρ̂Ĥ = Tr

(
|α|2 α∗β

αβ∗ |β|2

)(
0 Ω

Ω ω0

)
= α∗βΩ+ αβ∗Ω+ |β|2ω0

= ⟨ψ|Ĥ|ψ⟩ = (α∗⟨1|+ β∗⟨2|) Ĥ (α|1⟩+ β|2⟩)
= |α|2⟨1|Ĥ|1⟩+ |β|2⟨2|Ĥ|2⟩+ α∗β⟨1|Ĥ|2⟩+ αβ∗⟨2|Ĥ|1⟩ = |β|2ω0 + α∗βΩ+ αβ∗Ω .

b. In the case of a mixture of eigenstates, the density operator is,

ρ̂ = µ|1⟩⟨1|+ ν|2⟩⟨2| =
(
µ 0

0 ν

)
.

The trace is always normalized,

Tr ρ̂ = Tr

(
µ 0

0 ν

)
= µ+ ν = 1 .

but the state is not pure, since,

ρ̂2 =

(
µ2 0

0 ν2

)
̸= ρ̂ .

The average value of the Hamiltonian is now,

⟨Ĥ⟩ = Tr ρ̂Ĥ = Tr

(
µ 0

0 ν

)(
0 Ω

Ω ω0

)
= Tr

(
0 µΩ

νΩ νω0

)
= νω0 .
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34.3.5.3 Ex: Mixture of states

A two-level atom is initially in a superposition of two states |ψ⟩ = 1√
2
|1⟩ + 1√

2
|2⟩.

An apparatus measures the populations of the states, but the experimenter forgot to
read the indicated result.
a. Describe the state the atom by the density operator.
b. Now the experimenter returns to the device. Calculate with which probability he
reads the state |1⟩.

Solution: a. The state is,

ρ̂ = 1
2 |1⟩⟨1|+ 1

2 |2⟩⟨2| .

Obviously, ρ̂2 ̸= ρ̂, but Tr ρ̂ = 1.
b. The probability is,

⟨P̂1⟩ = Tr ρ̂P̂1 =
∑

k

⟨k|ρ̂P̂1|k⟩ =
∑

k

⟨k|
(
1
2 |1⟩⟨1|+ 1

2 |2⟩⟨2|
)
|1⟩⟨1|k⟩ = 1

2 .

34.3.5.4 Ex: Thermal mixture

We consider a thermal non-interacting atomic gas in one dimension. Instead of de-
scribing the state of the atomic ensemble, we can consider a single atom with a
distributed probability of having a given velocity v. The density operator of the
continuous degree of freedom can be written,

ρ̂ =

∫
dv

√
m

2πkBT
e−mv

2/2kBT |v⟩⟨v| ,

and the trace of an arbitrary observable Â,

⟨Â⟩ = Tr ρ̂A =

∫
du⟨u|ρ̂Â|u⟩ .

Now imagine a device capable of measuring the speed of a single atom randomly cho-
sen within the cloud.
a. Express the probability of measuring a specific velocity v′ for this atom using the
density operator.
b. Express the expectation value of the average velocity by the density operator.

Solution: a. The probability of measuring exactly the velocity v′ for an atom is,

⟨v′|ρ̂|v′⟩ = ⟨v′|
∫
dv

√
m

2πkBT
e−mv

2/2kBT |v⟩⟨v|v′⟩

=

∫
dv

√
m

2πkBT
e−mv

2/2kBT δ(v − v′) =
√

m

2πkBT
e−mv

′2/2kBT .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DensitOperator03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DensitOperator04.pdf
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b. The expectation value is,

⟨v̂2⟩ = Tr ρv2 =

∫
du⟨u|ρ̂v̂2|u⟩ =

∫
duu2⟨u|ρ̂|u⟩

=

√
m

2πkBT

∫
duu2⟨u|

∫
dve−mv

2/2kBT |v⟩⟨v|u⟩

=

√
m

2πkBT

∫
duu2⟨u|e−mu2/2kBT |u⟩ =

√
m

2πkBT

∫
u2e−mu

2/2kBT du

=

√
m

2πkBT

(
2kBT

m

)3/2 ∫ ∞

−∞
z2e−z

2

dz =

√
1

π

2kBT

m

√
π

2
=
kBT

m
.

34.3.5.5 Ex: Thermal population of a harmonic oscillator

In thermal equilibrium the energy states of a system are populated following Boltz-
mann’s law,

Pn =
e−nβℏω∑
m e
−mβℏω with β ≡ 1

kBT
.

a. Consider a one-dimensional harmonic oscillator characterized by the secular fre-
quency ω and, using the density operator, calculate the mean quantum number of the
population and the mean energy.
b. For an energy spacing of ω/2π = 10MHz, how many levels of the harmonic oscil-
lator are necessary at room temperature to accumulate a population of at least 50%.
How many for an energy spacing of ω/2π = 10GHz. Repeat the calculation for a
1µK cold atomic cloud.

Solution: a. The density operator,

ρ̂ =
∑

n

Pn|n⟩⟨n| ,

satisfies ρ̂2 ̸= ρ̂ and Tr ρ̂ = 1. It allows to calculate the most likely value for the
population and is obtained using the rule

∑∞
n=0 U

n = (1−U)−1 with the abbreviation
U ≡ e−ℏω/kBT ,

⟨n̂⟩ = Tr ρ̂n̂ =
∑

m

⟨m|ρ̂n̂|m⟩ =
∑

m

⟨m|
∑

n

Pn|n⟩⟨n|n̂|m⟩ =
∑

m

mPm⟨m|m⟩

=
∑

m

me−mβℏω∑
n e
−nβℏω = (1− e−βℏω)

∑

m

me−mβℏω = (1− e−βℏω)−1
ℏω

∂

∂β

∑

m

e−mβℏω

= (1− e−βℏω)−1
ℏω

∂

∂β

1

1− e−βℏω =
e−βℏω

1− e−βℏω =
1

eβℏω − 1
.

For the average energy, with En = nℏω,

⟨Ê⟩ =
∑

n

Enpn =
ℏω

eβℏω − 1
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DensitOperator05.pdf
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This is precisely the distribution proposed by Planck for the light modes in the black-
body radiator. We can now express the occupation probability of state n as,

Pn =
e−nβℏω∑
m e
−mβℏω = (1− e−βℏω)e−nβℏω =

⟨n̂⟩n
(1 + ⟨n̂⟩)n+1

.

b. Using the formulas,

∞∑

n=1

Un =
−1
U − 1

and

N∑

n=1

Un =
UN+1 − 1

U − 1

we find,

50% =

N∑

n=0

e−nβℏω∑
m e
−mβℏω = 1− e−Nβℏω ,

that is,

N = − ln 0.5

βℏω
.

For the different situations we find,

T ω/2π N

300K 10MHz 4.3 · 106
300K 10GHz 4300

1µK 10MHz 0.014

1µK 10GHz 1.4 · 10−5

34.3.5.6 Ex: Density operator of a Glauber state

a. Write down the density operator of a Glauber state and calculate its purity.
b. How does the density operator look after a measurement of its vibrational level
before acknowledging the result? Is it pure?
c. How does it look having acknowledged the result? Is it pure?

Solution: The density operator is,

ρ̂ =
∑

m,n

β∗mβne−|β|
2

√
m!n!

|n⟩⟨m| ,

and its square,

ρ̂2 = e−2|β|
2 ∑

n,n′

β∗n′βn√
n!n′!

|n⟩⟨n′|
∑

m,m′

β∗mβm
′

√
m!m′!

|m′⟩⟨m|

= e−|β|
2 ∑

m,n,n′

βnβ∗m√
n!m!

|n⟩⟨m|
∑

n′

|β|2n′
e−|β|

2

n′!
= e−|β|

2 ∑

m,n,n′

βnβ∗m√
n!m!

|n⟩⟨m|⟨β|β⟩ = ρ̂ .

b. After the measurement, the density operator reads,

ρ̂′ =
∑

k

P̂kρ̂P̂k =
∑

k

|k⟩⟨k|e−|α|2
∑

m,n

α∗mαn√
m!
√
n!
|n⟩⟨m|k⟩⟨k| =

∑

k

e−|α|
2 |α|2k
k!
|k⟩⟨k| .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DensitOperator06.pdf
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This the density operator is not pure, since,

ρ̂′2 =
∑

k

|α|2ke−|α|2

k!
|k⟩⟨k|

∑

n

|α|2ne−|α|2

n!
|n⟩⟨n| =

∑

n

|α|4ne−2|α|2

n!2
|n⟩⟨n| ≠ ρ̂ .

c. Having acknowledged the result, we get the Poisson distribution,

ρ̂′′ = e−|α|
2 |α|2k
k!
|k⟩⟨k| ,

which obviously is a pure state.

34.3.5.7 Ex: Reduced density operator of a Glauber state

Project the density operator of a Glauber state onto its two lowest Fock states using
the formula (34.119). Show that the resulting density operator is pure.

Solution: With the density operator,

ρ̂ =
∑

m,n

β∗mβne−|β|
2

√
m!n!

|n⟩⟨m|

and the projector,

P1,2 = |0⟩⟨0|+ |1⟩⟨1|
we find,

P1,2ρ̂P1,2 = |0⟩⟨0|ρ̂|0⟩⟨0|+ |1⟩⟨1|ρ̂|0⟩⟨0|+ |0⟩⟨0|ρ̂|1⟩⟨1|+ |1⟩⟨1|ρ̂|1⟩⟨1|
= e−|β|

2

(|0⟩⟨0|+ β|1⟩⟨0|+ β∗|0⟩⟨1|+ ββ∗|1⟩⟨1|)

and

Tr ρ̂P1,2 =
∑

k

⟨k|ρ̂P1,2|k⟩ =
∑

k,m

β∗mβke−|β|
2

√
m!k!

⟨m|(|0⟩⟨0|+|1⟩⟨1|)|k⟩ = e−|β|
2

(1+β∗β) .

Hence,

ρ̂red =
P1,2ρ̂P1,2

Tr ρ̂P1,2
=
|0⟩⟨0|+ β|1⟩⟨0|+ β∗|0⟩⟨1|+ |β|2|1⟩⟨1|

1 + |β|2 .

The purity is given because of,

ρ̂2red =
|0⟩⟨0|+ β|1⟩⟨0|+ |β|2|0⟩⟨0|+ β|β|2|1⟩⟨0|+ β∗|0⟩⟨1|+ |β|2|1⟩⟨1|+ β∗|β|2|0⟩⟨1|+ |β|4|1⟩⟨1|

(1 + |β|2)2
= ρ̂red .
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34.3.5.8 Ex: Partial measurements

Consider the density operator describing the quantum state of two spins, |Ψ⟩ =
|ψa⟩ ⊗ |ψb⟩, with |ψa⟩ = a1| ↑⟩+ a2| ↓⟩ and |ψb⟩ = b1| →⟩+ b2| ←⟩.
a. Write down the density operator for the complete system in terms of the expansion
coefficients cij = aibj .
b. Assume that the spin |ψb⟩ is measured and verify whether the new density operator
describing our knowledge of the system is pure.
c. Now consider the entangled state |Ψe⟩ = c11| ↑⟩| →⟩ + c22| ↓⟩| ←⟩. Write down
again the density operator for the complete system, measure the spin |ψb⟩, and ver-
ify whether the new density operator describing our knowledge of the system is pure.

Solution: a. The individual spin states are normalized,

|a1|2 + |a2|2 = ⟨ψa|ψa⟩ = 1 = ⟨ψb|ψb⟩ = |b1|2 + |b2|2 .

The tensorial product is,

|Ψ⟩ = a1b1| ↑⟩| →⟩+ a1b2| ↑⟩| ←⟩+ a2b1| ↓⟩| →⟩+ a2b2| ↓⟩| ←⟩
= c11| ↑⟩| →⟩+ c12| ↑⟩| ←⟩+ c21| ↓⟩| →⟩+ c22| ↓⟩| ←⟩ ,

with the normalization,

1 = ⟨Ψ|Ψ⟩ = |c11|2 + |c12|2 + |c21|2 + |c22|2 ,

and
|a1|2 = |c11|2 + |c12|2 and |a2|2 = |c21|2 + |c22|2 .

The complete density operator now reads,

ρ̂ =




|c11|2 c11c
∗
12 c11c

∗
21 c11c

∗
22

c12c
∗
11 |c12|2 c12c

∗
21 c12c

∗
22

c21c
∗
11 c21c

∗
12 |c21|2 c21c

∗
22

c22c
∗
11 c22c

∗
12 c22c

∗
21 |c22|2


 .

b. The measurement corresponds to tracing over the measured spin yielding the new
density operator,

Trb ρ̂ =
∑

j=→,←
⟨j|Ψ⟩⟨Ψ|j⟩ = ⟨→ |Ψ⟩⟨Ψ| →⟩+ ⟨← |Ψ⟩⟨Ψ| ←⟩

= (c11| ↑⟩+ c21| ↓⟩)(⟨↑ |c∗11 + ⟨↓ |c∗21) + (c12| ↑⟩+ c22| ↓⟩)(⟨↑ |c∗12 + ⟨↓ |c∗22)

=

(
|c11|2 + |c12|2 c11c

∗
21 + c12c

∗
22

c∗11c21 + c∗12c22 |c21|2 + |c22|2

)
=

(
|a1|2 a1a

∗
2

a∗1a2 |a2|2

)
= ρ̂a .

Obviously,
Tra ρ̂a = 1 and ρ̂a = ρ̂†a and ρ̂2a = ρ̂a .

c. Normalization requests,

⟨Ψe|Ψe⟩ = |c11|2 + |c22|2 = 1 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DensitOperator08.pdf
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The complete density operator now reads,

ρ̂e =




|c11|2 0 0 c11c
∗
22

0 0 0 0

0 0 0 0

c∗11c22 0 0 |c22|2




2

= ρ̂2e ,

and satisfies,

det ρ̂e = 0 and Tra,b ρ̂e = 1 .

On the other hand,

Trb ρ̂e =

(
|c11|2 0

0 |c22|2

)
≡ ρ̂e,a ̸= ρ̂2e,a and det ρ̂e,a ̸= 0 .

Hence, in the entangled case, the traced density operator is not pure.

34.4 Bloch equations for two-level atoms

In this section we will begin to apply the ideas and tools developed in the previous
sections. Let us first make use of the density matrix to describe a two-level atom
coupled to a single-mode light field without spontaneous emission. We will then
introduce the atomic Bloch vector as a convenient and suggestive method to describe
the time evolution of a coupled two-level atom.

The internal structure of atoms is analyzed in atomic physics, where we find that
the energy levels are discrete (Bohr’s axiom). The center of mass motion of the atoms
and collisions with other atoms are ignored, and concerning the interaction of the
atoms with light, we are only interested in the aspect, that the interaction can induce
transitions between internal states via absorption or emission of photons. It is the
duty of atomic physics to calculate the frequencies and strengths of transitions (by
Hartree-Fock or similar methods), as well as their behavior in external electric and
magnetic fields. The results of these calculations are visualized in energy level schemes
called Grotrian diagrams. In quantum optics we do not care, how the energies of the
levels were calculated, but accept them as given. That is, we assume the Hamiltonian
of the unperturbed atom to be diagonalized, so that its internal structure can be
written as,

Ĥatom =
∑

j

ℏωj |j⟩⟨j| . (34.141)

34.4.1 The matrix elements of the density operator

Since the optical Bloch equations are coupled differential equations relating the el-
ements of the density operator matrix, we must examine the temporal dependence
of these matrix elements, based on our knowledge of the operator’s properties. This
can be done in the Schrödinger picture using Eq. (34.125), in the interaction picture



34.4. BLOCH EQUATIONS FOR TWO-LEVEL ATOMS 1765

using Eq. (34.129), or directly in the co-rotating frame using Eq. (34.138). For didac-
tic reason we will begin with the Schrödinger picture and then derive the interaction
picture once again.

So, let us begin with the Liouville equation (34.125) and evaluate the elements of
the matrix,

⟨m|dρ̂(t)
dt
|n⟩ = ı

ℏ ⟨m|[ρ̂(t), Ĥ]|n⟩ = ı
ℏ ⟨m|[ρ̂(t), Ĥatom + Ĥatom:field(t)]|n⟩ (34.142)

= ı
ℏ (En − Em)⟨m|ρ̂(t)|n⟩+ ı

ℏ ⟨m|[ρ̂(t), Ĥatom:field(t)]|n⟩ ,

where |m⟩ and |n⟩ are members of a complete set of vectors of a basis {|k⟩} which
are also eigen-kets of Ĥatom and span the space of Ĥ. Now, we insert the closing
expression

∑
k |k⟩⟨k| = I in the commutator on the right-hand side of Eq. (34.142):

⟨m|[ρ̂(t), Ĥatom:field(t)]|n⟩ (34.143)

=
∑

k

[⟨m|ρ̂(t)|k⟩⟨k|Ĥatom:field|n⟩ − ⟨m|Ĥatom:field|k⟩⟨k|ρ̂(t)|n⟩] .

For our two-level atom the complete set only includes two states: |1(t)⟩ = |1⟩ and
|2(t)⟩ = e−ıω0t|2⟩. In addition, the matrix elements of the dipole coupling operator
Ĥatom:field are only non-diagonal,

V ≡ ⟨1|Ĥatom:field|2⟩ = ⟨2|Ĥatom:field|1⟩ = V ∗ . (34.144)

Hence, Eq. (34.142) adopts the form,

dρ̂11
dt

= ı
ℏ [ρ̂12V

∗ − ρ̂21V ]

dρ̂22
dt

= ı
ℏ [ρ̂21V − ρ̂12V ∗] = −

dρ̂11
dt

dρ̂12
dt

= ıω0ρ̂12 +
ı
ℏ [V (ρ̂11 − ρ̂22)]

dρ̂21
dt

= −ıω0ρ̂21 +
ı
ℏ [V

∗(ρ̂22 − ρ̂11)] =
dρ̂∗12
dt

, (34.145)

remembering that the dash of the diagonal terms, called populations, must be unitary,
and that the non-diagonal terms, called coherences, must be complex,

ρ̂11 + ρ̂22 = 1 , ρ̂21 = ρ̂∗12 . (34.146)

The above set of equations constitutes the optical Bloch equations in the Schrödinger
picture. It does not include loss terms due to spontaneous emission. We transform the
Bloch equations to the interaction picture by replacing the Liouville equation (34.125)
by (34.129), and calculating the matrix elements. We obtain,

dρ̃22
dt

=
ı

ℏ
(V ρ̃21 − V ∗ρ̃12) and

dρ̃12
dt

=
ı

ℏ
V (ρ̃11 − ρ̃22) . (34.147)
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We would also have obtained this expression via the substitution, ρ̂12 = ρ̃12e
ıω0t.

The interaction picture simplifies the expressions for the temporal dependence of the
coherences by eliminating the first term on the right-hand side. Transforming to the
interaction picture removes the temporal dependence of the basis vectors spanning
the Hilbert space of the two-level atom.

We have derived the optical Bloch equations from the Liouville equation, which is
the fundamental equation of motion of the density operator, and we have seen how a
unitary transformation can be used to represent these equations in the Schrödinger,
Heisenberg or interaction picture. So far, the Bloch equations do not include the pos-
sibility of spontaneous emission. We will learn later, how to include this phenomenon.

34.4.2 Rotating wave approximation

In the following, we will only consider exponentials rotating with the frequency ∆ ≡
ω−ω0, and we will neglect terms rotating like ∆ ≡ ω+ω0 in the time dependence of
the coupling operator,

V (t) = ℏΩcosωt→ ℏ
2Ωe

−ıωt , (34.148)

neglecting the part 1
2ℏΩe

ıωt. The amplitude Ω is called Rabi frequency. This approx-
imation, called rotating wave approximation (RWA) is good, when the is sufficiently
small, Ω≪ ω. Otherwise, we observe an energy correction of the levels called Bloch-
Siegert shift.

Once the RWA made, we can transform to the rotating system by the prescription,

ρ12 ≡ ρ̂12e−ıωt , ρ22 ≡ ρ̂22 , (34.149)

which, applied to the Bloch equations in the Schrödinger picture Eq. (34.145), yields,

dρ22
dt

=
ıΩ

2
ρ21 −

ıΩ∗

2
ρ12 ,

dρ12
dt

= −ı∆ρ12 +
ıΩ

2
(ρ11 − ρ22) . (34.150)

In Exc. 34.4.6.1 we derive the Bloch equations from the equations of motion for the
population amplitudes a1 and a2.

For arbitrary starting conditions, the solution of these equations is not simple. To
solve the problem we write the equations in a matrix form,

ρ⃗ ≡




ρ11

ρ22

ρ12

ρ21


 , M≡




0 0 ı
2Ω
∗ − ı

2Ω

0 0 − ı
2Ω
∗ ı

2Ω
ı
2Ω − ı

2Ω −ı∆ 0

− ı
2Ω
∗ ı

2Ω
∗ 0 ı∆


 , ˙⃗ρ =Mρ⃗ .

(34.151)
To solve this system of differential equations, we calculate the eigenvalues of the
matrix,

det(M− λI4) = λ2(∆2 + |Ω|2) + λ4 = 0 (34.152)

λ = 0,±ıG ,
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with the generalized Rabi frequency G ≡
√
∆2 + |Ω|2. Therefore, the general solution

is,

ρ22(t) = ρ
(1)
22 + ρ

(2)
22 e

ıGt + ρ
(3)
22 e
−ıGt (34.153)

ρ12(t) = ρ
(1)
12 + ρ

(2)
12 e

ıGt + ρ
(3)
12 e
−ıGt .

The coefficients follow from the Bloch equations with particular starting conditions.
With a little algebra we get

ρ
(1)
22 = ρ22(0) +

1
2G2

[
|Ω|2 (1− 2ρ22(0))−∆(Ωρ∗12(0) + Ω∗ρ12(0))

]
(34.154)

ρ
(2)
22 = 1

4G2

[
−|Ω|2(1− 2ρ22(0)) + (∆ +G)Ωρ∗12(0) + (∆−G)Ω∗ρ12(0)

]

ρ
(3)
22 = 1

4G2

[
−|Ω|2(1− 2ρ22(0)) + (∆−G)Ωρ∗12(0) + (∆ +G)Ω∗ρ12(0)

]

ρ
(1)
12 = 1

2G2 [∆Ω(1− 2ρ22(0)) + Ω (Ωρ∗12(0) + Ω∗ρ12(0))]

ρ
(2)
12 = ∆−G

4G2

[
−Ω(1− 2ρ22(0)) + (∆ +G) Ω

Ω∗ ρ
∗
12(0) + (∆−G)ρ12(0)

]

ρ
(3)
12 = ∆+G

4G2

[
−Ω(1− 2ρ22(0)) + (∆−G) Ω

Ω∗ ρ
∗
12(0) + (∆ +G)ρ12(0)

]
.

We derive this solution in Exc. 34.4.6.2.
To begin the discussion of this solution, let us consider a sample of atoms initially

in the ground state when the light field is switched on at time t = 0,

ρ11(0) = 1 = 1− ρ22(0) , ρ12(0) = 0 = ρ21(0) . (34.155)

In this case, the conditions (34.154) simplify to,

ρ
(1)
22 = |Ω|2

2G2 , ρ
(1)
12 = 1

2G2∆Ω (34.156)

ρ
(2)
22 = −|Ω|2

4G2 , ρ
(2)
12 = G−∆

4G2 Ω

ρ
(3)
22 = −|Ω|2

4G2 , ρ
(3)
12 = −G−∆

4G2 Ω ,

such that,

ρ22 = ρ
(1)
22 + ρ

(2)
22 e

ıGt + ρ
(3)
22 e
−ıGt =

|Ω|2
4G2

(2− eıGt − e−ıGt) (34.157)

ρ12 = ρ
(1)
12 + ρ

(2)
12 e

ıGt + ρ
(3)
12 e
−ıGt =

∆Ω

2G2
− ∆−G

4G2
ΩeıGt − ∆+G

4G2
Ωe−ıGt

=
2Ω

4G2
(∆−∆cosGt+ ıG sinGt) .

Using cosx = 1− 2 sin2 x2 and sinx = 2 sin x
2 cos x2 , we finally obtain,

ρ22 =
|Ω|2
G2

sin2
Gt

2
, ρ12 =

Ω

G2
sin

Gt

2

(
∆sin

Gt

2
+ ıG cos

Gt

2

)
. (34.158)

And comparing with the solutions of the Schrödinger equation for a coupled two-level
atom obtained in Exc. 23.4.7.1 and (27.93), we verify,

ρ22 =
∣∣∣ ıΩG e−ıt∆/2 sin Gt

2

∣∣∣
2

= |a2|2 (34.159)

ρ12 = −e−ıt∆/2
[
cos Gt2 − ı∆G sin Gt

2

] −ıΩ
G eıt∆/2 sin Gt

2 = a∗1a2 .
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34.4.3 Pauli matrices and the atomic Bloch vector

Let us come back to the unperturbed atomic Hamiltonian (34.141). The electronic
states are orthonormal ⟨i|j⟩ = δij , and we define the transition operators by

σ̂ij |k⟩ = δjk|i⟩ , (34.160)

and σ̂+
ij = σ̂ji satisfying the commutation relation,

[σ̂ij , σ̂lk] = δjlσ̂ik − δikσ̂lj . (34.161)

Many times we will restrict ourselves to atoms of two or three levels. For a two-level
system we obtain the Pauli spin matrix defined in (23.45). Every 2× 2 matrix can be
expanded on a Pauli matrix basis (see Exc. 34.4.6.3),

(
ρ11 ρ12

ρ21 ρ22

)
= |1⟩ρ11⟨1|+ |1⟩ρ12⟨2|+ |2⟩ρ21⟨1|+ |2⟩ρ22⟨2| (34.162)

= ρ11(
1
2 + 1

2 σ̂z) + ρ12σ̂
− + ρ21σ̂

+ + ρ22(
1
2 − 1

2 σ̂z)

= ρ11σ̂
−σ̂+ + ρ12σ̂

− + ρ21σ̂
+ + ρ22σ̂

+σ̂− =

(
⟨σ̂−σ̂+⟩ ⟨σ̂−⟩
⟨σ̂+⟩ ⟨σ̂+σ̂−⟩

)
.

For the two-level case it is useful to introduce an alternative notation based on the
Bloch vector defined in (23.46),

⟨ˆ⃗σ⟩ ≡



2 Re ρ12

2 Im ρ12

ρ22 − ρ11


 =




⟨σ̂+⟩+ ⟨σ̂−⟩
ı(⟨σ̂+⟩ − ⟨σ̂−⟩)
⟨σ̂+σ̂−⟩ − ⟨σ̂−σ̂+⟩


 =



⟨σ̂x⟩
⟨σ̂y⟩
⟨σ̂z⟩


 . (34.163)

We also define the torque vector,

G ≡



Re Ω

Im Ω

−∆


 with ∥G∥ = G =

√
|Ω|2 +∆2 , (34.164)

the length of which is simply the generalized Rabi frequency. Note that here we allow
for the possibility of complex Rabi frequency.

Now, using σ̂z = [σ̂+, σ̂−], we may write the Hamiltonian of an unperturbed two-
level system,

Ĥ0 = −ℏ∆σ̂+σ̂− = −ℏ
2∆(σ̂z + I2) = −ℏ

2∆σ̂z + offset . (34.165)

For the perturbed system,

Ĥ = ŝ ·G = ℏ
2G · ˆ⃗σ = −ℏ

2 σ̂z∆+ ℏ
2 σ̂xRe Ω+ ℏ

2 σ̂yIm Ω =

(
ℏ
2∆

ℏ
2Ω
∗

ℏ
2Ω −ℏ

2∆

)
. (34.166)
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The Bloch equations (34.165) then follow as the Heisenberg equation with the Hamil-
tonian (34.167) using [σ̂k, σ̂m] = 2ıϵklmσ̂m,

dˆ⃗σ

dt
= ı

ℏ [Ĥ,
ˆ⃗σ] = ı

2 [G · ˆ⃗σ, ˆ⃗σ] (34.167)

= ıGx

2 [σ̂x, ˆ⃗σ] +
ıGy

2 [σ̂y, ˆ⃗σ] +
ıGz

2 [σ̂z, ˆ⃗σ] =



Gyσ̂z −Gzσ̂y
Gzσ̂x −Gxσ̂z
Gxσ̂y −Gyσ̂x


 = G× ˆ⃗σ .

The expectation values yield,

dϱ⃗

dt
= G× ϱ⃗ . (34.168)

As will be shown in Exc. 34.4.6.4, these equations are identical to the Liouville equa-
tions (34.151). ρ12 describes the polarization and ρ22 − ρ11 the population inversion
of the atom. The equation is analogous to the equation of motion for a rigid rotor or
spinning top (for example, a dipole in a homogeneous field). It displays phenomena
such as precession and nutation. The physical content and usefulness of the Bloch
vector will become clearer when we use the formalism to analyze electric and magnetic
couplings. In Exc. 34.4.6.5 we verify that the Bloch vector is normalized (as long as
spontaneous emission is not considered).

34.4.4 State manipulations by sequences of radiation pulses

The temporal dependence of the three components of the atomic Bloch vector provides
a useful illustration of the atom-field interaction. Resonant coupling, ∆ = 0 and
G = Ω, puts the solutions (34.158) into the form,

ρ22(t) =
1
2 (1− cosΩt) , ρ12(t) =

ı
2 sinΩt , (34.169)

that is,

ϱ⃗(t) =




0

sinΩt

− cosΩt


 . (34.170)

That is, a resonant pulse rotates a Bloch vector initially pointing in the direction −z
within the plane z-y, until it arrives, at time t = π

2Ω , at the +y direction and at time
t = π

Ω at the +z direction. This means that the entire population has been transferred
to the excited state. The Bloch vector continues to rotate (the movement is called
nutation) around the torque vector G which, as can be seen from Eq. (34.165), points
at the +x direction when ∆ = 0. The nutation frequency is proportional to the force
Ω of the atom-field interaction. With the Eq. (34.158) we see that the population
oscillates between the ground and excited state with the frequency Ω. This means
that the energy ℏω is periodically exchanged between the atom and the field. A pulse
of resonant light of duration such that τ = π/2Ω is called a π/2-pulse. The nutation
is illustrated in Fig. 34.2(a).

Once the coherence has been excited by a detuned radiation, ∆ ̸= 0, the Bloch
vector does not stand still, even after the radiation has been switched off. To see
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this, we consider again the general solution (34.154) now entering Ω = 0. If the
Bloch vector is initially at a point in the unitary circle of the plane z-y, it will rotate
according to the formula,

ρ22(t) = ρ22(0) , ρ12(t) = ρ12(0)e
−ı∆t , (34.171)

that is,

ϱ⃗(t) =



ρ12(0) sin∆t

ρ12(0) cos∆t

2ρ22(0)− 1


 . (34.172)

That is, the Bloch vector performs a motion of precession around the symmetry axis.
The precession is illustrated in Fig. 34.2(b).

-1
1

0

2ρ
22
−
1

1

Re ρ12

0

(a)

1

Im ρ12

0-1 -1

-1
1

0
2ρ

22
−
1

1

Re ρ12

0

(b)

1

Im ρ12

0-1 -1

Figure 34.2: (code) (a) Nutation of the Bloch vector. The red circles show the evolution of

the Bloch vector on the Bloch sphere for a resonant π-pulse. (b) Precession of the Bloch

vector.

The evolution of the Bloch vector on the surface of the Bloch sphere under the in-
fluence of radiation fields can be considered a coherent trajectory of the wavefunction
of the atomic state, which is therefore subject to interference phenomena [642]. Inter-
ferometers can be realized by sequences of consecutive pulses splitting populations,
exciting coherences, and remixing populations.

Sensors based on interferometry of atomic excitation are nowadays among the most
accurate and most sensitive. We will discuss the method of radiation pulse sequences
in several exercises: In the Excs. 34.4.6.6, 34.4.6.7, and 34.4.6.8 the Ramsey method.

34.4.4.1 Atomic ensembles

While it is technically challenging to observe the dynamics of single atoms, it is
relatively easy monitor the dynamics of ensembles of atoms, provided that they react
synchronously to incident radiation. The concentration of a sufficient number of
atoms in a small volume can, however, introduce additional (desirable or undesirable)
effects. Collisions, for instance, induce (irreversible) decoherence. On the other hand,
if the ensemble is sufficiently dense that the mean distance between atoms is less than
a resonant wavelength, then the transition dipoles of the individual atoms will couple
to produce a collective dipole moment and generate effects known as superradiance.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_VectorRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_VectorRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_VectorRabi.m
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Thermal motion of the atoms is another undesired effect, because every atom will
interact with the radiation on a different Doppler-shifted frequency. This leads to
diffusion of the individual atomic Bloch vectors in the x-y-plane, which in turn limits
the resolution of interferometric applications. We will discuss in Exc. 34.4.6.9 the
photon echo method, which allows to circumvent this problem.

34.4.5 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a
strong constant magnetic field (up to 20T) are perturbed by a weak oscillating mag-
netic field (in the near field) and respond by producing an electromagnetic signal with
a frequency characteristic of the magnetic field at the nucleus. This process occurs
near resonance, when the oscillation frequency (typically 60..1000MHz) matches the
intrinsic frequency of the nuclei, which depends on the strength of the static magnetic
field, the chemical environment, and the magnetic properties of the isotope involved.
NMR spectroscopy is widely used to determine the structure of organic molecules in
solution and in advanced medical imaging techniques, such as in magnetic resonance
imaging (MRI). The most commonly used nuclei are 1H and 13C.

NMR transitions can be excited, when the electron spins do not participate in the
interaction, e.g. because they are paired (see Eq. (30.41)), and when the nucleus has

an intrinsic nuclear magnetic moment ˆ⃗µI and hence an angular momentum Î. This is
the case for an odd number of protons and/or neutrons. Nuclides with even numbers
of both have a total spin of zero and are therefore NMR-inactive.

The principle of NMR usually involves three sequential steps: (i) The alignment

of the magnetic nuclear spins in an applied, constant magnetic field B⃗0. (ii) The
perturbation of this alignment of the nuclear spins by a weak oscillating magnetic
field B⃗1(t) called rf-pulse. (iii) The detection of the NMR signal during or after
the rf-pulse via the voltage induced in a detection coil due to the precession of the
nuclear spins around B⃗0. After an rf-pulse, the nuclear dipole moment precesses at
the nuclei’s intrinsic Larmor frequency without involving transitions between spin
states. Choosing the two magnetic fields perpendicular to each other, one maximizes
the NMR signal strength,

B⃗(t) = Brf (t)êx + B0êz , (34.173)

where, because of |Brf (t)| ≪ B0, we choose the z-axis as the quantization axis and
the rf-field as a perturbation along the x-axis.

The energy of a nuclear magnetic dipole moment placed in a magnetic field is
[368],

Ĥ = − ˆ⃗µ · B⃗ = −γI Î · B⃗ , (34.174)

where γI is the gyromagnetic ratio of the specific nucleus and Î the nuclear spin
satisfying the usual commutation relation [Îm, În] = ıℏϵkmnÎk. Hence, as shown in
Exc. 34.4.6.10, we can derive from the Heisenberg equation,

ıℏ
d ˆ⃗µ

dt
= [ˆ⃗µ, Ĥ] , (34.175)
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the Bloch equations,

d ˆ⃗µ

dt
= γI ˆ⃗µ× B⃗ . (34.176)

Now, let us restrict to a two-level system, I = 1
2 such that Îz = ℏ

2 σ̂z. In thermal
equilibrium, without time-dependent perturbation,

Ĥ0 = − ˆ⃗µ · B⃗0 = −µ̂zB0 = −γI ÎzB0 ≡ −ωLÎz . (34.177)

where we introduced the Larmor frequency ωL. We expect energy levels,

E = −ℏγImB0 , (34.178)

with m = ± 1
2 . The energy difference between the two states, ∆E = γIℏB0, results in

a small population bias favoring the lower energy state in thermal equilibrium and,
hence, in a net spin magnetization M⃗ = 1

V

∑
i⟨µ⃗i⟩ along the magnetic field B⃗0. For

a thermal statistical mixture, as shown in (34.100), we write the density operator 17,

ρ̂ =
e−Ĥ0/kBT

Z
=
e−

1
2βℏωLσ̂z

Z
=

∑

m=±1/2
|I,m⟩e

−βℏωLm

Z
⟨I,m| , (34.179)

with the partition function,

Z ≡ Tr e−Ĥ0/kBT =
∑

m=±1/2
e−βℏωLm . (34.180)

Now, as shown in (34.128), we can express the time-evolution of the density operator
as,

ρ̂(t) = e−ıĤ0tρ̂(0)eıĤ0t = e−ıβℏωLÎztρ̂(0)eıβℏωLÎzt . (34.181)

Then, as shown in Exc. 34.4.6.11,

⟨̂I(t)⟩ =



cosωLt − sinωLt 0

sinωLt cosωLt 0

0 0 1


 ⟨̂I(0)⟩ , (34.182)

which corroborates the result (34.176). Apparently, the nuclear magnetic dipole mo-
ment (and hence the spin magnetization) precesses around the magnetic field with
the Larmor frequency leaving the populations of the energy levels unaffected.

A perturbation of nuclear spin orientations from equilibrium will occur when an
oscillating magnetic field is applied whose frequency ωrf sufficiently closely matches
the Larmor precession frequency ωL. The populations of the spin-up and -down
energy levels then undergo Rabi oscillations. The stronger the oscillating field, the
faster the Rabi oscillations or the precession around the effective field in the rotating

17Note that at high temperatures we get, Z ≃ 1 and may approximate,

ρ̂− 1 ≃ βℏωLÎz .
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frame. After a certain time (typically on the order of 2..1000µs), a resonant rf-π/2-
pulse flips the spin magnetization to the transverse plane, while after a twice longer
time, the initial magnetization is inverted (π-pulse). It is the transverse magnetization
generated by a resonant oscillating field which is usually detected in NMR.

The most important perturbation of the NMR frequency for applications of NMR
is the ’shielding’ effect of the surrounding shells of electrons. Electrons, similar to
the nucleus, are also charged and rotate with a spin to produce a magnetic field
opposite to the applied magnetic field. In general, this electronic shielding reduces
the magnetic field at the nucleus. The corresponding shift in the NMR frequency due
to the electronic molecular orbital coupling to the external magnetic field is called
chemical shift, and it explains why NMR is able to probe the chemical structure of
molecules, which depends on the electron density distribution in the corresponding
molecular orbitals.

After perturbation the nuclear spins return to thermodynamic equilibrium due to
relaxation processes. These are phenomenological included in the Bloch equations via
decay time constants Ti,

d ˆ⃗µ

dt
= γI ˆ⃗µ× B⃗ −

µ̂z
T1

êz −
µ̂x
T2

êx . (34.183)

T1 = Γ−1 is the time constant for ’longitudinal magnetic’ relaxation and refers to
the mean time for an individual nucleus to return to its thermal equilibrium state of
the spins. The precessing nuclei can also fall out of alignment with each other and
gradually stop producing a signal. This is called T2 or transverse relaxation, where
T2 = 2γ−1. Because of the difference in the actual relaxation mechanisms involved (for
example, intermolecular versus intramolecular magnetic dipole-dipole interactions),
T1 is usually longer than T2, which, in practice, also depends on significant static
magnetic field inhomogeneities.

34.4.6 Exercises

34.4.6.1 Ex: Derivation of Bloch equations

Derive the Bloch equations explicitly based on the temporal evolutions of the coeffi-
cients a1,2 (27.63) knowing that ρij = a∗i aj .

Solution: We differentiate the density operator,

dρmn
dt

= am
da∗n
dt

+
dam
dt

a∗n .

Substituting the derivatives of the population amplitudes by (27.63) and the transition
elements by (27.77),

da1
dt

= −ıΩcosωte−ıω0ta2 and
da2
dt

= −ıΩ∗ cosωteıω0ta1

for the time derivatives of (34.150) and letting Ω = Ω∗,

dρ22
dt

= ıΩcosωte−ıω0ta2a
∗
1 − ıΩ∗ cosωteıω0ta1a

∗
2 = ıΩ0

eıωt + e−ıωt

2

(
a2a
∗
1e
−ıω0t − a1a∗2eıω0t

)

≃ ıΩ

2

(
a2a
∗
1e
ı∆t − a1a∗2e−ı∆t

)
=
ıΩ

2

(
ρ21e

ı∆t − ρ12e−ı∆t
)
= −dρ11

dt
.
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and

dρ12
dt

= ıΩcosωte−ıω0ta1a
∗
1 − ıΩcosωte−ıω0ta2a

∗
2 = ıΩ

eıωt + e−iωt

2
e−ıω0t(|a1|2 − |a2|2)

≃ ıΩ

2
|a1|2eı∆t =

ıΩ

2
(ρ11 − ρ22)eı∆t =

dρ∗21
dt

.

In this form the Bloch equations are in the interaction representation.

34.4.6.2 Ex: General solution of Bloch equations

Derive the solution (34.154) of the Bloch equations (34.151).

Solution: We consider the ansatz,

ρ22(0) = ρ
(1)
22 + ρ

(2)
22 e

ıGt + ρ
(3)
22 e
−ıGt

ρ12(0) = ρ
(1)
12 + ρ

(2)
12 e

ıGt + ρ
(3)
12 e
−ıGt

ρ21(0) = ρ
(1)
21 + ρ

(2)
21 e

ıGt + ρ
(3)
21 e
−ıGt .

Normalization and hermiticity require,

ρ
(1)
11 + ρ

(2)
11 e

ıGt + ρ
(3)
11 e
−ıGt + ρ

(1)
22 + ρ

(2)
22 e

ıGt + ρ
(3)
22 e
−ıGt = 1

and ρ
(1)∗
21 + ρ

(2)∗
21 e−ıGt + ρ

(3)∗
21 eıGt = ρ

(1)
12 + ρ

(2)
12 e

ıGt + ρ
(3)
12 e
−ıGt ,

such that,

ρ
(1)
11 + ρ

(1)
22 = 1 , ρ

(2)
11 = −ρ(2)22 , ρ

(3)
11 = −ρ(3)22

ρ
(1)∗
21 = ρ

(1)
12 , ρ

(3)∗
21 = ρ

(2)
12 , ρ

(2)∗
21 = ρ

(3)
12 .

Inserting the ansatz into the Bloch equations, we obtain



Gρ
(2)
11 eıGt − Gρ

(3)
11 e−ıGt

Gρ
(2)
22 eıGt − Gρ

(3)
22 e−ıGt

Gρ
(2)
12 eıGt − Gρ

(3)
12 e−ıGt

Gρ
(2)
21 eıGt − Gρ

(3)
21 e−ıGt




=




Ω
2

(
ρ
(1)
12 + ρ

(2)
12 eıGt + ρ

(3)
12 e−ıGt

)
− Ω

2

(
ρ
(1)
21 + ρ

(2)
21 eıGt + ρ

(3)
21 e−ıGt

)

−Ω
2

(
ρ
(1)
12 + ρ

(2)
12 eıGt + ρ

(3)
12 e−ıGt

)
+ Ω

2

(
ρ
(1)
21 + ρ

(2)
21 eıGt + ρ

(3)
21 e−ıGt

)

Ω
2

(
ρ
(1)
11 + ρ

(2)
11 eıGt + ρ

(3)
11 e−ıGt

)
− Ω

2

(
ρ
(1)
22 + ρ

(2)
22 eıGt + ρ

(3)
22 e−ıGt

)
− ∆

(
ρ′12 + ρ

(2)
12 eıGt + ρ

(3)
12 e−ıGt

)

−Ω
2

(
ρ
(1)
11 + ρ

(2)
11 eıGt + ρ

(3)
11 e−ıGt

)
+ Ω

2

(
ρ
(1)
22 + ρ

(2)
22 eıGt + ρ

(3)
22 e−ıGt

)
+ ∆

(
ρ′21 + ρ

(2)
21 eıGt + ρ

(3)
21 e−ıGt

)




.

Since these equations must be valid for all times, we can separate the exponential functions,

∼ 1 ∼ eıGt ∼ e−ıGt

∼ ρ11 0 = Ω
2

ρ
(1)
12 − Ω

2
ρ
(1)
21 Gρ

(2)
11 = Ω

2
ρ
(2)
12 − Ω

2
ρ
(2)
21 −ρ

(3)
11 G = Ω

2
ρ
(3)
12 − Ω

2
ρ
(3)
21

∼ ρ22 0 = −Ω
2

ρ
(1)
12 + Ω

2
ρ
(1)
21 Gρ

(2)
22 = −Ω

2
ρ
(2)
12 + Ω

2
ρ
(2)
21 −ρ

(3)
22 G = −Ω

2
ρ
(3)
12 + Ω

2
ρ
(3)
21

∼ ρ12 0 = Ω
2

ρ
(1)
11 − Ω

2
ρ
(1)
22 − ∆ρ

(1)
12 Gρ

(2)
12 = Ω

2
ρ
(2)
11 − Ω

2
ρ
(2)
22 − ∆ρ

(2)
12 −ρ

(3)
12 G = Ω

2
ρ
(3)
11 − Ω

2
ρ
(3)
22 − ∆ρ

(3)
12

∼ ρ21 0 = −Ω
2

ρ
(1)
11 + Ω

2
ρ
(1)
22 + ∆ρ

(1)
21 Gρ

(2)
21 = −Ω

2
ρ
(2)
11 + Ω

2
ρ
(2)
22 + ∆ρ

(2)
21 −ρ

(3)
21 G = −Ω

2
ρ
(3)
11 + Ω

2
ρ
(3)
22 + ∆ρ

(3)
21

Consequently

ρ
(1)
21 = ρ

(1)
12 , ρ

(2)
21 =

−Ω
2(G−∆)

(1− 2ρ
(2)
22 ) , ρ

(3)
21 =

Ω

2(G+∆)
(1− 2ρ

(3)
22 )

ρ
(1)
12 =

Ω

2∆
(1− 2ρ

(1)
22 ) , ρ

(2)
12 =

Ω

2(G+∆)

(
1− 2ρ

(2)
22

)
, ρ

(3)
12 =

−Ω
2(G−∆)

(1− 2ρ
(3)
22 ) .
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With this, the starting conditions can be written,ρ22(0)ρ12(0)

ρ∗12(0)

 =

ρ
(1)
22 + ρ

(2)
22 + ρ

(3)
22

ρ
(1)
12 + ρ

(2)
12 + ρ

(3)
12

ρ
(1)
21 + ρ

(2)
21 + ρ

(3)
21

 =

 ρ
(1)
22 + ρ

(2)
22 + ρ

(3)
22

Ω2−2∆2

2∆Ω
− Ω

∆
ρ
(1)
22 − Ω

G+∆
ρ
(2)
22 + Ω

G−∆
ρ
(3)
22

Ω2−2∆2

2∆Ω
− Ω

∆
ρ
(1)
22 + Ω

G−∆
ρ
(2)
22 − Ω

G+∆
ρ
(3)
22

 .

Now, all we have to do is to solve this system of equations to find the coefficients ρ
(1)
22 , ρ

(2)
22 ,

and ρ
(3)
22 in terms of the initial conditions. We calculate,(

1− 2ρ22(0)

ρ12(0) + ρ∗12(0)

)
=

(
1− 2

(
ρ
(1)
22 + ρ

(2)
22 + ρ

(3)
22

)
Ω2−2∆2

∆Ω
− 2Ω

∆
ρ
(1)
22 + 2∆

Ω
ρ
(2)
22 + 2∆

Ω
ρ
(3)
22

)
.

and then,

ρ22(0) +
1

2G2

[
Ω2(1− 2ρ22(0))−∆Ω(ρ12(0) + ρ∗12(0))

]
=

∆2

G2
+ ρ

(1)
22 .

This confirms the first equation (34.154) 18. In the same way we can check ρ
(2)
22 and ρ

(3)
22 and

then ρ
(1)
12 , ρ

(2)
12 , and ρ

(3)
12 .

34.4.6.3 Ex: Expansion in Pauli matrices

Show explicitly Tr ρ̂σ̂−σ̂+ = ρ11.

Solution: We have,

⟨σ̂−σ̂+⟩ = Tr ρ̂σ̂−σ̂+ =
∑

k

⟨k|
(
ρ11 ρ12

ρ11 ρ12

)(
1 0

0 0

)
|k⟩

=
∑

k

⟨k| (ρ11|1⟩⟨1|+ ρ12|1⟩⟨2|) |k⟩ = ρ11 .

34.4.6.4 Ex: Bloch vector and Bloch equations

Show that Eq. (34.168) is equivalent to the Bloch equations (34.151).

Solution: The explicit equations of motion for the components of the Bloch vector
are,

d

dt
⟨ˆ⃗σ⟩ = G⃗× ⟨ˆ⃗σ⟩ =



Re Ω

Im Ω

∆


×




2Re ρ12

2Im ρ12

ρ11 − ρ22


 =




1
2 (Ω + Ω∗)
1
2ı (Ω− Ω∗)

∆


×




ρ12 + ρ21

−ı(ρ12 − ρ21)
ρ11 − ρ22




=



− ı

2 (Ω− Ω∗)(ρ11 − ρ22) + ı∆(ρ12 − ρ21)
− 1

2 (Ω + Ω∗)(ρ11 − ρ22) + ∆(ρ12 + ρ21)

− ı
2Ω
∗ρ12 + ı

2Ωρ21


 .

18exception for a constant ∆2

G2 , I don’t know where it comes from!
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Hence,

d

dt



ρ12 + ρ21

ρ12 − ρ21
ρ11 − ρ22


 =



− ı

2 (Ω− Ω∗)(ρ11 − ρ22) + ı∆(ρ12 − ρ21)
− ı

2 (Ω + Ω∗)(ρ11 − ρ22) + ı∆(ρ12 + ρ21)

−ıΩ∗ρ12 + ıΩρ21


 ,

or,

d

dt




ρ11

ρ22

ρ12

ρ21


 =




0 0 − ı
2Ω
∗ ı

2Ω

0 0 ı
2Ω
∗ − ı

2Ω

− ı
2Ω

ı
2Ω ı∆ 0

ı
2Ω
∗ − ı

2Ω
∗ 0 −ı∆







ρ11

ρ22

ρ12

ρ21


 .

34.4.6.5 Ex: Normalization of the Bloch vector

Verify ∥ρ⃗∥ = 1.

Solution: The Bloch vector is,

β⃗ =
(
2Re ρ12 2Im ρ12 ρ22 − ρ11

)
=
(
ρ12 + ρ21 −ı(ρ12 − ρ21) ρ22 − ρ11

)
.

The length of the vector is,

√
β⃗tβ⃗ =

√
4ρ12ρ21 + ρ222 − 2ρ22ρ11 + ρ211 =

√
ρ222 + 2ρ22ρ11 + ρ211 = 1 ,

using det ρ = ρ22ρ11 − ρ12ρ21 = 0 and Tr ρ = ρ11 + ρ22 = 1.

34.4.6.6 Ex: Sequence of Ramsey pulses

Many atomic clocks work according to the Ramsey spectroscopy method: The two-
level atom is resonantly excited by a microwave π/2-pulse. Then, the phase of atomic
coherence precesses freely over a period of time T accumulating an angle ϕ. Finally,
a second π/2-pulse is applied and the population of the upper-level is measured. Cal-
culate this population as a function of the angle ϕ. Neglect spontaneous emission.

Solution: To describe the dynamics of a two-level atom during a Ramsey cycle let
us consider the general solutions (34.154) for two specific cases. For Ω = 0, we get

ρ
(1)
22 = ρ22(0) and ρ

(3)
12 = ρ12(0) and ρ

(2)
22 = 0 = ρ

(3)
22 = ρ

(1)
12 = ρ

(2)
12 .

Hence,

ρ22(t) = ρ
(1)
22 + ρ

(2)
22 e

ıGt + ρ
(3)
22 e
−ıGt = ρ22(0)

ρ12(t) = ρ
(1)
12 + ρ

(2)
12 e

ıGt + ρ
(3)
12 e
−ıGt = ρ12(0)e

−ı∆t .
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For ∆ = 0, we get

ρ
(1)
22 = 1

2

ρ
(2)
22 = 1

4 [−(1− 2ρ22(0)) + ρ∗12(0)− ρ12(0)]
ρ
(3)
22 = 1

4 [−(1− 2ρ22(0))− ρ∗12(0) + ρ12(0)]

ρ
(1)
12 = 1

2 [ρ
∗
12(0) + ρ12(0)]

ρ
(2)
12 = 1

4 [(1− 2ρ22(0))− ρ∗12(0) + ρ12(0)]

ρ
(3)
12 = 1

4 [−(1− 2ρ22(0))− ρ∗12(0) + ρ12(0)] .

Hence,

ρ22(t) = ρ
(1)
22 + ρ

(2)
22 e

ıΩt + ρ
(3)
22 e
−ıΩt = 1

2 − 1
2 [1− 2ρ22(0)] cosΩt+ Im ρ12(0) sinΩt

ρ12(t) = ρ
(1)
12 + ρ

(2)
12 e

ıΩt + ρ
(3)
12 e
−ıΩt = Re ρ12(0) +

ı
2 [1− 2ρ22(0)] sinΩt+ ıIm ρ12(0) cosΩt .

At the beginning the atom is in ρ22(0) = 0 = ρ12(0). For this case, the equations
simplify to,

ρ22(t) =
1
2 − 1

2 cosΩt and ρ12(t) =
ı
2 sinΩt .

The application of the first π/2-pulse raises the population of the state to ρ11(0) =
ρ22(0) =

1
2 and the coherence is ρ12(0) =

ı
2 . We now imagine that the laser source is

a little detuned, so little that the population of the coupled state is not affected. But if
∆ ̸= 0, looking at solutions for Ω = 0, we find that the Bloch vector begins to precess.
After a time T , it rotated by a certain angle ϕ ≡ T∆. After this time, we turn on the
laser a second time and apply a second π/2-pulse. We look now at the solutions for
∆ = 0, using the new starting conditions, ρ22(0) =

1
2 and ρ12(0) =

ı
2e
−ıϕ,

ρ22(t) =
1
2 + Im ıe−ıϕ

2 sinΩt = 1
2 + 1

2 cosϕ

ρ12(t) = Re ıe−ıϕ

2 + ıIm ıe−ıϕ

2 cosΩt = 1
2 sinϕ .

That is, we find a phase-dependent oscillation of the excited state population between
0 and 1. Thus, this population, which can be measured experimentally, provides in-
formation about the laser detuning.

34.4.6.7 Ex: Analytical treatment of the Ramsey experiment

Derive the analytic formula for the final population ρ22 for the Rabi and Ramsey
experiments. Derive and compare the line widths of the ’interference fringes’ in these
two experiments.

Solution: We consider a two-level system without decay. Its optical Bloch equations
are,

ρ̇22 = −ρ̇11 = ıΩ2 e
ı∆tρ21 + c.c. , ρ̇12 = −ρ̇∗21 = ıΩ2 e

ı∆t(ρ11 − ρ22) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SequenciaRamsey2.pdf
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Figure 34.3: (code) Ramsey fringes.

and have the solution, when ρ22(0) = 0 = ρ12(0),

ρ22 =
|Ω|2
G2

sin2
Gt

2
, ρ12 =

Ω

G2
sin

Gt

2

(
∆sin

Gt

2
+ ıG cos

Gt

2

)
.

The population therefore oscillates with the generalized Rabi frequency, while the co-
herence precess with the detuning ∆. The coherence determines the phase between the
atomic dipole and the electromagnetic field. The vector (ρ12, ρ21, ρ22 − ρ11) moves on
a Bloch sphere with the radius 1.
Shutting off the electromagnetic field suddenly at time t = T , the solution of the Bloch
equation for Ω = 0 must be connected continuously:

ρ̇22 = 0 and ρ̇12 = −ı∆ρ12 .

This means that the Bloch vector begins to precess without perturbation:

ρ22 =
|Ω|2
G2

sin2
GT

2
, ρ12 =

Ω

G2
sin

GT

2

(
∆sin

GT

2
+ ıG cos

GT

2

)
e−ı∆τ .

After a time τ , when the phase accumulated an advancement by a factor of e−ı∆τ

about the atomic dipole moment, we switch on the electromagnetic field again. Hence,
we must solve the Bloch equation with the new boundary condition:

ρ22 =
Ω2

2G4

{[
∆2(1− cosGT )(1− cos∆τ) +G2 −∆G sinGT sin∆τ

]

+
e±ıGt

2

[
−∆2(1− cosGT ) + cos∆τ

{
∆2(1− cosGT )∓ ıG2 sinGT

}

+sin∆τ {∆G sinGT ± ıG∆(1− cosGT )}]} .

If the second pulse also has the duration T , the final excited state population is,

ρ22 =
Ω2

2G4

{
(G2 +∆2)(1− cosGT ) + cos∆τ

[
G2 sin2GT −∆2(1− cosGT )2

]

+sin∆τ [−2∆G sinGT (1− cosGT )]} .
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The period of the Ramsey oscillations depends on the detuning ∆, the Rabi frequency
Ω, the duration of the interaction T , and the time τ between the interaction periods.
The following particular cases are interesting. For Ω≪ ∆:

ρ22 =
4Ω2

∆2
cos

∆(τ + T )

2
sin2

∆T

2
.

For Ω≪ ∆:

ρ22 = sin2
ΩT

2
+ cos∆τ sin2 ΩT .

The approximation Ω ≪ ∆ is analogous to a temporal double-slit experiment. The
interference patterns are described by the approximate population ρ22. This approxi-
mation corresponds to a perturbative derivation of the Born approximation.
To estimate the linewidth of the Rabi fringes, we choose the microwave pulses being
π-pulses, that is, ΩT = π. Then,

ρ22 =
1

1 +∆2/Ω2
sin2

π

2

√
1 + ∆2/Ω2 .

The linewidth is dominated by Fourier broadening, respectively, power broadening:

√
2 sin(π/2)xh = xh with xh =

√
1 + ∆2

h/Ω
2 .

Hence, xh = 1.28, that is, ∆h = 0.8Ω = 2.5/T .
To estimate the linewidth of the Ramsey patterns, we choose the microwave pulses to
be π/2-pulses, that is, ΩT = π/2. Then, in the approximation Ω≫ ∆,

ρ22 =
1

2
+ cos∆τ .

The linewidth is neither broadened by the Fourier effect nor by power broadening:

∆h =
1

τ
arccos

1

4
.

Numerical calculations show that natural decay limits the linewidth and decreases the
contrast. A complete analysis (without decay) shows that the width is given by,

∆h =
1

2τ + 8T/π
.

That is, the width is dominated by the longest of the two times, τ and T .

34.4.6.8 Ex: Atomic clocks by the Ramsey method with spontaneous
emission

In this exercise we study the Ramsey method used in atomic clocks. For this, we
will consider a two-level system |1⟩ and |2⟩ excited by a microwave radiation field
characterized by the Rabi frequency Ω12, and we will compare two cases: without
and with spontaneous emission:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_SequenciaRamsey3.pdf
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a. Write down the Hamiltonian of the system, propose a sequence of pulses allowing
the observation of the Ramsey fringes, do a numerical simulation of the Schrödinger
equation (based on the prescription (34.287)), and prepare a graph of the type
Fig. 34.2 illustrating the temporal evolution of the Bloch vector during the sequence.
b. Calculate numerically from the Schrödinger equation the population ρ22 immedi-
ately after the pulse sequence as a function of the detuning ∆12 of the radiation field,
and prepare a graph of the spectrum. Also, assuming a decay rate of Γ12 = 0.1Ω12,
calculate the population ρ22 as a function of detuning ∆12 from the Bloch equations
(making sequences of type (34.287)), prepare a new graph, and compare it with the
previous graph obtained by the Schrödinger equation.
c. What happens to the width of the fringes, when the free precession time τ between
the Ramsey pulses is increased? Prepare a graph of the inversion 2ρ22 − 1 as a func-
tion of ∆12 and τ and interprete the results.

Solution: a. Choosing Ω12 = 1 the duration of the π/2-pulse must be T = π/2Ω12.
The Hamiltonian and the solution of the Schrödinger equation can be found in the nu-
merical MATLAB code given in the file ’LM Bloch RamseySpontaneous.m’. Fig. 34.4(a)
shows, that the final inversion 2ρ22(2T + τ)− 1 depends on the detuning ∆12 and the
free precession time τ between the pulses.
b. The spectrum ρ22,∞(∆12) can be obtained by simulation of the Schrödinger equation,
but the inclusion of dissipation effects requires the use of Bloch equations. The code
’LM Bloch RamseySpontaneous.m’ shows the simulations. We notice in Fig. 34.4(b),
that the spontaneous emission reduces the contrast of the fringes.
c. A Fig. 34.4(c) shows the results of the simulations. We find that the width of the
fringes decreases considerably, when we increase the time of free precession.

Figure 34.4: (code) (a) Time evolution of the Bloch vector for different detunings. (b)

Spectra of the population ρ22 calculated by the Schrödinger (blue) and by the Bloch equations

(red). (c) Ramsey fringes in the population ρ22 varying the time interval between the Ramsey

pulses.
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34.4.6.9 Ex: Photon echo

’Photon echo’ is a powerful spectroscopic technique that allows circumvention of cer-
tain dephasing processes, for example, the Doppler shift due to the atomic motion in
a thermal sample of atoms. The technique resembles the Ramsey method with the
difference, that between the two Ramsey π/2-pulses, that is, during the free preces-
sion time, we apply an additional π-pulse, which inverts the imaginary part of the
coherence. We will study this method by numerical simulation of the Schrödinger
equation and the Bloch equations for a two-level system with and without sponta-
neous emission:
a. Write down the Hamiltonian of the system and do a numerical simulation of the
Schrödinger equation (concatenating the pulses as explained in Eq. (34.287)) for the
following temporal pulse sequence:
(i) resonant π/2-pulse (∆12 = 0) choosing Ω12 = 2,
(ii) evolution for a time T without radiation (Ω12 = 0),
(ii) resonant π-pulse using the same parameters as in (i),
(iv) evolution for a time T without radiation, and
(v) resonant π/2-pulse identical to the first pulse.
Prepare a graph of type Fig. 34.2 illustrating the temporal evolution of the Bloch
vector during the sequence. Now, repeat the sequence taking into account a possible
Doppler shift leading to ∆12 ̸= 0.
b. Repeat the calculation of (a), now numerically solving the Bloch equations, which
allow the occurrence of spontaneous emission (Γ12 = 0.03Ω12). Interpret the results.

Solution: a. Choosing Ω12 = 1 the duration of the π/2-pulse must be T = π/2Ω12.
The Hamiltonian and the solution of the Schrödinger equation can be found in the
numerical MATLAB code given in the file ’LM Bloch PhotonEcho.m’. Fig. 34.5(a)
shows, that the final inversion 2ρ22(2T + τ)−1 depends on the detuning ∆12, and the
free precession time τ between the pulses
b. The code ’LM Bloch PhotonEcho.m’ shows the simulations.

Figure 34.5: (code) (a) Time evolution of the Bloch vector for different detunings ∆12

calculated from the Schrödinger equation. (b) Same evolution now calculated from the

Bloch equations with Γ12 = 0.1Ω12 the spontaneous emission rate.

Alternatively we can try an analytical approach: We use the general solutions

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EcoFotonico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_PhotonEcho.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_PhotonEcho.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_PhotonEcho.m
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of the Bloch equations:

ρ
(1)
22 = ρ22(0) +

1
2G2

[
|Ω|2 (1− 2ρ22(0))−∆(Ωρ∗12(0) + Ω∗ρ12(0))

]

ρ
(2)
22 = 1

4G2

[
−|Ω|2(1− 2ρ22(0)) + (∆ +G)Ωρ∗12(0) + (∆−G)Ω∗ρ12(0)

]

ρ
(3)
22 = 1

4G2

[
−|Ω|2(1− 2ρ22(0)) + (∆−G)Ωρ∗12(0) + (∆ +G)Ω∗ρ12(0)

]

ρ
(1)
12 = 1

2G2 [∆Ω(1− 2ρ22(0)) + Ω (Ωρ∗12(0) + Ω∗ρ12(0))]

ρ
(2)
12 = ∆−G

4G2

[
−Ω(1− 2ρ22(0)) + (∆ +G)

Ω

Ω∗
ρ∗12(0) + (∆−G)ρ12(0)

]

ρ
(3)
12 = ∆+G

4G2

[
−Ω(1− 2ρ22(0)) + (∆−G) Ω

Ω∗
ρ∗12(0) + (∆ +G)ρ12(0)

]
,

and consider the special cases ∆ = 0,

ρ
(1)
22 = 1

2 ρ
(2)
22 = − 1

4 + 1
2ρ22(0) +

ı
2Im ρ12(0) ρ

(3)
22 = − 1

4 + 1
2ρ22(0)− ı

2Im ρ12(0)

ρ
(1)
12 = Re ρ12(0) ρ

(2)
12 = 1

4 − 1
2ρ22(0) +

ı
2Im ρ12(0) ρ

(3)
12 = − 1

4 + 1
2ρ22(0)− ı

2Im ρ12(0)

with the solution

ρ22(t) = ρ
(1)
22 + ρ

(2)
22 e

ıΩt + ρ
(3)
22 e
−ıΩt

= 1
2 +

[
− 1

4 + 1
2ρ22(0)− ı

2Im ρ12(0)
]
eıΩt +

[
− 1

4 + 1
2ρ22(0) +

ı
2Im ρ12(0)

]
e−ıΩt

ρ12(t) = ρ
(1)
12 + ρ

(2)
12 e

ıΩt + ρ
(3)
12 e
−ıΩt

= Re ρ12(0) +
[
1
4 − 1

2ρ22(0) +
ı
2Im ρ12(0)

]
eıΩt +

[
− 1

4 + 1
2ρ22(0) +

ı
2Im ρ12(0)

]
e−ıΩt

and the case Ω = 0

ρ
(1)
22 = ρ22(0) ρ

(2)
22 = 0 ρ

(3)
22 = 0

ρ
(1)
12 = 0 ρ

(2)
12 = 0 ρ

(3)
12 = ρ12(0)

with the solution

ρ22(t) = ρ
(1)
22 + ρ

(1)
22 e

ı∆t + ρ
(1)
22 e
−ı∆t = ρ22(0)

ρ12(t) = ρ
(1)
12 + ρ

(1)
12 e

ı∆t + ρ
(1)
12 e
−ı∆t = ρ12(0)e

−ı∆t .

We begin with the initial conditions

ρ22(0) = 0

ρ12(0) = 0 .

We apply a first resonant π/2-pulse (Ωt = π/2,∆ = 0),

ρ22(
π
2Ω ) =

1
2 − 1

2 cosΩt =
1
2

ρ12(
π
2Ω ) =

ı
2 sinΩt =

ı
2 .

Now, we turn off the laser and detune the transition (Ω = 0,∆T ). After an arbitrary
time T the state becomes,

ρ22(
π
2Ω + T ) =

1

2

ρ12(
π
2Ω + T ) =

ı

2
e−ı∆TT = 1

2 sin∆TT + ı
2 cos∆TT .
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Now we apply a resonant π-pulse (Ωt = π,∆ = 0),

ρ22(
π
2Ω + T + π) = 1

2 − 1
2 cos∆TT sinΩt = 1

2

ρ12(
π
2Ω + T + π) = 1

2 sin∆TT+
ı
2 cos∆TT cosΩt = 1

2 sin∆TT − ı
2 cos∆TT = − ı

2
eı∆TT .

We let the system evolve once more for a while T without laser (Ω = 0,∆T ),

ρ22(
π
2Ω + T + π + T ) =

1

2

ρ12(
π
2Ω + T + π + T ) = − ı

2
eı∆TT e−ı∆T t = − ı

2
.

Finally, we apply the second π/2-pulse (Ωt = π/2,∆ = 0)

ρ22(
π
2Ω + T + π

Ω + T + π
2Ω ) =

1
2 + 1

2 sinΩt = 1

ρ12(
π
2Ω + T + π

Ω + T + π
2Ω ) = ... .

Therefore, for each value of them detuning ∆T , which may in fact be different for each
member of an atomic sample, the final value of the population of the excited state is
always 1.
Photon echo is an interference effect in the radiation emitted by many atoms. We
assume that many two-level atoms interact with the same radiation mode. To observe
photon echoes, we apply a first π/2-pulse which brings every atom into a coherent
superposition of the two energy states. However, because of the Doppler shift, the
excitation of the individual atoms may be different, so that the individual Bloch vectors
begin to precess at different paces. If after a certain time a π-pulse is applied, the state
populations, and therefore the direction of the precession are reversed, so that after a
certain time, the Bloch vectors are refocused.
The synchronization of the phases of the individual dipoles generates a cooperative
spontaneous emission of the ensemble called photon echo. The signature of a photon
echo is twofold: First, the appearance of a fluorescence pulse a delay of τ after the
end of the applied π-pulse, and second, a fluorescence rate depending on the square of
the excited state population. This unusual behavior emerges from a mutual coupling
of the individual dipoles and results in a rapid depopulation of the excited state with a
much shorter fluorescent lifetime than for individual atoms. This synchronization of
the phases of the individual dipoles is called superradiance. It is important to keep in
mind, that the photon echo does not allow to recover the coherence of an irreversible
process. It only works for inhomogeneous broadening due to a well-defined distribution
of the kinetic energy among the atoms, provided that the temporal evolutions of the
individual atoms have not undergone random phase interruptions.

34.4.6.10 Ex: Time-evolution of NMR spin components

Derive the coherent part of the Bloch equations (34.175) from the Heisenberg equa-
tion (34.174).

Solution: The nuclear spins satisfies the usual commutation relation [Îm, În] =

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EcoNMR01.pdf
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ıℏϵkmnÎk. With this we obtain from the Heisenberg equation,

ıℏ
d ˆ⃗µ

dt
= [ˆ⃗µ, Ĥ] = ˆ⃗µ(− ˆ⃗µ · B⃗)− (−µ⃗ · B⃗)ˆ⃗µ = γ2I (̂I · B⃗)̂I− γ2I Î(̂I · B⃗)

= γ2I ([Îx, Î]Bx + [Îy, Î]By + [Îz, Î]Bz) = γ2I ıℏ



ÎyBz − ÎzBy
ÎzBx − ÎxBz
ÎxBy − ÎyBx


 = ıℏγI ˆ⃗µ× B⃗ .

34.4.6.11 Ex: Precession of the nuclear spin in a magnetic field

Show for Ĥ0 = −ℏωL

2 σ̂z that,

⟨ˆ⃗σ(t)⟩ =



cosωLt − sinωLt 0

sinωLt cosωLt 0

0 0 1


 ⟨ˆ⃗σ(0)⟩ .

Solution: For the x-component we calculate,

⟨σ̂x(t)⟩ = Tr ρ̂(t)σ̂x = Tr e−
ı
2ℏωLtσ̂z ρ̂(0)e

ı
2ℏωLtσ̂z σ̂x

= Tr

(
e−ıℏωLt/2 0

0 eıℏωLt/2

)(
ρ11 ρ12

ρ21 ρ22

)(
eıℏωLt/2 0

0 e−ıℏωLt/2

)(
0 1

1 0

)

= Tr

(
e−ıℏωLtρ12 ρ11

ρ22 eıℏωLtρ21

)
= e−ıℏωLtρ12 + eıℏωLtρ21 .

Similarly, we get for the y- and z-components,

⟨σ̂y(t)⟩ = ıe−ıℏωLtρ12 − ıeıℏωLtρ21

⟨σ̂z(t)⟩ = ρ11 − ρ22 .
These equations satisfy the initial conditions,

2ρ12 = ⟨σ̂x(0)⟩ − ı⟨σ̂y(0)⟩
ρ11 − ρ22 = ⟨σ̂z(0)⟩ ,

from which we immediately derive the result.

34.5 Bloch equations with spontaneous emission

In this section we will introduce spontaneous emission and the important concepts
of polarization and susceptibility emanating from an excited sample of oscillating
dipoles. Optical Bloch equations including spontaneous emission will be given and
their stationary solutions will be discussed. Dissipative processes always broaden
transition lines, and thus we will discuss various broadening mechanisms.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EcoNMR02.pdf
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34.5.1 Phenomenological inclusion of spontaneous emission

To find the Bloch equations including spontaneous emission, we proceed similarly for
Eq. (34.26) and insert the phenomenological decay term −ıγa2 into the Eqs. (27.63),

Ω∗ cosωteıω0ta1 − ıγa2 = ı
da2
dt

, (34.184)

that is, the equations of motion can be corrected by simply replacing,

da2
dt

↷
(
d

dt
+ γ

)
a2 . (34.185)

Knowing ρmn = a∗man, it is easy to check,

dρ22
dt

↷
(
d

dt
+ Γ

)
ρ22 and

dρ12
dt

↷
(
d

dt
+ γ

)
ρ12 , (34.186)

with γ = Γ/2, such that the Bloch equations become,

d

dt




ρ11

ρ22

ρ12

ρ21


 =




0 Γ ı
2Ω − ı

2Ω

0 −Γ − ı
2Ω

ı
2Ω

ı
2Ω − ı

2Ω −ı∆− γ 0

− ı
2Ω

ı
2Ω 0 ı∆− γ







ρ11

ρ22

ρ12

ρ21


 . (34.187)

Example 198 (Langevin equation): The Heisenberg equation for the evolu-
tion of the internal degrees of freedom, including the phenomenologically intro-
duced decay, is also called Langevin equation. It can be written as,

ı
dσ̂−

dt
= 1

ℏ [σ̂
−, Ĥ]− ı

2
Γσ̂− ,

and analogously for σ̂z. With the Hamiltonian Ĥ = ℏ∆σ̂+σ̂− + 1
2
ℏΩ(eıωtσ̂− +

h.c.) we obtain, using the Pauli spin matrices, exactly the Bloch equations,

ı ˙̂σ− = ∆[σ̂−, σ̂+σ̂−] + 1
2
Ωe−ıωt[σ̂−, σ̂+]− ı

2
Γσ̂− = ∆σ̂− − 1

2
Ωe−ıωtσ̂z − ı

2
Γσ̂−

ı ˙̂σz = ∆[σ̂z, σ̂
+σ̂−] + 1

2
Ωe−ıωt[σ̂z, σ̂

+] + 1
2
Ωeıωt[σ̂z, σ̂

−]− ı
2
Γσ̂z = Ω(σ̂− − σ̂+)− ı

2
Γσ̂z .

34.5.1.1 Stationary solution of the Bloch equations

The dissipation introduced by the spontaneous emission allows the system to reach a
steady state. Letting the time derivatives be 0, we obtain the stationary solutions,

ρ22(∞) =
1
4 |Ω|2

∆2 + 1
2 |Ω|2 + 1

4Γ
2

and ρ12(∞) = eı∆t
1
2Ω(∆− ı

2Γ)

∆2 + 1
2 |Ω|2 + 1

4Γ
2
.

(34.188)
This will be shown in Exc. 34.5.4.1. We see that the populations and coherences both
have a Lorentzian frequency dependence, which is similar to the one of the absorption
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cross section σ derived in (22.72). However, the denominators have an extra term 1
2Ω

2

contributing to an effective widths of ρ22 and ρ12,

Γeff =
√
2|Ω|2 + Γ2 . (34.189)

This effect, called power broadening or saturation broadening, has already been dis-
cussed in (22.102). The phase factor eı∆t describes the optical precession of the Bloch
vector.

By introducing the saturation parameter,

s ≡ 2|Ω|2
4∆2 + Γ2

, (34.190)

we can rewrite the stationary dipole moment and the excited state population (34.188)
as,

ρ22(∞) =
s/2

1 + s
, ρ12(∞) = eı∆t

∆− ıΓ/2
Ω

s

1 + s
. (34.191)

and

|ρ12(∞)|2 =
s/2

(1 + s)2
. (34.192)

Fig. 34.6(a) shows the Rabi oscillations damped by spontaneous emission. For long
times the population of the excited state ρ22 converges to the asymptote (34.191).
Fig. 34.6(b) shows the temporal evolution of the Bloch vector subject to spontaneous
emission. In Exc. 34.5.4.2 we the behavior of the phase of the dipole moment ρ12 with
respect to the driving field. In Exc. 34.5.4.3 and 34.5.4.4 we calculate the impact of

Δ12/Γ12

Γ12t

0
0

0.5

ρ
22

5

1

5
0

(a)

Im ρ12

Re ρ12

-1
-1

0

2ρ
22
−
1

0

(b) 1

1
01 -1

Figure 34.6: (code) (a) Rabi oscillations damped by spontaneous emission for Rabi frequen-

cies between Ω/Γ = 0.2, .., 5. (b) Evolution of the Bloch vector subject to spontaneous

emission (Γ12 = 0.05Ω12) after application of a resonant π-pulse (red) and after a π-pulse

with detuning ∆12 = Ω12/2 (green).

the spontaneous emission on the determinant of the density operator. Solve the
Excs. 34.5.4.5, 34.5.4.6, 34.5.4.7, and 34.5.4.8.

Example 199 (Resonant excitation and weak excitation): A case where
the Bloch equations can be analytically treated is under resonant excitation,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_TwoLevelDecay.m
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∆ = 0. In this case, for the initial conditions, ρ12(0) = ρ22(0) = 0, the solution
including decay is,

ρ22(t) =
Ω2

2|Ω|2 + Γ2

[
1− e−3Γt/4

(
cosλt+

3Γ

4λ
sinλt

)]
and ρ12(t) = 0 ,

(34.193)
where λ ≡

√
Ω2 − Γ2. This solution (which will be derived in Exc. 34.5.4.9),

describes the optical nutation of the Bloch vector along the ρz axis. We note
here that, due to spontaneous emission, the norm of the Bloch vector is NOT
conserved, i.e. the Bloch vector evolves to the interior of the Bloch sphere.
Another case that can be solved analytically is the weakly excited atom, |Ω| ≪ Γ,

ρ22 ≃ Ω2

4G2

(
1 + e−2Γt − 2 cos∆t

)
(34.194)

and ρ12(t) ≃ −ıΩ
2ı∆+ 2Γ

(
e−(ı∆+Γ)t − 1

)
+ ρ12(0)e

−(ı∆+Γ)t .

34.5.1.2 Nonlinearity of the Bloch equations

Because the Bloch equation go beyond perturbation theory they contain nonlinear
optics. We can see this by the simple fact that strong radiation field can saturate
atomic transitions. For example, expanding the population and coherence (34.188)
by the incident electric field amplitude E ∝ Ω,

ρ22(∞) ≃ 1

4∆2 + Γ2
Ω2 − 2

(4∆2 + Γ2)2
Ω4 + ... (34.195)

ρ12(∞) ≃ eı∆t 2∆− ıΓ
4∆2 + Γ2

Ω− 2eı∆t
2∆− ıΓ

(4∆2 + Γ2)2
Ω3 + ... .

The theory of nonlinear optics will be developed in Sec. 35.7.2 and Chp. 37.

Example 200 (Complex susceptibility and absorption coefficient): The
objective of this section is to obtain an expression for the susceptibility in the
presence of spontaneous emission. For the present discussion we are only con-
cerned with the temporal dependence of the actual light wave, which we write
as,

E⃗(t) = E⃗0 cosωt = 1
2
[eıωt + e−ıωt] . (34.196)

Then we consider how to write the polarization in terms of a susceptibility
when the field contains two conjugate frequencies, ±ω. Substituting into the
polarization Eq. (14.20), we get,

P⃗(t) = ε0χeE⃗ = 1
2
ε0E⃗0[χe(ω)eıωt + χe(−ω)e−ıωt] . (34.197)

The polarization can also be expressed in terms of the density of the transition
dipoles in a gas of two-level atoms,

P⃗(t) = N

V
d12(t) −→ N

V
⟨d12(t)⟩ . (34.198)

where d is the transition dipole of only one atom, N/V is the atomic density,
and the quantum expectation value for the transition dipole moment is,

⟨d12⟩ = −e
∫

Ψ
∑
j

rjΨd
3r . (34.199)
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Now, from Eq. (27.58),

⟨d12⟩ = −e
[
a∗1a2⟨ψ1|

∑
j

rj |ψ2⟩e−ıω0t + a1a
∗
2⟨ψ2|

∑
j

rj |ψ1⟩eıω0t

]
. (34.200)

To simplify the notation we define ⟨rmn⟩ ≡ ⟨ψm|
∑
j rj |ψn⟩ and obtain,

⟨d12⟩ = −e[a∗1a2⟨r12⟩e−ıω0t + a1a
∗
2⟨r21⟩eıω0t] . (34.201)

Now, we only need to replace the solutions of the coupled equations by relating
a1 and a2 of the Eqs. (27.63) in (34.201) which, in turn, can be inserted into the
equation (34.197). Thus we obtain an expression for the polarization in terms
of properties of the atoms and the incident field.
The crucial point now is, that the solution for a2, Eq. (27.79), does not consider
spontaneous emission. Therefore, as already done in Sec. 34.5.1, we will intro-
duce an ad hoc modification of Eq. (27.63) by including a radiative loss constant
γ,

Ω∗ cosωteıω0ta1 − ıγa2 = ı
da2
dt

. (34.202)

This term does NOT EXPLAIN spontaneous emission. It simply takes into
account the existence of the effect and characterizes its amplitude through γ: If
the incident field is turned off (Ω∗ = 0)

−ıγa2 = ı
da2
dt

(34.203)

and
a2(t) = a2(0)e

−γt . (34.204)

Then, the probability of finding an atom in the excited state (or the fraction of
excited atoms in an ensemble) is,

N2/N = |a2(t)|2 = |a2(0)|2e−2γt . (34.205)

Comparing this behavior with the result obtained from the Einstein rate equa-
tion, we see immediately,

A21 = 2γ ≡ Γ . (34.206)

Now, the solution for our improved a2(t) coefficient is,

a2(t) = − 1
2
Ω∗
[
eı(ω0+ω)t

ω0 + ω − ıγ +
eı(ω0−ω)t

ω0 − ω − ıγ

]
, (34.207)

which solves the differential equation (34.202) in the weak field limit, a1(t) ≃ 1,
as will be verified in Exc. 34.5.4.10.
Making the weak field approach, replacing the values obtained for a1,2 in the
transition dipole (34.201) and replacing the average of the orientations, |⟨r12⟩|2 −→
1
3
|⟨r12⟩|2, in the polarization (34.198), we obtain,

⃗̃P(t) = ε0χ̃eE⃗ (34.208)

=
N

V

e2|⟨r12⟩2E⃗0
6ℏ

[
eıωt

ω0 + ω − ıγ +
eıωt

ω0 − ω + ıγ
+

e−ıωt

ω0 − ω − ıγ
+

e−ıωt

ω0 + ω + ıγ

]
.

Apparently, the presence of spontaneous emission turns the susceptibility into
a complex number [see Eq. (18.132)].
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Comparing this result with Eq. (34.197) and identifying the susceptibility χ̃e(ω)
in terms of the atomic properties and the frequency of the incident field, we find,

χ̃e(ω) =
Ne2|⟨r12⟩|2

3ϵ0ℏV

[
1

ω0 − ω − ıγ
+

1

ω0 + ω − ıγ

]
(34.209)

=
Ne2|⟨r12⟩2
3ϵ0ℏV

[
ω0 − ω

(ω0 − ω)2 + γ2
+

ω0 + ω

(ω0 + ω)2 + γ2

+ıγ

(
1

(ω0 − ω)2 + γ2
+

1

(ω0 + ω)2 + γ2

)]
.

In most practical situations in the laboratory ω will not be tuned more than
some 100GHz away from ω0, hence |ω0 − ω| ≲ 1011 Hz. With optical frequen-
cies ω ≃ 1015 Hz, it is clear that the second term on the right hand side of
Eq. (34.209) will be negligible compared to the first one. Therefore, we can
discard the second term and write the susceptibility as,

χe(ω) ≃ Ne2|⟨r12⟩|2
3ϵ0ℏV

1

ω0 − ω − ıγ
(34.210)

=
Nd212
3ϵ0ℏV

−∆+ ıΓ/2

∆2 + (Γ/2)2
=

nℏΩ2

3ϵ0E2
0

−∆+ ıΓ/2

∆2 + (Γ/2)2
.

We identify the real and imaginary parts, χ̃e = χ′e + ıχ′′e , and express the
absorption coefficient as (see (18.138)),

K =
ω

cη
χ′′e (ω) =

πNd212ω0

3ϵ0ℏcV
Γ/2π

∆2 + (Γ/2)2
=
πNd212ω0

3ϵ0ℏcV
L(ω − ω0) . (34.211)

The Lorentzian profile term governs the frequency dependence of the absorption
coefficient. We see that K exhibits a peak at the resonance frequency ω0 and a
width of Γ. The factor of π inserted in the numerator and denominator of the
right term of Eq. (34.211) allows to normalize the profile. We have also assumed
in Eq. (34.211) that the gas is sufficiently dilute for n ≃ 1 to hold, and that the
line is sufficiently narrow to be able to replace ω with ω0, such that,

ω

cη
−→ ω0

c
. (34.212)

The absorption cross section has the same lineshape, since from Eqs. (22.72)
and (34.211) we have,

σ0a =
πd212ω0

3ϵ0ℏcV
L(ω − ω0) , (34.213)

consistent with our previous expression for the frequency dependence of the
absorption cross-section. We can also write the imaginary component of the
susceptibility in terms of the cross section using the Eqs. (22.72) and (34.211)

χ′′e =
cN

ω0V
σ0a . (34.214)

The frequency-dependent linear susceptibility completely describes the linear
propagation of an electromagnetic wave within a medium. It is related to the
index of refraction and the absorption coefficient. Nonlinear processes should be
described by higher order susceptibilities. Electric fields E⃗ = E⃗0eıωt+c.c. induce
in media characterized by a given susceptibility χ̃e the polarization ⃗̃P = ε0χ̃eE⃗ .
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The polarization is the sum of the dipole moments of the individual atoms, P⃗ =
n⟨d⟩, where n = N/V is the atomic density. The susceptibility can therefore be
expressed by the Hamiltonian interaction Ĥ = −d · E⃗ ,

χe = − n

|E⃗ |2
⟨Ĥ⟩ . (34.215)

Using the two-level Hamiltonian (34.209) we obtain,

χe = −n ℏΩ
2|E⃗ |2

ρ12e
ı∆t + c.c. (34.216)

for the polarization,
P⃗ = n dρ12 + c.c. (34.217)

and for the susceptibility,

χe(ω) =
2nd2

3ε0ℏ
∆+ ıΓ

4∆2 + 2|Ω|2 + Γ2
with d =

√
3πε0ℏΓ
k3

. (34.218)

We can insert the new expression (34.188) for ρ12 into our previous expression
for ⟨d12⟩ (34.201) and get new expressions for the polarization P⃗(t), (34.198)
and (34.208), and the susceptibility χ (34.210). The modified expression for the
susceptibility is,

χe =
Nd212
3ϵ0ℏV

−∆+ 1
2
Γ

∆2 + 1
2
|Ω|2 + 1

4
Γ2

. (34.219)

In the imaginary component we obtain the new absorption coefficient,

K =
ω

cn
χ′′e (ω) =

πNe2|⟨r12⟩|2ω0

3ϵ0ℏcV
Γ/2π

∆2 + 1
2
Ω2 + 1

4
Γ2

, (34.220)

and the optical cross-section for absorption,

σ0a =
πe2|⟨r12⟩|2ω0

3ϵ0ℏc
Γ/2π

∆2 + 1
2
Ω2 + 1

4
Γ2

. (34.221)

The important new property is the effective width Γeff, which appears in χe, K,

and σ0a.

34.5.2 Liouville equation for two levels

In the previous section we chose to include spontaneous emission in the Bloch equa-
tions by phenomenological arguments. However, as we will show more ahead, dissipa-
tion can be treated from general principles. This treatment, named after Weisskopf-
Wigner, derives from a Liouville type equation (34.125), but which holds for a total
density operator ρatom&field describing the atom and the electromagnetic modes, an
equation for the density operator of only the atom. The price to pay for this simpli-
fication is an additional term appearing in the equation now called master equation,

˙̂ρ(t) = (L0 + Lsp)ρ̂(t) with

L0ρ̂(t) ≡ ı

ℏ
[ρ̂(t), Ĥ] and Lsp = Γ

2 (2σ̂ρ̂
−σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−)

,

(34.222)
where σ̂± are the Pauli matrices. We show in Exc. 34.5.4.11, that the known Bloch
equations can be derived from the master equation.
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34.5.3 The effective Hamiltonian approach

In Sec. 34.5.1 we have shown that spontaneous emission can be phenomenologically
be included by substituting d

dt ↷
d
dt +

Γ
2 in the Schrödinger equation,

ı
(
d
dt +

Γ
2 |2⟩⟨2|

)
|ψ⟩ = Ĥ|ψ⟩ . (34.223)

Rewriting the Schrödinger equation as,

ı ddt |ψ⟩ = (Ĥ − ıΓ2 |2⟩⟨2|)|ψ⟩ ≡ Ĥeff |ψ⟩ , (34.224)

it is tempting to study how far we can go [117, 118] with the emulation of dissipative
processes by the Schrödinger equation using a non-Hermitian effective Hamiltonian.

More generally let us define,

Ĥeff ≡ Ĥ − ıD̂ . (34.225)

Rederiving the master equation from Schrödinger equation with this Hamiltonian, we
get,

˙̂ρ = |ψ⟩d⟨ψ|
dt

+
d|ψ⟩
dt
⟨ψ| = ıρ̂Ĥ∗eff − ıĤeff ρ̂ (34.226)

= ı[ρ̂, Ĥ]− {ρ̂, D̂} .

And for the Heisenberg equation,

d
dt ⟨Â⟩ = ⟨ψ̇|Â|ψ⟩+ ⟨ψ|Â|ψ̇⟩ = ı⟨ψ|Ĥ∗eff Â|ψ⟩ − ı⟨ψ|ÂĤeff |ψ⟩ (34.227)

= ı⟨ψ|[Ĥ, Â]|ψ⟩ − ⟨ψ|{D̂, Â}|ψ⟩ .

Apparently, the dissipation term adds an anti-commutator to the evolution equations.
It is now interesting to compare the dissipative terms of the expressions (34.222) and
(34.226).

34.5.3.1 Saturation effects by the effective Hamiltonian

The eigenvalues of the effective Hamiltonian of a two-level system excited by radiation,

Ĥeff =

(
0 1

2Ω
1
2Ω ∆− ı

2Γ

)
, (34.228)

describe possible effects of line broadening and/or displacement due to coupling,

E± = 1
2

(
∆− ı

2Γ
)
± 1

2

√(
∆− ı

2Γ
)2

+Ω2 . (34.229)

The real parts of the eigenvalues Re E describe shifts and/or splittings of the transi-
tion line. The imaginary parts Im E describe broadening effects of the lines.

In the simplest case, ∆ = 0 and Γ > 4Ω, we find the saturation broadening already
discussed in (34.189), and we will deepen it in Exc. 34.8.4.2. For the case Γ < 4Ω,
we observe a splitting of the line called Autler-Townes splitting, which will be studied
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in Exc. 34.8.4.1. If Ω ̸= 0, the spectrum becomes asymmetrical. In the case of
weak excitation, Γ ≫ 4Ω, we observe a shift of the transition line with dispersive
dependence (near the resonance) on the frequency of the incident radiation. This is
the dynamic Stark shift (or light shift). In the case of strong excitation, Γ≪ 4Ω, we
observe again at the split spectrum, but now the two lines exhibit an avoided crossing-
type dependence on the radiation frequency. We study these effects in Excs. 34.5.4.12
and Exc. 34.5.4.13.

Obviously, these effects can be studied by the Bloch equation formalism containing
the terms of spontaneous relaxation.

34.5.4 Exercises

34.5.4.1 Ex: Stationary solution of the Bloch equations

Derive the stationary solution of the Bloch equations including spontaneous emission.
How does the spectrum ρ22(∆) change in the presence of phase noise, γ = Γ

2 + β, in

particular if β ≫ Γ
2 ?

Solution: Starting from the Bloch equations,

0 =
d

dt




ρ11

ρ22

ρ̃12

ρ̃21


 =




0 Γ ı
2Ω − ı

2Ω

0 −Γ − ı
2Ω

ı
2Ω

ı
2Ω − ı

2Ω ı∆− γ 0

− ı
2Ω

ı
2Ω 0 −ı∆− γ







ρ11

ρ22

ρ̃12

ρ̃21


 ,

we find from the first and third line using the normalization condition,

0 = Γρ22 +
ı
2Ωρ̃12 − ı

2Ωρ̃21 and 0 = ı
2Ω− ıΩρ22 + (ı∆− γ)ρ̃12 .

Solving,

ρ22 =
ıΩ

2Γ
(ρ̃21 − ρ̃12) and ρ̃12 =

ıΩ

2(ı∆− γ) (2ρ22 − 1) .

Hence,

ρ22 =
Ω2

4Γ

(
1

ı∆+ γ
+

1

−ı∆+ γ

)
(1− 2ρ22) =

γ
2ΓΩ

2

∆2 + γ
ΓΩ

2 + γ2

ρ̃12 =
ıΩ

2(ı∆− γ)

( γ
ΓΩ

2

∆2 + γ
ΓΩ

2 + γ2
− 1

)
=

Ω
2 (−∆+ ıγ)

∆2 + γ
ΓΩ

2 + γ2
.

For γ = Γ
2 we get,

ρ22 =
1
4Ω

2

∆2 + 1
2Ω

2 + 1
4Γ

2
and ρ̃12 =

Ω
2 (−∆+ ı

2Γ)

∆2 + 1
2Ω

2 + 1
4Γ

2
.

For γ = Γ
2 + β ≫ Γ

2 we get,

ρ22 ≃
β
2ΓΩ

2

∆2 + β2

∆→0−→ Ω2

2Γβ
and ρ̃12 ≃

Ω
2 (−∆+ ıβ)

∆2 + β2

∆→0−→ ıΩ

2β
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EstacionariaBloch.pdf
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34.5.4.2 Ex: Detuning-dependent phase-shift of the dipole moment

Calculate the phase-shift of the dipole moment with respect to the driving field across
resonance.

Solution: The dipole moment in the interaction picture being given by (34.188),

ρ12(∞) = eı∆t
1
2Ω(∆− ı

2Γ)

∆2 + 1
2Ω

2 + 1
4Γ

2
,

the phase-shift is,

φ = arctan
Im ρ12e

−ı∆t

Re ρ12e−ı∆t
= arctan

−Γ
2∆

∆→±∞−→ ±π
2
.

Note that the total phase-shift of π when sweeping across a resonance is consistent
with the Lorentz model treating the oscillation of a bound electron like a harmonic
oscillator. Apparently, this feature does not depend on saturation. Experimentally,
the phase-shift may we extracted by a homodyne experiment [1219] as one of the
quadratures. The other quadrature yields the amplitude,

|ρ̂12e−ı∆t| =
1
2Ω
√
∆2 + 1

4Γ
2

∆2 + 1
2Ω

2 + 1
4Γ

2

∆→±∞−→ Ω

2|∆| .

34.5.4.3 Ex: Determinant of the Bloch matrix

In Sec. 34.3.1 we already saw that det ρ̂ = 0 for conservative systems. Now, show
explicitly for the Bloch matrix of a two-level system, that det ρ̂ = 0 only holds in the
absence of spontaneous emission.

Solution: The system be initially in the ground state. So, the coherences are null and
the determinant must disappear. But the Bloch equations contain the determinant,
since,

d

dt
det

(
ρ11 ρ12

ρ21 ρ22

)
= ρ̇ggρ22 + ρ11ρ̇22 − ρ̇12ρ21 − ρ12ρ̇21

= Γ∥ρ
2
22 +

1
ıℏ (V12ρ21 − ρ12V21)ρ22

= −Γ∥ρ22ρ11 + 1
ıℏ (V21ρ12 − ρ21V12)ρ11

+ (−ıω0 + Γ⊥)ρ12ρ21 + 1
ıℏV12(ρ11 − ρ22)ρ21

+ (ıω0 + Γ⊥)ρ21ρ12 − 1
ıℏV21(ρ11 − ρ22)ρ12

= Γ∥ρ22(ρ22 − ρ11) + 2Γ⊥ρ12ρ21 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EstacionariaBloch1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DeterminanteBloch.pdf
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34.5.4.4 Ex: Density operator with dissipation

Discuss the phenomenon of dissipation at the example of
a. a thermal sample of two-level systems |i⟩ = |1⟩, |2⟩ characterized by the density
operator ρ̂ = |i⟩⟨i| ⊗ |v⟩⟨v|, where |v⟩ is the velocity state of the atom and
b. a two-level atom coupled to a radiation field, ρ̂ = |i⟩⟨i| ⊗ |n⟩⟨n|, where |n⟩ is the
number of photons inside the mode.

Solution: We need to show that,

Trreservρatom → 0 while Trreserv

(
ρatom 0

0 ρreserv

)
= 1 .

34.5.4.5 Ex: Bloch vector

A two-level atom with decay rate Γ = 2π× 6MHz be excited by a light field detuned
by ∆ = 2Γ and whose intensity is a quarter of the saturation intensity. Write down
the Bloch vector for t→∞.

Solution: The Rabi frequency is Ω =
√
Γ2/2× I/Is and the detuning ∆ = 2Γ.

The stationary solution of the Bloch equations are,

ρ22 =
Ω2

4∆2 + 2Ω2 + Γ2
and ρ12 = Ω

2∆+ ıΓ

4∆2 + Γ2
(ρ22 − ρ11) .

Hence,

ρ⃗ =




ρ12 + ρ21

ı(ρ12 − ρ21)
ρ22 − ρ11


 = (2ρ22 − 1)



Ω 4∆

4∆2+Γ2

Ω 2Γ
4∆2+Γ2

1




=
−1

4∆2 + 2Ω2 + Γ2




4∆Ω

2ΓΩ

4∆2 + Γ2


 =

−1
17.25




√
8√

2
−1

17


 .

34.5.4.6 Ex: Purity of two-level atoms with spontaneous emission

Calculate for a driven two-level atom in the stationary limit Tr ρ̂ and Tr ρ̂2.

Solution: From 1 = ρ11(0) + ρ22(0) follows that Tr ρ = 1 always. With

ρ̂2 =

(
ρ211 + ρ12ρ21 ρ11ρ12 + ρ12ρ22

ρ11ρ21 + ρ21ρ22 ρ12ρ21 + ρ222

)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DissipacaoDensidade.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_VetorBloch2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_PurezaBloch.pdf
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follows
Tr ρ2 = Tr ρ− 2 det ρ = 1− 2ρ22 + 2ρ222 + 2ρ12ρ21 .

Inserting the stationary solution (34.188) of the Bloch equations,

ρ22 =
Ω2

4∆2 + 2Ω2 + Γ2
and ρ12 = eı∆t

Ω(2∆ + ıΓ)

4∆2 + 2Ω2 + Γ2

we calculate,

Tr ρ2 = 1− 2Ω2(4∆2 + 2Ω2 + Γ2)

(4∆2 + 2Ω2 + Γ2)2
+

2Ω4

(4∆2 + 2Ω2 + Γ2)2
+

2Ω2(4∆2 + Γ2)

(4∆2 + 2Ω2 + Γ2)2

= 1− 2

(
Ω2

4∆2 + 2Ω2 + Γ2

)2

= 1− 2ρ222 < 1 .

These quantities measure the purity of the state.

34.5.4.7 Ex: Bloch sphere

Check the temporal evolution of the norm of the Bloch vector defined by
ρ⃗ ≡ (2 Re σ+ , 2 Im σ− , σz), where the σk are the Pauli matrices, for a resonantly
excited two-level system with and without spontaneous emission.

Solution:

34.5.4.8 Ex: Atomic beam

An atomic beam is illuminated perpendicular to its propagation direction by (quasi-
)monochromatic, collimated laser pulses having the intensity I = 1W/cm2, the wave-
length λ = 780 nm, and the duration 200 ns. The laser is tuned to the center of an
atomic resonance line (Γ/2π = 6MHz).
a. How does the population of the upper atomic state develop?
b. How does the dynamics change, when the light is detuned by 100MHz?

Solution: a. The Rabi frequency follows from,

Ω =

√
σ0ΓI

ℏω
.

With σ0 = 3λ
2

2π we obtain Ω/2π = 104MHz. The Rabi frequency is therefore much
larger than the decay rate, such that the decay can be neglected at initial times. The
solution of the Bloch equations is, therefore,

ρ22 =
Ω2

∆2 +Ω2
sin2
√
∆2 +Ω2

2
t ,

that is, at the beginning, the atom is in the ground state, then the population inversion
makes some rapid oscillations with maximum amplitude, which relax after a while.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EquacaoBloch01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_FeixeAtomico.pdf
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The stationary population finally stabilizes to,

ρ22(∞) =
Ω2

4∆2 + 2Ω2 + Γ2
→ 1

2
.

When the pulse ends after 200 ns, the population relaxes exponentially.
b. When the light frequency is detuned, the generalized Rabi frequency drops to G =√
∆2 +Ω2 = 2π × 144MHz, the amplitude of the Rabi oscillations decreases by half

and the average stationary population drops to ρ22(∞) = 0.17.

-1
1

0

1

2ρ
a
a
−
1

Re ρga

0

Im ρga

1
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-1
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1
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ρ
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1

R
e
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g
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Figure 34.7: (code) Evolution on the sphere of Bloch.

34.5.4.9 Ex: Solution of the Bloch equations for resonant excitation

Derive the solution (34.193) of the Bloch equations with spontaneous emission for
resonant excitation.

Solution: See Exc. 35.6.4.4.

34.5.4.10 Ex: Solution for the susceptibility

Show that the solution of Eq. (34.202) is given by the result (34.207).

Solution: We assume weak excitation a1 = 1,

da2
dt

= −ıΩ∗ cosωteıω0ta1 − γa2 ≃ −ıΩ∗ cosωteıω0t − γa2 ,

and we replace a2 ≡ ã2e−γt. Thus the equation (34.202) becomes,

dã2
dt
≃ −ıΩ∗eıω0t+γt cosωt .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_FeixeAtomico.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EstacionariaBloch2.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Transiclassica01.pdf
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Integrating this equation,

ã2 = −ıΩ∗
∫
eıω0t+γt cosωtdt = −Ω∗

2

[
eı(ω0+ω)t+γt

ω0 + ω + ıγ
+
eı(ω0−ω)t+γt

ω0 − ω + ıγ

]
,

or

a2 = −Ω∗

2

[
eı(ω0+ω)t

ω0 + ω − ıγ +
eı(ω0−ω)t

ω0 − ω − ıγ

]
.

34.5.4.11 Ex: General form of the master equation

Show that the general form of the master equation: ˙̂ρ = − ı
ℏ [Ĥ, ρ̂]− Γ

2 (2σ̂ρ̂σ̂
+−σ̂+σ̂ρ̂−

ρ̂σ̂+σ̂), reproduces the Bloch equations including spontaneous emission.

Solution: Inserting the Hamiltonian

Ĥ =

(
0 1

2ℏΩ
1
2ℏΩ ℏ∆

)

into the master equation, we obtain,

− ı
ℏ
[Ĥ, ρ] = −ı

(
1
2Ωρ21 − 1

2Ωρ12
1
2Ωρ22 − 1

2Ωρ11 − ρ12∆
1
2Ωρ11 +∆ρ21 − 1

2Ωρ22
1
2Ωρ12 − 1

2Ωρ21

)

and
Γ

2

(
2σρσ+ − σ+σρ− ρσ+σ

)
= 1

2Γ

(
2ρ22 −ρ12
−ρ21 −2ρ22

)
.

Thereby,

dρ

dt
=

(
− ı

2Ω(ρ21 − ρ12) + Γρ22 −ı
(
1
2Ωρ22 − 1

2Ωρ11 − ρ12∆
)
− 1

2Γρ12

−ı
(
1
2Ωρ11 +∆ρ21 − 1

2Ωρ22
)
− 1

2Γρ21 − ı
2Ω(ρ12 − ρ21)− Γρ22

)
,

or,

d

dt




ρ11

ρ22

ρ12

ρ21


 =




0 Γ ı
2Ω − ı

2Ω

0 −Γ − ı
2Ω

ı
2Ω

ı
2Ω − ı

2Ω − 1
2Γ + ı∆ 0

− ı
2Ω

ı
2Ω 0 − 1

2Γ− ı∆







ρ11

ρ22

ρ12

ρ21


 .

34.5.4.12 Ex: Light-shift

Calculate the light-shift in a driven two-level system from the effective Hamiltonian,

Ĥeff =

(
0 1

2Ω
1
2Ω ∆− ı

2Γ

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EquacaoMestre.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_LightShift1.pdf
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Prepare spectra of the eigenvalues for Γ/Ω = 0, 0.5, and 2.

Solution: It is easy to show,

∆E = 1
2

(
∆− ıΓ

2

)
± 1

2

√(
∆− ıΓ

2

)2
+Ω2 .

The asymptotes for |∆| ≫ Γ,Ω, are found to be,

∆E ≃ 0,±∆ .

For Γ≪ Ω we obtain avoided crossing,

∆E ≃ 1
2∆± 1

2

√
∆2 +Ω2 .

And for Ω≪ Γ we observe dispersive behavior,

∆E ≃ ∆− ıΓ
2 ,

∓Ω2

4
(
∆− ıΓ

2

) .

The figure shows plots of the real and imaginary parts of ∆E.
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Figure 34.8: (code) Light shifts (dotted) approximated for Ω,Γ ≪ |∆| and (solid) exact

eigenvalues.

34.5.4.13 Ex: Light-shift

In this exercise we study the effect of the dynamic Stark shift (or light shift) of the
energy levels of a two-level system |1⟩ and |2⟩ excited by a laser with the Rabi fre-
quency Ω12 and the detuning ∆12:
a. From the eigenvalues E1,2 of the effective Hamiltonian (34.228) system, find approx-
imations for weak coupling (Ω12 ≪ Γ12) and strong coupling (Ω12 ≫ Γ12). Prepare a
graph showing the eigenvalue spectrum (separating the parts Re E1,2 and Im E1,2) as
a function of detuning ∆12 for various values of Ω12. Also search for approximations
valid for large detunings ∆12 ≫ Γ12,Ω12 and add them to the graph.
The light shift can be experimentally measured in a three-level system in Λ-configuration,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LightShiftEffective.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LightShiftEffective.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_LightShift.pdf
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as illustrated in Fig. 34.17(a). To reproduce the experiment by numerical simulations
of the Bloch equations (34.279),
b. write the Liouville matrixMred reduced by the condition to the trace (34.284) and
calculate the stationary Bloch vector from equation (34.286) varying the detunings
of the two lasers ∆12 and ∆23. Choosing the parameters Γ23 = Γ12, Γ13 = 0.01Γ12,
Ω12 = 2Γ12, and Ω23 = 0.2Γ12, prepare a 3D curve [similar to Fig. 34.6(a)] of the
stationary population ρ22(∞). Interpret the results.

Solution: a. The eigenvalues of the effective Hamiltonian (34.228),

E = 1
2Λ± 1

2GΓ with Λ ≡ ∆− ı
2Γ and GΓ ≡

√
Ω2 + Λ2

describe the dynamic Stark shift. Expanding for weak coupling, Γ≫ Ω,

E = Λ
2 ± 1

2

√
Λ2 +Ω2 Ω≪Γ−→ Λ

2 ± Λ
2

(
1 + Ω2

2Λ2

)
= Λ

2 ± Λ
2 (1 + s) ,

with the definition (34.190) of the saturation parameter. Expanding for strong cou-
pling, Γ≪ Ω,

E = Re
(
1
2Λ± 1

2GΓ

)
= 1

2∆± 1
2

√√
1
4G

4 + 1
8Γ

2
(
G2 − 2Ω2 + 1

8Γ
2
)
+ 1

2G
2 − 1

8Γ
2

Ω≫Γ−→ 1
2∆± 1

2G∓ Γ2Ω2

16G3 ,

where G is the common generalized Rabi frequency. For big detunings we can approx-
imate,

E
Γ→0≃ 1

2∆± 1
2G = 1

2∆± ∆
2 ∓ Ω2

4∆ + ... .

b. The Liouville matrix can be found in the numerical MATLAB code given in the
file ’LM Bloch LightShift.m’. Fig. 34.9 shows the results of the simulations. The
dynamic Stark splitting E1 − E2 is a consequence of the breaking of the degeneracy
of the states dressed |1, N⟩ and |2, N − 1⟩ for strong fields Γ ≪ Ω. The light shift
is the expectation value of the perturbation of the atom by the light field. While the
positions of the resonances follow from Re (E), the linewidth follows from Im (E).
In the weak coupling regime, we observe a dispersive dependence of the energy shift.
In the strong coupling regime we observe an avoided crossing.

34.5.4.14 Ex: Line broadening by optical repumping

Check for a two-level system that incoherent optical pumping from the ground into
the excited state introduces a transverse decay rate R leading to line broadening.

Solution: The Liouvillean reads,

M =




−R Γ ı
2Ω − ı

2Ω

R −Γ − ı
2Ω

ı
2Ω

ı
2Ω − ı

2Ω ı∆− Γ
2 − R

2 0

− ı
2Ω

ı
2Ω 0 −ı∆− Γ

2 − R
2


 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Repumping.pdf
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Figure 34.9: (code) (a) Light shift in a two level system varying Ω12 between 0.5Γ12 (internal

blue curve) and 1Γ12 (external magenta curve). (b) Linewidth for the same parameters as in

(a). (c,d) Population of the excited state in a three-level system in Λ-configuration, as shown

in Fig. 34.17(a) sweeping the lasers. These figures are discussed later. For (c) Ω12/Γ12 = 0.2

and for (d) Ω12/Γ12 = 2.

In steady state,

0 = −R(1− ρ22) + Γρ22 +
ı
2Ωρ12 − ı

2Ωρ21

0 = ı
2Ω(1− ρ22)− ı

2Ωρ22 +
(
ı∆− Γ

2 − R
2

)
ρ12 ,

so that,

ρ22 =
ıΩ

2(R+ Γ)
(ρ21 − ρ12) +

R

R+ Γ
and ρ12 =

ıΩ

2ı∆− Γ−R (2ρ22 − 1) ,

yielding,

ρ22 =

1
4Ω

2 + 1
1+Γ/R

[
∆2 + 1

4 (Γ +R)2
]

∆2 + 1
2Ω

2 + 1
4 (Γ +R)2

.

Some limits,

ρ22
R=0−→

1
4Ω

2

∆2 + 1
2Ω

2 + 1
4Γ

2

Γ=0−→ 1−
1
4Ω

2

∆2 + 1
2Ω

2 + 1
4R

2

Γ=R−→ 1

2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LightShift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LightShift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LightShift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LightShift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LightShift.m
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Figure 34.10: (code) Upper state population spectra for varied repumping rates.

34.6 Line broadening mechanisms

The resolution of atomic spectroscopy is generally limited by several perturbative
effects, many of them originating in the atomic motion. They manifest themselves as
broadening and/or shifts of atomic resonances. Free atoms, as well as atoms confined
in potentials, have kinetic energy and evolve on extended phase space trajectories.
If the spatial localization is less than the effective cross section of the exciting laser
beam, then the interaction time is limited and the resonance lines are broadened by
the Fourier effect in a process called transit time broadening, and the efficiency of
fluorescence collection is reduced. The same happens with the Doppler effect: Only
those atoms that have a specific velocity along the optical axis defined by the laser
beam can interact. Free as well as confined atoms can only scatter when they are in
specific cells of the phase space.

There are two different fundamental types of broadening. The so-called homoge-
neous broadening affects all atoms in the same way regardless of their positions or
velocities. It usually gives rise to Lorentzian line profiles and can be included in the
Bloch equations. It correspond to an acceleration of the relaxation. Examples are the
natural linewidth, saturation broadening, and collision broadening.

The so-called inhomogeneous broadening is due to a displacement of atomic levels,
which may be different for each atom. Averaging over a large sample of atoms, the
displacements generate an effective broadening usually with a Gaussian line profile. It
can not be included in the single-atom Bloch equations, but only as an average over all
trajectories of all atoms. It does not correspond to an accelerated relaxation. Inhomo-
geneous broadening is often due to external perturbations, e.g., Doppler broadening
and broadening due to temporal fluctuations or spatial inhomogeneities of external
electric or magnetic fields. In Exc. 34.6.7.1 we calculate the optical density of atomic
clouds. In Exc. 34.6.7.2 we present a spectroscopic technique bypassing the Doppler
broadening called Doppler-free spectroscopy and calculate the Lamb-dip profile. Fi-
nally, in Exc. 34.6.7.3, we discuss a cooling technique allowing for the reduction of
Doppler broadening, called Zeeman slower.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Repumping.m
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34.6.1 Saturation broadening

Eq. (34.189) shows that when the power of the incident light increases, the population
of the excited state saturates at a limit value of ρ22 = 1

2 . The saturation parameter
defined in (34.190) measures the degree of saturation. When the narrowband light
source is tuned to resonance, the saturation parameter is basically a measure for the
ratio between the stimulated population transfer rate Ω and the spontaneous decay
rate A21. We can rewrite the stationary population of the excited level as in (34.191).
In resonance and with the saturation parameter s = 1, we obtain

Ω = 1√
2
Γ . (34.230)

We can use equation (34.230) to define the saturation intensity Isat for an atom with
the transition dipole d12. From Eq. (22.41) we have,

E0 =

√
2Ī

ε0c
. (34.231)

Therefore, using the definition of the Rabi frequency, ℏΩ = d12E0, and the relationship
between d12 and Γ given by Eq. (34.41), we have 19,

Isat =
g1
g2

2π2cℏ
3λ30

Γ , (34.232)

taking into account the degeneracies gj of the levels. In Excs. 34.6.7.4 and 34.6.7.5
we calculate the saturation intensity of popular atomic transitions.

34.6.2 Collision broadening

The theory of atomic collisions covers a large area of research, including elastic and
inelastic, reactive and ionizing processes. In low-pressure gases at room temperature
or hotter we need only consider the simpler processes: long-range van der Waals
interactions that result in elastic collisions. The ’low pressure’ criterion requires that
the average free path between collisions be greater than any linear dimension of the gas
volume. Under these conditions, collisions can be modeled with straight trajectories,
along which the interaction time is short and the time between collisions is long in
comparison with the radiative lifetime of the excited atomic state. Then, the impact
of a collision on the emission of a radiating atom causes a loss of coherence due to a
phase interruption of the excited state atomic wavefunction. The term ’elastic’ means
that the collision does not disturb the populations of the internal states, so we only
need to consider the off-diagonal elements of the density matrix,

dρ12
dt

= ı
Ω0

2
eı(ω−ω0)t(ρ11 − ρ22)− γ′ρ12 , (34.233)

where γ′ is the sum of the spontaneous emission γ and the collision rate γcol,

γ′ = γ + γcol . (34.234)

19Some authors define the saturation for s = 2, as happens when Ω = Γ.
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The inverse of the collision rate is simply the time between phase interruptions or the
time between collisions. Now, for collisions between hard cores of atoms of mass m
(with reduced mass mred = m/2) and with radius ρ in a gas with density n consisting
of a single species, a standard analysis based on the kinetic theory of dilute gases
shows that the time between collisions is given by the collision rate,

γcol = τ−1col = σnv̄ , (34.235)

where v̄ =
√

8kBT
πmred

is the average collision velocity in a homogeneous gas at the

temperature T and σ =
√
8πρ2 the collision cross section. Thereby,

γcol =
8ρ2n√

mred/πkBT
. (34.236)

We can now relate this simple result of gas kinetics to the phase interruption
rate by reinterpreting the meaning of the collision radius. When an excited atom
propagating through space suffers a collision, the long-range interaction will produce
a time-dependent perturbation of the energy levels of the radiating atom and a phase
shift in the radiation,

η =

∫ ∞

−∞
[ω(t)− ω0]dt =

∫ ∞

−∞
∆ω(t)dt . (34.237)

The long-range van der Waals interaction is expressed by,

∆E = ℏω =
Cn

[b2 + (vt)2]n/2
, (34.238)

where b is the impact parameter of the collision trajectory and v the collision velocity.
The phase shift is then

η =
1

ℏ

∫ ∞

−∞

Cn
[b2 + (vt)2]n/2

dt . (34.239)

The integral is easily assessed for the two most frequent cases: non-resonant van der
Waals interactions n = 6 and resonant van der Waals interactions n = 3. The phase
shifts are,

η6(b) =
2π

3ℏ
C6

b56v
and η3(b) =

4π

3
√
3ℏ

C3

b23v
. (34.240)

Now, if instead of using the hard core approximation, we define a collision as an
encounter causing a phase shift of at least 1 radians, we have a new condition for the
collision radius,

b6 =

(
2π

3ℏ
C6

v

)1/5

and b3 =

(
4π

3
√
3ℏ
C3

v

)1/2

. (34.241)

Replacing these collision radiuses for the radius ρ in Eq. (34.236) and inserting the
average collision velocity, we find the collision rate,

γc6 = 4n

(√
2π2C6

3ℏ

)2/5(
4πkBT

µ

)
and γc3 = 4n

(
2

3

)3/2(
π2C3

ℏ

)3/10

.

(34.242)
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Substituting the generalized γ′ of (34.234) for γ in the Bloch equations (34.188), we
find the stationary solutions,

ρ22 =

1
4
γ′

γ |Ω|2

∆2 + 1
2
γ′

γ |Ω|2 + γ′2
and ρ12 = eı(ω−ω0)t

1
2Ω(∆− ıγ′)

∆2 + 1
2
γ′

γ |Ω|2 + γ′2
. (34.243)

The effective linewidth (radiative and collisions) is,

Γ′eff = 2
√
γ′2 + 1

2
γ′

γ |Ω|2 . (34.244)

When the excitation is sufficiently weak, so that power broadening can be neglected
in comparison to collision broadening, the second term can be discarded,

Γ′eff = 2(γ + γcol) . (34.245)

The equations (34.189) and (34.245) express the linewidths in the limits of dominating
power and collision broadening, respectively. Note that the susceptibility, absorption
coefficient, and absorption cross-section retain their Lorentzian profile, but with a
larger width due to collisions. Since each atom is subject to the same broadening
mechanism, the broadening is homogeneous. Solve Excs. 34.6.7.6.

34.6.3 Doppler broadening

The Doppler broadening is simply the apparent frequency distribution of a sample of
radiating atoms at temperature T . The contribution of each atom to the radiation
appears detuned by the Doppler shift because of its velocity. The frequency shift for
a non-relativistically moving particle is ω = ω0/(1− v

c ), such that,

∆ ≡ ω − ω0 ≃ ω0
v

c
= k · v = kvz , (34.246)

where k is the wavevector of the light and v is the velocity of the atom. This dis-
tribution of Doppler shifts of a gaseous sample in thermal equilibrium follows the
probability distribution of velocities,

P (vz)dvz ∝ e−mv
2
z/2kBT dvz = e−mc

2∆2/2ω2
0kBT c

ω0
dω . (34.247)

This frequency distribution is a Gaussian centered at ω = ω0 and with the width,

FWHM = 2ω0

(
2kBT ln 2

mc2

)2

. (34.248)

A measure of the width is also the standard deviation,

2σ =
2ω0

c

√
kBT

m
=

FWHM

1.177
. (34.249)

From Eq. (34.247) we can see that the line profile is,

D(ω − ω0) ≡
1√
2π

m

kBT
e−(ω−ω0)

2/2σ2

dω . (34.250)
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The profile compares with the Lorentzian profile Eq. (22.73) associated with natural,
power, or collision broadening. Doppler broadening is a property of the atomic en-
semble, each atom suffering a unique but different displacement than the other atoms.
Hence, it is called inhomogeneous broadening.

The Liouville equation (34.140) used to derive the Bloch equations assumes im-
mobile atoms. However, we can easily apply the Galilei transformation to a system,
where the atoms move with the given velocity v,

(∂t + v · ∇)ρ̂(r, t) = − ı
ℏ [Ĥ, ρ̂(r, t)] . (34.251)

Since the light fields propagate as eı(ωt−k·r), the solution of the above equation simply
follows from the immobile solution with the substitution ∆→ ∆− k · v. For a cloud
obeying Maxwell’s velocity distribution, P (v) ∼ e−mv2kBT ,

ρ̄(∆) =
1√
2πδ

∫

R
e−(k·v)

2/2δ2 ρ̂(∆− k · v)d(k · v) . (34.252)

The average of the density operator over all velocities, ρ̄, therefore follows as the
convolution of the density operator ρ (obtained as the solution of the Bloch equation)

and the Gaussian function G(∆) = (2πδ2)−1/2e−∆
2/2δ2 ,

ρ̄(∆) = (G ⋆ ρ̂)(∆) . (34.253)

34.6.4 Voigt profile

It is clear that in many practical circumstances homogeneous and inhomogeneous
processes simultaneously contribute to the broadening of lines. In these cases, we
can consider that the radiation of each atom, homogeneously broadened by phase-
interruption processes (such as spontaneous emission or collisions), is displaced by
the Doppler effect within the Maxwell-Boltzmann distribution corresponding to the
temperature T . The profile of the gaseous sample, therefore, is a convolution of
homogeneous and inhomogeneous profiles. The resulting profile is called Voigt profile:

V (ω − ω0) =

∫ ∞

−∞
L(ω − ω0 − ω′)D(ω − ω0)dω

′ (34.254)

=
γ

2σ
√
2π

∫ ∞

−∞

e−(ω−ω0)
2/2σ2

(ω − ω0 − ω′)2 + (γ/2)2
dω′ .

This integral has no analytical solution, but it is easy to solve numerically. Resolve
Excs. 34.6.7.7, 34.6.7.8, and 34.6.7.9.

34.6.5 Bloch equations with phase modulation

In some situations, the atom vibrates thus producing an oscillating Doppler shift.
Also, external magnetic fields or oscillating laser frequencies can produce this effect.
We incorporate this temporal modulation (frequency Ωa) of the light frequency shifts,
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induced by the Doppler effect, into the optical Bloch equations via the substitution
[1170],

∆ij → ∆ij + kij · v cosΩat . (34.255)

The Bloch equations can then be brought into the form,

˙̂ρ = (L+ 2X cosΩat)ρ̂+ b , (34.256)

where the matrix X contains the modulation index of the atomic motion kijv. The
stationary solution of the differential equation, averaged over the time of an oscillation
period, can be expressed as an infinite continuous fraction:

ρ̂(∞) = −(L+ S+ + S−)−1b (34.257)

where S± = −X 1

L± ıΩa1−X 1
L±ıΩa1−X 1

···X
X

.

This solution replicates the correct excitation spectra even for a multilevel system.
Let us be more specific for a two-level system. In this case the Hamiltonian is

given by Ĥint =
1
2ℏΩe

−ı[ωt−k·v/Ωa sinΩat], such that the Bloch equation is,ρ̇22ρ̇12

ρ̇21

 =


 −Γ − ı

2
Ω ı

2
Ω

− ı
2
Ω −Λ 0

ı
2
Ω 0 −Λ∗

+ 2 cosΩat

0 0 0

0 − ı
2
kv 0

0 0 ı
2
kv



ρ22ρ12

ρ21

+

 0
ı
2
Ω

− ı
2
Ω

 .

(34.258)

We look for the stationary solution by expanding ρ̂ =
∑∞
n=−∞ ρ̂ne

−ınΩat, letting
˙̂ρn = 0, and projecting on e−ınΩat via,

(L+ ınΩa1)ρ̂n +X(ρ̂n+1 + ρ̂n−1) + bδn0 = 0 . (34.259)

Now we define ρ̂n±1 = S±ρ̂n for n ⋛ 0. Then, equation (34.259) becomes,

ρ̂0 = −[L+X(S+
0 + S−0 )]

−1b for n = 0, (34.260)

S±n∓1 = −[L+ ınΩa1+XS±n ]
−1b for n ≷ 0 .

Substituting the equation below into the equation above,

ρ̂0 = −
[
L+

( −X|
|L+ ıΩa

+
−X|

|L+ 2ıΩa
+ . . .

)
+

( −X|
|L+ ıΩa

+
−X|

|L+ 2ıΩa
+ . . .

)]−1
b .

(34.261)

34.6.6 Two-level system interacting with several light fields

When several light fields excite a two-level atom,

Ĥint =
ℏΩa

2 e−ıωat + ℏΩb

2 e−ıωbt , (34.262)

the transformation into a co-rotating frame is impossible. The density operator must
then be expanded into a Taylor series in the field amplitudes and a Fourier series in
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Figure 34.11: (code) Spectral broadening due to the periodic movement of the atom.

the laser frequencies, as well as the sum and difference frequencies:

ρ12(t) = [ρ
(1)
12 (ωa) + ρ

(3)
12 (ωa) + ...]e−ıωat (34.263)

+ [ρ
(1)
12 (ωb) + ρ

(3)
12 (ωb) + ...]e−ıωbt

+ [ρ
(3)
12 (2ωa − ωb) + ...]e−ı(2ωa−ωb)t + ...

and

ρ22(t)− ρ11(t) ≡ w12(t) = [−1 + w
(2)
12 (0)] (34.264)

+ [w
(2)
12 (ωa − ωb) + ...]e−ı(ωa−ωb)t

+ [w
(2)
12 (ωb − ωa) + ...]e−ı(ωb−ωa)t + ... .

The solution of the Bloch equations is obtained in successive perturbation steps. The
zero order in (34.264) is inserted into the Bloch equation,

˙̂ρ = − ı
ℏ
[Ĥint, ρ̂] , (34.265)

and form this the first order in (34.263) is obtained. This in turn is inserted again into

the Bloch equation, and so on. In this way the components ρ
(m)
12 (ωx) and w

(m)
12 (ωx)

are calculated and from this the density operator ρ̂(t).

34.6.7 Exercises

34.6.7.1 Ex: Optical density of a cold cloud

The cross section of an atom with the resonant frequency ω0 moving with velocity v
and irradiated by a laser beam of frequency ω is,

σ(v) =
6π

k2
Γ2

4(ω − ω0 − kv)2 + Γ2
.

The normalized one-dimensional Maxwell distribution,

ρ(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Micromotion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NuvemFria.pdf
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a. Calculate the absorption profile of the resonance line at 461 nm (Γ461 = (2π) 30.5 MHz)
of a strontium gas cooled to the Doppler limit (kBTD = ℏΓ) of this transition.
b. Calculate the absorption profile of the resonance line at 689 nm (Γ689 = (2π) 7.6 kHz)
of a strontium gas cooled to the Doppler limit of the transition at 461 nm.
c. Compare the optical densities in case of resonance.
Help: To evaluate the convolution integral approximate the narrower distribution
by a δ-function maintaining the integral over the distribution normalized.

Solution: The optical density with Doppler broadening is,

OD(T, ω) = Ln(T )(σ ⋆ ρ)(ω) = Ln(T )

∫ ∞

−∞
σ(v)ρ(v)dv

= L
P

kBT

√
m

2πkBT

6π

k2

∫ ∞

−∞
e−mv

2/2kBT
Γ2

4(ω − ω0 − kv)2 + Γ2
dv .

The Doppler limit yields,

kv̄ = k

√
kBTD
m

= k

√
ℏΓ
m

,

where v̄ =
√
kBT/m is the mean atomic velocity (or the rms-width) of the Maxwell

distribution.
a. For the transition at 461 nm we get kv̄ = 5.2 MHz, which is much narrower than the
natural linewidth. Therefore, we can approximate the Gaussian by the δ-distribution:

∫ ∞

−∞
e−mv

2/2kBT dv =

√
2kBT

m

∫ ∞

−∞
e−x

2

dx =

√
2πkBT

m
=

∫ ∞

−∞

√
2πkBT

m
δ(kv)d(kv) .

Hence,

OD461(TD, ω) = Ln(TD)

√
m

2πkBTD

6π

k2

∫ ∞

−∞

Γ2
461

4(ω − ω0 − kv)2 + Γ2
461

√
2πkBTD

m
δ(kv)d(kv)

= Ln(TD)
6π

k2
Γ2
461

4(ω − ω0)2 + Γ2
461

,

which means that we retrieve the default expression for optical density,

OD461(0, ω) = Ln(TD)σ(TD) .

b. The natural width of the transition at 689 nm is much narrower than the Doppler
width. Therefore, we can approximate the Lorentzian by the δ-distribution:
∫ ∞

−∞

Γ2
689

4(ω − ω0 − kv)2 + Γ2
689

dv =
Γ689

k

∫ ∞

−∞

dx

1 + 4x2
=
πΓ689

2k
=

∫ ∞

−∞

πΓ689

2k
δ(ω−ω0−kv)d(kv) .

Hence,

OD689(TD, ω) = Ln(TD)

√
m

2πkBTD

6π

k2

∫ ∞

−∞
e−mv

2/2kBTD
πΓ689

2k
δ(ω − ω0 − kv)d(kv)

= Ln(TD)

√
m

2πkBTD

6π

k2
πΓ689

2k
e−m(ω−ω0)

2/2kBTDk
2

.
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In resonance,

OD689(TD, ω0) = Ln(TD)

√
π

2

σ0Γ689

2kv̄D
,

The fraction Γ689/2kv̄D can be interpreted as the spectral overlap between the Lorentzian-
shaped absorption profile and the Maxwell distribution.
c. The ratio is,

OD689(TD, ω0)

OD461(TD, ω0)
=

√
π

8

Γ689

kv̄D
.

34.6.7.2 Ex: Saturated absorption spectroscopy

Saturated absorption spectroscopy is a technique to avoid Doppler broadening. The
setup, shown in Fig. 34.12, consists of a cell filled with a rubidium gas (resonance
frequency ω0 = ck = 2πc/780 nm, decay rate Γ = (2π) 6MHz) and two laser beams
with the same frequency ω but counterpropagating, one called saturation and another
called probe. The one-dimensional and normalized Maxwell velocity distribution is,

ρ(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv .

The gas is at T = 300K, where the partial pressure of rubidium is around P =
10−1 mbar. The length of the cell is L = 10 cm. The probe laser has an intensity
below the saturation limit, such that the cross section of an atom moving at velocity
v is,

σ(v) =
6π

k2
Γ2

4(ω − ω0 − kv)2 + Γ2
.

The saturation laser has high intensity. We suppose here, Ω ≡ 10Γ, where Ω is the
frequency of Rabi caused by the saturation beam. In this way it creates a population
Ne of atoms in the excited state. As this population lacks in the ground state,
Ng = N −Ne, the absorption of the probe beam is decreased by the factor,

Ne
N

=
Ω2

4(ω − ω0 + kv)2 + 2Ω2 + Γ2
.

To obtain the laser probe transmission spectrum, first calculate the optical density,
OD(ω) = Ln

∫∞
−∞

Ng−Ne

N σ(v)ρ(v)dv where n is the gas density, and then the intensity

of light transmitted through the cell using the Lambert-Beer law I
I0

= e−OD.

Figure 34.12: Scheme of saturation spectroscopy.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AbsorcaoSaturada.pdf
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Solution: The optical density with Doppler broadening is,

OD(T, ω) = Ln(T )

∫ ∞

−∞
N−2Ne

N σ(v)ρ(v)dv

= L
P

kBT

√
m

2πkBT

6π

k2

∫ ∞

−∞

(
1− 2Ω2

4(∆ + kv)2 + 2Ω2 + Γ2

)
×

× Γ2

4(∆− kv)2 + Γ2
e−mv

2/2kBT dv ,

with ∆ ≡ ω − ω0. The widths of the three velocity distributions are, respectively,

k∆v =
√

1
2Ω

2 + 1
4Γ

2 ≈ (2π) 68MHz for the saturation beam

kv̄ = k
√

kBT
m ≈ (2π) 217MHz for Doppler broadening

k∆v = 1
2Γ ≈ (2π) 3MHz for the probe beam

where v̄ =
√
kBT/m is the mean atomic velocity (or the rms width) of the Maxwell

distribution. Since the probe beam spectral width is much smaller, we can substitute
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I
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I
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Figure 34.13: (code) (a) Optical density and (b) absorption. (Blue) Integral formula and

(green) high temperature approach and high saturation.

a δ-function,
Γ2

4(∆− kv)2 + Γ2
−→ πΓ

2
δ(∆− kv) ,

giving,

OD(T, ω) ≃ L P

kBT

√
m

2πkBT

6π

k3

∫ ∞

−∞

(
1− 2

2Ω2

4(∆ + kv)2 + 2Ω2 + Γ2

)
×

× πΓ

2
δ(∆− kv)e−mv2/2kBT dkv

= L
P

kBT

√
m

2πkBT

6π

k3
πΓ

2

(
1− 4Ω2

8∆2 + 2Ω2 + Γ2

)
e−m(∆/k)2/2kBT .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LambDip.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_LambDip.m
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34.6.7.3 Ex: The Zeeman slower

Consider a tube through which passes a collimated beam of atoms, all having the
same initial velocity v = v0. In the opposite direction to the atomic motion travels
a collimated and monochromatic light beam with frequency ω = kc. The absorption
rate for photons by an atom has a Lorentzian profile, which can be written as:

W (v) =
W0

2π

Γ2

(ω − ω0 + kv)2 + (Γ/2)2
,

where Γ is the natural width of the spectral line at ω0, and W0 is a constant. The
frequency of the light is tuned in order to compensate for the Doppler effect at the
beginning of the tube, δ = ω − ω0 = −kv0 (the light is tuned to the red of the
resonance). As the atoms are decelerated, they cease to be resonant with the light
beam and fail to absorb photons. This can be avoided by employing the so-called
Zeeman-slowing technique, which compensates for the effect using the Zeeman-shift
induced by magnetic fields. In this exercise, we will study what happens if this
technique is not used.
a. For an atom with velocity v, write an expression for the mean travel distance

Figure 34.14: Zeeman slower scheme.

∆s(v) before it absorbs a photon as a function of the parameters Γ, v0, k, and W0.
(The mean time it takes to absorb a photon is W (v)−1).
b. The velocity of the atom as a function of the number of absorbed photons is
vn = v0 − nℏk

m , the second term being the recoil due to the absorption of a single
photon. The average total distance traveled by an atom after absorbing N photons
is estimated by:

S =

N∑

n=0

∆s(vn) ≃
∫ N

0

∆s(vn)dn .

Calculate the average distance required for the atoms to be slowed down to v = 0
(ignoring the Doppler limit). Write the expression as a function of Γ, v0, k, and W0.
Help: Do the following change of variables to simplify the evaluation of the integral:
n→ v.
c. Typically, the detuning of the light, |δ| = kv0, is much larger than the natural
width Γ of the transition. What happens to S in the limit when kv0 ≫ Γ? Interpret
this result, justifying the need for the Zeeman-slowing technique.

Solution: a. Between two consecutive photon absorptions, the velocity of the atoms
is constant. Therefore, the average distance traveled is simply the velocity times the
average time:

∆s(v) = v
1

W (v)
=

2πv

W0Γ2
[(ω − ω0 + kv)2 + (Γ/2)2] .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_DesaceleradorZeeman.pdf
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Using that ω − ω0 = −kv0:

∆s(v) =
2πv

W0Γ2
[k2(v − v0)2 + (Γ/2)2] .

b. We must calculate the shown integral for a number of photons N such that the final
velocity is zero. For this, we make the suggested variable change:

v = v0 − nℏk
m

dv = −ℏk
m dn ,

such that v(n = 0) = v0 and v(n = N) = 0. The integral is then:

S =

∫ N

0

∆s(vn)dn =

∫ 0

v0

∆s(v)

(
− dv

ℏk/m

)
=

∫ v0

0

2π

W0Γ2ℏk/m
[k2(v − v0)2 + (Γ/2)2]dv

=
2π

W0Γ2ℏk/m

∫ v0

0

v[k2v2 − 2k2vv0 + k2v20 + (Γ/2)2]dv

=
2π

W0Γ2ℏk/m

[
k2v40
4
− 2k2v0v

3
0

3
+
k2v20v

2
0

2
+

(
Γ

2

)2
v20
2

]
=

2πv20
W0ℏk/m

[(
kv0
Γ

)2
1

12
+

1

8

]
.

c. If Γ≪ kv0, the numerical factor in the above equation becomes very large, so that
the distance required for a complete deceleration of the atoms is very large (Note: an
underestimation of the dimensional factor v20/(W0ℏk/m) gives distances of at least
a meter, so that this simplified model predicts that a tube of many meters would be
needed to slow down the atoms in this scheme). The interpretation is that if the
spectral line is sufficiently narrow, the atoms leave the resonance condition with the
light beam in a short time, practically not absorbing photons any more. This justifies
the need for a correction (for example) of the spectral line via the Zeeman effect, with
fields that vary in space, so as to keep the atoms always in resonance with the light
beam.

34.6.7.4 Ex: Saturation intensity

Calculate the saturation intensity for the sodium transition 3s 2S1/2, F = 2 ←→
3p 2P3/2, F

′ = 3. The natural width of the transition is Γ/2π = 9.89MHz and the
wavelength λ = 590 nm.

Solution: The degeneracies of the levels are g1 = 5 and g2 = 7. Hence, we get
Isat = 4.3mW/cm

2
.

34.6.7.5 Ex: Saturation intensity of an octupole transition

Calculate the saturation intensity for the 2S1/2-
2F7/2 transition in Yb+-ions (neglect-

ing the Zeeman substructure) at λ = 467 nm (decay time τ = 8a) and the Rabi
frequency, when the transition is resonantly driven by a laser beam of P = 10mW
power focused into a w0 = 20µm waist.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_IntensidadeSaturacao.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_IntensidadeSaturacao02.pdf
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Solution: The saturation intensity is,

Isat =
2π2cℏ
3λ3

Γ ≈ 48 fW ,

and the power broadening,

Ω = Γ

√
I

2Isat
= Γ

√
P

πw2
0Isat

≈ 32 kHz .

Hence, it sounds feasible to drive the transition, provided the laser emission bandwidth
is narrow than 32 kHz.

34.6.7.6 Ex: Pressure broadening

At what pressure the collision broadening [given by the expression (34.236)] between
sodium atoms in the ground state dominates the width of the D2-transition at ambi-
ent temperature. The natural width of the D2-line is Γ/2π = 6MHz.

Solution: The mass of the sodium is m = 23u. We approximate the radius with
ρ ≃ aB. Then, with pV = NkBT ,

τcol =
1

8ρ2n

√
m

2πkBT
=

1

8a2Bp

√
mkBT

2π
.

Hence,

p =
γcol
8a2B

√
mkBT

2π
>

Γ/2

8a2B

√
mkBT

2π
≡ pcrit ,

which gives pcrit = 4200Pa = 42mbar.

34.6.7.7 Ex: Optical density of a hot cloud

Calculate and draw the effective Lorentz profile, Gauss profile and Voigt profile for
the resonance line at 461 nm (Γ = (2π) 32MHz) of a strontium gas heated to the
temperature 400C and the pressure P = 10−4 mbar inside a 15 cm long cell.

Solution: The cross-section of an atom with the resonance frequency ω0 moving
with velocity v and irradiated by a laser beam of frequency ω is,

σ(v) =
6π

k2
Γ2

4(ω − ω0 − kv)2 + Γ2
.

The one-dimensional Maxwell distribution,

ρ(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AlargamentoColisoes1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NuvemQuente.pdf
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is normalized. The density of the atoms is,

n(T ) =
P

kBT
≈ 1018 m-3 .

The optical density is,

OD(T, ω) = Ln(T )(σ ⋆ ρ)(δ) = Ln(T )

∫ ∞

−∞
σ(v)ρ(v)dv

= L
P

kBT

√
m

2πkBT

6π

k2

∫ ∞

−∞
e−mv

2/2kBT
Γ2

4(ω − ω0 − kv)2 + Γ2
dv .

At zero temperature, we can approximate the Gaussian by the δ-distribution:

∫ ∞

−∞
e−mv

2/2kBT dv =

√
2kBT

m

∫ ∞

−∞
e−x

2

dx =

√
2πkBT

m
=

∫ ∞

−∞

√
2πkBT

m
δ(kv)d(kv) .

Hence,

OD(0, ω) = Ln(T )

√
m

2πkBT

6π

k2

∫ ∞

−∞

Γ2

4(ω − ω0 − kv)2 + Γ2

√
2πkBT

m
δ(kv)d(kv)

= Ln(T )
6π

k2
Γ2

4(ω − ω0)2 + Γ2
,

which means that we retrieve the default expression for the optical density,

OD(0, ω) = Ln(T )σ(T ) .

When the natural width is very narrow, we can approximate the Lorentzian by the
δ-distribution:
∫ ∞

−∞

Γ2

4(ω − ω0 − kv)2 + Γ2
dv =

Γ

k

∫ ∞

−∞

dx

1 + 4x2
=
πΓ

2k
=

∫ ∞

−∞

πΓ

2k
δ(ω−ω0−kv)d(kv) .

Hence,

OD(T, ω) = Ln(T )

√
m

2πkBT

6π

k2

∫ ∞

−∞
e−mv

2/2kBT
πΓ

2k
δ(ω − ω0 − kv)d(kv)

= Ln(T )

√
m

2πkBT

6π

k2
πΓ

2k
e−m(ω−ω0)

2/2kBTk
2

.

In resonance,

OD(T, ω0) = Ln(T )

√
π

2

σ0Γ

2kv̄
,

where v̄ =
√
kBT/m is the average atomic velocity (or the rms-width of the Maxwell

distribution. The fraction Γ/2kv̄ can be interpreted as the spectral overlap between
the Lorentzian absorption profile and the Maxwell distribution.
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Figure 34.15: (code) (a) Optical density profiles, (red) exact, (green) in the limit Γ = 0, and

(blue) in the limit T = 0. (b) Same as (a) but exponential.

34.6.7.8 Ex: Rate equations as a limiting case of Bloch equations

We show in this exercise that, in the limit Γ ≫ Ω, we can derive, from the Bloch
equations, the Einstein rate equations. Proceed as follows:
a. Apply the condition ρ̇12 = 0 to the Bloch equations for a two-level system (34.188),
determine ρ12(∞), and replace this stationary value in the equations for the popu-
lations ρkk(t) using, as an abbreviation, the transition rate R ≡ γs, where s is the
saturation parameter (34.190).
b. Integrate the rate equations over the entire spectrum, i.e. ∆ ∈ [−∞,∞], and derive
Einstein’s equations using the relations (34.7), (34.41), and (34.42).

Solution: a. The Einstein rate equations can be derived from the Bloch equations
following the Wilcox-Lamb procedure [1375, 4]. This consists in applying the condi-
tion ρ̇12 = 0 to the Bloch equation,

d

dt




ρ11

ρ22

ρ12

ρ21


 =




0 Γ ı
2Ω − ı

2Ω

0 −Γ − ı
2Ω

ı
2Ω

ı
2Ω − ı

2Ω ı∆− γ 0

− ı
2Ω

ı
2Ω 0 −ı∆− γ







ρ11

ρ22

ρ12

ρ21


 ,

giving,

ρ12(∞) =
−Ω/2
ıγ +∆

(ρ11 − ρ22) .

Substituting the coherences in the equations for the populations yields,

d

dt
ρ11 = − γΩ2/2

∆2 + γ2
ρ11 + Γρ22 +

γΩ2/2

∆2 + γ2
ρ22

with the abbreviation,

R ≡ γΩ2/2

∆2 + γ2
= γs ,

where s is the saturation parameter. We obtain the rate equations,

d

dt

(
ρ11

ρ22

)
=

(
−R Γ +R

R −Γ−R

)(
ρ11

ρ22

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Voigt.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Voigt.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TaxasBloch.pdf
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b. Finally, integrating over the entire spectrum,
∫ ∞

−∞
Rd∆ ≡

∫ ∞

−∞

γΩ2/2

∆2 + γ2
d∆ = π

2Ω
2 .

Using relationships ū = 1
2ε0E

2, ℏΩ = dE, and B12 = πd2

3ε0ℏ2 we see,

π
2Ω

2 = 3B12ū .

Hence, with Nk/N = ρkk,

d

dt

(
N1

N2

)
=

(
−B12ū A21 +B21ū

B12ū −A21 −B21ū

)(
N1

N2

)
.
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Figure 34.16: (code) Example for temporal evolution of the populations calculated from

Bloch and from rate equations.

34.6.7.9 Ex: Blackbody radiation-induced transitions

Blackbody radiation induces incoherent transitions (see Exc. 34.6.7.8). Show that the
Lindbladian of the master equation,

˙̂ρ = Lbbρ̂ = −R2
(
[ρ̂σ̂, σ̂†] + [σ̂, σ̂†ρ̂]

)
− R+Γ

2

(
[ρ̂σ̂†, σ̂] + [σ̂†, σ̂ρ̂]

)

reproduces the Einstein rate equation for Γ = 2A12 and R = B12u(ω).

Solution: We calculate from the given expression,

˙̂ρ = −Γ
2

(
ρ̂σ̂†σ̂ + σ̂†σ̂ρ̂− 2σ̂ρ̂σ̂†

)
− R

2

(
ρ̂σ̂σ̂† + ρ̂σ̂†σ̂ + σ̂σ̂†ρ̂+ σ̂†σ̂ρ̂− 2σ̂†ρ̂σ̂ − 2σ̂ρ̂σ̂†

)

= Γ
(
|1⟩ρ22⟨1| − 1

2 ρ̂|2⟩⟨2| − 1
2 |2⟩⟨2|ρ̂

)
−R (|2⟩⟨1|ρ̂|1⟩⟨2|+ |1⟩⟨2|ρ̂|2⟩⟨1| − ρ̂) ,

yielding,

ρ̇22 = −ρ̇11 = −Γρ22 −R(ρ11 − ρ22)
ρ̇12 = ρ̇∗21 =

(
−Γ

2 +R
)
ρ12 .

The first equation is just the Einstein rate equation. The second equation is decoupled
from the first one.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Taxas.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Taxas.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TaxasBlackbody.pdf
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34.6.7.10 Ex: Lorentzian versus Gaussian line profile

Beyond what detuning is a Doppler-broadened transition dominated by the Lorentzian
profile of the transition?

Solution: We consider a cell of length L at temperature T . With the optical cross
section,

σ =
6π

k2
Γ2

4(ω − ω0 − kv)2 + 2Ω2 + Γ2

and the Maxwell-Boltzmann distribution,

ρdv =

√
m

2πkBT
e−mv

2/2kBT dv

the optical density is,

OD(T, ω) = L
P

kBT

√
m

2πkBT

6π

k2

∫ ∞

−∞
e−mv

2/2kBT
Γ2

4(ω − ω0 − kv)2 + 2Ω2 + Γ2
dv .

Considering normalized profiles,

σ =
a/π

x2 + a2
respectively ρ =

1

b
√
π
e−x

2/b2 .

Expanding by 1/x?

34.7 Bloch equations for multi-level systems

The two-level system represents an idealization of the real atom, since at least one of
the levels is usually degenerate. Many important phenomena in quantum optics are
not found in this system, but conditioned to the existence of a third level. Examples
are optical pumping (essential for laser operation), quantum jumps or dark resonances
[which are at the basis of the phenomenon of electromagnetically induced transparency
(EIT)].

To derive the Bloch equations for atoms with several levels excited by several
lasers and coupled to free space (i.e. without external cavity), we can use the same
master equation (34.222), but with a generalized Hamiltonian in the semiclassical

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_LorentzGauss.pdf
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approximation 20 and a Lindblad operator,

Ĥatom =
∑
i ℏωiσ̂jiσ̂ij =

∑
i |i⟩ℏωi⟨i|

Ĥatom:field = ℏ
2Ωij (e

−ıωijtσ̂ij + eıωijtσ̂ji) =
∑
i<j |i⟩ℏ2Ωij⟨j|eıωijt + c.c.

Ldecayρ̂ = Lγ + LR + Lβ

Lγ =
∑
i,j γij

(
[σ̂ij , ρ̂σ̂

†
ij ] + [σ̂ij ρ̂, σ̂

†
ij ]
)

LR =
∑
i,j Rij

(
[σ̂†ij , ρ̂σ̂ij ] + [σ̂†ij ρ̂, σ̂ij ]

)

Lβ =
∑
i,j 2βij

(
[σ̂ij σ̂

†
ij , ρ̂σ̂ij σ̂

†
ij ] + [σ̂ij σ̂

†
ij ρ̂, σ̂ij σ̂

†
ij ]
)

.

(34.266)

Here, σ̂ij ≡ |i⟩⟨j| = σ̂†ji. The constants Rij are eventual incoherent pump rates due
to optical pumping, βij take account of homogeneous broadening, e.g. due to finite
laser linewidths. The levels have the energy ℏωi above the ground level. The Rabi
frequency Ωij is a measure for the force at which the levels |i⟩ and |j⟩ are coupled
by the resonantly irradiated light field. The master equation can be simplified by
applying the rotating wave approximation and transforming to the coordinate system
which rotates with the light frequencies ωij :

ρij → ρ̂ije
ıωijt , Ĥatom:field → e−ıĤt/ℏĤatom:fielde

ıĤt/ℏ . (34.267)

34.7.1 Liouville equation for many levels

The indices for the atomic levels are joined to a single index, such that the master
equation takes a simpler form after having introduced a Liouville operator:

ρ̂ = (...ρk...) ≡
∑

i,j
|i⟩ρij⟨j| , (34.268)

˙̂ρ = Lρ̂,
ρ̂ = eLatomtρ̂0 .

The relation with the von Neumann equation with Ĥ =
∑
i,j |i⟩Hij⟨j| and ρ̂ =∑

k,l |k⟩ρkl⟨l| and σ̂ij = |i⟩⟨j| is:

Latomρ̂ = − ı
ℏ [Ĥ, ρ̂] = −ı

∑
k,l,j

Hklρlj |k⟩⟨j|+ ı
∑

k,l,j
Hljρkl|k⟩⟨j| . (34.269)

For example, for the two-level system with the definition of the external product
(23.127):

Latomρ̂ = −ıĤ ⊗ Iρ̂+ ıI⊗ Ĥρ̂ . (34.270)

The relaxation terms for spontaneous decay obtained from (34.266) are,

Ldecayρ̂ =
∑

i,j,k
(2γjiδkjρii − γijρkj − γikρkj) |k⟩⟨j| . (34.271)

20That is, the atom is quantized and consists of several levels |i⟩ with energies ℏωi, while the light
fields are described by factors eıωijt, with frequencies ωij tuned near the transitions |i⟩ − |j⟩.
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Example 201 (Liouville equation for two levels): For example, for the
two-level system,

Latom =


2γ11 0 0 2γ21

0 0 0 0

0 0 0 0

2γ12 0 0 2γ22

−

2(γ11 + γ12) 0 0 0

0
∑

(kj) γ(kj) 0 0

0 0
∑

(kj) γ(kj) 0

0 0 0 2(γ22 + γ21)

 .

Here, we consider (kj) = (11 12 21 22) as a single index.

34.7.1.1 Derivation of the multilevel Bloch equation

Now, inserting the Hamiltonian in the RWA,

Ĥ = Ĥatom + Ĥatom:field =
∑

i

ℏωi|i⟩⟨i|+ ℏ
2

∑

i<j

Ωij σ̂ij + h.c. , (34.272)

into the von Neumann equation together with the dissipative Lindbladian (34.271)
and ρjk ≡ ⟨j|ρ̂|k⟩, we derive the multilevel master equation,

ρ̇jk =
ı

ℏ
⟨j|[ρ̂, Ĥ]|k⟩+ ⟨j|Ldecayρ̂|k⟩ . (34.273)

First we calculate the unperturbed Hamiltonian part,

⟨k|[ρ̂, Ĥatom]|m⟩ = ℏ⟨k|ρ̂
∑

a

|a⟩⟨a|
∑

i

ωi|i⟩⟨i|m⟩ − ℏ⟨k|
∑

i

ωi|i⟩⟨i|
∑

a

|a⟩⟨a|ρ̂|m⟩

= ℏ(ωm − ωk)ρkm . (34.274)

For the interaction part we get,

⟨k|[ρ̂, Ĥatom−field]|m⟩ (34.275)

= ℏ
2

∑
a

∑
i<j

[
⟨k|ρ̂|a⟩⟨a|

(
Ωij |i⟩⟨j|+Ω∗ij |j⟩⟨i|

)
|m⟩ − ⟨k|

(
Ωij |i⟩⟨j|+Ω∗ij |j⟩⟨i|

)
|a⟩⟨a|ρ̂|m⟩

]
= ℏ

2

∑
i<j

(
Ωijρkiδjm +Ω∗ijρkjδim − Ωijρjmδki − Ω∗ijρimδkj

)
,

and for the dissipative part,

⟨k|Ldecayρ̂|m⟩ = ⟨k|
∑

i,j

γij(2|i⟩⟨j|ρ̂|j⟩⟨i| − |j⟩⟨i|i⟩⟨j|ρ̂− ρ̂|j⟩⟨i|i⟩⟨j|)|m⟩ (34.276)

=
∑

j

2γmjδkmρjj −
∑

i

(γik + γim)ρkm .

So all in all,

ρ̇km = 2
∑

j

γmjρjjδkm −
[∑

i

(γik + γim) + ı(ωk − ωm)

]
ρkm

+ ı
2

∑

i<j

(
Ωijρkiδjm +Ω∗ijρkjδim − Ωijρjmδki − Ω∗ijρimδkj

) , (34.277)
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where the index j runs over all levels |j⟩ into which a population ρkk can decay and
the index i runs over all levels |i⟩ into which the levels |k⟩ and |m⟩ of a dipole moment
ρkm can decay. In Exc. 34.7.5.1 we will apply this formula to three-level systems.

Finally, the master equation can be reformulated by introducing a generalized
Bloch vector ρ⃗, and the matrix representation of the Liouville superoperator L as a
linear system of n2 coupled differential equations,

d

dt
ρ⃗ =Mρ⃗ , ρ⃗ = (ρ11 .. ρnn ρ12 ρ21 .. ρn−1 n ρn n−1) , (34.278)

where the Bloch matrixM is obtained from the Liouvillean L simply by rearranging
the matrix elements.

Alternatively to the complex formulation, the differential equations can be written
for the real and imaginary part of the Bloch vector. The components ρii correspond
to the population probabilities of the levels |i⟩, the non-diagonal elements ρij describe
the coherences between |i⟩ and |j⟩. Now, we must insert the Hamiltonian (34.266)
and the density operator ρij into the Liouville equation (34.125) in order to derive
the generalized Bloch equations. In practice, these calculations are simple but heavy.
Therefore, we describe in Sec. 34.7.4 a simplified recipe for compiling Bloch equations
for arbitrary level systems for real atoms.

34.7.2 Bloch equations for three levels

In principle, three-level system can exist in there possible configurations, shown in
Fig. 34.17. Note that it is not possible to describe a three-level system with all levels
pairwise coupled by three lasers within the formalism of Bloch’s equations 21.

Figure 34.17: Three level system (a) in Λ-configuration, (b) in V -configuration, and (c) in
cascade configuration.

Defining the Bloch vector by ρ⃗, the Bloch equation matrix for three levels in Raman

21For the same reason that the three-body problem has no general analytic solution.
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configuration (that is, in Λ-configuration) using the labeling of Fig. 34.17(a), is,

˙⃗ρ =Mρ⃗ = (34.279)


0 Γ12 Γ13
ı
2
Ω12 − ı

2
Ω12 0 0 0 0

0 −Γ12 − Γ23 0 − ı
2
Ω12

ı
2
Ω12 0 0 ı

2
Ω23 − ı

2
Ω23

0 Γ23 −Γ13 0 0 0 0 − ı
2
Ω23

ı
2
Ω23

ı
2
Ω12 − ı

2
Ω12 0 −Λ12 0 ı

2
Ω23 0 0 0

− ı
2
Ω12

ı
2
Ω12 0 0 −Λ∗12 0 − ı

2
Ω23 0 0

0 0 0 ı
2
Ω23 0 −Λ13 0 − ı

2
Ω12 0

0 0 0 0 − ı
2
Ω23 0 −Λ∗13 0 ı

2
Ω12

0 ı
2
Ω23 − ı

2
Ω23 0 0 − ı

2
Ω12 0 −Λ23 0

0 − ı
2
Ω23

ı
2
Ω23 0 0 0 ı

2
Ω12 0 −Λ∗23







ρ11

ρ22

ρ33

ρ12

ρ21

ρ13

ρ31

ρ23

ρ32




with Λmn = ı∆mn + γmn and,

∆13 = ∆12 −∆23 (34.280)

γ12 = 1
2 (Γ12 + Γ23) , γ23 = 1

2 (Γ12 + Γ23 + Γ13) , γ13 = 1
2Γ13 .

In Exc. 34.7.5.2 we will derive the matrix (34.279).
The coherent terms of the same matrix can be used for the V - and the cascade

configurations shown in Figs. 34.17(b,c). Obviously, the incoherent terms, that is,
the submatrix 3×3 separated in the matrix (34.279) containing the population decay
rates must be adjusted, as well as the decay rates of the coherences on the diagonal.
Finally, the definition of the Raman detuning ∆13 must be adjusted. For the system
in V -configuration we have,

Mincoh =



−Γ12 − Γ13 0 0

Γ12 0 Γ23

Γ13 0 −Γ23


 , ∆13 = ∆12 −∆23 (34.281)

γ12 = 1
2 (Γ12 + Γ13) , γ23 = 1

2Γ23 , γ13 = 1
2 (Γ12 + Γ13 + Γ23) .

For the cascade system we have,

Mincoh =



0 Γ12 Γ13

0 −Γ12 Γ23

0 0 −Γ13 − Γ23


 , ∆13 = ∆12 −∆23 (34.282)

γ12 = 1
2Γ12 , γ23 = 1

2 (Γ12 + Γ23 + Γ13) , γ13 = 1
2 (Γ13 + Γ23) .

These matrices serve to describe quantitatively a wealth of phenomena, some of
them to be discussed in Sec. 34.8.

34.7.3 Numerical treatment of Bloch equations

Since the differential Bloch equations are linear, they can be easily solved. For exam-
ple, the prescription

ρ⃗(t) = eMtρ⃗(0) (34.283)
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propagates the Bloch vector to later times.
The matrix M is not invertible, but by applying the condition Tr ρ = 1, a com-

ponent of the density matrix can be eliminated, for example by letting,

ρ11 = 1−
∑

k

ρkk . (34.284)

The resulting state vector, ρ⃗red, has the length n2 − 1, and from M we obtain the
(trace-)reduced, now invertible matrix Mred and the inhomogeneity vector b. The
differential equation is now,

d

dt
ρ⃗red =Mredρ⃗red + b , (34.285)

with the stationary and time-dependent solutions,

ρ⃗red(∞) = −M−1redb , ρ⃗red(t) = eMredtρ⃗red(0) + (1− eMredt)ρ⃗red(∞) .

(34.286)
Once the matrix M or the matrix Mred and the inhomogeneity vector b are deter-
mined for a system, the state of the atom can be calculated at any time, as well as the
populations and coherences. The system’s free parameters are the natural transition
linewidths and the detunings, as well as the intensities and emission bandwidths of
the incident light fields.

34.7.3.1 Simulation of the Schrödinger and Bloch equation

Once we have written the solution of the Schrödinger equation in the form (23.144)
with a time-independent Hamiltonian Ĥ, or of the Bloch equations in the form
(34.283) or (34.286) with a time-independent Liouvillian M, we can easily simulate
temporal evolutions of quantum systems. If the Hamiltonian or Liouvillian depend on
time, for example, when the Rabi frequencies are pulsed or the detunings are ramped,
we must solve the equations iteratively. That is, we chose time intervals ∆t sufficiently
short, so that the Hamiltonian (or the Liouvillian) can be considered constant during
this interval, and we propagate the wavefunction (or the Bloch vector) to later times
via:

|ψ(t+∆t)⟩ = eıĤ(t)∆t|ψ(t)⟩ or ρ⃗(t+∆t) = eM(t)∆tρ⃗(t) , (34.287)

and insert the solution obtained again into equations (34.287) with the Hamiltonian
Ĥ(t+∆t) (or the LiouvillianM(t+∆t)) adjusted to the new time.

34.7.4 General rules for setting up multilevel Bloch equations

The canonical way of deriving multi-level Bloch equations starts from a von Neumann
equation for the total density operator for the atom embedded in the electromagnetic
mode structure of the environment including incident laser beams. After tracing
over the degrees of freedom of the electromagnetic vacuum and using the Markov
and the Born approximations [487], one arrives at a master equation of the form
(34.266). Simple but tedious algebraic transformations of the master equation lead,
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in the rotating wave approximation, to a set of linear first-order differential equations
in the populations of the atomic excitation levels and the coherences between them.
The equations are called the optical Bloch equations.

Alternatively, the Bloch equations may be found by breaking down the multi-level
scheme into a set of three-level systems. Respecting a few symmetry considerations,
the multi-level Bloch equations can then be reassembled from the three-level Bloch
equations corresponding to every possible combination of three levels. Based on such
considerations, we provide in the following a simple recipe for setting up Bloch ma-
trices for arbitrary level schemes. A movie showing a simulation of multi-level Bloch
equations for Li atoms can be watched under the following link: (watch movie).

Let us regard a n-level atom. Its internal state is fully described by the populations
ρkk and the (complex) coherences ρkl, with k, l = 1, .., n. In this work we describe the
coherences by their real and imaginary parts. The labeling is such that the levels are
sorted according to their excitation energy, Ek < El for k < l. We define the Bloch
vector,

ρ⃗ ≡ (ρ11...ρnnIm ρ12Re ρ12Im ρ13 Re ρ13... (34.288)

...Im ρ1nRe ρ1nIm ρ23Re ρ23...

...Im ρn−1,nRe ρn−1,n) .

The Bloch equations then formally read,

˙⃗ρ =Mρ⃗ , (34.289)

where in the given Bloch vector basis the matrixM has the following structure,

M =




(A) (B1)

(B2)

(
(C) (D)

(D) (C)

)

 . (34.290)

The different blocks of the matrix have the following significations. Block A han-
dles the transfer of populations by spontaneous decay. Its rank corresponds to the
number of levels n. The diagonal elements of this block are the decay rates Γ of the
excited states. The off-diagonal elements Γkl denote the gain of level k from a decay-
ing level l. Conservation of energy thus requires that the sum of the transition rates
cancels for every column of matrix A, Γ =

∑
k Γkl, as it is the case for the two-level

Bloch matrix. If the levels are sublevels of a Zeeman and/or hyperfine split multiplet,
the rates have to be weighted with Wigner’s (3j) and {6j} symbols, Γkl = ΓSkl. The
relative oscillator strengths Skl are given in Sec. 34.7.4.2.

The blocks Bk treat the interdependence of the populations and the coherences.
B1 describes how the coherence between any pair of states driven by a light field
generating a Rabi frequency Ωkl influences the populations. The block consists of
convoluted 2× 2 matrices of the form,

(
ρ̇kk

ρ̇ll

)
∼
(
−Ωkl 0

Ωkl 0

)(
Im ρkl

Re ρkl

)
. (34.291)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/LM_Bloch_Li_MultiLevelBloch_Movie.mp4
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B2 describes how the populations in turn influence the coherences,

(
Im ρ̇kl

Re ρ̇kl

)
∼
(

1
2Ωkl − 1

2Ωkl

0 0

)(
ρkk

ρll

)
. (34.292)

The Rabi frequencies have to be weighted not only with the relative oscillator strength
Skl, but also with the projection Hkl of the laser polarization onto the orientation
of the magnetic field and the laser polarization, Ωkl = ΩxSklHkl. Here Ωx is the
Rabi frequency generated by a laser on a transition, whose oscillator strength is 1.
The projection is calculated in Sec. 34.7.4.3 for the three possible laser polarizations,
i.e. for σ± and for π light.

The matrix C rules the influence of the decays of the coherences, of the detunings
∆kl = ωx − ωatom, and the laser linewidths βkl. Note that the detuning of the laser
frequency ωx is negative for red-detuned light. In the chosen basis it breaks down
into an array 2× 2 matrices aligned along the diagonal ofM. Their shape is,

(
Im ρ̇kl

Re ρkl

)
∼
(
−γkl

2 −∆kl

∆kl −γkl

2

)(
Im ρ̇kl

Re ρkl

)
. (34.293)

where γkl =
∑
m,Em<Ek,El

(Γkm + Γlm) + 2βkl. Often the levels are sublevels of a
Zeeman and/or hyperfine split multiplets. In this case the frequency shift Zkl of the
level is added to the detuning ∆kl. The shift is calculated in Sec. 34.7.4.4 for the
example of the 6Li D2 line.

The block D governs the interdependences of all laser-driven coherences of the
atom. The block contains 2 × 2 submatrices at any place of the matrix M, where
the row index pair (mn) and the column index pair (kl) have one index in common
provided the two different indices correspond to the Rabi frequency of an incident
laser:, (

Im ρ̇mn

Re ρ̇mn

)
∼
(

0 ± 1
2Ωkl

± 1
2Ωkl 0

)(
Im ρpq

Re ρpq

)
. (34.294)

The submatrix elements indexed by column (pq) and row (mn) are non-zero if one
of the indices p or q is equal to one of the indices m or n and the unequal indices
correspond to a laser-driven transition. In order to find the correct signs of the
submatrix elements, we distinguish four cases: 1. For m = p, n = k, and q = l the
signs are: (− +); 2. for n = q, m = k, and p = l the signs are: (+

−); 3. for m = q,
n = k, and p = l the signs are: (+

+); and 4. for n = p, m = k, and q = l the signs
are: (− −). A proper parametrization is proposed in the next section.

34.7.4.1 Recipe for D transitions in alkalines

In order to give a simple algorithm we parametrize the particular choice of sorting the
components of the vector, we define a new index µ running from 1 to n2 by setting
(ϱµ) ≡ (ρkl), where,

µ(k, k) = k (34.295)

µ(k, l) = 2nk − n− k2 − k + 2l − 1 ,
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so that,

ϱµ(k,k) = ρkk (34.296)

ϱµ(k,l) = Im ρkl

ϱµ(k,l)+1 = Re ρkl .

The Bloch equations then formally read,

ϱ̇µ =Mµνϱν . (34.297)

We illustrate the procedure by considering the case of the 6Li D2 line with 6
ground states k ∈ G ≡ {1, ..., 6} belonging to the 2S1/2 hyperfine levels F = 1

2 ,
3
2

and 12 excited states k ∈ E ≡ {7, ..., 18} belonging to the 2P3/2 hyperfine levels

F = 1
2 ,

3
2 ,

5
2 .

According to the parametrization (34.289) the block A of the matrix M is filled
with the following components,

Mµ(kk),µ(kk) = −Γ for k ∈ E (34.298)

Mµ(kk),ν(ll) = ΓSkl for k ∈ G and l ∈ E ,

where the relative oscillator strength Skl is given by Eq. (34.305).
The blocks Bk of the matrixM are filled with the components,

Mµ(k,k),ν(k,l) = −Mµ(l,l),ν(k,l) (34.299)

= −2Mµ(k,l),ν(k,k) = 2Mµ(k,l),ν(l,l)

= −ΩklSklHkl ,

for k ∈ G and l ∈ E. The projection onto the quantization axisHkl = Hkl

(
ϵ̂kl

|ϵ̂kl| , B⃗,ml −mk

)

is given by Eq. (34.308).
The block C contains the components,

Mµ(k,l)µ(k,l) =Mµ(k,l)+1µ(k,l)+1 (34.300)

= −Γ
2 − Γ

2 δk≥7 − βpbδ2<k<7 − βrpδk≤2
for k ∈ G ∪ E and l ∈ E and ,

Mµ(k,l),µ(k,l)+1) = −Mµ(k,l)+1,µ(k,l)) (34.301)

= −∆pbδk>2 −∆rpδk<3 + Zkl(B)

for k ∈ G and l ∈ E,

Mµ(k,f),µ(k,f)+1) = −Mµ(k,f)+1,µ(k,f)) (34.302)

= −∆pb +∆rp + Zk,10(B)− Zf,10(B)

for k ∈ {1, 2} and f ∈ {3, .., 6}. The Zeeman shift Zkl is given by Eq. (34.309).
Finally, the block D is filled with the components,

Mµ(k,f),µ(f,l)+1 = (δf<k − 1
2 )ΩklSklHkl (34.303)

Mµ(k,f)+1,µ(f,l) = (δl<f − 1
2 )ΩklSklHkl

Mµ(l,f),µ(f,k)+1 = (δl<f − 1
2 )ΩklSklHkl

Mµ(l,f)+1,µ(f,k) = (δf<k − 1
2 )ΩklSklHkl ,
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where,

Ωkl ≡ (Ωrpδk≤2 +Ωpbδk≥3)δl≥7 (34.304)

ϵ̂kl ≡ (ϵ̂rpδk≤2 + ϵ̂pbδk≥3)δl≥7 .

for k ∈ G ∪ E and l ∈ E and f ∈ G ∪ E but f ̸= k, l. The projection onto the

quantization axis Hkl = Hkl

(
ϵ̂kl

|ϵ̂kl| , B⃗,ml −mk

)
is given by Eq. (34.308).

The Eqs. (34.298)-(34.303) form together an algorithm to generate the matrix
allowing one to numerically solve the Bloch equations (34.297), as has been done in
the main text.

34.7.4.2 Relative forces of oscillators

Spontaneous transitions between hyperfine- and Zeeman split levels have to be weighted
according to the Wigner-Eckardt theorem using Clebsch-Gordan (3j) and Wigner
{6j} symbols. Consider the transition |(Jk, I)Fk,mk⟩ ↔ |(Jl, I)Fl,ml⟩. The relative
oscillator strength is,

Skl =

(
Fk κ Fl

mk sign (ml −mk) −ml

)2

(34.305)

{
Jl Jk κ

Fk Fl I

}2
(2Fk + 1)(2Jl + 1)(2κ+ 1)

2I + 1
.

34.7.4.3 Elliptical laser polarization

The transition rates additionally depend on the relative orientation of the laser po-
larizations and the magnetic field direction. This dependence is accounted for by
decomposing the polarization vector into the,

ê3 =
B⃗
B

, ê2 =
ê3 × ĝ

|ê3 × ĝ| , ê1 =
ê2 × ê3
|ê2 × ê3|

, (34.306)

where ĝ is an arbitrarily chosen direction, e.g. gravity. The relative amplitude of the
transitions ∆mJ = 0 is proportional to the projection of the polarization vector on
the magnetic field axis ζ0 = (ε̂ · ê3)2 for π-polarized light. To estimate the amplitude
of the transitions ∆mJ = ±1, we must project onto the coordinates,

ê± = 1√
2
(∓ê1 − ıê2) , (34.307)

and we obtain ζ±1 = (ε̂ · ê±)2 for σ±-polarized light. Hence,

Hkl = ζ∆mJ
= ζml−mk

. (34.308)

With this generalization the Bloch equations can e.g. be employed to calculate
Hanle resonances quantum mechanically. The Hanle effect occurs when a magnetic
and an optical field compete for the quantization axis.
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34.7.4.4 Hyperfine and Zeeman splitting

The nuclear spin of the 6Li atom is I = 1, its electron spin is S = 1
2 . The excitation

states are characterized by quantum numbers Jk, Fk,mk. The electron angular orbital
momentum is Lk = δk≥7, and the electron angular orbital momentum is Jk = 1

2δk≤6+
3
2δk≥7. The hyperfine structure of the excited state 2P3/2 can be written as νhf1 =
−2.8 MHz, νhf2 = 0 MHz, and νhf3 = 1.7 MHz. Hence, the hyperfine splitting is
inferior to the natural decay rate Γ = (2π) 6 MHz,

Zkl =
µB |B⃗|
2πℏ (gFk

mk − gFl
ml) (34.309)

+ νhf1δ7≤l≤8 + νhf2δ8≤l≤13 + νhf3δ13≤l≤16 ,

where gFk
is the Landé factor of hyperfine level Fk.

34.7.5 Exercises

34.7.5.1 Ex: Derivation of three-level Bloch equations

Derive from the general formula (34.277) the three-level Bloch equations for the sys-

tem |1⟩ Ω12←→ |2⟩ Ω23←→ |3⟩.

Solution: In the case of three-level systems the sum in (34.277) runs over (ij) =
(12), (13), (23), so that we get,

ρ̇km = 2
∑
j

γmjρjjδkm − [
∑
i

(γik + γim) + ı(ωk − ωm)]ρkm

+ ı
2
(Ω12ρk1δ2m +Ω∗12ρk2δ1m − Ω12ρ2mδk1 − Ω∗12ρ1mδk2)

+ ı
2
(Ω13ρk1δ2m +Ω∗13ρk2δ1m − Ω13ρ2mδk1 − Ω∗13ρ1mδk2)

+ ı
2
(Ω23ρk2δ3m +Ω∗23ρk3δ2m − Ω23ρ3mδk2 − Ω∗23ρ2mδk3) .

For example, for the components ρ11 and ρ12, assuming Ω∗jm = Ωmj = Ωjm, and
Ω13 = 0,

ρ̇11 = 2
∑

j

γ1jρjj − 2
∑

i

(γi1 + γi1)ρkm + ıΩ12

2 (ρ12 − ρ21)

ρ̇12 = −[
∑

i

(γi1 + γi2) + ı(ω1 − ω2)]ρ12 +
ıΩ12

2 (ρ11 − ρ22) + ıΩ23

2 ρ13 .

in agreement with (34.279). The decay terms actually depend on the level configura-
tion. For a λ-system we have E1, E2 < E3, for a V -system we have E1, E2 > E3, and
for a cascade system E1 < E2 < E3.

34.7.5.2 Ex: Bloch equations for three levels

An excited Λ-shaped atom consists of two ground states |1⟩ and |3⟩, which are coupled
by two lasers with Rabi frequencies and detunings Ω12 and ∆12 respectively Ω23 and
∆23 through an excited level |2⟩. Derive the Bloch equations from this system from
the general master equation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_MultiBloch00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_MultiBloch01.pdf
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Solution: Let us first verify that the Bloch equations for two levels follow the formula
(34.222). The Hamiltonian is Ĥ = ℏω0|2⟩⟨2|+ ℏ

2
Ωe−ıωt|1⟩⟨2|+ ℏ

2
Ωeıωt|2⟩⟨1| the operator of

Liouville is

Lρ =
∑

i,j
γij
(
|j⟩⟨i|

∑
m,n
|m⟩ρmn⟨n|i⟩⟨j| −

∑
m,n
|m⟩ρmn⟨n|i⟩⟨j|j⟩⟨i|

+ |j⟩⟨i|
∑

m,n
|m⟩ρmn⟨n|i⟩⟨j| − |i⟩⟨j|j⟩⟨i|

∑
m,n
|m⟩ρmn⟨n|

)
= γ

(
|2⟩⟨1|

∑
m,n
|m⟩ρmn⟨n|1⟩⟨2| −

∑
m,n
|n⟩ρnm⟨m|1⟩⟨2|2⟩⟨1|

+ |2⟩⟨1|
∑

m,n
|m⟩ρmn⟨n|1⟩⟨2| − |1⟩⟨2|2⟩⟨1|

∑
m,n
|n⟩ρnm⟨m|

)
= γ

(
2|2⟩ρ11⟨2| −

∑
n
|n⟩ρn1⟨1| −

∑
m
|1⟩ρm1⟨m|

)
.

Follows the master equation,

d

dt
ρ = − ı

ℏ
[H, ρ] + Lρ

= −ı
(

1
2
Ωe−ıωtρ21 − 1

2
Ωeıωtρ12

1
2
Ωe−ıωtρ22 − 1

2
Ωe−ıωtρ11 − ω0ρ12

1
2
Ωeıωtρ11 − 1

2
Ωeıωtρ22 + ω0ρ21

1
2
Ωeıωtρ12 − 1

2
Ωe−ıωtρ21

)
+ γ

(
2ρ22 −ρ12
−ρ21 −2ρ22

)

= −ı
(

Ω
2
ρ̃21 − Ω

2
ρ̃12

Ω
2
e−ıωtρ22 − Ω

2
ρ11e

−ıωt − ω0ρ̃12e
−ıωt

Ω
2
eıωtρ11 − Ω

2
eıωtρ22 + ω0ρ̃21e

ıωt Ω
2
ρ̃12 − 1

2
Ωρ̃21

)
+ γ

(
2ρ22 −ρ12
−ρ21 −2ρ22

)

transforming to the rotating frame, ρ̃12e
−ıωt = ρ12,

d

dt
ρ̃ =

(
− ı

2
Ωρ̃21 +

ı
2
Ωρ̃12 − ı

2
Ωρ22 +

ı
2
Ωρ11 − ı∆ρ̃12

− ı
2
Ωρ11 +

ı
2
Ωρ22 + ı∆ρ̃21 − ı

2
Ωρ̃12 +

ı
2
Ωρ̃21

)
+ γ

(
2ρ22 −ρ12
−ρ21 −2ρ22

)
.

Moving to the Bloch vector notation we find the well-known expression (34.188).
We now generalize to three levels using the equations (34.266). For three levels the Hamil-
tonian is,

Ĥ = ℏω2|2⟩⟨2|+ℏω3|3⟩⟨3|+ℏ
2
Ω12e

−ıωat|1⟩⟨2|+ℏ
2
Ω12e

ıωat|2⟩⟨1|+ℏ
2
Ω23e

ıωbt|2⟩⟨3|+ℏ
2
Ω23e

−ıωbt|3⟩⟨2| ,

and the Liouville operator is,

Lρ = γ12 (2|1⟩ρ22⟨1| − 2|2⟩ρ22⟨2| − |1⟩ρ12⟨2| − |2⟩ρ21⟨1|)
+ γ23 (2|3⟩ρ22⟨3| − 2|2⟩ρ22⟨2| − |2⟩ρ23⟨3| − |3⟩ρ32⟨2|)
+ γ13 (2|1⟩ρ33⟨1| − 2|3⟩ρ33⟨3| − |1⟩ρ13⟨3| − |3⟩ρ31⟨1|) .

Follows the master equation,

d

dt
ρ = − ı

ℏ
[H, ρ] + Lρ

= −ı


 0 Ω12

2
e−ıωat 0

Ω12
2
eıωat −ıω2 − ıΩ23

2
eıωbt

0 Ω23
2
e−ıωbt −ıω3

 ,

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33




+

2γ12ρ22 + 2γ13ρ33 −γ12ρ12 −γ13ρ13
−γ12ρ21 −2(γ12 + γ23)ρ22 −γ23ρ23
−γ13ρ31 −γ23ρ32 2γ23ρ22 − 2γ13ρ33
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Using MAPLE we derive the Bloch equations,

ρ̇11 = ı
2
Ω12

(
eıωatρ12 − e−ıωatρ21

)
+ 2γ12ρ22 + 2γ13ρ33 = 1− ρ22 − ρ33

ρ̇22 = − ı
2
Ω12

(
eıωatρ12 − e−ıωatρ21

)
+ ı

2
Ω23

(
e−ıωbtρ23 − eıωbtρ32

)
− 2γ12ρ22 − 2γ23ρ22

ρ̇12 = ı
2
Ω12e

−ıωat(ρ11 − ρ22) + ı
2
Ω23e

−ıωbtρ13 + (ıω2 − γ12)ρ12 = ρ̇∗21

ρ̇13 = ı
2
Ω23e

−ıωbtρ12 − ı
2
Ω12e

−ıωatρ23 + (ıω3 − γ13)ρ13 = ρ̇∗31

ρ̇23 = − ı
2
Ω12e

ıωatρ13 +
ı
2
Ω23e

ıωbt(ρ22 − ρ33) + (ıω3 − ıω2 − γ23)ρ23 = ρ̇∗32 .

This result can be cast into a matrix form.

34.7.5.3 Ex: Adiabatic elimination

Derive the effective two-level Bloch equations for a Λ-type three-level system adia-
batically eliminating the excited state under the Raman condition. Help: Start from
the Liouvillean (34.279), set ρ22 = 0, assume Γ13 ≪ Γ12,Γ23 ≪ |∆12|, |∆23|, and
∆12 = −∆23.

Solution: To study adiabatic elimination we start from the Liouvillean (34.279) for
a Λ-system and set ρ22 = 0, which is justified for large detunings, |∆12|, |∆23| ≫ Γ12,
Γ23 . We also assume Γ13 ≪ Γ12,Γ23,

˙⃗ρ =




0 Γ13
ı
2
Ω12 − ı

2
Ω12 0 0 0 0

0 −Γ13 0 0 0 0 − ı
2
Ω23

ı
2
Ω23

ı
2
Ω12 0 −ı∆12 − 1

2
Γ 0 ı

2
Ω23 0 0 0

− ı
2
Ω12 0 0 ı∆12 − 1

2
Γ 0 − ı

2
Ω23 0 0

0 0 ı
2
Ω23 0 −ı∆13 − 1

2
Γ13 0 − ı

2
Ω12 0

0 0 0 − ı
2
Ω23 0 ı∆13 − 1

2
Γ13 0 ı

2
Ω12

0 − ı
2
Ω23 0 0 − ı

2
Ω12 0 −ı∆23 − 1

2
Γ 0

0 ı
2
Ω23 0 0 0 ı

2
Ω12 0 ı∆23 − 1

2
Γ







ρ11
ρ33
ρ12
ρ21
ρ13
ρ31
ρ23
ρ32




,

with ∆13 = ∆12 + ∆23 and defining Γ ≡ Γ12 + Γ23. We set the Raman condition
∆ ≡ ∆12 = −∆23, such that ∆13 = 0, and assume the coherences to the excited state
to be stationary,

ρ̇12 = 0 = ı
2Ω12ρ11 −

(
ı∆+ 1

2Γ
)
ρ12 +

ı
2Ω23ρ13

ρ̇23 = 0 = − ı
2Ω23ρ33 −

(
−ı∆+ 1

2Γ
)
ρ23 − ı

2Ω12ρ13

such that

ρ12 =
ıΩ12ρ11 + ıΩ23ρ13

2ı∆+ Γ
, ρ23 =

−ıΩ23ρ33 − ıΩ12ρ13
−2ı∆+ Γ

.

Now substituting this into the remaining Bloch equations,

ρ̇11 = Γ13ρ33 +
ı
2
Ω12ρ12 − ı

2
Ω12ρ21

= − Ω2
12Γ

4∆2 + Γ2
ρ11 + Γ13ρ33 − Ω12Ω23

4ı∆+ 2Γ
ρ13 − Ω12Ω23

−4ı∆+ 2Γ
ρ31

ρ̇33 = −Γ13ρ33 − ı
2
Ω23ρ23 +

ı
2
Ω23ρ32

= −Γ13ρ33 − Ω2
23Γ

4∆2 + Γ2
ρ33 − Ω12Ω23

−4ı∆+ 2Γ
ρ13 − Ω12Ω23

4ı∆+ 2Γ
ρ31

ρ̇13 = − 1
2
Γ13ρ13 +

ı
2
Ω23ρ12 − ı

2
Ω12ρ23

=

(
− 1

2
Γ13 − Ω2

23

4ı∆+ 2Γ
− Ω2

12

−4ı∆+ 2Γ

)
ρ13 − Ω12Ω23

4ı∆+ 2Γ
ρ11 − Ω12Ω23

−4ı∆+ 2Γ
ρ33 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_MultiBloch02.pdf
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Neglecting the terms 2Γ in all denominators and defining Ω ≡ Ω12Ω23

2∆ ,

L ≃


−Ω2

12Γ

4∆2 Γ13
ı
2
Ω − ı

2
Ω

0 −Γ13 − Ω2
23Γ

4∆2 − ı
2
Ω ı

2
Ω

ı
2
Ω − ı

2
Ω − 1

2
Γ13 + ı

Ω2
12−Ω2

23
4∆

0

− ı
2
Ω ı

2
Ω 0 − 1

2
Γ13 − ıΩ

2
12−Ω2

23
4∆

 .

34.8 Multi-level phenomena

The multi-level Bloch equations, and in particular the three-level Bloch equations
(34.279), allow for the theoretical description of many phenomena beyond the two-
level approximation. Among them are the phenomena of light shift treated in Excs. 34.5.4.12
and 34.5.4.13, the Autler-Townes splitting treated in Exc. 34.8.4.1, the dark resonances
treated in Excs. 34.8.4.3 to 34.8.4.6, the STIRAPmethod treated in Exc. 34.8.4.7, adi-
abatic sweeps treated in Exc. 34.8.4.8, the dispersive interaction between atoms and
light treated in Exc. 34.8.4.9, Fano resonance-type line profiles of dark resonances
treated in Exc. 34.8.4.10, and the quantum jumps, which will be studied in later
chapters. In Excs. 34.8.4.11 and 34.8.4.12 we will show, that an atomic gas may have
negative permittivity and negative permeability and, consequently, properties usually
only found in artificial metamaterials, as for example, a negative refractive index.

34.8.1 Electromagnetically induced transparency

In some special cases, the three-level Bloch equations can be solved analytically. The
system in Λ-configuration schematized in Fig. 34.17(a), where the two lasers satisfy
the condition ∆12 = ∆23 can exhibit a dark resonance leading to the phenomena of
electromagnetically induced transparency (EIT) and electromagnetically induced ab-
sorption. In these resonances a dramatic change of the refractive index is observed
despite the fact that the atom becomes transparent, Re χ≫ 0 and |Im χ| ≪ Re χ:

Re n =
√

1 +Re χ≫ 1 , (34.310)

resulting in a high group velocity,

vg =
c

n+ ω dndω
. (34.311)

EIT is usually studied in Λ-type systems, but similar phenomena can be found in
cascade-type systems [1414, 1395], which will be studied here. Disregarding the decay
rate Γ13, the Bloch equations (34.279) and (34.282) give the coherences,

ρ̇12 = −Λ12ρ12 +
ıΩ12

2 (ρ11 − ρ22)− ıΩ23

2 ρ13 (34.312)

ρ̇13 = −Λ∗13ρ13 − ıΩ12

2 ρ23 − ıΩ23

2 ρ12

ρ̇23 = −Λ23ρ23 +
ıΩ23

2 (ρ22 − ρ33)− ıΩ12

2 ρ13 .
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Assuming stationarity and negligible depletion of the ground state, ρ11 = 1,

0 = −Λ12ρ12 +
ıΩ12

2 − ıΩ23

2 ρ13 (34.313)

0 = −Λ∗13ρ13 − ıΩ12

2 ρ23 − iΩ23

2 ρ12

0 = −Λ23ρ23 − ıΩ12

2 ρ13 .

Substituting the third into the first equation,

0 = −Λ12ρ12 +
ıΩ12

2 − ıΩ23

2 ρ13 (34.314)

0 = −Λ∗13ρ13 − Ω2
12

4Λ23
ρ13 − ıΩ23

2 ρ12 .

and finally,

ρ12 =
ıΩ12

2

4Λ∗13Λ23 +Ω2
12

Λ12 (4Λ∗13Λ23 +Ω2
12) + Ω2

23Λ23
. (34.315)

The macroscopic polarization is now P = N
V d12ρ21, with the number of atoms N .

In the limit of weak probes, the dressed susceptibility follows from P = ε0χE12 =
N
V d12ρ21,

χ =
Nd12
V ε0E12

ρ21 =
N |d12|2
V ε0ℏΩ12

ρ21 . (34.316)

For a resonant probe laser, ∆23 = 0 and with Γ13 ≃ 0, we have Λ13 = 1
2Γ23 + ı∆12

and Λ23 = 1
2 (Γ23 + Γ12). The susceptibility in the probe transition is now, using

Θ ≡ Γ23 +
Ω2

12

2Λ23
,

χ =
N |d12|2
V ε0ℏΩ12

ıΩ12
Γ23+

Ω2
12

2Λ23
−2ı∆12(

Γ23+
Ω2
12

2Λ23
−2ı∆12

)
(Γ12+2ı∆12)+Ω2

23

(34.317)

=
N |d12|2
V ε0ℏΩ12

ıΩ12
Θ− 2ı∆12

(Θ− 2ı∆12)(Γ12 + 2ı∆12) + Ω2
23

= χ′ + ıχ′′ .

Example 202 (EIT in a cascade system): We consider, for example, the
intercombination line of atomic strontium 1S0-

3P1 (λ12 = 689 nm and Γ12 =
(2π) 7.6 kHz) be the ’dressing’ transition 3P1-(5s4d)

3D1 (λ23 = 2700 nm and
Γ23 = (2π) 90.3 kHz), be the ’dressing’ transition 3P1-(5s5d)

3D1 (λ23 = 497 nm
and Γ23 = (2π) 2.3MHz), both characterized by Γ23 ≫ Ω12,Γ12, |∆12|, such
that Θ ≃ Γ23. Hence,

χ′ + ıχ′′ =
N |d12|2
V ε0ℏ

2∆12 + ıΓ23

Ω23
.

The refraction index follows with,

n =
√

1 + χ ≃ 1 + 1
2
χ .

Its imaginary part originates from the decay term of the atom: it is here respon-

sible for the absorbing nature of the cloud. EIT is characterized by a pronounced

dispersion and a small concomitant absorption.



1832 CHAPTER 34. SEMICLASSICAL THEORYOF LIGHT-ATOM INTERACTION

-20 0 20
0

1

2

ρ
ee

×10−3

-20 0 20
0

0.1

0.2
ρ
m
m

-20 0 20

Δge/Γge

0.8

0.9

1

ρ
g
g

-20 0 20
-0.5

0

0.5

R
e
χ

-20 0 20

Δge/Γge

0

0.5

1

Im
χ

Figure 34.18: (code) EIT signal for the cascade system of strontium with the transitions at

689 nm and 497 nm with Ω12 = Γ12, Ω23 = Γ23 and ∆23 = 0. The red lines are calculated by

numerical integration of the Bloch equations. The dotted lines are obtained from analytical

formulas based on the assumptions of weak ground state depletion (which is not really correct

in the chosen parameter regime.

34.8.2 Polarization, alignment, and orientation

34.8.2.1 Polarization and helicity

Photons may have the angular momenta L̂, Ŝ, and Ĵ, but due to the fact that photons
have zero mass, only Ĵ is of importance. The helicity is defined as,

Ĵ · k = (L̂+ Ŝ) · k = Ŝ · k = ms = ±1 , (34.318)

in beam direction and the polarization is,

Ĵ · êz = mj = −j, ...j . (34.319)

Polarizers prepare the photon in its eigenstate. The angular momentum with respect
to Ĵ in a basis êz orthogonal to k is,

Ĵ · k|m⟩y = am|1⟩z + bm| − 1⟩z . (34.320)

The state |0⟩z does not exist. For example,

Ĵ · k|1⟩y = Ĵz
(
1
2 |1⟩z + ı|0⟩z − 1

2 | − 1⟩z
)
= 1

2 (|1⟩z + | − 1⟩z) . (34.321)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_EitThreeLevelCascadeStat.m
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34.8.2.2 Orientation and alignment

A level |j⟩ with Zeeman degeneracy |jm⟩ can be irreducibly described by Cartesian
polarization tensors. Those are the orientation and the alignment [716, 1292],

Oi ≡ ⟨Ĵi⟩

Aij ≡ 3
2 ⟨[Ĵi, Ĵj ]+⟩ − ⟨Ĵ2⟩δij

, (34.322)

with i, j = x, y, z. The expectation value is calculated as usual, ⟨...⟩ = Tr ρ̂... =∑
m⟨jm|ρ̂...|jm⟩. If Oi ̸= 0 then the system is said oriented, if Aij ̸= 0 the system is

said aligned and if either Oi ̸= 0 or Aij ̸= 0 then the system is said polarized.
The orientation and the alignment depend on the choice of the quantization axis

and on the Zeeman splitting of level |j⟩. Choosing z as quantization axis and disre-
garding Zeeman coherences ⟨m|ρ̂|m′⟩ ∼ δmm′ , we get the orientation,

O = ℏêz
∑

m

mρmm (34.323)

and the alignment,

(Aij) = −ℏ2j(j + 1)−



− 3

2 0 0

0 − 3
2 0

0 0 3



∑

m

ℏ2m2ρmm , (34.324)

if the atom is with certainty in level |j⟩ so that Tr ρ̂ = 1. These results will be derived
in Exc. 34.8.4.14.

34.8.3 Hanle effect

The Hanle effect occurs when a magnetic and an optical field compete for the quan-
tization axis. Imagine an atom irradiated by a laser from direction k = kêx, linearly
polarized ε = êy and subject to a magnetic field B⃗ = Bêz. The fluorescence is detected
in direction êy through a linear polarizer [351]. If B = 0, no light is emitted into the
detector since the dipole radiation pattern is a torus with symmetry axis êy. If B is
now increased, the quantization axis is tilted and the torus slowly precesses about the
êx axis. Plotting the time-averaged fluorescence as a function of the magnetic field
B, we observe a dark resonance. These arguments are rather classical.

Quantum mechanically, Hanle resonances are easily calculated. The transition
rates additionally depend on the relative orientation of the laser polarization and
the magnetic field direction. This dependence is accounted for by decomposing the
polarization vector into the coordinates defined by,

ê3 =
B⃗
B , ê2 =

ê3 × ĝ

|ê3 × ĝ| , ê1 =
ê2 × ê3
|ê2 × ê3|

, (34.325)

where ĝ is an arbitrarily chosen direction, e.g. gravity. The relative amplitude of the
transitions ∆mJ = 0 is proportional to the projection of the polarization vector on
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the magnetic field axis ζπ = (ε̂ · ê3)2. To estimate the amplitude of the transitions
∆m = ±1, we must project onto the coordinates,

ê± = 1√
2
(∓ê1 − ıê2) , (34.326)

and we obtain ζσ± = (ε̂ · ê±)2.

Example 203 (Hanle effect with rate equations): The Hanle effect can be
described without coherences, i.e. using only rate equations. Fig. 34.19 shows
such a simulation for the case of three ground Zeeman states |1⟩ = |g,m = +1⟩,
|2⟩ = |g,m = 0⟩, and |3⟩ = |g,m = −1⟩, and one excited state |4⟩ = |e,m = 0⟩.
The rate equations are,

ρ̇kk =Mρkk (34.327)

with M =


−Ω14 0 0 Ω14 +

1
3
Γ

0 −Ω24 0 Ω24 +
1
3
Γ

0 0 −Ω34 Ω34 +
1
3
Γ

Ω14 Ω24 Ω34 −Ω14 − Ω24 − Ω34 − Γ


and Ω14 = Ω34 = ζσ±Ω and Ω24 = ζπΩ .

In Exc. 34.8.4.15 we study the Hanle effect at the Ca+ Zeeman degenerate level

system.
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(a)

0
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Figure 34.19: (code) Hanle effect in a four-level system with three ground and one excited

state with ε̂ = êy and (a) Ω = 0.5Γ and (b) Ω = 5Γ.

34.8.4 Exercises

34.8.4.1 Ex: Autler-Townes splitting

In this exercise we study the Autler-Townes effect in a two-level system |1⟩ and |2⟩
resonantly excited (∆12 = 0) by a laser with the Rabi frequency Ω12:
a. From the eigenvalues E1,2 of the effective Hamiltonian (34.228) of the system, de-
scribe the behavior of the real part (energy shift) and the imaginary part (linewidth)
as a function of the Rabi frequency. Prepare diagrams Ω12 versus Re E1,2 and versus
Im E1,2 and discuss the limits Ω12 >

1
2Γ12 and Ω12 <

1
2Γ12.

The Autler-Townes effect can be measured experimentally by probing the population

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Hanle4LevelRate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Hanle4LevelRate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AutlerTownes.pdf
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of level |2⟩ via excitation of a third (higher) level by a second laser with the Rabi fre-
quency Ω23. Thus, we obtain a three-level system in cascade configuration, as shown
in Fig. 34.17(c). In order to reproduce the experiment by numerical simulations of
the Bloch equations (34.279),
b. write down the Liouville matrixMred reduced by the trace condition (34.284) and
c. compute the stationary Bloch vector from equation (34.286) varying the detuning
of the probe laser ∆23 and the Rabi frequency Ω12 of the system under study (|1⟩ and
|2⟩). Choosing the parameters Γ23 = 0.5Γ12, Γ13 = 0.01Γ12, Ω23 = 0.1Γ12, prepare a
3D curve [similar to Fig. 34.6(a)] of the stationary population ρ22(∞). Interpret the
results.

Solution: a. The eigenvalues of the effective Hamiltonian (34.228) excited in res-
onance,

E = − ı
4Γ± ı

4

√
Γ2 − 4Ω2 ,

describe possible effects of line broadening and/or shift due to the coupling. Two cases
are interesting: In the case Γ > 2Ω we get,

E = Re E = 0 , Γeff = −2Im E = 1
2Γ∓ 1

2

√
Γ2 − 4Ω2 → Γ .

That is, the resonance is not shifted or split, but undergoes a line broadening, as
already shown in (34.189).
In the case Γ < 2Ω,

E = Re E = ± 1
2

√
Ω2 − 1

4Γ
2 → ±Ω , Γeff = −2Im E = 1

2Γ .

we observe an splitting of the line called Autler-Townes splitting. When saturation
is strong, the two new lines are separated by Ω, each having the natural width Γ.
Figs. 34.20(a,b) show the bifurcation of the spectrum at the point Ω12 = 1

2Γ.
b. The Liouville matrix can be found in the numerical MATLAB code in given in the
file ’LM Bloch AutlerTownes.m’.
c. Fig. 34.20(c) shows the results of the simulations. The laser Ω23 probes the pop-
ulation ρ22 by excitation to a higher level, that is, the fluorescence emitted by the
population ρ33 is representative for the population ρ22.

34.8.4.2 Ex: Quantum Zeno effect and saturation broadening

In this exercise we study saturation broadening effect in a three-level system |1⟩, |2⟩,
and |3⟩ in V -configuration, as shown in Fig. 34.17(b), excited by two resonant lasers
with the Rabi frequencies Ω12 and Ω23.
a. From the eigenvalues E1,2 of the effective Hamiltonian (34.228) of the system, de-
scribe the behavior of the real part (energy shift) and the imaginary part (linewidth)
as a function of the Rabi frequency. Prepare diagrams Ω12 versus Re E1,2 and versus
Im E1,2 and discuss the limits Ω12 >

1
2Γ12 and Ω12 <

1
2Γ12.

Saturation broadening can be measured experimentally in a three-level system in V -
configuration. To reproduce the experiment by numerical simulations of the Bloch
equations (34.279),

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_EfeitoZeno.pdf
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Figure 34.20: (code) (a) Autler-Townes splitting and (b) linewidths as a function of the Rabi

frequency. (c) Population of the excited state in a three-level system in cascade configuration,

as shown in Fig. 34.17(c) in a function of the Rabi frequencies Ω23 and Ω12. The parameters

are, Γ23 = 0.5Γ12, Γ13 = 0.01Γ12, Ω23 = 0.1Γ12.

b. write down the Liouville matrix L of the system and calculate the time evolution
of the Bloch vector via equation (34.283) varying the Rabi frequency Ω12. Choosing
the parameters Γ23 = 0.01Γ12, Γ13 = 0.0001Γ12, Ω23 = 400Γ23, and ∆12 = 0 = ∆23,
prepare a 3D curve [similar to Fig. 34.6(a)] of the population ρ33(t) as a function of
time and the Rabi frequency Ω12.
c. Interpret the results in terms of broadening by saturation. The broadening can also
be understood in terms of the quantum Zeno effect, where the transition |1⟩-|2⟩ plays
the role of the ’observed system’ and the transition |2⟩-|3⟩ the role of the measuring
device or ’meter’ (for example, we can observe the light scattered on the ’meter tran-
sition’ to infer the evolution of the ’system transition’).

Solution: a. See the solution of Exc. 34.8.4.1(a).
b. The Liouville matrix and the results of the simulations can be found in the numer-
ical MATLAB code in given in the file ’LM Bloch ZenoEffect.m’.
c. When the ’meter transition’ |1⟩-|2⟩ is weakly excited, Ω12 ≪ Γ12, the ’system tran-
sition’ |2⟩-|3⟩ evolves normally, as expected for an isolated two-level system. As we
increase Ω12 to be able to observe the light scattered on the ’meter transition’ more
easily and extract information on the state of the system more quickly, we perturb the
evolution of the system and prevent it from evolving: The population ρ33 is getting
weaker.

34.8.4.3 Ex: EIT and dark resonances

In this exercise we study so-called dark resonances, which are responsible for the
phenomenon of electromagnetically induced transparency (EIT). Such resonances are
observed in three-level systems |1⟩-|2⟩-|3⟩ in Λ-configuration, as shown in Fig. 34.17(a),
when the laser detunings are chosen so as to satisfy ∆12 = ∆23.
a. From the Bloch equations (34.279) show analytically that, in a stationary situation,
the population of the excited state is ρ22(∞) = 0 in the center of the dark resonance.
Dark resonances can be observed experimentally. To reproduce the experiment by

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_AutlerTownes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_AutlerTownes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_AutlerTownes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_AutlerTownes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_ResonanciasObscuras01.pdf
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Figure 34.21: (code) (a) Temporal evolution of the excited state population ρ33 in a
three-level system in V -configuration, as shown in Fig. 34.17(b), as a function of the
Rabi frequency Ω12 of the ’meter’ laser. (b) Temporal evolution of the coherence ρ23.
(c) Illustration of the interrupted evolution of the coherence.

numerical simulations of the Bloch equations (34.279), write down the Liouville ma-
trixMred reduced by the trace condition (34.283) and calculate the stationary Bloch
vector from equation (34.284) varying the detunings of the two lasers ∆12 and ∆23.
Choosing the parameters such that Γ23 = Γ12, Γ13 = 0.01Γ12, Ω12 = 2Γ12, and
Ω23 = 0.2Γ12, prepare a 3D curve [similar to Fig. 34.6(a)] of the population ρ22(∞).
Interpret the results.

Solution: a. We put ∆12 = ∆23 and we consider the stationary solution ρ̇ = 0.
The Bloch equations are,

0 = Γ12ρ22 +
ı
2Ω12(ρ12 − ρ21)

0 = Γ23ρ22 − ı
2Ω23(ρ23 − ρ32)

0 =
(
− 1

2Γ12 − 1
2Γ13 + ı∆12

)
ρ12 +

ı
2Ω12(ρ11 − ρ22) + ı

2Ω23ρ13

0 =
(
− 1

2Γ12 − 1
2Γ23 + ı∆12

)
ρ23 +

ı
2Ω23(ρ22 − ρ33)− ı

2Ω12ρ13

0 = ı
2Ω23ρ12 − ı

2ℏΩ12ρ23 ,

Eliminating ρ22 in equations I and II gives,

Ω12

Γ12
ρ12 −

Ω12

Γ12
ρ21 =

Ω23

Γ23
ρ23 −

Ω23

Γ23
ρ32 .

Insertion of equation V into this equation gives,

Ω12

Γ12
(ρ12 − ρ21) =

Ω23

Γ23

(
Ω23

Ω12
ρ21 −

Ω23

Ω12
ρ12

)
.

Since ρ12 = ρ21 = ρ∗12, the last expression can only be true for arbitrary Rabi frequen-
cies and decay rates if Im ρ12 = 0 and, hence, ρ22 = 0.
b. The Liouville matrix can be found in the numerical MATLAB code given in the file
’LM Bloch DarkResonance.m’. Fig. 34.22 shows the results of the simulations. The
curves in Fig. 34.22(a) show that the contrast of the dark resonance decreases as the
decay rate of coherence increases.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumOptics/LM_Bloch_ZenoEffect.m
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Figure 34.22: (code) (a) Population of the state excited as a function of the detuning ∆23 for

several decay rates γ13 of the coherence. (b) Real and imaginary part of the susceptibility.

(c) Population of the excited state as a function of the detunings ∆12 and ∆23.

34.8.4.4 Ex: Coherent trapping and dark states

Consider a three-level system |1⟩, |2⟩, and |3⟩ in Λ-configuration interacting with two
electromagnetic fields with frequencies ωa and ωb. The two states |1⟩ and |3⟩ of lower
energies ℏω1 and ℏω3 are coupled to a state |2⟩ of higher energy ℏω2, as illustrated
in Fig. 34.17(a). Assume that the transition |1⟩ ↔ |3⟩ is forbidden and that the
Hamiltonian of the system has the form Ĥ = Ĥ0 + Ĥint where,

Ĥ0 = E1|1⟩⟨1|+ E2|2⟩⟨2|+ E3|3⟩⟨3|
Ĥint = −ℏ

2 (Ω12e
−ıωat|2⟩⟨1|+Ω∗12e

ıωat|1⟩⟨2|)− ℏ
2 (Ω23e

−ıωbt|2⟩⟨3|+Ω∗23e
ıωbt|3⟩⟨2|) .

a. Assuming that the system’s state is described by |ψ⟩ = c1|1⟩ + c2|2⟩ + c3|3⟩ find
the system of equations that describe the dynamics of probability amplitudes ci with
(i = 1, 2, 3).
b. Rewrite the equations for the case where the frequencies of the applied fields are
resonant (that is, ωa = ω2−ω1 and ωb = ω2−ω3). Simplify the system by writing in
terms of the variables ui = cie

ıωit.
c. Assuming the initial condition |ψ(0)⟩ = (|1⟩ + |3⟩)/

√
2, solve the system of equa-

tions for the resonant case and interpret the result.

Solution: a. From the Schrödinger equation

ıℏ
d|ψ⟩
dt

= (Ĥ0 + Ĥint)|ψ⟩

where |ψ⟩ is the state given by the problem, we find the following system of equations,

dc1
dt

= −ıω1c1 +
ıΩ∗

12

2 eıωatc2

dc2
dt

= −ıω2c2 +
ıΩ12

2 e−ıωatc1 +
ıΩ23

2 e−ıωbtc3

dc3
dt

= −ıω3c3 +
ıΩ∗

23

2 eıωbtc2

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_DarkResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_DarkResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_DarkResonance.m
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b. By making the suggested substitutions, the system can be written as,

du1
dt

=
ıΩ∗

12

2 u2

du2
dt

= ıΩ12

2 u1 +
ıΩ23

2 u3

du3
dt

=
ıΩ∗

23

2 u2

c. The initial conditions are as u2(0) = 0 and u1(0) = u3(0) = 1/
√
2, which will give

us solutions of the type,

u1(t) ≃
Ω23√

|Ω12|2 + |Ω23|2
cos

√
(|Ω12|2+|Ω23|2)t

2

u2(t) ≃ 0

u3(t) ≃ −
Ω12√

|Ω12|2 + |Ω23|2
cos

√
(|Ω12|2+|Ω23|2)t

2 .

Hence, the final state can be written as |ψ(t)⟩ = u1(t)|1⟩ + u3(t)|3⟩. It is called a
dark state, because it is independent of the excited state. This result implies that the
population is trapped in the states with lower energy and the phenomenon of absorption
will not occur even in the presence of external fields. The coherent trapping occurs
due to the destructive quantum interference of the two transitions.

34.8.4.5 Ex: Cascade EIT scheme in strontium

Consider the Bloch equations for the 88Sr 7-level system consisting of the following
levels: |1⟩ ≡ (5s2) 1S0, |2 − 4⟩ ≡ (5s5p) 3P1, and |5 − 7⟩ ≡ (5s5d) 3D1, and check
under which circumstances it is possible to observed dark resonances. The Sr level
scheme can be consulted under (Sr level scheme). The Liouvillean can be consulted
at (Sr Liouvillean).

Solution: The results are shown in Fig. 34.23.
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Figure 34.23: (code) Time evolution of the Sr system.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_ResonanciasObscuras03.pdf
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34.8.4.6 Ex: Dark resonances with Zeeman splitting

Calculate the dark resonance spectrum for the Ca+ three-level system with Zeeman
sub-structure consisting of the levels |1⟩ ≡ 2S1/2, |2⟩ ≡ 2P1/2, and |3⟩ ≡ 2D3/2 us-
ing optical Bloch equations. Help: The decay rates are Γ12/2π = 23MHz, Γ23/2π =
1.6MHz, and Γ13/2π = 1Hz. Assume that both incident lasers saturate the transi-
tions, Ω12 = Γ12 and Ω23 = Γ23.

Solution: The results are shown in Fig. 34.24.
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Figure 34.24: (code) Dark resonances in the Ca 3-level system. (red) m = +1/2, (blue)

m = −1/2, (cyan) m = +3/2, and (green) m = −3/2.

34.8.4.7 Ex: STIRAP

In experiments with cold atoms it is often necessary to transfer populations between
ground states, for example, between specific levels of a hyperfine structure. One pos-
sible procedure is the method of optical pumping, from the initial ground state to
an excited state, which subsequently decays to the final state by spontaneous emis-
sion. The problem with this incoherent procedure is, that one can control into which
ground state level the atom will decay, and that it heats atoms due to the photonic
recoil associated with the scattering of light. In this exercise we studied an alternative
method, called Stimulated Raman Adiabatic Passage (STIRAP), which allows the co-
herent transfer of population between two states by counter-intuitive pulse sequences:
a. Consider a three-level system in Λ-configuration, as shown in Fig. 34.17(a), ini-
tially being in the state |1⟩. Write the system’s Hamiltonian in the interaction pic-
ture. Now, choose ∆12 = 0 = ∆23, and a temporal variation of the Rabi frequencies
described by Ω12(t) = Γ12(

1
2 + 1

π arctanΓ12t) and Ω23(t) = Γ12(
1
2 − 1

π arctanΓ12t).
With this, solve the Schrödinger equation (34.287) iteratively within the time interval
t ∈ [−40/Γ12, 40/Γ12], while continuously adjusting the Rabi frequencies.
b. The dynamics can also be calculated via a numerical simulations of the Bloch equa-
tions (34.279). Write down the Liouville matrix and prepare a simulation using the
same parameters as in (b) and additionally Γ23 = Γ12/2, Γ13 = Γ12/500.
c. Interpret the results.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_ResonanciasObscuras04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Ca_8BlochDark.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Ca_8BlochDark.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_TransicaoStirap.pdf
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Solution: a. The Hamiltonian is,

Ĥ = ℏ




0 1
2Ω12 0

1
2Ω12 0 1

2Ω23

0 1
2Ω23 0


 .

It is implemented in the numerical MATLAB code given in the file ’LM Bloch Stirap.m’.
Fig. 34.25(a) shows the temporal variation of the Rabi frequencies. The result of the
simulations is shown in Fig. 34.25(b).
b. The Liouville matrix can be found in the MATLAB numerical code given in the file
’LM Bloch Stirap.m’.
c. Fig. 34.25(c) shows the results of the simulations.
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Figure 34.25: (code) (a) Temporal variation of laser intensities. (b) Variation of the popu-

lations obtained by simulation of the Schrödinger equation, and (c) of the Bloch equations:

ρ11 in red, ρ22 in green, and ρ33 in blue. (Note that the solutions tend to diverge when

the time steps are not significantly shorter than all characteristic time scales of the system,

e.g. the decay rates 1/Γ12.)

34.8.4.8 Ex: Adiabatic sweeps

In experiments with cold atoms it is often necessary to transfer populations between
ground states, for example, between specific levels of a Zeeman structure. One pos-
sible procedure is the method of optical pumping, from the initial ground state to
an excited state, which subsequently decays to the final state by spontaneous emis-
sion. The problem with this incoherent procedure is, that one can control into which
ground state level the atom will decay, and that it heats atoms due to the photonic
recoil associated with the scattering of light. In this exercise we study an alternative
method, called adiabatic sweep, which allows the coherent transfer of population be-
tween the two outer states of a degenerate multiplet, as shown in Fig. 34.26, via an
adiabatic ramp of the frequency of the incident radiation:
a. Write down the Hamiltonian of the system in the interaction picture. Now,
choose Ω/2π = 8kHz and apply a linear ramp of the radiation detuning between
−50 kHz < ∆(t)/2π < 50 kHz during a time interval of 2ms. With this, solve the
Schrödinger equation (34.279) iteratively varying the detuning.
b. Write down the Liouville matrix of the system and do a numerical simulation of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Stirap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Stirap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Stirap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Stirap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Stirap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_AdiabaticSweep.pdf
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the Bloch equations (34.279) using the same parameters as in (a). Interpret the re-
sults. What you observe when you introduce a decay rate between adjacent levels of
Γ/2π = 200Hz?

Figure 34.26: Energy levels of an atom in the ground state with Zeeman structure (for
example, |J = 1,mJ = −1, 0,+1⟩) as a function of the applied magnetic field.

Solution: a. The Hamiltonian is,

Ĥ =




0 1
2Ω 0

1
2Ω ∆ 1

2Ω

0 1
2Ω 2∆


 .

The numerical MATLAB code in is given in the file ’LM Bloch AdiaSweep.m’. A
Fig. 34.27(a) shows the result of the simulations.
b. The numerical MATLAB code in is given in the file ’LM Bloch AdiaSweep.m’. A
Fig. 34.27(b) shows the result of the simulations.
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Figure 34.27: (code) Adiabatic sweep of the detuning of the radiation through resonance.

The curves show the populations of the states |1⟩ (red), |2⟩ (green), and |3⟩ (blue). (a)

Schrödinger equation approach and (b) Bloch equation approach.
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34.8.4.9 Ex: Dispersive interaction between an atom and light

Radiation which is tuned far from a resonance can change the phase of an atomic
dipole moment without changing the populations 22. We study this effect in a three-
level system in cascade configuration excited by two radiation fields, as illustrated in
Fig. 34.17(c), simulating the Schrödinger equation and the Bloch equations.
a. Write down the Hamiltonian Ĥ for this system letting ∆12 = 0.
b. Now, consider the subsystem |2⟩-|3⟩, write down its Hamiltonian Ĥ23, determine
the eigenvalues, and assume that this transition be excited very far-off resonance.
That is, for ∆23 ≫ Ω23,Γ23 expand the eigenvalues of Ĥ23 up to second order in Ω23.
Finally, replace the submatrix Ĥ23 in the complete Hamiltonian Ĥ by the matrix
of the expanded eigenvalues. This procedure corresponds to treating the transition
|2⟩-|3⟩ as a perturbation of the transition |1⟩-|2⟩ until second order.
c. Assume that the atom is initially in the ground state and compute the time evo-
lution of the state via the Schrödinger equation (34.287) using (a) the perturbed
Hamiltonian and (b) the exact Hamiltonian for the following sequence of pulses:
(i) a π/2-pulse on the transition |1⟩-|2⟩,
(ii) a pulse with a variable duration between 0 and ∆t = Ω2

23/4π∆23 applied to the
transition |2⟩-|3⟩,
(iii) a π/2-pulse on the transition |1⟩-|2⟩. What you observe?
d. Establish the Liouville matrix L for the same system and calculate the time evolu-
tion of the Bloch vector during the sequence by the Bloch equations (34.287) choosing
the same parameters as in (c) and additionally Γ23 = 1, Γ13 = Γ23, Γ12 = 0.01Γ23,
and Ω12 ≫ ∆23,Γ23. Prepare a 3D curve [similar to Fig. 34.6(b)] of the population
ρ22(t). Interpret the results.

Solution: a. The Hamiltonian for the system is,

Ĥ12 =




0 1
2Ω12 0

1
2Ω12 0 1

2Ω23

0 1
2Ω23 ∆23


 .

b. The Hamiltonian of the subsystem of the two upper levels is,

Ĥ23 =

(
0 1

2Ω23

1
2Ω23 ∆23

)
.

When excited very far-off resonance, we can expand its eigenvalues for small Ω23,

E1,2 = 1
2 (∆23 ±G23) =

1

2
∆23 ±

1

2
∆23

(
1 +

Ω2
23

2∆23

)
.

By substituting the matrix of corrected eigenvalues in the complete Hamiltonian, we
obtain,

Ĥ ≃




0 1
2Ω12 0

1
2Ω12 − Ω2

23

4∆23
0

0 0 ∆23 +
Ω2

23

4∆23


 .

22This type of interaction is used in the implementation of quantum gates in quantum computing.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_InteracaoDispersiva.pdf
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c. We simulate the evolution of the state to be,

|ψ(t)⟩ = eıĤ
(3)∆t3/ℏeıĤ

(2)∆t2/ℏeıĤ
(1)∆t1/ℏ|ψ(0)⟩ .

The numerical MATLAB code is given in the file ’LM Bloch Dispersive’.
d. We simulate the evolution of the Bloch vector to be,

ρ⃗(t) = eL3∆t3eL2∆t2eL1∆t1 ρ⃗(0) .

The numerical MATLAB code is given in the file ’LM Bloch Dispersive’. Fig. 34.28
shows the result of the simulations. We find that ∆23 must be chosen very large
(> 300) to obtain a really dispersive dynamics.
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Figure 34.28: (code) (red) Evolution of Bloch vector for a sequence of resonant Ramsey

pulses. (blue) Evolution for the occurrence of a dispersive pulse on a transition coupling an

upper level.

34.8.4.10 Ex: Fano profile of a dark resonance

The dark resonance studied in Exc. 34.8.4.3 may in some circumstances adopt an
asymmetric profile. Calculate, for a three-level system in Λ-configuration, as shown
in Fig. 34.17(a), starting from the Bloch equations (34.279) with the Liouville matrix
Mred reduced by the trace condition (34.283), the spectrum ρ22(∆23) for the follow-
ing set of parameters: Γ12 = 2, Γ23 = Γ12/2, Γ23 = 0.1Γ12, Ω12 = 10Γ12, Ω23 = 5Γ23,
∆12 = −5Γ12 and ∆23 = [−1 : .01 : 1]Γ23. Interpret the spectrum in terms of a Fano
resonance.

Solution: a. The numerical MATLAB code is given in the file ’LM Bloch FanoResonance’.
Fig. 34.29 shows the result of the simulations. For strong Rabi frequencies, the posi-
tion of the dark resonance is shifted by the light-shift induced in the two transitions
by a value of δ = ∆12 −∆23. This value corresponds to a two-photon light-shift. The
dark resonance is due to the destructive interference between two one-photon scat-

tering processes: |3⟩ −→ |i⟩ spnt−→ |1⟩ and |1⟩ −→ |i⟩ spnt−→ |3⟩, where |i⟩ is the virtual

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Dispersive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Dispersive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_Dispersive.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_FanoResonance.pdf
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intermediate level. For large detunings, ∆12 ≫ Γ12,Ω12, a small peak appears next
to the dark resonance, which can be interpreted as a Fano resonance. It is due to the

constructive interference between a one-photon scattering process, |3⟩ → |i⟩ spnt−→ |1⟩,
and a three-photons scattering process,|3⟩ → |i⟩ → |1⟩ → |i⟩ spnt−→ |1⟩.

-40 -20 0 20 40

Δ23/Γ23

0.1

0.2

0.3

ρ
22

Figure 34.29: (code) Fano resonance.

34.8.4.11 Ex: Gas with negative permittivity

Study EIT on the strontium cascade system consisting of the transitions 689 nm and
497 nm and draw a spectrum of the permittivity. Compare with the permittivity of
the 689 nm two-level system. What densities are necessary to get a negative permit-
tivity?

Solution: The curves are shown in Fig. 34.30.

Figure 34.30: (code) Negative permittivity.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_FanoResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NegativeRefraction01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Bloch_NegativePermittivity.m


1846 CHAPTER 34. SEMICLASSICAL THEORYOF LIGHT-ATOM INTERACTION

34.8.4.12 Ex: Gas with negative permeability

Theoretically, under certain conditions, gases may exhibit negative permittivity and
permeability, and therefore refraction [1196, 1194, 1195, 968, 769]. To study this phe-
nomenon we consider a three-level system in Λ-configuration with an electric dipole
transition and another magnetic dipole transition. The objective is to balance the
electrical dipole moment excited by a probe laser and the magnetic dipole moment
excited via a Raman transition by both, the probe laser and a control laser. The
Raman transition simulates an effective magnetic field. Since the magnetic moment
is smaller by a factor of α2, the electric moment must be reduced by detuning the
probe laser, as shown in Fig. 34.31.

Figure 34.31:

a. Consider a three-level system in Λ-configuration. The transitions |1⟩-|2⟩ and
|2⟩-|3⟩ are assumed to be electric dipoles and |1⟩-|3⟩ a magnetic dipole, such that,
Γ12,Γ23 ≫ Γ13. Extract from the Bloch equation (34.279) the equations for the co-
herences ρ12, ρ13, and ρ23.
b. Suppose, that the excitation on the probe transition be so weak, Ω12 ≪ Γ12, that
it does not succeed to empty the ground state. In this approximation eliminate the
dynamics of ρ23 and deduce the stationary solution for ρ12 and ρ13.
c. Calculate the magnetic susceptibility χm [1195] with the following parameters
Γ12 = 7 · 107 s-1, Γ23 = 3 · 107 s-1, Γ13 = 2 · 107 s-1, Ω12 = 0.1Γ12, Ω23 = 2 · 108 s-1,
∆23 = 0 in the regime ∆12 = [−15Γ23, 15Γ23].
d. Simulate the Bloch equations (34.279) and compare with the numerical solution.

Solution: a. Assuming stationary populations, we begin by extracting from the equa-
tions (34.279) the equations for coherences,



ρ̇12

ρ̇13

ρ̇23


 =



−Λ12

ı
2Ω23 0

ı
2Ω23 −Λ13 − ı

2Ω12

0 − ı
2Ω12 −Λ23






ρ12

ρ13

ρ23


+



ı
2Ω12(ρ11 − ρ22)

0
ı
2Ω23(ρ22 − ρ33)


 ,

where Λ12 ≡ ı∆12 + 1
2 (Γ12 + Γ23), Λ23 ≡ ı∆23 + 1

2 (Γ12 + Γ23 + Γ13) and Λ13 ≡
i(∆12 −∆23) +

1
2Γ13.

b. Now we let Ω12 ≪ Γ12, such that ρ11 ≃ 1 the system of equations reduces to,
(
ρ̇12

ρ̇13

)
=

(
−Λ12

ı
2Ω23

ı
2Ω23 −Λ13

)
+

(
ı
2Ω12

0

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NegativeRefraction02.pdf
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The steady state is,

ρ12 =
ı
2Λ13Ω12

1
2Ω

2
23 + Λ12Λ13

, ρ13 =
− 1

4Ω12Ω23

1
2Ω

2
23 + Λ12Λ13

.

c. The electrical and magnetic susceptibilities [1196] of the atom are observed in the
probe transition,

χe =
2Nd∗23ρ23
ε0E23

= εr − 1

χm =
2Nµ∗13ρ13
H = µr − 1 .

The Rabi frequencies are ℏΩ12 and,

H = E
√
ε0εr/µ0µr

d. Simulations of the complete Bloch equations give the results shown in Fig. 34.32.
[1196]10.1631/jzus.2004.1322 believes that in practice very high densities of the order
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Figure 34.32:

of 1018 cm-3 are required.

34.8.4.13 Ex: Magnetic dipole transitions in strontium

Magnetic dipole transitions are characterized by the selection rules ∆J = 0,±1,
∆S = 0, ∆L = 0, and ∆n = 0. There are several transitions starting from the
5s5p 3PJ metastable states going to the 5p2 3PJ states with strong linewidths:

• 5s5p 3P o1 ↔ 5p2 3P2 at 472.2278 nm with Γ = (2π) 5.7MHz

• 5s5p 3P o1 ↔ 5p2 3P1 at 478.4320 nm with Γ = (2π) 4.8MHz

Check whether it is possible to reach negative permeability in a cold strontium gas.

Solution: The strontium level scheme can be consulted in ⊙. The strontium lev-
els are listed in ⊙.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_NegativeRefraction03.pdf


1848 CHAPTER 34. SEMICLASSICAL THEORYOF LIGHT-ATOM INTERACTION

34.8.4.14 Ex: Orientation and alignment

Derive the formulas (34.323) and (34.324).

Solution: We calculate orientation,

O = ⟨Ĵ⟩ = Tr ρ̂Ĵ =
∑

m

⟨jm|ρ̂Ĵ|jm⟩ =
∑

m,m′

⟨jm|ρ̂|jm′⟩⟨jm′|Ĵ|jm⟩ .

If the atom is in a superposition of eigenstates (⟨jm|ρ̂|jm′⟩ = ρmmδm,m′), we get,

O =




0

0

⟨Ĵz⟩


 =

∑

m

ℏm z⟨m|ρ̂|m⟩z



0

0

1


 .

Using the rules of the SU(2) algebra for angular momenta Sec. 25.3.2 we find for the
alignment,

(Aij) =



⟨3Ĵ2

x − J2⟩ ⟨[Ĵx, Ĵy]+⟩ ⟨[Ĵx, Ĵz]+⟩
⟨[Ĵx, Ĵy]+⟩ ⟨3Ĵ2

y − Ĵ2⟩ ⟨[Ĵy, Ĵz]+⟩
⟨[Ĵx, Ĵz]+⟩ ⟨[Ĵy, Ĵz]+⟩ ⟨3Ĵ2

z − Ĵ2⟩




=



− 1

2 ⟨3Ĵ2
z − Ĵ2⟩ 0 0

0 − 1
2 ⟨3Ĵ2

z − Ĵ2⟩ 0

0 0 ⟨3Ĵ2
z − Ĵ2⟩


 ,

if the atom is in a superposition of eigenstates (⟨jm|ρ̂|jm′⟩ = ρmmδm,m′). We finally
get,

(Aij) =
∑

m

ℏ2[3m2 − j(j + 1)] z⟨m|ρ̂|m⟩z



−1/2 0 0

0 −1/2 0

0 0 1


 .

34.8.4.15 Ex: Hanle effect in Ca

Simulate the Hanle effect for the Ca+ three-level system of Exc. 34.8.4.6 using optical
Bloch equations.

Solution: The results are shown in Fig. 34.33.

34.9 Further reading

J. Weiner and P-T. Ho, Springer-Verlag, Berlin (2003), Light-Matter Interaction:
Fundamentals and Applications [1364]ISBN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_OrientAlign01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Bloch_Hanle01.pdf
http://isbnsearch.org/isbn/978-0-198-79667-1
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Figure 34.33: (code) Hanle effect for the Ca 3-level system.
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Chapter 35

Atoms in quantized radiation
fields

So far we have treated the optical field only as a stationary or propagating classical
wave, while our two-level atom has been regarded as an entity obedient to the laws
of quantum mechanics and subject to an induced perturbation by an oscillatory elec-
tromagnetic field. This procedure naturally leads to oscillations of the atomic states’
populations and the coherences between them. However, in strong fields, when atomic
energy spectrum is significantly modified, a non-perturbative, time-independent ap-
proach can be fruitful. Time-independent solutions for the Schrödinger equation for
atoms coupled to fields is called dressed states. They were used for the first time to
interpret the splitting of rotational molecular spectra in the presence of intense clas-
sical radiofrequency fields. While the semiclassical treatment is suitable for a wide
variety of phenomena and has the virtue of mathematical simplicity and familiarity,
it is sometimes worth considering the field as a quantum entity as well. In the dressed
states picture, the atom-field interaction corresponds to an exchange of energy quanta
between the field (photons) and the atom. This approach allows us to express pho-
tonic number states, also called Fock states, on equal footings with the discrete states
of atom excitation and to write the state functions of the coupled atom-field system in
a basis of photonic and atomic product states. Diagonalization of the dipole coupling
terms in the system’s Hamiltonian generates time-independent solutions of dressed
states in a completely quantum Schrödinger equation.

We begin this chapter with the quantization of the light field and then express
the atom-field interaction in a fully quantized form. We will examine some examples
illustrating how the dressed states picture can provide useful information on the light-
matter interactions.

35.1 Quantization of the electromagnetic field

We have already seen that the energy of a monochromatic light field with frequency
ω is quantized in small equal portions, such that the total energy is Nℏω, where N
is an integer number. The energy spectrum is the same as the one of the harmonic
oscillator. Therefore, we can identify a light mode with an oscillator and adopt the
entire formalism developed for the harmonic oscillator. The formalism will be assumed
as known in the following. We will, for simplicity use the term photon (respectively
phonon) for excitations of a harmonic oscillator mode. It is however important to be

1851
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aware that a photon is not a particle, as it simply disappears when performing the
transition from quantum to classical mechanics [770].

35.1.1 Field operators

The basic idea behind field quantization is the replacement of the classical harmonic
oscillators discussed in Sec. 24.5 by quantum oscillators. The simplest approach to
perform this quantization is to introduce the scalar potential Φ and the potential
vector A as done in electrodynamic theory 1. In free space, without charges nor
currents, and within the Coulomb gauge we have the solution of the wave equation
(34.5) generalized to a distribution of wavevectors k 2,

A(r, t) =
∑

k

ϵ⃗k[A
+
0ke
−ı(k·r−ωkt) +A−0ke

ı(k·r−ωkt)] , (35.1)

where we already isolated the vectorial character due to the polarization ϵ⃗k of the light
mode k. Obviously, A−0k = (A+

0k)
∗. As each amplitude and polarization of the wave

given by the vector potential Ak and A∗k must satisfy the wave equation separately,
we arrive at the dispersion relation,

ωk = ck . (35.2)

With the results (34.7) and (34.8) we know that the energy in each radiative mode
containing nk photons is,

Ek = ℏωkNk = ukV = 2ε0V ω
2
kA

2
0k = 2ε0V ω

2
k(A

−
0kA

+
0k +A+

0kA
−
0k) , (35.3)

where the bar denotes cycle-averaging. The second quantization now consists in
interpreting the mode as a quantum harmonic oscillator, that is, we understand the
observables as operators satisfying commutation rules, such as [Â−0k, Â

+
0k′ ] ∝ δk,k′ ,

and hence being affected by quantum fluctuations:

Ĥk = ℏωk(n̂k + 1
2 ) = 2ε0V ω

2
k(Â

−
0kÂ

+
0k + Â+

0kÂ
−
0k) . (35.4)

We introduce normalized field operators following the commutation rule (24.76) via,

âk

√
ℏ

4ε0V ωk
≡ Â+

0k and â†k

√
ℏ

4ε0V ωk
≡ Â−0k , (35.5)

such that,
Ĥk = ℏωk(â

†
kâk + 1

2 ) . (35.6)

The analogy allows us to interpret them as creation operator and annihilation operator
of photons. Finally, we can rewrite (35.1) as,

Âk(r, t) =
√

ℏ
4ε0V ωk

ϵ⃗k

[
âke
−ı(k·r−ωkt) + â†ke

ı(k·r−ωkt)
]
. (35.7)

1See Sec. 17.3
2The atom-light interaction may depend on the polarization of the light with respect to the

quantization axis of the atom, as defined e.g. by a magnetic field. In these cases we need to extend
the index k to include the polarization state (k, λ).
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We already know such combinations of operators and their complex conjugates from
the quantum harmonic oscillator (24.86).

In the Coulomb gauge, the electric and magnetic field operators for the cavity
modes can be constructed from,

ˆ⃗Ek = −∂Âk

∂t
= ı
√

ℏωk

2ε0V

(
âke
−ı(k·r−ωkt) − â†keı(k·r−ωkt)

)
ϵ⃗k

ˆ⃗Bk = ∇×Ak = ı
√

ℏωk

2ε0V

(
âke
−ı(k·r−ωkt) − â†keı(k·r−ωkt)

)
k× ϵ⃗k

. (35.8)

We can calculate the cycle-averaged energy of the k-th cavity mode from a quantum
version of Eq. (35.3),

Ēk = ε0
2

∫
⟨nk| ˆ⃗Ek · ˆ⃗Ek|nk⟩dV . (35.9)

The result (35.6) is exactly Planck’s quantum hypothesis (although strictly speak-
ing, he rather suggested a quantization of oscillators in the conducting walls of the
cavity, not of the field) on the distribution of the spectral intensity radiated by a black
body. We now can see that it follows naturally from the quantization of the cavity
field modes. Solve Excs. 35.1.5.1 and 35.1.5.2.

35.1.2 Interaction of quantized fields with atoms

With the results of the previous section the complete field Hamiltonian reads,

Ĥfield =
∑

k

ℏωk(â
†
kâk + 1

2 ) . (35.10)

Now, that we have a clear picture of the quantized field with the energies in the
modes given by Eq. (35.9) and the photon number states given by the eigenstates |n⟩
of the quantized harmonic oscillator, we are in a position to consider our two-level
atom interacting with this quantized radiation field. If for the moment, we exclude
spontaneous emission and stimulated processes, the Hamiltonian of the combined
atom-field system is,

Ĥ = Ĥatom + Ĥfield + Ĥatom:field . (35.11)

We describe the atom by a two-level system,

Ĥatom = ℏωg|g⟩⟨g|+ ℏωe|e⟩⟨e| = ℏωg|g⟩⟨g|+ ℏ(ωg + ω0)|e⟩⟨e| , (35.12)

where Ĥfield is the Hamiltonian of the quantized field, expressed by Eq. (35.6), and

Ĥatom:field the atom-field interaction. For the Hamiltonian without interaction, Ĥ =

Ĥatom + Ĥfield, the eigenstates are simply product states of the atomic states and
the photon number states,

|g, n⟩ = |g⟩|n⟩ and |e, n⟩ = |e⟩|n⟩ . (35.13)

The left side of Fig. 35.1 shows, how the eigenenergies of the product states consist
of two ladders, being displaced by the energy difference ℏ∆, which corresponds to the
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detuning. We write the Hamiltonian of the atom Eq. (35.12) as the sum of projectors
on unperturbed eigenstates using the completeness relation and the orthogonality
of eigenstates. With the same idea we can rewrite the dipole operator defined in
Eq. (34.33),

d̂ =
∑

i

|ψi⟩⟨ψi|d̂|
∑

j

|ψj⟩⟨ψj | =
∑

i,j

|i⟩⟨i|eı(ωi−ωj)td̂|j⟩⟨j| (35.14)

=
∑

i,j

eı(ωi−ωj)tdij |i⟩⟨j| =
∑

i<j

eı(ωi−ωj)tdij |i⟩⟨j|+ e−ı(ωi−ωj)tdij |j⟩⟨i| ≡ d̂(+) + d̂(−) .

using |ψn(t)⟩ = e−ıωnt|n⟩. Note that d̂ only has non-diagonal elements.

Figure 35.1: (Left) Photons number states and the two stationary states of the two-levels
atom. (Center) Double ladder showing the basis of products states of photon number and
atomic states. (Right) Dressed states constructed by diagonalization of the full Hamiltonian
in the basis of the product states.

Now, let us use the electric field of Eqs. (35.8) to describe the atom-field interaction

through the Hamiltonian Ĥatom:field = −d̂ · ˆ⃗E ,

Ĥatom:field = ı
∑

k

∑

i,j

√
ℏωk

2ε0V
dije

ı(ωj−ωi)t|i⟩⟨j| · ϵ⃗k
[
âke
−ı(k·r−ωkt) − â†keı(k·r−ωkt)

]
.

(35.15)
For our two-level atom interacting with a single mode radiation field, we only have,

Ĥatom:field = ı
√

ℏωk

2ε0V
dge

[
eı(ωe−ωg)t|g⟩⟨e|+ eı(ωg−ωe)t|e⟩⟨g|

]
· (35.16)

·⃗ϵk
[
âke
−ı(k·r−ωkt) − â†keı(k·r−ωkt)

]
.

35.1.2.1 Rotating wave approximation for dressed states

We can simplify the notation by identifying σ̂+ = |e⟩⟨g| and σ̂− = |g⟩⟨e| of the
Eqs. (34.161) and introducing as an abbreviation the Rabi frequency,

1
2ℏΩ1(r) ≡

√
ℏωk

2ε0V
dge · ϵ⃗keık·r . (35.17)



35.1. QUANTIZATION OF THE ELECTROMAGNETIC FIELD 1855

The interaction Hamiltonian then becomes,

Ĥatom:field =
ı
2ℏΩ1(r)e

ı(ωk−ω0)tσ̂+âk + ı
2ℏΩ1(r)e

ı(ωk+ω0)tσ̂−âk (35.18)

− ı
2ℏΩ

∗
1(r)e

−ı(ωk+ω0)tσ̂+â†k − ı
2ℏΩ

∗
1(r)e

−ı(ωk−ω0)tσ̂−â†k .

This Hamiltonian contains four terms describing the following processes 3,

|g, n⟩ −→ |e, n− 1⟩ the atom is excited by the absorption of a photon;

|e, n⟩ −→ |g, n− 1⟩ the atom is deexcited by the absorption of a photon;

|g, n⟩ −→ |e, n+ 1⟩ the atom is excited by the emission of a photon;

|e, n⟩ −→ |g, n+ 1⟩ the atom is deexcited by the emission of a photon.

Obviously, only the first and forth terms respect energy conservation (in first-order
processes) and can serve as initial and final states in real physical processes. Fig. 35.3
shows schemes of these four terms. We see, that neglecting the second and third
process (i.e., terms ∝ σ̂±â± of the Hamiltonian) is equivalent to making the rotating
wave approximation (RWA), where we despise the terms rotating with the frequency
±(ωk + ω0), and that we really only need to consider the coupling between the two
dressed states |g, n⟩ and |e, n− 1⟩.

Finally, within the RWA the Hamiltonian reads,

Ĥatom:field =
ı
2ℏΩ1(r)e

−ı∆ktσ̂+âk − ı
2ℏΩ

∗
1(r)e

ı∆ktσ̂−â†k , (35.19)

where we introduced the detuning ∆k ≡ ωk − ω0 as short hand notation.

Figure 35.2: Two-level atom interacting with a cavity mode.

It is important to note that the first and fourth term can be important in higher
order processes, such as multiphotonic absorption or Raman scattering processes,
where the excited state would be a virtual level. In fact, when the Rabi frequency
is very large, Ω1 ≃ ω, the excitation and deexcitation processes follow each other so
rapidly, that energy conservation can be violated for short times. The energy shift
caused by terms neglected in the RWA are called Bloch-Siegert shift 4.

3Remember that the four processes contained in the Hamiltonian are all coherent (absorption and
stimulated emission), and that spontaneous emission must be treated separately see next Sec. 35.6.

4The shift is not observed, when the non-rotating terms σ±a± are forbidden by other conservation
or selection rules. For example, when a resonance is excited by σ± light, the RWA is accurate.



1856 CHAPTER 35. ATOMS IN QUANTIZED RADIATION FIELDS

35.1.3 Dressed states

Within the new dressed states basis, the atom-light coupling problem is reduced to
diagonalizing the Hamiltonian of a quasi-degenerate two-level atom (|∆| ≪ ω0), in
which the non-diagonal elements are given by 1

2ℏΩ1. The eigenenergies of the complete

Hamiltonian Ĥ are,

E± = ℏ
2 (ωg,n + ωe,n−1)± ℏ

2Gn . (35.20)

where ℏωg,n and ℏωe,n−1 are the energies of the product states ℏωg + nℏωk and
ℏωe + (n − 1)ℏωk. The separation between constituents of the same dressed state is
Gn =

√
nΩ2

1 +∆2. Fig. 35.4 illustrates how the coupling between a field mode and a
two-level atom leads to an avoided crossing.

Figure 35.3: Illustration of the four processes in the atom-field interaction. Terms (b) and
(c) conserve energy in first-order processes, while (a) and (d) do not conserve.

The atom-field product states offer a natural basis for the Hamiltonian of Eq. (35.11).
The states resulting from the diagonalization of the Hamiltonian on this basis are
called dressed states. As indicated in Fig. 35.1, the neighboring doublets the dou-
ble ladder ’repel’ each other under the influence of the interaction Ĥatom:field in
Eq. (35.11). The mixed coefficients form the familiar problem of two levels, now
called |a⟩ and |b⟩. Note that the semiclassical product state picture and the dressed
states picture follow from each other via unitary transformation,

(
|a,N⟩
|b,N⟩

)
= U

(
|g, n⟩
|e, n− 1⟩

)
, (35.21)

and, hence, are equivalent descriptions of the same reality. But while in the product
state picture the system Hamiltonian is diagonal in the absence of atom-light inter-
action, in the dressed states picture the Hamiltonian is diagonal in the presence of
interaction. The numbers n denote the amount of photons in the laser beam, the num-
bers N denote the amount of energy packets within the system, that is, the photons
plus the possible excitation of the atom. The expression of the unitary transformation
matrix will be derived in Sec. 35.4.1.

35.1.4 Dipole moments for vector transitions

Until now, we restricted to transitions between two levels without accounting for
their possible substructure, which interacts with the vectorial nature of the driving
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Figure 35.4: (a) Rabi splitting of the lowest dressed states. (b) Avoided crossing of dressed
states.

light fields. Resuming the discussion of Sec. 34.2.3, we generalize the treatment of
the preceding section considering a two-level atom with an arbitrary hyperfine level
substructure |g, (I, J)F,m⟩ ↔ |e, (I, J ′)F ′,m′⟩. The Hamiltonian is,

Ĥ =
∑

α,β

ℏωgα|gα⟩⟨gα|+ ℏωeβ |gβ⟩⟨gβ | . (35.22)

Generalizing the expression (35.14) to vectorial transitions, the electric dipole operator
reads,

d̂ =
∑

i,j

|i⟩⟨i|eı(ωi−ωj)td̂|j⟩⟨j| (35.23)

=
∑

α,β

|gα⟩⟨gα|eı(ωgα−ωeβ)td̂|eβ⟩⟨eβ |+ |eβ⟩⟨eβ |e−ı(ωgα−ωeβ
)td̂|gα⟩⟨gα| .

Example 204 (Vector transition in strontium): The simplest possible vec-
torial level scheme consists of one ground and three excited Zeeman states, such
as realized, for instance, in the strontium 1S0-

1P1 transition,

Ĥstrontium =
∑
β

ℏωeβ |gβ⟩⟨gβ | , (35.24)

setting ωga ≡ 0. For strontium, we may introduce the vectorial lowering operator
[365],

ˆ⃗σ = σ̂xêx+ σ̂yêy+ σ̂z êz with σ̂β = |g⟩⟨eβ | with β = x, y, z . (35.25)

In this case, the electric dipole operator reads,

d̂strontium =
∑
β

|g⟩⟨g|e−ıωeβtd̂|eβ⟩⟨eβ |+ |eβ⟩⟨eβ |eıωeβtd̂|g⟩⟨g| (35.26)

= d
∑
β

e−ıωeβt|g⟩⟨eβ |êβ + c.c. = de−ıωet ˆ⃗σ + c.c. ,

with ⟨g|d̂|eβ⟩ = dêβ and ωeβ = ωe.
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35.1.5 Exercises

35.1.5.1 Ex: Photon statistics

An optical resonator contains on average 10 photons in the mode TEM00q. What
is the probability of finding, at any time, 1 photon resp. 10 photons, when the light
is (a) thermal, (b) coherent? For case (a), what is the temperature of the light for
λ = 633 nm?

Solution: a. For thermal light,

Pn =
n̄n

(1 + n̄)n+1
,

such that P1 = 0.083 and P10 = 0.035. The temperature of the light can be evaluated
from,

n̄ =
1

eℏω/kBT − 1
,

yielding T1 = 32800K, respectively, T10 = 238000K.
b. For coherent light,

Pn = en̄
n̄n

n!
,

such that P1 = 4.5× 10−4 and P10 = 0.13.

35.1.5.2 Ex: Converting a pure state into a mixture by incomplete
measurement

Consider a dressed two-level atom with the atomic states |1⟩ and |2⟩ and the photon
number state |n⟩.
a. Write down the general normalized dressed state and the density operator.
b. Now, perform a measurement of the atomic state tracing over the atomic degree of
freedom and verify whether the resulting density operator represents a pure state.
c. Now, perform a measurement of the photon number and verify whether the result-
ing density operator represents a pure state.

Solution: a. The state reads |ψ⟩ = 1√
2
|1, n⟩+ 1√

2
|2, n− 1⟩. The density operator

ρ̂AB = |ψ⟩⟨ψ| = 1
2 |1, n⟩⟨1, n|+ 1

2 |2, n− 1⟩⟨1, n|+ 1
2 |1, n⟩⟨2, n− 1|+ 1

2 |2, n− 1⟩⟨2, n− 1|

obviously represents a pure state, ρ̂2AB = ρ̂AB.
b. Tracing over the atomic states,

ρ̂B ≡ TrA ρ̂AB =
∑

i=1,2

⟨i|ρ̂AB |i⟩ = 1
2 |n⟩⟨n|+ 1

2 |n− 1⟩⟨n− 1| ,

which is not a pure state,

ρ̂2B = 1
4 |n⟩⟨n|+ 1

4 |n− 1⟩⟨n− 1| ≠ ρ̂B .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_DressedStatistics01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_DressedStatistics02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_DressedStatistics02.pdf
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c. Tracing over the photon numbers,

ρ̂A ≡ TrB ρ̂AB =
∑

m

⟨m|ρ̂AB |m⟩ = 1
2 |1⟩⟨1|+ 1

2 |2⟩⟨2|

with
ρ̂2A = 1

4 |1⟩⟨1|+ 1
4 |2⟩⟨2| ≠ ρ̂A .

35.1.5.3 Ex: Photon wavefunction

a. Show that for the photonic wavefunction Ψ and the current density J [1134],

Ψ = Ψ+ +Ψ− with Ψ± =
√

ε0
2 E⃗± ± ı

√
1

2µ0
B⃗± and σ̂Ψ± = ±Ψ±

J = Jf +∇×M+
∂P

∂t
,

where E⃗ ≡ E⃗+ + E⃗− and B⃗ ≡ B⃗+ + B⃗− are the real electric and magnetic fields of the
photon and σ̂ is the helicity, the Bialynicki-Birula-Sipe wave equation

ıℏ
∂Ψ

∂t
= ℏcσ̂∇×Ψ− ıℏ√

2ε0
J and ∇ ·Ψ = 0

is equivalent to the Maxwell equations.
b. Use the plane wavefunction

Ψ ≡
∑

s

∫
d3k
√

ℏω
(2π)3 e

ı(k·r−ωt)âksêks

to calculate the total energy Ĥ = 1
2

∫
d3r[Ψ†(r, t),Ψ(r, t)]+.

Solution: a. In vacuum, separating the Eq. by real and imaginary parts, we im-
mediately verify,

ıℏ
∂(Ψ+ +Ψ−)

∂t
= ℏc∇× (Ψ+ −Ψ−) and ∇ ·Ψ± = 0

and substituting,

1
µ0
∇×B = ε0

∂E

∂t
+ J and ∇×E = −∂B

∂t
and ∇ ·E = 0 = ∇ ·B .

b. Inserting the plane wave we calculate,
∫
d3rΨ†(r, t)Ψ(r, t)

= 1
(2π)3

∑

s,s′

∫
d3k

∫
d3k′

(
ℏ
√
ωω′â†ksâk′s′ϵksϵk′s′

∫
d3re−ı[(k−k

′)·r−(ω−ω′)t]

)

=
∑

s,s′

∫
d3k

∫
d3k′

(
ℏ
√
ωω′â†ksâk′s′δs,s′δ

3(k− k′)
)
=
∑

s

∫
d3k ℏω|âks|2 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_DressedStatistics03.pdf
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and consequently,

Ĥ = 1
2

∫
d3r[Ψ†(r, t),Ψ(r, t)]+ =

∑

s

∫
d3k ℏω(â†ksâks +

1
2 ) .

35.2 (Quasi-)probability distribution functions of the
coherent state basis

In the previous section we have seen that a light mode can be identified with a har-
monic oscillator, which enabled us to harness the whole powerful formalism developed
in Secs. 24.5 and 24.6 for the characterization of the quantum states of light. As we
have seen in those sections, quantum observables are intrinsically affected by quantum
noise, which leads to a spreading of their representation in phase space. For the case
of Glauber states of a harmonic oscillator we illustrated in Fig. 24.19 the uncertainty
of conjugate variables by circles around their expectation values whose areas are de-
termined by the Heisenberg uncertainty relation. These circular areas represent phase
space probability distribution functions. These are distribution functions measuring
the probability to encounter the observables at specific points in phase space.

States other than Glauber states are possible, for instance Fock or cat states. Some
of these states may exhibit quantum correlations, which we would like to identify in
probability distributions. Quantum correlations in systems with small Hilbert spaces,
such as the two-level atom, are conveniently represented by a density operator or by
the Bloch vector introduced in Eq. (23.47). Large or infinite Hilbert spaces require
different approaches. We have seen in Sec. 24.6.1 how to expand the state of a
harmonic oscillator on a Fock state basis. On the other hand, we have seen that
Glauber states are more ’natural’ states for a harmonic oscillator, so that we would
like to visualize expansions of arbitrary states into a coherent state basis.

The following sections are devoted to introducing various such distribution func-
tions [1184, 1160] and to calculating them for a selection of particular states, such
as the Fock and the Glauber state, the thermal state, and the Schrödinger cat state.
We will mostly restrict the discussion to pure states, postponing a discussion of the
representation of statistical mixtures to Sec. 35.4, where we will also extend the dis-
cussion to quantum correlations in light fields resulting from a Jaynes-Cummings type
interaction of an atom with a light mode.

35.2.1 The density operator and distribution functions

35.2.1.1 The density operator

We define the density operator for a pure state as,

ρ̂ ≡ |ψ⟩⟨ψ| . (35.27)

A detailed discussion of the density operator for non pure states, that is, statistical
mixtures has been given in Sec. 34.3. The definition (35.27) is independent from
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a chosen basis, but a proper representation can be found by simply expanding the
state |ψ⟩ on a proper basis. The expansion we had in mind in Sec. 34.3.2 was on
eigenstates of atomic excitations, which are typically discrete and limited in number.
The expansion of the density operator in the infinite but discrete spectrum of Fock
states is essentially the same as for atomic excitations and thus straightforward,

ρ̂ =
∑

n

|n⟩ρ̂⟨n| ≡
∑

n

pn|n⟩⟨n| (35.28)

=⇒ pm = ⟨m|ρ̂|m⟩ =
∑

n

pn|⟨m|n⟩|2

=
∑

n

pnδmn = pm ,

where the first line can be read as a definition of the photon number distribution
function pn. An analogous expansion in the continuous Glauber basis is, however,
more complicated, because the coherent states are not orthogonal,

ρ̂ = 1
π

∫
ρ̂|α⟩⟨α|d2α ≡

∫
P (α, α∗)|α⟩⟨α|d2α (35.29)

=⇒ πQ(β, β∗) ≡ ⟨β|ρ̂|β⟩ =
∫
P (α, α∗)|⟨β|α⟩|2d2α

=

∫
P (α, α∗)e−|α−β|

2

d2α ̸= P (β, β∗) .

That is, we end up with two distribution functions, the so-called P -function P (α, α∗)
(or Glauber-Sudarshan representation) and the Q-function Q(α, α∗) (or Husimi rep-
resentation) which, according to (35.29) they are not equal. Before we deepen the
discussion in the upcoming sections let us already state here, that the reason for the
complication is rooted in the non-commutativity of the field operators [â, â†] = 1.
Indeed, expressing the density operator of a system as a function of field operators
we have (at least) two choices called the normal-ordered arrangement (label N) and
the antinormal-ordered arrangement (label A),

ρ̂N (â, â†) =
∑

m,n

cm,nâ
†mân and ρ̂A(â, â

†) =
∑

m,n

cm,nâ
mâ†n . (35.30)

Although both expressions can be converted into each other, the functional form of
the density operator depends on the arrangement. We will show in Exc. 35.2.5.1
that the P (α, α∗)-function defined by the first line of (35.29) is more natural for the
antinormal-ordered density operator ρ̂A, while the Q(α, α∗)-function defined by the
second line of (35.29) is more natural for the normal-ordered density operator ρ̂N :

ρN (α, α∗) = 1
πQ(α, α∗) and ρA(α, α

∗) = πP (α, α∗) . (35.31)

We will discuss the distribution functions more deeply in the upcoming sections.
To prepare the subsequent derivations, let us define the two-dimensional complex

Fourier transform by,

(Fχ)(β, β∗) = 1
π

∫
χ(α, α∗)eβα

∗−β∗αd2α , (35.32)
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with d2λ = dRe λ dIm λ = drλdpλ. Twofold application of the Fourier transform
reproduces the original function,

(FFχ)(γ, γ∗) = 1
π

∫
(Fχ)(β, β∗)eγβ∗−γ∗βd2β (35.33)

= 1
π2

∫
χ(α, α∗)

∫
eβ

∗(γ−α)−β(γ∗−α∗)d2βd2α

= 1
π2

∫
χ(α, α∗)π2δ(2)(γ − α)d2α = χ(γ, γ∗) ,

where we used,

δ(2)(α) = 1
π2

∫
eλ

∗α−λα∗
d2λ . (35.34)

The formula (35.34) can be extended to include field operators [1184],

δ(α∗ − â†)δ(α− â) = 1
π2

∫
e−λ(α

∗−â†)eλ
∗(α−â)d2λ (35.35)

δ(α− â)δ(α∗ − â†) = 1
π2

∫
eλ

∗(α−â)e−λ(α
∗−â†)d2λ ,

which will be useful in the following.

35.2.1.2 The Glauber-Sudarshan P -distribution

The Glauber-Sudarshan P -function can be formally defined by [1184],

P (α, α∗) ≡ Tr ρ̂δ(α∗ − â†)δ(α− â) . (35.36)

The definition (35.29) of the P -function, that is,

ρ̂ ≡
∫
P (α, α∗)|α⟩⟨α|d2α , (35.37)

is equivalent to the definition (35.36), as will be verified in Exc. 35.2.5.2. From (35.37)
we see, that the Glauber-Sudarshan P -function is just the distribution that leaves the
density matrix diagonal in the coherent state basis. Since ρ̂ is Hermitian, P (α, α∗)
is real, and since Tr ρ̂ = 1, it is normalized,

∫
P (α, α∗)d2α = 1. Hence, the P -

distribution functions can be interpreted as the probability of finding the coherent
state |α⟩ within the statistical mixture given by (35.37).

In order to unravel its properties let us consider an arbitrary operator Ô being a
function of the field operators â and â†. Using the commutation rule [â, â†] = 1 the
operator can always be brought in normal-ordered form,

ÔN (â, â†) =
∑

m,n

om,nâ
†mân . (35.38)

The expectation value of this operator is,

⟨ÔN (â, â†)⟩ = Tr ρ̂ÔN (â, â†) =
∫
P (α, α∗)ON (α, α∗)d2α , (35.39)

as we will show in Exc. 35.2.5.3.
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35.2.1.3 The Husimi Q-distribution

The Husimi Q-function is formally defined by [1184],

Q(α, α∗) ≡ Tr ρ̂δ(α− â)δ(α∗ − â†) . (35.40)

The definition (35.29) of the Q-function, that is,

⟨α|ρ̂|α⟩ = πQ(α, α∗) , (35.41)

is equivalent to the definition (35.36), as will be verified in Exc. 35.2.5.2. From (35.41)
we see, that the Q-distribution function can be interpreted as the expectation value
of the density operator (35.27).

The expression resembles Eq. (35.36) except for the order of the δ-functions. We
now consider the same arbitrary operator Ô as in (35.38), but now expressed in
antinormal ordered form of the field operators â and â†,

ÔA(â, â
†) =

∑

m,n

om,nâ
mâ†n . (35.42)

As we will show in Exc. 35.2.5.3, the expectation value of this operator is,

⟨ÔA(â, â†)⟩ = Tr ρ̂ÔA(â, â
†) =

∫
Q(α, α∗)OA(α, α

∗)d2α . (35.43)

35.2.1.4 The Wigner-Weyl distribution

The Wigner function represents something like the spectrum of two-dimensional
phase-space correlation function. For a pure state and a one-dimensional system
it is defined by,

W (x, p) ≡ 1
π

∫ ∞

−∞
⟨ψ|x+ y⟩⟨x− y|ψ⟩e2ıpy/ℏdy . (35.44)

Example 205 (Wigner function of a free particle in 3D): For example,
for a free particle described by the wavefunction in three-dimensional space,

⟨r|ψ⟩ = 1√
V
eık·r ,

the Wigner function is,

W (r,p) =
1

π3

∫ ∞
−∞

1√
V
e−ık·(r+x) 1√

V
eık·(r−x)e(2ı/ℏ)p·xd3x

=
1

π3V

∫ ∞
−∞

e−2ı(k−p/ℏ)·xd3x = 1
V
δ3(p− ℏk) .

For a harmonic oscillator, we would like to embed the Wigner function into the
formalism of the coherent states distribution functions, such that it can be used to
evaluate expectation values,

⟨ÔS(â, â†)⟩ = Tr ρ̂ÔS(â, â
†) =

∫
W (α, α∗)OS(α, α

∗)d2α , (35.45)

where the index S denotes symmetric order. How this can be done will be detailed
in the next section and in Exc. 35.2.5.3.
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Example 206 (Symmetric order): Simple examples for Wigner-Weyl order-
ing are,

ââ† = 1
2
(ââ† + â†â)− 1

2

â†â = 1
2
(ââ† + â†â) + 1

2

â2â† = 1
2
(â2â† + â†â2) + â

ââ†â = 1
2
(â2â† + â†â2)

â†â2 = 1
2
(â2â† + â†â2)− â .

35.2.2 Relation between the P , Q, and Wigner distributions

All three distribution function studied here, the P , the Q, and the Wigner distribu-
tions can be brought into a common generic shape writing the density operator as
[1184],

ρ̂ = π

∫
FX(α, α∗)∆X(α− â, α∗ − â†)d2α

with ∆N (α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)+λ∗(α−â)e−|λ|
2/2d2λ

∆S(α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)+λ∗(α−â)d2λ

∆A(α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)+λ∗(α−â)e|λ|
2/2d2λ

, (35.46)

with the indices X = N,S,A and the respective distribution functions FN = P ,
FS = W , and FA = Q. A useful formula helping us to break down the exponential
functions is obtained from Glauber’s formula (23.210) applied to the displacement

operator D(α) = eλâ
†−λ∗â defined in (24.111),

eλâ
†−λ∗â = e−λ

∗âeλâ
†
e|λ|

2/2 = eλâ
†
e−λ

∗âe−|λ|
2/2 . (35.47)

as it allows us to rewrite the formulas (35.46) as,

∆N (α− â, α∗ − â†) = F [e−λ∗âeλâ
†
] (35.48)

∆S(α− â, α∗ − â†) = F [eλâ
†−λ∗â]

∆A(α− â, α∗ − â†) = F [eλâ
†
e−λ

∗â] .

Inserting the density operator (35.46) into definition (35.36) of the Glauber-Sudarshan
P -function we calculate,

P (α, α∗) = Tr ρ̂δ(α∗ − â†)(α− â) (35.49)

= 1
π2

∫
eλ

∗α−λα∗
Tr ρ̂eλâ

†
e−λ

∗âd2λ = F [χN (λ, λ∗)] ,
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where we defined the so-called normal-ordered characteristic function χN ≡ Tr ρ̂eλâ
†
e−λ

∗â.
Similarly, inserting the density operator (35.46) into definition (35.40) of the Husimi
Q-function we calculate,

Q(α, α∗) = Tr ρ̂δ(α− â)(α∗ − â†) (35.50)

= 1
π2

∫
eλ

∗α−λα∗
Tr ρ̂e−λ

∗âeλâ
†
d2λ = F [χA(λ, λ∗)] ,

where we defined the antinormal-ordered characteristic function χA ≡ Tr ρ̂e−λ
∗âeλâ

†
.

By analogy we find for the Wigner distribution,

W (α, α∗) = F [χA(λ, λ∗)] = 1
π2

∫
eλ

∗α−λα∗
Tr ρ̂eλâ

†−λ∗âd2λ . (35.51)

In summary, the three coherent distribution functions are expressed by inverse
Fourier transforms of the following characteristic functions 5,

χN (λ, λ∗) = Tr ρ̂eλâ
†
e−λ

∗â , P = FχN

χS(λ, λ
∗) = Tr ρ̂eλâ

†−λ∗â , W = FχS

χA(λ, λ
∗) = Tr ρ̂e−λ

∗âeλâ
†

, Q = FχA

. (35.52)

We see that the distribution functions χN,S,A are related to each other via (35.47).
We derive in Exc. 35.2.5.4 the so-called disentangling theorem [504],

e−|λ|
2/2χN (λ) = χS(λ) = e|λ|

2/2χA(λ) . (35.53)

Thus, Q-function corresponds to a smoothed Wigner function, which in turn cor-
responds to a smoothed P -function. The inverse complex Fourier transformation
converts the products in (35.53) into convolutions. Exploiting the useful integral
formula,

1
π

∫
e−a|λ|

2+bλ+cλ∗
d2λ = 1

ae
bc/a , (35.54)

we find,

W = P ⋆
2

π
e−2|λ|

2

and Q =W ⋆
2

π
e−2|λ|

2

= P ⋆
1

π
e−|λ|

2

. (35.55)

What still needs to be proven is, that the generic definition of the distribution function
(35.49), (35.50), and (35.51) coincides with the earlier definitions (35.36), (35.40), and
(35.44). This will be done in Exc. 35.2.5.5. Also solve the Excs. 35.2.5.6 to 35.2.5.7.

Example 207 (Generalized phase space representations): The fact that
the probability distributions Q, W , and P are intrinsically connected sug-
gests setting up a generalized formalism based on the displacement operator

5For pure states, the definition of the characteristic functions is simplified to,

χX(λ, λ∗) = ⟨ψ|...|ψ⟩ .
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D(α)|0⟩ = eλâ
†−λ∗â|0⟩ = |α⟩ introduced in (24.111) and the parity operator Πs

[732]. Defining the s-parametrized probability distribution,

Xρ(α, s) = Tr ρ̂D(α)ΠsD
†(α) −→ ⟨ψ|D(α)ΠsD

†(α)|ψ⟩ , (35.56)

where the second expression holds for pure states, we recover the probability
distributions Q, W , and P from,

Qρ(α) ≡ Xρ(α,−1) with Π−1 =
∑
m,n

δn0δmn|m⟩⟨n| (35.57)

Wρ(α) ≡ Xρ(α, 0) with Π0 =
∑
m,n

2eıπnδmn|m⟩⟨n|

so that Π0|α⟩ =
∑
n

2eıπn|n⟩⟨n|α⟩ =
∑
n

2e−|α|
2/2 (−α)n√

n!
|n⟩ = 2| − α⟩

Pρ(α) ≡ Xρ(α, 1) with Π1 =
∑
m,n

∞δmn|m⟩⟨n| .

In particular, for the vacuum state we calculate,

Q|0⟩(α) =
∑
n

⟨0|D(α)δn0|n⟩⟨n|D†(α)|0⟩ = |⟨0| − α⟩|2 = e−|α|
2

(35.58)

W|0⟩(α) =
∑
n

⟨0|D(α)2eıπn|n⟩⟨n|D†(α)|0⟩ = 2
∑
n

eıπn|⟨n| − α⟩|2 = 2e−2|α|2

P|0⟩(α) = ... = δ(2)(α) .

The convolution of distribution functions yields,

[Y ⋆ X](α) =

∫
[D−1(α)Y (α′)]X(α′)dα′ =

∫
Y (α′ − α)X(α′)dα′

X|0⟩(α, s
′) ⋆ Xρ(α, s) = Xρ(α, s+ s′ − 1) . (35.59)

For example,

P|0⟩(α) ⋆ Xρ(α, s) = X|0⟩(α, 1) ⋆ Xρ(α, s) = Xρ(α, s) . (35.60)

identifying the Glauber-Sudarshan distribution as the identity operator, and

W|0⟩(α) ⋆ Wρ(α) = X|0⟩(α, 0) ⋆ Xρ(α, 0) = Xρ(α,−1) = Qρ(α) . (35.61)

35.2.3 Characteristic functions for arbitrary HO states in the
Fock basis

The various states that a light field can adopt can now be expressed either by photon
number distribution in a Fock state basis, or by two-dimensional weighting functions
P,Q,W in a coherent state basis. Here, are some examples for these representations.

If a state of a harmonic oscillator can be expanded into Fock states,

|ψ⟩ =
∑

n

cn|n⟩ , (35.62)



35.2. (QUASI-)PROBABILITY DISTRIBUTION FUNCTIONS OF THE COHERENT STATE BASIS1867

the normal-ordered characteristic function (35.52) will be composed of terms like

⟨m|eλâ†e−λ∗â|n⟩. To evaluate these terms, we begin calculating 6,

âk|n⟩ =
√

n!

(n− k)! |n− k⟩ for k ≤ n and âk|n⟩ = 0 for k ≥ n , (35.63)

and,

e−λ
∗â|n⟩ =

∞∑

k=0

(−λ∗â)k
k!

|n⟩ =
n∑

k=0

(−λ∗)k√
k!

√(
n

k

)
|n− k⟩ . (35.64)

Hence, assuming m ≥ n,

⟨m|eλâ†e−λ∗â|n⟩ =
n∑

k=0

(−λ∗)kλm−n+k√
k!(m− n+ k)!

√(
n

k

)(
m

m− n+ k

)
(35.65)

=

√
n!

m!
λm−n

n∑

k=0

(
m

k +m− n

)
(−|λ|2)k

k!
=

√
n!

m!
λm−nLm−nn (|λ|2) ,

where Lm−nn are Laguerre polynomials. Now, exploiting the fact that

⟨m|eλâ†e−λ∗â|n⟩ = (⟨n|e−λâ†eλ∗â|m⟩)† = ⟨n|e−λâ†eλ∗â|m⟩ (35.66)

=

√
m!

n!
(−λ∗)n−mLn−mn (|λ|2) ,

and with the expansion (35.62) we obtain for the normally-ordered characteristic
function,

χN (λ) =
∑

m,n

c∗mcn⟨m|eλâ
†
e−λ

∗â|n⟩ (35.67)

=
∑

m≥n
(1− 1

2δm,n)
(
c∗mcn⟨m|eλâ

†
e−λ

∗â|n⟩+ c∗mcn⟨m|e−λâ†eλ∗â|n⟩
)
.

finally yielding,

χN (λ) =
∑

m≥n
(1− 1

2δm,n)
[
c∗mcnλ

m−n + cmc
∗
n(−λ∗)m−n

]√
n!
m!L

m−n
n (|λ|2) . (35.68)

Remembering that the symmetrically ordered function is given by χS(λ) = e−|λ|
2

χN (λ)
we may obtain the Wigner function by a numerical two-dimensional FFT,

W (α) = 1
π2

∫
e−|λ|

2

χN (λ)eλ
∗α−λα∗

d2λ . (35.69)

We will use this result in Sec. 35.4.3 to characterize correlations in an optical mode
emanating from a Jaynes-Cummings type coupling to an atom. In Exc. 35.2.5.8 we
will try to find an analytic solution for this integral.

6See also 24.6.6.6.
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Figure 35.5: (code) Starting from a cat-state photon distribution, as shown in (a), we

calculate the symmetrically ordered characteristic function (b) from the expression (35.67),

and the Wigner function (c) by an FFT.

35.2.4 Representation of particular states in the Fock and
Glauber basis

35.2.4.1 Representations of Glauber states

We have seen earlier that coherent states |β⟩ can be expanded on a Fock state basis
|n⟩. For the state function, the density operator, and the photon number distribution
we have,

|β⟩ = e−|β|/2
∑

n

βn√
n!
|n⟩

ρ̂ = e−|β|
2 ∑

m,n

βnβ∗m√
m!n!

|n⟩⟨m|

Pn = |⟨n|β⟩|2 = e−|β|
2 |β|2n
n!

. (35.70)

Expanding a coherent state on a basis of Glauber states, we will derive in Exc. 35.2.5.9
the P -function, the density matrix, the Q-function, and the Wigner function,

|ψ⟩ = |β⟩

P|β⟩(α) = δ(2)(α− β)

ρ̂ =
∫
δ(2)(α− β)|α⟩⟨α|d2α = |β⟩⟨β|

Q|β⟩(α) = 1
π e
−|α−β|2

W|β⟩(α) = 2
π e
−2|α−β|2

. (35.71)

Example 208 (State of a laser): Following [1385, 1131], the correct state of
a laser beam is not simply a coherent state, but rather,

ρ̂ =

∫
|αeıφ⟩⟨αeıφ|dφ

2π
. (35.72)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ProbabilitiesCat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ProbabilitiesCat.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ProbabilitiesCat.m
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After averaging, this state can be written as a superposition of Fock states [313],

ρ̂ =
∑
n

Pn|n⟩⟨n| with Pn =
e−|α|

2 |α|2n
n!

, (35.73)

but without a specific phase,

ρ̂ ̸=
∑
m,n

c∗mcn|m⟩⟨n| . (35.74)

Figure 35.6: (code) (a-c) Q functions and (d-f) Wigner functions of a Glauber state (a,d), a

Fock state (b,e), and a Schrödinger cat state (c,f).

35.2.4.2 Representations of Schrödinger cat states

Schrödinger cat states are correlated states of many particles (or quasi-particles). The
expansion of the Schrödinger cat state |β0⟩ ± |β1⟩ on a Fock state basis yields, as we
have seen in Exc. 24.6.6.5,

|ψ±⟩ =
∑

n

e−|β0|2/2βn0 ± e−|β1|2/2βn1√
2n!

|n⟩

Pn = |⟨n|ψ±⟩|2 −→ e−|β0|2 |β0|2n
n!

|1± (−1)n|2
2

for β0 = −β1

. (35.75)

Expanding a Schrödinger cat state on a basis of Glauber states, we will derive in
Exc. 35.2.5.10 the P -function, the density matrix, the Q-function, and the Wigner

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_VariousWigners.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_VariousWigners.m
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function,

|ψ±⟩ = 1
C (|β0⟩ ± |β1⟩) with C =

√
2± 2e−|β0−β1|2

P|β0⟩|β1⟩(α) = δ(2)(α− β0) + δ(2)(α− β1)

ρ̂ = |ψ±⟩⟨ψ±|

Q|β0⟩|β1⟩(α) = 1
π e
−|α−β0|2 + 1

π e
−|α−β1|2

W|β0⟩|β1⟩(α) = 2
C2π

(
e−2|α−β0|2 + e−2|α−β1|2

± 2e−|β0|2/2−|β1|2/2Re e−2(β1−α)(β∗
0−α∗)+β∗

0β1

)

. (35.76)

We know from microscopic systems, for instance a two-level atom, that they can
live in superposition states |1⟩+ |2⟩. In contrast, the Schrödinger cat states discussed
above occur in continuous Schrödinger fields involving many particles. Macroscopic
quantum interferences (i.e. interferences that are detectable with macroscopic appa-
ratuses, for example in heterodyne schemes) are named fuzzy Schrödinger cats, if the
interfering states are conspicuously separated in phase space.

At this point, we have to emphasize the fundamental difference between Schrödinger
cats and superpositions of modes,

|ψ⟩ = |α⟩+ |β⟩ ≠ |α⟩|β⟩

ρ̂ = |α⟩⟨α|+ |β⟩⟨β|+ |α⟩⟨β|+ |β⟩⟨α| ≠ |αβ⟩⟨αβ|
. (35.77)

Schrödinger cats exhibit interferences in phase space, whereas for mode superposi-
tions, interferences only appear when a parameter is varied (e.g., the length of an
interferometer arm).

Schrödinger cat states are very sensitive to dissipation and easily converted into
statistical mixtures. For example, |α⟩ ± | −α⟩ contains only odd (even) photon num-
bers in the distribution function Pn. After some time ∼ τcav/N , the distribution is
converted into a Poisson distribution. The higher the particle number N , the faster
the decoherence will be. Consequently, truely macroscopic cat states have never been
observed.

35.2.4.3 Representations of Fock states

On the Fock state basis |n⟩, a number state is characterized by,

|n⟩ = (â†)n|0⟩

ρ̂ = |n⟩⟨n|

Pk = δnk

. (35.78)

This state can be expanded into Glauber states |α⟩ by following procedure. For large
n we first calculate the P -distribution function,

P|n⟩(α) = δ(1)(|α| − √n) , (35.79)



35.2. (QUASI-)PROBABILITY DISTRIBUTION FUNCTIONS OF THE COHERENT STATE BASIS1871

because it allows us to derive the density matrix via the formula (35.37),

ρ̂|n⟩ =
∫
δ(1)(|α| − √n)|α⟩⟨α|d2α (35.80)

=

∫ ∞

0

∫ 2π

0

δ(1)(|α| − √n)|α⟩⟨α| |α|d|α|dφα =
√
n

∫ 2π

0

|α⟩⟨α|dφα .

The Q-distribution function becomes, inserting the density operator obtained in
(35.80),

Q|n⟩(α) =
1
π ⟨α|ρ̂|n⟩|α⟩ (35.81)

= 1
πn

∫ 2π

0

|⟨α|β⟩|2dφβ =
1

π
n

∫ 2π

0

e−|α−|β|e
ıφβ |2dφβ ≜

|α|2n
πn!

e−|α|
2

,

and finally the Wigner function is,

W|n⟩(α) =
2

π
e−2|α|

2

(−1)n
n∑

m=0

(
n

m

)
(−4|α|2)m

m!
=

2

π
e−2|α|

2

(−1)nLn(4|α|2) , (35.82)

where Lm(4|α|2) are Laguerre polynomials. In Exc. 35.2.5.11 we will learn how to
derive the above distribution functions directly from the characteristic functions. In
summary, we have,

|ψ⟩ = |n⟩

P|n⟩(α) = δ(1)(|α| − √n)

ρ̂ =
√
n

∫ 2π

0

|α⟩⟨α|dφα

Q|n⟩(α) =
|α|2n
πn!

e−|α|
2

W|n⟩(α) =
2

π
e−2|α|

2

(−1)nLn(4|α|2)

. (35.83)

35.2.4.4 Representations of thermal states

A light mode in a thermal mixture can not be represented by a pure state, but requires
a density matrix description beyond (35.27). The concept of statistical mixtures has
been introduced in Sec. 34.3. The following formulas will be derived in Exc. 35.2.5.12
[1184],

ρ̂ =
∑
n

n̄n

(1+n̄)1+n |n⟩⟨n|

Pn = n̄n

(1+n̄)1+n

. (35.84)
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The coherent distribution P -function is,

Ptherm(α) = 1
πn̄e
−|α|2/n̄

ρ̂ = 1
πn̄

∫
e−|α|

2/n̄|α⟩⟨α|d2α

Qtherm(α) = 1
π(n̄+1)e

−|α|2/(n̄+1)

Wtherm(α) = 1
π(n̄+1/2)e

−|α|2/(n̄+1/2)

. (35.85)

35.2.5 Exercises

35.2.5.1 Ex: Glauber-Sudarshan and Husimi distribution

a. Show that ρA(α, α
∗) = πP (α, α∗) for an anti-normally ordered density operator

ρ̂A(â, â
†).

b. Show that ρN (α, α∗) = 1
πQ(α, α∗) for a normally ordered density operator ρ̂N (â, â†).

Solution: a. For the anti-normal ordered density operator we calculate,

ρ̂A(â, â
†) =

∑

m,n

cm,nâ
mâ†n =

∑

m,n

cm,nâ
m 1

π

∫
|α⟩⟨α|d2α â†n

= 1
π

∫ ∑

m,n

cm,nα
jα∗k|α⟩⟨α|d2α

= 1
π

∫
ρA(α, α

∗)|α⟩⟨α|d2α =

∫
P (α, α∗)|α⟩⟨α|d2α .

b. For the normal ordered density operator we calculate,

⟨α|ρ̂N (â, â†)|α⟩ = ⟨α|
∑

m,n

cm,nâ
†mân|α⟩ =

∑

m,n

cm,nα
∗mαn

= ρN (α, α∗) = 1
πQ(α, α∗) .

35.2.5.2 Ex: Glauber-Sudarshan and Husimi distribution

a. Show that the definitions of the Glauber-Sudarshan distribution given by (35.46)
and (35.37) are equivalent.
b. Show that the definitions of the Husimi distribution given by (35.46) and (35.41)
are equivalent.

Solution: a. We get,
∫
P (α, α∗)|α⟩⟨α|d2α =

∫
Tr ρ̂δ(α∗ − â†)δ(α− â)|α⟩⟨α|d2α

= ... = ρ̂ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_QuasipropFunctions01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_QuasipropFunctions02.pdf
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b. Using the completeness of the coherent state basis (24.126) we get,

Q(α, α∗) = Tr ρ̂δ(α− â) 1
π

∫
|β⟩⟨β|d2β δ(α∗ − â†)

= 1
πTr

∫
ρ̂δ(α− â)|β⟩⟨β|δ(α∗ − â†)d2β

= 1
πTr

∫
ρ̂δ(α− β)|β⟩⟨β|δ(α∗ − β∗)d2β = 1

πTr ρ̂|α⟩⟨α| = 1
π ⟨α|ρ̂|α⟩ .

35.2.5.3 Ex: Moments of Glauber states

a. Prove Eq. (35.39).
b. Prove Eq. (35.43).
c. Prove 1

2 ⟨ââ† + â†â⟩ =
∫
W (α, α∗)αα∗d2α.

d. Prove ⟨{â†mj ânk}S⟩ =
∫
W (α)αmj α

∗n
k dα, where the index S denotes symmetric or-

dering. Symmetric or Weyl ordering means that all products r̂p̂ must be replaced by
the symmetric expressions, such as (r̂p̂+ p̂r̂)/2.
e. Then prove Eq. (35.45).

Solution: a. The expectation value is,

⟨ÔN (â, â†)⟩ = Tr ρ̂ÔN (â, â†) =
∑

m,n

om,nTr ρ̂â
†mân

= ... =
∑

m,n

cm,nTr ρ̂

∫
δ(α∗ − â†)δ(α− â)α∗mαnd2α

=

∫
Tr ρ̂δ(α∗â†)δ(α− â)ON (α, α∗)d2α

=

∫
P (α, α∗)ON (α, α∗)d2α .

b. The expectation value is,

⟨ÔA(â, â†)⟩ = Tr ρ̂ÔA(â, â
†) =

∑

m,n

om,nTr ρ̂â
mâ†n

=
∑

m,n

cm,nTr ρ̂â
m 1

π

∫
|α⟩⟨α|d2α â†n = 1

π

∑

m,n

cm,nTr

∫
ρ̂αmα∗n|α⟩⟨α|d2α

= 1
π

∫
OA(α, α

∗)Tr ρ̂|α⟩⟨α|d2α =

∫
Q(α, α∗)OA(α, α

∗)d2α .

c.

35.2.5.4 Ex: Relationship between the characteristic functions

Derive the disentangling theorem (35.53) between the characteristic functions of the
Glauber state basis.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_QuasipropFunctions03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_QuasipropFunctions04.pdf
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Solution: Using (24.113) we find,

D(λ) = eλâ
†−λ∗â = e−λ

∗â+λâ†+[−λ∗â,λâ†]/2e|λ|
2/2

= e−λ
∗â+λâ†−|λ|2/2e|λ|

2/2 = e−λ
∗âe+λâ

†
e|λ|

2/2 ,

and,

D(λ) = eλâ
†−λ∗â = eλâ

†−λ∗â−[λâ†,−λ∗â]/2e−|λ|
2/2

= eλâ
†−λ∗â+|λ|2/2e−|λ|

2/2 = eλâ
†
e−λ

∗âe−|λ|
2/2 .

That is,

⟨ψ|eλâ†e−λ∗âe−|λ|
2/2|ψ⟩ = ⟨ψ|eλâ†−λ∗â|ψ⟩ = ⟨ψ|e−λ∗âeλâ

†
e|λ|

2/2|ψ⟩ ,

or, inserting the definitions of the characteristic functions (35.52),

χN (λ)e−|λ|
2/2 = χS(λ) = χA(λ)e

|λ|2/2 .

35.2.5.5 Ex: General form of the distribution functions

Show that from the definition (35.46) the common definition of the distribution func-
tions (35.37) and (35.41) are recovered.

Solution: For the Husimi P -distribution we find,

∆N (α− â, α∗ − â†) = 1
π2

∫
eλ

∗(α−â)e−λ(α
∗−â†)d2λ

= 1
π2

∫
eλ

∗(α−â)
∫
|β⟩⟨β|d2βe−λ(α∗−â†)d2λ

= 1
π3

∫ ∫
eλ

∗(α−β)|β⟩⟨β|e−λ(α∗−β∗)d2λd2β

= 1
π

∫
δ(2)(α− β)|β⟩⟨β|d2β = 1

π |α⟩⟨α| ,

and, using the coherent state basis,

⟨β|∆N (α− â, α∗ − â†)|β⟩ = 1
π e
−|α−β|2 ,

and hence,

⟨β|ρ̂|β⟩ =
∫
P (α, α∗)e−|α−β|

2

d2α .

For the Wigner function, we find,

∆S(α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)+λ∗(α−â)d2λ ,
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and, using the coherent state basis,

⟨β|∆S(α− â, α∗ − â†)|β⟩ = 1
π2

∫
⟨β|e−λ(α∗−â†)+λ∗(α−â)|β⟩d2λ ,

and hence,

⟨β|ρ̂|β⟩ = .

For the Glauber-Sudarshan Q-distribution we find,

∆A(α− â, α∗ − â†) = 1
π2

∫
e−λ(α

∗−â†)eλ
∗(α−â)d2λ ,

and, using the coherent state basis,

⟨β|∆A(α− â, α∗ − â†)|β⟩ = 1
π2

∫
e−λ(α

∗−β∗)eλ
∗(α−β)d2λ ,

and hence,

⟨β|ρ̂|β⟩ = 1
π

∫
Q(α, α∗)

∫
e−λ(α

∗−β∗)+λ∗(α−β)d2λd2α

=

∫
Q(α, α∗)πδ(2)(α− β)d2α = πQ(β, β∗) .

35.2.5.6 Ex: Characteristic functions

a. Evaluate the expression ∂m+nχX(λ)
∂λ∗m∂(−λ)n

∣∣∣
λ=0

for X = N,S,A.

b. Consider the particular case of a coherent state.

Solution: a. For normal ordering we calculate,

∂m+nχN (λ)

∂λ∗m∂(−λ)n
∣∣∣∣
λ=0

= ⟨ψ|∂
ne−λâ

†

∂(−λ)n
∂meλ

∗â

∂λ∗m
|ψ⟩
∣∣∣∣∣
λ=0

= ⟨ψ|â†ne−λâ† âmeλ∗â|ψ⟩
∣∣∣
λ=0

= ⟨â†mân⟩ .

Similarly, we find for symmetric and anti-normal ordering,

∂m+nχS(λ)

∂λ∗m∂(−λ)n
∣∣∣∣
λ=0

= ⟨{â†mân}S⟩ and
∂m+nχA(λ)

∂λ∗m∂(−λ)n
∣∣∣∣
λ=0

= ⟨âmâ†n⟩ ,

where the index S denotes symmetric ordering.
b. For a coherent state we find,

⟨α|â†mân|α⟩ = α∗mαn .
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35.2.5.7 Ex: Calculating with Wirtinger derivatives

Prove the following identities [504],

â† − α∗ = ∂

∂ α−→
and â† − α =

∂

∂ α←−
∗ .

Note, that with the bosonic operators we can construct the observables,

x̂+ ıp̂ =
√
2â , ∂x − ı∂p = 2∂α−→ , ∂x + ı∂p = 2∂α∗←− .

In two dimensions [447], d2α = d(Re α)d(Im α) = dxdp.

Solution: This is straightforward using the Fock state expansion. Alternatively, we
may start representing,

|α⟩⟨α| = eαâ
†−α∗â|0⟩⟨0|e−αâ†+α∗â .

Now,

(
α∗ +

∂

∂α

)
|α⟩⟨α| = α∗|α⟩⟨α|+ ∂eαâ

†−α∗â

∂α
|0⟩⟨0|e−αâ†+α∗â + eαâ

†−α∗â|0⟩⟨0|∂e
−αâ†+α∗â

∂α

= α∗|α⟩⟨α|+ â†eαâ
†−α∗â|0⟩⟨0|e−αâ†+α∗â + eαâ

†−α∗â|0⟩⟨0|e−αâ†+α∗â(−â†)
= α∗|α⟩⟨α|+ â†|α⟩⟨α|+ |α⟩⟨α|(−â†) = â†|α⟩⟨α| .

As a corollary, we get,
(
α+

∂

∂α∗

)
|α⟨α| = |α⟩⟨α|â = |α⟩⟨α|â .

35.2.5.8 Ex: Wigner function for arbitrary HO states in the Fock basis

Search an analytic solution for the integral (35.68).

Solution: The 2D Fourier transform of a radially symmetric function u(|λ|) instead
of unm(λ) is,

∫
u(|λ|)eαλ∗−α∗λd2λ =

∫
u( 12 |xλ + ıpλ|)eıpαxλ−ıxαpλdxλdpλ

=
1

ıpα − xα

[∫
e+ıpαxλu( 12xλ)dxλ −

∫
e−ıxαpλu( 12pλ)dpλ

]
.

With this,

∫
e+ıpαxλunm(xλ

2 )dxλ =

√
n!

m!

∫
e−x

2
λ/2xm−nλ Lm−nn (

x2
λ

2 )eıpαxλdxλ

=

√
n!

m!

√
π

2

1

n!
(−1)intm−n

2 e−p
2
α/2Hen(pα)Hem(pα) .
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The Wigner function is now,

W (α) =
∑

m,n

1

π2
c∗mcn

−1
α

√
π

2

√
1

n!m!
(−1)intm−n

2

[
e−p

2
α/2Hen(pα)Hem(pα) + e−x

2
α/2Hen(xα)Hem(xα)

]
,

where the Hen are probabilist’s Hermite polynomials.

35.2.5.9 Ex: P -, Q-, and Wigner distribution functions for Glauber states

Starting from the characteristic functions χA,S,N (λ) derive for a coherent state |β⟩
(a) the Husimi representation, (b) the Glauber-Sudarshan representation, and (c) the
Wigner representation.

Solution: In the following we will use the definition of the complex Fourier transform
(35.46) and of the characteristic functions (35.52).
a. For the P -representation we calculate,

χN (λ) = ⟨β|eλâ†e−λ∗â|β⟩ = e−λ
∗β+λβ∗

,

and hence, exploiting the formula (35.54),

P|β⟩(α) =
1
π2

∫
e−λ

∗(β−α)+λ(β∗−α∗)d2λ = 1
π2

∫
e−λ

∗η+λη∗d2λ

= 1
π2

∫
e−2ırλpη+2ıpλrηdrλdpλ = δ(pη)δ(rη) = δ(2)(α− β) .

b. For the Q-representation we calculate, χA(λ) = e−|λ|
2

χN (λ), and hence,

Q|β⟩(α) =
1
π2

∫
e−λ

∗(β−α)+λ(β∗−α∗)e−|λ|
2

d2λ = 1
π e
−|α−β|2 .

c. For the Wigner representation we calculate, χS(λ) = e−|λ|
2/2χN (λ), and hence,

W|β⟩(α) =
1
π2

∫
e−λ

∗(β−α)+λ(β∗−α∗)e−|λ|
2/2d2λ = 2

π e
−2|α−β|2 .

35.2.5.10 Ex: P -, Q-, and Wigner distribution functions for cat states

Starting from the characteristic functions χA,S,N (λ) derive for a normalized cat state
C−1(|β0⟩+ |β1⟩) (a) the Husimi representation, (b) the Glauber-Sudarshan represen-
tation, and (c) the Wigner representation.

Solution: The normalization of the cat state is given by,

C =
√
(⟨β0| ± ⟨β1|)(|β0⟩ ± |β1⟩) =

√
2± 2e−|β0−β1|2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_QuasipropFunctions10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_QuasipropFunctions11.pdf


1878 CHAPTER 35. ATOMS IN QUANTIZED RADIATION FIELDS

a. In Exc. 24.6.6.2 we already derived the expression,

⟨β0|β1⟩ = e−|β0|2/2−|β1|2/2+β∗
0β1 .

With this we obtain,

⟨β0|eλâ
†
e−λ

∗â|β1⟩ = eλβ
∗
0−λ∗β1⟨β0|β1⟩ = eλβ

∗
0−λ∗β1−|β0|2/2−|β1|2/2+β∗

0β1 ,

and the normally ordered characteristic function,

χN (λ) = 1
C2 (⟨β0| ± ⟨β1|)eλâ

†
e−λ

∗â(|β1⟩ ± |β0⟩)
= 1

C2

[
eλβ

∗
0−λ∗β0 + eλβ

∗
1−λ∗β1 ± e−|β0|2/2−|β1|2/2

(
eλβ

∗
0−λ∗β1+β

∗
0β1 + eλβ

∗
1−λ∗β0+β0β

∗
1

)]
.

Hence,
P|β0⟩|β1⟩(α) =

b. The anti-symmetrically ordered characteristic function being χA(λ) = e−|λ|
2

χN (λ),
we immediately get the Q-function using (35.54),

Q|β0⟩|β1⟩(α) =

c. The symmetrically ordered characteristic function being χS(λ) = e−|λ|
2/2χN (λ), we

get the Wigner function using (35.54),

W|β0⟩|β1⟩(α) =
1
π2

∫
χS(λ)e

λ∗α−λα∗
d2λ

= 1
C2π2

∫ [
e−|λ|

2/2−(α∗−β∗
0 )λ+(α−β0)λ

∗
+ e−|λ|

2/2−(α∗−β∗
1 )λ+(α−β1)λ

∗

±e−|β0|2/2−|β1|2/2
(
e−|λ|

2/2−λ(α∗−β∗
0 )+λ

∗(α−β1)+β
∗
0β1 + e−|λ|

2/2+λ∗(α−β0)−λ(α∗−β∗
1 )+β0β

∗
1

)]
d2λ

= 2
C2π

(
e−2|α−β0|2 + e−2|α−β1|2 ± 2e−|β0|2/2−|β1|2/2Re e−2(β1−α)(β∗

0−α∗)+β∗
0β1

)
.

We note that for |β0⟩ = |β1⟩ we recover exactly the Glauber state calculated in
Exc. 35.2.5.7(c).

35.2.5.11 Ex: P -, Q-, and Wigner distribution functions for Fock states

Starting from the characteristic functions χA,S,N (λ) derive for a number state |n⟩
(a) the Husimi representation, (b) the Glauber-Sudarshan representation, and (c) the
Wigner representation.

Solution: From the expressions following the Fock state expansion (35.62), we derive
immediately,

χN (λ) = ⟨n|eλâ†e−λ∗â|n⟩ =
n∑

q,k=0

λq(−λ∗)k√
q!k!

√(
n

q

)(
n

k

)
⟨n− q|n− k⟩

=

n∑

k=0

(−|λ|2)k
k!

(
n

k

)
= L0

n(|λ|2) ,
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where L0
n is a Laguerre polynomial. With this the symmetrically ordered characteristic

function becomes,

χS(λ) = ⟨n|eλâ
†−λ∗â|n⟩ = e−|λ|

2/2χN (λ) = e−|λ|
2/2L0

n(|λ|2) ,

and the anti-symmetrically ordered,

χA(λ) = ⟨n|e−λ
∗âeλâ

† |n⟩ = e−|λ|
2

χN (λ) = e−|λ|
2

L0
n(|λ|2) .

a. Now, we calculate for the P -representation,

P|β⟩(α) =

b. For the Q-representation, we get,

Q|β⟩(α) =

c. Finally, the Wigner function is,

W|n⟩(α) =
1
π2

∫
χS(λ)e

−αλ∗+α∗λd2λ = 1
π2

∫
e−|λ|

2/2L0
n(|λ|2)e−αλ

∗+α∗λd2λ

= 1
π2

∫
e(−λ

2
r−λ2

i )/2L0
n(λ

2
r + λ2i )e

2ı(−αiλr+αrλi)dλrdλi .

35.2.5.12 Ex: Wigner distribution function of a Fock state

Calculate the Wigner function for a harmonic oscillator in a Fock state from its wave-
function ⟨x|n⟩.

Solution: The wavefunction of a Fock state is,

⟨x|n⟩ = e−x
2/2a2hoHn(x/aho)√
aho
√
π2nn!

.

With this,

W (x, p) =
1

π

∫ ∞

−∞
⟨n|x+ y⟩⟨x− y|n⟩e2ıpy/ℏdy

=
1

πaho
√
π2nn!

∫ ∞

−∞
e(−x

2−y2)/a2hoHn(
x+y
aho

)Hn(
x−y
aho

)e2ıpy/ℏdy

=
1

π
√
π2nn!

∫ ∞

−∞
e−x̃

2−ỹ2Hn(x̃+ ỹ)Hn(x̃− ỹ)e2ıp̃ỹdỹ ,

where we introduced x̃ ≡ x/aho and p̃ ≡ ahop/ℏ. Now, we get from a Taylor expansion
the rule,

Hn(x+ y) =

n∑

k=0

(
n

k

)
(2x)n−kHk(y) ,
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allowing us to rewrite the Wigner function as,

W (x, p) =
1

π
√
π2nn!

n∑

k,q=0

(
n

k

)(
n

q

)
(2x̃)2n−k−qe−x̃

2

∫ ∞

−∞
e−ỹ

2

Hk(ỹ)Hq(−ỹ)e2ıp̃ỹdỹ .

This integral can be solved.

35.2.5.13 Ex: Thermal state

a. Show that ⟨−β|ρ̂|β⟩e|β|2 and P (α, α∗)e−|α|
2

are related by Fourier transform.
b. Using the relationship of (a), derive the density operator and the distribution func-
tion of the Fock and the Glauber basis for a thermal state.

Solution: a. Let us consider coherent states |β⟩ and | − β⟩. Then,

⟨−β|ρ̂|β⟩e|β|2 = e|β|
2

∫
P (α, α∗)⟨−β|α⟩⟨α|β⟩d2α

= e|β|
2

∫
P (α, α∗)e−|β|

2/2−|α|2/2−βα∗
e−|α|

2/2−|β|2/2+αβ∗
d2α

=

∫
P (α, α∗)e−|α|

2

eαβ
∗−α∗βd2α = F [P (α, α∗)e−|α|2 ] .

b. With the photon number probability calculated in Eq. (22.59) we have,

ρ̂ = Pn =
∑

n

n̄n

(1 + n̄)1+n
|n⟩⟨n| .

This allows us to calculate,

⟨−β|ρ̂|β⟩ =
∑

n

n̄n

(1 + n̄)1+n
⟨−β|n⟩⟨n|β⟩

=
e−|β|

2

1 + ⟨n⟩
∑

n

(−|β|2)n
n!

( ⟨n⟩
1 + ⟨n⟩

)n
=

e−|β|
2

1 + ⟨n⟩e
−|β|2/(1+1/⟨n⟩) ,

and finally,

P (α, α∗) = 1
π2F [⟨−β|ρ̂|β⟩] = 1

π2

∫
⟨−β|ρ̂|β⟩e−βα∗+β∗αd2β =

1

π⟨n⟩e
−|α|2/⟨n⟩ .

35.3 Squeezed states of the harmonic oscillator

35.3.1 The squeezing operator

Let us consider a Hamiltonian of the following form,

Ĥsqz = ℏωâ†â+ ı
2ℏξâ

†2 + ı
2ℏξ
∗â2 . (35.86)
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leading to the equation of motion,

˙̂a = −ıωâ+ 2gâ† . (35.87)

The non-linear, i.e. quadratic, appearance of the field operators suggests that the
interaction should include correlated pair production, as is the case for parametric
processes or four-wave mixing. We will see later that cavities are good for generating
squeezing. However, the unused ports of a cavity let uncorrelated vacuum fluctuations
enter, which partially overrule squeezing.

For now, we study, in analogy with the displacement operator (24.111), the prop-

agator e−ıĤsqzt/ℏ, i.e the operator given by,

Ŝ(ξ) ≡ eξâ†2/2−ξ∗â2/2 , (35.88)

which we will call the squeezing operator because, applied to the vacuum state, |ξ⟩ =
S(ξ)|0⟩, this operator will compress the uncertainty of one quadrature component, as
we will see shortly.

In analogy with the calculation (24.112), using the commutation rules, it is possible
to verify the unitarity of this operator [818] (see Exc. 35.3.4.1). In particular, using

the relationship (??) and the abbreviation Â ≡ ξ
2 â
†2 − ξ∗

2 â
2, we can show [1265] (see

Exc. 35.3.4.2),

Ŝ†(ξ)âŜ(ξ) = eÂâe−Â = â+ [Â, â] + 1
2!

[
Â, [Â, â]

]
+ 1

3!

[
Â,
[
Â, [Â, â]

]]
... (35.89)

= â+ ξâ† + 1
2!ξξ

∗â+ 1
3!ξξ

∗ξâ† + ... = â cosh |ξ|+ |ξ|
ξ∗
â† sinh |ξ| ,

and similarly for â†, such that with ξ ≡ reıφ,

Ŝ†(ξ)âŜ(ξ) = â cosh r + e−ıφâ† sinh r

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r + eıφâ sinh r
. (35.90)

The formulas (35.90) describe a Bogolubov transform, as they can be cast into the
form,

b̂ ≡ uâ+ vâ† , b̂† ≡ u∗â† + v∗â , (35.91)

for complex numbers u and v. By postulating the same commutation relation for new
operators, [b̂, b̂†] = 1, we immediately get the condition,

|u|2 − |v|2 = 1 . (35.92)

Comparing with the hyperbolic identity cosh2 r− sinh2 r = 1, we can parametrize the
constants as,

u = cosh r and v = eıφ sinh r . (35.93)

This is interpreted as a linear simplectic transformation in phase space between
pairs of annihilation and creation operators satisfying the same commutation rela-
tion [â, â†] = 1.
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35.3.1.1 Relation between squeezing and displacement operator

The squeezing operator does not commute with the displacement operator. However,
from (35.90) we an derive the following simple relation,

Ŝ(ξ)D(α) ̸= D(α)Ŝ(ξ) = Ŝ(ξ)D(α cosh r + α∗eıθ sinh r) . (35.94)

Solve the Exc. 35.3.4.3.
Squeezed coherent states are generated by coherent displacement of a squeezed

vacuum,

|α, ξ⟩ = Ŝ(ξ)|0, ξ⟩ = D(α)Ŝ(ξ)|0⟩ . (35.95)

On the other hand, from (35.94),

D(α)Ŝ(ξ)|0⟩ = Ŝ(ξ)D(α cosh r + α∗eıφ sinh r)|0⟩ (35.96)

= S(ξ)|α cosh r + α∗eıφ sinh r⟩ .

35.3.1.2 Squeezing of the uncertainty relation

The real and imaginary parts of the transformed operators, defined by b̂ = x̂b + ıŷb,
are Hermitian and satisfy the Heisenberg uncertainty relation (23.91),

[x̂b, ŷb] =
ı
2 and ∆x̂b∆ŷb ≥ 1

2ı ⟨[x̂b, ŷb]⟩ = 1
4 . (35.97)

However, let us take a look at the uncertainties separately. They relate to the
Glauber mode via,

x̂b =
1
2 (b̂+ b̂†) = 1

2 (â cosh r + â†eıφ sinh r) + 1
2 (â
† cosh r + âe−ıφ sinh r) (35.98)

= x̂a cosh r +
1
2 sinh r(â

†eıφ + âe−ıφ)
φ=0−→ x̂ae

r

ŷb =
1
2ı (b̂− b̂†) = 1

2ı (â cosh r + â†eıφ sinh r)− 1
2i (â

† cosh r + âe−ıφ sinh r)

= ŷa cosh r +
1
2ı sinh r(â

†eıφ − âe−ıφ) φ=0−→ ŷae
−r .

The individual fluctuations are (assuming φ = 0),

∆x̂2b = ⟨x̂2b⟩ − ⟨x̂b⟩2 = e2r
(
⟨x̂2a⟩ − ⟨x̂a⟩2

)
(35.99)

= 1
4e

2r
(
1 + ⟨â2⟩+ ⟨â†⟩2 + 2⟨â†â⟩ − ⟨â⟩2 − ⟨â†⟩2 − 2⟨â†⟩⟨â⟩

)
.

With ⟨â⟩ = 0,

∆x̂2b = e2r
(
1
2Re ⟨â2⟩+ 1

4 + 1
2 ⟨â†â⟩

)
(35.100)

∆ŷ2b = e−2r
(
− 1

2Re ⟨â2⟩+ 1
4 + 1

2 ⟨â†â⟩
)
.

Looking at the coherent vacuum, â|α⟩ = 0, hence,

∆x̂b =
1
2e
r and ∆ŷb =

1
2e
−r , (35.101)

and the squeezed state is at the uncertainty minimum.
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35.3.2 Squeezed state in the Fock basis

The numbers of photons in the squeezed state is [818],

⟨n|α, ξ⟩ = (ζ/2)n/2√
n! cosh r

e−
1
2 (|α|

2+α∗ζ)Hn

(
α+ α∗ζ√

2ζ

)
, (35.102)

with the abbreviation ζ ≡ eıθ tanh r. For squeezed vacuum α = 0, noting that
Hn(0) = (−2)n/2(n− 1)!! for even n and Hn(0) = 0 for odd n, we find,

⟨n|0, ξ⟩ = (−ζ)n/2(n− 1)!!√
n! cosh r

(35.103)

for even photon number. Odd photon numbers are excluded. Hence,

|α, ξ⟩ =
∑

n

|n⟩⟨n|α, ξ⟩

ρ̂ = |α, ξ⟩⟨α, ξ|

Pn = |⟨n|α, ξ⟩|2

. (35.104)

In the photon representation we can easily see that the squeezed vacuum is (unlike
the coherent and the Fock vacuum) not empty,

⟨α, ξ|n̂|α, ξ⟩ = |α|2 + sinh2 |ξ| α→0−→ sinh2 |ξ| (35.105)

∆α,ξn̂ = |α|+ 2 cosh2 |ξ| sinh2 |ξ| α→0−→ 2 cosh2 |ξ| sinh2 |ξ| .

Squeezed vacuum contains contributions from many |n⟩.

Figure 35.7: (code) Starting from a squeezed state photon distribution with r = 0.5, as

shown in (a), we calculate the symmetrically ordered characteristic function (b) from the

expression (35.68), and the Wigner function (c) by an FFT.

For the squeezed vacuum state the photon number distribution displays odd-even-
oscillations. This can be explained by the mathematical form of the squeezing opera-
tor, that resembles the operator for two-photon generation and annihilation processes.
Photons in a squeezed vacuum state are more likely to appear in pairs.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ProbabilitiesSqueezed.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ProbabilitiesSqueezed.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ProbabilitiesSqueezed.m
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35.3.3 Squeezed state in the Glauber basis

The squeezed state contains non-classical quantum correlations, as we will show by
calculating g(1) and g(2) for squeezed states,

g(2)(0) =
⟨b̂†b̂b̂†b̂⟩
⟨b̂†⟩2⟨b̂⟩2

= 1 +
cosh 2r

sinh2 r
. (35.106)

The distribution functions in the coherent representation are,

|ψ⟩ = |β, ξ⟩

P|β⟩(α) =

ρ̂ = |β, ξ⟩⟨β, ξ|

Q|β⟩(α) = sech r
π e−(|α|

2+|β|2)+(α∗β+αβ∗) sech r− 1
2 [e

ıθ(α∗2−β∗2)+e−ıθ(α2−β2)] tanh r

W|β⟩(α) = 1
2π exp(− (α+α∗)2

2e−2r + (α−α∗)2

2e2r )

.

(35.107)

35.3.4 Exercises

35.3.4.1 Ex: Unitarity of the squeezing operator

Calculate ⟨Ê⟩ and ∆Ê.

Solution:

35.3.4.2 Ex: Transformation by the squeezing operator

Demonstrate the relationship (35.89).

Solution: First we calculate,

[â†2, â] = â†[â†, â] + [â†, â]â† = −2â†

[â2, â†] = â[â, â†] + [â, â†]â = 2â .

Now we calculate,

e−ξâ
†2/2+ξ∗â2/2âeξâ

†2/2−ξ∗â2/2

= â+
[
− ξ2 â†2 +

ξ∗

2 â
2, â
]
+ 1

2!

[
− ξ2 â†2 +

ξ∗

2 â
2,
[
− ξ2 â†2 +

ξ∗

2 â
2, â
]]

+ ...

= â+ B̂1 + B̂2 + B̂3... ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_EstadoComprimido01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_EstadoComprimido02.pdf


35.3. SQUEEZED STATES OF THE HARMONIC OSCILLATOR 1885

with B̂n = 1
n [â, B̂n−1], such that,

B̂1 = ξâ†

B̂2 = 1
2

[
− ξ2 â†2 +

ξ∗

2 â
2, B̂1

]
= 1

2
|ξ|2
2

[
â2, â†

]
= ξξ∗

2 â

B̂3 = 1
3

[
− ξ2 â†2 +

ξ∗

2 â
2, B̂2

]
= 1

3
|ξ|2
2
−ξ
2

[
â†2, â

]
= 1

3
ξξ∗ξ
2 â† ,

confirming the result.

35.3.4.3 Ex: Squeezed states

Squeezed states may be introduced by the application of the operator S(ξ) ≡ e ξ∗
2 â

2− ξ
2 â

† 2

on a Glauber state |α⟩, where ξ is the squeezing parameter.
Calculate ⟨α, ξ|n̂|α, ξ⟩ and show with α→ 0, that the squeezed vacuum is not empty.

Solution: With the commutation rules and with eAeB = eA+[A,B]/2+B it is easy
to show the unitarity of the squeezing operator. In particular,

b̂ = S†(ξ)âS(ξ) = eB̂ âe−B̂

= â+
[
B̂, â

]
+ 1

2!

[
B̂, [B̂, â]

]
+ 1

3!

[
B̂,
[
B̂, [B̂, â]

]]
...

= â+ ξâ† + 1
2!ξξ

∗â+ 1
3!ξξ

∗ξâ† + ... = â cosh |ξ|+ |ξ|
ξ∗
â† sinh |ξ| .

Hence,

b̂†b̂ =

(
â† cosh |ξ|+ |ξ|

ξ
â sinh |ξ|

)(
â cosh |ξ|+ |ξ|

ξ∗
â† sinh |ξ|

)

= â†â cosh2 |ξ|+ ââ† sinh2 |ξ|+
( |ξ|
ξ∗
â†â† +

|ξ|
ξ
ââ

)
sinh |ξ| cosh |ξ|

= â†â+ sinh2 |ξ|+
( |ξ|
ξ∗
â†â† +

|ξ|
ξ
ââ

)
sinh |ξ| cosh |ξ| .

Finally,

⟨α, ξ|n̂|α, ξ⟩ = |α|2 + sinh2 |ξ| α→0−→ sinh2 |ξ| ,
∆α,ξn̂ = |α|+ 2 cosh2 |ξ| sinh2 |ξ| α→0−→ 2 cosh2 |ξ| sinh2 |ξ| .

35.3.4.4 Ex: Studying the squeezing operator

Using the Baker-Campbell-Hausdorff braiding identity,

ex̂eŷe−x̂ = eŷ+[x̂,ŷ]+ 1
2! [x̂,[x̂,ŷ]]+...

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_EstadoComprimido03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_EstadoComprimido04.pdf
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evaluate the expression eâ
†2/2eâ

2/2e−â
†2/2.

Solution: We first calculate the commutators,

[n̂, â
†2

2 ] = â†2 and [n̂, â
2

2 ] = −â2 and [ â
2

2 ,
â†2

2 ] = n̂+ 1
2 .

Now, identifying x̂ ≡ â†2

2 and ŷ ≡ â2

2 ,

eâ
†2/2eâ

2/2e−â
†2/2 = eâ

2/2+â†2/2−n̂ .

35.4 The Jaynes-Cummings model

The Jaynes-Cummings model describes the dynamics of a single dressed two-level
atom in a single monochromatic laser mode in the absence of spontaneous emission
processes. The model, illustrated in Fig. 35.2 has become a paradigm of quantum
mechanics with applications in quantum information, where it applies to the formula-
tion of entanglement protocols of atomic states and the implementation of quantum
gates, which will be discussed in Sec. 41.4. In the following, we will first study the
interaction of an atom with an optical mode neglecting dissipation effects and leave
the discussion on the impact of dissipation processes to later sections.

The dynamic evolution of pure states is then obtained from the Schrödinger equa-
tion. The Hamiltonian of this system is given by (35.19). Letting ℏ = 1 and assuming
that the atom is located at the origin [such that Ω1(r)e

ık·r = Ω1(0)], we can write
the time-dependent Hamiltonian in the interaction picture as,

Ĥatom:field = ı
2Ω1e

−ı∆tσ̂+â− ı
2Ω1e

ı∆tσ̂−â†

=

(
0 ı

2Ω1e
−ı∆tâ

− ı
2Ω1e

ı∆tâ† 0

)
. (35.108)

where ω is the frequency of the radiation, ω0 the frequency of the atomic transition,
∆ ≡ ω − ω0 the detuning, and Ω1 the Rabi frequency generated by a single photon.
The atomic operators σ± are related to the Pauli spin matrices (23.47), and we use
the conventions σ̂z = [σ̂+, σ̂−] = |2⟩⟨2| − |1⟩⟨1| = 2σ̂+σ̂− − I and ω0 ≡ ω2 − ω1 > 0.

Starting from this Hamiltonian the Jaynes-Cummings model is translated into the
Schrödinger picture via the unitary transform,

U = e−ı(n̂+1/2)ωteıσ̂
zω0t/2 , (35.109)

for which we find the relationships,

−ıUU̇† = ω(n̂+ 1
2 )− 1

2ω0σ̂
z (35.110)

UâU† = Σn′ |n′⟩e−ın′ωt⟨n′|âΣn|n⟩eınωt⟨n| = eıωtâ

Uσ̂−U† = eıω0tσ̂− .
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Obviously, the dynamics of the states is now given by |ψ(t)⟩ = U |ψI(t)⟩, and the new
Hamiltonian in the Schrödinger picture reads,

H̃atom:field = UĤatom:fieldU
† − ıUU̇†

= ω(n̂+ 1
2 )− 1

2ω0σ̂
z + 1

2Ω1(âσ̂
+ + â†σ̂−)

=

(
(n̂+ 1

2 )ω − 1
2ω0

1
2Ω1â

†

1
2Ω1â (n̂+ 1

2 )ω + 1
2ω0

) . (35.111)

We choose the Fock representation (24.81) for the radiation mode, we represent the
atomic transitions by the Pauli matrices (23.45), and we span the product space
ρ̂field ⊗ ρ̂atom generalizing the operators â± ↷ â± ⊗ I and σ̂± ↷ I ⊗ σ̂±. Explicitly
we get,

â† =
∑

n

√
n+ 1|n+ 1⟩

(
1 0

0 1

)
⟨n| and σ̂+ =

∑

n

|n⟩
(
0 0

1 0

)
⟨n|

â =
∑

n

√
n|n− 1⟩

(
1 0

0 1

)
⟨n| and σ̂− =

∑

n

|n⟩
(
0 1

0 0

)
⟨n| .

(35.112)

35.4.1 Dressed states representation

The basis

|1, n⟩ =
(
1

0

)
|n⟩ , |2, n− 1⟩ =

(
0

1

)
|n− 1⟩ (35.113)

spans a sub-space of two energetically nearly degenerate states with n photons in the
system one out of which can have been absorbed by the atom. The density operator
for the subspace is,

ρ̂n =

(
|n⟩|1⟩⟨1|⟨n| |n⟩|1⟩⟨2|⟨n− 1|
|n− 1⟩|2⟩⟨1|⟨n| |n− 1⟩|2⟩⟨2|⟨n− 1|

)
. (35.114)

We project the Hamiltonian onto that basis via the projectors P̂ = |1, n⟩⟨1, n|+|2, n−
1⟩⟨2, n− 1|,

Ĥn = P̂ H̃atom:fieldP̂ =

(
nω + ∆

2
1
2Ω1
√
n

1
2Ω1
√
n nω − ∆

2

)
. (35.115)

That is, the Hamiltonian can be decomposed into sub-hyperspaces which are all or-
thogonal, because the Hamiltonian H̃atom:field only contains terms conserving the
total number of photons + excitations.
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Example 209 (Orthogonality of submatrices with same numbers of ex-
citations): This can be seen by expanding the Hamiltonian matrix:

H̃atom:field =
⊕
n

Ĥn (35.116)

=
∑
n

[
|n⟩
(
nω + ∆

2
0

0 nω − ∆
2

)
+ |n− 1⟩

(
0 0

Ω1
2

√
n 0

)
+ |n+ 1⟩

(
0 Ω1

2

√
n+ 1

0 0

)]
⟨n|

=



∆
2

ω + ∆
2

Ω1
2

Ω1
2

ω − ∆
2

2ω + ∆
2

Ω1
2

√
2

Ω1
2

√
2 2ω − ∆

2

3ω + ∆
2
· · ·

...
. . .


.

The eigenvalues can be easily calculated by 7,

det
∑

n

Ĥn =
∑

n

det Ĥn , (35.117)

defining the generalized n-photon Rabi frequency, ϖn ≡
√

∆2 + nΩ2
1 = |ϖn|eık·R,

which contains the spatial mode function of the radiation field. Using the standard
procedure outlined in Sec. 23.3.4 we find the diagonal matrix of eigenvalues,

Ên =

(
nω + ϖn

2 0

0 nω − ϖn

2

)
. (35.118)

From the transformation ĤnUn = UnÊn, under the condition that Un is unitary and
Hermitian, U†nUn, and using the abbreviation tan 2ϕn ≡

√
nΩ1/∆, we obtain:

Un =

(
cosϕn sinϕn

− sinϕn cosϕn

)
. (35.119)

The unitary matrix Un describes the transform from the product state basis (35.113)
to the dressed state basis (35.21), as illustrated in Fig. 35.4.

The temporal evolution of the Jaynes-Cummings state, |ψ(t)⟩ = e−ıH̃atom:fieldt|ψ(0)⟩,
is described by the transformation,

e−ıĤnt = Une
−ıÊntU†n = e−ınωt×

×
(
cos2 ϕne

−ıϖnt/2 + sin2 ϕne
ıϖnt/2 cosϕn sinϕn(e

ıϖnt/2 − e−ıϖnt/2)

cosϕn sinϕn(e
ıϖnt/2 − e−ıϖnt/2) sin2 ϕne

−ıϖnt/2 + cos2 ϕne
ıϖnt/2

)
,

(35.120)

7The following rules apply to determinants,

det(AB) = detAdetB and (detA)−1 = detA−1 .
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which is essentially the same formula as for the time evolution of a two-level atom
driven by a classical light field derived in Exc. 23.4.7.1. The transition probability
between dressed states is,

|⟨2, n− 1|e−ıĤnt|1, n⟩|2 =
nΩ2

1

ϖ2
n

sin2
ϖnt

2
. (35.121)

The temporal evolution follows with [672],

ρ̂(t) = e−ıĤntρ̂(0)eıĤnt ≡ L(t)ρ̂(0) . (35.122)

Alternatively to the master equation (35.122) we could describe the time evolution of
the system by Heisenberg equations, as done in Exc. 35.4.5.1.

35.4.2 Classical and quantum limits

35.4.2.1 The limit of high laser intensities and resonant interaction

The classical limit is recovered for n→∞, where a single photon makes no difference,
that is, we can treat the states |n⟩ and |n+1⟩ as equivalent. Then, we can approximate
the Hamiltonian of the system (35.113) by the trace of this same Hamiltonian taken
over the number of photons,

Ĥsemi = lim
n→∞

Trfieldρ̂H̃atom:field =
∑

m

⟨m|ρ̂H̃atom:field|m⟩ . (35.123)

This situation, as illustrated in Fig. 35.8, describes well the state of a laser as a
coherent state, |α⟩ =∑n

αn
√
n!
|n⟩e−|α|2/2. For n→∞, the uncertainty of the Poisson

distribution is small, ∆n/n̄ = 1/
√
n → 0, such that the light mode is characterized

by the average number of photons, and fluctuations are negligible. This allows us
to replace the Poisson distribution, Pn = |⟨n|α⟩|2 = δnn̄. The Hamiltonian (35.115)
then becomes,

Ĥsemi = Ĥfield + Ĥatom + Ĥatom:field =
∑

m

⟨m|α⟩⟨α|Ĥ|m⟩ = ⟨α|Ĥ|α⟩ ≃ ⟨n̄|Ĥ|n̄⟩

= Ĥn̄ =

(
n̄ω 0

0 (n̄− 1)ω

)
+

(
−ω0

2 0

0 ω0

2

)
+

(
0 ϖn̄

2
ϖ∗

n̄

2 0

)
. (35.124)

Now, in the case of a resonant interaction, ∆ = 0, the Jaynes-Cummings evolution is,

e−ıĤn̄t = 1√
2
e−ı(n̄−1/2)ωt

(
cos 1

2ϖn̄t ı sin 1
2ϖn̄t

ı sin 1
2ϖn̄t cos 1

2ϖn̄t

)
, (35.125)

which is a result already obtained in Exc. 23.4.7.1.

Example 210 (Resonant π/2-pulse): In this example, we consider resonant
π/2-pulses, that is,

√
n̄Ω1t =

1
2
π. The Jaynes-Cummings evolution now simpli-

fies to,

e−ıĤn̄t = 1
2
e−ı(n̄−1/2)ωt

(
1 ı

ı 1

)
. (35.126)
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For large n̄, a resonant π/2-pulse does (ignoring irrelevant dynamical phases),

(
|1⟩|n̄⟩
|2⟩|n̄− 1⟩

)
π/2
↷

(
(ı|2⟩|n̄− 1⟩+ |1⟩|n̄⟩)
(|2⟩|n̄− 1⟩+ ı|1⟩|n̄⟩)

)
, (35.127)

that is, for a coherent field,

(
|1⟩|α⟩
|2⟩|α⟩

)
π/2
↷

(
(ı|2⟩+ |1⟩)|α⟩
(|2⟩+ ı|1⟩)|α⟩

)
. (35.128)

Obviously, the structure of the field |α⟩ is not affected, and we recover the dy-

namics of a two-level atom excited by a resonant classical radiation as described

by the Bloch equations (34.151). In the language of quantum computation the

operation (35.126) corresponds to a Hadamard gate.

Figure 35.8: Atomic level scheme for the implementation of resonant interactions with clas-
sical radiation fields (on the lower transition) and dispersive interactions with quantum fields
(on the upper transition).

35.4.2.2 Dispersive interaction, the limit of large detunings

The dispersive Jaynes-Cummings dynamics can be implemented by irradiating a light
field, which is sufficiently detuned to avoid Rayleigh scattering processes, as shown
in Fig. 35.8. This interaction results in a phase shift of the atomic levels. For |∆| ≫√
nΩ1 we consider the radiative coupling as a small perturbation,

Ĥn = Ĥ(0)
n + Ĥ(1)

n =

(
nω − ∆

2 0

0 nω + ∆
2

)
+

(
0 Ω1

2

√
n

Ω1

2

√
n 0

)
. (35.129)

In the unperturbed case we have, Ĥ
(0)
n |ψj,n⟩ = Ej,n|ψj,n⟩, where the n-photon sub-

space is spanned by the basis |j⟩ = (1 0) and (0 1). In second perturbation order,

⟨ψj,n|Ĥ(1)
n |ψj,n⟩ ≃ ⟨j|Ĥ(1)

n + Ĥ
(2)
n |j⟩

0

+
∑

j ̸=i

⟨j|Ĥ(1)
n |i⟩⟨i|Ĥ(1)

n |j⟩
E

(0)
j,n − E

(0)
i,n

= ∓nΩ
2
1

4∆
, (35.130)
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where the upper sign holds for |j⟩ = (1 0). This result was already obtained in the
Excs. 27.1.3.4 and 34.5.4.13. In matrix notation 8,

Ĥ(1)
n ≃

(
nΩ2

1/4∆ 0

0 −nΩ2
1/4∆

)
. (35.131)

The temporal propagation operator (35.120) then simplifies to,

e−ıĤ
(1)
n t =

(
eınΩ

2
1t/4∆ 0

0 e−ınΩ
2
1t/4∆

)
. (35.132)

The fact that the ground and excited atomic states evolve with different phase factors
is important, as we will show in the following example.

Example 211 (Dispersive π-pulse): As in the previous case, we consider
a two-level atom subject to a coherent field, but now tuned out of resonance.
Introducing the abbreviation φ ≡ Ω2

1t/4∆, the Jaynes-Cummings evolution is,

e−ıĤ
(1)
n t =

(
eınφ 0

0 e−ınφ

)
. (35.133)

The fact that the phase shift nφ depends on the number of photons, and that
it goes in opposite directions for the ground and excited states, is crucial. We
have already studied in Exc. 34.8.4.9, that the dispersive interaction of the
atom with a radiation field can phase-shift the Bloch vector. Now, we observe
that in addition, it causes a phase shift of the probability amplitude of having
n photons in the radiation field by a value proportional to n, i.e. (ignoring
irrelevant dynamical phases),(

|1⟩|n⟩
|2⟩|n− 1⟩

)
nφ
↷

(
e−ınφ|1⟩|n⟩
eınφ|2⟩|n− 1⟩

)
. (35.134)

Applying this result to Glauber states,(
|1⟩|α⟩
|2⟩|α⟩

)
nφ
↷

(
|1⟩∑n

αn
√
n!
e−ınφ|n⟩

|2⟩∑n
αn
√
n!
eınφ|n⟩

)
=

(
|1⟩|αe−ıφ⟩
|2⟩|αeıφ⟩

)
. (35.135)

Apparently, the phase of the radiation field is shifted by a value φ, which depends

on the state of the atom.

8Note, that the same perturbation expansion applied to the complete Hamiltonian in the inter-
action picture yields,

H̃
(1)
I =

(
0 1

2
Ω1â†

1
2
Ω1â 0

)
= 1

2
Ω1âσ̂

+ + 1
2
Ω1â

†σ̂−

≃ H̃
(1)
I |2⟩⟨2|H̃(1)

I

ω2 − ω1
+
H̃

(1)
I |1⟩⟨1|H̃(1)

I

ω1 − ω2
=

Ω2
1

4∆
(σ̂−σ̂+â†â− σ̂+σ̂−ââ†) =

Ω2
1

4∆

(
−â†â 0

0 ââ†

)
.
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We note here, that the dynamics studied in the last example provides a method
of transferring coherence from an atomic superposition to a quantum correlation of
a radiation field. All we have to do, is to bring the atom into a superposition of
states |1⟩+ |2⟩, and the field will automatically evolve toward a Schrödinger cat state
|αeıφ⟩ + |αe−ıφ⟩. The transfer of quantum correlations between coupled degrees of
freedom can induce a temporal complete disappearance of any signatures of quantum
coherence in the light field. This phenomenon termed quantum collapse and revival
is genuine of the Jaynes-Cummings model and will be studied in Excs. 35.4.5.2 and
35.4.5.3. Another phenomenon is vacuum Rabi splitting, which will be studied in
35.4.5.4.

35.4.3 Observables and correlations of the Jaynes-Cummings
dynamics

In the limit of low laser intensities we must consider photonic distributions that are
not necessarily coherent. The stationary solution of the Schrödinger equation consists
of the dressed states |1, n⟩ and |2, n−1⟩. If we now expand a general Jaynes-Cummings
state in amplitudes cjn(t),

|ψ⟩ =
∑

n

(c1,n|1, n⟩+ c2,n−1|2, n− 1⟩) , (35.136)

they will follow the Schrödinger equation,

ıℏ
d

dt

(
c1,n

c2,n−1

)
= Ĥn

(
c1,n

c2,n−1

)
. (35.137)

The evolution of the coefficients cjn completely describes the Jaynes-Cummings dy-
namics of the system through the formula (35.120). Obviously, the Jaynes-Cummings
state is normalized because,

⟨ψ|ψ⟩ = Trfield |ψ⟩⟨ψ| =
∞∑

n=0

(|c1,n|2 + |c2,n|2) = 1 . (35.138)

As dissipation processes are neglected, we get a pure state described by,

ρ̂ = |ψ⟩⟨ψ| . (35.139)

The Jaynes-Cummings dynamics involves two coupled degrees of freedom charac-
terized by with their respective observables. If we are interested in them, we can do
two things: (a) We ignore the degrees of freedom NOT under study by NOT DOING
a measurement of the other degrees. That is, we simply remove the non-interesting
degrees of freedom from the state. For example, if our focus is on the optical mode,
we ignore the atomic state,

|γ⟩ ≡
∑

j=1,2

⟨j|ψ⟩ =
∑

n

c1,n|n⟩+ c2,n−1|n− 1⟩ . (35.140)

Our new density operator remains pure, that is,

ρ̂
(pure)
field =

∑

i,j=1,2

⟨j|ρ̂|i⟩ =
∑

i,j=1,2

⟨j|ψ⟩⟨ψ|i⟩ = |γ⟩⟨γ| . (35.141)
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On the other hand, ignoring the optical mode via,

|γ⟩ ≡
∑

n

⟨n|ψ⟩ =
∑

n

c1,n|1⟩+ c2,n−1|2⟩ . (35.142)

Again, our new density operator remains pure, that is,

ρ̂
(pure)
atom =

∑

m,n

⟨m|ρ̂|n⟩ =
∑

m,n

⟨m|ψ⟩⟨ψ|n⟩ = |γ⟩⟨γ| . (35.143)

(b) We trace over the degrees of freedom NOT under study by DOING a measurement.
For example, if again our focus is on the optical mode, we trace over the atomic states,

ρ̂
(mix)
field = Tratom ρ̂ =

∑

j=1,2

⟨j|ρ̂|j⟩ =
∑

j=1,2

⟨j|ψ⟩⟨ψ|j⟩ (35.144)

=
∑

n,m

c∗1,mc1,n|n⟩⟨m|+ c∗2,m−1c2,n−1|n− 1⟩⟨m− 1| ≠ ρ̂
(pure)
field .

It is clear, that this incomplete measurement converts the reduced density operator
into a statistical mixture, which is free of inneratomic correlations of the type c∗2,mc1,n,
but this means that we also loose possible field correlations. On the other hand,
tracing over the field mode,

ρ̂
(mix)
atom = Trfield ρ̂ =

∞∑

n=0

⟨n|ρ̂|n⟩ =
∞∑

n=0

⟨n|ψ⟩⟨ψ|n⟩ (35.145)

=
∑

n

(c1,n|1⟩+ c2,n|2⟩)
(
c∗1,n⟨1|+ c∗2,n⟨2|

)
̸= ρ̂

(pure)
atom .

After these preliminary remarks let us have a look a some interesting observables.

35.4.3.1 Temporal evolution of the Bloch vector

The expectation value for field observables Â|n⟩ = An|n⟩ is,

⟨ψ|Â|ψ⟩ = Tr ρ̂Â
∑

i,n

⟨i|⟨n|ψ⟩⟨ψ|Â|n⟩|i⟩ =
∑

n

An(|c1,n|2 + |c2,n|2) . (35.146)

An example for a field observable is the photon number operator n̂. And for the
annihilation operator â|n⟩ = √n|n⟩ we have,

⟨ψ|â|ψ⟩ =
∑

n

√
n(c∗1,n−1c1,n + c∗2,n−1c2,n) . (35.147)

To determine the internal state of the atom, we must trace over the light field.
The populations and coherences are, therefore,

ρij = ⟨i|Trfield ρ̂|j⟩ = ⟨i|
∑

n

⟨n|ψ⟩⟨ψ|n⟩|j⟩ =
∑

n

ci,nc
∗
j,n . (35.148)
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The projection onto the atomic state is done by,

|j⟩⟨j|ψ⟩
⟨ψ|j⟩⟨j|ψ⟩ =

∑
m cj,n|j, n⟩∑
m |cj,m|2

. (35.149)

With (35.148), we can calculate the atomic Bloch vector (34.163), whose norm is
interestingly NOT preserved, since,

|ρ⃗| =

∥∥∥∥∥∥∥



2 Re ρ12

2 Im ρ12

ρ22 − ρ11




∥∥∥∥∥∥∥
= 2|ρ12|2 − 2ρ11ρ22 = −2 det ρ̂ (35.150)

= 2
∑

n

c1,nc
∗
2,n

∑

n

c∗1,nc2,n − 2
∑

n

|c2,n|2
∑

n

|c1,n|2 ̸= 1 .

35.4.3.2 The photon number distribution

To determine the state of the light field, we must trace over the atomic state. For
example, the probability amplitude of encountering the state |ψ⟩ in |n⟩ is,

⟨n|ψ⟩ = c1,n|1⟩+ c2,n|2⟩ , (35.151)

such that,

pn = ⟨n|Tratom ρ̂|n⟩ = ⟨n|
∑

i=1,2

⟨i|ψ⟩⟨ψ|i⟩|n⟩ = |⟨n|ψ⟩|2 = |c1,n|2 + |c2,n|2 .

(35.152)

35.4.3.3 The Glauber-Sudarshan Q-function

To characterize the optical field separately from the atomic state, we can try, by a
calculation similar to (35.146), to project the Jaynes-Cummings state onto a basis of
coherent states. Thus, the probability amplitude of encountering the state |ψ⟩ in |α⟩
is,

⟨α|ψ⟩ = e−|α|
2/2
∑

n

α∗n√
n!
(c1,n|1⟩+ c2,n|2⟩) (35.153)

|⟨α|ψ⟩|2 = e−|α|
2 ∑

n

α∗nαm√
n!
√
m!

(c∗1,mc1,n + c∗2,mc2,n) ,

such that,

πQ(α) ≡ ⟨α|Tratom ρ̂|α⟩ = e−|α|
2



∣∣∣∣∣
∑

n

c1,n
αn√
n!

∣∣∣∣∣

2

+

∣∣∣∣∣
∑

n

c2,n
αn√
n!

∣∣∣∣∣

2

 . (35.154)

We will derive this result in Exc. 35.4.5.5. This quantity, called Q-function, allows
the illustration of the state in a coordinate system spanned by Re α and Im α [157].
It is generally easy to calculate, but does not exhibit much information, e.g., on
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Figure 35.9: (code) Evolution of the state during a Jaynes-Cummings type interaction:

(a) Bloch vector, (b,c) photon distribution after projection on the ground and excited atomic

state, (d) time evolution of the coherence ρ12 showing the phenomenon of collapse and revival,

and (e) W (α) function.

interference phenomena caused by quantum correlations. In the following section,
we will calculate the Wigner function, which can also be evaluated from the Jaynes-
Cummings coefficients [412].

The Jaynes-Cummings dynamics illustrated in Fig. 35.9 demonstrates the transfer
of coherence between an atom and a light field. In Exc. 35.4.5.6 we study how to
create, via a sequence of Ramsey pulses, a Schrödinger cat state in a light field.

35.4.3.4 The Wigner function in the Glauber picture

We found in (35.132) that a dispersive phase shift of the atomic state |2⟩ leads to a
time-dependent phase shift of the Glauber field,

|ψ⟩ =
∑

N

(c1,n|1, n⟩+ c2,n−1|2, n− 1⟩) = |1, β⟩+ eıφ(t)|2, β⟩ or ρ̂ = |ψ⟩⟨ψ| ,

(35.155)
with

c1,n = e−|β|
2/2 β

n

√
n!

and c2,n = e−|β|
2/2 (e

ıφ(t)β)n√
n!

. (35.156)

We will now concentrate on the field state by explicitly IGNORING the atomic states
|j⟩,

|γ⟩ =
∑

j=1,2

⟨j|ψ⟩ = |β⟩+ |eıφβ⟩ or ρ̂
(pure)
field =

∑

i,j=1,2

⟨j|ψ⟩⟨ψ|i⟩ = |γ⟩⟨γ| . (35.157)

From the optical cat pure state wavefunction (35.157), we can easily calculate the
Wigner function in the Glauber picture, as done in (35.76) and Exc. 35.2.5.10,

W (α) =
2

C2π

(
e−2|α−β|

2

+ e−2|α−βe
ıφ|2 ± 2e−|β|

2

Re e−2(βe
ıφ−α)(β∗−α∗)+|β|2eıφ

)
.

(35.158)
Now, what happens if we MEASURE the atomic state before we analyze the field

state? The incomplete measurement corresponds to tracing over the atomic degrees of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
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freedom, which transforms our initially pure state (35.155) into a statistical mixture.
With |ψ⟩ given by (35.155),

ρ̂
(mix)
field = Tratomρ̂ =

∑

j=1,2

⟨j|ψ⟩⟨ψ|j⟩ = |β⟩⟨β|+ |eıφβ⟩⟨eıφβ| ≠ |γ⟩⟨γ| . (35.159)

Calculating the Wigner function from this density operator consequently must yield
a different result, because any correlations are lost. A movie of the dynamics can be
watched here (watch movie) [228, 340, 16, 1321].

35.4.3.5 The Wigner function in the Fock picture

Let us now calculate the Wigner function in the Fock state picture. This will allow
us to consider more general states later on. We start from the expansion,

|ψ⟩ =
∑

n

c1,n|1, n⟩+ c2,n−1|2, n− 1⟩ . (35.160)

As before, we can now choose to DO or NOT DO a measurement of the atomic state.
If we do a measurement tracing over the atomic states, we calculate the normally
ordered characteristic function using the density operator (35.144),

χN (λ) = Tr ρ̂
(mix)
field e

λâ†e−λ
∗â =

∑

n′

⟨n′|ρ̂(mix)field e
λâ†e−λ

∗â|n′⟩ (35.161)

=
∑

n,m

c∗1,mc1,n⟨m|eλâ
†
e−λ

∗â|n⟩+ c∗2,m−1c2,n−1⟨m− 1|eλâ†e−λ∗â|n− 1⟩ .

Obviously, this formula does not contain inneratomic correlations and, since non-
classical field correlation would be entangled with atomic superposition states, we
expect no interesting field correlations, neither.

If on the other hand we decide to ignore the atomic state, we calculate the normally
ordered characteristic function using the density operator (35.141),

χN (λ) = Tr ρ̂
(pure)
field e

λâ†e−λ
∗â = ⟨γ|eλâ†e−λ∗â|γ⟩ (35.162)

=
∑

n,m

(
c∗1,mc1,n⟨m|eλâ

†
e−λ

∗â|n⟩+ c∗2,m−1c2,n−1⟨m− 1|eλâ†e−λ∗â|n− 1⟩

+c∗1,mc2,n−1⟨m|e−λâ
†
eλ

∗â|n− 1⟩+ c∗2,m−1c1,n⟨m− 1|eλâ†e−λ∗â|n⟩
)
,

which now contains field correlations. Inserting the results derived in (35.67) we can
express the characteristic functions by Laguerre polynomials and obtain the Wigner
function as the two-dimensional FFT according to Eq. (35.158). This will be done in
Exc. 35.4.5.8.

35.4.4 Jaynes-Cummings model with dissipation

Applying the numerical method of quantum Monte Carlo wavefunction simulation to
the Jaynes-Cummings model, we write the effective Hamiltonian of the light field as
[493],

Ĥeff = ωâ†â+ ω0

(
σ̂+σ̂ − 1

2

)
+ Ω1

2

(
âσ̂+ + â†σ̂−

)
+ ıΓ

2 σ̂
+σ̂− . (35.163)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/LM_Quantumfields_Opticats_Movie.mp4
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Or in matrix notation,

Heff =



− 1
2
ω0 0

0 ω − 1
2
ω0

1
2
Ω1

1
2
Ω1

1
2
ω0 − ı

2
Γ 0

0 2ω − 1
2
ω0

√
2 1
2
Ω1√

2 1
2
Ω1 ω + 1

2
ω0 − ı

2
Γ 0

0 3ω − 1
2
ω0

. . .


.

(35.164)

The simulation flowchart is,

|ψ⟩ → |1⟩(⟨1|+⟨2|)|ψ⟩
|(⟨1|+⟨2|)|ψ⟩|

=
|1⟩
∑

n(c1n|n⟩⟩+c2n−1|n−1⟩)√∑
n |c1n+c2n|2|

|ψ⟩ → |ψ⟩
||ψ⟩|

=
∑

n c1n|1⟩|n⟩+c2n−1|2⟩|n−1⟩√∑
n(|c1n|2+|c2n|2)

projection ↘ ↙ renormalization

dynamic evolution

|ψ(t+ dt)⟩ = e−ıHeffdt|ψ⟩
↖ ↓ ↗

yes ζ
?
> ⟨ψ(t+ dt)|ψ(t+ dt)⟩ no

random variable

Absorption or scattering of light causes the optical field to decay as α(t) ∝ e−κt/2.
The projection (in component notation) is implemented by,

c′jn ≡
1√∑

n(|c1n|2 + |c2n|2)
cjn , (35.165)

and the dynamical evolution by c′jn ≡ e−κnt/2cjn. Note, that the dissipation due to
cavity losses can also be taken into account by amaster equation. Do the Exc. 36.2.6.1.

35.4.4.1 Criticality in the Jaynes-Cummings model

The Jaynes-Cummings Hamiltonian (without counter-rotating terms) is,

ĤJC = ℏωcâ†â+ ℏωa σ̂z

2 + ℏΩ1

2 (âσ̂+ + â†σ̂−) , (35.166)

where Ω1 is the single-photon Rabi frequency. The eigen-energies for the case of zero
detuning, ωc = ωa, are

E±(n) = ℏωa(n+ 1
2 )± 1

2ℏΩ1

√
n+ 1 . (35.167)

One can approximately calculate the canonical partition function,

Z = Tr e−ıβĤ =
∑

±,n
e−βE±(n) ≃

∫ (
e−βE+(n) + e−βE−(n)

)
dn ≡

∫
eΦ(n)dn ,

(35.168)
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where the discrete sum was replaced by the integral. We get immediately,

Φ(n) = ln(e−βE+(n) + e−βE−(n)) = −βℏωa(n+ 1
2 ) + ln

(
2 cosh 1

2βℏΩ1

√
n+ 1

)
.

(35.169)
The normal approach is that the latter integral is calculated by the Gaussian approx-
imation around the maximum of the exponent:

0 =
∂Φ(n)

∂n
= −βℏ

(
ωa +

Ω1

4
√
n+ 1

tanh 1
2βℏΩ1

√
n+ 1

)
. (35.170)

This criticality has solutions only if Ω > 4ωa, which means that the normal and the
superradiant phase, exist only if the field-atom coupling is significantly stronger than
the energy difference between the atom levels. When the condition is fulfilled, the
equation gives the solution for the order parameter n depending on the inverse of the
temperature 1/β, which means non-vanishing ordered field mode.

35.4.5 Exercises

35.4.5.1 Ex: Time-evolution in the Jaynes-Cummings model

Derive the equations of motion for σ̂−, σ̂z, and â in the Jaynes-Cummings model.
Show that the number of photons is not a constant of motion, but the total number
of excitations.

Solution: Using the Jaynes-Cummings Hamiltonian,

Ĥ = ωâ†â+ ω0(σ̂
+σ̂− − 1

2 ) +
1
2Ω1(âσ̂

+ + â†σ̂−) ,

we derive the Heisenberg equations,

˙̂σ− = −ı[σ̂−, Ĥ] = −ıω0σ̂− − ı
2Ω1âσ̂z

˙̂σz = −ı[σ̂z, Ĥ] = − ı
2Ω1(âσ̂

+ − â†σ̂−)
˙̂a = −ı[â, Ĥ] = −ıωâ− ı

2Ω1σ̂
− .

We also find,
[n̂, Ĥ] = 1

2Ω1[â
†â, âσ̂+ + â†σ̂−] = −[σ̂z, Ĥ] ,

which shows that only the total number of excitations ⟨â†â + σ̂z⟩ is a constant of
motion.

35.4.5.2 Ex: The Jaynes-Cummings model

Consider the Jaynes-Cummings Hamiltonian.
a. Determine from the Schrödinger equation the system of differential equations for the
temporal evolution of the coefficients c2,n(t) and c1,n+1(t) in the interaction picture
within the rotating wave approximation (RWA).
b. Calculate the time evolution for the start condition c2,n(0) = 1 and c1,n+1(0) = 0
for the particular case ω = ω0.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings01.pdf
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c. Generalize the result of item (a) for a multimode field, for which initially (i) all
modes of field k are empty |0⟩ and (ii) the atom is in the excited state |a⟩. Use the
ansatz,

|ψ(t)⟩ = c2(t)e
−ıE2t/ℏ|2, 0⟩+

∑

k

c1,k(t)e
−ı[E1/ℏ+ωk]t|1, 1k⟩ ,

and determine the equations of motion for the amplitudes c2 and c1,k.

Solution: a. The Schrödinger equation gives

∂

∂t

(
c2,ne

−ı(E2/ℏ+nω)t
)
=

∂

∂t
⟨2, n|ψ(t)⟩ = ⟨2, n| ∂

∂t
|ψ⟩ = 1

ıℏ ⟨2, n|Ĥ|ψ⟩

= ⟨2, n| − ı∑n
ω0

2 c2,ne
−ı(E2/ℏ+nω)tσ̂z|2, n⟩+

+ ⟨2, n| − ı∑n
ω0

2 c1,n+1e
−ı(E1/ℏ+(n+1)ω)tσ̂z|1, n+ 1⟩+

+ ⟨2, n| − ı∑nωc2,ne
−ı(E2/ℏ+nω)t(â†â+ 1

2 )|2, n⟩+
+ ⟨2, n| − ı∑nωc1,n+1e

−ı(E1/ℏ+(n+1)ω)t(â†â+ 1
2 )|1, n+ 1⟩+

+ ⟨2, n| − ı∑ngc2,ne
−ı(E2/ℏ+nω)t(âσ̂+ + â†σ̂−)|2, n⟩+

+ ⟨2, n| − ı∑ngc1,n+1e
−ı(E1/ℏ+(n+1)ω)t(âσ̂+ + â†σ̂−)|1, n+ 1⟩

= − ı
2ω0c2,ne

−ı(E2/ℏ+nω)t + 0− ı(n+ 1
2 )ωc2,ne

−ı(E2/ℏ+nω)t+

+ 0− ı
√
n+ 1gc1,n+1e

−ı(E1/ℏ+(n+1)ω)t ,

where σ̂z|1⟩ = |1⟩ and σ̂z|2⟩ = −|2⟩ and â|n⟩ =
√
n|n− 1⟩ and â†|n⟩ =

√
n+ 1|n+1⟩.

Furthermore,

∂

∂t

(
c1,n+1e

−ı(E1/ℏ+(n+1)ω)t
)
= − ı

2ω0c1,n+1e
−ı(E1/ℏ+(n+1)ω)t + 0−

− ı(n+ 1
2 )ωc1,n+1e

−ı(E1/ℏ+(n+1)ω)t+

+ 0− ı
√
n+ 1gc2,ne

−ı(E2/ℏ+nω)t ,

also,

ċ2,n + (E2/ℏ+ nω)c2,n = 1
2ω0c2,n + (n+ 1

2 )ωc2,n +
√
n+ 1gc1,n+1e

ı(ω0−ω)t

ċ1,n+1 + (E1/ℏ+ (n+ 1)ω)c1,n+1 = 1
2ω0c1,n+1 + (n+ 1

2 )ωc1,n+1 +
√
n+ 1gc2,ne

ı(ω−ω0)t .

b. In short, we can write with ω0 = E2 − E1

∂

∂t

(
c1,n+1

c2,n

)
= −ı

(
1
2ω0 − 1

2ω − 1
ℏE1

√
n+ 1ge−ı(ω0−ω)t

√
n+ 1geı(ω0−ω)t 1

2ω0 +
1
2ω − 1

ℏE2

)(
c1,n+1

c2,n

)

in resonance we have,

∂

∂t

(
c1,n+1

c2,n

)
= −ı

(
− 1

ℏE1

√
n+ 1g√

n+ 1g − 1
ℏE2

)(
c1,n+1

c2,n

)

The eigenvalues of the matrix are E = E1 ± g
√
n+ 1. Placing the ansatz,

(
c1,n+1(t)

c2,n(t)

)
=

(
αge
−ı(−E1+g

√
n+1)t + βge

−ı(−E1−g
√
n+1)t

αae
−ı(−E1+g

√
n+1)t + βae

−ı(−E1−g
√
n+1)t

)
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gives,

− ı(−E1 + g
√
n+ 1)αge

−ıgt√n+1 − ı(−E1 + g
√
n+ 1)βge

ıgt
√
n+1

=
ı

ℏ
E1αge

−ıgt√n+1 +
ı

ℏ
E1βge

ıgt
√
n+1 − ı

√
n+ 1gαae

−ıgt√n+1 − ı
√
n+ 1gβae

ıgt
√
n+1

− ı
(
−E1 + g

√
n+ 1

)
αae
−ıgt√n+1 − ı

(
−E1 + g

√
n+ 1

)
βae

ıgt
√
n+1

=
ı

ℏ
E1αae

−ıgt√n+1 +
ı

ℏ
E1βae

ıgt
√
n+1 − ı

√
n+ 1gαge

−ıgt√n+1 − ı
√
n+ 1gβge

ıgt
√
n+1

and hence αa = αg and βg = −βa. The initial condition c2,n(0) = 1 and c1,n+1(0) = 0
gives αg + βg = 1 and αa + βa = 0. Hence, the solution is,

(
c1,n+1(t)

c2,n(t)

)
= eıE1t

(
cos gt

√
n+ 1

ı sin gt
√
n+ 1

)
.

c. The generalization of the result found in (a) to a multimode field |ψ(t)⟩ = ca(t)e
−ıE2t/ℏ|a, 0⟩+∑

k cg,k(t)e
−ı(E1/ℏ+ωk)t|g, 1k⟩ yields,

∂

∂t

(
cae
−E2t/ℏ

)
= ⟨2, 0| − ıω0

2 cae
−ıE2t/ℏσz|a, 0⟩+

+ ⟨2, 0| − ı
∑

k

ω0

2 cg,ke
−ı(E1/ℏ+ωk)tσz|g, 1k⟩+

+ ⟨2, 0| − ıωcae−ıE2t/ℏ
(
a†a+ 1

2

)
|a, 0⟩+

+ ⟨2, 0| − ı
∑

k

ωcg,ke
−ı(E1/ℏ+ωk)t(a†a+ 1

2 )|g, 1k⟩+

+ ⟨2, 0| − ıgcae−ıE2t/ℏ(aσ+ + a†σ−)|a, 0⟩+
+ ⟨2, 0| − ı

∑

k

gcg,ke
−ı(E1/ℏ+ωk)t(aσ+ + a†σ−)|g, 1k⟩

= − ı
2ω0cae

−ıE2t/ℏ + 0− ı(0 + 1
2 )ωcae

−ıE2t/ℏ+

+ 0− ıg
∑

k

cg,ke
−ı(E1/ℏ+ωk)t ,
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and also,

∂

∂t

(
cg,ke

−ı(E1/ℏ+ωk)t
)
= ⟨g, 1k| − ıω0

2 cae
−ıE2t/ℏσ̂z|a, 0⟩+

+ ⟨g, 1k| − ı
∑

k

ω0

2 cg,ke
−ı(E1/ℏ+ωk)tσ̂z|g, 1k⟩+

+ ⟨g, 1k| − ıωcae−ıE2t/ℏ(a†a+ 1
2 )|a, 0⟩+

+ ⟨g, 1k| − ı
∑

k

ωcg,ke
−ı(E1/ℏ+ωk)t(â†â+ 1

2 )|g, 1k⟩+

+ ⟨g, 1k| − ıgcae−ıE2t/ℏ(aσ+ + a†σ̂−)|a, 0⟩+
+ ⟨g, 1k| − ı

∑

k

gcg,ke
−ı(E1/ℏ+ωk)t(âσ̂+ + â†σ−)|g, 1k⟩

= 0− ı
∑

q

ω0

2 cg,qe
−ı(E1/ℏ+ωk)t⟨1k|1q⟩+ 0−

− ı
∑

q

ωqcg,qe
−ı(E1/ℏ+ωk)t(1 + 1

2 )⟨1k|1q⟩−

− ıgcae−ıE2t/ℏ⟨1k|a†|0⟩+ 0 .

From this,

ċa − ı
ℏE2ca = − ı

2 (ωk + ω0)ca − ıg
∑

k

cg,ke
−ı(−ω0+ωk)t

ċg,k − ı(E1/ℏ+ ωk)cg,k = − ı
2 (ω0 + 3ωk)cg,k − ıgcae−ı(ω0−ωk)t .

With a transformation to the interaction picture c̃a = cae
ı/2(ωk−ω0)t and c̃g = cge

ı/2(ωk+ω0)t,
where without general restriction E1 ≡ 0,

∂tc̃a = −ıg
∑

k

c̃g,ke
−ı(−ω0+ωk)t

∂tc̃g,k = −ıgc̃ae−ı(ω0−ωk)t .

With this we can calculate the spontaneous emission [1184].
d. Background: The formal solution is

cg,k(t) = −g
∫ t

0

dt′ eı(ωk−ω0)t
′
ca(t

′) .

When we introduce the density of the slowly varying states,
∑

k →
∫∞
0
dω ρ(ω), we

get,

ċa(t) = −g2
∑

k

∫ t

0

dt′ eı(ωk−ω0)(t−t′)ca(t
′)

≈ −g2ρ(ω0)

∫ t

0

dt′
∫ ∞

−∞
dω eı(ωk−ω0)(t−t′)ca(t

′)

= −g2ρ(ω0)

∫ t

0

dt′2πδ(t− t′)ca(t′) = −Γ
2 ca(t) ,
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with Γ ≡ 4πg2ρ(ω0). The presence of many modes blurs the periodicity of the Rabi
oscillations, until only remains a purely exponential decay, |ca(t)|2 = e−Γt, character-
izing the spontaneous emission.

35.4.5.3 Ex: Quantum collapse and revival in the Jaynes-Cummings
model

Consider the Jaynes-Cummings Hamiltonian and show that the quantum coherence
between the two atomic levels can disappear altogether for long periods and reappear
later. Explain how this is possible.

Solution: The figure shows a simulation done in the Julia Language.

0 10 20 30 40 50
time

0.0

0.2

0.4

0.6

0.8

1.0

22

Figure 35.10: (code) Simulation of the time-evolution of the excited state population in the

JCM for 200 photons.

35.4.5.4 Ex: Vacuum Rabi splitting

Calculate the Autler-Townes splitting for an excited atom interacting with an empty
cavity.

Solution: Without light in the cavity but with an initially excited atom, the Hamil-
tonian (35.113) is restricted to,

Ĥn =

(
ω0

2
Ω
2

Ω
2 ω − ω0

2

)
,

with all the consequences. That is, even without photons in the mode, the atom starts
to make a stimulated transition to the ground state. These are the well-known vacuum
Rabi oscillations.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_CollapseRevival.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_CollapseRevival.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings03.pdf
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35.4.5.5 Ex: The Q-function in a Jaynes-Cummings state

Calculate the Q-function for a Jaynes-Cummings state from its definition (35.154).

Solution: To begin with, we project the Glauber state onto a Fock state,

⟨n|α⟩ = ⟨n|e−|α|2/2
∞∑

m=0

αm√
m!
|m⟩ = e−|α|

2/2 α
n

√
n!

and the Jaynes-Cummings state onto an atomic state,

⟨j|ψ⟩ = ⟨j|
∑

n

(c1,n|1, n⟩+c2,n−1|2, n−1⟩) =
∑

n

(δj1c1,n|n⟩+δj2c2,n−1|n−1⟩) =
∑

n

cj,n|n⟩ .

With this we calculate the Q-function,

πQ(α) = ⟨α|Tratom ρ̂|α⟩ = ⟨α|
∑

j=1,2

⟨j|ψ⟩⟨ψ|j⟩|α⟩ = ⟨α|
∑

j=1,2

∑

n

cj,n|n⟩
∑

m

c∗j,m⟨m|α⟩

=
∑

j=1,2

∑

n,m

c∗j,mcj,ne
−|α|2/2 α

∗n
√
n!
⟨n|e−|α|2/2 α

m

√
m!
|m⟩ = e−|α|

2 ∑

j=1,2

∑

n

|cj,n|2
|α|n
n!

.

35.4.5.6 Ex: Creation of quantum correlations in an optical mode

a. We will show in this exercise how, via coherent operations in a three-level system,
we can create Schrödinger-type quantum-type correlations in an optical mode. In
the system shown in Fig. 35.11 we imagine the lower transition excited by π/2-pulses
of a classical resonant microwave radiation (as described by the operation (35.125)).
The upper transition is excited by quantum laser pulses tuned very far out of reso-
nance, thus creating a dispersive dynamics (as described by the operation (35.125)).
At time t = 0 the atom is in state |1⟩. Now, we apply the following pulse sequence:
(i) a microwave pulse with

√
n̄Ω12t = π/2, (ii) an optical pulse with Ω2

23t/4∆23 = π,
(iii) another microwave π/2-pulse, and finally (iv) an optical pulse of light which is
resonant with the transition |2⟩-|3⟩ and projects the population of the atom into one
of the states of the microwave transition. Describe the evolution of the state of the
system during the sequence and determine the final state of the optical mode.
b. Calculate the number of photons for the two cases that, after a measurement, the
atom is found in (i) the lower state and (ii) the upper state. Interprete the results.

Solution: We denote the microwave radiation by |µ⟩ and the laser light by |β⟩.
Initially, before the atom interacts with the fields, we have the state,

|ψ(0)⟩ =
(
1

0

)
|µ⟩|β⟩ .

We now apply a resonant π/2-pulse to the microwave transition ω12. If the field is
coherent, |µ|2 ≫ 1, the atom goes to a superposition of atomic states,

|ψ(t)⟩ = 1√
2

(
1

ı

)
|µe−ıω12t⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings05.pdf
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Figure 35.11: (a) Level scheme and (b) pulse sequence.

The microwave field being classical, the atomic state does not get entangled with the
field, that is, the microwave field factors out. Now, we apply an optical pulse tuned far
away from the resonance |2⟩− |3⟩, such that |∆23| ≫ |β|2Ω23. The laser-induced light
shift is Ω2

23/4∆23, such that the atom suffers phase shift of φ ≡ Ω2
23t/4∆23 provided

it is in the state |2⟩, but not if it is in the state |1⟩. For φ = π we obtain,

|ψ(t+ τ)⟩ = 1√
2

( |β′⟩
−ı| − β′⟩

)
with β′ = βe−ıω23τ .

Therefore, the atomic state is entangled with the coherences of the optical field. Now,
a second Ramsey π/2-pulse is applied to the microwave transition, such that the cor-
related state is disentangled:

|ψ(2t+ τ)⟩ = 1
2

(
1

ı

)
|β′⟩+ 1

2

(
1

−ı

)
| − β′⟩ .

Finally, a resonant optical light pulse measures the population of the state |2⟩. The
measurement reduces the atomic state, and we are left with a pure Schrödinger cat
state of the optical field:

|ψ(T )⟩ = ı√
2

(
0

ı

)
(|β′⟩ − |β′⟩) ,

and analogously for the level |1⟩ 9.
b. With,

|ψ⟩ = 1
2

(
1

ı

)
|β⟩+ 1

2

(
1

−ı

)
| − β⟩

= 1
2 |1, β⟩+ ı

2 |2, β⟩+ 1
2 |1,−β⟩ − ı

2 |2,−β⟩
9The detection of quantum correlations is much more complicated than their creation: In princi-

ple, it is sufficient to detect the quantum interference fringes appearing in the Wigner distribution
via phase-sensitive homodyne detection [1164, 1352]. But in a Schrödinger cat state the number of
fringes corresponds to the number of photons in the mode. If the number of photons is too large, the
interference fringes are too thin to be resolved. In addition, scattering can wear out the fringes, such
that large cats are much more sensitive to dissipation. Since the dissipation corresponds to photon
annihilation, the cat is jumping between odd and even cat states.
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we get for the photon numbers when the atom is in state |1⟩,
⟨ψ|1⟩⟨1|â†â|1⟩⟨1|ψ⟩ = 1

4 (⟨β|+ ⟨−β|)â†â(|β⟩+ | − β⟩)
= 1

4 |β|2(⟨β| − ⟨−β|)(β⟩ − | − β⟩)
= 1

4 |β|2
(
2− e−|β|2/2−|−β|2/2−β∗β − e−|−β|2/2−|−β|2/2−β∗β

)

= 1
2 |β|2(1− e−2|β|

2

) ≃ 1
2 |β|2

for |β| ≫ 1, and when the atom is in state |2⟩,
⟨ψ|2⟩⟨2|â†â|2⟩⟨2|ψ⟩ = 1

4 (−⟨β|ı+ ⟨−β|ı)â†â(ı|β⟩ − ı| − β⟩)
= ı2

4 |β|2(−⟨β| − ⟨−β|)(|β⟩+ | − β⟩)
= 1

4 |β|2
(
2 + e−|β|

2/2−|−β|2/2−β∗β + e−|−β|
2/2−|−β|2/2−β∗β

)

= 1
2 |β|2(1 + e−2|β|

2

) ≃ 1
2 |β|2 ,

so that the total photon number is,

⟨ψ|â†â|ψ⟩ = ⟨ψ|1⟩⟨1|â†â|1⟩⟨1|ψ⟩+ ⟨ψ|2⟩⟨2|â†â|2⟩⟨2|ψ⟩ = |β|2 .
The system realizes a fully quantized model of a beam splitter and a Mach-Zehnder
interferometer with the difference, the two interferometer arms are not spatially sep-
arated. The fact that they are entangled is not different from a classical beam spitter
(see Sec. 35.8.2). When the dispersive optical pulse realizes a π phase shift between the
arms, we observe constructive interference in one arm and destructive in the other.
In the same time we know that the cat states |ψ⟩ ± | − ψ⟩ are not empty of photons,
but have probability distributions of even/odd photon numbers.

35.4.5.7 Ex: Master equation derived from JC model Hamiltonian for
two-level systems

Write down the Liouvillean for a JC system in matrix form for a density operator
defined like, (

· · · ρn−111 ρn22 ρn12 ρn21 ρn11 ρn+1
22 · · ·

)
.

Solution: See [1440, 264, 339],

. . .

0 Γ

0 −Γ − ı
2

√
nΩ ı

2

√
nΩ 0

− ı
2

√
nΩ −Λ 0 ı

2

√
nΩ

ı
2

√
nΩ 0 −Λ∗ − ı

2

√
nΩ

0 ı
2

√
nΩ − ı

2

√
nΩ 0 Γ

0 −Γ
. . .


.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_JaynesCummings06.pdf
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35.4.5.8 Ex: Laguerre polynomials

Calculate the Wigner function for the field generated by a Jaynes-Cummings dynam-
ics in the photon picture.

Solution: First we find the series expressions for the Laguerre polynomials L
(α)
n (x)

and L
(−α)
n (x). According to Wikipedia,

L(α)
n (x) =

n∑

m=0

(
n+ α

n−m

)
(−x)m
m!

and
(−x)m
m!

L(m−n)
n (x) =

(−x)n
n!

L(n−m)
m (x) .

With this,

L(−α)
n (x) =

(n− α)!
n!

(−x)αL(α)
n−α(x)

=
(n− α)!

n!
(−x)α

n−α∑

m=0

(
n

n− α−m

)
(−x)m
m!

=

n−α∑

m=0

(
n− α
m

)
(−x)m+α

(m+ α)!
.

Now, the normally ordered characteristic function is,

χN (λ) =
∑

m,n

c∗1,mc1,n

√
n!

m!

[
λm−nΘm≥n + (−λ∗)m−nΘm<n

]
Lm−nN (|λ|2)

+
∑

m−1,n−1
c∗2,m−1c2,n−1

√
(n− 1)!

(m− 1)!

[
λm−nΘm≥n + (−λ∗)m−nΘm<n

]
Lm−nn−1 (|λ|2)

+
∑

m,n−1
c∗1,mc2,n−1

√
(n− 1)!

m!

[
λm−n+1Θm≥n + (−λ∗)m−n+1Θm<n)

]
Lm−n+1
n−1 (|λ|2)

+
∑

m−1,n
c∗2,m−1c1,n

√
n!

(m− 1)!

[
λm−1−nΘm≥n + (−λ∗)m−1−nΘm<n

]
Lm−1−nN (|λ|2) .

This yields after rearrangement,

χN (λ) =
∑

m,n

√
n!

m!




(c∗1,mc1,n + c∗2,mc2,n)(λ
m−nΘm≥n + (−λ∗)m−nΘn<m)

+λm−n
(
c∗1,mc2,nΘm≥n+1 + c∗2,mc1,nΘm≥n−1

)

+(−λ∗)m−n(c∗1,mc2,nΘm<n+1 + c∗2,mc1,nΘm<n−1)


Lm−nN (|λ|2) .

From here we get the Wigner function by numerical FFT according to Eq. (35.158).

35.5 Correlation functions

In the preceding sections and in Sec. 35.2 we have learned, how to characterize quan-
tum fields by (quasi-)probability distribution functions, and how to represent correla-
tions in the Fock or the Glauber basis. But we did not propose experimental schemes

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_PhotonFunctions11.pdf
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Figure 35.12: (code) Bloch vector, photon number distribution, and Wigner function for

JC-coupling in the Fock state representation.

allowing to detect them. Experimental devices, such as interferometers or photon
correlators, necessarily involve space or time coordinates. Hence, we need to devise
quantities for the characterization of correlations, that are compatible with experi-
mental devices. The correlation functions are such quantities, and in the next section
we will focus our attention them.

In order to be able to distinguish classical from genuinely quantum correlations,
we will first a classical description, before introducing a quantum description of the
light field [816].

35.5.1 Classical first and second order coherence

The coherence properties of a light field (or a matter wave) are measured by nth space
time order correlation functions. In quantum mechanics, these are defined by,

g(n)(r1, t1, .., r2n, t2n) ≡
⟨Ê−(r1, t1)..Ê−(rn, tn)Ê+(rn+1, tn+1)..Ê+(r2n, t2n)⟩√
⟨Ê−(r1, t1)Ê+(r1, t1)⟩..⟨Ê−(r2n, t2n)Ê+(r2n, t2n)⟩

.

(35.171)
In the following, we will only consider temporal coherences, e.g. one or more collinear
light beams, km ∥ kn, impinging on a photodetector, (tm− zm

c )− (tn− zn
c ) = τ , since

Ê(r, t) = Ê(ωt − k · r), we can define the the 1st and 2nd order correlation functions
g(1) and g(2), which are particularly important,

g(1)(τ) ≡ ⟨Ê
−(t)Ê+(t+ τ)⟩
⟨Ê−(t)Ê+(t)⟩

and g(2)(τ) ≡ ⟨Ê
−(t)Ê−(t+ τ)Ê+(t+ τ)Ê+(t)⟩

⟨Ê−(t)Ê+(t)⟩2
.

(35.172)
Ignoring the quantized nature of light, we may substitute the field operators by com-
plex numbers, Ê+ → E and Ê− → E∗ and interprete the brackets as pure time

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_OpticatsFock.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_OpticatsFock.m
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averages,

⟨· · ·⟩t = lim
t→∞

1

t

∫ t

0

· · · dt′ . (35.173)

Defining the intensity as I = 2ε0cE∗E , the coherences become,

g(1)(τ) ≡ 2ε0c
I ⟨E∗(t)E(t+ τ)⟩ and g(2)(τ) ≡

(
2ε0c
I

)2 ⟨I(t)I(t+ τ)⟩ . (35.174)

The correlation functions must be calculated from the field operators simultaneously
respecting time order and normal order. These functions are useful quantities to de-
scribe phenomena such as photon bunching or to understand the fluorescence spectra
or the scattering of light from correlated atoms. g(1) measures the coherence of a
light field (how much it resembles a sine wave). g(2) measures, for a given degree of
coherence, the deviation of the light field from the quantum state that most closely
approximates a classical light (how much it resembles a laser).

The correlation functions g(1) and g(2) are experimentally measured in Young’s
experiment and in the Hanbury-Brown-Twiss experiment. The experimental schemes
are explained in Figs. 35.13.

Figure 35.13: (a) Scheme of Young’s experiment. (b) Scheme of the experiment of Han-
bury, Brown, and Twiss. Young’s experiment reveals the coherence of a field, that is, its
ability to interfere. In contrast, the Hanbury-Brown-Twist experiment reveals correlations
between the (quasi-)particles constituting the field, that is, effects due to quantum statistics
or interactions.

Coherence and chaos are contrary properties of light. They leave their imprint
in the spectrum of the light or in the autocorrelation functions. The emission spec-
trum of a light source generally emerges as a combination of various physical ef-
fects: The active medium gives rise resonances and broadenings, a resonator con-
taining the active medium imprints a modal structure, and the coupling to a ther-
mal bath gives rise to a thermal distribution of the radiation energy according to
Pn = e−ℏω(n+1/2)/kBT /

∑
n e
−ℏω(n+1/2)/kBT .

35.5.2 The Wiener-Khintchine theorem

When the time dependence of a wave is given by E(t), we call

RE(τ) = ⟨E∗(t)E(t+ τ)⟩t (35.175)

the autocorrelation function and the power density

SE(ω) = (FRE)(ω) = |(FE)(ω)|2 (35.176)
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the spectrum. This relation is called the Wiener-Khintchine theorem. We may
also consider the normalized quantities, dividing (35.175) and (35.176) by RE(0) =
⟨Ê∗(t)Ê(t)⟩t =

∫∞
−∞ |(FE)(ω)|2dω =

∫∞
−∞ SE(ω)dω. We obtain,

g(1)(τ) =
RE(τ)
RE(0)

, (35.177)

and,

FE(ω) ≡ (Fg(1))(ω) = SE(ω)
RE(0)

=
1

2π

∫ ∞

−∞
g(1)(τ)eıωτdτ . (35.178)

The quantity FE(ω) is called line profile or spectrum. Note that, since,

g(1)(−τ) = g(1)(τ)∗ , (35.179)

we may also write,

FE(ω) = Re
1

π

∫ ∞

0

g(1)(τ)eıωτdτ . (35.180)

35.5.3 Coherent and chaotic light

The temporal and spectral properties of a light field are largely determined by the
processes leading to its generation in the light source, that is, whether the light is
generated by stimulated or spontaneous emission, by a laser or by blackbody radiation,
by a single atom or by atomic gases subject to collisional and Doppler-broadening.

35.5.3.1 Correlation functions for laser light

First-order coherent light satisfies |g(1)(τ)| = 1, incoherent light |g(1)(τ)| = 0, and
for partially coherent light, we get intermediate values. Second-order coherent light
satisfies g(2)(−τ) = g(2)(τ) and 1 ≤ g(2)(0) ≤ ∞ and 0 ≤ g(2)(τ) ≤ ∞ and g(2)(0) ≥
g(2)(τ)

τ≫τc→ 1. Let us now look at some specific cases, for which the correlation
functions and spectra can be calculated.

With the definitions (35.172) it is easy to calculate the autocorrelation functions
and the spectrum of a laser light field,

laser

E(t) = eıω0t

=⇒ g(1)(τ) =
t−1

∫
e−ıω0τdt

t−1
∫
dt

= e−ıω0τ

=⇒ F
[
g(1)(τ)

]
=

1

2π

∫ ∞

−∞
eı(ω−ω0)τdτ = δ(∆)

g(2)(τ) = 1

. (35.181)

We see that the absolute values of the first and second-order coherences are constant,
and that the spectrum is narrow like a δ-function.
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35.5.3.2 Correlation functions for laser light subject to white noise

For a laser subject to white phase noise (ζ be a normally distributed random number)
we have (see also Sec. 56.3.2),

noisy laser

E(t) = eı[ω0t+ζ(t)]

=⇒ g(1)(τ) =

∫
e−ı[ω0τ+ζ(t+τ)−ζ(t)]dt∫

dt
= eıω0τ−γ|τ |

=⇒ F [g(1)(τ)] =
γ/π

∆2 + γ2

g(2)(τ) = 1

. (35.182)

We see, that the first-order coherence decays exponentially, |g(1)(τ)| = e−γ|τ | 10, such
that the spectrum has a Lorentzian profile. This result has already been derived in
Eq. (34.28) for the natural linewidth of a transition subject to spontaneous emission.
We understand the connection by interpreting spontaneous emission as being induced
by vacuum fluctuations, which do have a white noise spectrum, indeed.

Example 212 (Laser broadening due to spontaneous emission): Laser
light is generated by stimulated emission on a transition between two quantized
levels. The alternance of absorption and stimulated emission induces coherent
Rabi oscillations ensuring the coherence of the emitted light. But we have seen
earlier that spontaneous emission leads to randomly occurring interruptions of
the coherent Rabi oscillations. The probability of finding a coherent interval
decreases exponentially with the evolution time,

p(τ)dτ = γe−γτdτ ,

where γ is the spontaneous decay rate of the dipole moment. From E(t) =
eıω0t+ıζ(t) we calculate,

RE(τ) = ⟨eıω0t+ıζ(t)e−ıω0(t+τ)−ıζ(t+τ)⟩ = e−ıω0τ lim
t→∞

1

t

∫ t

0

eı[ζ(t)−ζ(t+τ)]dt

= e−ıω0τ

∫ ∞
τ

p(τ ′)dτ ′ = e−ıω0τe−γ|τ | ,

and,

FE(ω) =
1

2π

∫ ∞
−∞

RE(τ)

RE(0)
eıωτdτ =

1

2π

∫ ∞
−∞

e−ıω0τe−γ|τ |eı(ω−ω0)τdτ =
γ/π

∆2 + γ2
.

An alternative derivation from Bloch or rate equations is shown in Excs. 35.6.4.3

and 35.6.4.4.

10Note that, in order to satisfy (35.179), we must take the absolute value of the delay |τ |.
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35.5.3.3 Correlation functions with pressure broadening

In Sec. 34.6.2 we have already seen, that collision or pressure broadening can be treated
by assuming that the light is emitted as a superposition of coherent waves all having
the same frequency, but being randomly interrupted by phase jumps,

E(t) =
∑

n

En(t) with En(t) = eıω0t+ıϕn(t) . (35.183)

The autocorrelation function is then,

⟨E∗(t)E(t+ τ)⟩ = 1

t

∫ ∑

n

e−ıω0t−ıϕn(t)
∑

m

eıω0t+ıω0τ+ıϕm(t+τ)dt (35.184)

= eıω0τ
∑

n,m

1

t

∫
eıϕm(t+τ)−ıϕn(t)dt = N⟨E∗n(t)Em(t+ τ)⟩δnm .

The crossed terms n ̸= m of this expressions vanish. The pressure broadening is
homogeneous, but the fact that the wavepackets are scattered by different atoms
results in a modified first-order coherence,

⟨E∗n(t)En(t+ τ)⟩ = eıω0τ
∑

n

∫
eıϕn(t+τ)−ıϕn(t)dt = eıω0τ

∫ ∞

τ

p(τ)dτ . (35.185)

The probability density of finding a coherent interval of duration τ is p(τ)dτ =
γce
−γcτdτ , which finally gives,

⟨E∗(t)E(t+ τ)⟩ = Neıω0τ−γc|τ | . (35.186)

The calculation for the 2nd order correlation function (35.174) is analogous,

⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩ =
∑

n,m,n′,m′

⟨E∗m(t)En(t)E∗m′(t+ τ)En′(t+ τ)⟩ (35.187)

=
∑

n

⟨E∗n(t)En(t)E∗n(t+ τ)En(t+ τ)⟩

+


∑

n ̸=m
⟨E∗n(t)En(t)E∗m(t+ τ)Em(t+ τ)⟩+ ⟨E∗m(t)En(t)E∗n(t+ τ)Em(t+ τ)⟩


 ,

neglecting all terms which do not satisfy either E∗n(t)En(t) or E∗n(t)En(t + τ). Now,
assuming a large amount of identical atoms,

⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩ (35.188)

= N⟨E∗n(t)En(t)E∗n(t+ τ)En(t+ τ)⟩+N(N − 1)
(
⟨E∗n(t)En(t)⟩2 + |⟨En(t)E∗n(t+ τ)⟩|2

)

≃ N2
(
⟨E∗n(t)En(t)⟩2 + |⟨En(t)E∗n(t+ τ)⟩|2

)
.

Finally, exploiting the result (35.184) and the definitions of the 1st and 2nd order
correlations functions,

g(2)(τ) =
⟨E∗n(t)En(t)⟩2 + |⟨En(t)E∗n(t+ τ)⟩|2

⟨E∗n(t)En(t)⟩2
= 1 + |g(1)(τ)|2 . (35.189)
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In summary,

pressure broadening

E(t) =
∑
n e

ıω0t+ıϕn(t)

=⇒ g(1)(τ) = eıω0τ−γc|τ |

=⇒ F
[
g(1)(τ)

]
=

γ/π

∆2 + γ2c

g(2)(τ) = 1 + e−γc|τ |

. (35.190)

The spectrum is a Lorentzian with the full linewidth γ′ = γ + γc.
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Figure 35.14: (code) First and second-order correlation functions for (red) a laser, (cyan) a

laser subject to phase noise, (blue) a laser subject to collision broadening, (magenta) chaotic

light, and (green) spectrally filtered thermal light.

35.5.3.4 Correlation functions with thermal broadening

For light emitted by an ensemble of non-colliding atoms in thermal motion, we must
allow for different frequencies, En(t) = eıωnt+ıϕn , but time-independent phases,

⟨E∗(t)E(t+ τ)⟩ =
∫ ∑

n

e−ıωnt−ıϕn

∑

m

eıωmt+ıωmτ+ıϕmdt (35.191)

=
∑

n,m

∫
e−ıωnt−ıϕn+ıωmt+ıωmτ+ıϕmdt =

∑

n

eıωnτ .

The crossed terms n ̸= m of this expressions vanish. Doppler broadening is inhomo-
geneous. Hence, the probability density for frequencies emitted by thermal atoms is

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Coherences.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Coherences.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Coherences.m
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a Gaussian, p(ω)dω = (2πδ)−1/2e−(ωn−ω0)
2/2δ2dω, such that,

thermal ensemble

⟨E∗(t)E(t+ τ)⟩ = N(2πδ)−1/2
∫
eıωnτe−(ωn−ω0)

2/2δ2dωn

=⇒ g(1)(τ) = eıωτ−δ
2τ2/2

=⇒ F [g(1)(τ)] =

√
ln 2

πδ2
e− ln 2·ω2/δ2

g(2)(τ) = 1 + e−δ
2τ2/2

. (35.192)

For a totally emission chaotic light,

chaotic line

g(1)(τ) = δ(0)

F [g(1)(τ)] = 1

g(2)(τ) = 1 + |g(1)(τ)|

. (35.193)

The last expression is known as Bloch-Siegert relation. Mono-mode chaotic light can
be seen as incoherent multi-mode light, where all modes except a single mode are
filtered by a Fabry-Pérot etalon. This light is characterized by |g(1)(τ)| = 1 and
g(2)(τ) = 2, despite the coherence length being τ → ∞. Do the Excs. 35.5.5.1 to
35.5.5.3.

35.5.4 Photon counting statistics

35.5.4.1 Photon counting with classical fields

There is a nice introduction by [816], p.229. Irradiate a photon counter with efficiency
η with a classical light beam of cycle-averaged intensity I(t). The probability density
of registering a count is p(t) = ηI(t). Now consider a time interval [t, t + T ]. Be
Pm(t, T ) the probability to encounter m counts. We now separate a time period dt
which is too short to yield more than one photon, [t, t+ t′+dt]. Then the probability
of finding m photons in this interval is,

Pm(t, t′ + dt) = Pm(t, t′)[1− p(t)]dt+ Pm−1(t, t
′)p(t)dt . (35.194)

From this one derives a differential equation, whose solution is,

Pm(t, T ) =

(∫ t+T
t

p(t′)dt′
)m

m!
exp

(
−
∫ t+T

t

p(t′)dt′
)
. (35.195)

Defining Ī(t, T ) ≡ T−1
∫ t+T
t

I(t′)dt′ and averaging over a number of initial start times
t,

Pm(T ) ≡ ⟨Pm(t, T )⟩t =
〈[

ηT Ī(t, T )
]m

m!
e−ηT Ī(t,T )

〉

t

. (35.196)
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The probability follows as an approximation to a binomial distribution. One can show
that for noise-free light as well as for chaotic light with short coherence length the
distribution is Poissonian. For chaotic light with long coherence length it is thermal.

35.5.4.2 Photon counting with quantum fields

Quantum mechanically the probability is obtained by replacing the intensity by an
operator and the starting time averaging by a trace over the density operator and the
normal-ordered probability Pm [516, 515, 1310, 1154],

Pm(T ) = Tr ρ̂N

[
ηT Î(T )

]m

m!
e−ηT Î(T ) , (35.197)

where Î(T ) ≡ T−1
∫ T
0
2ε0cÊ−(r, t)Ê+(r, t)dt. The field operators can be expanded,

Ê+(r, t) = ıϵ̂
√
ℏω/2ε0V e−ıωt+ık·rb̂, only considering one mode. We obtain,

Pm(T ) = Tr ρ̂N (ξb̂†b̂)m

m!
e−ξb̂

†b̂ . (35.198)

where ξ ≡ ηcℏωT/V is the quantum efficiency,

Pm(T ) =
1

m!

∑

k

⟨k| ρ̂
∑

n

|n⟩⟨n|N (ξb̂†b̂)m
∑

l

(−ξb̂†b̂)l
l!

|k⟩ (35.199)

=

∞∑

k=m

Pk

k−m∑

l=0

ξm(−ξ)l
m!l!

⟨k|(b̂†)m+l(b̂)m+l |k⟩

=

∞∑

k=m

Pk

k−m∑

l=0

ξm(−ξ)l
l!

k!

m!(k −m− l)!

=

∞∑

k=m

Pk

(
k

m

)
ξm

k−m∑

l=0

(
k −m
l

)
(−ξ)l =

∞∑

k=m

Pk

(
k

m

)
ξm(1− ξ)k−m .

Second-order correlation (for a single mode there is no time-dependence),

1

m̄2

∑

m

m(m− 1)Pm(T ) =
1

(ξn̄)2

∑

m

m(m− 1)

∞∑

n=m

Pn

(
n

m

)
ξm(1− ξ)n−m (35.200)

=
1

n̄2

∑

n

n(n− 1)Pn
∑

m<n

(
n− 2

m− 2

)
ξm−2(1− ξ)n−m

=
1

n̄2

∑

n

n(n− 1)Pn =
⟨n(n− 1)⟩
⟨n̄⟩2 ≡ g(2)(τ) .

For a photon number state ρ = |n⟩⟨n| and Pk = δnk,

Pm(T ) =

(
n

m

)
ξm(1− ξ)n−m (35.201)

g(2)(τ) =
1

n̄2

∑

k

k(k − 1)δnk =
1

n2
n(n− 1) = 1− 1

n
.
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For a coherent state ρ =
∑
n
|α|ne−|α|
√
n!
|n⟩⟨n| and Pk = n̄k

k! e
−n̄,

Pm(T ) =
∑

k

n̄k

k!
e−n̄

(
k

m

)
ξm(1− ξ)k−m (35.202)

=
(ξn̄)m

m!
e−n̄

∞∑

k′=0

n̄k
′
(1− ξ)k′

k′!
=

(ξn̄)m

m!
e−ξn̄

g(2)(τ)
1

n̄2

∑

k

k(k − 1)
n̄k

k!
e−n̄ =

∑

k′

n̄k
′

k′!
e−n̄ = 1 .

Similarly we get for a thermal state,

Pm(T ) =
(ξn̄)m

(1 + ξn̄)1+m
g(2)(τ) =

1

n̄2

∑

k

k(k − 1)
n̄k

(1 + n̄)k
(35.203)

=
1

(1 + n̄)2

∑

k′

(k + 2)(k + 1)
n̄k

′

(1 + n̄)k′

=
1

(1 + n̄)2
2

[1− n̄/(1 + n̄)]
3 = 2(1 + n̄) .

35.5.4.3 Quantum correlations

Defining the intensity as Î = 2ε0cÊ+Ê−, the coherences become,

g(1)(τ) ≡ 2ε0c
I ⟨T N Ê−(t)Ê+(t+ τ)⟩ and g(2)(τ) ≡

(
2ε0c
I

)2 ⟨T N Î(t)Î(t+ τ)⟩ .
(35.204)

The correlation functions must be calculated from the field operators simultaneously
respecting time order and normal order.

35.5.4.4 Generalization for time-dependent fields and finite detector band-
width

The measured count rate is then replaced by,

ξb̂†b̂→
∫ T

0

dτ

∫ T

0

dτ ′ξ(τ − τ ′)b̂†(τ)b̂(τ ′) (35.205)

with the spectral sensitivity,

ξ(τ − τ ′) ≡ 1

2π

∫ ∞

−∞
ξ(ω)e−ıω(τ−τ

′)dω . (35.206)

For large detector bandwidth ξ(ω) = ξ, so that we may set ξb̂†b̂→ ξ
∫ T
0
dτ b̂†(τ)b̂(τ).

For this case the probability becomes,

Pm(T ) = Tr ρ̂T N 1

m!
B̂(T )m e−B̂(T ) , (35.207)

where B̂(T ) ≡ ξ
∫ T
0
dτ b̂†(τ)b̂(τ).
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Carrying out the ordering we get now,

Pk(T ) =

〈 ∞∑

l=0

(−ξ)k+l
k!l!

T N
∫ T

0

dτ1

∫ T

0

dτ2..

∫ T

0

dτk+l b̂
†(τ1)b̂(τ1)b̂

†(τ2)b̂(τ2)..b̂
†(τk+l)b̂(τk+l)

〉

(35.208)

=

〈 ∞∑

l=0

(−ξ)k+l
k!l!

∫ T

0

dτ1

∫ τ1

0

dτ2..

∫ τk+l−1

0

dτk+l b̂
†(τ1)b̂

†(τ2)..b̂
†(τk+l)b̂(τk+l)..b̂(τ2)b̂(τ1)

〉
,

when we assume dτ1 < dτ2 < .. < dτn+l.
The expectation value for registering n counts is,

⟨n⟩(T ) =
∑

k

kPk(T )
?
= ⟨T N B̂(T )⟩ (35.209)

=
∑

k

1

(k − 1)!

〈
T N B̂(T )k e−B̂(T )

〉
= ξ

∫ T

0

dτ
〈
b̂†(τ)b̂(τ)

〉
.

The variance is often described by Mandel’s Q-function,

Q(T ) ≡ ⟨∆n
2⟩(T )− ⟨n⟩(T )
⟨n⟩(T ) =

⟨n(n− 1)⟩(T )− ⟨n⟩2(T )
⟨n⟩(T ) . (35.210)

We have,

⟨n(n− 1)⟩(T ) =
∑

k

k(k − 1)Pk(T )
?
= ⟨T N Â2(T )⟩ (35.211)

?
= η2

∫ T

0

dτ

∫ T

0

dτ ′
〈
T N b̂†(τ)b̂†(τ ′)b̂(τ ′)b̂(τ)

〉
. (35.212)

The conditional probability to detect a photon at time t = τ after a successful
detection at time t = 0 is,

g(2)(τ) ≡

〈
T N b̂†(τ)b̂†(τ ′)b̂(τ ′)b̂(τ)

〉

〈
b̂†(τ)b̂(τ)

〉2 , (35.213)

hence,

Q(T ) = ⟨n⟩(T )



∫ t+T
t

dτ
∫ t+T
t

dτ ′S2(τ − τ ′) ⟨T NE−(τ)E−(τ ′)E+(τ ′)E+(τ)⟩
(
S
∫ t+T
t

dτ⟨E−(τ)E+(τ)⟩
)2 − 1




= 2
⟨n⟩(T )
T 2

∫ T

0

dτ(T − τ)[g(2)(τ)− 1] . (35.214)

I.e. we can follow the evolution of the photon number variance as time goes on [1310,
1232, 1266].
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35.5.4.5 Waiting time distributions

The conditional probability P̃ (τ) that after a detection at time 0 any other photon
(not necessarily the next one) is detected at time τ is the sum of the probabilities to
detect the first, the second, etc. photon,

P̃ (τ) =
∑

k

P (k)(τ) . (35.215)

Now P (2)(τ) =
∫ τ
0
P (1)(t)P (1)(τ − t)dt, so that

g(2)(τ) ∝ P̃ (τ) . (35.216)

35.5.5 Exercises

35.5.5.1 Ex: Correlation functions for two light modes

a. Calculate |g(1)(τ)|, FE(ω), and |g(2)(τ)| for two interfering and non-interfering
modes neglecting fluctuations.
b. What changes when one mode is broadened by random noise, e.g. induced by spon-
taneous emission?

Solution: a. We denote the modes by E(t) = eıω1t+ eıω2t, and calculate subsequently
the autocorrelation function,

RE(τ) = e−ıω1τ + e−ıω2τ ,

the g(1)-function,

g(1)(τ) =
RE(τ)
RE(0)

=
e−ıω1τ + e−ıω2τ

2

and its absolute value,

|g(1)(τ)| =
√

e−ıω1τ+e−ıω2τ

2
eıω1τ+eıω2τ

2 =
√

1
2 + 1

2 cos(ω1 − ω2)τ = cos (ω1−ω2)τ
2 ,

and the spectrum,

FE(ω) =
1

2π

∫ ∞

−∞
g(1)(τ)eıωτdτ =

1

4π

∫ ∞

−∞
(e−ıω1τ+e−ıω2τ )eıωτdτ = 1

2 [δ(∆1)+δ(∆2)] .

Hence, while two non-interfering modes without fluctuations satisfy |g(1)(τ)| = 1,
two interfering modes without fluctuations satisfy |g(1)(τ)| = cos 1

2 (ω1 − ω2)τ . The

g(2)-function is,

g(2)(τ) =
⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩

⟨E∗(t)E(t)⟩2 =
⟨cos2 (ω1−ω2)t

2 cos2 (ω1−ω2)(t+τ)
2 ⟩

⟨cos4 (ω1−ω2)t
2 ⟩

.

Using,

lim
t→∞

1
t

∫ t

0

cos2 x cos2(x+ y)dx = 1
4 cos

2 y + 1
8 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions01.pdf
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we find,
g(2)(τ) = 2

3 + 1
3 cos(ω1 − ω2)τ .

b. In analogy to (a) we now consider E(t) = eıω1t + eıω2t+ζ(t) and calculate,

RE(τ) = e−ıω1τ + e−ıω2τ ⟨eıζ(t)−ıζ(t+τ)⟩+ ⟨e−ıω1τeı(ω2−ω1)t+ıζ(t)⟩
0

+ ⟨e−ıω2τeı(ω1−ω2)t−ıζ(t+τ)⟩
0

= e−ıω1τ + e−ıω2τe−γτ ,

and
g(1)(τ) = 1

2e
−ıω1τ + e−ıω2τe−γτ ,

and

FE(ω) = δ(∆1) +
γ/π

∆2
2 + γ2

.

35.5.5.2 Ex: Correlation functions and spectra of phase- and amplitude-
modulated light

a. Calculate g(1)(τ), SE(ω), and g(2)(τ) for amplitude-modulated light: Eam(t) =
eıω0t(1 +M cosΩt).
b. Calculate g(1)(τ), SE(ω), and g(2)(τ) for phase-modulated light: Epm(t) = eıω0t+ıM cosΩt.
c. Repeat the calculation (a) for exponentially decaying amplitude-modulated light:
Edam(t) = e−γteıω0t(1 +M cosΩt). See also 52.3.3.1.

Solution: We use the definition of the first-order correlation function,

g(1)(τ) ≡ ⟨E
∗(t)E(t+ τ)⟩
⟨E∗(t)E(t)⟩ where ⟨...⟩ ≡ lim

t→∞
1

t

∫ t

0

...dt′ .

a. The electric field of amplitude-modulated light is given by,

Eam(t) = eıω0t(1 +M cosΩt) = eıω0t(1 + M
2 e

ıΩt + M
2 e
−ıΩt) .

From this,

⟨E∗am(t)Eam(t+ τ)⟩ = e−ıω0τ ⟨[1 +M cosΩt)(1 +M cosΩ(t+ τ)]⟩
= e−ıω0τ ⟨1 +M cosΩt+M cosΩ(t+ τ) +M2 cosΩτ⟨cos2 Ωt⟩ −M2 sinΩτ⟨sinΩt cosΩt⟩
= e−ıω0τ

(
1 + 1

2M
2 cosΩτ

)
.

Hence,

g(1)am(τ) = e−ıω0τ
2 +M2 cosΩτ

2 +M2
. (35.217)

The spectrum follows from (35.178),

SE(ω) =
1

2π

∫ ∞

−∞
g(1)(τ)eıωτdτ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions02.pdf
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Expanding the correlation function (35.217) for amplitude-modulated light in expo-
nentials, using

∫∞
−∞ e−ıωτdτ = δ(ω), it is easy to see that,

SE(ω) =
1

2π

1

2 +M2

[
2δ(∆) + M2

2 δ(∆ + Ω) + M2

2 δ(∆− Ω)
]
,

with ∆ ≡ ω − ω0.
The g(2)(τ) function follows easily from its definition,

g(2)(τ) =
⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩

⟨E∗(t)E(t)⟩2 =
⟨(1 +M cosΩt)(1 +M cosΩ(t+ τ))⟩

⟨(1 +M cosΩt)⟩2 .

Using,

lim
t→∞

1
t

∫ t

0

(1 +M cosx)(1 +M cos(x+ y))dx = 1 + M2

2 cos y ,

we find,

g(2)(τ) = 1 + M2

2 cosΩτ .

b. The electric field of phase-modulated light is given by,

Epm(t) = eıωt+ıM cosΩt = eıωt
∞∑

k=−∞
Jk(M)eıkΩt .

From this,

⟨E−pm(t)E+pm(t+ τ)⟩ = e−ıω0τ ⟨eıM cosΩte−ıM cosΩ(t+τ)⟩

= e−ıω0τ
∞∑

k,m=−∞
Jk(M)Jm(−M)eımΩτ ⟨eı(k+m)Ωt⟩ = e−ıω0τ

∞∑

k=−∞
Jk(M)2e−ıkΩτ ,

with ⟨eı(k+m)Ωt⟩ = δk,−m and J−k(M) = Jk(−M) = (−1)kJk(M). Hence, using,

∞∑

k=−∞
Jk(x) =

∞∑

k=−∞
Jk(x)

2 = 1 ̸=
∞∑

k=−∞
|Jk(x)|2 ,

we find,

g(1)pm(τ) = e−ıω0τ

∑∞
k=−∞ Jk(M)2e−ıkΩτ∑∞

k=−∞ Jk(M)2
.

The spectrum is, in this case,

SE(ω) =
1

2π

1∑∞
k=−∞ Jk(M)2

∞∑

k=−∞
Jk(M)2δ(∆ + kΩ) .

The g(2)(τ) function is trivially calculated from its definition,

g(2)(τ) =
⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩

⟨E∗(t)E(t)⟩2 = 1 .
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Figure 35.15: (code) (a) AM (blue) and PM-modulated field (red). (b) Numerically calcu-

lated pectra for AM (blue) and PM-modulated light (red). Analytically calculated spectrum

(black).

c. The electric field of exponentially decaying amplitude-modulated light is given by,

Edam(t) = e−γteıω0t(1 +M cosΩt) .

From this,

⟨E−dam(t)E+dam(t+ τ)⟩

= e−ıω0τ−γτ lim
t→∞

1

t

∫ t

0

e−2γt [1 +M cosΩt+M cosΩ(t+ τ) +M cos(Ωt)M cos(Ω(t+ τ))] dt

= e−ıω0τ−γτ lim
t→∞

1

t

∫ t

0

e−2γtM cos(Ωt)M cos(Ω(t+ τ))dt

= e−ıω0τ−γτ lim
t→∞


1−e−2γt

2γt
+ M

t
2γ−2γe−2γt cos Ωt+Ωe−2γt sin Ωt

4γ2+Ω2

+M
t

2γ cos Ωτ−Ω sinΩτ−2γe−2γt cos Ω(t+τ)+Ωe−2γt sin Ω(t+τ)

4γ2+Ω2

−M2

4γt

(−2γ2−Ω2+γ2e−2γt+Ω2e−2γt) cos Ωτ+γΩ sinΩτ+e−2γtγ2 cos Ω(2t+τ)−e−2γtγΩ sinΩ(2t+τ)

γ2+Ω2

 .

Hence,

g
(1)
dam(τ) = e−ıω0τ−γτ limt→∞⟨E∗(t)E(t+ τ)⟩

limt→∞⟨E∗(t)E(t)⟩
= e−ıω0τ−γτ limt→∞ t⟨E∗(t)E(t+ τ)⟩

limt→∞ t⟨E∗(t)E(t)⟩

= e−ıω0τ−γτ
1 +M 4γ2(1+cosΩτ)−2γΩ sinΩτ

4γ2+Ω2 + M2

2
(2γ2+Ω2) cosΩτ+γΩ sinΩτ

γ2+Ω2

1 +M 8γ2

4γ2+Ω2 + M2

2
2γ2+Ω2

γ2+Ω2

.

For γ ≪ Ω we recover the result (35.217). For Ω≪ γ we get,

g
(1)
dam

Ω≪γ−→ e−ıωτ−γτ
1 +M +M2 +M cosΩτ

(1 +M)2
.

The spectrum is, in this case, similar to the amplitude-modulated one, only are the
sidebands Lorentz-broadened.

35.5.5.3 Ex: Phase modulation

a. Show that it is not possible to construct a periodic phase modulation function such
that the signal has only two sidebands.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ModAMPM.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ModAMPM.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ModAMPM.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions03.pdf
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b. From 1 = |eıM sinΩt|2 derive a sum rule for the Bessel functions.
c. Discuss the difference of the spectra

∑∞
k=−∞ Jk(M)eıkΩt and

∑∞
k=−∞ |Jk(M)|eıkΩt.

Solution: a. The question is whether there is a periodic function f(t) such that

eıωt+ıf(t) = eıωt +Meı(ω+Ω)t −Meı(ω−Ω)t

or equivalently eıf(t) = 1 + 2ıM sinΩt. Such a function would have to satisfy,

1 = |1 + 2ıM sinΩt|2 = 1 + 4M2 sin2 Ωt ,

which only holds for M = 0.
b. In contrast, a sinusoidal phase modulation satisfies,

1 = |eıM sinΩt|2 =

∣∣∣∣∣
∞∑

k=−∞
Jk(M)eıkΩt

∣∣∣∣∣

2

=

∞∑

k,m=−∞
Jk(M)Jm(M)eı(k−m)Ωt .

This can only be true at all times if,

1 =

∞∑

k=−∞
Jk(M)2 .

c. In Exc. 35.5.5.1(c) we have seen, that the spectrum of phase-modulated light,∑∞
k=−∞ Jk(M)eıkΩt, is given by,

SE(ω) =
1

2π

1∑∞
k=−∞ Jk(M)2

∞∑

k=−∞
Jk(M)2δ(∆ + kΩ) .

Similarly, we obtain for
∑∞
k=−∞ |Jk(M)|eıkΩt,

SE(ω) =
1

2π

1∑∞
k=−∞ |Jk(M)|2

∞∑

k=−∞
Jk(M)2δ(∆ + kΩ) .

Thus, the spectra are indistinguishable, and one must resort to phase-sensitive spec-
troscopy to distinguish both cases.

35.5.5.4 Ex: Non-classicality of antibunched states

Quantized radiation fields can exhibit the feature of antibunching, which is incompati-
ble with the classical concept of radiation. Show that g(2)(0) < 1 entails the possibility
of negative values for the Glauber-Sudarshan P -function, that is, P (α) < 0 at least
for some α.

Solution: The Glauber-Sudarshan P -function defined via the density operator, ρ̂ =∫
P (α)|α⟩⟨α|d2α, allows to express the expectation value as,

⟨Â⟩ = Tr Âρ̂ =

∫
P (α)⟨α|Â|α⟩d2α .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions09.pdf
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Antibunching, that is g(2)(0) < 1, implies

0 > ⟨â†â†ââ⟩ − ⟨â†â⟩2 =

∫
P (α)|α|4d2α−

(∫
P (α)|α|2d2α

)2

=

∫
P (α)

(
|α|2 −

∫
P (β)|β|2d2β

)2

d2α =

∫
P (α)

(
|α|2⟨â†â⟩

)2
d2α

using the normalization condition
∫
P (α)d2α = 1. This is only possible to satisfy the

quasi-probability distribution is negative at least for some α.

35.6 Spontaneous emission and light scattering

35.6.1 Interaction of atoms with vacuum modes

The Jaynes-Cummings Hamiltonian (35.11), discussed in Sec. 35.4, describes the
purely coherent dynamics of a single immobile two-level atom interacting with a single
cavity mode. The model is simple enough to allow for analytical solutions. However,
it does not include processes of spontaneous emission, which can be understood as
the interaction of the atom with the light modes of the vacuum. That is, we must
extend the Hamiltonian,

Ĥ = Ĥatom + Ĥfield + Ĥatom:field + Ĥvacuum + Ĥatom:vacuum . (35.218)

The evolution of the system represented by the Hamiltonian (35.218) is described by
a total density operator, ρ̂total(t), obeying the von Neumann equation,

dρ̂total
dt

= − ı
ℏ
[Ĥ, ρ̂total] , (35.219)

which has the solution,

ρ̂total(t) = e−ıĤt/ℏρ̂total(0)e
ıĤt/ℏ ≡ e−ıLtρ̂total(0) . (35.220)

Often, we are only interested in either the evolution of the light field, or the
internal state of the atom. In these cases, we calculate the trace over all those degrees
of freedom, which are we are NOT interested in,

ρ̂atom = Trvacuum ρ̂total . (35.221)

The procedure is the following. We begin choosing the initial state of the electromag-
netic vacuum as the photonic vacuum ρ̂vacuum = |{0}⟩⟨{0}| and defining a projection
operator onto this state, P̂ ... ≡ ρ̂vacuum(0)Trvacuum ... = P̂ 2.... Then we apply to the
von Neumann equation the rotating wave, the Markov and the Born approximations.
Finally, tracing over the vacuum field variables, we obtain after some calculations
the Bloch-Lindbladt equation or master equation [1062] for the atom interacting with
the driving field. For a discussion of the validity of the Born-Markov approximation
[932]. For the relation between the Markov approximation and the Fermi’s Golden
Rule [17].
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We emphasize that the Hamiltonian (35.218) describes the interaction of light
with a single immobile atom at the most fundamental level. However, it excludes
many-body effects introduced by quantum statistics or interatomic interactions (to
be discussed in Chp. 45), as well as the center-of-mass motion of the atom and the
impact of photonic recoil (to be discussed in Chp. 38).

In the following section we give a simplified derivation concentrating us on the
situation of a single motionless atom, excited by a laser and emitting photons into
the electromagnetic vacuum.

35.6.1.1 Spontaneous emission

Spontaneous emission can be understood as an energy diffusion process from a system
with a restricted number of degrees of freedom into a large thermal bath. For exam-
ple, although a two-dimensional Hilbert space is sufficient to describe a laser-driven
two-level atom, this atom couples to a huge phase-space by spontaneously emitting
photons into arbitrary directions. We account for his fact by including in the Hamil-
tonian not only the interaction of the atom with the incident laser (wavevector k0,
frequency ωk0

), but also with the modes of the electromagnetic vacuum (wavevec-
tor k, frequency ωk). We will see, that with this Hamiltonian, we can derive, in a
calculation is known as Weisskopf-Wigner theory, the Schrödinger equation for the
amplitudes of the atomic levels (34.184) including spontaneous emission.

Figure 35.16: Scattering of a laser beam by an atom.

Denoting the frequency of the atomic resonance by ωa, the interaction part of the
Hamiltonian is,

Ĥ = ℏgk0
(σ̂−e−ıωat + σ̂+eıωat)

(
â†k0

eıω0t−ık0·r + âk0
e−ıω0t+ık0·r

)

+
∑

k

ℏgk
(
σ̂−e−ıωat + σ̂+eıωat

) (
â†ke

ıωkt−ık·r + âke
−ıωkt+ık·r

) . (35.222)

gk0
is the coupling strength of the interaction between the atom and the pump mode,

σ̂− is the atomic deexcitation operator, âk is the annihilation operator of a photon,
and gk = d

√
ω/(ℏε0V ) describes the coupling between the atom and a vacuum mode

whose volume is V . The atom has two states, the ground state |g⟩ and excited state
|e⟩. Since we are considering only one atom fixed in space 11, we can as well locate it
at the origin r = 0. In addition, considering a high power incident laser,

âk0
|n0⟩k0

=
√
n0|n0 − 1⟩k0

≃ √n0|n0⟩k0
, (35.223)

11We do not let the atom be accelerated by photonic recoil.
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âk0
is approximately an observable proportional to the root of the intensity. As

[âk0
, â†k0

] ≃ 0, we can disregard the quantum nature of the incident field and replace,
Ω0 ≡ 2

√
n0gk0 . Within the rotating wave approximation (RWA), the Hamiltonian

becomes,

Ĥ = ℏ
2Ω0

[
σ̂−eı∆0t + h.c.

]
+ ℏ

∑

k

[
gkσ̂â

†
ke
ı∆kt + h.c.

]
, (35.224)

where we introduced the abbreviations,

∆0 ≡ ω0 − ωa and ∆k ≡ ωk − ωa . (35.225)

The general state of the system is given by,

|Ψ(t)⟩ = α(t)|g⟩a|0⟩k + β(t)|e⟩a|0⟩k +
∑

k

γk(t)|g⟩a|1⟩k , (35.226)

where |j⟩a denotes the atomic state and |n⟩k the number of photons in the scattering
mode.

The temporal evolution of the amplitudes is obtained by inserting the Hamiltonian
(35.224) and the ansatz (35.226) into the Schrödinger equation,

∂

∂t
|Ψ(t)⟩ = − ı

ℏ
Ĥ|Ψ(t)⟩ . (35.227)

As verified in Exc. 35.6.4.1, we obtain,

α̇(t) = −ıΩ0

2 e
ı∆0tβ(t) (35.228)

β̇(t) = −ıΩ0

2 α(t)e
−ı∆0t −

∑
k
ıgkγk(t)e

−ı∆kt

γ̇k(t) = −ıgkeı∆ktβ(t) .

Now, we chose the initial conditions,

α(0) = 1 and β(0) = 0 and γk(0) = 0 , (35.229)

we integrate the third equation,

γk(t) = −ıgk
∫ t

0

eı∆kt
′
β(t′)dt′ , (35.230)

and we substitute it in the second equation,

β̇(t) = −ıΩ0

2 α(t)e
−ı∆0t −

∑

k

g2k

∫ t

0

eı∆k(t
′−t)β(t′)dt′ . (35.231)

35.6.1.2 The Markov approximation

For small systems (which certainly is the case of a single atom), we can apply the
Markov approximation 12 claiming that the temporal variation of the amplitudes

12The approximation does not necessarily hold for large clouds of atoms.
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β(t′) is slower than the evolution of the system given by eı(ωk−ωa)t in the integro-
differential equation, which is equivalent to an arbitrarily high-order equation. Hence,
substituting β(t′) → β(t) into the integro-differential equation, we reduce it to a
simple first-order differential equation.

In practice, we redefine the integration variable, t′′ ≡ t− t′, to obtain,

d

dt
β(t) = −ıΩ0

2 α(t)−
∑

k

g2k

∫ t

0

eı(ωk−ωa)(t
′−t)β(t′)dt′ (35.232)

= −ıΩ0

2 α(t)−
∑

k

g2k

∫ t

0

e−ı(ωk−ωa)t
′′
β(t− t′′)dt′′ ,

and implement the Markov approximation by setting β(t − t′′) ≃ β(t), and with

lim
t→∞

∫ t
0
e−ı(ωk−ωa)t

′
dt′ = πδ(ωk − ωa), and replacing

∑
k −→ V

(2π)3

∫
d3k, we arrive

at,

d

dt
β(t) ≃ −ıΩ0

2 α(t)−
∑

k

g2kβ(t)πδ(ωk − ωa) (35.233)

= −ıΩ0

2 α(t)− V
(2π)3 β(t)

∫
g2kπδ(ωk − ωa)d3k

= −ıΩ0

2 α(t)− V
(2π)3 β(t)4πg

2
ka
πk2a

1
c = −ıΩ0

2 α(t)− Γ
2β(t) .

In the last step we introduced, as an abbreviation, the spontaneous emission rate,

Γ ≡
∑

k

2g2kπδ(ωk − ωa) = V
πck

2
ag

2
ka
, (35.234)

Finally,

d

dt
α(t) = −ıΩ0

2
β(t) and

d

dt
β(t) = −ıΩ0

2
α(t)− Γ

2
β(t) . (35.235)

These are exactly the equations for the probability amplitudes (34.184) derived
from the Schrödinger equation, only that now, the spontaneous emission term has
been derived explicitly. Solve the Exc. 35.6.4.2.

Example 213 (Emission stimulated by vacuum fluctuations): Sponta-
neous emission can be regarded as an emission stimulated by vacuum fluctua-
tions. To see this, we write down the resonant optical cross section (ω0 = ωa)
of a driven two-level atom without degeneracies, σ0 = λ2/2π, and the intensity
of an incident laser field, Ī = cNℏω0/V , generating the Rabi frequency (see
(22.107)),

Ω2
0 = σ0

Ī

ℏωa
Γ =

2πc

k2a

N

V
Γ . (35.236)

Now, we assume that the field is, in fact, a vacuum mode containing only half
a photon, N = 1/2, which corresponds to vacuum fluctuations in the mode k0.
Then,

Ω2
1/2 =

πc

k2aV
Γ = g2 . (35.237)
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35.6.2 Resonance fluorescence and (in-)coherent light scatter-
ing

The typical situation for a spectroscopy experiment is illustrated in Fig. 35.17: When
a beam of light, understood as a plane wave, strikes an atom (or a cloud of many
atoms), a part of the light is absorbed and reemitted into a direction indicated by a
solid angle dΩ. Light scattering is, of course, a second order process involving two
atomic transitions, one absorption and one emission.

Figure 35.17: (a) Geometry of a scattering experiment. (b) Spectral contributions of light
scattered elastically and inelastically by a three-level atom.

Radiation can be absorbed or scattered by an atom in different ways, depending
on whether the interaction is an elastic scattering or an inelastic scattering process,
a coherent or incoherent, a spontaneous or (bosonically) stimulated process. These
properties characterize many processes, in particular, resonance fluorescence (i.e. ab-
sorption and reemission), Rayleigh scattering, or Raman scattering. In the following,
we will clarify this classification.

Every scattering process is either spontaneous or stimulated 13. Rayleigh scatter-
ing is elastic, that is, the kinetic energy of the scattering atom is the same, before and
after the scattering process. In contrast, Raman scattering is inelastic. Spontaneous
emission is due to the decay of population from an excited state, and spontaneous
Rayleigh scattering is due to the decay of an induced dipole moment. Both sponta-
neous processes can be regarded as being stimulated by vacuum fluctuations.

35.6.2.1 Deriving the source field expression

We will now calculate the electric field due to spontaneous emission by an atom from
the interaction Hamiltonian for atom-vacuum coupling (35.222) in the RWA,

Ĥ =
∑

k

ℏgkσ̂−â†ke
ıωkt−ıωat−ık·R + h.c. . (35.238)

Now, we assume isotropic coupling, gk = gk, and ωk = ωk, and for simplicity we
position the atom in the origin, R = 0. We use the Heisenberg equation with the

13Classical theories of light scattering through the excitation of an electronic motion based on the
models of Lorentz or Drude can be found in Secs. 18.2.3 . Although being classical, these model are
useful for a deeper understanding of many aspects of Compton scattering, Thomson scattering, and
Rayleigh scattering.
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commutation rule [âk, â
†
k′ ] = δk,k′ to derive the temporal evolution of the field oper-

ators,
dâk
dt

= 1
ıℏ [âk, Ĥ] = −ıσ̂−gkeı(ωk−ωa)t . (35.239)

Neglecting for simplicity polarization, the electric field is given by,

Ê+sct(r, t) =
∑

k

E1âk(t)eı(k·r−ωkt) , (35.240)

where r is now the observation point of the electric field. We restrict to the far-field
and substitute the annihilation operator with the integral of Eq. (35.239) using the
initial condition âk(0) = 0,

Ê+sct(r, t) =
∑

k

E1gk
∫ t

0

σ̂−(t′)eı(ωk−ωa)t
′
dt′eı(k·r−ωkt) . (35.241)

Now, we substitute the sum over k by an integral, as done in (35.233),

Ê+sct(r, t) = −ı
V

(2π)3

∫

R3

E1gk
∫ t

0

σ̂−(t′)eı(ωk−ωa)t
′
dt′eı(k·r−ωkt)d3k . (35.242)

Using the relationships,

gk =
d12E1
ℏ

and E1 =

√
ℏωk
2ε0V

, (35.243)

the final result of the integration yields [816],

Ê+sct(r, t) ≃ −ı
d12k

2
a

4πε0r
σ̂−(t− r

c ) . (35.244)

35.6.2.2 Resonance fluorescence

When we introduced the second quantization (35.8) we learned that the field of light
emitted by a radiator in the radiation zone (λ ≪ r) is, taking into account retarda-
tion 14, given by,

⟨ ˆ⃗E+s (r, t)⟩ ∝ ⟨σ̂−⟩ ∝ ρ̃21 and ⟨ ˆ⃗E−s (r, t)
ˆ⃗E+s (r, t)⟩ ∝ ⟨σ̂+σ̂−⟩ ∝ ρ22 . (35.245)

Therefore, the electric field emitted by an atom and the intensity of scattered light
are given by,

⟨ ˆ⃗E+s (r, t)⟩ = −eω
2
aϵ̂ · r12

4πε0c2r
ρ̃21(t− r

c )e
−ıω(t−r/c)

Īs = cε0⟨ ˆ⃗E−s (r, t)
ˆ⃗E+s (r, t)⟩ =

αℏω4
a|ϵ̂ · r12|2
4πc2r2

ρ22(t− r
c )

, (35.246)

14The classical version of this formula is (19.41) .
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with the definition of the Sommerfeld constant α = e2/4πε0ℏc. We calculate the total
flux of emitted photons,

W
(sp)
fi =

∫
Īsr

2

ℏωa
dΩ =

1

ℏωa

∫
αℏω4

a|r12|2 cos2 θ
4πc2

ρ22(t− r
c ) sin θdθdϕ (35.247)

=
8π

3ℏωa
αℏω4

a|r12|2
4πc2

ρ22(t− r
c ) =

2α

3c2
ω3
a|r12|2ρ22(t− r

c ) .

The result coincides with the spontaneous emission rate Γ calculated in (34.40).
A differential scattering cross section can be defined by,

dσ

dΩ
≡ ωĪsr

2

ωsĪ0
. (35.248)

35.6.2.3 Coherently scattered light and saturation

The total intensity of the scattered light being Īs, the fraction of the coherently
scattered light is,

Īcohs

Īs
=
⟨ ˆ⃗E−s (r, t)⟩⟨ ˆ⃗E+s (r, t)⟩
⟨ ˆ⃗E−s (r, t)

ˆ⃗E+s (r, t)⟩
. (35.249)

Inserting the expressions (35.246) and the stationary solution of the Bloch equations
(34.188) with the saturation parameter defined in (34.190),

Īcohs

Īs
=
|ρ̃21(∞)|2
ρ22(∞)

=
1

1 + s
= 1− Ī incohs

Īs
. (35.250)

That is, since the resonance fluorescence is proportional to the excited state popula-
tion, we may define a quantity Stot ≡ ρ22(∞), so that the coherent and incoherent
parts of the fluorescence are,

Scoh = |ρ21(∞)|2 =
s/2

(1 + s)2
and Sincoh = ρ22(∞)− |ρ21(∞)|2 =

s2/2

(1 + s)2
.

(35.251)
Hence, Sincoh = sScoh.

The result (35.251), illustrated in Fig. 35.18(a), means that below saturation scat-
tering is dominated by elastic scattering. Incident light excites the atomic dipole
moment ρ12, that is, charge oscillations which, in turn, emit electromagnetic radia-
tion like a classical antenna. Above saturation the excited atomic state accumulates
an considerable amount of population ρ22 giving rise to spontaneous emission, which
is interpreted as inelastic scattering. This intrinsically quantum feature is a con-
sequence of the quantized nature of the atomic energy levels and has no classical
counterpart. Another interesting feature seen in Fig. 35.18(b) is that, when the inci-
dent light is tuned sufficiently far from resonance, elastic scattering will dominate at
any saturation parameter.

35.6.3 The spectrum of resonance fluorescence

The correlation functions defined in (35.172) represent an interesting concept for
describing resonance fluorescence and for phenomena such as antibunching observed
in resonance fluorescence.
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Figure 35.18: (code) Elastic (red) versus inelastic scattering (blue) as a function of the

saturation parameter (a) at resonance and (b) for various detunings.

35.6.3.1 The quantum regression theorem

From (35.178) we see that, to compute the spectra of resonance fluorescence, we only
need to compute the correlation function g(1), i.e. the amplitudes of the field Ê(t),
which in turn are related to the field operators (35.8). The field operators follow the
solutions of the Bloch equation, which, being linear, have the following generic form,

ρij(t+ τ) =
∑

k,l

αijkl(τ)ρij(t) + βij(τ) . (35.252)

The trace condition is satisfied, when (i, j), (k, l) ̸= (1, 1).

To be able to explore the above relationship to calculate correlation functions, we
have to invoke the so-called quantum regression theorem,

⟨Â(t+ τ)⟩ =
∑

i

ξi(τ)⟨Âi(t)⟩ =⇒ ⟨B̂(t)Â(t+ τ)Ĉ(t)⟩ =
∑

i

ξi(τ)⟨B̂(t)Âi(t)Ĉ(t)⟩ .

(35.253)

Example 214 (Quantum regression applied to the Langevin equation): We
have,

Ȧµ = Dµ(t) + Fµ(t) (35.254)

⟨Fµ(t)Fν(t)⟩ = 2⟨Dµν⟩δ(t− t′) .

We know,

⟨Aµ(t)Fν(t)⟩ = ⟨Dµν⟩ and ⟨Fµ(t)Aν(t)⟩ = ⟨Dµν⟩ (35.255)

and the quantum regression theorem gives,

d

dt
⟨Aµ(t)Aν(t′)⟩ = ⟨Dµ(t)Aν(t′)⟩ , (35.256)

because if t′ < t, the term ⟨Fµ(t)Aν(t′)⟩ vanishes for a Markovian process.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_InElastic.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_InElastic.m
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35.6.3.2 Bloch equation for a two-level system

The Fourier transform of the first-order coherence, g(1)(τ) = e−ıωτG(τ), gives,

F (ν) = (Fg(1))(ν) = F [e−ıωτ ] ⋆ F [G(τ)] = δ(ν − ω) ⋆ F [G(τ)] = (FG)(ν − ω) .
(35.257)

Therefore, we can look at the unshifted spectrum, (FG)(ν). Since the fluorescence
spectrum is determined by the first-order coherence, which depends on the field op-
erators, which in turn depend on the atomic populations and coherences, we have to
solve the Bloch equation.

For a two-level atom the Bloch equations, having been reduced by the normaliza-
tion condition (34.284) are,

˙⃗ρred =Mρ⃗red + b =



−Γ − ı

2Ω
ı
2Ω

−ıΩ − 1
2Γ− ı∆ 0

ıΩ 0 − 1
2Γ + ı∆






ρ22

ρ12

ρ21


+




0
ı
2Ω

− ı
2Ω


 (35.258)

with the solution (34.286), that is, ρ⃗(t+ τ) = eMτ ρ⃗(t)+ (1− eMτ )ρ⃗(∞) with ρ(∞) =
−M−1b. This solution can be cast in the following form,

ρkl(t+ τ) =
∑

(mn)

α(kl)(mn)(τ)ρmn(t) + β(kl)(τ) , (35.259)

where (mn), (kl) = (22), (12), (21) identifying,

α(kl)(mn)(τ) =



α22,22 α12,22 α21,22

α22,12 α12,12 α21,12

α22,21 α12,21 α21,21


 ≡



(eMτ )11 . .

. . .

. . .


 = eMτ (35.260)

β(kl)(τ) =



β22

β12

β21


 ≡



−[(1− eMτ )M−1b]1

.

.


 = −(1− eMτ )M−1b .

Using quantum operators in the interaction image, |k⟩⟨l| = σ̂kl, we have,

⟨σ̂12(t)⟩ = ⟨σ̂†21(t)⟩ = ρ12(t)e
ıω0t and ⟨σ̂22(t)⟩ = ⟨σ̂12(t)σ̂21(t)⟩ = ρ22(t) .

(35.261)
yielding,

⟨e(k−l)ıω0(t+τ)σ̂kl(t+ τ)⟩ =
∑

(mn)

α(kl)(mn)(τ)⟨e(m−n)ıω0tσ̂mn(t)⟩+ β(mn)(τ)⟨1⟩ ,

(35.262)
or,

⟨σ̂kl(t+ τ)⟩ (35.263)

=
∑

(mn)

e(l−k)ıω0τα(kl)(mn)(τ)⟨e(l−k+m−n)ıω0tσ̂mn(t)⟩+ e(l−k)ıω0τβ(mn)(τ)⟨e(l−k)ıω0t⟩ .
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Applying the quantum regression theorem to the Bloch equations, we get for an
arbitrary time-dependent operator B̂(t),

⟨B̂(t)σ̂kl(t+ τ)⟩ =
∑

(mn)

e(l−k)ıω0τα(kl)(mn)(τ)⟨e(l−k+m−n)ıω0tB̂(t)σ̂mn(t)⟩

+e(l−k)ıω0τβ(mn)(τ)⟨e(l−k)ıω0tB̂(t)⟩
.

(35.264)

35.6.3.3 Correlation functions

We now look at the radiation field, which is related to the dipole moment operator
via,

Ê− = γσ̂21 , (35.265)

where γ is simply a constant. Substituting this relation in the correlation functions
(35.172) we obtain,

g(1)(τ) =
⟨σ̂21(t)σ̂12(t+ τ)⟩
⟨σ̂21(t)σ̂12(t)⟩

=
⟨σ̂21(t)σ̂12(t+ τ)⟩

⟨σ̂22(t)⟩
(35.266)

g(2)(τ) =
⟨σ̂21(t)σ̂21(t+ τ)σ̂12(t+ τ)σ̂12(t)⟩

⟨σ̂21(t)σ̂12(t)⟩2
=
⟨σ̂22(t)σ̂22(t+ τ)⟩
⟨σ̂22(t)⟩2

.

Now we can calculate, letting ξi(τ) ≡ α(12)(mn), Ĉ(t) ≡ 1, and B̂(t) ≡ σ̂21(t),

g(1)(τ) =

∑
(mn) e

ıω0(t+τ)e(m−n)ıω0tα(12)(mn)(τ)⟨σ̂21(t)σ̂mn(t)⟩+ eıω0(t+τ)β(12)(τ)⟨σ̂21(t)⟩
⟨σ̂22(t)⟩

(35.267)

g(2)(τ) =

∑
(mn) e

(m−n)ıω0tα(22)(mn)(τ)⟨σ̂22(t)σ̂mn(t)⟩+ β(22)(τ)⟨σ̂22(t)⟩
⟨σ̂22(t)⟩2

.

Using σ̂21σ̂mn = σ̂2nδm1,

g(1)(τ) = eıω0τ
α(12)(12)(τ)⟨σ̂21(t)σ̂12(t)⟩+ β(12)(τ)⟨eıω0tσ̂21(t)⟩

⟨σ̂22(t)⟩
(35.268)

g(2)(τ) =
α(22)(21)(τ)⟨eıω0tσ̂22(t)σ̂21(t)⟩+ α(22)(22)(τ)⟨σ̂22(t)σ̂22(t)⟩+ β(22)(τ)⟨σ̂22(t)⟩

⟨σ̂22(t)⟩2
.

Returning to the density operator and letting t→∞,

g(1)(τ) = eıω0τ

[
α(12)(12)(τ) + β(12)(τ)

ρ21(∞)

ρ22(∞)

]
and g(2)(τ) = eıω0τ

β(22)(τ)

ρ22(∞)
,

(35.269)
that is,

g(1)(τ) = eıω0τ

[[
eMτ

]
(12)(12)

−
[
(I− eMτ )M−1b

]
(12)

[M−1b]
(21)

[M−1b](22)

]

g(2)(τ) = eıω0τ
[(I−eMτ )M−1b]

(22)

[M−1b](22)

. (35.270)
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These correlation functions can easily be calculated via a numerical resolution of the
Bloch equations (35.258). Fig. 35.19 shows the correlation functions and the fluores-
cence spectrum derived by Fourier transform of the first-order correlation function
(35.177). Assuming resonant excitation, ∆ = 0, analytic formulas can be derived, as
will be exercised in Excs. 35.6.4.3 and Exc. 35.6.4.4.
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Figure 35.19: (code) (a) Temporal evolution of the excited state population ρ22(t) (cyan) and

coherence ρ12(t) (magenta) of a laser-driven two-level atom with Ω = 5Γ. (b) Correlation

function g(1)(τ) and (c) g(2)(τ). The blue curves in (b-c) are obtained by numerical simula-

tions of the Bloch equations and subsequent application of the quantum regression theorem

(35.270). The green dots are obtained from an analytic solution derived in Exc. 35.6.4.3. (d)

Mollow spectrum obtained by numerical FFT of g(1)(τ).

The spectrum 35.19(d) exhibits three lines known as the Mollow triplet. Note that
the spontaneous emission triplet is only observed in the presence of a driving laser,
because it is the laser excitation which causes the splitting. Indeed, the splitting and
the position of the lines are easily understood in the dressed states picture visualized
in Fig. 35.1: The coupling of the two-level atom to a light field splits up the levels |n⟩
and |n+1⟩ by an amount corresponding to the Rabi frequency Ω. Now, the transition
from the two excited state |n + 1⟩ levels to the ground state |n⟩ levels can occur on
three different frequencies. In Exc. 35.6.4.5 we calculate the Mollow spectrum for a
transition between one ground and three excited Zeeman states. Fig. 35.20 illustrates
the various methods to analyze scattered light, but not all of them yield information
on the Mollow triplet.

35.6.3.4 Mollow spectrum from effective Hamiltonian

The Mollow triplet is easily understood in the dressed states picture. On the other
hand, we know that (for classical light) the semi-classical picture is totally equivalent
(its just a unitary transform of the dressed states picture). Developing a physical
picture the Mollow triplet in the semi-classical framework may give us a deeper insight.
Generally, the Mollow spectrum is anyhow calculated using the semi-classical Bloch
equations, via the correlation function g(1)(τ) and the Wiener-Khintchine theorem,
but the on the way the physical intuition is lost.

For example, looking at the stationary solution of the Bloch equations (34.188),
we see that ρ⃗(∞) is time-independent, so that we might be surprised to see correla-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollowSpectrum.m
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Figure 35.20: Schemes for analyzing resonance fluorescence: (a) Heterodyning [980], (b) tem-
poral correlation, (c) spectrum [1235, 981], (d) demodulation. Only the schemes (b) and (c)
yield information on the Mollow triplet.

tions in time domain (and consequently a structured spectrum) at all. This surprise
results from a common misconception that may arise considering the damping of ρ⃗(t)
predicted by the Bloch model, as illustrated e.g. in Fig. 34.6: It seems that the atoms
eventually cease oscillating between the ground and excited states. In most experi-
ments, measurement are made on a large number of atoms and indeed the oscillations
are damped.

In fact, however, every individual atom undergoes a complicated unpredictable
trajectory alternating times of coherent evolution with spontaneous emission events
(called quantum jumps). The damped behavior only results as an average over many
such quantum trajectories. In this light, the reason for g(1)-type correlations is a
subtle interplay between coherently and incoherently scattered light: The spontaneous
emission probability is amplitude-modulated with the Rabi frequency.

An alternative way to calculate the Mollow spectrum consists in solving the
Schrödinger equation with the effective Hamiltonian, as done in Exc. 35.6.4.2 and
35.6.4.6. The results are shown in Fig. 35.21. While providing an intuitive picture
of the origin of of the Mollow triplet a quantitatively correct treatment requires a
Monte-Carlo wavefunction simulation [913] (see Sec. 36.1.2).

35.6.3.5 Weak excitation and the role of collisions

For the case of a weakly excited two-level atom, |Ω| ≪ Γ, we have analytic solutions
(34.194) of the Bloch equation. We can then take the coefficients αijkl and βij and
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Figure 35.21: (code) (a) Time evolution of the norm of a decaying driven two-level atom.

(b) Time evolution of the ground and excited state amplitudes. (c) First-order auto-

correlation function, and (d) spectrum.

insert them into the correlation functions,

g(1)(τ) = e−ıωτ , (35.271)

g(2)(τ) = 1 + e−2γτ − 2 cos∆τ ,

F (ωs) = (Fg(1))(ωs) = δ(ωs − ω) .

These functions show that the spectrum is essentially composed of Rayleigh scattering
at the frequency of the incident light. The δ-shaped fluorescence spectrum shows,
that the contribution of elastically scattered light dominates below saturation, which
confirms the results (35.251) illustrated in Fig. 35.18. The light is ’antibunched’ and,
at higher τ exhibits a damped oscillation around the value 1.

If pressure broadening is taken into account, the two-level Bloch equations are
given by (34.188), where γ′ = γ + γcoll is the width of the collision-broadened line.
Within this model and in the limit Ω ≪ Γ, the resonance fluorescence spectrum is
given by [816],

F (ωs) =
γ′ − Γ

γ′
γ′/π

(ω0 − ωs)2 + γ′2
+

Γ

γ′
δ(ωs − ω) . (35.272)

So, we find that, even at low intensities, a continuous spectrum due to inelastic scat-
tering appears around the resonance frequency ω0 additionally to the elastic Rayleigh
peak.

35.6.4 Exercises

35.6.4.1 Ex: Derivation of the rate equations for two-level atoms

Inserting the ansatz (35.226) into the Schrödinger equation, derive the equations of
motion (35.228) for the wavefunction amplitudes.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_MollowEffectiveH.m
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_AtomoNiveisdois.pdf
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Solution: The Schrödinger equation is,

α̇|g⟩a|0⟩k + β̇|e⟩a|0⟩k +
∑

k
γ̇k|g⟩a|1⟩k

= − ı
ℏ

(
ℏ
2
Ω0|g⟩a⟨1|eı∆0t + ℏ

2
Ω0|e⟩a⟨0|e−ı∆0t + ℏ

∑
k
gk|g⟩a⟨1|â†keı∆kt + ℏ

∑
k
gk|e⟩a⟨0|âke−ı∆kt

)
(
α|g⟩a|0⟩k + β|e⟩a|0⟩k +

∑
k
γk|g⟩a|1⟩k

)
= −ı

(
Ω0
2
e−ı∆0t +

∑
k
gkâke

−ı∆kt
)
α|e⟩a|0⟩k − ı

(
Ω0
2
eı∆0t +

∑
k
gkâ
†
ke
ı∆kt

)
β|g⟩a|0⟩k

− ı
(

Ω0
2
e−ı∆0t +

∑
k
gkâke

−ı∆kt
)∑

k′
γk′ |e⟩a|1⟩k′

= −ıΩ0
2
e−ı∆0tα|e⟩a|0⟩k − ıΩ0

2
eı∆0tβ|g⟩a|0⟩k − ı

∑
k
gke

ı∆ktβ|g⟩a|1⟩k

− ıΩ0
2
e−ı∆0t

∑
k
γk|e⟩a|1⟩k − ı

∑
k
gke
−ı∆ktγk|e⟩a|0⟩k .

Note that the term |e⟩a|1⟩k′ should be neglected, as it is not allowed within the RWA. We
get,

α̇|g⟩a|0⟩k = −ıΩ0
2
eı∆0tβ|g⟩a|0⟩k

β̇|e⟩a|0⟩k = −ıΩ0
2
e−ı∆0tα|e⟩a|0⟩k − ı

∑
k
gke
−ı∆ktγk|e⟩a|0⟩k∑

k
γ̇k|g⟩a|1⟩k = −ı

∑
k
gke

ı∆ktβ|g⟩a|1⟩k .

The final result follows when we cut the states on both sides of the equation.

35.6.4.2 Ex: Non-Hermitian time evolution

Study the time evolution |ψ(t)⟩ = e−ıĤeff t/ℏ|ψ(0)⟩ with the effective Hamiltonian,

Ĥeff =

(
0 ℏ

2Ω
ℏ
2Ω − ıℏ2 Γ

)

starting from the initial condition ⟨2|ψ(0)⟩ = 1. Calculate the evolution of |ψ(t)⟩ and
the norm ⟨ψ(t)|ψ(t)⟩. Plot the time evolution of the norm for various ratios Ω/Γ and
interpret the curves.

Solution: To solve the Schrödinger equation,

ıℏ
d

dt
|ψ⟩ = Ĥeff |ψ⟩ with |ψ(t)⟩ =

(
c1(t)

c2(t)

)
and Ĥeff =

(
0 ℏ

2Ω
ℏ
2Ω − ıℏ2 Γ

)
,

we need to solve the set of differential equation,

ıċ1 = Ω
2 c2

ıċ2 = Ω
2 c1 − ıΩ

2 Γc2 .

Differentiating the second equation and substituting the first,

c̈2 = −Γ
2 ċ2 − Ω2

4 c2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_NonhermitianEvolution.pdf
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The ansatz c2 = aeλt leads to the characteristic equation,

λ2 + Γ
2λ+ Ω2

4 = 0 =⇒ λ = −Γ
4 ± 1

4

√
Γ2 − 4Ω2 ≡ −Γ

4 ± Λ
4

defining the abbreviation,

Λ ≡
√
Γ2 − 4Ω2 .

Hence, our solution has the shape c2(t) = a+e
λ+t + a−eλ−t. Now,

c2(t) = e−Γt/4
(
a+e

Λt/4 + a−e
−Λt/4

)

Ω→0−→ e−Γt/2

Γ→0−→ a+e
ıΩt/2 + a−e

−ıΩt/2 .

The ground state amplitude follows by integration,

0 5 10

Γt

0

0.5

1

√
〈ψ

(t
)|ψ

(t
)〉

(a)
Γ=0
0.1
1
5

0 5 10

Γt

0

0.5

1

|〈k
|ψ
(t
)〉|

2

(b)
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0.5

1

√
〈ψ

(t
)|ψ

(t
)〉
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Γ=0
0.1
1
5
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Γt

0

0.5

1

|〈k
|ψ
(t
)〉|

2

(b)Figure 35.22: (code) (a) Time evolution of the norm of a resonantly driven two-level system

with spontaneous emission for Ω = 2 (solid lines) and Ω = 0 (dotted lines). (b) Time

evolution of the excited state (dash-dotted lines) and ground state (solid lines) populations.

c1(t) =
Ω
2ı

∫ t

0

c2(t
′)dt′ = 2ıΩ

(
a+

e−Γt/4+Λt/4 − 1

Γ− Λ
+ a−

e−Γt/4−Λt/4 − 1

Γ + Λ

)
.

Note the normalization condition cannot be used, here, to fix the coefficients. Instead,
we use,

1 = c2(0) = a+ + a− and 0 = c2(∞) ,

yielding,

1− a− = a+ = −2Ω2/Λ

Γ + Λ
.

Finally,

(
c1(t)

c2(t)

)
=




2ıΩ
Γ+Λ

[
2Ω2

Λ

(
1−e−(Γ−Λ)t/4

Γ−Λ − 1−e−(Γ+Λ)t/4

Γ+Λ

)
− 1 + e−(Γ+Λ)t/4

]

e−Γt/4
[
2Ω2/Λ
Γ+Λ

(
e−Λt/4 − eΛt/4

)
+ e−Λt/4

]

 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_EffectiveHamiltonian.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_EffectiveHamiltonian.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_EffectiveHamiltonian.m
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Introducing the new abbreviation Λ = 2ıΩ̃, we can simplify this expression,

(
c1(t)

c2(t)

)
= e−Γt/4

(
−ıΩ

Ω̃
sin Ω̃t

2

cos Ω̃t
2 − Γ

2Ω̃
sin Ω̃t

2

)
.

We readily find the following limits,

(
c1(t)

c2(t)

)
Γ→0−→

(
−ı sin Ωt

2

cos Ωt
2

)
and

Ω→0−→
(

0

e−Γt/2

)
.

The norm is,

⟨ψ(t)|ψ(t)⟩ = e−Γt/2
(
1− Γ

Ω̃
cos

Ω̃t

2
sin

Ω̃t

2
+

Γ2

2Ω̃2
sin2

Ω̃t

2

)

Γ→0−→ 1 and
Ω→0−→ e−Γt .

The decaying normalization and the exponential decay of the excited state population
in the case of strong driving, Ω > Γ, observed in Fig. 35.22 is, of course, not re-
alistic, and points to the fact that the Schrödinger equation is unable to account for
spontaneous emission. It is, however, possible to correct for the decay by continuously
renormalization procedures [321].
Alternative solution:
We set ℏ = 1 and calculate the eigenvalues E± and the unitary transformation matrix
U , where UĤeff = ÊU and

Ê ≡
(
E+ 0

0 E−

)
.

The eigenvalues are,

E± = − ıΓ4 ± 1
4

√
4Ω2 − Γ2 Ω→0−→ 0,− ı

2Γ .

The unitary transformation matrix is nothing else than the eigenvector matrix,

U =

(
2E++ıΓ

Ω
2E−+ıΓ

Ω

1 1

)
=

(
ıΓ
2Ω +

√
1− Γ2

4Ω2
ıΓ
2Ω −

√
1− Γ2

4Ω2

1 1

)
.
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We get for the evolution,

e−ıĤeff t

(
0

1

)
= Ue−ıÊtU−1

(
0

1

)

=

(
2E++ıΓ

Ω
2E−+ıΓ

Ω

1 1

)(
e−ıE+t 0

0 e−ıE−t

)(
2E++ıΓ

Ω
2E−+ıΓ

Ω

1 1

)−1(
0

1

)

=

(
− (2E++ıΓ)(2E−+ıΓ)

2Ω(E+−E−) (e−ıE+t − e−ıE−t)

− (2E−+ıΓ)
2(E+−E−)e

−ıE+t + (2E++ıΓ)
2(E+−E−)e

−ıE−t

)

=




Ω√
4Ω2−Γ2

(e−ıE+t − e−ıE−t)

1
2

(
1− ıΓ√

4Ω2−Γ2

)
e−ıE+t + 1

2

(
1 + ıΓ√

4Ω2−Γ2

)
e−ıE−t




= e−Γt/4
( −2ıΩ√

4Ω2−Γ2
sin t

√
4Ω2−Γ2

4

cos t
√
4Ω2−Γ2

4 − Γ√
4Ω2−Γ2

sin t
√
4Ω2−Γ2

4

)
.

The result is identical to the one previously derived.

35.6.4.3 Ex: Resonance fluorescence and antibunching via Bloch equa-
tions

a. Derive the analytic solution of the Bloch equations for a resonantly driven two-level
atom.
b. Calculate the 1st-order correlation function g(1)(τ) from the formula (35.270).
c. Derive the spectrum of resonance fluorescence [912].
d. Derive the 2nd-order correlation function g(2)(τ) from the formula (35.270).

Solution: a. The Bloch equations for a single driven two-level atom become, after
elimination of the ground state population,

˙⃗ρred =Mρ⃗red + b ,

where ρ⃗red = (ρ22 ρ21 ρ12)
† and

M =



−Γ − ı

2Ω
ı
2Ω

−ıΩ − 1
2Γ− ı∆ 0

ıΩ 0 − 1
2Γ + ı∆


 and b =




0
ı
2Ω

− ı
2Ω


 .

The stationary solution is (using MAPLE) found to be,

ρ⃗red(∞) = −M−1b =
ıΩ

4∆2 + 2Ω2 + Γ2




−ıΩ
Γ− 2ı∆

−Γ− 2ı∆


 .

We now simplify the calculation assuming ∆ = 0,

M =



−Γ − ı

2Ω
ı
2Ω

−ıΩ − 1
2Γ 0

ıΩ 0 − 1
2Γ


 = UEU−1

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions04.pdf
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with

E =

−
3
4
Γ + 1

4
Λ 0 0

0 − 3
4
Γ− 1

4
Λ 0

0 0 − 1
2
Γ

 and U =

−
ıΓ
4Ω

+ ıΛ
4Ω

− ıΓ
4Ω
− ıΛ

4Ω
0

1 1 1

−1 −1 1

 ,

where we introduced the abbreviation Λ ≡
√
Γ2 − 16Ω2. Now,

eMt = UeEtU−1 = e−γt×


−Γ+Λ
2Λ

e
− (Γ−Λ)t

4 + Γ+Λ
2Λ

e
− (Γ+Λ)t

4 − ıΩ
Λ


e

− (Γ−Λ)t
4 − e

− (Γ+Λ)t
4


 ıΩ

Λ


e

− (Γ−Λ)t
4 − e

− (Γ+Λ)t
4




− 2ıΩ
Λ


e

− (Γ−Λ)t
4 − e

− (Γ+Λ)t
4


 Γ+Λ

4Λ
e
− (Γ−Λ)t

4 + −Γ+Λ
4Λ

e
− (Γ+Λ)t

4 + 1
2

−Γ−Λ
4Λ

e
− (Γ−Λ)t

4 + Γ−Λ
4Λ

e
− (Γ+Λ)t

4 + 1
2

2ıΩ
Λ


e

− (Γ−Λ)t
4 − e

− t
2
(γ+λ)


 −Γ−Λ

4Λ
e
− (Γ−Λ)t

4 + Γ−Λ
4Λ

e
− (Γ+Λ)t

4 + 1
2

Γ+Λ
4Λ

e
− (Γ−Λ)t

4 + −Γ+Λ
4Λ

e
− t(γ+λ)

2 + 1
2


 .

Hence,

(I− eMt)ρ⃗red(∞)

=
Ω

2Λ(Γ2 + 2Ω2)


 2ΩΛ

2ıΓΛ

−2ıΓΛ

+ e−
t
4
(3Γ+Λ)

 −(3Γ− Λ)Ω

−ı(ΓΛ− Γ2 + 4Ω2)

ı(ΓΛ− Γ2 +Ω2)

+ e−
t
4
(3Γ−Λ)

 −(3Γ + Λ)Ω

−ı(ΓΛ + Γ2 − 4Ω2)

ı(ΓΛ + Γ2 − Ω2)


 .

After sufficiently long times t the solution found in (34.286) becomes,

ρ⃗red(t) = eMtρ⃗red(0) + (I− eMt)ρ⃗red(∞)
γt,Ωt≫1−→ (I− eMt)ρ⃗red(∞) .

The same solution applies for arbitrary times choosing ρred(0) = 0 as the initial
condition.
b. With the expression for the correlation function (35.270),

g(1)(τ) = eıω0τ

[
[eMτ ](12)(12) + [(I− eMτ )ρ⃗red(∞)](12)

[ρ⃗red(∞)](21)

[ρ⃗red(∞)](22)

]

we get from the above solution of the Bloch equations,

g(1)(τ) = eıω0τ

[
Γ2

Γ2 + 2Ω2
+

1

2
e−Γτ/2 +

∑

±

−Γ2(Λ± Γ) + 2Ω2(Λ± 5Γ)

4Λ(Γ2 + 2Ω2)
e−(3Γ∓Λ)τ/4

]
.

For weak driving, Ω≪ Γ,

g(1)(τ) ≃ eıω0τ
(
1 + Ω2

Γ2 e
−Γτ

)
.

For strong driving,

g(1)(τ) ≃ eıω0τ
[

Γ2

2Ω2 + 1
2e
− 1

2Γτ + 1
2e
− 3

4Γτ cosΩτ
]
.

Let us now rewrite the expression for g(1)(τ) introducing the abbreviation Ω̃ ≡
√

Ω2 − Γ2/16 =
ıΛ/4. Then,

g(1)(τ) = eıω0τ

[
Γ2

Γ2 + 2Ω2
+

1

2
e−Γτ/2 +

∑

±

4Ω̃(2Ω2 − Γ2)± ıΓ(10Ω2 − Γ2)

16Ω̃(Γ2 + 2Ω2)
e−3Γτ/4∓ıΩ̃τ

]
.

(35.273)
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c. The spectrum is just the Fourier transform, for which the following rules hold,

(F)(ω) = 1√
2π

∫ ∞

−∞
f(τ)e−ıωτdτ , (f ∗ g)(ω) =

∫ ∞

−∞
f(t)g(τ − t)dt

F [1](ω) =
√
2πδ(ω) , F [θ(τ)e−aτ ] = 1√

2π

1

ıω + a
=⇒ F [e−a|τ |] =

√
2

π

a

ω2 + a2
.

Applying them to the above function g(1)(τ) we get for Ω̃ ∈ R,

SE(ω) = F [g(1)(τ)] .

In the case of weak driving, the spectrum is readily obtained,

SE(ω) =
1

2π

∫ ∞

−∞
eıω0τ

(
1 +

Ω2

Γ2
e−Γτ

)
e−ıωτdτ = δ(∆) +

Ω2

Γ2

Γ/π

∆2 + Γ2
.

In the case of string driving, we must resort to Eq. (35.274). The first term gives,

T1 = δ(ω − ω0) ∗
Γ2

Γ2 + 2Ω2

1√
2π

∫ ∞

−∞
e−ıωτdτ =

Γ2

Γ2 + 2Ω2
δ(ω − ω0) .

The second term gives,

T2 = δ(ω − ω0) ∗
1

2

1√
2π

∫ ∞

−∞
e−ıωτe−Γτ/2dτ =

1

2

1√
2π

1

ı(ω − ω0) + Γ/2
.

Finally, the third term is,

T3 = δ(ω − ω0 ± Ω̃) ∗
∑

±

4Ω̃
(
2Ω2 − Γ2

)
± ıΓ(10Ω2 − Γ2)

16Ω̃(Γ2 + 2Ω2)

1√
2π

∫ ∞

−∞
e−ıωτe−3Γτ/4dτ

=
1√
2π

∑

±

4Ω̃(2Ω2 − Γ2)± ıΓ(10Ω2 − Γ2)

16Ω̃(Γ2 + 2Ω2)

1

ı(ω − ω0 ± Ω̃) + 3
4Γ

.

The spectrum follows as the real part of these four terms,

Re SE(ω) =
Γ2

Γ2 + 2Ω2
δ(ω − ω0) +

1√
2π

Γ/4

(ω − ω0)2 + (Γ/2)2

+
1√
2π

∑

±

3ΓΩ̃(2Ω2 − Γ2)∓ (ω − ω0 ± Ω̃)Γ(10Ω2 − Γ2)

16Ω̃(Γ2 + 2Ω2)
[
(ω − ω0 ± Ω̃)2 + ( 34Γ)

2
]

.

(35.274)
Note that the sidebands are partially correlated (especially for strong driving) and
partially anti-correlated 15. For strong driving, we get,

Re SE(ω) ≃
Γ

4
√
2π

1

∆2 + ( 12Γ)
2
+

3Γ

16
√
2π

∑

±

1

(∆± Ω)2 + ( 34Γ)
2
. (35.275)
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Figure 35.23: (code) (a) Analytical shape of the fluorescence spectrum for Ω = 5Γ calculated

from the (blue) full formula (35.274), (red) high power limit (35.275). (b) g(2)(τ).

The exact spectrum and its strong driving approximation are shown in Fig. 35.23(a).
d. With the expression for the correlation function (35.270),

g(2)(τ) = eıω0τ
[(I− eMτ )M−1b](22)

[M−1b](22)
.

we get from the above solution of the Bloch equations,

g(2)(τ) = −eıω0τ

[
1 +

(
1

2
− 3Γ

2Λ

)
e−

τ
4 (3Γ+Λ) −

(
1

2
+

3Γ

2Λ

)
e−

τ
4 (3Γ−Λ)

]
.

The absolute value of |g(2)(τ)| is shown in Fig. 35.23(b).

35.6.4.4 Ex: Resonance fluorescence via rate equations

Repeat Exc. 35.6.4.3 neglecting coherences, i.e. replacing the Bloch equations by rate
equations,

˙⃗ρ =




−R R+ Γ 0 0

R −R− Γ 0 0

0 0 −γ 0

0 0 0 −γ


 ρ⃗ ,

where R = Ω2/2γ is the pump rate.

Solution: a. Eliminating ρ11 from the rate equations, we write ˙⃗ρred =Mρ⃗red + b,
where,

M =



−2R− Γ 0 0

0 −γ 0

0 0− γ


 and b =



R

0

0


 .

15This is reminiscent to AM and PM: |1 +MeıΩt ±Me−ıΩt|2 = 1+ 2(1± 1)M cosΩt+ 2M2(1±
cos 2Ωt).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollow_Analytical.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFluMollow_Analytical.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions05.pdf
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b. From this we obtain,

ρ⃗red(∞) = −M−1b =



(2 + Γ

R )
−1

0

0


 and eMt =



e(−2R−Γ)t 0 0

0 e−γt 0

0 0 e−γt


 ,

which allows us the calculate, with the expression for the correlation function (35.270),

g(1)(τ) = eıω0τ

[
[eMt](12)(12) + [(I− eMt)ρ⃗red(∞)](12)

[ρ⃗red(∞)](21)

[ρ⃗red(∞)](22)

]
= eıω0τ−γτ .

c. The spectrum is,

Re SE(ω) =
γ/π

∆2 + ( 12Γ)
2
.

d. With the expression for the correlation function (35.270),

g(2)(τ) = eıω0τ
[(I− eMτ )M−1b](22)

[M−1b](22)
.

we get from the above solution of the Bloch equations,

g(2)(τ) = eıω0τ
[
1− e(−2R−Γ)τ

]
.

The absolute value of |g(2)(τ)| is shown in Fig. 35.23(b).

35.6.4.5 Ex: Fluorescence spectrum of a four-level system

A more realistic transition, allowing for a vectorial nature of the radiation field, in-
volves one ground and three excited Zeeman states (e.g. the strontium 1S0-

1P1 tran-
sition). In this case, the emitted light is,

Ê−(t) = Ê−σ−(t) + Ê−π (t) + Ê−σ+(t) .

Calculate the first-order correlation function and the fluorescence spectrum of this
transition.

Solution: The correlation function is,

g(1)(τ) ≡ ⟨Ê
−(t)Ê+(t+ τ)⟩
⟨Ê−(t)Ê+(t)⟩

=
⟨[Ê−σ−(t) + Ê−π (t) + Ê−σ+(t)][Ê+σ−(t+ τ) + Ê+π (t+ τ) + Ê+σ+(t+ τ)]⟩

⟨[Ê−σ−(t) + Ê−π (t) + Ê−σ+(t)][Ê+σ−(t) + Ê+π (t) + Ê+σ+(t)]⟩
.

Labeling the states,

Ê−σ− = γσ̂21 , Ê−π = γσ̂31 , Ê−σ+ = γσ̂41 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions06.pdf
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we arrive at,

g(1)(τ) =
⟨[γσ̂21(t) + γσ̂31(t) + γσ̂41(t)][γσ̂12(t+ τ) + γσ̂13(t+ τ) + γσ̂14(t+ τ)]⟩

⟨[γσ̂21(t) + γσ̂31(t) + γσ̂41(t)][γσ̂12(t) + γσ̂13(t) + γσ̂14(t)]⟩

=

∑
(mn) α(12)(mn)(τ)⟨[σ̂21(t) + σ̂31(t) + σ̂41(t)] σ̂12(t)⟩+ β(12)(τ)⟨σ̂21(t)⟩

+
∑

(mn) α(13)(mn)(τ)⟨[σ̂21(t) + σ̂31(t) + σ̂41(t)] σ̂13(t)⟩+ β(13)(τ)⟨σ̂31(t)⟩
+
∑

(mn) α(14)(mn)(τ)⟨[σ̂21(t) + σ̂31(t) + σ̂41(t)] σ̂14(t)⟩+ β(14)(τ)⟨σ̂41(t)⟩
⟨[σ̂21(t) + σ̂31(t) + σ̂41(t)] [σ̂12(t) + σ̂13(t) + σ̂14(t)]⟩

=

α(12)(12)(τ)⟨σ̂21(t)σ̂12(t)⟩+ β(12)(τ)⟨σ̂21(t)⟩
+α(13)(13)(τ)⟨σ̂31(t)σ̂13(t)⟩+ β(13)(τ)⟨σ̂31(t)⟩
+α(14)(14)(τ)⟨σ̂41(t)σ̂14(t)⟩+ β(14)(τ)⟨σ̂41(t)⟩

⟨[σ̂21(t) + σ̂31(t) + σ̂41(t)][σ̂12(t) + σ̂13(t) + σ̂14(t)]⟩

=

α(12)(12)(τ)ρ22(∞)⟩+ β(12)(τ)ρ21(∞) + α(13)(13)(τ)ρ33(∞)

+β(13)(τ)ρ31(∞) + α(14)(14)(τ)ρ44(∞) + β(14)(τ)ρ41(∞)

ρ22(∞) + ρ33(∞) + ρ44(∞) + ρ23(∞) + ρ32(∞) + ρ24(∞) + ρ42(∞) + ρ34(∞) + ρ43(∞)
.
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Figure 35.24: Resonance fluorescence spectrum of a degenerate four-level system.

35.6.4.6 Ex: Semi-classical picture of the Mollow triplet

Calculate the first-order correlation function from the solution of the Schrödinger
equation with the effective Hamiltonian derived in Exc. 35.6.4.2.

Solution: Solving the Schrödinger equation with the effective Hamiltonian we de-
rived the following solution in Exc. 35.6.4.2,

|ψ(t)⟩ = e−Γt/4
(

−ıΩ
Ω̃

sin Ω̃t
2

cos Ω̃t
2 − Γ

2Ω̃
sin Ω̃t

2

)
, Ω̃ ≡

√
Ω2 − Γ2

4 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions07.pdf
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The populations and coherences are then,

⟨2|2⟩ = e−Γt/2
(

Ω2

2Ω̃2
+

2Ω2 − Γ2

Ω̃2
cos Ω̃t− Γ

2Ω̃
sin Ω̃t

)

⟨1|1⟩ = e−Γt/2
Ω2

2Ω̃2
(1− cos Ω̃t)

⟨2|1⟩ = ie−Γt/2
Ω

2Ω̃

(
Γ

2Ω̃
− Γ

2Ω̃
cos Ω̃t− sin Ω̃t

)
.

The field radiated by resonance fluorescence is E ∝ σ− = |1⟩⟨2|. From this we can
calculate the correlation,

⟨tE(t)E+(t+ τ)⟩

= e−Γτ/2

(
Ω

2Ω̃

)2

lim
t→∞

∫ t

0

e−Γt
(

Γ

2Ω̃
− Γ

2Ω̃
cos Ω̃t− sin Ω̃t

)(
Γ

2Ω̃
− Γ

2Ω̃
cos Ω̃(t+ τ)− sin Ω̃(t+ τ)

)
dt

= e−Γτ/2−Ω2

2Ω̃2

Γ2 − (Γ2 + 2Ω̃2) cos Ω̃τ − ΓΩ̃ sin Ω̃τ

8Γ(Γ2 + Ω̃2)
.

Hence,

g(1)(τ) =
⟨tE(t)E+(t+ T )⟩
⟨tE(t)E+(t)⟩ = e−Γτ/2

−Γ2 + (Γ2 + 2Ω̃2) cos Ω̃τ + ΓΩ̃ sin Ω̃τ

2Ω̃2
.

35.6.4.7 Ex: Monte-Carlo simulation of the Mollow triplet

Implement a Monte-Carlo simulation of the Mollow triplet for a driven two-level atom
according to [321, 913].

Solution: We consider a single laser-driven two-level atom,

Ĥ = ℏΩ
2 (σ̂+ + σ̂−) + (ℏω0 + ıℏΓ)σ̂z =

(
0 ℏΩ

2
ℏΩ
2 ℏω0 + ıΓ2

)
,

where σ̂− = |1⟩⟨2|. We are interested in calculating the first-order correlation function
g(1)(τ) = ⟨σ̂+(t + τ)σ̂−(t)⟩. The MCWF is performed by starting with the atom in
the ground state, |ψ(0)⟩ = |1⟩, and applying the procedure,

|ψ(t1)⟩ →
{

e−ıĤt1/ℏ|ψ(t1)⟩ for ζ <
√
⟨ψ|ψ⟩

|ψ(0)⟩ for ζ >
√
⟨ψ|ψ⟩

Now, we consider new states,

|χ±(0)⟩ ≡ 1√
µ±

(1± σ̂−)|ψ(t)⟩ and |χ′±(0)⟩ ≡ 1√
µ′
±
(1± ıσ̂−)|ψ(t)⟩ ,

where µ± = ⟨ψ|(1± σ̂+)(1± σ̂−)|ψ⟩,

|χ(′)
± (τ)⟩ →

{
e−ıĤt1/ℏ|χ(′)

± (t1)⟩ for ζ <
√
⟨ψ|ψ⟩

|χ(′)
± (0)⟩ for ζ >

√
⟨ψ|ψ⟩

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_CorrelationFunctions08.pdf
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The first-order correlation function is obtained from,

g(1)(τ)

= 1
4

(
µ+⟨χ+(τ)|σ̂+|χ+(τ)⟩ − µ−⟨χ−(τ)|σ̂+|χ−(τ)⟩ − ıµ′+⟨χ′+(τ)|σ̂+|χ′+(τ)⟩+ ıµ′+⟨χ′−(τ)|σ̂+|χ′−(τ)⟩

)
.
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Figure 35.25: (code) Monte-Carlo simulation of the Mollow triplet.

35.7 Light scattering from multi-level atoms

35.7.1 Quantum beats

The phenomenon of quantum beats is another simple example of effects beyond semi-
classical theory, requiring a full second-quantized calculation. In semi-classical theory
(SCT), there is an interference or beat note term for both V-type and Λ-type atoms,
while in quantum electrodynamics (QED) only V-type atoms exhibits a beat term.

In the semi-classical picture, the state vector of electrons is [1184],

ψ(t)⟩ = c1e
−ıω1t|1⟩+ c2e

−ıω2t|2⟩+ c3e
−ıω3t|3⟩ . (35.276)

Writing the non-vanishing dipole matrix elements as d12 = e⟨1|r|2⟩, d23 = e⟨2|r|3⟩ a
three-level atom has two microscopic oscillating dipoles,

P(t) = d12(c
∗
1c2)e

ıω12t + d23(c
∗
2c3)e

ıω23t + c.c. . (35.277)

In the semi-classical picture, the radiated field will be a sum of these two terms,

E+ = E1e−ıω12t + E2e−ıω23t . (35.278)

This leads to an interference or beat note term in a square-law detector,

|E+|2 = |E12|2 + |E23|2 + E∗12E23e[ı(ω12−ω23)t] + c.c. , (35.279)

regardless of whether state |2⟩ decays simultaneously to |1⟩ and |3⟩ or vice versa.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_ResFlu_MonteCarlo.m
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Figure 35.26: Level configuration of a Λ-system (left) and a V -system (right).

35.7.1.1 Quantum electrodynamics calculation

For the quantum electrodynamical calculation, we use the creation and annihilation
operators from second quantization of quantum mechanics. Let Ê+n = âne

−ıωnt be
the annihilation operator and Ê−n = â†ne

ıωnt be the creation operator with n = (12)
or n = (23). Then the beat note becomes,

⟨ψV (t)|Ê−12(t)Ê+23(t)|ψV (t)⟩ and ⟨ψΛ(t)|Ê−12(t)Ê+23(t)|ψΛ(t)⟩ (35.280)

for the Λ and the V -system, respectively. The state vector for each type of system is,

|ψV (t)⟩ =
∑

i=1,2,3

ci|i, 0⟩+ c1|c, 112⟩+ c2|c, 123⟩ (35.281)

and,

|ψΛ(t)⟩ =
∑

i=1,2,3

c′i|i, 0⟩+ c′1|b, 112⟩+ c′2|c, 123⟩ . (35.282)

The beat note term becomes,

⟨ψV (t)|Ê−1 (t)Ê+2 (t)|ψV (t)⟩ = κ⟨112023|a†1a2|012123⟩e[ı(ω12−ω23)t]⟨3|3⟩ (35.283)

= κe[ı(ω12−ω23)t]⟨3|3⟩

for the V -system and

⟨ψΛ(t)|Ê−1 (t)Ê+2 (t)|ψΛ(t)⟩ = κ′⟨112023|a†1a2|012123⟩e[ı(ω12−ω23)t]⟨2|3⟩ (35.284)

= κ′e[ı(ω12−ω23)t]⟨2|3⟩

for the Λ-system. However, orthogonality of the eigenstates requires ⟨3|3⟩ = 1 and
⟨2|3⟩ = 0. Therefore, there is a quantum beat note term for V-type atoms, but not
for Λ-type atoms.

This difference originates in quantum mechanical uncertainty. A V-type atom
decays to state |3⟩ via the emission with ω12 and ω23. Since both transitions decayed
to the same state, one cannot determine along which path each decayed, similar to
Young’s double-slit experiment. However, Λ-type atoms decay to two different states.
Therefore, in this case we can identify the path by the end product.

Quantum beat spectroscopy is a technique which allows for Doppler-free resolution
provided the separation of the adjacent levels is less than the Doppler width. It
consists in generating a coherently distributed population of two upper states, e.g. via
a short laser pulse, and detecting the beat frequency.
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35.7.2 Two-photon transitions

We will now apply the Kramers-Heisenberg formula (27.111) to photon scattering
processes ω → ωs. The states are then product states of atomic excitations and
photonic modes |m,n, ns⟩. In particular, the final state must take into account the
mode into which light is scattered,

1

τ
=

2π

ℏ2
∑

f

∑

ks

∣∣∣⟨f, n− 1, 1|Ĥ(2)|i, n, 0⟩ (35.285)

+
1

ℏ
∑

m

⟨f, n− 1, 1|Ĥ(1)|m⟩⟨m|Ĥ(1)|i, n, 0⟩
ωi − ωm

∣∣∣∣∣

2

δ(ωf − ωi) .

The initial energy is ωi → nω, the final energy ωf → (n − 1)ω + ωs + ωf , two
intermediate states are possible, |m⟩ → |m,n − 1, 0⟩ and |m⟩ → |m,n, 1⟩ over which
we must sum, that is ωm → ωm + (n − 1)ω and ωm → ωm + nω + ωs. They are
illustrated by the Feyman diagrams in Fig. xx. Hence, and neglecting the non-linear
contribution Ĥ(2),

1

τ
=

2π

ℏ3
∑

f

∑

ks

∣∣∣∣∣
∑

m

⟨f, n− 1, 1|Ĥ(1)|m,n, 0⟩⟨m,n, 0|Ĥ(1)|i, n, 0⟩
ω − ωm

(35.286)

+
⟨f, n− 1, 1|Ĥ(1)|m,n− 1, 1⟩⟨m,n− 1, 1|Ĥ(1)|i, n, 0⟩

−ωm − ωs

∣∣∣∣∣

2

δ(ωf − ω + ωs) .

Evaluated far from resonance, ω ≫ ωm, this result leads to Thomson and Compton
scattering. Close to resonance the second term of the sum may neglected.

The matrix elements can be evaluated by the electric dipole Hamiltonian in second
quantization,

1

τ
=

2π

ℏ
∑

ks

∣∣∣∣∣
∑

m

ΩfmΩmi
ω − ωm

∣∣∣∣∣

2

δ(ωf − ω + ωs) . (35.287)

We convert the transition rate into a cross section via,

∑

ks

→ V

(2π)3

∫ ∫
k2sdksdΩ =

V

(2πc)3

∫ ∫
ω2
sdωsdΩ . (35.288)

35.7.2.1 Transition rates for n-photon processes

It is adequate to move to a continuum of final states of the field. The sum over the
final states includes a sum over the modes k and the polarizations λ,

∑

f

=
∑

k

∑

λ

−→ 1

h3

∫

R6

d3pd3r
∑

λ

=
V

(2πc)3

∫

Ω

dΩ dω ω2
∑

λ

. (35.289)
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We now insert for the matrix element (first term in ()) the cartesian multipole expan-
sion () and obtain,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣⟨f | − ıe
√

ℏω
2ε0V

[ε̂ · dE + ...]|i⟩
∣∣∣∣∣

2

δ(ω − ωf )
∑

λ

(35.290)

−→ 2π

ℏ2
V

(2πc)3
e2ℏω
2ε0V

ω2
∑

λ

∫
|ε̂ · ⟨g|dE |e⟩+ ıε̂ · ⟨g|qE |e⟩ · k...]− ...|2 dΩ .

Finally, letting
∑
λ = 2,

1

τ
=
αω3

πc2

∫
|ε̂ · ⟨g|multipole-tensor|e⟩wavenumber-tensor|2 dΩ . (35.291)

For example, for dipole radiation, letting ε̂ = êz,

1

τ
=
αω3

πc2

∫
|ε̂ · ⟨g|dE |e⟩|2 d cos θdϕ (35.292)

=
αω3

πc2
|⟨g|dE |e⟩|2

∫
| cos θ|2d cos θdϕ =

4αω3

3c2
|⟨g|dE |e⟩|2 .

35.7.2.2 Absorption

In first order perturbation theory we have Fermi’s Golden rule,

1

τ
=

2π

ℏ2
∑

f

|⟨f |Ĥint|i⟩|2δ(ωf − ωi) . (35.293)

In the dipolar approximation, Ĥint = −d · E⃗ , and separating the field and atomic
degrees of freedom, |f⟩ = |Nf ⟩|Af ⟩, we get for absorption processes,

1

τ
=

2πe2

ℏ2
∑

Nf

∣∣∣⟨Nf |Ê−|Ni⟩ · ⟨Af |ε̂ · d̂|Ai⟩
∣∣∣
2

δ(ωf − ωi) . (35.294)

Generalizing to a statistical mixture of Fock states via
∑
Nf ,Ni

⟨Ni|Ê+|Nf ⟩pi⟨Nf |Ê−|Ni⟩ =
Tr (ρ̂Ê+Ê−), we may also write,

1

τ
=

2πe2

ℏ2
|Mabs|2δ(ωf − ωi)Tr (ρ̂Ê+Ê−) , (35.295)

where
|Mabs|2 ≡ ⟨Af |ε̂ · d̂|Ai⟩ . (35.296)

For an incoming photon ω, we get ωf = Ef and ωi = Ei + ω. See Fig. 35.27(a).

35.7.2.3 Spontaneous and stimulated emission

In complete analogy to the absorption process, but now using the scattered field,

Ĥint = −d · ˆ⃗Es, we get for emission processes,

1

τ
=

2πe2

ℏ2
|Mem|2δ(ωf − ωi)Tr (ρ̂Ê+s Ê−s ) , (35.297)
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Figure 35.27: Feynman graphs for (a) absorption, (b) spontaneous emission, (c) stimu-
lated emission, (d) two-photon absorption, (e) spontaneous Raman, (f) stimulated Raman,
(g) spontaneous second harmonic generation, (h) and stimulated second harmonic genera-
tion.

where
|Mem|2 ≡ ⟨Af |ε̂s · d̂|Ai⟩ . (35.298)

For an outgoing photon ωs, we get ωf = Ef + ωs and ωi = Ei.

35.7.2.4 Two-photon absorption

In second order perturbation theory we have the Kramers-Heisenberg rule,

1

τ
=

2π

ℏ2
∑

f

∣∣∣∣∣
∑

m

⟨f |Ĥint|m⟩⟨m|Ĥint|i⟩
ω − ωm

∣∣∣∣∣

2

δ(ωf − ωi) . (35.299)

In the dipolar approximation, Ĥint = −d · ˆ⃗E1 − d · ˆ⃗E2, and separating the field and
atomic degrees of freedom, |f⟩ = |Nf ⟩|Af ⟩, we get for two-photon absorption pro-
cesses,

1

τ
=

2πe4

ℏ4
∑

Nf

∣∣∣∣∣∣
∑

Nm,Am

⟨Nf |E−2 |Nm⟩⟨Nm|E−1 |Ni⟩⟨Af |ε̂2 · d̂|Am⟩⟨Am|ε̂1 · d̂|Ai⟩
ω1 − ωm

(35.300)

+
⟨Nf |E−1 |Nm⟩⟨Nm|E−2 |Ni⟩⟨Af |ε̂1 · d̂|Am⟩⟨Am|ε̂2 · d̂|Ai⟩

ω2 − ωm

∣∣∣∣∣

2

δ(ωf − ω1 − ω2) .

Generalizing to a statistical mixture of Fock states via
∑
Nf ,Ni

pi|⟨Nf |Ê−2 Ê−1 |Ni⟩ =
Tr (ρ̂Ê+1 Ê+2 Ê−2 Ê−1 ), we may also write,

1

τ
=

2πe4

ℏ4
|Mtpa|2δ(ωf − ωi)Tr (ρ̂Ê+1 Ê+2 Ê−2 Ê−1 ) , (35.301)
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where

Mtpa ≡ ⟨Af |ε̂2 · d̂G(Ei + ω1)ε̂1 · d̂|Ai⟩+ ⟨Af |ε̂1 · d̂G(Ei + ω2)ε̂2 · d̂|Ai⟩ . (35.302)

For two incoming photons ω, we get ωf = Ef and ωi = Ei+ω1+ω2. Here, G denotes
the photon propagator,

G(ω) =
∑

m

|Am⟩⟨Am|
ω − Em

. (35.303)

Figure 35.28: Feynman graphs for (a) absorption, (b) spontaneous emission, (c) stimulated
emission, (e)(i-iii) spontaneous Raman.

35.7.2.5 Spontaneous and stimulated Raman process

In complete analogy to the two-photon absorption process, but now using the incident
and the scattered fields, Ĥint = −d · E⃗1−d · E⃗s, we get for spontaneous and stimulated
Raman processes,

1

τ
=

2πe4

ℏ4
|Mram|2δ(ωf − ωi)Tr (ρ̂Ê+1 Ê−s Ê+s Ê−1 ) , (35.304)

where

Mram ≡ ⟨Af |ε̂s · d̂G(Ei + ω1)ε̂1 · d̂|Ai⟩+ ⟨Af |ε̂1 · d̂G(Ei − ωs)ε̂s · d̂|Ai⟩ . (35.305)

For an incoming photon ω1 and a scattered photon ωs, we get ωf = Ef + ωs and
ωi = Ei + ω1.

35.7.2.6 General n-photon processes

The transition probability in n-th order perturbation theory can be formulated in a
general way as,

1

τ
=

2πe2

ℏ2n
|M (n)

fi |2δ(ωf − ωi)Tr (ρ̂Ê±1 Ê±2 ...Ê∓2 Ê∓1 ) , (35.306)

where

Mfi(ωn, ..., ω1) ≡ Sp⟨Af |ε̂nd̂G(Ei ± ω1 ± ...± ωn−2 ± ωn−1) ... (35.307)

... ε̂n−1d̂G(Ei ± ω1 ± ...± ωn−2) ...

... ε̂1 · d̂G(Ei ± ω1)|Ai⟩ .
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The upper signs hold for absorbed photons (up to n), the lower for emitted photons,
ωf = Ef + ω1 + ...+ ωn and ωi = Ei + ω1 + ...+ ωn.

For n-photon processes, there are theoretically up to n + 1 different types, each
one with n! possible temporal sequences, which can be illustrated in Feynman graphs.
Additionally, for every emitted photon can be either spontaneous or stimulated. The
number of possible time sequences is reduced, if some absorbed or emitted photons
have the same frequency by m! (if m is the number og identical photons).

For example there are (3+1) different types of three-photon processes: 3 photons
in, 2 photons in 1 out, 1 photon in 2 out, 3 photons out.

For example second harmonic generation: 3! possible time sequences, 2 processes,
2 equivalent photons = 3!2

2! possible Feynman graphs.

35.7.3 Exercises

35.7.3.1 Ex: Two-photon transitions in rubidium

Considering the following transitions of rubidium, 5S1/2 − 5P1/2 at 795 nm with
Γ795 = (2π) 6 MHz linewidth 5S1/2 − 5P3/2 at 780 nm with Γ780 = (2π) 6MHz, and
5P3/2 − 5D5/2 at 776 nm with Γ776 = (2π) 700 kHz linewidth. Calculate the rate
for resonant two-photon transitions from the ground state to the 5D5/2 level without

bothering about hyperfine splitting induced by a laser intensity of I = 1 mW/cm
2
.

Solution:

35.7.3.2 Ex: Spin relaxation in a dipole trap

Consider a transition in a hypothetical atomic species without nuclear spin between
two levels 2S1/2 and 2P1/2 driven far-off resonance. Calculate the spin relaxation rate
as a function of the detuning.

Solution: Spin relaxation means that atoms polarized in a specific Zeeman state,
say 2S1/2, mJ = + 1

2 , may transit to the mJ = − 1
2 state due to spontaneous Raman

scattering.

35.7.3.3 Ex: Rayleigh scattering and spin relaxation

Derive the rates for Rayleigh scattering and spin relaxation for 87Rb driven far-off
resonance. Help: Determine the hyperfine structure of the D1 and D2 lines and cal-
culate the transition rates between sublevels from the Kramers-Heisenberg formula.

Solution: The hyperfine structure is [895, 271, 1245].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_SecondorderPerturbations02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_SecondorderPerturbations03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_SecondorderPerturbations04.pdf
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35.8 Beam splitting and quantum amplification

The beam splitter is one of the most important devices not only in practical optical
setups, but also for its conceptual role in quantum mechanics. It thus deserves a
dedicated section.

A classical beam splitter divides a beam of light into two branches, which are
distinct by their orientation in space or by other degrees of freedom. On the other
hand, a photonic picture obviously requires a quantum description. For one reason,
the photon numbers scattered into the two branches are quantum mechanically en-
tangled. Furthermore, the very concept of the beam splitter necessitates a second
entrance port which, even if empty, unavoidably introduces quantum noise. Finally,
in quantum mechanics, as we already learned for the case of measurement devices, the
beam splitting device needs to be included in a full description of the beam splitting
dynamics, which has important concequences. In fact, quantum mechanically the
beam splitting resembles more a scattering problem, where the light beam represents
one entrance and output channel and the physical beam splitter the other one (see
Fig. 35.29).

Figure 35.29: (a) Classical beam splitting. (b) Scattering of two modes.

This section is organized as follows. In Secs. 35.8.1 and 35.8.2 we discuss beam
splitting at a macroscopic splitting device, i.e. we neglect backaction of the beam
splitting event on the splitting device (e.g. recoil or transitions between electronic
levels). Backaction on the splitting device is then treated in 35.8.3.

35.8.1 The beam splitter in various representations

We have learned in Sec. 35.4 how a two-level quantum systems couples to a harmonic
oscillator via terms in the Hamiltonian containing expressions such as σ̂+â. We will
now see how two quantum harmonic oscillators couple together via terms such as â†b̂,
where â and b̂ are the field operators of two oscillator modes. A device providing such
a coupling is called beam splitter. It mixes two modes according to the Hamiltonian,

Ĥ = ℏ
2Ω(âb̂

† + â†b̂) . (35.308)

The beam splitter can be described in the Schrödinger or the Heisenberg picture
exploiting the formalism introduced in Sec. 24.5.
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35.8.1.1 Schrödinger picture

In the Schrödinger picture, if |ψ0⟩ = |α0⟩|β0⟩ is the state of the modes before the
beam splitter, the Schrödinger equation, ıℏ∂t|ψ(t)⟩ = Ĥ|ψ(t)⟩, gives us the state after
the splitter via its solution,

|ψ(t)⟩ = eıΩt/2(âb̂
†+â†b̂)|ψ0⟩ . (35.309)

A 50% beam splitter corresponds to a Ωt = π/2 pulse.

Figure 35.30: (a) Coupling of two cavity modes by insertion of a beam splitter. (b) Beam
splitter mixing two propagating modes.

35.8.1.2 Heisenberg picture

We can also describe the beam splitter in the Heisenberg picture. With the commu-
tation rules,

[â, â†] = 1 = [b̂, b̂†] , [â, b̂] = 0 , (35.310)

and the Heisenberg equations,

˙̂a = ı
ℏ [Ĥ, â] =

ı
2Ω[(âb̂

† + â†b̂), â] = − ı
2Ωb̂ (35.311)

˙̂
b = ı

ℏ [Ĥ, b̂] =
ı
2Ω[(âb̂

† + â†b̂), b̂] = − ı
2Ωâ ,

we calculate,

¨̂a = − 1
4Ω

2â and
¨̂
b = − 1

4Ω
2b̂ , (35.312)

the solution of which is,

(
â(t)

b̂(t)

)
=

(
cos 1

2Ωt −ı sin 1
2Ωt

−ı sin 1
2Ωt cos 1

2Ωt

)(
â0

b̂0

)
. (35.313)

Introducing the abbreviation η ≡ cos2(Ωt/2), we can describe the evolution as,

(
â(t)

b̂(t)

)
=

( √
η −ı√1− η

−ı√1− η √
η

)(
â0

b̂0

)
. (35.314)
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For a Ωt = π/2 pulse, we get,

(
â(t)

b̂(t)

)
=
√

1
2

(
1 −ı
−ı 1

)(
â0

b̂0

)
. (35.315)

that each the reflected beam suffers a phase shift of π/2 16. Resolve the Excs. 35.8.9.1
to 35.8.9.3.

35.8.1.3 Glauber representation

In the Heisenberg picture, the wavefunctions of the quantum states (and hence the
density operator and the Wigner function) remain unchanged during the evolution,
i.e.,

|ψ⟩ ≡ |α⟩|β⟩ = |α0⟩|β0⟩ ≡ |ψ0⟩ , (35.316)

ρ|ψ⟩ = ρ|ψ0⟩ ,

W|ψ⟩(γ) =W|ψ0⟩(γ) ,

P|ψ⟩(γ) = P|ψ0⟩(γ) ,

Q|ψ⟩(γ) = Q|ψ0⟩(γ) ,

where the |ψ⟩ are arbitrary quantum states and the |γ⟩ are Glauber’s states. This
means that two field modes mixed at a beam splitter do not interfere with phase
space, i.e. do not develop quantum correlations. Of course, that would be too easy,
indeed; we will soon see in Sec. 35.3, that we need to work a little harder to produce
quantum correlations.

Setting θ ≡ Ωt/2 and b̂↷ −ıb̂ in the propagator of Eq. (35.309), we may define a
beam splitting operator in analogy to the displacement operator (24.111),

B̂(θ) ≡ eθ(â†b̂−âb̂†) , (35.317)

which is an equivalent beam splitter description. We find,

B̂(θ)†âB̂(θ) = â cos θ + b̂ sin θ

B̂(θ)†b̂B̂(θ) = −â sin θ + b̂ cos θ
, (35.318)

as will be shown in Exc. 35.8.9.4 17.

35.8.1.4 Fock representation

Alternatively, we can describe the beam splitter in the Fock representation 18. The
Hamiltonian of the beam splitter couples two modes of harmonic oscillators. Expand-
ing on a two-dimensional Fock basis via |ψ⟩ ≡ (...|0⟩|na⟩....|nb⟩|0⟩...) we can gain more

16This fact is a consequence of time-reversal invariance at the beam splitter. We will see later that,
in fact, only the beam reflected at the surface of an optically denser medium suffers a phase-shift of
π, while the beam reflected at an optically thinner medium does not suffer any phase shift.

17Compare to the formulas (24.119), (35.90), and (35.361).
18A more in-depth discussion is found in Ref. [791].
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insight:

Ĥ = ℏ
2Ω(âb̂

† + â†b̂) (35.319)

= ℏ
2Ω

∑

na,nb

√
na(nb + 1)|na − 1, nb + 1⟩⟨na, nb|+

√
(na + 1)nb|na + 1, nb − 1⟩⟨na, nb|

=
∑

na+nb

Ĥa+b ,

where,

Ĥa+b =
ℏ
2Ω




0
√
1nb√

1nb 0
√
2(nb − 1)

√
2(nb − 1)

. . .

. . .
√
na1√

na1 0




. (35.320)

The sub-spaces with na+nb+1 photons are completely degenerate, since det(λIa+b−
Ĥa+b) = λna+nb+1 = 0. The degeneracy is removed, when we introduce loss mecha-
nisms into one of the modes. Thus, the Hamiltonian can be understood as a Dicke

system with the multiplicity ̂1
2 (na + nb) = na + nb + 1. See also Exc. 35.8.9.2.

Example 215 (Beam splitter with 0 or 1 photons): As an example, we con-

sider na, nb = 0, 1. Then, in the basis
(
|0, 0⟩ |0, 1⟩ |1, 0⟩ |0, 2⟩ |1, 1⟩ |2, 0⟩ · · ·

)t
the matrix of the Hamiltonian becomes,

Ĥ = 1
2
Ω



0

0 1

1 0

0
√
2 0√

2 0
√
2

0
√
2 0


.

It is easily verified that the matrix of eigenvectors and the matrix of eigenvalues,

U =



1 0 0 0 0 0

0 −1 1 0 0 0

0 1 1 0 0 0

0 0 0 − 1
2

√
2 −1 1

2

√
2

0 0 0 1 0 1

0 0 0 − 1
2

√
2 1 1

2

√
2


respectively E = ℏ

2
Ω



0 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −2 0 0

0 0 0 0 0 0

0 0 0 0 0 2


satisfy U−1HU = E. Hence,

|ψ⟩ = U−1eıEtU |ψ0⟩ ,

and we find, that the state |1, 1⟩ =
(
0 0 0 0 1 0

)T
is transformed into

a superposition,(
0 0 0 1√

2
ı sinΩt cosΩt 1√

2
ı sinΩt

)T Ωt=π/2−→ ı√
2
(|0, 2⟩+ |2, 0⟩) .
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Similarly, we find that the superposition state 1√
2
(|1, 0⟩+|0, 1⟩) =

(
0 1 −1 0 0 0

)T
is transformed into,

e−
1
2
ıΩt
(
0 1 −1 0 0 0

)T Ωt=π/2−→ e−ıπ/4
1√
2
(|1, 0⟩+ |0, 1⟩) .

35.8.2 Fock and Glauber states at a beam splitter

A beam splitter divides a Fock state containing N photons into two Glauber states,

|ψ⟩ = 1

2N/2
√
N !

(â†1 + â†2)
N |0, 0⟩ = 1

2N/2
√
N !

N∑

n=0

(
N

n

)
(â†1)

n(â†2)
N−n|0, 0⟩ (35.321)

=
1

2N/2

N∑

n=0

√(
N

n

)
|n,N − n⟩ =

N∑

n=0

√(
N

n

)
0.5n0.5N−n|n,N − n⟩

≃
N∑

n=0

√
(N/2)n

n!
e−N/2|n,N − n⟩ = e−|α|/2

N∑

n=0

αn√
n!
|n,N − n⟩ ,

approximating the binomial distribution by the Poisson distribution,

(
N

n

)
pn(1− p)N−n N→∞−→ (pN)n

n!
e−pN . (35.322)

and defining α ≡ N/2. The normalization is ⟨ψ|ψ⟩ = 1. The population in an
individual mode is,

⟨n̂1⟩ = ⟨ψ|â†1â1|ψ⟩ =
1

2N
⟨m,N −m|

N∑

n,m=0

√(
N

m

)
â†1â1

√(
N

n

)
|n,N − n⟩ (35.323)

=
1

2N

N∑

n=0

(
N

n

)
n =

N

2
.

The result (35.321) shows that, ignoring (tracing over) one of the modes, the other
mode automatically becomes a Glauber state 19.

Besides that,

⟨n̂21⟩ =
1

2n

n∑

n=0

(
N

n

)
n2 =

N

2n

N−1∑

n=0

(
N

n

)
(n+ 1) =

N(N + 1)

4
(35.324)

⟨n̂1n̂2⟩ =
1

2n

n∑

n=0

√(
N

n

)
n(N − n) = N⟨n̂1⟩ − ⟨n̂21⟩ =

N(N − 1)

4

19This does not mean that the output modes are uncorrelated. For instance, if we measure n
photons in one mode, we know that the other must contain exactly N − n photons. However, the
correlations are so dense in phase space that they are not resolvable or decohere rapidly. In fact, it
can be shown that coherent states are the only pure states that produce uncorrelated outputs when
mixed by a passive linear-optics device [16, 14].



35.8. BEAM SPLITTING AND QUANTUM AMPLIFICATION 1957

The squeezing parameter is,

ξ12 =
σ2(n̂1 − n̂2)
⟨n̂1⟩+ ⟨n̂2⟩

=
⟨n̂21 − 2n̂1n̂2 + n̂22⟩

N
=

2⟨n̂21⟩ − 2⟨n̂1n̂2⟩
N

= 1 . (35.325)

The correlation functions at equal times are,

g11 =

〈
â†1â
†
1â1â1

〉

⟨n̂1⟩2
=

1

⟨n̂1⟩2
1

2n

n∑

n=2

(
N

n

)
n(n− 1) =

⟨n̂21⟩ − ⟨n̂1⟩
⟨n̂1⟩2

= 1 (35.326)

g12 =

〈
â†1â
†
2â2â1

〉

⟨n̂1⟩⟨n̂2⟩
=

1

⟨n̂1⟩2
1

2n

N∑

n=0

(
N

n

)
n(N − n) = N⟨n̂1⟩ − ⟨n̂21⟩

⟨n̂1⟩2
=
N − 1

N

The Cauchy-Schwarz inequality and the quantum inequality are both met,

g12 ≤
√
g11g22 (35.327)

g12 ≤
√(

g11 +
1

⟨n̂1⟩

)(
g22 +

1

⟨n̂2⟩

)

In comparison, a Glauber state is normally divided,

|ψ⟩ = |α1⟩|α2⟩ = e−|α1|2/2
∑

n

αn1√
n!
|n⟩e−|α2|2/2

∑

m

αm2√
m!
|m⟩ (35.328)

= e−|α1|2/2−|α2|2/2
∑

n,m

αn1α
m
2√

n!
√
m!
|n⟩|m⟩ .

35.8.2.1 Density matrix representation

The density matrix for a pure state is,

ρ̂ = |ψ⟩⟨ψ| =
(
|⟨ψ|1⟩|2 ⟨1|ψ⟩⟨ψ|2⟩
⟨2|ψ⟩⟨ψ|1⟩ |⟨ψ|2⟩|2

)
. (35.329)

The evolution of such a state is described by the von Neumann equation:

ıℏ∂tρ̂(t) = [Ĥ, ρ̂(t)] . (35.330)

For the beam splitter we obtain,

ρ̂ = |ψ⟩⟨ψ| =




|⟨ψ|0, 0⟩|2 ⟨0, 0|ψ⟩⟨ψ|0, 1⟩ ⟨0, 0|ψ⟩⟨ψ|1, 0⟩
⟨0, 1|ψ⟩⟨ψ|0, 0⟩ |⟨ψ|0, 1⟩|2 ⟨0, 1|ψ⟩⟨ψ|1, 0⟩
⟨1, 0|ψ⟩⟨ψ|0, 0⟩ ⟨1, 0|ψ⟩⟨ψ|0, 1⟩ |⟨ψ|1, 0⟩|2

. . .




. (35.331)
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Example 216 (Density matrix for the beam splitter with 0 or 1 pho-
tons): For the case of the superposition states, |ψ⟩ = 1√

2
(|0, 1⟩ ± |1, 0⟩),

ρ̂ =


0 0 0

0 1
2
± 1

2

0 ± 1
2

1
2

. . .

 .

Obviously, ρ̂ = ρ̂2. For the above superposition state, ∂tρ̂(t) = 0.

35.8.3 Backaction of the splitting device

In quantum mechanics, beam splitting is ALWAYS an interaction between two de-
grees of freedom, the mode suffering the splitting (which we already treated quantum
mechanically in the preceding sections), and the splitting device (which we will treat
as an ancilla in the following, similarly as we did for a quantum measurement). In
classical beam splitters, the dynamics of the ancilla is neglected, but in quantum
beam splitters the ancilla serves as a witness of a splitting event. In practice, it can
be a recoiling atom, a phase shift of an internal atomic state, or something else.

We will now develop a generic model allowing us to describe quantum mechanically
(i) strong measurement directly on the system or (ii) weak measurements via an
ancilla. For simplicity, we will assume the beam splitting device to be a two-level
atom including its internal and external degrees of freedom. The light mode may
then interact with the atom (or not) and be scattered into different directions of
space. In order to emulate a beam splitter we need to ensure the existence of only
two scattered exit modes. This can be done by putting the atom in a ring cavity,
where the only modes available are the forward and the backward scattered mode. It
is fair to say that this model represents the simplest possible beam splitter description
including backaction. In the same time, the system exhibits a dynamics known as
collective atomic recoil lasing (CARL), which is extensively discussed in Chp. 42.

35.8.4 Shot noise

As any quantized degree of freedom, a light mode is subject to intrinsic quantum noise
imposed by the Heisenberg uncertainty relation, as we have seen for the harmonic
oscillator (24.124). The Heisenberg limit in the quadrature phases of a light field
determines the shot noise noise in the intensity of the light beam. To measure this
noise, we divide the laser beam by a beam splitter into two beams â and b̂ and
recombine them with a second beam splitter,

ĉ = 1√
2
(â+ b̂) , d̂ = 1√

2
(â− b̂) . (35.332)

Detected by photodetectors with the gain coefficient g, these two beams produce
currents,

Îc = gĉ†ĉ , Îd = gd̂†d̂ . (35.333)

We add and subtract these currents,

Î+ ≡ Îc + Îd = g(â†â+ b̂†b̂) , Î− ≡ Îc − Îd = g(â†b̂+ b̂†â) . (35.334)
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and,

Î2+ = g2[n̂2a+n̂
2
b+2n̂an̂b] , Î2− = g2[(â†b̂)2+(b̂†â)2+â†â+b̂b̂†+ââ†+b̂†b̂] . (35.335)

The expectation values are,

⟨Î+⟩ = g⟨n̂a⟩a , ⟨Î+⟩ = 0 (35.336)

⟨Î2+⟩ = g⟨(â†â)2⟩a , ⟨Î2−⟩ = g2⟨n̂a⟩a .

Now, with the definition, ⟨(∆Î)2⟩ ≡ ⟨Î2⟩−⟨Î⟩2, we get the intensity noise of the field,

⟨∆Î2+⟩ = ⟨(∆Î+)2⟩ = g2⟨(∆n̂a)2⟩ , (35.337)

and the shot noise 20 ,
⟨∆Î2−⟩ = g2Ia . (35.338)

Figure 35.31: Shot noise measurement.

35.8.5 Quantum amplifier

We will call in the following as quantum signals degrees of freedom subject to quantum
noise. Typically a quantum signal will be a mode of an electric field, represented by an
annihilation operator â. Such a mode can be enhanced by quantum amplifier, which
is a device amplifying quantum signals according to the rules of quantum mechanics.
Examples include the active elements of lasers and optical parametric amplifiers. A
quantum amplifier is characterized by its gain and its own intrinsic quantum noise,
which are interdependent parameters; the higher the gain, the larger the uncertainty
noise. In the case of lasers, the uncertainty corresponds to the amplified spontaneous
emission of the active medium.

Quantum amplification is a unitary transformation Û , acting in an initial state
|in⟩ and producing (in the Schrödinger figure) the amplified state,

|out⟩ = Û |in⟩ . (35.339)

20Insert citation, f.ex., [Hans Marin Flores, PhD thesis].
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The amplification depends on the mean value ⟨â⟩ of the annihilation operator and
its dispersion ⟨â†â⟩ − ⟨â†⟩⟨â⟩. A coherent state is a state with minimal uncertainty;
when the state is transformed, the uncertainty may increase. This increase can be
interpreted as noise in the amplifier. The gain G can be defined as follows:

G =
⟨â⟩out
⟨â⟩in

. (35.340)

The quantum amplifier can also be described in the Heisenberg picture; the changes
are attributed to the amplification of the field operator. Thus, the evolution of the
operator âout is given by

âout = Û†âÛ , (35.341)

while the state vector remains unchanged. The gain is then given by,

G =
⟨âout⟩in
⟨â⟩in

. (35.342)

In general, the gain G may be complex, and it may depend on the initial state. For
laser applications, the amplification of coherent states is important. Therefore, it is
usually assumed that the initial state is a coherent state characterized by a complex-
valued initial parameter α, such that |in⟩ = |α⟩. Even with such a restriction, the
gain may depend on the amplitude or phase of the initial field.

In the following, the Heisenberg representation is used; all brackets are assumed
to be evaluated with respect to the initial coherent state,

noise = ⟨â†outâout⟩ − ⟨â†out⟩⟨âout⟩ − (⟨â†â⟩ − ⟨â†⟩⟨â⟩) . (35.343)

The expectation values are assumed to be evaluated with respect to the initial coherent
state. This quantity characterizes the increase of the uncertainty of the field due
to amplification. As the uncertainty of the field operator does not depend on its
parameter, the quantity above shows how much output field differs from a coherent
state.

35.8.5.1 Linear phase-invariant amplifier

Linear phase-invariant amplifiers may be described as follows. Assume that the uni-
tary operator U amplifies in such a way that the input â and the output âout = Û†âÛ ,
are related by a linear equation,

âout = câ+ sb̂† , (35.344)

where c and s are c-numbers and b̂† is a creation operator characterizing the amplifier.
Without loss of generality, it may be assumed that c and s are real. The commutator
of the field operators is invariant under unitary transformation U :

[âout, â
†
out] = 1 = [â, â†] , [âin, â

†
out] = 0 = [âout, â

†
in] . (35.345)

From the unitarity of U , it follows that b̂ satisfies the same commutation relations.
The c-numbers are then c2 − s2 = 1. Hence, the phase-invariant amplifier acts by
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introducing an additional mode to the field, with a large amount of stored energy,
behaving as a boson. Calculating the gain and the noise of this amplifier, one finds
G = c, and

noise = c2 − 1 . (35.346)

The coefficient g = |G|2 is sometimes called the intensity amplification coefficient.
The noise of the linear phase-invariant amplifier is given by g − 1. The gain can be
dropped by splitting the beam; the estimate above gives the minimal possible noise of
the linear phase-invariant amplifier. The linear amplifier has an advantage over the
multi-mode amplifier: if several modes of a linear amplifier are amplified by the same
factor, the noise in each mode is determined independently;that is, modes in a linear
quantum amplifier are independent.

To obtain a large amplification coefficient with minimal noise, one may use ho-
modyne detection, constructing a field state with known amplitude and phase, corre-
sponding to the linear phase-invariant amplifier. The uncertainty principle sets the
lower bound of quantum noise in an amplifier. In particular, the output of a laser
system and the output of an optical generator are not coherent states.

The multiplicative amplifier D also adds additive noise F . We have DD† = 1,
(
â†out
âout

)
= D

(
â†in
âin

)
+

(
F1

F2

)
. (35.347)

35.8.6 Homodyne detection and inverse Radon transform

In the method of homodyne detection or phase-sensitive detection the signal is obtained
by superposing the field mode of interest with a local oscillator with a relative phase
θ at a beam splitter and a subtraction of the photo currents in the two ports of the
interferometer:

∆Ĵ = â†t ât − b̂†t b̂t (35.348)

= (2η − 1)(â†0â0 + b̂†0b̂0) + 2
√

(1− η)η(â†0â0 + b̂†0b̂0)
η→1/2−→ â†0â0 + b̂†0b̂0 .

If the local oscillator is a classical light field b̂0 = αLOe
−ıθ,

∆Ĵ = |αLO|(â0e−ıθ + â†0e
ıθ) (35.349)

=
√
2|αLO|x̂θ ,

where the field mode is expressed by the Hermitian quadrature components â0 =
2−1/2 · (x̂θ + ıŷθ). The expectation value of ∆Ĵ is afflicted with the Heisenberg
uncertainty and can be expressed as the first moment of the Wigner function W (α):

⟨ψ|∆Ĵ |ψ⟩ =
∫
W|ψ⟩(α)∆Ĵd

2α (35.350)

=
√
2|αLO|

∫
W|ψ⟩(xθ, pθ)xθdxθdpθ =

√
2|αLO|

∫ ∞

−∞
wθ(xθ)xθdxθ .

Here, the distribution function integrated over a rotated quadrature component pθ is
given by,

wθ(xθ) ≡
∫ ∞

−∞
Wθ(xθ, pθ)dpθ . (35.351)
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This is called the radon transform. The distribution function wθ(pθ) as well as the
Wigner function are normalized to 1. Multiple measurements of the expectation value
xθ = ⟨ψ|x̂θ|ψ⟩ now yields a histogram H|ψ⟩(xθ) reflecting, if normalized, w|ψ⟩(xθ) =
H|ψ⟩(xθ)/

∫
H|ψ⟩(xθ) exactly the distribution function.

Considering the finite detector efficiency [791] wθ(xθ) must be generalized to a
convolution with an apparatus function ζ(x):

wreal
θ (
√
ηxθ) = (widealθ ⋆ ζ) where ζ(x) =

1√
π(1− η)

e−ηα
2/(1−η) . (35.352)

A finite detector efficiency degrades the contrast of the quantum interference struc-
tures.

With the procedure of optical homodyne tomography or quantum state endoscopy
the Wigner function for e.g. a Schrödinger cat state can be reconstructed from a set
of distribution functions wθ(xθ) =

∫
W (αeıθ)dpθ measured for various phases θ [791].

To do this the data set is exposed to an inverse radon transform:

W (α) =
1

4π2

∫ ∞

−∞

∫ π

0

∫ ∞

−∞
wθ(xθ)|ζ|eıζ[Re (2−1/2αe−ıθ)−xθ]dxdθdζ . (35.353)

In contrast to the conventional homodyne detection, where the phase dependency of
amplitude noise is recorded, the homodyne tomography allows the complete recon-
struction of a quantum state through measurement of the distribution of the amplitude
noise power,

Ps =
ωs
2π

∫ ωs/2π

0

dt|⟨I(t)⟩|2 (35.354)

for various phases.
Alternatively, to the homodyne method, one may reconstruct the photon distri-

bution in field modes from their temporal evolution [1352]. Another method could be
to use atoms as sensors for the quantum state of a light field in a Jaynes-Cummings
type dynamics.

35.8.6.1 Homodyne signature of squeezed states

Let us mix squeezed light b̂ with a local oscillator â at a beam splitter,
(
x̂

ŷ

)
=

1√
2

(
1 −ı
−ı 1

)(
b̂

â

)
. (35.355)

The homodyne signal is,

Phody ∝ x̂†x̂− ŷ†ŷ (35.356)

= ıâ†b̂− ıâb̂†

= ı(â† − â)b̂r − (â† + â)b̂p

= 2|α|
(
b̂r sin θ − b̂p cos θ

)
,

if the local oscillator can be considered as classical, α = |α|eıθ. I.e. the phase of the
local oscillator permits us to select either one of the quadrature components.
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35.8.7 Multimode squeezing

Define,

b̂ = µâ+ νĉ† . (35.357)

Again using µ2 − ν2 = 1, the standard commutation rules for â and ĉ give,

[b̂, b̂†] = 1 (35.358)

[b̂r, b̂p] =
ı
2 .

The individual variances read,

∆b̂2r = ⟨b̂2r⟩ − ⟨b̂r⟩2 (35.359)

= 1
4 ⟨(b̂+ b̂†)2⟩ − 1

4 ⟨b̂+ b̂†⟩2

= 1
4 ⟨(µâ+ µâ† + νĉ+ νĉ†)2⟩

= 1
4µ

2 + 1
4ν

2 + 1
2µ

2⟨â†â⟩+ 1
2ν

2⟨ĉ†ĉ⟩+ 1
2µν

(
⟨âĉ⟩+ ⟨â†ĉ†

)
⟩ .

using ⟨â⟩ = ⟨ĉ⟩ = ⟨â†ĉ⟩ = 0.

Two-mode squeezing can exist even if the individual modes are not squeezed,

|r, ϕ⟩ = cosh−1 r
∑

n
tanhn reınϕ|r, ϕ⟩a|r, ϕ⟩b . (35.360)

A two-mode squeezed vacuum state can be generated by the squeezing operator

S(ξ) ≡ exp
(
ξ∗

2 âb̂−
ξ
2 â
†b†
)
. (35.361)

Remember that the single-mode squeezing is obtained if â = b̂. In a number state
base

|r, ϕ⟩ = 1

cosh r

∑
n
(tanh r)neınϕ|n⟩a|n⟩b . (35.362)

Two-mode relative number squeezing parameter

ξi,j =
σ2(ni − ⟨nj⟩)
⟨ni⟩+ ⟨nj⟩

. (35.363)

35.8.8 Coupled quantum oscillators with/out counter-rotating
terms

The Hamiltonian of a beam splitter resembles the one of a system of two coupled
oscillators with identical eigenfrequencies. Here, we are interested in calculating the
time evolution of such a system. We rewrite the Hamiltonian in terms of the normal
modes. We start from the Hamiltonian with counter-rotating terms [426],

Ĥ = ℏω(â†â+ 1
2 ) + ℏω(b̂†b̂+ 1

2 ) +
ℏΩ
2 (â+ â†)(b̂+ b̂†) , (35.364)
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which we rewrite in terms of the quadrature components given by,


x̂a

p̂a

x̂b

p̂b

 = Tab


â

â†

b̂

b̂†

 with Tab ≡
√

ℏω
2


ω−1 ω−1 0 0

ı −ı 0 0

0 0 ω−1 ω−1

0 0 ı −ı

 , (35.365)

as

Ĥ = 1
2 (p̂

2
a + ω2x̂2a) +

1
2 (p̂

2
b + ω2x̂2b) + Ωωx̂ax̂b . (35.366)

Setting ω± =
√
ω2 ± Ωω allows us to rewrite the Hamiltonian as,

Ĥ = 1
4 (p̂a + p̂b)

2 + 1
4ω

2
+(x̂a + x̂b)

2 + 1
4 (p̂a − p̂b)2 + 1

4ω
2
−(x̂a − x̂b)2 . (35.367)

Now, we apply the transform,


x̂A

p̂A

x̂B

p̂B

 =M


x̂a

p̂a

x̂b

p̂b

 with M≡
√

1

2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 =M−1 , (35.368)

and rewrite the Hamiltonian again as,

Ĥ = 1
2 (p̂

2
A + ω2

+x̂
2
A) +

1
2 (p̂

2
B + ω2

−x̂
2
B) . (35.369)

We go back from the quadrature components to the field mode operators via,


x̂A

p̂A

x̂B

p̂B

 = TAB


Â

Â†

B̂

B̂†

 with TAB ≡
√

ℏ
2


1/
√
ω+ 1/

√
ω+ 0 0

ı
√
ω+ −ı√ω+ 0 0

0 0 1/
√
ω− 1/

√
ω+

0 0 ı
√
ω− −ı√ω+

 ,

(35.370)

and finally obtain,

Ĥ = ℏω+(Â
†Â+ 1

2 ) + ℏω−(B̂†B̂ + 1
2 ) . (35.371)

The Heisenberg equations of motion for the oscillator modes,

d

dt


â

â†

b̂

b̂†

 = − ı
ℏ



â

â†

b̂

b̂†

 , Ĥ

 = X


â

â†

b̂

b̂†

 with X ≡


−ıω 0 − ıΩ

2
− ıΩ

2

0 ıω ıΩ
2

ıΩ
2

− ıΩ
2
− ıΩ

2
−ıω 0

ıΩ
2

ıΩ
2

0 ıω

 ,

(35.372)
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are difficult to integrate. In contrast, the Heisenberg equations for the normal modes,

d

dt


Â

Â†

B̂

B̂†

 = − ı
ℏ



Â

Â†

B̂

B̂†

 , Ĥ

 = EX


Â

Â†

B̂

B̂†

 (35.373)

with EX = U−1
X XUX =


−ıω+ 0 0 0

0 ıω+ 0 0

0 0 −ıω− 0

0 0 0 ıω−



and UX =


−1− 2

Ω
(ω + ω+) −1− 2

Ω
(ω − ω+) 1− 2

Ω
(ω + ω−) 1− 2

Ω
(ω − ω−)

1 1 −1 −1
−1− 2

Ω
(ω + ω+) −1− 2

Ω
(ω − ω+) −1 + 2

Ω
(ω + ω−) −1 + 2

Ω
(ω − ω−)

1 1 1 1

 ,

are easily solved by,


Â(t)

Â†(t)

B̂(t)

B̂†(t)

 = eEX t


Â(0)

Â†(0)

B̂(0)

B̂†(0)

 with eEX t ≡


e−ıω+t 0 0 0

0 eıω+t 0 0

0 0 e−ıω−t 0

0 0 0 eıω−t

 .

(35.374)
Hence, the oscillator modes evolve as,


â(t)

â†(t)

b̂(t)

b̂†(t)

 = eX t


â(0)

â†(0)

b̂(0)

b̂†(0)

 with eX t = T −1
ab M−1TABeEX tT −1

ABMTab = UX e
EX tU−1

X .

(35.375)

35.8.8.1 Rotating-wave approximation

The rotating-wave approximation is performed via ω± ≃ ω ± 1
2Ω. It leads to the

Hamiltonian,

Ĥ = ℏω(â†â+ 1
2 ) + ℏω(b̂†b̂+ 1

2 ) +
ℏΩ
2 (âb̂† + â†b̂) . (35.376)

In this approximation, we find T −1ABMTab ≃ M and the transformation defined in
(35.368), 

Â

Â†

B̂

B̂†

 =M


â

â†

b̂

b̂†

 , (35.377)
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takes us directly from the Hamiltonian (35.376) to 21,

Ĥ = (ℏω + ℏΩ
2 )(Â†Â+ 1

2 ) + (ℏω − ℏΩ
2 )(B̂†B̂ + 1

2 ) . (35.378)

Do the Excs. 35.8.9.5 and 35.8.9.6.
Note, that two coupled oscillator model becomes criticality, when the atom-field

coupling strength exceeds the frequencies of the mode and the atomic two-level system.

35.8.8.2 Interaction-free measurement

Beam splitters and coupled cavities have been proposed for the realization of interaction-
free measurements 35.8.9.7 and 35.8.9.8 [413, 1322, 764, 742].

35.8.9 Exercises

35.8.9.1 Ex: Conservation law at a beam splitter 1

Show that the beam-split transformation

(
ĉ

d̂

)
=

(
t −r
r t

)(
â

b̂

)

preserves the commutations relations and the photon number.

Solution: From

ĉ = tâ− rb̂ and d̂ = râ+ tb̂

follows

[ĉ, d̂] = [tâ− rb̂, râ+ tb̂] = 0

[ĉ, ĉ†] = [tâ− rb̂, tâ† − rb̂†] = |t|2 + |r|2 = 1

with

detU = |t|2 + |r|2 = 1 .

Furthermore,

ĉ†ĉ+ d̂†d̂ = (t∗â† − r∗b̂†)(tâ− rb̂) + (râ† + tb̂†)(râ+ tb̂)

= (|t|2 + |r|2)(â†â+ b̂†b̂) + (rt− rt)âb̂† + (rt− rt)â†b̂ = â†â+ b̂†b̂ .

21Note the different behavior of a beam splitter under this transformation,

Ĥ = ℏω(â†â+ 1
2
) + ℏω(b̂†b̂+ 1

2
) + ℏΩ

2

(
âb̂† − â†b̂

)
= ℏω(Â†Â+ 1

2
) + ℏω(B̂†B̂ + 1

2
) + ℏΩ

2
(−ÂB̂† + Â†B̂) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter01.pdf
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35.8.9.2 Ex: Conservation law at a beam splitter 2

Derive from the Hamiltonian (35.308) that â†â+ b̂†b̂ = const.

Solution: With the Hamiltonian (35.308) we have,

d

dt
(â†â) =

ı

ℏ
[Ĥ, â†â] =

ı

2
Ω[âb̂† + â†b̂, â†â] =

ı

2
Ω(âb̂† − â†b̂)

d

dt
(b̂†b̂) =

ı

ℏ
[Ĥ, b̂†b̂] =

ı

2
Ω[âb̂† + â†b̂, b̂†b̂] = − ı

2
Ω(âb̂† − â†b̂) .

Hence,
â†â+ b̂†b̂ = const .

35.8.9.3 Ex: Beam splitter

Show that B̂|1, 0⟩ = cos θ|1, 0⟩−sin θ|0, 1⟩ and B̂|0, n⟩ =∑∞k=0

√(
n
k

)
cosk θ sinn−k θ|n−

k, k⟩.

Solution: a. From

(âb̂† − â†b̂)|1, 0⟩ = |0, 1⟩ and (âb̂† − â†b̂)|0, 1⟩ = −|1, 0⟩

we deduce

(âb̂† − â†b̂)2k|1, 0⟩ = (−1)k|1, 0⟩ and (âb̂† − â†b̂)2k+1|1, 0⟩ = −(−1)k|0, 1⟩

and then

eθ(âb̂
†−â†b̂)|1, 0⟩ =

∑

k

θk

k!
(âb̂† − â†b̂)k|1, 0⟩

=
∑

k

θ2k

(2k)!
(âb̂† − â†b̂)2k|1, 0⟩+

∑

k

θ2k+1

(2k + 1)!
(âb̂† − â†b̂)2k+1|1, 0⟩

=
∑

k

θ2k

(2k)!
(−1)k|1, 0⟩ −

∑

k

θ2k+1

(2k + 1)!
(−1)k|0, 1⟩

= cos θ|1, 0⟩ − sin θ|0, 1⟩ .

b. We can express the vacuum state via a Fock state by,

|n, 0⟩ = â†n√
n!
|0, 0⟩ and |0, n⟩ = b̂†n√

n!
|0, 0⟩ .

Using the results of a. we calculate,

B̂â†nB̂† = (B̂ânB̂†)† = (B̂âB̂†)n† = (â† cos θ + b̂† sin θ)n†

=
∑

k

(
n

k

)
âk† cosk θ + (b̂n−k)† sinn−k θ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter02.pdf
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Finally, because of,

(âb̂† − â†b̂)|0, 0⟩ = 0 =⇒ B̂|0, 0⟩ = eθ(âb̂
†−â†b̂)|0, 0⟩ = 1

we get

B̂|n, 0⟩ = B̂
â†n√
n!
|0, 0⟩ = 1√

n!

(∑

k

(
n

k

)
âk† cosk θ + (b̂n−k)† sinn−k θ

)
B̂|0, 0⟩

=
1√
n!

∑

k

(
n

k

)
âk† cosk θ(b̂n−k)† sinn−k θ .

35.8.9.4 Ex: Beam splitter

Show that for B̂ ≡ eθ(âb̂†−â†b̂) holds,

B̂âB̂† = â cos θ + b̂ sin θ and B̂b̂B̂† = −â sin θ + b̂ cos θ .

Solution: The two expressions can be recombined to,

B̂(â± ıb̂)B̂† = (â± ıb̂)e∓ıθ .

Now, we define the new quantities,

x̂ ≡ â+ ıb̂ and Â ≡ âb̂† − â†b̂ ,

for which,

[Â, x̂] = −ıx̂ ,
and rewrite one of the expressions as,

eθÂx̂e−θÂ = x̂e−ıθ .

Now, we use (23.179) which has been derived in Exc. 23.5.6.1,

eÂx̂e−Â = x̂+ [Â, x̂] + 1
2! [Â, [Â, x̂]] + ... ,

and obtain,

eÂx̂e−Â = x̂+ θ[Â, x̂] + θ2

2! [Â, [Â, x̂]] + ...

= x̂− θıx̂+ ıθ2

2! ıx̂+ ... = x̂e−ıθ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter04.pdf
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35.8.9.5 Ex: Coupled harmonic oscillators with different eigenfrequen-
cies and damping

Here, we generalize the calculation of Sec. 35.8.8 for coupling of oscillators with dif-
ferent eigenfrequencies.
a. From,

Ĥ = ℏωa(â†â+ 1
2 ) + ℏωb(b̂†b̂+ 1

2 ) +
ℏΩ
2 (âb̂† + â†b̂) + ℏΩ′

2 (âb̂+ â†b̂†)

derive the Hamiltonian in terms of the quadrature components x̂a,b and p̂a,b.

b. Set up the Heisenberg equations for the field operators â, â†, b̂, and b̂† and determine
the eigenvalues of the matrix X defined by,

d

dt




â

â†

b̂

b̂†


 = X




â

â†

b̂

b̂†


 .

c. Extend the Heisenberg equations by including loss terms for the cavity modes κa
and κb and determine the corresponding matrix Xκ, as well as its eigenvalues for the
simplifying case Ω′ ≡ Ω.

Solution: a. Transforming like,




x̂a

p̂a

x̂b

p̂b


 = Tab




â

â†

b̂

b̂†


 with Tab ≡




√
ℏ

2ωa

√
ℏ

2ωa
0 0

ı
√

ℏωa

2 −ı
√

ℏωa

2 0 0

0 0
√

ℏ
2ωb

√
ℏ

2ωb

0 0 ı
√

ℏωb

2 −ı
√

ℏωb

2




,

we obtain,

Ĥ = 1
2 (p̂

2
a + ω2

ax̂
2
a) +

1
2 (p̂

2
b + ω2

b x̂
2
b) +

(Ω+Ω′)
√
ωaωb

2 x̂ax̂b +
Ω−Ω′

2
√
ωaωb

p̂ap̂b .

b. The Heisenberg equations are,

d

dt




â

â†

b̂

b̂†


 = − ı

ℏ







â

â†

b̂

b̂†


 , Ĥ


 = X




â

â†

b̂

b̂†


 with X ≡




−ıωa 0 − ıΩ2 − ıΩ′

2

0 ıωa
ıΩ′

2
ıΩ
2

− ıΩ2 − ıΩ′

2 −ıωb 0
ıΩ′

2
ıΩ
2 0 ıωb


 .

The eigenvalues are ±ω± with,

ω± ≡ 1√
2

√
ω2
a + ω2

b +
Ω2−Ω′2

2 ±
√
(ω2
a − ω2

b )
2 + (ωa + ωb)2Ω2 − (ωa − ωb)2Ω′2 .

For Ω = Ω′ we recover,

ω± = 1√
2

√
ω2
a + ω2

b ±
√
(ω2
a − ω2

b )
2 + 4ωaωbΩ2 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter05.pdf


1970 CHAPTER 35. ATOMS IN QUANTIZED RADIATION FIELDS

for ωa = ωb we recover,

ω± =

√
ω2 ± ωΩ+ Ω2−Ω′2

4 ,

and finally for Ω = Ω′ and ωa = ωb we recover ω± =
√
ω2 ± ωΩ.

c. The extended Heisenberg-Liouville equations are,

d

dt
â = − ı

ℏ [â, Ĥ]− κaâ with
d

dt
b̂ = − ı

ℏ [b̂, Ĥ]− κbb̂ ,

such that,

Xκ =




−ıωa − κa 0 − ıΩ2 − ıΩ′

2

0 ıωa − κa ıΩ′

2
ıΩ
2

− ıΩ2 − ıΩ′

2 −ıωb − κb 0
ıΩ′

2
ıΩ
2 0 ıωb − κb


 .

The eigenvalues for the case Ω′ ≡ Ω are,

ω1,2,3,4 = −κa+κb

2 ±
√
(κa−κb

2 )2 − ω2 ± ω
√
Ω2 − (κa − κb)2 .

35.8.9.6 Ex: Equivalence of beam splitter and coupled oscillator models

Show that the beam splitter and the coupled oscillators model for degenerate frequen-
cies are equivalent.

Solution: The prescription Â ≡ â and B̂ = −ıb̂ transforms the Hamiltonian be-
tween the beam splitter and coupled oscillators model,

Ĥ = ℏω(â†â+ 1
2 ) + ℏω(b̂†b̂+ 1

2 ) + Ω(âb̂† + â†b̂)

= ℏω(Â†Â+ 1
2 ) + ℏω(B̂†B̂ + 1

2 ) + ıΩ(ÂB̂† − Â†B̂) .

In matrix notation we may write,
x̂a

p̂a

x̂b

p̂b

 = T


â

â†

b̂

b̂†

 with T ≡


1 1 0 0

ı −ı 0 0

0 0 1 1

0 0 ı −ı



Â

Â†

B̂

B̂†

 =M


â

â†

b

b†

 where M≡


1 0 0 0

0 1 0 0

0 0 −ı 0

0 0 0 ı



x̂A

p̂A

x̂B

p̂B

 = TMT −1


x̂a

p̂a

x̂b

p̂b

 with TMT −1 =


1 0 0 0

0 1 0 0

0 0 0 −ı
0 0 −ı 0

 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter06.pdf
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We verify the commutation rules,

[Â, Â†] = [â, â†] = 1 , [B̂, B̂†] = [−ıB̂, ıB̂†] = [b̂, b̂†] = 1 ,

and the conservation laws,

[Ĥ, â†â+ b̂†b̂] = Ω[âb† + â†b, â†â+ b̂†b̂] = 0

[Ĥ, Â†Â+ B̂†B̂] = Ω[ÂB̂† − Â†B̂, Â†Â+ B̂†B̂] = 0 .

35.8.9.7 Ex: Elitzur and Vaidman bomb tester

a. Write down the beam splitter Hamiltonian in the Fock representation for a the case

of a single photon, diagonalize it, and determine the propagator eıĤt/ℏ for a 50/50
beam splitter.
b. Based on the propagator derived in (a) draw an analogy between a Mach-Zehnder
interferometer and a resonantly driven two-level system. Interpreting the interferom-
eter as a qubit explain the Elitzur and Vaidman bomb testing problem. What is the
probability?
c. Reformulate the interaction-free bomb tester in a quantum computing language.

Solution: a. Knowing that there is exactly 1 photon in the interferometer, we may
reduce the Hamiltonian (35.320) to,

Ĥa+b = Ĥ1 =
ℏΩ
2

(
0 1

1 0

)
= Û

(
−ℏ

2Ω 0

0 ℏ
2Ω

)
Û†

with Û =

(
cos π4 sin π

4

− sin π
4 cos π4

)
.

Hence, the propagator reads,

eıĤt/ℏ = Û

(
e−ıΩt/2 0

0 eıΩt/2

)
Û†

Ωt=π/2−→ 1√
2

(
1 ı

ı 1

)
.

This propagator also describes nutations in a driven two-level atom.
b. We define the states,

|1⟩ ≡ |1, 0⟩ =
(
1

0

)
and |2⟩ ≡ |0, 1⟩ =

(
0

1

)

as those in which a photon is moving, respectively, horizontally and vertically. Then,
we can describe the action of the beam splitter as,

|1⟩ BS−→ eıĤt/ℏ|1⟩ = 1√
2
(|1⟩+ ı|2⟩)

|2⟩ BS−→ eıĤt/ℏ|1⟩ = 1√
2
(|2⟩+ ı|1⟩) .
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A path difference between the interferometer arms acts like,

|1⟩ L−→ |1⟩ and |2⟩ L−→ eık∆L|2⟩ .
An obstacle in the second interferometer arms acts like,

|2⟩ O−→ |0⟩ .
Hence, without obstacle the interferometer does,

|1⟩ BS−→ 1√
2
(|1⟩+ ı|2⟩)

L−→ 1√
2
(|1⟩+ ıeık∆L|2⟩)

BS−→ 1√
2

[
1√
2
(|1⟩+ ı|2⟩) + ıeık∆L 1√

2
(|2⟩+ ı|1⟩)

]
= 1

2

[
(1− eık∆L)|1⟩+ ı(1 + eık∆L)|2⟩

]
.

We align the interferometer such that eık∆L = −1. Then,

|1⟩ BS−→ L−→ BS−→ |1⟩ .
This means that the photon only interferes constructively on detector Dconstr, but
destructively on detector Ddestr.
Now, the presence of an obstacle in the second arm spoils the interference,

|1⟩ BS−→ 1√
2
(|1⟩+ ı|2⟩)

O−→ 1√
2
(|1⟩+ |0⟩)

BS−→ 1√
2

[
1√
2
(|1⟩+ ı|2⟩) + |0⟩

]
= 1

2 (|1⟩+ ı|2⟩) + 1√
2
|0⟩) .

That is, the probability for counting a photon on detector Ddestr is 1
4 . A detection of

a photon on detector Ddestr tells us the presence of an obstacle (bomb) in the second
interferometer arm, despite the fact that photon went to the first arm and, hence,
didn’t hit the bomb.
The probability for counting a photon on detector Dconstr is

1
4 , but in this case we don’t

know by which interferometer arm it passed. We have to repeat the test with another
photon, which will tell us the presence of a bomb with the accumulated probability
1
4
1
4 . For n consecutive photons we calculate the probability for detecting the obstacle

without hitting it as (see Thorlabs educational kit),

n∑

k=1

1
4k

n→∞−→ 1
3 .

c. Fig. 35.32(c) shows a representation of the bomb tester in the quantum comput-
ing language: The qubit q1 represents the interferometer and the qubit q0 the bomb.
The first Hadamard gate and the subsequent cNOT gate entangle both qubits. The
bomb’s release mechanism represents a measurement of q0, which projects it to the
ground state, q0 → |0⟩. Meanwhile, q1 is remixed, and the interferometer output ports
measured,

|ψout⟩ = (H ⊗ I)
c

X10(H ⊗ I)|0⟩ .

https://www.thorlabs.com/drawings/da1d7ca0c08815c7-FC320057-0669-3054-C198C838C9F0F1B3/EDU-BT1-EnglishManual.pdf
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Figure 35.32: The main reason for the analogy between a Mach-Zehnder-Interferometer (a)
and a driven two-level atoms (b) is the existence of a coherence between two states residing
in the wave nature of light in (a) and of electronic orbitals in (b). (c) Quantum computing
language formulation of the bomb tester.

35.8.9.8 Ex: Multiple beam splitters for improved bomb testing

In the original Elitzur and Vaidman bomb tester photons are sent through a sin-
gle interferometer. Now, let the photons be sent repeatedly through the same beam
splitter. Assume the photon wavepacket to be shorter than the length of the inter-
ferometer arms so that it does not interfere with itself. How many times must the
photons be sent to the beam splitter to be totally transferred?

Solution: We use the transfer matrix model describing the beam splitting by,
(
an

bn

)
= T

(
an−1
bn−1

)
= Tn

(
a0

b0

)
with T =

(
r t

−t r

)
.

In order to conserve energy, a2n+b
2
n = a2n−1+b

2
n−1, the matrix must satisfy, r2+t2 = 1.

We may therefore introduce a new variable θ such that r = cos θ and t = sin θ. The
beam splitting matrix can be unitarily transformed into a diagonal matrix via,

T = U

(
eıθ 0

0 e−ıθ

)
U−1 with U ≡ 1√

2

(
−ı ı

1 1

)
,

satisfying detU = 1. Hence, the multiple beam splitting is described by,

Tn = U

(
eınθ 0

0 e−ınθ

)
U−1 =

(
cosnθ sinnθ

− sinnθ cosnθ

)
.

With the initial condition a0 = 1 and b0 = 0 and supposing the reflectivity of the beam
splitter to be adjusted such that after n round trips, an = 0 and bn = 1, we find,

(
an

bn

)
=

(
cosnθ

− sinnθ

)
≡
(
0

1

)
.

Hence,

0 ≡ cosnθ =⇒ n =
π

2 arccos r
.

Note, that the transfer matrix model can be extended to account for finite transmissions
of the in- and output coupling mirrors,
(
an

bn

)
= RinT

(
an−1
bn−1

)
+Tin

(
ain

bin

)
with Rin =

(
ra 0

0 rb

)
, Tin =

(
ta 0

0 tb

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter08.pdf
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35.8.9.9 Ex: Hamiltonian approach to coupled cavities for improved
bomb testing

a. Consider two identical weakly coupled cavities. Solving the Heisenberg equations
with the Hamiltonian for two coupled oscillators calculate how the photon number
evolves in each cavity (see Exc. 35.8.9.5). How does the field amplitudes change after
one cavity round trip?
b. How does the photon number in cavity ’b’ evolve if an absorber is inserted into the
cavity ’a’ [764]? How does the field amplitudes change in this case after one cavity
round trip?
c. Now, we model the absorber by a two-level atom being in resonance with the light
field and subject to spontaneous emission. Set up the Hamiltonian, derive the equa-
tions of motion, and solve them numerically. Interpret the results.
Comments: The multiple path model leading to the Airy formulas describes a phys-
ical process involving beam propagation and reflection and transmission at a real
object like an atom or a beam splitter. The complete dynamics is only partially
grasped by a Hamiltonian and a master equation treating the cavity as a closed sys-
tem and being restricted to describing energy fluxes into and out of the system.
One manifestation of it is the necessity of approximating the Airy function close to
resonance by a Lorentzian in order to link the cavity transmission to a decay rate.
Another manifestation is the discrepancy in the coupled cavity description via mul-
tiple paths and via Hamiltonian for coupled oscillators: The models only coincide of

r =
√
R

!
= 1.

Figure 35.33: (a) Illustration of the multiple paths model and (b) the coupled cavities model
for improved bomb testing.

Solution: a. The Hamiltonian of the coupled system is,

Ĥ = −∆câ
†â−∆cωb̂

†b̂+ Ω
2 (âb̂

† + â†b̂) .

The Heisenberg-Liouville equations are,

˙̂a = −ı[â, Ĥ] = ı∆câ− ıΩ2 b̂− κaâ
˙̂
b = −ı[b̂, Ĥ] = ı∆cb̂− ıΩ2 â− κbb̂ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter09.pdf
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On resonance, ∆a = 0, and without decay, κa = 0 = κb, they read,
(
˙̂a
˙̂
b

)
= −ı

(
0 Ω

2
Ω
2 0

)(
â

b̂

)
= −ıUÊU−1

(
â

b̂

)

with U =

(
− 1√

2
1√
2

1√
2

1√
2

)
and Ê =

(
−Ω

2 0

0 Ω
2

)
,

and have the solution,
(
â(t)

b̂(t)

)
= Ue−ıÊtU−1 =

(
cos Ωt

2 −ı sin Ωt
2

−ı sin Ωt
2 cos Ωt

2

)(
â(0)

b̂(0)

)
.

The photon numbers are now,

n̂a(t) = â†(t)â(t) = n̂a(0) cos
2 Ωt

2 + n̂b(0) sin
2 Ωt

2 + [b̂†(0)â(0)− â†(0)b̂(0)]ı sin Ωt
2 cos Ωt

2

n̂b(t) = b̂†(t)b̂(t) = n̂a(0) sin
2 Ωt

2 + n̂b(0) cos
2 Ωt

2 − [b̂†(0)â(0)− â†(0)b̂(0)]ı sin Ωt
2 cos Ωt

2 .

That is, the total photon number is conserved, n̂a(t) + n̂b(t) = n̂a(0) + n̂b(0). If
initially n̂b(0) = 0, we get,

n̂a(t) = n̂a(0) cos
2 Ωt

2 = n̂a(0)− n̂b(t) .

One cavity round trip lasts δ−1fsr, where δfsr is the cavities’ free spectral range. After

one round trip the field amplitudes become,
(
â(t+ δ−1fsr)

b̂(t+ δ−1fsr)

)
=

(
cos Ω

2δfsr
−ı sin Ω

2δfsr

−ı sin Ωt
2δfsr

cos Ωt
2δfsr

)(
â(t)

b̂(t)

)
,

or (
ân

b̂n

)
=

(
r −ıt
−ıt r

)(
an−1
bn−1

)
,

with the identification,

t ≡ sin Ω
2δfsr

and r ≡ cos Ω
2δfsr

=
√

1− t2 .

See Fig. 35.34.
b. Now, we insert an absorber into the cavity ’b’. This obviously destroys the coherent
coupling between both cavities, which means that we are left with cavity ’a’ and a loss
rate κa,

Ĥ = −∆câ
†â ,

described by the Heisenberg-Liouville equation,

˙̂a = −ı[â, Ĥ] = ı∆câ− κaâ .

On resonance, the solution is an exponential decay of the photon number,

n̂a(t) = n̂a(0)e
−2κat .
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Ωt/2π
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Figure 35.34: (code) (blue) Photon number in a cavity ’a’ coupled to a cavity ’b’ subject to

losses. (red) Photon number in a cavity ’b’. (black) Photon number in a cavity ’a’ coupled

to an absorber.

After one round trip the field amplitudes become,

a(t+ δ−1fsr) = e−κa/δfsra(t) ,

or
an+1 = e−κa/δfsran = r2an .

From this we deduce the identities,

r2 = e−κa/δfsr ≃ 1− κa
δfsr

,

that is,

T = 1−R = 1− r2 =
κa
δfsr

=
π

F
.

However, we constantly evaluate the photo detector signal. As long as no photon is

registered, we know that the intracavity photon number did not change.
In the bomb tester language, having let the cavities interact for a time corresponding
to 2π/Ω, there are three possible outcomes: (i) No photon is observed in cavity ’a’:
This tells us that there is no bomb in cavity ’b’. (ii) A photon is observed in cavity
’a’: This tells us that there is a ’bomb’ in cavity ’b’, although the photon never had a
chance to interact with the it. (iii) The bomb explodes.
c. From the Hamiltonian,

Ĥ = −∆câ
†â−∆aσ̂

z + g(σ̂−â† + σ̂+â)−∆cb̂
†b̂+ Ω

2 (âb̂
† + â†b̂) ,

we derive the equations of motion,

˙̂a = −ı[â, Ĥ]− κaâ = (ı∆c − κa)â− ıΩ2 b̂− ıgσ̂−
˙̂
b = −ı[b̂, Ĥ]− κbb̂ = (ı∆c − κb)b̂− ıΩ2 â

˙̂σ− = −ı[σ̂−, Ĥ]− Γ
2 σ̂
− = (ı∆a − Γ

2 )σ̂
− + ıgâσ̂z

˙̂σz = −ı[σ̂z, Ĥ]− Γσ̂z = −2ıgâσ̂+ + 2ıgâ†σ̂− − Γ(I2 + σ̂z) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_CoupledCavities.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_CoupledCavities.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_CoupledCavities.m
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For simplicity we assume resonant excitation and no cavity decay,

˙̂a = −ıΩ2 b̂− ıgσ̂−
˙̂
b = −ıΩ2 â

˙̂σ− = −Γ
2 σ̂
− + ıgâσ̂z

˙̂σz = −2ıgâσ̂+ + 2ıgâ†σ̂− − Γ(I2 + σ̂z) .

Treating cavity ’a’ like a reservoir by setting η ≡ Ω
2ıα the Hamiltonian for cavity ’b’

becomes,
Ĥ = −∆cb̂

†b̂+ Ω
2 (α

∗b̂+ αb̂†) = −∆cb̂
†b̂− ı(η∗b̂− ηb̂†) .

Fig. 35.34 shows the time evolution.

35.8.9.10 Ex: Simulation of the quantum Zeno effect with qubit gates

Design a quantum circuit simulating the quantum Zeno effect ruling the bomb tester
and its extension to multiple paths.

Solution: In matricial language the bomb tester reads,

(H ⊗ I)
c

X10(H ⊗ I)|0⟩ .
The multiple paths extension reads,

(
[I⊗ |0⟩⟨0|]

[
Rx(

π
n )⊗ I

] c
X10

)n [
Rx(

π
n )⊗ I

]
|0⟩ .

As seen in Fig. 35.35 the detection efficiency increases with n asymptotically ap-
proaching 1.
Now [764, 765], instead of Hadamard gates, we consider a small rotation by ϑ = π

2n ,

U3(ϑ, 0, 0) =

(
cosϑ − sinϑ

sinϑ cosϑ

)
so that U3(ϑ, 0, 0)⊗I =


cosϑ 0 − sinϑ 0

0 cosϑ 0 − sinϑ

sinϑ 0 cosϑ 0

0 sinϑ 0 cosϑ

 .

With,

I⊗ |0⟩⟨0| =




1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


 and

c

X10 =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 ,

we find,

T = (I⊗ |0⟩⟨0|) (U3(ϑ, 0, 0)⊗ I)
c

X10 =




cosϑ 0 0 − sinϑ

0 0 0 0

sinϑ 0 0 cosϑ

0 0 0 0


 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_Beamsplitter10.pdf
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Finally,

|ψ⟩ = Tn (U3(ϑ, 0, 0)⊗ I) |0⟩ = cosn ϑ




cosϑ

0

sinϑ

0


 ,

respectively, ρ̂out = T ρ̂in T
†.

0 5 10 15 20

n

0

0.5

1

〈0
0|0

0〉
,
〈1
0|1

0〉

Figure 35.35: (code) Detection efficiency of the multiple path bomb tester as a function
of the number of paths n.

35.8.9.11 Ex: Link between entanglement and squeezing

Prove that, if â1 and â2 are EPR-entangled beams with respect to quadrature com-
ponents, then beams b̂1,2 = 1√

2
(â1 ± â2) are squeezed with respect to two orthogonal

quadrature components and vice versa [1087, 1088, 822].

Solution: We consider independent modes characterized by their field operators,

[âm, â
†
n] = δmn = [b̂m, b̂

†
n] but [â1, b̂

†
1] =

1√
2
.

The Hamiltonian,
Ĥ = ıℏgα(â†1â

†
2 − â1â2)

describes parametric down-conversion in the non-degenerate configuration and in the
approximation of a classical undepleted pump α. As is well known, in the non-
degenerate configuration the two beams â1 and â2 are entangled both with respect
to the photon number and with respect to the two quadrature components. The entan-
glement can be explicitly shown by applying the time evolution operator corresponding
to the Hamiltonian to the uncorrelated vacuum state, for an interaction time τ ,

e−ı/ℏĤτ |0⟩1|0⟩2 =

∞∑

n=0

tanhn gτ/ℏ
cosh gτ/ℏ

|n⟩1|n⟩2 .

On the other hand, the Hamiltonian obtained by the transformation,

â1,2 = 1√
2
(b̂1 ± b̂2)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_QuantumZeno.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Quantumfields_EstadoComprimido05.pdf
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is
Ĥ = ıℏgα

2 (b̂†21 − b̂21)− ıℏgα
2 (b̂†22 − b̂22) ,

which corresponds to the sum of two interaction Hamiltonians for parametric down-
conversion in the degenerate configuration. Hence the beams b̂1 and b̂2 are squeezed,
and because of the minus sign in front of the second term, the squeezing is in orthogonal
quadrature components. For example, when α is real b̂1 is squeezed with respect to the
Y quadrature (imaginary part of the annihilation operator) and b̂2 is squeezed with
respect to the X quadrature (real part of the annihilation operator).
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Chapter 36

Quantum measurement

Since its foundation, the theory of quantum mechanics was driven by the urge to
clarify the relationship between the world and what we can learn about it, that is, be-
tween reality and the observer. Scientists such as Bohr, Heisenberg, Schrödinger, and
Einstein defended controversial positions and struggled for the correct interpretation
of quantum mechanics. The measurement process is supposed to provide informa-
tion about the world out there, but it is not clear whether this information can be
complete and accurate, or whether there are limitations or hidden variables. Also, it
was unclear, to what extend a measurement can be non-invasive or whether it would
always perturb the phenomenon under investigation. The most important step in
this question was the Copenhagen interpretation formulated by Bohr, Heisenberg and
Born in 1927 and elaborated later by von Neumann and Dirac. Although contested
many times in the past, it’s essence still remains valid today.

In this chapter we will study the measurement process from the viewpoint quan-
tum mechanics and discuss some seemingly paradoxical effects, that will allow us to
deepen our understanding. Among them are the quantum jump, Schrödinger’s cat,
the quantum Zeno effect, and the Einstein-Podolski-Rosen paradox.

36.1 The reality and the observer

According to the Copenhagen interpretation, theoretical predictions have a probabilis-
tic character. However, this is not an expression of the imperfection of the theory, but
of the intrinsically indeterministic character of quantum processes 1. Moreover, the
Copenhagen interpretation desists to attribute to objects of the quantum formalism,
such as wavefunctions and operators, an immediate reality. Instead, the objects of
the formalism only represent vehicles for a probabilistic prediction of the results of
measurements. These results are only truly real elements of quantum theory. It is ob-
vious, that the quantum theory and its interpretations are of fundamental importance
to the scientific view of the world and our concept of nature.

36.1.1 Schrödinger’s cat

In the microscopic world, the relationship between the sample and the observer is very
delicate. And this delicacy is at the origin of quantum effects that seem paradoxical

1Note that it is problematic to identify unpredictability and indeterminism. We may be unable
to predict specific events, without having to assume that these events occur in a random manner.

1983
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through our classical concept of the world. It is, thus, not surprising that one of
the most fascinating areas of investigations is the interface between the classical
and the quantum, the macroscopic and the microscopic worlds. For the pioneers of
quantum mechanics the most important questions were of the type: ’How is it possible
that a microscopic particle flies simultaneously through two slits?’ Nowadays, we
are accustomed to such paradoxes, and we simply accept the fact that we have to
consider a particle as a wave. Nevertheless, we still do not understand very well,
why the classical and the quantum world behave so differently. ’Why does quantum
mechanics allow for quantum superpositions states, which are absolutely forbidden in
classical physics?’, ’Why are the fundamental laws of the quantum world invariant to
the arrow of time, while the macroscopic world always evolves from the past to the
future?, ’How can it be that quantum mechanics allows for effects having no cause,
like spontaneous emission, while the everyday world seems to be deterministic?’

Figure 36.1: Double slit and Schrödinger’s cat.

Quantum mechanics must, in some limit, clearly encompass classical physics. But
in spite of Ehrenfest’s correspondence principle, this fact is far from being trivial.
Some predictions of classical and quantum physics are fundamentally different and,
in some cases, even contradictory. The famous Schrödinger cat states are the epitome
of this fact: In one version of this paradox, a particle crosses a double slit. Behind
one of the slits is a detector which, as soon as it registers a particle, actuates a device
killing a cat. We know that in quantum reality the particle crosses both slits in a
superposition state, so that the cat should be in a superposition state as well. Hence,
quantum cats can be in a superposition of ’dead’ and ’alive’.

We believe nowadays that the answers to the above questions are somehow buried
in processes that destroy the quantum superposition of Schrödinger cats during the
transition from the microscopic to the macroscopic world. However, the details of
these quantum coherence destruction processes, called decoherence, are very compli-
cated and the subject of serious efforts in contemporary research. It is one of the mo-
tivations for trying to create in laboratories the largest possible (quasi-macroscopic)
quantum systems, bring them in Schrödinger cat-like superposition states and study
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Figure 36.2: The measurement of a quantum system presupposes the interaction of the
system with a reservoir, which disturbs its dynamics.

their decoherence 2.

36.1.1.1 Quantum measurement

Every unperturbed system follows the Schrödinger equation. Once its Hamiltonian
has been determined, the formal solution,

|ψ⟩ = e−ıĤt/ℏ|ψ0⟩ , (36.1)

allows to calculate the time evolution, that is, the trajectory of the wavefunction. The
evolution is coherent and reversible in time.

Now, the process of measuring a pure quantum state includes –according the
Copenhagen interpretation and as discussed in Sec. 23.2.7– two consecutive steps: In
the first step, the interaction of the quantum sample with the measuring device (which
from now on we will call meter) destroys all coherences and projects the pure state
into a statistical mixture of eigenstates of the meter. Following von Neumann, the
impact of the meter on the quantum system is so strong, that its coherent evolution
is interrupted and it is projected onto the degree of freedom that the apparatus
wants to measure, e.g. its position or its momentum, but not both in the same time.
The projection transforms a pure quantum state |ψ⟩ into a statistical mixture ρ of
eigenstates,

ρ̂sample = |ψ(t)⟩⟨ψ(t)|↷ ρ̂proj =
∑

k
|⟨ψ|k⟩|2|k⟩⟨k| . (36.2)

This process is irreversible, that is, it separates the past from the future. The projec-
tion is not described by the Schrödinger equation. Instead, the sudden reduction of
the state must be postulated, as done by von Neumann’s famous axiom.

In a second step, the observer looks at the measuring device and confirms one of
the possible results. Thus, he transforms the state into a eigenstate of the device 3:

ρ̂proj ↷ ρ̂meter = |k⟩⟨k| . (36.3)

From this moment, we can again leave the quantum system alone until the next
measure.

2There are attempts to introduce the concept of the time arrow also in the microscopic world: ’In
an isolated system, spontaneous processes occur in the direction of increasing entropy.’ [896, 500].

3We note that, only if all commuting observables of the system are measured and acknowledged,
ρ̂meter becomes a pure state. Otherwise ρmeter remains a partial mixture.
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From the viewpoint of the quantum system, the evolution of the measurement
process appears discontinuous, because it destroys all possible coherences between its
states. In fact, the problem comes from the non-ideal behavior of the measuring device
(symbolized by | ↑⟩ before the measurement). An ideal non-invasive measurement 4

would leave the quantum state |ψ⟩ unchanged:

|ψ⟩| ↑⟩ H−→ |ψ⟩| ↗⟩ , (36.4)

while the measuring device changes to a state (| ↗⟩ after the measurement) indicating
the current state of the system. However, this is normally impossible without previ-
ously established correlation between |ψ⟩ and | ↑⟩. In a real meter device, the coupling
between |ψ⟩ and | ↑⟩ requires that the meter and the system to be non-orthogonal.

36.1.1.2 Measurement-induced decoherence

A more modern view of the quantum measurement is the following: When the outer
world (called reservoir, observer or meter) reads a quantum system, it causes, due to
this transfer of information, an irreversible demolition of coherence. Consequently,
the density operator condenses to its diagonal. On the other hand, the system as a
whole (including the sample and the reservoir) always evolves coherently according
to the von Neumann equation with the Hamiltonian of everything Ĥall:

˙̂ρ =
ı

ℏ
[ρ̂, Ĥall] . (36.5)

If Ĥsample is the small quantum system under investigation, a complete description
of the measurement process requires the inclusion of the observer, that is, the total
Hamiltonian is,

Ĥ = Ĥsample ⊗ Ĥmeter =

(
sample 0

0 meter

)
. (36.6)

Ideally, the system evolves independently without being disturbed by the meter. Un-
fortunately, this also means that the meter evolves independently, that is, it is not
influenced by the system and thus does not provide information about the system.
To allow a transfer of information, we need to couple the respective spaces by an
interaction Ω, such that,

Ĥ =

(
sample Ω

Ω meter

)
. (36.7)

Tracing over all degrees of freedom of the universe except those of the quantum
system, the von Neumann equation (36.5) turns into a master equation,

˙̂ρsample =
ı

ℏ
[ρ̂, Ĥsample] + Lreservρ . (36.8)

4See the discussion of the quantum non-demolition measurement.



36.1. THE REALITY AND THE OBSERVER 1987

Figure 36.3: Spontaneous emission can be seen as a coupling of the system under investiga-
tion to an external meter, because it delivers information to the meter, even if only to tell
us: ’The system was in an excited state, but now it’s in a ground state.’

Example 217 (Quantum measurement in a two-qubit system): To discuss
this at an example, we consider the simplest imaginable system: Two two-level
atoms, the first one representing the quantum system under investigation and
the second the meter. We introduce the following basis:

|1⟩ ≡ | ↓⟩| ↓⟩ =


1

0

0

0

 , |2⟩ ≡ | ↑⟩| ↓⟩ =


0

1

0

0

 , |3⟩ ≡ | ↓⟩| ↑⟩ =


0

0

1

0

 , |4⟩ ≡ | ↑⟩| ↑⟩ =


0

0

0

1

 .

The Hamiltonian of independent atoms is,

Ĥ = | ↓⟩⟨↓ | ⊗ | ↑⟩⟨↑ | .

The discussion about the correct interpretation of the measurement process is still
ongoing. Modern theories describe the state reduction in terms of quantum decoher-
ence due to interactions of the system with the environment. Other interpretations
involve decoherent histories or assume multiple worlds [1004]. On the practical side,
the current interest in quantum decoherence is motivated by the fact that this phe-
nomenon may turn out to be the fundamental factor limiting the useful operation
of quantum computers. Another interesting area where quantum mechanics meets
classical physics is the phenomenon of quantum chaos.

36.1.2 The quantum jump

Obviously, the whole quantum measurement process, including the discontinuity of
the state projection, could be fully understood within a grand model of the complete
system, which would include the measuring device. In practice, this is illusory, because
of the excessive number of degrees of freedom of the classical measuring device (e.g. a
Schrödinger cat).

On the other hand, many characteristics of quantum measurement can be illus-
trated in a simple three-level atom with a weak transition representing the quantum
sample and a strong transition representing the meter. The assertion defended in
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Figure 36.4: One of the first pictures of a single Ba+ ion.

the following is, that this three-level system, called quantum amplifier, gives a deep
insight into what happens during the process of state reduction and, therefore, can
be considered as paradigmatic for theories on quantum measurement.

To be able to discuss the dynamics of this system on a firmer ground, we will first
introduce the quantum Monte Carlo wavefunction simulation method (MCWF).

36.1.2.1 Quantum Monte-Carlo wavefunction simulation of a two-level
system

The possible occurrence of spontaneous emission produces a dynamics called quantum
trajectory, which can be described by a non-hermitian effective Hamiltonian,

Ĥeff = ℏ∆σz + ℏΩσ+ + c.c.− ı

2
Γσz =

(
0 Ω

Ω ∆− ıΓ2

)
, (36.9)

aiming at including energy dissipation processes. The problem with this Hamiltonian
is that, for being non-hermitian, [Ĥeff , Ĥ

†
eff ] ̸= 0, it also generates a non-unitary

dynamics, e−ıĤeff t ̸= eıĤ
†
eff t. This means that the mere possibility of spontaneous

emission prevents the reversibility of the dynamics. We observe a temporal decrease
of the norm ⟨ψ(t)|ψ(t)⟩ indicating a loss of energy,

⟨ψ|ψ⟩ = ⟨ψ0|e−ıĤeff teıĤeff t|ψ0⟩ −→ e−Γt . (36.10)

The loss of normalization during the evolution, until the next quantum jump occurs,
is due to the dissipation of energy toward the reservoir,

Tr ρsample → 0 while Tr

(
ρsample 0

0 ρreserv

)
= 1 , (36.11)

and represents a measure of the probability that an irreversible process has occurred
during the evolution time.

Dissipative processes can be simulated by playing dices with random numbers ζ.
We divide time into small intervals dt and propagate the wavefunction from ψ(t)
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to ψ(t + dt). After each interval we evaluate the probability p = 1 − ⟨ψ(t)|ψ(t)⟩
accumulated during the time period [0, t + dt] that a dissipative process (such as
spontaneous emission) has occurred. Now, we generate a random number ζ, uniformly
distributed between 0 and 1, which we compare to probability the probability p. In
case, ζ > 1 − ⟨ψ(t)|ψ(t)⟩, we conclude that there was no dissipative process, and we
let the system proceed in peace, only renormalizing the wavefunction to compensate
for the losses [893, 321]. Otherwise, if ζ < 1 − ⟨ψ(t)|ψ(t)⟩, we conclude that there
was a dissipative process, and the system is projected into the eigenstate ψ0. This
projection is abrupt and called quantum jump. Now, the evolution restarts from zero,
ruled by the effective Hamiltonian. The simulation implemented via,

|ψ(t)⟩↷ |ψ(t+ dt)⟩ ≡




(1−ıĤdt)|ψ(t+dt)⟩√
⟨ψ(t)|ψ(t)⟩

if ζ > 1− ⟨ψ(t)|ψ(t)⟩
|ψ0⟩ if ζ < 1− ⟨ψ(t)|ψ(t)⟩


 . (36.12)

This is the method called quantum Monte Carlo wavefunction simulation.
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Figure 36.5: (code) a) Quantum Monte Carlo wavefunction simulation. It is important

to be aware, that a trajectory generated by a MCWF simulation (36.12) only represents

one of many possible trajectories of the system. (b) The evolution of the density matrix

ρ(t) = |ψ(t)⟩⟨ψ(t)| (blue curve) is nothing else, than the average (black curve) over all

possible MCWF trajectories for the system. A movie of this simulation can be watched here

(watch movie).

The effective two-level Hamiltonian (36.9) dissipates via spontaneous emission,
which is included in the dynamics through the possibility for the system to suffer a
state reduction. The modification of |ψ(t)⟩ by non-observation of spontaneous emis-
sion, reduces the population of the state excited by 1− 1

2Γdt, while the ground state
population remains unchanged. Every quantum jump projecting the system into the
ground state constitutes a measurement, because it corresponds to a detected fluo-
rescence photon.

36.1.2.2 Three-level systems: The epitome of quantum measurement

Let us now return to the mysterious interaction between the sample and the meter,
which we want to unravel by comparing two possible procedures: 1. treating the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/LM_Measurement_TwolevelMonteCarlo_Movie.avi
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sample and the meter separately and explain the extraction of information following
the von Neumann postulate; 2. treating the sample and the meter by a global theory.

As said above, the inclusion of the meter in a global theory is, in general, difficult.
For this reason, to perform the comparison, we choose the simplest imaginable system:
the three-level system with two transitions connecting to a common ground state and
excited by radiation fields. As shown in Fig. 36.6(a) this three-level system can be
an atom with a strong transition and a weak transition, for example, the dipolar
transition S1/2 − P1/2 and the forbidden quadrupolar transition S1/2 − D5/2 in a
single Ba+ ion. We will now name the ’strong transition’ as meter and the ’weak
transition’ as sample and show that this system allows to study the von Neumann
measurement process including the direct observation of quantum jumps 5. At the
same time, the system is simple enough for a complete theoretical description. In this
sense, the three-level system becomes the epitome of a quantum measurement device.

We turn our attention to the three-level atom: Obviously, the atom will prefer-
entially scatters photons on its strong dipolar transition. However, at times when
the valence electron is ’shelved’ in the metastable state excited by the quadrupole
transition, no fluorescence can be observed on the strong transition.

Figure 36.6: (a) Quantum measurement at the example of a three-level atom incorporating
a weak (sample) transition and a strong (meter) transition. (b) Random Telegraph signal in
the resonance fluorescence due to quantum jumps.

Quantum jumps were experimentally observed in single trapped ions, whose lowest
energies form a three-level systems [943, 1147, 1148, 130].

36.1.2.3 Quantum Monte-Carlo wavefunction simulation of the quantum
amplifier

When both lasers driving the weak and the strong transition are irradiated simulta-
neously, the coherence on the weak transition is easily perturbed by the dynamics of
the strong transition. To resolve this problem Dehmelt invented what he called the
quantum amplifier. The idea consists in alternately irradiating the sample laser (at
stage S −D in Fig. 36.7) and the meter laser (at stage S − P in Fig. 36.7) 6.

5The observability of quantum jumps as manifestations of sudden state reductions has been the
object of long-standing debates: ’If we have to go on with these damned quantum jumps, then I’m
sorry that I ever got involved with quantum mechanics.’ [1169].

6The absence of the ’meter’ laser during the ’sample’ stage avoids saturation broadening and
light-shifts of the ground state. Since the ground state is shared by both transitions, its broadening
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The alternating irradiation of the lasers S −D and S − P can also be treated by
the Monte Carlo quantum wavefunction simulation method (36.12) using the effective
Hamiltonian,

Ĥeff =




0 1
2Ωsp

1
2Ωsd

1
2Ωsp −∆sp − ı

2Γsp 0
1
2Ωsd 0 −∆sd


 , (36.13)

where the Rabi frequencies Ωsd and Ωsd are switched on alternately.
In the simulation 36.7 the quantum jumps to the shelved metastable state D5/2

appear as long periods without population in the P1/2 level (first period S−P , where
the population of S1/2, illustrated by the red curve, gradually tends to 0 for long
times). The reduction of the system to the shelved state actually occurs by non-
observation of fluorescence on the strong transition. The projection needs a finite
time, simply because we can not be sure whether the non-observation is actually due
to shelving or the incidental absence of scattering events on the S − P transition:
After all, it is not predictable, when the next photon will be spontaneously emitted,
even though the lifetime of the excited state is short. But for longer observation times
it becomes increasingly unlikely that the absence of photons is not due to shelving. It
is this unlikeliness, which lets the population rapidly converge towards the metastable
state. In the second S − P period, Fig. 36.7 shows fast transitions to the P1/2 fol-
lowed by sudden decays to the ground state. These processes correspond to photon
absorption and spontaneous reemission by the strong transition. The succession of
the photon scattering events is so fast, that the signal recorded by photodetectors
appears as a continuous fluorescence. The sudden transitions between bright and
dark periods shown in Fig. 36.6(b), which occur totally randomly, are interpreted as
quantum jumps.

36.1.2.4 Comparison with Bloch equations and interpretation of quantum
jumps

We already mentioned in Fig. 36.5, that a trajectory generated by a MCWF simulation
(36.12) represents one possible evolution of the system. In Chp. 34 we got to know
an alternative way of predicting the evolution of a system, based on density operator
obeying a master equation, which in the context of atomic excitation levels is called
Bloch equation. Comparing MCWF trajectories (red curves in Fig. 36.7) with Bloch
vector evolutions (green curves) it becomes apparent, that the Bloch vector evolution
does not produce quantum jumps, but is always smooth and continuous.

In most cases, our knowledge about the actual state of an atom comes from the
collection of spontaneously emitted photons. The observation of a photon projects
the atomic state into the ground state. However, this concept is not included in the
Bloch equations, as we just saw in Fig. 36.7. So, as it seems, we have to take back our
statement, that the three-level Bloch equation describe the complete system, although
they somehow contain spontaneous emission.

would reduce the spectral overlap between the ’sample’ transition and the driving laser and therefore
the probability to excite the metastable level. This inhibition of the coherent dynamic by too strong
or too frequent measurements is known as quantum Zeno effect: The more an observer tries to
extract information from a system, the more he inhibits its evolution. We will discuss this effect in
more detail in Sec. 56.3.2.2.
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Figure 36.7: (code) Quantum amplifier comparing Monte-Carlo quantum simulations (red

lines) and Bloch equations (black lines), which coincide well with the averages over 100

Monte-Carlo trajectories (green lines). The periods S−D (white background) represent the

free evolution of the quantum system, the periods S − P (yellow background) represent the

measurement periods.

Let us go one step back and ask, where the Bloch equations came from. In fact,
as we learned in Sec. 35.6 and will deepen in Sec. 36.2, they are derived from a
von Neumann equation for the three-level system plus the degrees of freedom of the
vacuum modes receiving the spontaneously emitted photons by tracing over the latter
ones.

We will not be able to handle all degrees of freedom. However, we can generalize
the Bloch equations in the following way [912, 1440]. We project the total density
operator ρAFR of the atom plus the driving field plus the reservoir of vacuum modes
into the subspace of the atom and the driving field consisting of exactly n photons,

ρ(n) = TrR (P (n)ρAFR) , (36.14)

and derive, from the von Neumann equation, the master equation for the atomic state
ρ(n) under the constraint of a fixed number of photons n in the field. The master
equation differs only in one term from the usual Bloch equations: The expression

Γ12ρ
(n)
22 , which describes the spontaneous decay of the population of the excited state

of the meter transition, is replaced by the expression Γ12ρ
(n−1)
22 :

d

dt
ρ(n) = (L|1⟩Γ12⟨2|)ρ(n) + |1⟩Γ12⟨2|ρ(n−1) , (36.15)

The substate with of n photons violates the trace condition,
∑
j ρ

(n)
jj ̸= 1. The

physical explanation for this is the following: While induced emission and absorption

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_QJMonteBloch.m
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maintain the number of photons in the combined light-atom system (like in the Jaynes-
Cummings model), spontaneous emission decreases the number of photons, leading
to an irreversible loss of energy. The quantum jump observed in MCWF model
corresponds, in the modified equations (36.15), to a collapse of the subspace described
by ρ(n) with the time constant Γ12 and a birth of another subspace ρ(n−1), whose
evolution is guided by another (analogous) Bloch equation, now for n − 1 photons.
Each fluorescence detection at time t = 0 determines the initial condition for the
future development of the system: ρ(n)(0) = 0 and ρ(n−1)(0) = |1⟩⟨1|. The probability
density c(t) for a new observation of spontaneous emission at time t with detection
efficiency η, or in other words, the histogram of the durations of dark periods in
the fluorescence signal is related to the solution ρ(n) of the homogeneous part of the
equation (36.14) via,

c(t) = ηΓ12ρ̃
(n)
22 (t) = η

4∑

j=1

d

dt
ρ̃
(n)
jj (t) , (36.16)

The second step immediately follows from the homogeneous part of equation (36.15).

36.1.2.5 Final remarks

The explanations of the last sections show that Bohr’s and Schrödinger’s views can
be reconcealed. They simply depend on whether the measuring transition is excluded
or included in the description of the dynamics. The quantum jump is an artifact
arising from the separation of the quantum system under study (object) from the meter
(observer) assumed to strongly interact with the system! In any case (strong or weak
interaction), this separation is not compulsory once a more complete model including
the meter is at hand. However, as the dynamics of the meter and the object evolve on
different time scales, a separation of the dynamics leading to apparently discontinuous
trajectories is only meaningful for strong meter interactions.

As soon as this has been understood, that is since the 1980-th, the apparent
paradox is simply not on the agenda any more. Recent claims of having unraveled
the mystery [901] are just not timely and only show that the author did not understand
the full meaning of a ’quantum jump’ or, at most, did not read the pertinent literature.

36.1.3 Weak measurements

Strong measurements leave the measured quantum system in a eigenstate without
uncertainty. But it is possible to imagine a situation, where the measured device
does not strongly interact with the quantum system, so that the system is not heavily
perturbed. The price to pay will, however, be an uncertain result of the measurement
(no free lunch theorem).

We consider the use of an ancilla, i.e. an adjunct degree of freedom, for example,
a field or a current, to probe a quantum system. The interaction between the system
and the probe correlates the two systems.

36.1.3.1 Weak interaction and measurement by coupling to an ancilla

Let us consider a system initially in the quantum state |ψ⟩ and an ancilla initially
in the state |ϕ⟩, such that the combined state is, |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩. The two systems
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interact through the Hamiltonian Ĥ = Â⊗B̂, which generates the temporal evolution

U(t) = e−ıxtĤ (in units where ℏ = 1), where x is the strength of the interaction (in
angular frequency unit). We assume a fixed interaction time t = ∆t such that,
λ = x∆t is very small, that is, λ3 ≈ 0. The expansion of U λ gives,

U ≈ I⊗ I− ıλĤ − λ2

2 Ĥ
2 +O(λ3) = I⊗ I− ıλÂ⊗ B̂ − λ2

2 Â
2 ⊗ B̂2 . (36.17)

In cases, where it is sufficient to expand the unitary transformation into low per-
turbation orders, we speak of weak interaction. Since λ and λ2 are small, the combined
state after the interaction will not be very different from the initial state,

|Ψ′⟩ = (I⊗ I− ıλÂ⊗ B̂ − λ2

2 Â
2 ⊗ B̂2)|Ψ⟩ . (36.18)

Now, we make a measurement on the ancilla to extract information from the
system. This is called ancilla-mediated measurement. We consider measurements
in the basis |q⟩ (of the ancilla system), such that

∑
q |q⟩⟨q| = I. The action of

the measurement on the total system is described by the action of the projector
Πq = 1 ⊗ |q⟩⟨q| onto |Ψ′⟩. According to the theory of quantum measurement, the
conditional state after the measurement is,

|Ψq⟩ =
Πq|Ψ′⟩√
⟨Ψ′|Πq|Ψ′⟩

=
1⊗ |q⟩⟨q|

(
I⊗∑k |k⟩⟨k| − ıλÂ⊗ B̂ − λ2

2 Â
2 ⊗ B̂2

)

N |ψ⟩ ⊗ |ϕ⟩

(36.19)

=
I⊗∑k |q⟩⟨q|k⟩⟨k| − ıλÂ⊗ |q⟩⟨q|B̂ − λ2

2 A
2 ⊗ |q⟩⟨q|B2

N |ψ⟩ ⊗ |ϕ⟩

=
I⟨q|ϕ⟩ − ıλÂ⟨q|B̂|ϕ⟩ − λ2

2 Â
2⟨q|B̂2|ϕ⟩

N |ψ⟩ ⊗ |q⟩ ,

where N =
√
⟨Ψ′|Πq|Ψ′⟩ is the normalization factor for the wavefunction. Note, that

the status of the ancilla records the result of the measurement. The object,

Mq ≡ ⟨q|e−ıÂ⊗B̂ |ϕ⟩ ≃ I⟨q|ϕ⟩ − ıλÂ⟨q|B̂|ϕ⟩ − λ2

2 Â
2⟨q|B̂2|ϕ⟩ (36.20)

is an operator acting on the total Hilbert space and called the Kraus operator. With
respect to Kraus operators the state of the combined system after the measurement
is,

|Ψq⟩ =
Mq|ψ⟩√
⟨ψ|M†qMq|ψ⟩

⊗ |q⟩ . (36.21)

The objects Eq = M†qMq are elements of the so-called positive operator valued
(probability) measurement (POVM) and must obey

∑
q Eq = I, such that the corre-

sponding probabilities add up to unity:
∑
q Pr(q|ψ) =

∑
q⟨ψ|Eq|ψ⟩ = 1. The ancilla

system is no longer correlated with the primary system. It simply records the result
of the measurement, such that we can calculate the trace over it. Doing so, we come
to the conditional state of the primary system alone,

|ψq⟩ =
Mq|ψ⟩√
⟨ψ|M†qMq|ψ⟩

, (36.22)
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which we still label with the result q of the measurement. In fact, these considerations
allow us to derive a quantum trajectory.

36.1.3.2 Kraus operator for position measurement

As a canonical example of a Kraus operator [91, 242] we take Ĥ = x̂ ⊗ p̂, where the
position and the momentum satisfy the commutation relation, [x̂, p̂] = i. The initial
state of the ancilla be a Gaussian distribution,

|ϕ⟩ = 1

(2πσ2)1/4

∫
dq′e−q

′2/4σ2 |q′⟩ . (36.23)

The position wavefunction of the ancilla is,

ϕ(q) = ⟨q|ϕ⟩ = 1

(2πσ2)1/4
e−q

2/4σ2

. (36.24)

The Kraus operators are (compared to the previous discussion, we now let λ = 1),

M(q) = ⟨q|e−ıx̂⊗p̂|ϕ⟩ = 1

(2πσ2)1/4
e−(q−x)

2/4σ2

, (36.25)

since the operator e−ıx̂⊗p̂ makes a spatial translation when applied to the degree of
freedom of the position. The corresponding POVM elements are,

E(q) =M†qMq =
1√
2πσ2

e−(q−x)
2/2σ2

, (36.26)

which obey
∫
dqE(q) = I.

Calculate ⟨ψq|ψq⟩ = ⟨ψ′|M(q)†M(q)|ψ′⟩.
Note that limσ→0E(q) = |x = q⟩⟨x = q|. That is, in a particular limit, these

operators converge to a strong measurement of position. For σ → ∞, we speak of
weak measurement.

Another example would be the three-level atom of Dehmelt’s quantum amplifier.

36.1.4 Welcher Weg information

36.1.4.1 The Elitzur and Vaidman bomb testing problem

Mixing the concepts of particles and waves we sometimes arrive at seemingly para-
doxical conclusions. One example is Elitzur and Vaidman’s bomb testing problem.
They imagined a Mach-Zehnder interferometer with the particularity that the re-
flecting mirror of one of the arms be connected to a device measuring the photonic
recoil. That is, when a photon passes through this arm, the mirror undergoes a small
acceleration, which is sufficient to activate an explosive bomb.

Now, we distinguish two cases: 1. The recoil detector does not work, i.e. the bomb
is not armed. 2. The bomb is armed. We now adjust the interferometer in a way
to produce destructive interference in one of the two interferometer output ports. If,
having sent many photons through the interferometer, we never saw any photons in
the ’dark’ port, we can be almost sure that the bomb is not operational.
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In case the bomb is operational, the observation of a photonic recoil destroys
the interference pattern at the interferometer outputs. It has to do so, because the
exploding bomb informs us, in which arm the photon has passed. However, with an
operational bomb the interference pattern is also destroyed, when the photon passes
through the other arm, since the fact that the bomb didn’t explode tells us, that the
photon went the other way.

The funny conclusion is now, that it may happen, that a photon traverses the
interferometer in the arm that does not contain the bomb and exits through the
’dark port’. The probability of this happening is only 25%, but nevertheless the
observation of a photon in the ’dark port’ informs to us that the pump is operative
without ever having interacted with it 7.

36.1.5 Exercises

36.1.5.1 Ex: Schwartzeneggers cat

Explain why we will never observe a real cat in a dead-alive superposition.

Figure 36.8: Schrödinger’s cat according to Ekhö, Le monde miroir by Arleston and Bar-
bucco: Quantum superposition or zombie cat?

Solution:

7See https://www.thorlabs.com/newgrouppage9.cfm?objectgroup id=6635

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_QuantumJump00.pdf
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36.1.5.2 Ex: Dispersive quantum jumps

Consider a three-level system in V-configuration, as depicted in Fig. 34.17(b), with
an unstable state |1⟩, a ground state 2⟩, and a metastable state |3⟩. Discuss whether
the atom shelved in state |3⟩ is sensitive to light-shift and power broadened induced
by a laser resonant to the |1⟩ − |2⟩ transition. E.g. will power-broadening only effect
the transition rate |1⟩ −→ |3⟩ or also |3⟩ −→ |1⟩?

Solution: We assume that both transitions |1⟩ − |2⟩ and |1⟩ − |3⟩ are simultaneously
driven. The probability to find the system in the shelved state |3⟩ is then [952],

n33(t) =
R+

R+ +R−
(1− e−(R++R−)t) .

The rates R± are easily obtained via numerical fit to the solution of the optical Bloch
equations.
Then the ’dark’ state is not a reached by projection, because it corresponds to a non-
observation of photons. ρ33 only increases gradually, ruled by Ĥeff and under steady
renormalization of the total wavefunction, until a stationary superposition |1⟩ − |3⟩
is reached with a small admixture of |2⟩. This admixture guarantees that R+ as well
as R− are light-shifted. For the ensemble the Bloch equations must hold. The decay
of the ’dark’ state is induced by the admixture of ρ22. The light-shift is obtained as
an eigenvalue of Ĥeff and, hence, is conceptually stationary. That is, it depends
on the parameters Ωij, ∆ij, and Γij, which also determine toward which stationary
populations and coherences the atom will evolve.

36.2 Open systems and the master equation

Let us now derive the master equation for an open quantum system. We assume that
the environment (also called bath or reservoir) and the system under consideration are
quantum systems in the sense that (1) the relevant degrees of freedom are completely
characterized by state vectors (or density matrices), and (2) the temporal evolution

of the total system is unitary U(t) = e−ıĤt. The total Hamiltonian, Ĥ = Ĥsys +

Ĥres + V is assumed to be independent of time and consists of three parts, namely
the Hamiltonian of the system Ĥsys, the Hamiltonian of the bath Ĥres, and the
interaction V between the system and the bath. The purpose of the master equation
is to find the dynamics of the system by tracing over all degrees of freedom of the bath.
This is not always possible, and we will assume that the interaction V is sufficiently
weak, so that perturbation theory is applicable.

In the interaction representation the evolution of the total density matrix ρ̂tot
becomes,

ıℏ
dρ̃tot
dt

= [Ṽ (t), ρ̃tot] . (36.27)

where ρ̃tot(t) ≡ U†0ρtotU0 and Ṽ (t) ≡ U†0V U0 and U0 = e−ı(Ĥsys+Ĥres)t/ℏ. This

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_QuantumJump01.pdf
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evolution is, for the time being, very general, and the solution can be formally written,

ρ̃tot(t) = ρ̃tot(0) +
1

ıℏ

∫ t

0

dt1[Ṽ (t1), ρ̃tot(t1)] . (36.28)

Iterating once again:

ρ̃tot(t) = ρ̃tot(0)+
1

ıℏ

∫ t

0

dt1[Ṽ (t1), ρ̃tot(0)]+
1

(ıℏ)2

∫ t

0

dt1

∫ t1

0

dt2

[
Ṽ (t1), [Ṽ (t2), ρ̃tot(t2]

]
.

(36.29)
In the following, we will call several approximations to simplify the calculations, in
particular, the Born approximation, the assumption that the initial state is a product
state and, later-on, the Markov approximation.

36.2.1 Born approximation for weak coupling

We will now assume the interaction Ṽ to be weak. We can then expect that, repeating
the iterative process, the series will converge and write the general solution as,

ρ̃tot(t) = ρ̃tot(0) +
∑

n≥1

1

(ıℏ)n

∫ t

0

dt1...

∫ tn−1

0

dtn

[
Ṽ (t1), ..., [Ṽ (tn), ρ̃tot(0)]

]
. (36.30)

This way of terminating an iterative equation by ρtot(0) is generally known as the
Born approximation. Here, we will just go to second order in Ṽ . Tracing over the
bath,

ρ̃sys(t) = Trres ρ̃tot(t) , (36.31)

we extract the density matrix for only the system,

ρ̃sys(t) = ρ̃sys(0) +
1

ıℏ

∫ t

0

dt1Trres[Ṽ (t1), ρ̃tot(0)] (36.32)

+
1

(ıℏ)2

∫ t

0

dt1

∫ t1

0

dt2Trres

[
Ṽ (t1), [Ṽ (t2), ρ̃tot(0)]

]
.

36.2.2 Assumption of an initial product state

Next, we need to make the quite important assumption, that the initial state between
the system and the environment are not correlated, or mathematically speaking, they
can be written as product states,

ρ̃tot(0) = ρ̃sys(0)⊗ ρres(0) . (36.33)

Another assumption, which is not essential but often valid, is that Trres[Ṽ (t1), ρ̃tot(0)] =
0. If this is the case, then the first-order term will vanish. In second order, we can
write,

ρ̃sys(t) = eM(t)ρ̃sys(0) (36.34)

where M(t)χ ≡ 1

(iℏ)2

∫ t

0

dt1

∫ t1

0

dt2Trres

[
Ṽ (t1), [Ṽ (t2), χ⊗ ρres]

]
,
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is a superoperator acting on the operator density of the system. Taking the temporal
derivative, we have the explicit master equation,

dρ̃sys(t)
dt = Lρsys(t) = d

dt (M(t)ρ̃sys(t))

= 1
(ıℏ)2

∫ t
0
dτ Trres

[
Ṽ (t), [Ṽ (τ), ρ̃sys(t)⊗ ρres]

] . (36.35)

The superoperator L is called Lindblad operator.

36.2.3 Markov approximation for short memory

Here, we have to evaluate the terms involving the average with respect to the thermal
bath, which is assumed to have a short memory, in the sense that the correlation time
is very short. Mathematically,

∫ t

0

dτ Trres

(
Ṽ (t)Ṽ (τ)ρres

)
=

∫ t

0

dτ Trres

(
Ṽ (t− τ)Ṽ (0)ρres

)
(36.36)

≃
∫ ∞

0

dτ Trres

(
Ṽ (t− τ)Ṽ (0)ρres

)
.

In other words, the two-point correlation function is significant only, when t ≃ τ , and
it is valid to extend the upper bound to infinity. This is the Markov approximation.

36.2.4 Example: Damped harmonic quantum oscillator

As an example, we let us consider the master equation for the Brownian motion of a
quantum harmonic oscillator. It can be written,

dρ̃sys
dt

=
1

(ıℏ)2

∫ t

0

dτ Trres

{
Ṽ (t)Ṽ (τ)ρ̃(t)⊗ ρres − Ṽ (t)ρ̃sys(t)⊗ ρresṼ (τ)

−Ṽ (τ)ρ̃sys(t)⊗ ρresṼ (t) + ρ̃sys(t)⊗ ρresṼ (τ)Ṽ (t)

}
.

(36.37)
The coupling of the system to the bath is assumed to be of the form,

Ṽ = ℏ
(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)
, (36.38)

where Γ̂(t) =
∑
k gk b̂ke

−ıωkt, the bosonic operators â and b̂k act, respectively, on
the system (with the frequency Ω) and the bath (with the frequency ωk). Here, gk
characterizes the coupling force between the oscillators of the system and the bath.
Hence,

dρ̃sys
dt

= −
∫ t

0

dτ Trres



(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)(
â†Γ̂(τ)eıΩτ + âΓ̂†(τ)e−ıΩτ

)
ρ̃(t)⊗ ρres

−
(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)
ρ̃(t)⊗ ρres

(
â†Γ̂(τ)eıΩτ + âΓ̂†(τ)e−ıΩτ

)
−
(
â†Γ̂(τ)eıΩτ + aΓ̂†(τ)e−ıΩτ

)
ρ̃(t)⊗ ρres

(
â†Γ̂(t)eıΩt + aΓ̂†(t)e−ıΩt

)
+ρ̃(t)⊗ ρres

(
â†Γ̂(τ)eıΩτ + âΓ̂†(τ)e−ıΩτ

)(
â†Γ̂(t)eıΩt + âΓ̂†(t)e−ıΩt

)


.

(36.39)
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Let’s take a closer look at one of the terms,

T̂ ≡ −
∫ t

0

dτTrres

{
â†Γ̂(t)eıΩtâΓ̂†(τ)e−ıΩτ ρ̃(t)⊗ ρres

}
(36.40)

= −â†âρ̃(t)
∫ t

0

dτ⟨Γ̂(t)Γ̂†(τ)⟩reseıΩte−ıΩτ .

We will have to evaluate quantities such as

Trres (V (t)V (s)ρres) = ℏ2â†â⟨Γ̂(t)Γ̂†(t)⟩reseıΩ(t−s) + ℏ2ââ†⟨Γ̂†(t)Γ̂(t)⟩rese−ıΩ(t−s) ,
(36.41)

where ⟨Γ̂(t)Γ̂†(t)⟩res ≡ Trres[Γ̂(t)Γ̂
†(t)ρres], and for the thermal bath, ⟨b̂†j b̂k⟩ = δjknk

and ⟨b̂j b̂†k⟩ = δjk(1 + nk) and nk = (eβℏωk − 1)−1. Hence,

T̂ = −â†âρ̃(t)
∑

j,k

gjgk⟨bjb†k⟩res
∫ t

0

dτeı(ωjt−ωkτ)eıΩ(t−τ) (36.42)

≃ −â†âρ̃(t)
∑

k

g2knk

∫ ∞

0

dτeı(ωk−Ω)(t−τ) .

Then we will have to use the relationship,
∫ ∞

0

dτe±ıετ = πδ(ε)± ıPV , (36.43)

where PV denotes Cauchy part of the principal value. These correspond to a ’Lamb
shift’ and a ’Stark shift’ of the frequency, which are considered to be small in com-
parison to Ω and should be neglected here,

T̂ = −â†âρ̃(t)
∑

k

g2k
(
eβℏωk − 1

)−1 ∫ ∞

0

dτeı(ωk−Ω)(t−τ) (36.44)

= −â†âρ̃(t)
∑

k

g2k
(
eβℏωk − 1

)−1
πδ(ωk − Ω)

= −â†âρ̃(t)
∑

k

g2k
(
eβℏΩ − 1

)−1
π = −πn̄â†âρ̃(t)

∑

k

g2kδ(ωk − Ω) = n̄ââ†ρ̃(t)π
γ

2
.

where n̄ ≡
(
eβℏΩ − 1

)−1
. We define γ

2 ≡
∑
k g

2
kδ(ωk − Ω). The procedure can be

repeated for all terms in the master equation. We then obtain the master equation
for a damped harmonic oscillator,

dρ̃

dt
= γ

2 (n̄+ 1)
(
2âρ̃â† − â†âρ̃− ρ̃â†â

)
− γ

2 n̄
(
2â†ρ̃â− ââ†ρ̃− ρ̃ââ†

)
. (36.45)

36.2.4.1 Thermalization

To complete the discussion, let us consider the evolution time of the mean number of
photons ⟨â†â⟩. Note that Trresââ

†ρ̃ = Trresââ
†ρ, which can be useful (with n̂ = â†â

and n̂â = ân̂− â) for simplifying the right-hand side of the master equation. We get,

d⟨â†â⟩
dt

= −γ⟨â†â⟩+ γN , (36.46)
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and the solution of this equation is,

⟨n̂(t)⟩ = ⟨n̂(0)⟩e−γt + n̄(1− e−γt) , (36.47)

which suggests that ⟨n(t→∞)⟩ → n̄ = (eβℏΩ− 1)−1, as expected for the thermaliza-
tion rate [1062]. For a discussion of the validity of the Born-Markov approximation,
see [932]. For the relationship between the Markov approximation and Fermi’s Golden
Rule, see [17].

36.2.5 Deriving the Heisenberg-Langevin from the master equa-
tion

The Heisenberg-Langevin equation for the operators Â of a system subject to dissi-
pation with rates γk via the degrees of freedom L̂k and the master equation for the
density operator ρ̂ are equivalent descriptions for the time-evolution of a system,

dρ̂
dt = Lρ̂ = − ı

ℏ [Ĥ, ρ̂] +
∑
k γk

(
L̂kρ̂L̂

†
k − 1

2 L̂
†
kL̂kρ̂− 1

2 ρ̂L̂
†
kL̂k

)

dÂ
dt = L†Â = ı

ℏ [Ĥ, Â] +
∑
k γk

(
L̂†kÂL̂k − 1

2 L̂
†
kL̂kÂ− 1

2 ÂL̂
†
kL̂k

) , (36.48)

as we will show in Exc. 36.2.6.2. The former stresses the Schrödinger picture and the
latter the Heisenberg picture. In particular, the dissipative Lindblad terms are equiv-
alent. That is, open systems are sufficiently characterized by the system Hamiltonian
Ĥ and a set of the so-called jump operators L̂k with their corresponding rates γk.

36.2.6 Exercises

36.2.6.1 Ex: Master equation for cavities

Consider a cavity laser-pumped at a rate η, subject to losses by transmission through
the mirrors at a rate κ, and incoherently pumped by thermal photons at a rate κn̄,
where n̄ is the number of thermal photons.
a. Write down the Hamiltonian and the Heisenberg-Liouville equation for an arbitrary
operator â of the system.
b. Derive the equation of motion for the field annihilation operator â and for the
photon number operator n̂.
c. Solve the equation of motion for the photon number operator for the case of no
coherent pumping, η = 0.
d. Write down the master equation of the system.
e. Derive the equation of motion for the components of the density operator ρm,n.
f. Calculate the phton number evolution from (e).

Solution: a. The Hamiltonian is,

Ĥ = −∆câ
†â− ıη(â− â†) ,

and the Heisenberg-Liouville equation for an arbitrary operator Â of the system is,

dÂ

dt
= −ı[Â, Ĥ] + κ

2 (n̄+ 1)(â†[Â, â] + [â†, Â]â) + κ
2 n̄(â[Â, â

†] + [â, Â]â†) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_MestreCavidade.pdf
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b. Using the standard commutation rules we derive the equation of motion for the field
annihilation operator,

dâ

dt
= −ı[â, Ĥ] + κ

2 (n̄+ 1)(â†[â, â] + [â†, â]â) + κ
2 n̄(â[â, â

†] + [â, â]â†)

= (ı∆c − κ
2 )â+ η .

The equation of motion for the photon number operator is 8,

dn̂

dt
= −ı[â†â, Ĥ] + κ

2 (n̄+ 1)(â†[â†â, â] + [â†, â†â]â) + κ
2 n̄(â[â

†â, â†] + [â, â†â]â†)

= −η[â†â, â− â†]− κ(n̄+ 1)â†â+ κn̄ââ† = η(â† + â)− κn̂+ κn̄ .

c. The solution for the case η = 0 is,

n̂(t) = n̂(0)e−κt + n̄(1− e−κt) .
d. The master equation for the density operator defined by ρ̂ ≡∑m,n ρm,n|m⟩⟨n| is,

dρ̂

dt
= ı[ρ̂, Ĥ] + κ+(2âρ̂â

† − â†âρ̂− ρ̂â†â) + κ−(2â
†ρ̂â− ââ†ρ̂− ρ̂ââ†) .

using the abbreviations κ+ ≡ κ
2 (n̄+ 1) and κ− ≡ κ

2 n̄.
e. For the components we get,

ρ̇n,m = ⟨n| ˙̂ρ|m⟩
= ı⟨n|[ρ̂,−∆câ

†â− ıη(â− â†)]|m⟩
+ κ+[⟨n|2âρ̂â†|m⟩ − ⟨n|â†âρ̂|m⟩ − ⟨n|ρ̂â†â|m⟩]
+ κ−[⟨n|2â†ρ̂â|m⟩ − ⟨n|ââ†ρ̂|m⟩ − ⟨n|ρ̂ââ†|m⟩]

= ı∆c(n−m)ρn,m + η[
√
mρn,m−1 −

√
m+ 1ρn,m+1 −

√
n+ 1ρn+1,m +

√
nρn−1,m]

+ κ+[2
√
n+ 1

√
m+ 1ρn+1,m+1 − (n+m)ρn,m]

+ κ−[2
√
nmρn−1,m−1 − (n+m)ρn,m − 2ρn,m] .

In particular, for the diagonal,

ρ̇n,n = η
(√
n(ρn,n−1 + ρn−1,n)−

√
n+ 1(ρn,n+1 + ρn+1,n)

)

+ 2κ+ [(n+ 1)ρn+1,n+1 − nρn,n] + 2κ− [nρn−1,n−1 − (n+ 1)ρn,n] .

f. The photon number evolves like,

d

dt
⟨n̂⟩ = d

dt
Tr ρ̂n̂ =

d

dt

∑

n

⟨n|ρ̂n̂|n⟩ =
∑

n

nρ̇n,n

=
∑

n
nη
(√
nρn,n−1 −

√
n+ 1ρn,n+1 −

√
n+ 1ρn+1,n +

√
nρn−1,n

)

+ 2κ+
[
n(n+ 1)ρn+1,n+1 − n2ρn,n

]
+ 2κ−

[
n2ρn−1,n−1 − n(n+ 1)ρn,n

]

=
∑

n
η⟨n|â†ρ̂+ âρ̂|n⟩ − 2κ2 (n̄+ 1)nρn,n + 2κ2 n̄(n+ 1)ρn,n

= η(⟨â†⟩+ ⟨â⟩)− κ⟨n̂⟩+ κn̄ ,

8Curiously this not equal to,

â† ˙̂a+ ˙̂a†â = â†
[
(ı∆c − κ

2
)â+ η

]
+
[
(−ı∆c − κ

2
)â† + η

]
â = η(â† + â)− κn̂ .
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in accordance with the result of (b).

36.2.6.2 Ex: Deriving the Heisenberg-Langevin from the master equa-
tion

Derive the Heisenberg-Langevin from the master equation including the dissipative
Lindblad terms.

Solution: To derive the Heisenberg-Langevin from the master equation we simply
demand that the expectation value of an operator Â is the same in the Schrödinger
picture (density matrix evolves) and the Heisenberg picture (operator evolves). That
is,

⟨Â⟩ = Tr Â(0)ρ̂(t) = Tr Â(t)ρ̂(0) ,

where Â(t)ρ̂(0) is the operator in the Heisenberg picture, while Â(0)ρ̂(t) is the operator
in the Schrödinger picture. The Lindblad equation can be written in the Schrödinger
picture as,

dρ̂

dt
= Lρ̂ = − ı

ℏ [Ĥ, ρ̂] +
∑

k

γk

(
L̂kρ̂L̂

†
k − 1

2 L̂
†
kL̂kρ̂− 1

2 ρ̂L̂
†
kL̂k

)
.

The formal solution of the Lindblad equation can then be written as,

ρ̂(t) = eLtρ̂(0) ,

where the exponential of the superoperator L is defined as usual by its Taylor series
expansion. Now, we define the adjoint Liouvillian L† by,

Tr P̂ [LQ̂] = Tr [L†P̂ ]Q̂ ,

where P̂ and Q̂ are arbitrary operators. It follows from the definitions that,

Tr Â(0)ρ̂(t) = Tr Â(0)eLtρ̂(0) = Tr [eL
†tÂ(0)]ρ̂(0) ,

from which we identify

Â(t) = eL
†tÂ(0)

as the operator Â in the Heisenberg picture, which obviously satisfies the differential
equation,

dÂ

dt
= L†Â .

All that remains is to check that indeed,

L†Â = ı
ℏ [Ĥ, Â] +

∑

k

γk

(
L̂†kÂL̂k − 1

2 L̂
†
kL̂kÂ− 1

2 ÂL̂
†
kL̂k

)
,

which can be shown using the definition of L† and the cyclicity of the trace.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_Lindblad01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_Lindblad01.pdf
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36.3 Repeated measurements

36.3.1 The quantum Zeno effect

A famous problem raised by the Greek philosopher (490-430 AC)Zeno goes like this:
Achilles and a turtle organize a race. The arrogant Achilles leaves a 100-meter lead
to the turtle. The race begins. Achilles soon covers the 100 meters, only to find out
that meanwhile the turtle has advanced by 10 meters. He continues running to cover
the 10 meters, only to find out that meanwhile the turtle has advanced by 1 meter,
and so on 9. A presentation on the subject is available at (watch talk).

Interestingly, Zeno’s problem has a counterpart in quantum mechanics. Let us do
the following Gedankenexperiment: A laser beam passes through a dense series of n
polarizers, each one being rotated by an angle π

2n with respect to the preceding one.
Each polarizer performs a local measurement of beam polarization. The result of this
arrangement is that, in the limit of an infinitely dense series, the continuous measure-
ment of the system completely governs its evolution and rotates the polarization by
an angle of π/2 10.

In every version of the Zeno effect, the system is inhibited from evolving freely,
because of too frequent measurements of its current state. Achilles would surely be
able to overtake the turtle, if he did not always check on her to assess the remaining
distance [654] 11.

O efeito Zeno quântico 
Leandro Augusto Zago nº5882143 

 

 

Resumo 

O efeito Zeno quântico vem sendo questionado e estudado a mais de 50 anos, causando espanto 

nos estudantes e pesquisadores novatos pelo fato de apresentar resultados não esperados do ponto de 

vista determinístico. Nesse trabalho iremos detalhar um pouco esse problema tentando explicitar alguns 

pontos relevantes para compreender o fenômeno.  

 

 

Introdução 

A evolução de um sistema instável é notoriamente governada por três tempos distintos: o tempo 

curto, onde predomina uma função quadrática, o tempo intermediário, onde temos propriamente a 

governança do padrão exponencial e o tempo longo, onde a função potência prevalece. 

A equação de Schrödinger nos leva inevitavelmente a termos em tempos curtos, esse padrão é 

predominado por uma função quadrática que foi batizada por Misra e Sudarshan em 1977 por região 

“Zeno”, em alusão ao famoso filósofo Zenão de Eleia que propôs o paradoxo da flecha. 

  Zenão propôs vários paradoxos, no caso específico da flecha, ele diz que se uma flecha em voo 

instantaneamente ocupa sempre o seu espaço, e que algo parado também ocupa sempre o seu mesmo 

espaço, então uma flecha em voo em qualquer instante também está em repouso. 

 

Fig.1- Gráfico dos distintos tempos de um sistema instável. 

 

Figure 36.9: Quadratic time dependence of an excited state population.

The temporal evolution of the wavefunction of a system described by the Hamilto-

nian Ĥ is |ψ(t)⟩ = e−iĤt/ℏ|ψ0⟩. We can then calculate the amplitude and probability

9In another version of his paradox, Zeno questions the possibility of motion at the example of a
flying arrow: At any instant of time it occupies a space equal to its size. That is, at any particular
moment of its flight, it is at rest, in a space that does not move. That is, any kind of motion is
impossible. Nowadays, we know that this paradox is false, because time and motion are not discrete.
But this can only be understood on the basis of infinitesimal calculus [902].

10An analogous experiment can be imagined by a series of Stern-Gerlach measurements of the spin
of an atom.

11The quantum Zeno effect was often used to justify the physical relevance of the state reduction
postulate. It was shown, however, that this postulate is not essential for understanding the quantum
Zeno effect [112]. The effect already follows directly from the Schrödinger equation and therefore
has a purely dynamical nature. This shows that the projection is a purely mathematical construct
without physical reality (see Sec. 36.1.2).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumZeno
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for the system to stay in the initial state,

⟨ψ0|ψ(t)⟩ = ⟨ψ0|e−ıĤt/ℏ|ψ0⟩ and P (t) = |⟨ψ0|ψ(t)⟩|2 . (36.49)

For short times we can expand,

⟨ψ0|ψ(δt)⟩ = |ψ0⟩ −
ı

ℏ
Ĥδt/ℏ|ψ0⟩ −

1

2ℏ2
Ĥ2δt2|ψ0⟩+ ... = |ψ0⟩+ |δψ⟩ , (36.50)

such that,

⟨ψ0|ψ(δt)⟩ ≃ 1− ı
ℏ
Ĥδt− 1

2ℏ2
Ĥ2δt2 and P (δt) ≃ 1− 1

ℏ2
(⟨Ĥ2⟩0−⟨Ĥ⟩20)δt2 . (36.51)

In this way we can extract the Zeno time from the above equations, τZ = ℏ2/
√
⟨Ĥ2⟩0 − ⟨Ĥ⟩20.

We now make N successive von Neumann measurements within a time t, which leads
to a measurement frequency of τ−1. The measurements are conceived as to verify,
whether the system is still in its initial state, but each measurement projects our
system back to its initial state, from where it has to start the transition process from
scratch. Under these conditions, the population of the initial state will evolve like,

P (N)(τ) = P (N)(t/N)N . (36.52)

Fig. 36.10 shows the evolution for five measurements separated by time intervals τ .
In comparison with the evolution, when no measurements are taken (dashed line), the
evolution with measurements inhibits the depletion of the initial state. Extrapolating
the number of measurements to infinity, the probability (36.52) converges to 1,

[
1−

(
t

NτZ

)2
]N

N large−→ e−t
2/Nτ2

Z
N→∞−→ 1 . (36.53)

See Excs. 36.3.4.1 and 36.3.4.2.
Podemos ilustrar esse efeito com um gráfico. 

 

 

Notemos que foram feitas cinco medidas com intervalos de tempo τ e podemos ver pela linha 

tracejada a expectativa de sobrevivência do estado caso não fosse feita medida alguma, notamos uma 

diferença muito grande, pois a cada medida o sistema retorna ao estado de evolução que está em regime 

de tempos curtos. Há ainda de se notar que caso extrapolássemos o numero de medidas para infinito 

nossa probabilidade iria cada vez mais se aproximar da unidade, e esse resultado é absurdamente 

surpreendente! 

 

 

 

Sistema de dois estados quântico 

Um dos sistemas mais simples para ilustrar esse fenômeno é o sistema de dois estados oscilando 

pela frequência de Rabi. Podendo ser ilustrado pictoricamente por um átomo sendo incidido por um laser 

que possui frequências de ressonância com estados de transição desse mesmo átomo. 

Nesse caso temos a hamiltoniana da interação: 

 

Onde os estados + e – são descritos pelas matrizes de Pauli e σ1,2,3 são auto estados. 

 

 

Figure 36.10: Inhibition of the decay of a state by repeated measurements (here N = 5).
The dashed (solid) line represents the survival probability with (without) measurements.
The gray line represents an exponential interpolation function.
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Suppression of the evolution of a quantum system due to the quantum Zeno effect
was observed experimentally [654] using beryllium ions. Nevertheless, the discussion
about the correct interpretation of this effect and its relationship to trivial power
broadening is not closed. Some works have even proposed the possibility of an anti-
Zeno effect [25, 1344], where observation would accelerate the evolution of the system.
Currently the quantum Zeno effect is also studied for possible applications in metrol-
ogy, computation, and quantum information [717].

When the quantum Zeno effect was proposed for the first time, it was considered
a paradox: How could an unstable particle never decay, just by being continually
observed? And what would happen to Schrödinger’s cat, whose live depends on state
of the particle? Could we save it from its cruel fate just by observing it?

Another interesting question concerns the quantum nature of the quantum Zeno
effect. Is it really non-classical? On one hand, the quantum Zeno effect supposes the
complete reduction of the system to an eigenstate. However, we can imagine classical
measurements that also reduce the state (such as the above-mentioned measurement
of the polarization of a beam of light).

36.3.2 Quantum projection noise

The intrinsic indeterminism of quantummechanics has serious consequences for metrol-
ogy. To show this, we consider the example of a system of two levels |+⟩ and |−⟩.
This system can be in a superposition state |ψ⟩. The probability 12 to find the system
in one of the two states |±⟩ is,

p± = ⟨P̂±⟩ = |⟨ψ|±⟩|2 = 1− p∓ , (36.54)

where P̂± is the projection operator. The result of a measurement of the population
is afflicted by an inherent uncertainty expressed by the variance,

(∆p±)
2 = ⟨P̂ 2

±⟩−⟨P̂±⟩2 = ⟨±|ψ⟩⟨ψ|ψ⟩⟨ψ|±⟩− (⟨±|ψ⟩⟨ψ|±⟩)2 = p±(1−p±) . (36.55)
In other words, the random projection of the system on the eigenstate basis induces
a noise called quantum projection noise 13. This noise inhibits the determination
of the probabilities p± in a single measurement. On the other hand, by measuring
populations on a sample of N atoms or by repeating the measurement N times with a
single atom under identical conditions, we can reduce the uncertainty. The probability
of finding an atom r times in the state |+⟩ is [653],

PN,r,+ =

(
N

r

)
pr+(1− p+)N−r . (36.56)

The expectation value and variance of this binomial distribution are [653],

r̄ =

N∑

r=0

rPN,r,+ = Np+ , (∆r)2 =

N∑

r=0

(r−Np+)2PN,r,+ = Np+(1−p+) . (36.57)

12We adopt here the viewpoint of the Copenhagen interpretation of the quantum state reduction,
but we note that a discussion based on statistical mixtures described by density matrices gives the
same results.

13Projection noise can be interpreted as shot noise. However, the optical shot noise in photode-
tectors is generated by the repartition of the field energy into discrete photons, the projection noise
is the consequence of the discretization of the electronic excitation levels.
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Thus, the standard deviation decreases with the number of atoms or measurements,

σ =
∆r

r̄
∼ 1√

N
. (36.58)

The increase of knowledge on the population of a two-level system by repeated
measurements can be illustrated by a simple simulation exhibited in Fig. 36.11(a).
Experiments are performed by comparing p2 with a random number η. Two outcomes
are possible r = 0, 1. The histograms narrow as the number of experiments increases.
In practice, a measurement is performed using the quantum amplifier method illus-

0 0.5 1

p+

0

5

10

P
N
,r
,+
(p

+
)

N = 1
N = 20
N = 40
N = 60
N = 80
N = 100

(a)

0 0.5 1

Gt (π)

0

0.5

1

P
N
,r
,+
(G

t)

(b)

Figure 36.11: (code) (a) Simulation of the increase of knowledge on the population

of a two-level system by repeated measurement, PN,r,+(p+)/
∫ 1

0
PN,r,+(p+)dp+. The

population of the state |+⟩ was set to p+ = 0.2. (b) Determination of the most likely
Rabi pulse length Gt = 2arcsin(r/N)1/2.

trated in Fig. 36.6 [642].

36.3.2.1 Rabi experiments

The method of repeated measurements can be extended to map time-dependent dy-
namics of the two-level system. Under the influence of a radiation field, the population
of the two-level system (which we assume free of spontaneous emission) performs Rabi

oscillations, ρ++(t) =
Ω2

G2 sin
2 Gt

2 , where G =
√
∆2 +Ω2. The probability of finding

the system in state |2⟩, therefore, varies in time, p+(t) = ρ++(t), and the binomial
distribution (36.56) becomes,

PN,r,+(t) =

(
N

r

)(
Ω
G

)2N
sin2r Gt2 cos2N−2r Gt2 . (36.59)

When we increase the number of measurements, N → ∞, this function condenses
around a narrow peak at the position Gt = 2arcsin

√
r/N . The width of the peak

evolves like 2 arccos(2−1/2N ). Fig. 36.11(b) shows a simulation demonstrating how
repeated measurements gradually pin down the pulse area Ωt.

In summary, even for perfectly efficient population measurements (e.g. using the
microwave-optical double resonance method) it is impossible to measure the prob-
ability p+ with a single atom in a single experiment. As such an observation only

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LighMatter/LM_Measurement_ProjectionNoise.m
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admits two possible results, ’fluorescence observed’ or ’fluorescence not observed’,
i.e. ρ++ = 1 or ρ++ = 0, a whole range of possible populations between 0 and 1 is
excluded. Therefore, a single observation only provides ’partial’ information, which
can be gradually improved with each consecutive observation.

A presentation on this topic is available here (watch talk).

36.3.2.2 Ramsey experiments

The Ramsey experiment is basically equivalent to the Rabi experiment described
above except for an additional rotation in configuration space allowing for the mea-
surement of the phase precession of the coherence between the Ramsey pulses via
population spectroscopy. The Ramsey fringes are approximated by p+ = 0.5(1 +
cos[(ω − ω0)T ]). The interesting magnitude is the frequency uncertainty,

∆r

(∂r/∂ω)|(ω−ω0)T=π/2
=

√
Np+(1− p+)
N(∂p+/∂ω)

=
1

T
√
N

. (36.60)

36.3.2.3 Spin squeezing and the Heisenberg limit

The above considerations apply to independent measurements. When the atoms are
maximally correlated they occupy EPR-like states, |ψ⟩ = p+|+++ ..⟩+p−|−−− ..⟩,
such that it is sufficient to measure a single atom to know the state of all others.
This means that the ratio ∆r/r̄ is just the one of a single measurement, but the
signal strength and hence the signal-to-noise ratio increase by the factor N . Thus
the standard deviation scales with 1/N rather than with 1/

√
N . This is the so-called

Heisenberg limit. For Ramsey interferometers we get [1380, 166, 184, 885],

∆r

(∂r/∂ω)|(ω−ω0)T=π/2
=

1

TN
. (36.61)

Example 218 (Interferometry with condensates): It is an interesting ques-

tion, whether condensates can improve metrology and enhance the precision of

atomic clocks. The answer is no, if we only replace the thermal atomic cloud by

a condensate! To see this, we consider an interferometer in configuration space

measuring a phase (and therefore a frequency shift) by the method of Ramsey

spectroscopy. The states are coupled by a radiation adjusted for π/2 pulses.

The condensate Fock state factorizes the Schrödinger equation with the Hamil-

tonian Ĥ =
∑N
i=1(H

(i) +V
(i)
12 ) into N identical equations for every single atom.

The dynamic evolution of this state will be the same as the one for a thermal

state. However, this is not true for two Fock state condensates in both entrance

channels of the interferometer.

The first radiative beamsplitter divides N1. This division produces an atom

number uncertainty in each state, which come together with a well-defined phase

relationship between the two states. By providing at the second port of the in-

terferometer another Fock state N2, one increases the atom number uncertainty

and therefore (because entropy must be conserved in coherent processes) the

phase precision. It’s a bit like a massive parallel computing for every possible

repartition of the populations of both states. Of course the two Fock states can-

not be obtained by dividing a single condensate in two in a coherent manner,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/ProjectionNoise
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except if the repartition is measured afterward.

The Fock state is a maximally spin-squeezed state (sub-Poissonian statistics).

The beam-splitters (which only perform unitary rotations) create starting from

the Fock state a quantum entanglement, which is the deeper reason for the im-

provement of the resolution of the interferometer up the the Heisenberg limit by

reducing the quantum projection noise [184].

Quantum correlations and spin-squeezed states are the same phenomena seen in
different bases. Often the term of quantum entanglement is used in an energy bases,
while spin squeezing is described in a Dicke state bases.

We may also consider real space interferometers. This allows us to use for creating
the Fock states the recently discovered method of transforming BECs into Mott insu-
lator states. Of course it is important to use condensates. First of all, we need Fock
states, i.e. states with strong on-site quantum correlations with well-defined phase re-
lations between every pair of atoms from the same site. Furthermore, Mott insulators
have thus far only been seen with CBEs. Solve Exc. 36.3.4.4.

36.3.2.4 Noise in light fields

Quantum noise in lasers limit their emission bandwidth to the so-called Schawlow-
Townes limit, while shot noise comes in additionally through the detection process.
Let us define the stability by,

σ =
1

Q

1

S/Nnoise
with Q =

ω

Γnat + Γpert
, (36.62)

for a laser oscillator optimally stabilized on an atomic resonance with quality factor
Q, when we directly detect the fluorescence S = Γτ (neglecting background). The
photon shot noise is then,

NΓ =
√
S =

√
Γτ . (36.63)

Assume now, that we discretize the measurement process, e.g. in order to perform a
Ramsey type experiment on a single ion using the microwave-optical double-resonance
(MODR) detection scheme. The signal is S = KN , where K is the number of
photons detected on the monitor transition for a single attempt and N is the number
of attempts assumed to be independent. K and N are both subject to stochastic
fluctuations

Nshot =
√
S =

√
KN , Nproj = K

√
N .

We have again the photon shot noise, but we also have projection noise [653] due to
the random result of the projection of hyperfine resonance coherence. If the MODR
detection scheme is cyclic, K ≫ 1, we may neglect the uncertainty du to photon shot
noise. But if not (in the case of 171Yb+ a leak in the detection cycle results in K ≲ 1),
projection noise will be covered.

Example 219 (Schawlow-Townes limit): When a laser is locked to an ex-
ternal cavity, its spectral noise density is,

Sr =
δν2

ζ2
4ℏ
ωPη

,
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where δν/2π is the cavity linewidth, ζ is a factor accounting for losses in the
signal generation, η the quantum efficiency of the detector, and P the light
power coupled into the resonator. The corresponding emission bandwidth is,

β =
δν2

ζ2
ℏω
Pη

.

36.3.3 Quantum non-demolition measurements

36.3.4 Exercises

36.3.4.1 Ex: The quantum Zeno effect

Discuss the quantum Zeno effect at the example of a laser beam passing through a
birefringent medium. Compare the situations without polarizers and with an infinite
number of vertical polarizers.

Solution: When we subdivide a rotation into n small rotations by angles of π/2n,
we can calculate, using the Jones matrices, the polarization of the laser beam after its
passage through the birefringent medium,

lim
n→∞

[(
cos π

2n − sin π
2n

sin π
2n cos π

2n

)n](
1

0

)
= lim
n→∞

(
cos π2 − sin π

2

sin π
2 cos π2

)(
1

0

)
=

(
0

1

)
.

Inserting after every tiny rotation a polarizer,

lim
n→∞

{[(
cos π

2n − sin π
2n

sin π
2n cos π

2n

)(
1 0

0 0

)]n}(
1

0

)
= lim
n→∞

(
cosn π

2n 0

sin π
2n cosn−1 π

2n 0

)(
1

0

)

= lim
n→∞

(
1− n

2

(
π
2n

)2
+ ...

π
2n − ...

)
=

(
1

0

)
.

36.3.4.2 Ex: The quantum Zeno effect

A two-level atom resonantly driven by a laser can be described by the Hamiltonian:

H =

(
0 1

2Ω
1
2Ω 0

)
.

The solution of the Schrödinger equation gives,

|ψ(t)⟩ = e−ıtĤ/ℏ|ψ0⟩ =
(
cos 1

2Ωt ı sin 1
2Ωt

ı sin 1
2Ωt cos 1

2Ωt

)(
1

0

)

provided the atom is initially in the ground state ⟨ψ0| =
(
1 0

)
. A measurement of

the ground state population can only be done by a projection of the wavefunction,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_EfeitoZeno1.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_EfeitoZeno2.pdf
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that is, the measurement yields the result ∥|1⟩⟨1|ψ(t)⟩∥2. What is the final state of
the atom,
a. when the ground state population is measured once after an evolution time of
t = π/Ω;
b. when the ground state population is measured once after n time intervals tn =
π/nΩ;
c. when the ground state population is measured n times after evolution times of
tn = π/nΩ;
d. when n→∞.

Solution: a. The measurement of the ground state is described by,

|ψ(t)⟩ = |1⟩⟨1|e−itĤ/ℏ|ψ0⟩ =
(
1 0

0 0

)(
cos 1

2Ωt −ı sin 1
2Ωt

−ı sin 1
2Ωt cos 1

2Ωt

)(
1

0

)
=

(
cos 1

2Ωt

0

)

After a time t = π/Ω, we obtain ∥|ψ(t)⟩∥2 = cos2 π2 = 0, that is, the atom is inverted.
b. The measurement after n consecutive evolutions during intervals tn = π/nΩ is,

|ψ(t)⟩ = |1⟩⟨1|
(
e−itnĤ/ℏ

)n
|ψ0⟩ =

(
1 0

0 0

)(
cos n2Ωt −ı sin n

2Ωt

−ı sin n
2Ωt cos n2Ωt

)(
1

0

)
=

(
cos n2Ωt

0

)

After n time periods of t = π/nΩ, we have ∥|ψ(t)⟩∥2 = cos2 π2 = 0, which is the same
result as above.
c. The repeated measurement of ground state is described by,

|ψ(t)⟩ =
(
|1⟩⟨1|e−ıtĤ/nℏ

)n
|ψ0⟩ =

(
cos π

2n −ı sin π
2n

0 0

)n(
1

0

)

=

(
cosn π

2n −ı sin π
2n cosn−1 π

2n

0 0

)(
1

0

)
=

(
cosn π

2n

0

)

Therefore, the probability of finding the atom in the ground state is ∥|ψ(t)⟩∥2 =
cos2n π

2n .
d. For an infinite number of measurements,

|ψ(t)⟩ = lim
n→∞

(
|1⟩⟨1|e−ıtĤ/nℏ

)n
|ψ0⟩ = lim

n→∞

(
cosn π

2n

0

)

Therefore, the probability of finding the atom in the ground state is,

∥|ψ(t)⟩∥2 = lim
n→∞

cos2n
π

2n
= lim
n→∞

(
1− 1

2

( π
2n

)2
+ ...

)2n

= lim
n→∞

[
1− 2n

2

( π
2n

)2
+ ...

]
= 1 .

That is, the atom is not excited at all.
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36.3.4.3 Ex: The quantum Zeno effect

Consider a system described by a time-independent Hamiltonian Ĥ.
a. Calculate the probability P (t) of the system to remain in its initial state |Ψ0⟩ in
the short time approximation, that is, considering until the second-order expression
expansion term for the probability. Use the simplification:

τz =
ℏ√

⟨Ĥ2⟩ − ⟨Ĥ⟩2
,

where the term τz is called the Zeno time.
b. If N measurements are performed during a time t, we have the time interval
T = t/N between measurements. When a measurement is performed, the system is
projected on the initial state and the temporal evolution must start from zero. Thus,
after N measurements, the probability of the system remaining in the initial state is
given by [P (T )]N . Show that for an infinite number of measurements, N → ∞, the
system remains in the initial state without loss of probability: [P (T )]N = 1. Interpret
the result.
c. One of the simplest imaginable systems, a laser-driven two-level system executing
Rabi oscillation, is described by the Hamiltonian:

Ĥ =

(
0 Ω

Ω 0

)
.

Find the expression for τz as a function of the Rabi frequency Ω for the initial state
(1 0)†.
d. Choosing the evolution time t = 0.01τz ≪ τz and performing N = 5 measurements
during this time interval, how likely is the system to remain in the initial state?
e. Let us now include a decay channel for the state (0 1)† with Γ = 4γ, such as to
simulate a system with continuous measurement. The system is initially prepared in
the state (1 0)†. If we now observe emission by decay, it means that the system left
the initial state. We now have the effective Hamiltonian:

Ĥ =

(
0 Ω

Ω −2ıγ

)
.

For this system, the probability amplitude for the initial state is:

⟨Ψ0|Ψ(t)⟩ = 1

2

(
1 +

γ

∆

)
e−(γ−∆)t/ℏ +

1

2

(
1− γ

∆

)
e−(γ+∆)t/ℏ ,

with ∆ =
√
γ2 − Ω2. For a decay rate γ ≪ Ω, calculate the probability that the

system remains in the initial state. Interpret the result.
Formulas:

ex = 1 + x+ x2

2 +O(x3) , (1− x)N = 1−Nx+O(x2)

cos2(x) = 1− x2 +O(x3) , Ĥ =

(
0 Ω

Ω 0

)
→ e−iĤt/ℏ =

(
cos Ωt

ℏ −ı sin Ωt
ℏ

−ı sin Ωt
ℏ cos Ωt

ℏ

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_ZenoQuantico.pdf
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Solution: a. The initial state is denoted by |Ψ0⟩, the temporal evolution is |Ψ(t)⟩ =
e−iĤt/ℏ|Ψ0(t)⟩. The probability amplitude for remaining in the initial state is,

A(t) = ⟨Ψ0|Ψ(t)⟩ = ⟨Ψ0|e−ıĤt/ℏ|Ψ0⟩

Expanding the exponential and considering terms up to second order in t (see formu-
las):

A(t) ≈ ⟨Ψ0|1−
iĤt

ℏ
− Ĥ2t2

2ℏ2
|Ψ0⟩ = 1− ı⟨Ĥ⟩t/ℏ− ⟨Ĥ2⟩t2/2ℏ2 .

The probability is:

P (t) = |A(t)|2 =
(
1− ⟨Ĥ2⟩t2/2ℏ2 − ı⟨Ĥ⟩t/ℏ

)(
1− ⟨Ĥ2⟩t2/2ℏ2 + ı⟨Ĥ⟩t/ℏ

)

=
(
1− ⟨Ĥ2⟩t2/2ℏ2

)2
+
(
⟨Ĥ⟩t/ℏ

)2
.

Neglecting the term in t4:

P (t) = 1− ⟨Ĥ2⟩t2/ℏ2 + ⟨Ĥ⟩2t2/ℏ2 = 1− t2
(
⟨Ĥ2⟩ − ⟨Ĥ⟩2

)
/ℏ2 = 1− t2/τ2z .

b. We have T = t/N , hence,

P (T ) = 1− t2

N2τ2z
,

and,

[P (T )]N =

(
1− t2

N2τ2z

)N
≃ 1− t2

Nτ2z
,

where we expand the power for large N and only retain terms of up to first order (see
formulas). For N → ∞, we have [P (T )]N = 1. Thus, if we perform a sufficiently
large number of measurements during a time interval t, the system stays in the initial
state and evolution is inhibited. This is the Zeno Effect.
c. Building the exponential of the given Hamiltonian (see formulas),

e−ıĤt/ℏ =

(
cos Ωt

ℏ −ı sin Ωt
ℏ

−ı sin Ωt
ℏ cos Ωt

ℏ

)
.

The probability amplitude for the state (1 , 0) is,

A(t) =
(
1 0

)
e−ıĤt/ℏ

(
1

0

)
= cos Ωt

ℏ .

And the probability,

P (t) = |A(t)|2 = cos2(Ωt/ℏ) ≃ 1− Ω2t2/ℏ2 ,
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where we expand the cos2 x for small t (see formulas). Comparing with the expression
of item (a):

τz =
ℏ
Ω

d. With t ≪ τz, we expand the power and use the expression already calculated in
item (b):

[P (T )]N = 1− t2

Nτ2z
.

With N = 5 and t = 0.01τz we obtain,

[P (T )]N = 1− 0.012

5
= 1− 2.0× 10−5 = 0.99998

Thus, if we know the Rabi frequency for the driven two-level system, we can choose a
sufficiently short time interval and inhibit the evolution of the system.
e. The expression for the probability amplitude has already been given. We have to
calculate the probability P (t) = |A(t)|2 in the limit γ ≫ Ω. Calculating the square of
the given expression, we get,

P (t) =
1

4

(
1 +

γ

∆

)2
e−2(γ−∆)t/ℏ +

1

4

(
1− γ

∆

)2
e−2(γ+∆)t/ℏ +

1

2

(
1− γ2

∆2

)
e−2γt/ℏ .

Looking at the term γ/∆, remembering that ∆ =
√
γ2 − Ω2,

γ

∆
=

1√
1− Ω2/γ2

As γ ≫ Ω, we have 1 − Ω2/γ2 ≈ 1. Hence, γ/∆ ≈ 1, and we can consider only the
first term of the above expression, since:

(
1 +

γ

∆

)
≫
(
1− γ

∆

)
and

(
1 +

γ

∆

)
≫
(
1− γ2

∆2

)

Thus, looking at the exponential term:

γ −∆ = γ(1−
√
1− Ω2/γ2) ,

expanding the root,

γ −∆ = γ(1− [1− Ω2/2γ2]) = Ω2/2γ ,

we get for the exponential,

e−2(γ−∆)t/ℏ ≈ e−Ω2t/γℏ .

The multiplicative term is,

1

4

(
1 +

γ

∆

)2
=

(
1

2
+

γ

2∆

)2

=

(
1

2
+

1

2
√
1− Ω2/γ2

)2

=

(√
1− Ω2/γ2 + 1

2
√

1− Ω2/γ2

)2

.
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Expanding the root we get,

(
2− Ω2/2γ2

2(1− Ω2/2γ2)

)2

=

(
2− Ω2/2γ2

2− Ω2/γ2)

)2

=

(
1 +

Ω2/2γ2

2− Ω2/γ2

)2

.

Doing 2− Ω2/γ2 ≈ 2 and expanding the power up to first order (Ω/γ ≪ 1),

(
1 +

Ω2/2γ2

2− Ω2/γ2

)2

=

(
1 +

Ω2

4γ2

)2

= 1 +
Ω2

2γ2
.

Finally, the probability is:

P (t) =

(
1 +

Ω2

2γ2

)
e−Ω

2t/γℏ .

For t = 0 there is a small error in the normalization due to the approximations made.
Looking at the exponential term, the probability decay rate is td = Ω2/γℏ. This means
that, if we increase γ, the probability of the system to leave the initial state decays
more slowly.
Once we prepare the system in the initial state (1 , 0), the system starts oscillating
between the initial state and the state (0 , 1) with the Rabi frequency Ω. In the
presence of a decay channel to (0 , 1) with Γ = 4γ, intuitively, we expect to observe
a faster emission, i.e. the system leaves its initial state sooner when Γ is increased.
However, due to the quantum Zeno effect, the opposite is true!

36.3.4.4 Ex: Scaling with the number of measurements

Imagine you have a coin which you suspect to be manipulated so that, when tossed, it
doesn’t provide a 50% chance to show the face side. Assuming that all flip trials are
independent, how many trials are necessary to prove that the probability for ”face”
is 60%? How many for 51%? What would be necessary to obtain a more favorable
scaling with the number of trials?

Solution: For independent measurements the probability distribution is binomial.
In order to detect a deviation of ∆p = 10% (1%) from p+ = 1

2 = p− we need to
perform enough measurements N that

∆r

r
=

√
Np+p−
Np+

≃ 1√
N
< ∆p .

That is we need N = 100 (10000) measurements. A more favorable scaling necessarily
requires some sort of correlation between the trials.

36.4 Geometric and topological phases

We consider a Hamiltonian Ĥ(R(t)), which only depends implicitly on time, that is,
via some time-dependent parameter R(t). Then the Hamiltonian evolves by develop-
ing a non-measurable dynamic phase and additionally accumulates a geometric phase

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_ProjectedNoise01.pdf
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Figure 36.12: (code) Binomial distributions for tossing a coin N = 100 times with

(black) p+ = 0.5, (blue) p+ = 0.6, and (red) p+ = 0.51.

(also called topological phase or Berry phase. This geometric phase, which depends
on the trajectory, is adiabatically followed in parameter space. Let us consider the
time-evolution of a state |ψ(t)⟩ [134],

Ĥ|ψ(t)⟩ = ıℏ∂t|ψ(t)⟩ , (36.64)

assuming that at any instant of time the system stays in a eigenstate |n(R)⟩,
Ĥ|n(R)⟩ = En(R)|n(R)⟩ . (36.65)

When Ĥ moves along a trajectory C : t→ R(t), then we see from,

|ψ(t)⟩ = exp

[
− ı

ℏ

∫ t

0

En(R(t′))dt′
]
exp(ıγn(C))|n(R(t))⟩ , (36.66)

that, while the first exponential describes the standard dynamical phase, the phase
γn : C → γn(C) is not integrable, i.e. γn cannot be expressed as a function of R(t) and
is not single-valued meaning that from R(T ) = R(0) we cannot infer γn(T ) = γn(0).
Substituting (36.66) in (36.64), we find,

Ĥ(R(t))|ψ(t)⟩ = ıℏ|ψ̇(t)⟩ =
(
En + ıℏıγ̇n(t) + ıℏṘ(t) · ∇R

)
|ψ(t)⟩ . (36.67)

Since for a particular eigenstate,

Ĥ(R(t))|n(R(t))⟩ = En|n(R(t))⟩ , (36.68)

we infer,
γ̇n(t) = ıṘ(t) · ⟨n(R(t))|∇R|n(R(t))⟩ . (36.69)

The integrated phase change upon evolution of the state from |ψ(0)⟩ to |ψ(T )⟩ around
a closed loop is then,

γn(C) = ı

∮

C

⟨n(R)|∇R|n(R)⟩ · dR ≡
∮

C

A⃗(R) · dR , (36.70)

where A⃗ is known as Berry connection.
The condition of adiabaticity is essential for emergence of geometric phases. The

system always remains in an eigenstate (fixed quantum numbers) when we vary pa-
rameters of the environment more slowly than all characteristic constants of the sys-
tem, even when the Hamiltonian is time-dependent (variable eigenvalues).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TossingCoins.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TossingCoins.m
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36.4.1 Properties of the Berry phase

36.4.1.1 Gauge invariance

We have seen in 23.5.4 that the gauge transformation (??), Ucl(ξ) = e−ıξ(R), leaves
the Schrödinger equation invariant. Applied to an eigenstate,

|ñ(R)⟩ = e−ıξ(R)|n(R)⟩ , (36.71)

the Berry connection becomes,

˜⃗A(R) = ı⟨eıξ(R)n(R)|∇R|e−ıξ(R)n(R)⟩ = A⃗(R) +∇Rξ(R) . (36.72)

It is apparently gauge-dependent, so that the local Berry connection A⃗n(R) can never
be physically observable. On the other hand, the Berry phase is,

γ̃n(C) = γn(C) +

∫

C

∇Rξ · dR = γn(C) + ξ(t)− ξ(0) . (36.73)

For a closed loop, continuity of the gauge field requires ξ(T )− ξ(0) = 2πm. Hence, up
to an integer multiple of 2π, closed loop Berry phases remain gauge-invariant under
arbitrary gauge transformation and may be related to physical observables.

36.4.1.2 Berry curvature

It is often advantageous to convert the path integral (36.70) into a surface integral
using Stokes’ theorem. Defining the Berry curvature as,

V⃗n(R) ≡ ∇R ×An(R) , (36.74)

we obtain,

γn(C) =
x
S

V⃗n(r) · dS . (36.75)

The Berry curvature can be expressed as [134],

Vn(r) = Im
∑

m ̸=n

⟨n(r)|∇rĤ(r)|m(r)⟩ · ⟨m(r)|∇rĤ(r)|n(r)⟩
(Em(r)− En(r))2

. (36.76)

This will be shown in Exc. 36.4.3.1.

Example 220 (Geometric phase in a two-level system): We consider the
following state [1086],

n±(r) = cos θ|g⟩ ± e±ıϕ sin θ|e⟩ .

Now, we want to calculate the geometric phase,

γ± =

∮
C

ı⟨n±(r)|∇r|n±(r)⟩dr .

Applying the gradient in spherical coordinates,

∇r = êθ
1

r

∂

∂θ
+ êϕ

1

r sin θ

∂

∂ϕ
+ êr

∂

∂r
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to the function |n+⟩, we find,

∇r|n+(r)⟩ = −êθ sin θ
r
|g⟩+ êθ

e±ıϕ cos θ

r
|e⟩+ êϕ

ıeıϕ

r
|e⟩ ,

and,

ı⟨n±(r)|∇r|n±(r)⟩ = ıêϕ
ı sin θ

r
.

Finally,

γ+ =

∮
C

− sin θ

r
êϕdR =

∮
C

− sin θ

r
r sin θdϕ =

∮
C

sin2 θϕ̇dt .

Example 221 (Berry phase on the Bloch sphere): We consider the example
of a two-level system without decay described by the Bloch vector ϱ⃗ defined in
(34.163) and whose evolution is govern by the Hamiltonian (34.166),

Ĥ = 1
2
G · σ ≡

Re Ω

Im Ω

∆/2


σxσy
σz

 .

Now, we change the parameters regrouped in G adiabatically. It is easy to see
that,

E± = ±R/2 and ∇GĤ = σ⃗/2 ,

such that,

Vn(r) = Im
⟨n±(G)|∇GĤ(G)|n∓(G)⟩ · ⟨n∓(G)|∇GĤ(G)|n±(G)⟩

(E+(G)− E−(G)2
= ± G

2G3
.

The geometric phase accumulated on a closed loop C = ∂S surrounding an area
S = 4πΩS on the surface of the Bloch sphere is,

γn(C) = ∓
∮
C

dS

2G2
= 4π ∓

∮
C

dR = ∓ΩS(C)

2

and thus equal to half the enclosed solid angle ΩS . The Berry phase can be

measured in Ramsey experiments, as discussed in Exc. 36.4.3.2.

36.4.1.3 Generalization of the Berry phase according to Aharonov

We will now drop the conditions imposed to the Hamiltonian with regard to its
adiabatic behavior and request that the state must be a eigenstate [274]:

Ĥ|ψ(t)⟩ = ıℏ|ψ̇(t)⟩ . (36.77)

A process is cyclic, when there is a τ , such that,

|ψ(τ⟩ = eı[f(τ)−f(0)]|ψ(0)⟩ . (36.78)

Defining the space of radii by |ψ̃(t)⟩ = e−ıf(t)|ψ(t)⟩, we obtain,

|ψ̃(τ)⟩ = |ψ̃(0)⟩ , (36.79)
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and from the Schrödinger equation we obtain,

f(t)− f(0) = − 1
ℏ

∫ t

0

⟨ψ(t)|Ĥ(t)|ψ(t)⟩dt+
∫ t

0

⟨ψ̃(t)|ı ddt |ψ̃(t)⟩ ≡ δ + β . (36.80)

Therefore, in the space of radii we have a closed curve:

C : [0, τ ] −→ ψ(t) ∈ H (36.81)

↓ e−ıf(t)

C ′ : [0, τ ] −→ ψ̃(t) ∈ P .

The dynamic phase δ can be zeroed by an appropriate choice of Ĥ(t), but not the
topological phase β. β does not depend on Ĥ(t), but is a geometric property of the
curve, which projects H onto P. In contrast to eıβ , the phase β is only determined
modulo 2πn.

36.4.2 Aharonov-Bohm effect

A particular case for topological phases is the Aharonov-Bohm effect, which we will
discuss in the following. The only observables of electromagnetism are the forces of
Coulomb and Lorentz which, in the theory of electrodynamics, are described by elec-
tric and magnetic fields. Electromagnetic potentials can be introduced to simplify
calculations, but they are not observables with a physical reality. In contrast, in
quantum mechanics, electromagnetic potentials are more fundamental than electro-
magnetic fields. This is demonstrated by the Aharonov-Bohm effect.

Figure 36.13: (a) Scheme for measuring the Aharonov-Bohm effect. The electrons propa-
gate as wavepackets whose centers-of-mass are not subject to forces, but whose de Broglie
waves are phase-shifted by the vector potential. (b) Aharonov-Casher effect: the electrodes
Φ do not produce electric fields inside the conductors; even so, one observes constructive
or destructive interference at the output of the interferometer, depending on the applied
potential.

The idea of this effect is schematized in Fig. 36.13. An electron beam is coherently
divided into two arms (e.g. by a double slit) passing both sides of an infinitely extended

and perfectly shielded solenoid. In this way the magnetic field B⃗ vanishes in the region
outside the solenoid, but there must exist nonetheless a potential vector A, because
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we observe on the screen an interference pattern of the two arms of the electronic
interferometer. When pass a current through the solenoid, we observe a displacement
of the interference pattern.

36.4.2.1 Aharonov-Bohm effect and gauge transformation

Let R and S be two disconnected spatial regions. Suppose that the electric and
magnetic fields are kept zero in region R. Then, it is classically impossible to measure
some change in the dynamics of a body confined to the region R resulting from a
change of the magnetic field confined to the region S. The Aharonov-Bohm effect
shows that the opposite is true: Electrons in the magnetic field-free region R do sense
magnetic field fluxes in a region S, despite the regions R and S having no intersection!

In the classical theory of electromagnetism, in a region of empty space (except for

electric charges and electric currents), the electric E⃗(r, t) and magnetic fields B⃗(r, t)
are related to the electric charge ρ(r, t) and current densities j(r, t) according to the
Maxwell equations. When we know for a spatial region the sources ρ and j and the
boundary conditions that the fields E⃗ and B⃗ must fulfill, we can determine the fields
as solutions of Maxwell’s system of partial differential equations.

In classical electrodynamics, observed from some inertial frame, the electromag-
netic force Fem acting on a point-like body with charge q, at position r, and with
velocity v, is given by the Lorentz force:

Fem(r(t), t) = qE⃗(r(t), t) + qv(t)× B⃗(r(t), t) . (36.82)

Electrodynamic theory affirms the existence of two functions Φ(r, t) and A(r, t), such
that,

B⃗(r, t) = ∇×A(r, t) and E⃗(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
. (36.83)

Thus, we can use the equations (36.83) to rewrite the Maxwell equations.
The so-defined potentials Φ and A are not unique, but any Φ and A leading to the

same fields E⃗ and B⃗, and thus to the same physics, are equivalent. We will, however,
fix Φ and A adopting an additional condition that must be obeyed, i.e. we will adopt
a particular gauge. For the discussion of the Aharonov-Bohm effect, we will adopt
the Lorentz gauge defined by,

∇ ·A(r, t) +
1

c2
∂Φ(r, t)

∂t
= 0 , (36.84)

where c is the propagation velocity of light in vacuum.

36.4.2.2 Equation for quantum particle exposed to a vector potential A

Assume a particle (without spin) of mass m and charge q, whose wavefunction is

confined to a region R (connected by paths). We demand Φ = 0 and E⃗ = 0 = B⃗, but
we let A ̸= 0, that is, ∇×A(r, t) = 0. Note that along with (36.83) this forces A to
be stationary. According to quantum mechanics the wavefunction Ψ of the particle
must obey the following Schrödinger equation:

1

2m

(
ℏ
ı
∇− qA(r)

)2

Ψ(r, t) + V (r)Ψ(r, t) = ıℏ
∂Ψ(r, t)

∂t
. (36.85)
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In (36.85) the potential vector A is present, even if ϕ, E⃗ , and B⃗ are kept zero through-
out the region R.

Since the rotation A vanishes in R, considering that the integral can be calculated
for any path contained in R that is deformable to a (arbitrarily chosen) point O ∈ R,
we can define the following scalar field:

g(r) ≡ q

ℏ

∫ r

0

A(x) · dx . (36.86)

From (36.86) we have:

∇g(r) = q

ℏ
A(r) . (36.87)

Now, we have already shown in Sec. 23.5.4, that the wavefunction

ψ(r, t) ≡ e−ıg(r)Ψ(r, t) (36.88)

corresponds to the gauge transform (??) and, given the condition (??), satisfies the
same Schrödinger equation as Ψ(r, t). We showed this explicitly in Exc. 36.4.3.3.
Thus, the presence of a potential vector in the region R, even in the absence of
fields, causes a phase shift eıg(r) of the wavefunction. An interesting issue studied in
Exc. 36.4.3.4 is, whether this implies that the freedom of choice of the gauge field is
lost.

Example 222 (Observation of the Aharonov-Bohm effect): Imagine an
electron beam passing through a double-slit, as shown in Fig. 36.13(a). The elec-
tronic wavefunction diffracts through both slits, which produces an interference
pattern on a subsequent screen. Now, just after the double-slit, in the shade
of the region separating the two slits, we place an ideal infinitely long solenoid
traversed on its axis by a constant, however, adjustable flux of magnetic field.
The magnetic (and also the electric) field of the solenoid is confined to a re-
gion S, and the confinement can be guaranteed, e.g. with layers of shielding
materials, including superconductors. On the other hand, the wavefunctions of
the electrons are manifestly zero in this S region. In the R region, where the
electronic wavefunction may be non-zero, the fields are kept zero. R and S have
no overlap, both R and S are separately connected by paths.
We will show that the flux of the magnetic field in S can be measured through
the electronic dynamics in the region R, although the electron is never in the
region S, but confined to the field-free region R. This is the Aharonov-Bohm
(magnetic) effect.
The field B⃗ in the inner region of the solenoid is given by (I is the electric current
in the wire, N is the density of windings),

B⃗(r, t) = µ0IN êz .

Outside the solenoid, that is, for ρ > a, we have,

A(r, t) =
ΦB
2πρ

êϕ ,

where ΦB = πa2B(0, t) is the magnetic field flux B⃗ through the cross section of
the solenoid.
At a point rsim of the screen, located in the plane of symmetry of the system,
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we calculate g(rsim) from Eq. (36.86) for two different paths: both starting at
the source and ending at the screen, but one going through the left slit, the
other through the right slit:

g(rsim) =
q

ℏ

∫ rsim

0

A(x) · dx =
qΦB
2πℏ

∫ (
1

ρ
ϕ̂

)
· (ρϕ̂dϕ) = ±qΦB

2ℏ
.

The + sign means, that the integration was done in the sense parallel to A, and
thus in the sense of I in the solenoid. The sign - holds for the other integration
path. The phase difference, at point rsim, between these two paths will be:

δ =
qΦB
ℏ

.

That is, the phase difference (experimentally observable via a shift of the in-
terference pattern) is directly proportional to the magnetic field flux B⃗, even
though the wavefunction is zero in the region S, where the B⃗ field is confined.
Let us also imagine another situation: Instead of an electron source producing
a beam, let us confine an electronic wavefunction on a closed path circling the
solenoid at a distance b, but inside the region of R. That is, the electron follows
a field line BA ∝ êϕ. Then it can be shown, that the flow ΦB removes the
degeneracy of the energy levels of the electron:

En =
ℏ2

2mb

(
n− qΦB

2πℏ

)2

,

with integer, that is, n = 0,±1,±2, ... [546].

The Aharonov-Bohm phase is a (topological) Berry-phase [134]. This is shown
explicitly in Exc. 36.4.3.5.

36.4.2.3 Generalizations of the Aharonov-Bohm effect

The Aharonov-Bohm effect can be generalized to the internal degrees of freedom of a
single atom, that is, from real space to configuration space. Let us imagine a Mach-
Zehnder interferometer, where one of the arms crosses a constant homogeneous field
region. The corresponding Lorentz force F =

∫
d3r ρ(r)E⃗(r) + j(r) × B⃗(r) vanishes,

but the de Broglie wave undergoes a phase shift χ =
∫
Ĥintdt:

scalar potentials

χ = −
∫
eϕdt ∇ϕ = 0 for e−

−
∫
d · E⃗dt ∇× E⃗ = ∇ · E⃗ = 0 Mg, Yb+

−
∫
µ⃗ · B⃗dt ∇× B⃗ = ∇ · B⃗ = 0 n, Yb+

vector potentials

−
∮
eAdr ∇×A = 0 e−, (ABE)

−
∮
d× B⃗dr ?

−
∮
µ× E⃗dr n, Ca, (ACE)

Example 223 (Topological phase in configuration space): We consider a

temporal Ramsey experiment with a single trapped ion by exciting a hyperfine
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transition. Between the pulses we apply a magnetic field for a time t. The accu-

mulated phase will be ϕ = (µ⃗ · B⃗/ℏ)t. This phase corresponds to the precession

of the dipole moment excited by the first Ramsey pulse. The phase can be in-

terpreted in analogy to Aharonov-Bohm effect, considering that 1. the magnetic

field is homogeneous, and 2. despite this fact still acts on the spin, not exerting

a force, but causing a phase shift.

36.4.3 Exercises

36.4.3.1 Ex: Derivation of the Berry curvature

Derive the expression (36.76) for the Berry curvature.

Solution: We rewrite the Berry curvature from its definition (36.74),

V⃗n,µν =
∂

∂Rµ
A⃗n,ν −

∂

∂Rν
A⃗n,µ .

Using the Stokes theorem and expanding on a basis {|m⟩}, we recover the expressions
(36.76).

36.4.3.2 Ex: Measurement of the Berry phase in a two-level system

Discuss how the Berry phase in a two-level system can be measured via a Ramsey
experiment.

Solution: Following [12] we consider the Hamiltonian,

Ĥ = ℏ

(
∆/2 Ω

Ω/2 −∆/2

)
.

The solution of the Schrödinger equation is |ψ(t)⟩e−ıĤt/ℏ|ψ(0)⟩. The eigenvalue ma-
trix is,

Ê =
ℏ
2
Gσ̂z with G ≡

√
∆2 +Ω2 and σ̂z =

(
1 0

0 −1

)
.

The total phase shift after a precession cycle is,

ϕ = Ĥ
ℏ t =

1
2Gt = π .

The dynamic phase is,

δ = 1
ℏ

∫ 2π/G

0

⟨ψ(t)|Ĥ|ψ(t)⟩dt = 1
ℏ

∫ 2π/G

0

⟨eıGt/2ψ(0)|ℏ2G|e−ıGt/2ψ(0)⟩dt .

Starting from the initial state ψ =

(
cos θ

ı sin θ

)
,

δ = 1
ℏ
ℏ
2

∫ 2π/G

0

(cos2 θ − sin2 θ) > dt = −π cos θ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica02.pdf
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The geometric phase corresponds to the enclosed solid angle,

β = ϕ− δ = π(1− cos θ) = 1
2Ω(C) ,

although the atom is not in an eigenstate and has no adiabatic variation of the pa-
rameters.
After a first Ramsey pulse we introduce a short perturbation shifting the energies of
the two-levels.

36.4.3.3 Ex: The Aharonov-Bohm effect as a gauge transform

Show explicitly that the wavefunction transformed by a gauge transformation (36.88)
satisfies the Schrödinger equation.

Solution: We assume that the wavefunction Ψ(r) satisfies the Schrödinger equa-
tion. The objective is to show that ψ(r, t) ≡ eıg(r)Ψ(r, t) also satisfies it. In (36.86)
we have,

∇g(r) = q

ℏ
A(r) .

Hence,

1

2m

(
ℏ
ı
∇− qA(r)

)2

Ψ(r, t) + V (r)Ψ(r, t) = ıℏ
∂Ψ(r, t)

∂t
.

In (36.85) the vector potential A is present, even if ϕ, E⃗ and B⃗ are kept zero throughout
the region R.

36.4.3.4 Ex: Aharonov-Bohm effect and gauge transformation

The phase of the interference pattern in the Aharonov-Bohm effect is fixed by the
magnetic flux through the solenoid. Does that mean, that we lose the freedom of
choosing an arbitrary gauge potential?

Solution: No! See the discussion of Griffiths, Quantum Mechanics, p.390.

36.4.3.5 Ex: Aharonov-Bohm effect as a geometric phase

Show that the Aharonov-Bohm effect represents a particular case of a geometric phase.

Solution: The state of a charge q confined to a volume centered around R in the
vicinity of a magnetic flux line is given by the Schrödinger equation (36.85). That is,
in the presence of flux, we may write,

Ĥ(r̂−R,p− qA(r̂))|n(R)⟩ = En|n(R)⟩ ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_FaseTopologica05.pdf
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with eigenenergies independent of r. The spatial wavefunction of this state is found
by adding a Dirac phase factor,

⟨r|n(R)⟩ = e(ıq/ℏ)
∫ r
R

A(r′)·dr′Ψn(r−R) .

Now, we calculate the gradient,

∇R⟨r|n(R)⟩ = e(ıq/ℏ)
∫ r
R

A(r′)·dr′−ıq
ℏ

A(r)Ψn(r−R) + e(ıq/ℏ)
∫ r
R

A(r′)·dr′∇RΨn(r−R)

= e(ıq/ℏ)
∫ r
R

A(r′)·dr′
(−ıq

ℏ
A(r′) +∇R

)
Ψn(r−R) ,

and the Berry connection,

A⃗n(r) = ı⟨n(r)|∇Rn(R)⟩ = ı⟨n(r)|
∫

V

d3r|r⟩⟨r|∇Rn(r)⟩

= ı

∫

V

d3re(−ıq/ℏ)
∫ r
R

A(r′)·dr′Ψ∗n(r−R)e(ıq/ℏ)
∫ r
R

A(r′)·dr′×

×
[−ıq

ℏ
A(r̂)Ψn(r−R) +∇RΨn(r−R)

]

=
q

ℏ

∫

V

d3r′Ψ∗n(r−R) [A(r̂)Ψ∗n(r−R) +∇rΨ
∗
n(r−R)] =

q

ℏ
A(r̂) .

Hence, γn(C) =
q
ℏ
∫
A(r′) · dr′ is the geometric Aharonov-Bohm phase. Furthermore,

for trajectories around a singularity, it is topological.

36.5 Frequency metrology and sensing in quantum
mechanics

Absolute space and time do not exist. According to the restricted and the general
theory of relativity they are interconnected by velocity and they depend on the pres-
ence of masses exerted gravitational forces. These relationships and the question how
quantum mechanics can be harnessed to improve measurements of time and forces,
in particular gravity, will be treated in the following sections.

36.5.1 Atomic clocks

Before we start talking about clocks, we should spend a few words on the physical
quantity they are supposed to measure: time. In the same way as it is meaningless
to talk about space with nothing in it, time is only there, because things are happen-
ing. Space is the distance between things and time is nothing else than the distance
between events.

In our current physical understanding of the universe the most elementary events
are collisions between (real or virtual) particles. Obviously, our universe is full of
time. In order to bring any succession of such events into a logical and causal order,
a reference time line is needed. It allows for historical book keeping of sequences of
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Figure 36.14: (left) ’Time persistence’ by Salvatore Dali. (center) Recurrent events. (right)
Periodic astronomical cycles.

events, that we may call histories. And in order to facilitate a comparison between
different histories, this reference time line should follow a simple deterministic rule,
e.g. be periodic or exponentially decaying. In fact, both types of processes are cur-
rently used for time measurements. E.g. exponential processes, such as radioactive
decay is commonly used in radioactive dating.

The most common practical approach to the measurement of time, however, is
based on the observation of recurrent phenomena that we think of being periodic,
such as a day on Earth, the dripping of a water pipe, or the oscillation of a pendulum
or of an atomic excitation. Assuming the time intervals separating the recurrent
phenomena as being all the same, we build a ruler for time which we call clock.

But now comes a tricky question: How do we know whether a clock is really
periodic? In fact, we never know for sure whether the time intervals are really all
the same. We only know that some clocks deserve a greater degree of confidence
based on the fact that more care has been taken in their design and construction, or
based on the observation that clocks built in a certain manner tend to deviate less
from each other than clocks built in a different manner. The other approach would
be to compare several totally independent clocks and to give preference to those who
deviate less from each other.

An important criterion for a useful clock concerns its duty cycle. The shorter the
cycling time, the faster we can extract information from the clock, and the higher
is the accuracy we can reach in a given integration time. Ancient time standards
had been link to the periodic motion of celestial bodies, e.g. the revolution time
of the Earth around the sun. Therefore, clocks with smaller duty cycles have been
engineered, such as the clepsydra or the hour glass. But their calibration to periodical
astronomical cycles remained tedious and slow. Historically, the development of ever
precise clocks has been motivated by navigation. Indeed, 1 minute of inaccuracy in
the clock generates an uncertainty of 28 km in global positioning. And this motivation
still prevails nowadays, although, meanwhile, atomic clocks are reaching uncertainties
of below 10−18 and extremely short duty cycles on the order of femto-seconds.

The left part of Fig. 36.15 shows the basic idea of any human-made clock, which
consists in locking an oscillating mechanism, whose time constant can be manipulated,
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Figure 36.15: (left) Principle of any clock and possible perturbations. (right) Cesium beam
atomic clock and Ramsey interference fringes.

for instance a pendulum or a laser, by a very precise periodic process, that we call
resonance. This resonance can be an astronomic period or the transition of an atomic
between two states of excitation. Expressing the stability of a clock that can be
obtained in a given integration time as,

σ =
Γnat + Γpert

ω

1

S/Nnoise
, (36.89)

we see that we better look for oscillators and resonances operating at high frequencies
ω, having very narrow widths Γnat, being subject to very weak perturbations and
line broadenings Γpert, and delivering a good signal-to-noise ratio. The right part of
Fig. 36.15 shows the concept of a cesium beam atomic clock. A microwave oscillator
operating at ω/2π = 9.1GHz excites cesium atoms passing through a microwave
cavity thus generating in a detector a frequency-dependent error signal which can be
used to correct the oscillator frequency.

36.5.2 Gravitational red-shift

Clocks and gravimeters are intrinsically related the gravitational redshift. The gravi-
tational red-shift is that phenomenon in which electromagnetic waves or photons trav-
eling out of a gravitational well (seem to) lose energy. This loss of energy corresponds
to a decrease in the wave frequency and increase in the wavelength. Gravitational
redshift can be interpreted (i) as a consequence of the equivalence principle stating
that gravity and acceleration are equivalent and the redshift is caused by the Doppler
effect. It can also be understood (ii) as a consequence of the mass-energy equiva-
lence stating that ’falling’ photons gain energy (though there are numerous subtleties
that complicate a rigorous derivation). Finally, it can be understood (iii) in terms
of gravitational time dilation at the source of the radiation: an oscillator (produc-
ing electromagnetic radiation) will seem to ’tick’ faster when exposed to a stronger
gravitational potential.



2028 CHAPTER 36. QUANTUM MEASUREMENT

Figure 36.16: Gravitational redshift is due to the dilation of time near heavy masses.

To first approximation, the gravitational redshift is proportional to the difference
in gravitational potential. In a homogeneous field(see Sec. ??),

∆ν

ν
=

∆λ

λ
≃ g∆z

c2
, (36.90)

where ∆z is the change in height. Accounting for the accompanying gravitational time
dilation affecting the atomic clock in the satellite is crucially important for accurate
navigation. For this reason, metrology of time and gravimetry are closely interrelated.
Do the Exc. 36.5.4.1.

Example 224 (Prediction by the equivalence principle and general rela-

tivity for a uniform gravitational field or acceleration): Einstein’s theory

of general relativity incorporates the equivalence principle, which can be stated

in various different ways. One such statement is that gravitational effects are

locally undetectable for a free-falling observer. Therefore, in a laboratory exper-

iment at the surface of the earth, all gravitational effects should be equivalent to

the effects that would have been observed if the laboratory had been accelerating

through outer space at g. One consequence is a gravitational Doppler effect. If

a light pulse is emitted at the floor of the laboratory, then a free-falling observer

says that by the time it reaches the ceiling, the ceiling has accelerated away

from it, and therefore when observed by a detector fixed to the ceiling, it will

be observed to have been Doppler shifted toward the red end of the spectrum.

This shift, which the free-falling observer considers to be a kinematic Doppler

shift, is thought of by the laboratory observer as a gravitational redshift. Such

an effect was verified in the 1959 Pound-Rebka experiment. Since this predic-

tion arises directly from the equivalence principle, it does not require any of

the mathematical apparatus of general relativity, and its verification does not

specifically support general relativity over any other theory that incorporates

the equivalence principle.

36.5.3 Quantum sensing

Let us first define what we mean by a sensor in general before discussing what quan-
tum mechanics has to do with it. A sensor is a device, module, machine, or subsystem
whose purpose is to detect events or changes in its environment and send the informa-
tion to other electronics, frequently a computer processor. Progress in engineering,
science, medicine, and other disciplines is unavoidably conditioned to sensing: What
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you cannot measure, you cannot improve! In many areas of applications, however,
conventional sensing techniques have met fundamental limitations, and novel disrup-
tive approaches are required in order to reach higher sensitivity and precision.

In many cases, limitations are imposed by the macroscopic, i.e. classical, nature
of the sensor, and much can be gained by using microscopic sensors. These how-
ever, follow different rules of physics given by quantum mechanics. Nuclear magnetic
resonance spectroscopy (NMR), magnetic resonance imaging, and the development
of transistors, LEDs, solar panels, and lasers are examples of technologies developed
during the first so-called quantum revolution in the 20th century, which was based on
the exploitation of the particle-wave duality. However, the full potential of quantum
mechanics goes much further. Today quantum sensing is, together with quantum com-
putation and quantum communication (see Sec. 41.6.5), one of the key technologies
anticipated to drive the quantum revolution 2.0.

Let us discuss the disruptive role of quantum mechanics at the example of an
atom, which is a paradigmatic example for a sensor subject to quantum laws. The
reasons for this are numerous: (i) Because all atoms of a given species are strictly
identical (that is, indistinguishable in the quantum statistical sense) they can be
used in different sensing devices, places and countries. We do not need to duplicate
reference standards, such as the Original Meter or the Original Kilogram safely kept in
Paris. We simply recommend to people wishing to construct their own clock standard
to gather cesium atoms (wherever you can find them) and try to excite the 9.1GHz
hyperfine transition (with whatever technique you prefer). In the end, you just need
to prove that your clock is sufficiently good. (ii) Some atomic species have ultra-
narrow transitions outperforming any imaginable artificial device by many orders of
magnitude, which makes them ideal candidates for clock resonances. (iii) Atoms can
easily be moved in space with extremely high precision, which makes them suitable
for matter wave interferometers, which are useful for the measurement of distances
and the sensing of forces.

The main reason, however, for the superiority of atoms (and other quantum de-
vices, such as SQUIDs, quantum dots or nitrogen-vacancy (NV) centers in diamond)
with respect to classical objects in sensing applications is, that they can exist in
superposition states (of their internal excitation or of their center-of-mass motion)
whose evolution delicately depends on external parameters, such as forces. We can
now define a quantum sensor as a measurement device exploiting quantum correla-
tions in order to enhance sensitivity and resolution, f.ex. quantum superpositions or
entanglement [343]. Typically its core is a single atomic two-level system (or any
other kind of qubit), whose superposition states (i) are sensitive to some environment
parameter, (ii) can be manipulated in a controlled way, and (iii) can be read out.

In fact, quantum sensors already exist since the invention of atomic clocks and
matter wave interferometers, which build on the control and detection of quantum
states in individual qubits, even though in practice, most of these device are operated
with large incoherent ensembles of qubits. Even if perturbations related to uncon-
trolled inter-qubit interactions (collisions, thermal excitations, etc.) can be avoided,
the sensitivity that can be reached with such ensembles is bound to the standard
quantum limit imposed by quantum projection noise (see Secs. 36.3.2 and 41.1.4).
Novel approaches investigate the possibilities of overcoming these limits via the cre-
ation of strong interparticle correlations via entanglement, spin-squeezing [1380], or
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Figure 36.17: (left) Single qu-bit. (center) Larger signals can be observed using ensemble of
qu-bits. (right) Collective manipulations on entangled qu-bits allow precisions beyond the
standard quantum limit.

superradiant lasing [1005]. Such correlations have been created with atoms, which
therefore qualify as building blocks of quantum computers or sensing devices capable
of overruling the standard quantum limit.

36.5.3.1 Working principle of a quantum sensor

As mentioned above, in order to measure a weak force it is not sufficient to sense
it, one also has to read the result. In the field of atom optics, this can conveniently
be done with light fields taking the information from an atom isolated in a vacuum
chamber to the macroscopic world. In order not to loose information already at the
level of the light-atom interaction, one generally tries to avoid dissipation and keep
the interaction coherent 14.

Figure 36.18: Taking information from the sensor to the detector.

A typical quantum sensor can be described by the generic Hamiltonian [343],

Ĥ(t) = Ĥqbit + Ĥcntrl(t) + Ĥint(t) , (36.91)

composed of a (known) internal Hamiltonian Ĥqbit, a control Hamiltonian Ĥcntrl

allowing to manipulate or tune the sensor, and a signal Hamiltonian Ĥint allowing to
pass information about the state of the system to the outside world.

Typically, the internal Hamiltonian is static and defines the energy eigenstates |0⟩
and |1⟩,

Ĥqbit = E0|0⟩⟨0|+ E1|1⟩⟨1| . (36.92)

14E.g. by using two-level systems not subject to motion, collisions, spontaneous emission, etc..
Sometimes spontaneous emission can be controlled by confining both, the atom and the interrogating
light field, in a cavity.
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The qubit internal Hamiltonian may contain additional interactions, such as cou-
plings to other qubits or time-dependent stochastic terms due to interactions with an
environment.

Many quantum sensing protocols require to manipulate the qubit either before,
during, or after the sensing process. This is achieved via a control Hamiltonian,
which allows implementing a sequence of appropriate quantum gates, such as the
Hadamard gate or Pauli X and Y gates. These gates are nothing else than what,
in the language of atom interferometry is known as π/2 or π-pulses around different
axes. Advanced sensing schemes employing more than one sensor qubit may further
require conditional gates, especially controlled-NOT gates to generate entanglement,
swap gates to exploit memory qubits, and controlled phase shifts in quantum phase
estimation (see Sec. 41.6). Finally, the control Hamiltonian can include control fields
for systematically tuning the transition frequency ℏω0 = E1 − E2.

Finally, the signal Hamiltonian represents the coupling between the sensor qubit
and a signal V (t) to be measured. When the signal is weak (which is assumed here)
Ĥint adds a small perturbation to the internal Hamiltonian. The signal Hamiltonian
can then be separated into two qualitatively different contributions,

Ĥint = Ĥint,∥ + Ĥint,⊥ , (36.93)

where Ĥint,∥ is the parallel (commuting) and Ĥint,⊥ the transverse (non-commuting)
components, respectively. The two components can quite generally be captured by,

Ĥint,∥ =
γ
2V∥(t)[|1⟩⟨1| − |0⟩⟨0|] (36.94)

Ĥint,⊥ = γ
2 [V⊥(t)|1⟩⟨0|+ V †⊥(t)|0⟩⟨1|] ,

where γ is the coupling or transduction parameter of the qubit to the signal V (t).
Examples of coupling parameters include the Zeeman shift parameter or the Stark
shift parameter of electric dipoles in an electric field. The parallel and transverse
components of a signal have distinctly different effects on the quantum sensor. A
commuting perturbation Ĥint,∥ leads to shifts of the energy levels and an associated

change of the transition frequency ω0. A non-commuting perturbation Ĥint,⊥, by
contrast, can induce transitions between levels, manifesting through an increased
transition rate. Most often, this requires the signal to be time-dependent (resonant
with the transition) in order to have an appreciable effect on the quantum sensor.

An important class of signals are vector signal V(t), in particular, those provided
by electric or magnetic fields. The interaction between a vector signal and a qubit
can be described by the signal Hamiltonian,

Ĥint = γV(t) · ˆ⃗σ , (36.95)

where ˆ⃗σ is the vector of Pauli matrices (23.46). For a vector signal, the two signal
functions V∥(t) and V⊥(t) are,

V∥(t) = Vz(t) (36.96)

V⊥(t) = Vx(t) + ıVy(t) ,

where the z-direction is defined by the qubit’s quantization axis. The corresponding
signal Hamiltonian,

ĤV (t) = γσ̂xRe V⊥(t) + γσ̂yIm V⊥(t) + γσ̂zV∥(t) , (36.97)
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is just the one of the Rabi model extensively discussed in Sec. 34.4.

36.5.3.2 Sensing forces by matter wave interferometry

Matter wave interferometry is ideal for sensing weak forces or sensing strong forces
with high precision. Many interferometers employ the Ramsey scheme, which con-
sists in sandwiching the sensing Hamiltonian between two π/2-control Hamiltonian
pulses Ĥcntrl preparing and reading out the atomic coherence. Between the pulses
(or interaction zones), the atomic coherence is influenced by the parallel part of the
sensing Hamiltonian Ĥint,∥.

The basic idea is the following: One takes a matter wave and lets it fall in the
Earth’s gravitational field. But before that, apply a laser pulse separating the mat-
ter wave into two parts taking different paths. Thus, the Broglie waves of the two
parts will accumulate different phases, which results in an interference pattern when
the waves are superimposed again. As illustrated in Fig. 36.19, the matter wave in-
terferometry works similarly to the Ramsey method used in atomic clocks with the
difference that in the former the trajectories of the atomic center-of-mass motion must
be separated in real space as much as possible (see Sec. 34.4.5 on Ramsey pulses and
NMR, Sec. 24.1.3 on gravity with Excs. 23.5.6.2 and 23.5.6.3, Sec. 47.2.2 on Bragg
interferometry and photon echos with Excs. 47.2.4.1) 15.

Figure 36.19: Difference between clocks and interferometers. (left) Ramsey-type clock.
(right) Ramsey-Bordé interferometer. A movie can be seen at (watch movie).

A particularly smart way to do matter wave interferometry is via the observation
of Bloch oscillations of matter waves in a periodic lattice (see Sec. 26.2.2). The Bloch
oscillations can be understood in the following picture: A resting atom has infinite de
Broglie wavelength. Being constantly accelerated by gravity, the matter wave reduces
its de Broglie wavelength from ∞ to a value, where it becomes commensurate with
the periodicity of the standing light wave potential. At this moment Bragg scattering
comes into play, reflecting the atomic motion back into upward direction, and the
process starts over again. The atoms evolve like jumping on a trampoline with a
frequency given,

νblo =
mg

2ℏklat
. (36.98)

15See also Sec. 53.5 and 54.5 on interferometric and spectroscopic techniques.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Entanglement_SpinRamsey_Movie
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Figure 36.20: Working principle and pictures of the Sr Bloch oscillation interferometer con-
structed at the IFSC, USP.

36.5.4 Exercises

36.5.4.1 Ex: Red-shift of sun light and on Earth

a. Calculate the gravitational redshift of light escaping from the sun.
b. Calculate the blue-shift of navigational signals from GPS satellites orbiting at
20000 km altitude with respect to the surface of Earth. Compare it to the Doppler
shift resulting from their orbital velocity.
c. In astronomy, the magnitude of a gravitational redshift is often expressed as the
velocity that would create an equivalent shift through the relativistic Doppler effect.
Calculate the sunlight redshift and the GPS signal blue-shift in terms of this velocity.

Solution: a. Light escaping from the surface of the sun was predicted by Einstein
in 1911 to be red-shifted by roughly 2 · 10−6.
b. The signals emitted from GPS satellites are perceived as blue-shifted by approxi-
mately 5 · 10−10 corresponding to an increase of less than 1Hz in the frequency of a
1.5GHz signal.
c. In such units, sunlight redshift corresponds to a 633m/s receding velocity, roughly
of the same magnitude as convective motions in the sun, thus complicating the mea-
surement. In astronomical objects with strong gravitational fields the redshift can be
much greater; for example, light from the surface of a white dwarf is gravitationally
red-shifted on average by around 50 km/s/c.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Measurement_ForcaGravi01.pdf
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36.6 Further reading

P.L. Saldanha et al., Inconsistency of a realistic interpretation of quantum measure-
ments a simple example [1133]DOI

B. Hacker et al., Deterministic creation of entangled atom-light Schrödinger-cat
states [566]DOI

36.6.1 on quantum jumps

A. Schenzle et al., Macroscopic quantum jump in a single atom [1152]DOI

A. Schenzle et al., Possibility of quantum jumps [1154]DOI

W. Nagourney et al., Shelved Optical Electron Amplifier: Observation of Quantum
Jumps [943]DOI

P. Zoller et al., Quantum jumps in atomic systems [1440]DOI

T. Erber et al., Resonance Fluorescence and Quantum Jumps in Single Atoms, Test-
ing the Randomness of Quantum Mechanics [418]DOI

J. Dalibard et al., Wave-Function Approach to Dissipative Processes in Quantum
Optics [321]DOI

K. Mølmer et al., Monte-Carlo Wave-Function Method in Quantum Optics [913]DOI

Z. K. Minev et al., To catch and reverse a quantum jump mid-flight [901]DOI

36.6.2 on projection noise

R.H. Dicke, Coherence in Spontaneous Radiation Processes [366]DOI

M. Kitagawa et al., Spin-squeezed states [724]DOI

W.M. Itano et al., Quantum projection noise: Population fluctuations in two-level
systems [653]DOI

D.J. Wineland et al., Squeezed atomic states and projection noise in spectroscopy
[1380]DOI

Ph. Bouyer et al., Heisenberg-Limited Spectroscopy with Degenerate Bose-Einstein
Gases [184]DOI

R. Huesmann et al., Single-Atom Interferometry [642]DOI

L. Salvi et al., Squeezing on Momentum States for Atom Interferometry [1135]DOI

http://doi.org/10.1007/s13538-020-00757-8
http://doi.org/10.1038/s41566-018-0339-5
http://doi.org/10.1103/PhysRevA.34.3127
http://doi.org/10.1103/PhysRevA.33.2127
http://doi.org/10.1103/PhysRevLett.56.2797
http://doi.org/
http://doi.org/10.1016/0003-4916(89)90016-X
http://doi.org/10.1103/PhysRevLett.68.580
http://doi.org/10.1364/JOSAB.10.000524
http://doi.org/10.1038/s41586-019-1287-z
http://doi.org/10.1103/PhysRev.93.99
http://doi.org/10.1103/PhysRevA.47.5138
http://doi.org/10.1103/PhysRevA.47.3554
http://doi.org/10.1103/PhysRevA.50.67
http://doi.org/10.1103/PhysRevA.56.1083
http://doi.org/10.1103/PhysRevLett.82.1611
http://doi.org/10.1103/PhysRevLett.120.033601


36.6. FURTHER READING 2035

36.6.3 on sensing

A.D. Cronin et al., Optics and interferometry with atoms and molecules [310]DOI
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Chapter 37

Nonlinear optics

The discipline of nonlinear optics studies phenomena that occur as a consequence of
modifications of the optical properties of materials by the presence of light. Such
modifications are appreciable only, when the interacting light is sufficiently intense,
i.e. of the order of the interatomic electric field,

Eat =
e2

4πε0a2B
≃ 5.14 · 1011 V/m , (37.1)

which explains that nonlinear effects could only be studied properly after the advent
of the laser.

In general, light-matter interaction is expressed through the relationship between
the polarization induced in the medium, P(ω), with the optical light field, E(ω). In
linear optics this relation can be expressed as,

P̃(ω) = ε0χ(ω)Ẽ(ω) . (37.2)

But in the perturbative regime of non-linear optics this expression must be generalized
to a series of powers of the electric field,

P̃(ω) = ε0[χ
(1)(ω)Ẽ(ω) + χ(2)(ω)Ẽ2(ω) + χ(3)(ω)Ẽ3(ω) + ...] , (37.3)

so that higher order polarization terms, P(n)(ω) = ε0χ
(n)EN (ω), are considered.

Therefore, the phenomena are non-linear in the sense that they depend non-linearly
on the optical field applied to the material. In a more complete treatment, in terms
of the optical properties of materials, P̃ and Ẽ are vector fields and the electric
susceptibility is a tensor. However, to simplify the treatment, we consider the fields
as scalars and χ(n) as constants independent of the frequency ω.

Examples of non-linear optical phenomena are: parametric processes of sum and
difference frequency generation, as shown in Fig. 37.1, optical parametric oscillation,
and the dependence of the refractive index with the optical intensity. Examples of non-
parametric processes are: multi-photonic absorption, stimulated Raman scattering,
and saturated absorption. In the latter example, the absorption coefficient of the
material decreases with increasing light intensity:

α =
α0

1 + I/Is
. (37.4)

Saturated absorption is an example where a perturbative approach is not capable of
providing good results, and its most reliable description is given by the approximation
of a two-level quantum system.

2037
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Figure 37.1: Parametric (a) sum and (b) difference frequency generation. (c) Third harmonic
generation.

It is also important to emphasize that parametric processes are those, in which
the initial and final quantum states of a system are identical. Consequently, the
population of an initial state can only be moved to a virtual state, different in energy
by ∆E, for a short time lapse limited by Heisenberg’s uncertainty principle (ℏ/∆E).
Nonparametric processes are those involving population transfer between real energy
levels, eigenstates of the system’s Hamiltonian. In terms of the electrical susceptibility
of the medium, χ(n) is a real quantity for parametric and an imaginary one for non-
parametric processes.

37.1 The nonlinear optical susceptibility

The description of nonlinear optical phenomena can be approached from a variety of
perspectives, most of which are semi-classical in the sense that the matter is treated
quantum mechanically, while the electromagnetic radiation is treated classically. One
possible description explores the wave nature of the radiation, using Maxwell’s equa-
tions to describe the generation of new spectral components by the nonlinear terms of
the polarization. More generally, this description explains how different frequencies
can be coupled through their nonlinear interaction with the material. It can be shown
that the electromagnetic wave equation in the nonlinear regime is,

∇Ẽ − n2

c2
∂2

∂t2
Ẽ =

1

ε0c2
∂2

∂t2
P̃ , (37.5)

such that P̃ = P̃(1) + P̃nl. In this view, P̃nl acts as a source of frequencies, several of
that are incident.

Although electromagnetic theory is capable of explaining several aspects of non-
linear optics, it is the quantum description that provides explicit expressions for non-
linear optical susceptibility. There are three main motivations for obtaining quantum
expressions:

• They reveal a functional form of the nonlinear optical susceptibility and show
how they depend on microscopic parameters of the material, such as transition
dipole moments and atomic energy levels.

• They exhibit the intrinsic symmetries of nonlinear susceptibility.
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• They can be used to calculate numerically the values of nonlinear susceptibilities.

The numerical predictions of quantum theory for nonlinear optical susceptibilities
are particularly accurate in the case of atomic vapors, because the atomic parameters
of these are known with sufficient precision for the theory to provide reliable results.

Two quantum mechanical formalisms can be used for the calculation of nonlinear
optical susceptibilities. Perturbation theory is used to make predictions on non-
resonant systems, i.e. situations where the photon energy is much smaller than the
energy separation between two eigenstates of the material. On the other hand, when
the interactions are close to resonance, such that it becomes necessary to include relax-
ation processes, the state-density matrix formalism is used. Although this approach
is more complex, it provides better results.

37.1.1 Expansion of the nonlinear susceptibility

In non-linear anisotropic media the susceptibility χ(E⃗) can depend on the electric
field in a complicated manner. Often it is possible to expand it in orders of the field
amplitude,

χ(E⃗) = χ(1)E⃗ + χ(2)E⃗ : E⃗ + χ(3)E⃗ : E⃗ : E⃗ + ...

with (χ(n)E⃗n)µ =
∑
ν1,...,νn

χ
(n)
µ,ν1,...,νn E⃗ν1 ...E⃗νn

, (37.6)

where µ and ν are components of Cartesian coordinates. That is, all the products in
the first line of equation (37.6) are, in fact, tensor products. In isotropic media, only
the first-order susceptibility contributes. We can Fourier transform in equation (37.2)

the polarization P⃗ and the field amplitude E⃗ . Since the susceptibilities χ(n) are time-
dependent, in the frequency domain the product turns into a convolution,

P⃗(r, t) =
∫ ∞

−∞
e−ıωtP⃗(r, ω)dt , (37.7)

where P⃗∗(r, ω) = P⃗(r,−ω).
Hence,

P⃗(r, ω) =
∞∑

n=1

[χ(n) ∗ E⃗(r) ∗ ... ∗ E⃗(r)](ω) (37.8)

=

∞∑

n=1

∫

Rn

χ(n)(−ω, ω1, ..., ωn) ∗ E⃗(r, ω1) ∗ ... ∗ E⃗(r, ωn)δ(ω − ω1 − ...− ωn)dω1...dωn .

The δ-function expressed energy conservation. For the susceptibilities holds,

χ∗(−ω, ω1, ..., ωn) = χ(ω,−ω1, ..., ωn) . (37.9)

There is a n = 0 term, which disappears for isotropic media...! Eq. (37.8) only holds
in the dipole approximation, since r is supposed equal on both sides (local response).
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Now, we suppose for E⃗(t) = 1
2

∑
ω>0(E⃗ωe−ıωt + E⃗−ωeıωt) a sum of monochromatic

waves. Then we must substitute in Eq. (37.7) E⃗(ω) = 1
2

∑
µi
E⃗µi

δ(ω − µi):

P⃗(r, ω) =
∞∑

n=1

∑

µ1,...,µn

1
2nχ

(n)(−ω, µ1, ..., µn)E⃗µ1
...E⃗µn

δ(ω − µ1 − ...− µn) (37.10)

=

∞∑

n=1

∑

ω1, ..., ωn
ω1 + ... + ωn = ω

1
2n−1χ

(n)(−ω, ω1, ..., ωn)E⃗ω1 ...E⃗ωn .

The frequencies ωi do not have to be all different, but the modes can also differ by
their polarizations. We have,

χ∗(−ω, ω1, ω2, ..., ωn) = χ(−ω, ω2, ω1, ..., ωn) . (37.11)

Therefore we can, using the number of permutations n!/m1!m2!..., where m1,m2, ...
are the numbers of equal frequencies ω1, ω2, ..., rewrite the sum in Eq. (37.10),

∑

ω1, ..., ωn
ω1 + ... + ωn = ω

=
∑

ω1, ..., ωn
ω1 + ... + ωn = ω

ω1 ≤ ... ≤ ωn

n!

m!
. (37.12)

From stationary perturbation theory we can deduce,

χ(n)(−ωn+1, ωn, ..., ω1) =
N

n!V ε0ℏn
∑

i

ρ(Ei)M
(n+1)
ii , (37.13)

where the transition hyperpolarizability is,

M
(n+1)
fi = Tr ⟨f |ϵ̂n+1 · d̂ G(Ei + ω1 + ...+ ωn−1 + ωn)× (37.14)

× ϵ̂n · d̂ G(Ei + ω1 + ...+ ωn−1)× ...× ϵ̂1 · d̂ G(Ei + ω1)|i⟩ .

Here G(ω) ≡ ∑i

∫ |Ai⟩⟨Ai|
ω−Eℓ

is the photon propagator for the intermediate level |Aℓ⟩.
γfi describes thus the temporal succession of the absorption processes of the photons
ω1 to ωn.

Since after the total process the atoms again needs to be in the initial state |Ai⟩ we
have ωn+1 = ω1+ ...+ωn. The permutation operator described in (37.12) guarantees
that every permutation of intermediate states appears in the sum. The matrix element

M
(n)
fi also appears in the transition probability 1/τ .

Here are a few nonlinear processes and their susceptibilities:
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absorption and stimulated emission χ(1)(−ω;ω)
two-photon emission χ(1)(−ω;ω)
spontaneous Rayleigh or Raman scattering χ(1)(−ω;ω)
self focusing and defocusing (nonlinear index of refraction) χ(3)(−ω;ω,−ω, ω)
phase conjugation χ(3)(−ω;ω,−ω, ω)
stimulated Rayleigh or Raman scattering (CARS) χ(3)(−ω;ωs,−ωs, ω)
Kerr effect χ(3)(−ω;ωs,−ωs, ω)
third harmonic generation χ(3)(−3ω;ω, ω, ω)
four wave mixing (4WM) χ(3)(−ω;ω1, ω2, ω3)

hyper Raman scattering χ(3)

two-photon absorption χ(3)(−ω;ωs,−ωs, ω)
enhanced spontaneous emission

37.1.1.1 Non-linear spectroscopy

Several light field create in an atom a dielectric polarization d̂. The polarization of
the medium is calculated via P⃗ = N

V Tr ρ̂d̂. Hence, the density operator must be
calculated from the non-linear Bloch equations. It can be expanded in perturbation
orders of susceptibilities, P⃗ =

∑
n χ

(n)E⃗1 · ... · E⃗n. The polarization radiates a light

field according to □E⃗d = ¨⃗P.

37.1.2 Four-wave mixing

Assume motionless atoms. In a gas cell, a non-linear polarization develops,

P(ω) = χ(1)(ω)Ep(ω) + χ(3)(ω)E∗s (ωs)Ep(ω)Es(ωs) . (37.15)

The four-wave mixing (4WM) procedure by χ(3)(ω) can be interpreted as a pertur-
bation series,

ρ22
Es−→ ρ21

E∗s−→ ρ11
Ep−→ ρ02

P−→ ρ00 . (37.16)

The time-reversed undergoing phase-conjugation wave is perfectly anti-collinear
and has the same frequency. The phase-matching condition kks → 1 must only hold
for one-photon transitions. For two-photon transition arbitrary kks are acceptable.

The coherent anti-Stokes Raman scattering (CARS) is related to 4WM. Phase-
matching is necessary if the atomic states are unchanged by the process.

37.1.3 Optical parametric oscillator

An optical parametric oscillator is a device exhibiting a resonance, which driven with
a specific phase lag displays amplification. The optical parametric oscillators (OPO)
and the optical parametric amplifier (OPA) are common devices of nonlinear optics.
In quantum language terms like â†ĉ†, which describe the creation of entangled pairs
of particles are typical for OPAs.
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37.1.4 Optical bistability

The phenomenon of optical bistability can be observed in lasers and passive cavities
[886]. Optical bistability can also be induced by atomic motion [942].

37.1.4.1 Dispersive bistability

Consider a ring cavity with a two-level medium inside resonantly pumped by a laser.
The dispersive optical bistability is easily explained as the medium under the influence
of the pump laser shifting the refractive index and thus the cavity resonance away
from the incoupled laser beam, so the pump transmission ceases. Assume the phase
shift is β = β0 + β2IT . The transmitted intensity follows an Airy-function, which
close to resonance resembles a Lorentzian,

IT
I

=
1

1 +Rβ2/T 2
(37.17)

or,

I = IT

[
1 + (β0 + β2IT )

2
R/T 2

]
. (37.18)

This expression gives the typical bistable curve.

37.1.4.2 Absorptive bistability

The absorptive optical bistability occurs upon bleaching of the medium. With α =
α0/(1 + IT ),

IT
I

=
1

(1 + αl/T )
2 (37.19)

or,

I = IT

[
1 +

α0l

T (1 + IT )

]2
. (37.20)

This expression gives the typical bistable curve.

37.1.5 Exercises

37.2 Quantum interference

We have seen earlier that a dark resonance in Λ-shaped three-level systems create
superposition states between the two stable ground states which allow the adiabatic
elimination of the excited state. Dark resonances may be understood as destructively
interfering excitation paths at Raman-coherences between inneratomic transitions.
Quantum interference is at the origin of various other phenomena which are discussed
in the following sections.
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37.2.1 Lasing without inversion

The question of the necessity of population inversion to construct a laser has been the
subject of debates. Indeed, even an ordinary two-level system may exhibit gain with
a small frequency interval [911] known as Mollow gain. Lasing without population
inversion may also result from a splitting of emission and absorption spectra caused
by atomic recoil as in the example of CARL [173].

Various schemes of a laser without inversion (LWI) have been proposed. Here is
one of them [947]. We will discuss an example in Exc. 37.2.7.1.

Figure 37.2: Dressed states level scheme for LWI. Quantum interference between two possible
Raman transitions (green) leads to a cancellation of the ground state population. When the
upper level |h⟩ is incoherently pumped, gain can be reached for a weak probe field. Inserting
the atoms in a cavity one can reach lasing [636].

37.2.2 Correlated spontaneous emission lasing

In a V -shaped three-level system in which the excited levels are coherently coupled,
the spontaneous emission is correlated under certain circumstances. This feature may
be used to suppress the relative noise beneath the shot noise limit and has triggered
the idea of correlated spontaneous emission (CEL) lasing. The CEL is described by
a complicated laser theory. Various simplifications allow to boil it down to an Adler-
Langevin equation (this is similar to simplifying CARL into Kuramoto), describing
the evolution of the phase difference θ ≡ θ1 − θ2 between the lasers,

dθ

dt
= a− b sin θ + ξ1(t) + ξ2(t) (37.21)

⟨ξk(t)⟩ = 0 and ⟨ξ†k(t)ξl(s)⟩ = 2Dklδ(t− s) ,

where a is the frequency difference and b the coupling constant.
For the case of purely additive noise Dk ̸=l = 0 [1161], the equation is identical

to the Kuramoto equations for two coupled oscillators, as shown in Sec. 42.6.4. This
case which describes the phase-locked laser (PLL) is a Kuramoto system. The CEL in
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contrast is defined by the fact that the noise is multiplicative (maximum correlation
is obtained for D11 +D22 = 2Re D12).

The fact that the laser coupling reduces the drift of θ(t) leading to a stationary
value θ(∞) is not necessarily due to CEL, but already occurs in Kuramoto systems.
In fact phase-locking may occur independently from phase noise reduction. For inter-
ferometric purposes noise reduction without locking is preferable [1251].

37.2.2.1 Stochastic modulation peak

The random occurence of quantum jumps gives rise to a sharp Lorentzian peak called
stochastic resonance on top of a fluorescence peak [594].

37.2.3 Superluminal group velocity

The phase velocity vph = ω/k of Fourier components of a light pulse is certainly
not limited to the speed of light. But even the group velocity can, in highly non-
dispersive media exceed the speed of light vg = dω/dk > c, or even be negative.
The superluminal group velocity without deformation of the pulse shape has been
observed [762] via double-peaked Raman amplification. It has been argued that a
properly defined signal velocity of signal transfer is limited by increased quantum
noise to the subluminal regime, vs < c.

37.2.4 Dark-state polaritons

We consider a gaseous medium made up of λ-shaped three-level system whose one
transition is driven by a low-atomnumber photonic quantum field and the other by a
classical laser. We define collective slowly-varying atomic operators, setup the Hamil-
tonian, write down the propagation equation for the optical field Heisenberg operators
in the slowly-varying amplitude approximation and the Heisenberg-Langevin equation
for the atomic evolution. If we assume very low photonnumbers in the optical quantum
mode, and a rather slow variation of the classical mode Rabi frequency (perturbative
and adiabatic approximation), we obtain simple equations describing the propaga-
tion of the light pulse and the atomic excitation. The canonical transformation to
the bosonic quasi-particle quantum field allows the interpretation of the propagating
perturbation in terms of the dark-state polariton [455]. This type of polaritons can
be viewed as mixtures of photonic and Raman-like matter branches.

The propagation velocity depends on the classical control field, which should allow
the slowing, stopping and reaccelerating of the light pulse [586, ?], where we define
the propagation velocity as vg = (dE/dt)/(dE/dz). This is achieved by mapping the
shape of the light pulse, i.e. the photonic quantum correlations, to collective atomic
(internal) (Raman) coherences. This does not require degeneracy of the external
atomic states. We have seen the transfer of coherence between different types of
degrees of freedoms earlier at the example of quantum collaps and revival in Jaynes-
Cummings type couplings.

Unlike solitons polaritons are not shape-dependent. Look up analogy to excitons
in solids !

Particularly interesting is the possible use of dark-state polaritons for creating non-
classical atomic quantum states, entangling distant atomic samples, studying quan-
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tum scattering in systems involving coherent cold collisions and investigating their
impact collective excitations of the center-of-mass motion like solitons and vortices.

37.2.5 Brillouin scattering

Stimulated scattering of phonons is called stimulated Brillouin scattering (SBS). Like
Raman-scattering (SRS) Brillouin-scattering is a limiting factor for the transmission
efficiency in optical fibers. It is used in acousto-optic modulators (AOM). While SBS
is based on the exchange of phonons between atoms bound in crystals, SRS is based
on the exchange of phonons between atoms bound in molecules.

Raman-scattering (in a restricted historical sense) is very common technique of
molecular spectroscopy. The process is Rayleigh-scattering at an electronic transition,
but towards a different vibrational substate. Brillouin-scattering also involves the
motional state of the scatterer, but its center-of-mass motion rather than some internal
degree of freedom. It is also related to polariton scattering in solids, which produces
optical phonons, rather than acoustic phonons.

If a strong electromagnetic field (pump laser) is irradiated into a medium (typi-
cally a crystal or a fluid) it produces a time-varying electrostrictive strain, which can
be understood as the reaction force of particles dislocated from their equilibrium po-
sition. The strain is quantized into phonons and may drive a sound wave. This wave
modulates the optical dielectric constant ε and thus create a periodic polarization
P⃗. This polarization may now interact with the incident electric field (pump laser

ω2,k2, E⃗2). The resulting energy exchange can, under suitable circumstances, lead to

simultaneous amplification of a probe wave (ω2,k2, E⃗2) and a sound wave (ωs,ks, us).

Let us consider a 1D geometry, kj = kj êz and E⃗j = Ej êx. (More general geome-
tries can be considered [1407]). The pump field E2(t, z) causes a strain ∂us/∂z via
longitudinal displacements us(z, t) of test volumes. This strain produces a modula-
tion of ε by δε = −γ∂us/∂z, where γ is the strain coefficient (or coupling strength).
The modulation of the dielectric constant δε now modulates the interaction energy
δU = − 1

2δεE2, which exerts work p∂us/∂z = δU against the pressure p. The pres-
sure modulation creates a force F = −∂p/∂z = 1

2γ∂E22/∂z. We can now set up a
Fokker-Planck type force equation,

ρ
∂2us
∂t2

=
γ

2

∂E22
∂z
− η ∂us

∂t
+ T

∂2us
∂z2

, (37.22)

where ρ is the mass density, T the elastic constant and η acoustic dissipation. vs ≡
ωs/ks =

√
T/ρ is the free propagation velocity of sound. Simultaneously we know

that the light wave propagates like,

∂2Ej
∂z2

+ µε
∂2Ej
∂t2

+ µ
∂2PNL,j
∂t2

. (37.23)

We insert the ansatz Ej(t, z) = 1
2E0j(z)eı(ωjt−kjz)+c.c. and us(t, z) = 1

2u0s(z)e
ı(ωst−ksz)+

c.c. first into the above equations. We use the approximations k2sus ≫ d2us/dz
2 ≪

ksdus/dz and |∂(E2E∗1 )/∂z| ≪ |ksE2E∗1 | and focus on the real parts. Assuming that
the pump field E2 is undepleted, stimulated Brillouin-scattering is described by the
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following set of equations,

dE∗1
dz

= −α
2
E∗1 −

γk1ks
4ε1

E∗2us (37.24)

dus
dz

= − η

2ρvs
us −

γ

8ρv2s
E2E∗1 .

Here ρ is the mass density, optical losses are described by α, and η is the dissipation
constant for phonons. ε1 ≈ ε0. The scattering satisfies the Bragg condition k2−k1 =
ks. The above equations describe exponential gain and threshold behavior for E1 and
us. For backscattering k1k2 = −k1k2 the rate of growth for the probe E1 is influenced
by the values of E1 lying ahead in the direction k1. This is by virtue of the sound beam
propagating in opposite direction to E1 and provides the positive feedback being at
the origin of exponential gain.

The equations are reminiscent to the CARL equations. The difference is the nature
of the mediating force field: The CARL force is mediated by photons. The mediation
is thus instantaneous. Photons do not require a medium in order to propagate. In
contrast, the Brillouin-gain is mediated by phonons. Phonons propagate through a
gas by collisions. Sound needs a medium to propagate. In dilute gases where CARL is
observed, collisions are totally neglegible. Brillouin-scattering may lead to bunching,
which propagates along ks. But similar to water waves, which do not transport the
water molecules, the bunching does not lead to a net transport of atoms.

Just like CARL and the superradiant Rayleigh scattering in BECs SBS can be
understood as being mediated by dipole-dipole interactions (i.e. the exchange of real
or virtual photons between atoms). In a BECs SBS can be interpreted as phonon-like
excitations (smaller momentum transfer) due to dipole-dipole interactions [514], while
CARL are particle-like excitations due to dipole-dipole interactions (the nature of
scattered particles changes from recoiling atoms to phonons). Note that while ultralow
temperatures are necessary, these effects are not base on superfluidity, i.e. binary
collisions. Thus the speed of sound is not the Bogolubov sound. The question is
whether quantum degeneracy plays a role.

37.2.6 Selective reflection spectroscopy

The considered system is light at the interface of a dielectric and a gas phase. The
gas may influence the reflection behavior of the light [165, 1206, 953, 1028], but the
light may also influence the atomic excitation and motional state.

The range of interesting questions include: 1. The gas may absorb resonant light
from an evanescent wave, it should be possible to image this. 2. Non-resonant light
is phase-shifted by the gas and in the same time generates a dipole potential. Is it
possible to do phase-contrast imaging. 3. Light force in near-fields: What is the force
acting on atoms: S or k? The response may be tested via the Goos-Hänchen shift.

The propagation direction of the phase fronts of a field arctan Im E
Re E = kz − ωt

may be different from the flux S = E⃗ × B⃗. In the evanescent wave k is parallel to the
surface [1233].
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Figure 37.3: (code) Evanescent wave.

37.2.6.1 Fresnel’s formulas

The reflected light comes from interference of reflection at the interface and the gas
polarization [953]. The reflection at the interface is given by the Fresnel formulae, the
response of the gas polarization is labeled S,

E⃗1(r) = E0




2nb
nβ+b sinϕ

2nb
nb+β

− 2nb
nβ+b cosϕ


 and E⃗2(r) = E0




nβ−b
nβ+b sinϕ

nb−β
nb+β

−nβ−bnβ+b cosϕ


+ S




β2−α2

nβ+b
1

nb+β
β2−α2

nβ+b


 .

(37.25)

For small angles of incidence ϕ (partial reflection, no evanescent wave) β =
√

1− n2 sin2 ϕ
is real. Then,

S =
ık

ϵ0

∫ ∞

0

dz0e
ıβkz0P0(z0) , (37.26)

is the sum of the contributions of the polarizations at different places shifted by the
displacement factor eıβkz0 away from the surface. In the evanescent case, S is the
Laplace transform of the polarization at different phases kz0 yields the spectrum of
the response arising from different penetration depths ıβ.
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Figure 37.4: Selective reflection.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Nonlinearoptics_EvanescentWave.m
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The polarization at a given location,

1

ϵ0E1
P0(z) =

ℏΩN
I1

∫
d3vW (v)eıβkz [θ(vz)σ+(v, z/vz) + θ(−vz)σ̄+(v)] . (37.27)

The Maxwell-Boltzmann velocity distribution W (v) =
(
3/2πv20

)3/2
e−3v

2/2v20 is nor-

malized, where mean velocity v0 =
√
kBT/m. The definition of the Laplace transform

is,

σ̂+(v, s) =

∫ ∞

0

dte−stσ+(v, t) . (37.28)

Solution of two-level Bloch equations,

sσ̂+(v, s) =
ıΩ

2

ı (∆− kv) + γ + s

(∆− kv)
2
+ γ+s

Γ+sΩ
2 + (γ + s)

2 . (37.29)

The steady-state simply follows from σ̄+(v) = lims→0 sσ̂+(v, s). We chose Γ =
(2π)6 MHz and γ = Γ

2 ,

S

E1
= −NℏΩ

2βI1

∫
d3vW (v) [θ(vz)(−2ıβkvz)σ̂+(v,−2ıβkvz) + θ(−vz)σ̄+(v)] . (37.30)

37.2.6.2 Gas of two-level atoms

Plugging in the solution of the Bloch equations,

Re
S

E1
= −NℏΩ

2βI1

(
3

2πv20

)3/2

Re

∫
dvxdvydvze

−3v2x/2v20e−3v
2
y/2v

2
0e−3v

2
z/2v

2
0× (37.31)

× ıΩ

2

[
θ(vz)

ı(∆− kxvx − kyvy − kzvz) + γ − 2ıβkvz

(∆− kxvx − kyvy − kzvz)2 + γ−2ıβkvz
Γ−2ıβkvz Ω

2 + (γ − 2ıβkvz)2

+ θ(−vz)
ı(∆− kxvx − kyvy − kzvz) + γ

(∆− kxvx − kyvy − kzvz)2 + γ
ΓΩ

2 + γ2

]
.

For normal incidence kx = ky = 0, kz = k, and β = 1 and neglecting collisions
γ = 1

2Γ,

Re
S

E1
= −NℏΩ2

4I1

(
3

2πv20

)1/2 ∫
dvze

−3v2z/2v20× (37.32)

×Re


θ(vz)

−∆+ 3kvz +
ı
2Γ

(∆− kvz)2 +
1
2Γ−2ıβkvz
Γ−2ıβkvz Ω2 +

(
1
2Γ− 2ıkvz

)2

+θ(−vz)
−∆+ kvz +

ı
2Γ

(∆− kvz)2 + 1
2Ω

2 + γ2

]
.
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Define a normalized function Φ = k4v0
NA Re SE1 = 2πI1kv0

NℏΩ2 Re S
E1

,

Φ = −
√

3π

8

∫
dkvze

−3v2z/2v20Re


 θ(vz)

(
−∆+ 3kvz +

ı
2Γ
)

(∆− kvz)2 +
1
2Γ−2ıβkvz
Γ−2ıβkvz Ω2 +

(
1
2Γ− 2ıkvz

)2

+
θ(−vz)

(
−∆+ kvz +

ı
2Γ
)

(∆− kvz)2 + 1
2Ω

2 + γ2

]
. (37.33)
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Figure 37.5: (code) Selective reflection profile.

37.2.6.3 Cold atoms

The vapor pressure of Rb at 100C is P = 1.5 × 10−4 hPa. The density is then
n = p/kBT = 3× 1018 m-3. If there is no buffer gas the distance covered between two
collisions is

√
kBT/m/γcoll = 1/σn = 1mm.

The atomic excitation reaches its steady-state value during a time on the order of
1/Γ. In a thermal gas the distance covered by a thermal gas atom during this time
is much larger than an optical wavelength,

√
kBT/m/Γ ≈ 4 µm. In contrast, if the

atoms move less than a wavelength during this time, the Voigt theory of complex
refraction index is recovered. In Eq. (37.30) we may set kvz = 0,

S

E1
= −NℏΩ

2βI1

∫
d3vW (v)σ̄+(v) . (37.34)

As long as kv̄ ≫ Γ, the Voigt profile is dominated by temperature, the Lorentz
profile σ̄+ can be approximated by a δ-distribution and the dependence on detuning
is averaged out by the integral.

37.2.6.4 Ultracold atoms

At even lower temperatures, kv̄ ≪ Γ, the Doppler width is narrower than the natural
linewidth. E.g. at 1µK the atom moves less than 0.3 nm during a radiative lifetime.
Let us assume low velocities and far detunings ∆≫ kv, so that the internal dynamics
does not depend much on atomic motion. Eq. (37.27) then reads,

1

ϵ0E1
P0(z) =

ℏΩN
I1

(
3

2πv20

)1/2

eıβkz
∫
dvze

−3v2z/2v20 σ̄+(0) . (37.35)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Nonlinearoptics_SelectiveReflectionProfile.m
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If the atoms were immobile, they would all be in steady-state, regardless of their
motion. Using,

δ(x− x0) = lim
ε→0

1√
πε
e−(x−x0)

2/ε , (37.36)

Eq. (37.35) can be rewritten,

P0(z)

ϵ0E1
=

ℏΩN
I1

eıβkz
∫
dvzδ(vz)

[
θ(vz)σ+(0, z/vz) + θ(−vz)

ıΩ

2

ı∆+ γ

∆2 + 1
2Ω

2 + 1
4Γ

2

]
.

(37.37)

Finally,

1

ϵ0E1
P0(z) =

ℏΩNσ̄+
I1

eıβkz . (37.38)

Hence, for z > vztss or vz < 0 there is no z-dependence. The only case when z
dependence can occur is immediately after a collision, i.e. during the time tss =
2π/
√
∆2 +Ω2 it takes to approach steady state. The distance v0tss covered during

this time is short. The polarization is homogeneous without atomic motion.

37.2.6.5 Crossed Kerr effect

The most interesting thing is the fact that matter wave phases are proportional to
the light field intensity and the light phases to the matter wave intensity: δϕψ ∝ δ|E|2
and δϕE ∝ δ|ψ|2. This leads to quantum nondemolition measurements [1033, 1034,
55, 304].

The question arises, why only a narrow region near the surface contributes to the
selective reflection signal, and whether this fact gives rise to a dipole force. Let us
first find out the reason for spatially inhomogeneous polarization near the surface.

Spatial dispersion only results from the symmetry-breaking effect of the wall on the
atomic motion. Hence, we need to keep the atomic motion in consideration. Anyway,
even if there were spatial dispersion leading to inhomogeneous density, is would be
washed out by thermal motion quickly.

Looking at the selective reflection signal, the lineshape is approximately the deriva-
tive of a Gaussian distorted by an asymmetry, which disappears for lower tempera-
tures. The width is on the order of the Doppler-width kv0. As the temperature is
reduced the lineshape narrows until it has becomes the derivative of a Lorentzian with
the natural linewidth Γ, as predicted by formula (37.37).

The knackpoint is now using Eq. (37.26),

S = E1
ℏΩN
2I1

∫ ∞

0

d(2ıkz0)σ̄+e
2ıβkz0 = E1

ℏΩN
2I1

σ̄+

∫ ∞

0

dse−βs = E1
ℏΩN
2I1

σ̄+
1

β
.

(37.39)
Substituting s ≡ −2ıkz0.

The question about the width of the contributing region is probably in the Laplace
transform, which is known to exhibit memory-like behavior.
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37.2.7 Exercises

37.2.7.1 Ex: Lasing without inversion

Explain the phenomenon of lasing without inversion in the dressed states picture for
a V-type three-level system.

Solution:

37.3 Further reading

G. Kurizki et al., Free-electron lasing without inversion by interference of momentum
states [761]DOI

D. Bloch et al., Atom-wall interaction [152]DOI

G. Nienhuis, Nonlinear selective reflection from an atomic vapor at arbitrary inci-
dence angle [953]DOI

E. Pleghaar, Quantitative investigation of the effect of resonant absorbers on the
Goos-Hänchen shift [1028]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Nonlinearoptics_QuantumInterference01.pdf
http://doi.org/10.1103/PhysRevLett.70.1433
http://doi.org/arxiv.org/abs/physics/0503146
http://doi.org/10.1103/PhysRevA.38.5197
http://doi.org/10.1103/PhysRevLett.70.2281
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Chapter 38

Atomic motion in force fields

So far – and especially in Sec. 24.7.2– we analyzed the motion of quantum particles
in potential landscapes without specifying the physical origin of the potentials. We
know the gravitational force, which can be derived from the Earth’s homogeneous
attraction,

F = −∇Vgrav = −∇(mgz) = −gmêz . (38.1)

Another fundamental force comes from electromagnetism. We have already studied –
mainly in Sec. 30.4– the reaction of the electronic shell in atoms subjected to applied
electromagnetic fields.

In contrast, the present chapter is devoted to the motion of the atomic center-of-
mass subject to forces resulting from interactions with electromagnetic fields. We will
begin, in the first section, with electromagnetic forces of the Coulomb-Lorentz type
acting on charges (e.g. ions), permanent electric dipoles (e.g. polar molecules), or per-
manent magnetic dipoles (e.g. paramagnetic atoms). Also, more complex situations
will be discussed, such as the scattering of light by confined atoms, atoms interacting
with optical cavities, and adiabatic potentials.

The second section will entirely be devoted to the forces exerted by light beams,
in particular the radiation pressure and the optical dipole force, which are nowadays
widely used in atomic cooling and trapping experiments. We will leave the issue of
the application of these forces to Chp. 43 and concentrate here on the (semiclassical
or quantum) derivation and the interpretation of the forces. In fact, to understand
optical forces acting on atoms, we need to consider their internal degrees of freedom.

Apart from the degrees of freedom related to their center-of-mass motion (kinetic
or potential energy), many quantum objects are endowed with internal degrees of free-
dom, for example, the motion of electrons inside atoms or molecules. In the simplest
case, the Hamiltonian of such a system is composed of an outer part, comprising the
kinetic and the potential energy, and an inner part counting for the excitation energy
ℏω0 of an internal state |e⟩,

Ĥatom =
p2

2m
+ V (r) + ℏω0|e⟩⟨e| . (38.2)

The time scale of the electronic motion is usually very rapid compared to the motion
of the nucleus, where (almost) the entire mass of the atom is concentrated. Therefore,
the external (nuclear) dynamics decouples from the internal (electronic) one, which
allows the separation of the total wavefunction in two parts,

|ψ⟩ = |ψ⟩ext|ψ⟩ele , (38.3)

2053
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where for a simple two-level atom, |ψ(t)⟩ele = cg(t)|g⟩ + ce(t)|e⟩, with the atomic
ground state |g⟩ and the excited state |e⟩. The external states are eigenstates of the
momentum in the case of a free particle, |ψ⟩ext = |p⟩. For particles confined in a po-
tential the external states are the vibrational eigenstates, |ψ⟩ext = |n⟩. The temporal
evolutions of the internal and external degrees of freedom are governed by indepen-
dent Schrödinger equations. For cold atomic clouds the kinetic energy is much smaller
than the excitation energy, which allows the separation of the energy scales. That is,
the internal degrees of freedom are frozen in the ground state. Many phenomena, for
example, Bose-Einstein condensation and the dynamics of condensates are described
in this regime.

Figure 38.1: The internal degrees of freedom of cold atoms are thermally frozen.

Nevertheless, the fact that it is thermally frozen does not prevent the intentional
excitation of the internal degree of freedom by irradiating electromagnetic fields tuned
close to resonances and coupling electronic energy levels. In the case of coupling, the
external and internal degrees of freedom must both be considered.

38.1 Electromagnetic forces

Obviously, in order to allow for forces acting on the atomic center-of-mass, the atomic
Hamiltonian must contain terms depending on the center-of-mass coordinates:

F = −⟨∇Ĥatom:field⟩ . (38.4)

We will see shortly that some of the terms may be dissipative, other conservative.
The impact of electromagnetic fields on the internal dynamics of atoms has already

been studied in the Chp. 30. Here, we will focus on the force on the center-of-
mass exerted by the gradient of electromagnetic potentials, where the Hamiltonian in
Eq. (38.4) of a charge interacting with electromagnetic fields is obtained in minimum
coupling (30.11) by,

Ĥatom:field =
1

2m
(−ıℏ∇− qA)2 + qΦ ≃ −ℏ

2

2m
∇2 +

ıℏq
m

A · ∇+ qΦ . (38.5)

From this formula we can, in principle, calculate all electromagnetic forces.
The coupling of external and internal degrees of freedom is mediated by the pho-

tonic recoil transferred to the atom during absorption and emission processes. That



38.1. ELECTROMAGNETIC FORCES 2055

is, the feature that the interaction with light simultaneously excites the atom and
exerts a force couples the degrees of freedom. This fact manifests itself in the Hamil-
tonian of the atom interacting with a light field (35.17) by the appearance of terms
joining operators acting on different degrees of freedom,

Ĥ = ℏωâ†â+ Ĥatom:field + Ĥatom (38.6)

where Ĥatom:field = ℏg(r̂)eık·r̂â†σ̂ + c.c. ,

where σ̂ ≡ |g⟩⟨e| and â ≡ ∑n n|n⟩⟨n + 1| and ℏg(r̂) ≡ d12 · E⃗1(r̂) is the coupling
constant or one-photon Rabi frequency derived from (14.10). The Hamiltonian is that
of the Jaynes-Cummings model, except that in addition to the field operators â and
the atom transition operators σ̂, appears an operator for the position of the atom r̂,
whose quantum features we have not taken very seriously so far. It appears in the
Rabi frequency and also in the term eık·̂r. Now, we must remember, that

Urecoil = e−ık·̂r = |p+ ℏk⟩⟨p| (38.7)

is the unitary operator of the photonic recoil in the absorption process introduced
in Sec. 23.5.3 and extensively discussed in Sec. 24.6.2. We shall shortly see, that it
is precisely this term in the Hamiltonian that gives rise to all phenomena related to
light forces on atoms.

The presence of the position operator in the Jaynes-Cummings Hamiltonian in-
troduces a new degree of freedom. With no external potential (that is, the sys-
tem is invariant to spatial translations), this degree of freedom is simply the atomic
center-of-mass momentum, such that the new set of quantum numbers is |j, n,p⟩.
Strictly speaking we have to span the whole Hilbert space by an external product,
Ĥele ⊗ Ĥfield ⊗ Ĥext.

Often a semi-classical description treating the light field a classically is sufficient,
â ≃ √n with n the number of photons. Then the Hamiltonian (38.6) simplifies to,

Ĥatom:field = ℏΩ(r̂)eık·r̂σ̂ + c.c. , (38.8)

with the Rabi frequency Ω(r) =
√
ng(r).

38.1.1 Forces on charges and electric dipole moments

As shown in Eq. (30.8), the equations (38.4) and (38.5) (obviously) lead to Coulomb-
Lorentz forces on charges and currents.

In atomic optics, the Coulomb-Lorentz force is used, for example, to accelerate or
trap ions (see Sec. 43.5) and other electrically charged particles.

Atoms naturally do not exhibit permanent electric dipole moments, when they are
not subject to external electric fields. In contrast, polar molecules (such as heteronu-
clear dimers), which have permanent electric dipole moments can have their motion
be influenced by inhomogeneous electric fields (see Sec. 43.5.3).
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38.1.2 Forces on magnetic dipole moments

Neutral atoms are insensitive to electric fields. But as we have already seen in Chp. 30,
the orbital motion of the electrons corresponds to a circular current generating a per-
manent magnetic dipole moment µ⃗, which can interact with external magnetic fields.
We have already shown in the calculation (30.15) and (30.19) that the interaction
energy (38.5) can be written as,

Ĥmagn = −µ⃗J · B⃗ = −gJµB
ℏ

J · B⃗ −→ −gJµB
ℏ
|J| · |B⃗| = −gJµBmJB , (38.9)

where the Landé factor is given by the formula (30.21),

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (38.10)

Here, J = L + S is the total angular momentum resulting from the coupling of the
total angular orbital momentum and the total spin of all electrons. If the atom has
a nuclear spin I other than zero, then F = J + I replaces J in Eq. (38.9), and the
g-factor generalizes to (30.35) 1,

gF ≃ gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
. (38.11)

In Sec. 30.2 we used the formula (38.9) to calculate the Zeeman shift of internal
energy levels. But, according to the formula (38.4), the interaction also generates a
force acting on the center-of-mass of atom,

f = −gFµBmF∇B . (38.12)

In case of absence of hyperfine structure we simply replace F by J .
Obviously, force is conditioned by the existence of a gradient of the absolute value

of the magnetic field. It was first used in the famous Stern-Gerlach experiment,
which led to the discovery of the electron (see Sec. 25.3.3). In atomic optics (see
Sec. 43.4), this force is widely used to create magnetic traps for cold atoms. Resolve
the Excs. 30.2.8.2, 38.1.4.1, and 38.1.4.2.

38.1.3 Adiabatic potentials

Adiabatic potentials can be used to realize more complicated trapping geometries
[299]. To study adiabatic potentials we consider the two-level system | 12 , 12 ⟩ ↔ |12 ,− 1

2 ⟩
coupled by an incident radiation (e.g. a radiofrequency). A generalization to multilevel
systems F > 1

2 is simple. The dressed states Hamiltonian of our two-level system is
a 2× 2 matrix,

Ĥadiab(z) =

(
1
2µBgFB(z)− 1

2ℏω
1
2ℏΩ

1
2ℏΩ − 1

2µBgFB(z) + 1
2ℏω

)
. (38.13)

1Note that the formula only applies to weak fields. For strong fields the Zeeman unfolding changes
to the Paschen-Back unfolding of the hyperfine structure.
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For simplicity, we assume a one-dimensional geometry, B = B(z), but we can easily
generalize to three dimensions. The eigenvalues of Ĥ are,

E±(z) = ± 1
2

√
ℏ2Ω2 + [µBgFB(z)− ℏω]2 . (38.14)

Sufficiently far from resonance, ℏΩ≪ |µBgFB(z)− ℏω|, we obtain,

E±(z) ≃ ± 1
2 [µBgFB(z)− ℏω]± ℏ2Ω2

4[µBgFB(z)− ℏω]
, (38.15)

where the second term can be interpreted as the dynamic Stark shift of the energy
levels.

To illustrate the influence of the radiofrequency, we calculate the potential en-
ergy and the dressed states assuming a linear 1D magnetic field gradient B(z) ≡ zb.
Fig. 38.2(a) illustrates the radiofrequency coupling and Fig. 38.2(b) the dressed states
for two magnetic substates coupled by a radiofrequency. The minimum emerging in
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Figure 38.2: (code) (a) Potential energies for a hyperfine structure F = 1
2
with a g-fator

of g = − 2
3
(as e.g. in the ground state 2S1/2 of 6Li). A radiofrequency (arrow) couples the

substates mF = ± 1
2
. Here, b = 200G/cm and ω = 2π× 5 kHz. (b) Uncoupled dressed states

(dotted line), coupled dressed states (solid line), and dynamic Stark shifts (dash-dotted)

approximated far away from resonance. The Rabi frequency is Ω = 2π × 700Hz.

the upper curve of Fig. 38.2(a) may serve as a confinement potential. Using an rf-
radiation composed by several frequencies, potential minima can be realized at several
distances z. In Exc. 38.1.4.3 we calculate an example.

In the dressed states basis with the Hamiltonian (38.13), the force is calculated
from,

F(r) = ⟨F̂(r)⟩ = −Tr atom:laser ρ̂∇rĤadiab = −
∑

n,j

⟨n, j|ρ̂∇rĤadiab|j, n⟩ . (38.16)

We consider only one dimension and disregard the degrees of freedom of the radiation
field,

F (z) = −Tr atom:laser ρ̂∂zĤadiab (38.17)

= −
∑

j

⟨j|ρ̂∂z
(
µBgFB

2 |1⟩⟨1| − ℏω
2 |1⟩⟨1| −

µBgFB
2 |2⟩⟨2|+ ℏω

2 |2⟩⟨2|+ ℏΩ
2 e

ıkzσ̂+ + c.c.
)
|j⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_AdiabaticPotential.m
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Here we neglect any possible position dependence of Ω,

F (z) = − 1
2µBgF∂zB

∑

j

⟨j|ρ̂(|1⟩⟨1| − |2⟩⟨2|)|j⟩ = − 1
2µBgF∂zB(ρ11 − ρ22) . (38.18)

If the atoms enter the coupling area adiabatically, the populations of the adiabatic
potentials will only depend on z. This is analogous to the adiabatic transfer via adi-
abatic sweeps or STIRAP pulse sequences. If the atoms are too fast, the populations
also depend on history (i.e. the recent trajectory of the atoms), which can result in
Landau-Zener transitions to other (possibly untrapped) states.

38.1.4 Exercises

38.1.4.1 Ex: The Stern-Gerlach effect

Consider initially motionless 87Rb atoms trapped in a superposition of two the trap-
pable Zeeman states |F,mF ⟩ = |2,+2⟩ and |1,−1⟩. Suddenly a magnetic gradient of
∂zB = 100G/cm is applied for 2ms. Calculate the spatial separation of the atoms
being in either one of the two states after 10ms of ballistic expansion.

Solution: We first need to calculate the Landé-factors for the states using I = 3
2 .

From formulae (30.21) and (30.35) we get for the ground state 2S1/2,

gJ = 2 and gF =

{
− 1

2 for F = 1

+ 1
2 for F = 2

.

Hence, atoms in the state |2,+2⟩ are accelerated by the force,

F = −∂z(−µBgFmFB) = µB∂zB
{
− 1

2 (−1) for F = 1

+ 1
2 (2) for F = 2

.

After tfrc = 2 ms the force has accelerated the atoms to a final velocity,

v =
F

m
tfrc ,

and after tbll = 10 ms ballistic expansion the displacement is,

z =
F

2m
tfrctbll = 1.3mm

{
1
2 for F = 1

1 for F = 2
.

38.1.4.2 Ex: Potential for magnetic trapping

Invent a potential for magnetic confinement.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag02.pdf
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Solution: The simplest example is, of course, the quadrupolar potential generated by
a magnetic field produced by current-carrying coils in anti-Helmholtz configuration,

B⃗ =




x

y

−2z


 ∂B ,

yielding,

B = ∂B
√
r2 + 4z2 .

Another example, is the Ioffe-Pritchard trap generated by a magnetic field such as,

B⃗ =




x∂B
−y∂B
B0 + αz2


 .

This corresponds to a linear quadrupole along the z-axis superposed to a magnetic
bottle along the same direction and yields,

|B| =
√
x2∂B2 + y2∂B2 + (B0 + αz2)2

≃
√
B20 + r2∂B2 + 2αB0z2 ≃ B0 +

∂B2

2B2
0

r2 +
α

B0
z2 ,

for small enough field curvature α close to the center of the potential.

38.1.4.3 Ex: Adiabatic potentials

An adiabatic potential can be used to create more complicated trapping potentials
[299]. To study these potentials we consider a system of two Zeeman states m = 1

2
coupled by a radiofrequency radiation ℏω. The dressed states Hamiltonian of our
two-level system is a 2× 2 matrix,

Ĥ =

(
1
2µBB − 1

2ℏω
1
2ℏΩ

1
2ℏΩ − 1

2µBB + 1
2ℏω

)
,

defining the energetic zero in the middle between the states. Now, assume that the
magnetic field grows linearly along the axis z, B(z) = z∂zB, where ∂zB is the gradient.
Also assume that the radiofrequency is tuned in resonance with the difference of the
energies of the Zeeman states at some distance z0 such that, ℏω = µBz0∂zB.
a. Calculate the eigenenergies of the coupled system as a function of z.
b. Expands eigenenergies around the position z0.
c. What would be the oscillation frequency of the trapped atoms inside the adiabatic
potential?
d. Expands the eigenenergies in ℏΩ for locations away from resonance.

Solution: a. The eigenvalues of H are,

E1,2(z) = ±
1

2

√
(µBz∂zB − ℏω)2 + ℏ2Ω2 = ±1

2

√
(µB∂zB)2(z − z0)2 + ℏ2Ω2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag03.pdf
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b. The expansion around z0 gives,

E1,2(z) = ±
1

2

(
ℏΩ+

1

2

(µB∂zB)2
ℏΩ

(z − z0)2 + ...

)
.

c. We obtain a harmonic adiabatic potential,

E1,2(z) =
1

2

(µB∂zB)2
ℏΩ

(z − z0)2 =
m

2
ω2
ho(z − z0)2 ,

such that,

ωho =
µB∂zB√
mℏΩ

is the oscillation frequency.
d. Sufficiently far away from resonance, ℏΩ≪ |µBB(z)− ℏω|, we obtain

E1,2(z) ≈ ±
1

2
[µBz∂zB − ℏω]± ℏ2Ω2

4 [µBz∂zB − ℏω]
,

where the second term can be interpreted as the dynamic Stark shift of the energy
levels.
To illustrate the impact of the radiofrequency, we calculate the potential energy and
the dressed states for 6Li atoms. For simplicity, we assume a linear 1D magnetic field
gradient B(z) ≡ zb. Fig. 38.2(a) shows the radiofrequency coupling and Fig. 38.2(b)
dressed states for two magnetic substates coupled by a radiofrequency.
Fig. 38.2(a) shows the potential energies for a level scheme F = 1

2 with a g-factor of
g = − 2

3 (as in the case of the ground state 2S1/2 of 6Li). A radiofrequency (arrow)

couples the substates mF = ± 1
2 . Here, b = 200G/cm and ω = 2π×5 kHz. Fig. 38.2(b)

shows the uncoupled dressed states (dotted line), the dressed states (solid line), and
dynamic Stark shifts (dash-dotted) calculated in the approximation for far detuning.
The Rabi frequency is Ω = 2π× 700 Hz. The minimum appearing on the upper curve
of Fig. 38.2(a) may serve a confinement potentials. Using rf-radiation with several
frequency components potential minima can be generated at various distances z.

38.2 Optical forces

Light carries momentum, and the scattering of light by an object produces a force on
that object. Although these properties of light are direct consequences of Maxwell’s
classical theory of electromagnetism, they were only verified in 1933 by Frisch, who
observed a very small transverse deviation (3 · 10−5 rad) of an atomic sodium beam
exposed to the light of a lamp. With the invention of the laser, it became easier to
observe the light’s mechanical effects, because the more intense and highly directional
laser light exerts much larger forces. Although these results sparked the interest in
using light forces to control the motion of neutral atoms, the fundamental bases for
understanding the physics of light forces were not developed before the late 1970s.
Unequivocal experimental demonstrations of cooling and trapping of atoms were not
performed before the mid-1980s. In this section we will discuss some fundamental
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aspects of light forces. Practical schemes used to cool and trap neutral atoms will be
presented in Secs. 43.2 and 43.3.

The light force acting on an atom can be of two types: a spontaneous dissipative
force and a conservative dipole force. The spontaneous force arises from the recoil
experienced by an atom when it absorbs or emits a quantum of light. As we saw
in Sec. 22.2.6, when an atom scatters light, the resonant scattering cross section can

be written as in Eq. (22.72), σ0a = g2
g1

λ2
0

2π , where λ0 is the resonant wavelength. In
the optical region of the electromagnetic spectrum the wavelengths of light are of the
order of several hundred nanometers, and the resonant cross sections for scattering
become very large, (∼ 10−9 cm2). Each absorbed photon transfers a quantum of
momentum ℏk to the atom in the direction of propagation. Spontaneous emission
following an absorption process occurs in random directions and, hence, averaged
over many absorption-emission cycles, it cancels to zero. Consequently, the total
spontaneous force acts on the atom in the propagation direction of the light, as shown
schematically in the diagram of Fig. 38.3. The saturated photon scattering rate via
spontaneous emission (the reciprocal value of the excited state’s lifetime) sets the
upper limit for the magnitude of the force. This force is called radiation pressure
force.

The dipolar gradient force can be easily understood by considering light as a clas-
sical wave. It is simply the time-averaged force resulting from the interaction of the
transition dipole –induced by the oscillating electric field of the light– with the gra-
dient of the electric field amplitude. The strength of this gradient can be controlled,
e.g. by focusing the light beam. By tuning the optical frequency below or above an
atomic transition, we can control the sign of the force acting on the atom: Tuning
the light below resonance attracts the atom to the center of the light beam, tuning
it above resonance repels it. The dipole force is a stimulated process without en-
ergy exchange between the field and the atom. Photons are absorbed in one light
mode and reappear by stimulated emission in another one. However, conservation
of momentum requires that the change in the propagation direction of the scattered
photons from an initial mode to a final mode leaves the atom with a recoil. Contrary
to spontaneous force, there is, in principle, no upper limit for the magnitude of the
dipole force, since it is a function of the field gradient only and the detuning.

Within the theory of electromagnetism we calculate radiative forces on charges
via Maxwell’s stress tensor 2. The interaction of radiation with atoms having internal
degrees of freedom exhibiting resonances can be treated qualitatively by the Lorentz
model 3.

In the following, we will show quantitative semi-classical and quantum calcula-
tions: The force of a light beam on an atom can be calculated in many different ways,
each emphasizing a slightly different aspect: From the classical Lorentz force exerted
on an atom by electromagnetic fields we can derive a semi-classical Fokker-Planck
equation [1263]. In Sec. 38.2.1 we will derive the two contributions (dipole force and
radiative pressure) within a semi-classical theory [526]. Wineland et al. [1382] chose
as starting point the cross section for an elementary scattering process (Sec. 38.2.3).

2See script on Electrodynamics (2023), Sec. 6.2.3.
3See script on Electrodynamics (2023), Sec. 7.2.4.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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Dalibard et al. [322] developed a quantum theory using the dressed states represen-
tation (Sec. 38.2.2). And Cirac et al. [265] showed an approach based on the master
equation (Sec. 38.2.3).

38.2.1 The dipolar gradient force and the radiation pressure
force

To compute the forces of light on an atom, we describe the atom as a two-level system:
A fundamental level |1⟩ and an excited level |2⟩ decaying to the fundamental level
with the rate Γ. The energy difference between the levels is ω0 ≡ E2 −E1. The light
with frequency ω is derived from a laser beam, which can be detuned from the atomic
transition, ∆ ≡ ω−ω0. To describe the interaction, we consider the part (38.6) of the
total Hamiltonian describing the interaction [322]. Using the semi-classical density
operator ρ̂ 4, we can calculate the force that the light field exerts on the atom,

F(r) = ⟨F̂(r)⟩ = −Trat ρ̂∇rĤatom:field (38.19)

= − 1
2ℏ
∑

j
⟨j|ρ̂|∇r

(
Ω(r)eık·r−ı∆t|2⟩⟨1|+Ω(r)e−ıkr+ı∆t|1⟩⟨2|

)
|j⟩

= − 1
2ℏ∇rΩ(r)

(
⟨1|ρ̂eık·r−ı∆t|2⟩+ ⟨2|ρ̂e−ık·r+ı∆t|1⟩

)

− ı
2ℏkΩ(r)

(
⟨1|ρ̂eık·r−ı∆t|2⟩ − ⟨2|ρ̂e−ık·r+ı∆t|1⟩

)
.

Now, we let the atom be at the position r = 0,

F(0) = − 1
2ℏ∇rΩ(0)(ρ12e

−ı∆t + ρ21e
ı∆t)− ı

2ℏkΩ(0)(ρ12e
−ı∆t − ρ21eı∆t) . (38.20)

The quantities ρ12 ≡ ⟨1|ρ̂|2⟩ = ρ∗21 are the coherences, which develop in a two-
level system excited by a laser beam. Inserting the stationary solutions of the Bloch
equations (34.188),

ρ22 =
Ω2

4∆2 + 2Ω2 + Γ2
and ρ12 =

(2∆− ıΓ)Ω
4∆2 + 2Ω2 + Γ2

e−ı∆t . (38.21)

we obtain

F(0) = − 1
2ℏ

4∆Ω

4∆2 + 2Ω2 + Γ2
∇rΩ+ ℏk

ΓΩ2

4∆2 + 2Ω2 + Γ2
. (38.22)

With the definition of the cross section, σa(∆) = σa0
Γ2

4∆2+2Ω2+Γ2 ,

F(0) = − 1
2ℏ∆∇r ln

(
1 +

2Ω2

4∆2 + Γ2

)
+ ℏk

Ω2

Γ

σa(∆)

σa0
. (38.23)

The resonant cross section for a ’classical’ transition is σa0 = 3λ2/2π.

Apparently, the force comprises two contributions. The dipolar gradient force can
be derived from a potential. It is proportional to the intensity gradient and can

4Treating the motional and the optical degrees of freedom as classical the density operator only
contains the atomic excitation.
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be interpreted as resulting from absorption processes immediately followed by self-
stimulated emission. Near resonance it is dispersive. Far from resonance it can be
approximated by,

Fdp = ∇r
−ℏ∆Ω2

4∆2 + Γ2

|∆|≫Γ−→ −∇r
ℏΩ2

4∆
. (38.24)

The radiation pressure force is dissipative. Close to resonance it is absorbing. It is
proportional to the phase gradient and the only force exerted by plane waves. It
can be interpreted as resulting from absorption processes followed by spontaneous
emission. With Ω2 = σa0ΓI/ℏω we get a formula,

Frp = ℏk
I

ℏω
σa(∆) = ℏkγsct , (38.25)

which describes the force as a product of the number of photons in the incident beam,
I/ℏω, the absorption cross section, σa(∆), and the recoil momentum per photon, ℏk.
γsct is the scattering rate. Fig. 38.3(a) illustrates the radiation pressure force.

Figure 38.3: (a) Upon absorption of a photon an initially resting atom receives a recoil
momentum kick ℏkL. As the re-emission is isotropic, averaged over many absorption-emission
cycles, the net force is only given by the absorption process. (b) The dipole force may be
interpreted as a coherent redistribution of photons between spatial modes of a focused light
beam.

The dipole gradient force (and the associated potential) is often used to spatially
confine atoms, and the radiation pressure force is often used to cool them down. Note
that we still need to correct Eqs. (38.24) and (38.25) to take into account the square
of the average over the possible spatial orientations of the transition matrix element
d12/3. As illustrated in Fig. 38.3(b), the dipole force may be interpreted as being due
to coherent redistribution of photons between partial spatial modes of a non-uniform
(e.g. focused) light beam. The orientation of the force depends on the sign of the
detuning and can be understood in terms of the Lorentz model treating the atom as
classical radiator (see Sec. 18.2.4).
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The saturation parameter,

s =
1
2Ω

2

∆2 + 1
4Γ

2
, (38.26)

allows to write the dipolar gradient force and the radiative pressure force as,

Fdp = −
ℏ∆
6

1

1 + s
∇s = ℏ∆

6
∇ ln[1 + s] and Frp =

ℏkΓ
6

s

1 + s
. (38.27)

Eq. (38.27) shows that the radiation pressure force ’saturates’ as s increases, and
is therefore limited by the spontaneous emission rate. The saturation parameter
essentially describes the relative importance of terms appearing in the denominator
of the line profile function for the light forces. The spontaneous emission rate is an
intrinsic property of the atom, proportional to the square of the atomic transition
dipole moment, whereas the square of the Rabi frequency is a function of the incident
laser intensity. If s≪ 1, the spontaneous emission is fast compared to any stimulated
process, and the light field is said to be weak. If s ≫ 1, the Rabi oscillation is fast
compared to spontaneous emission and the field is considered as strong. The line
profile factor indicates a ’power broadening’ by saturation of a factor of

√
2. Note

that the dipolar gradient force and potential, Eqs. (38.27), do not saturate when the
intensity of the light field is increased. Usually Fdp and Udp are used to manipulate
and trap atoms in a laser beam tuned far away from resonance in order to avoid
absorption.

Often, the transition moment can be oriented using circularly polarized light. In
this case, all previous expressions for Fdp, Frp, and Udp should be multiplied by 3.
From now on we will abandon the average over the orientations and only use d212 for
the square of the transition dipole moment. Solve Excs. 38.2.5.1 and 38.2.5.2.

38.2.2 Semiclassical calculation of dipole force and radiative
pressure

In quantum mechanics we calculate the force from the Heisenberg equation [526],

F̂ =
d

dt
p̂ =

ı

ℏ
[Ĥ, p̂] = −∇rĤatom:field . (38.28)

Thus, the force is given by the gradient of the interaction energy between the atom
and the light field. Within the dipole approximation the interaction energy is given
by d · E⃗(r). The force is now,

F(r) = ⟨F̂(r)⟩ = ⟨∇r[d · E⃗(r)]⟩ = ⟨(d · ∇r)E⃗(r)⟩ − ⟨d× (∇r × E⃗(r))⟩ (38.29)

≡ FC(r) + FL(r) .

The first contribution can be interpreted as the Coulomb force acting on the elec-
tron performing rapid oscillations at the position r(t) = r0+ e−1P⃗(r0, t). The second
term is the time-averaged Lorentz force acting on the oscillating electric dipolar mo-
ment [604, 607, 605],

FC = e⟨E⃗⟩ and FL = −⟨d× ∂tB⃗⟩ = ⟨∂td× B⃗⟩ . (38.30)
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The relation between the light-induced electric dipole moment and the polarizability,
d = α(E⃗)E⃗ , where ανν ≡ αν + ıβν and Eν ≡

√
Iνe

ıψν , becomes,

F =

3∑

ν=1

αν∇Iν + 2

3∑

ν=1

βνIν∇ψν . (38.31)

38.2.3 Force exerted by a quantized radiation field

Photons carry one unit of momentum p = ℏk, which they transfer to the atom during
an absorption or emission process. That is, the light exerts a recoil on the atoms.
Spontaneous emission couples to all radiative modes of the electromagnetic vacuum,
Ĥcm:vacuum =

∑
j Ĥcm:laser(kj). We can trace over these variables and only keep

those of the atom and the laser. Following Cirac et al. [1382, 265], the randomness
of the recoil by spontaneous emission is accounted for by,

ρ̂→
∫

4πR2

S(r)eık·rρ̂e−ık·rdΩ , (38.32)

such that the Lindblad operator becomes,

Latomρ̂ = −Γ{σ̂†σ̂ρ̂(t)− 3
4π

∫
S(r)eık·rσ̂ρ̂(t)σ̂†e−ık·rdΩ+ ρ̂(t)σ̂†σ̂} (38.33)

Lcavityρ̂ = −κ{â†âρ̂(t)− 2âρ(t)â† + ρ̂(t)â†â} ,

where e±ık·r =
∑

p |p∓ık ·r⟩⟨p| and S(r) = 1
2

(
1 + (k·rkr )

2
)
and dΩ = dφd cosϑ. From

this they calculate the force and establish a Fokker-Planck equation for the Wigner
function.

38.2.4 Refraction of atoms by light and of light by atoms

Non-resonant light acts on the external degrees of freedom of atoms by a phase shift
of the Broglie wave, exp

[
ıℏ−1

∫
U(r, t)dt

]
, and simultaneously on the internal degrees

of freedom by a dynamic Stark shift or light shift of the energy levels by the value of
U(r). The Bloch vector defined by,

ρ ≡




1√
2
cgc
∗
e

1√
2
c∗gce

|ce|2 − |cg|2


 (38.34)

describes, under the influence of the dispersive interaction, a precession around the
polar axis. This was discussed in Exc. 34.8.4.9. The Stark shift causes a rotation
of ℏ−1U(r)t. Simultaneously, the atom is subjected to a force, which corresponds to
the gradient of the potential −∇U(r), as illustrated in Fig. 38.4(a). We see that the
phase shifts of the Broglie wave and the Bloch vector are equal. Finally, the light
mode phase is also shifted by the same amount in an effect called refraction. That is,
the internal, external, and optical degrees of freedom are entangled.

This fact has a practical use in atomic interferometers, because it is often easier
to detect an interference of internal excitation states rather than of Broglie waves.
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Figure 38.4: Diagram (a) shows product states and dressed states for blue detuning. Note
that the population is in the upper level and that the atom is subject to a repulsive weak field
seeking force when it enters the laser beam. Diagram (b) is similar, but for red detuning.
The population is in the lower level and the atom is subject to an attractive high field seeking
force.

Because of the entanglement, it is sufficient to measure one interference pattern to
know the other one.

By local variations of the potential U(r), e.g. induced by a focused laser beam,
it is possible to manipulate a Broglie wavefront in the same way that, in classical
optics, we manipulate the wavefront of a light beam by lenses or other objects, such
as for instance, the refractive index represented by an atomic cloud near resonance,
as illustrated in Fig. 38.4(b).

The orientation of the force depends on the light frequency as compared to the
resonant frequency. The dipolar force attracts the atom to regions where the light field
is strong, when the frequency is tuned below ω0, and it attracts the atom to regions
of weak fields, when tuned above ω0. Integration over the relevant spatial coordinates
results in an effective potential or barrier to the atom. The qualitative behavior of
the dipolar potential and its effect on the motion of atoms is easily visualized in the
dressed states picture. Fig. 38.5 shows what happens when an atom enters a well
defined region of an optical field, for example a focused laser beam.

Figure 38.5: Analogy between light optics and atomic optics.

Outside the atom-dipole coupling zone the expression ℏΩ is despicable and the
’dressed states’ are just the atom-field product states. When the atom enters the



38.2. OPTICAL FORCES 2067

field, this expression becomes nonzero and the atom-field states combine to produce
a set of dressed states. The energy levels of the product states ’repel’ each other and
approach the dressed states levels. Assuming that the laser is sufficiently detuned to
maintain the absorption rate negligible, the population remains in the ground state.
We see that blue (red) detuning leads to a repulsive (attractive) potential for atoms
remaining in the grounded state. In addition, since ℏΩ is directly proportional to the
root of the laser intensity, an increase in that intensity (optical power per unit area)
obviously amplifies the force on the atom (F ≃ ∇RΩ).

38.2.5 Exercises

38.2.5.1 Ex: Dipole force for large detunings

Verify that in the limit of large detunings the dipole potential Eq. (38.23) tends to

−→ Ω2

4∆ .

Solution:

38.2.5.2 Ex: Radiation pressure

Calculate the radiation pressure force exerted on a strontium atom by a laser beam in
plane wave geometry (I = 10mW/cm2) tuned 50MHz below the resonance at 461 nm
(Γ/2π = 30.5MHz).

Solution: The force is,

F = ℏk
Γ

2

I/Is
1 + I/Is

≃ ℏk
Γ

2
≈ 1.3 · 10−19 N ,

because the saturation intensity,

Is =
2π2cℏΓ
3λ3

≈ 38.6mW/cm2 ,

is much higher than the intensity I of the laser beam. The acceleration becomes
a = F/m ≈ 105g.

38.2.5.3 Ex: lin-lin standing wave

Calculate the electric field of two counter-propagating linearly polarized laser beams
of equal intensities,

E⃗lat(r, t) = 1
2

∑

k=±kêz

E0ε⃗keı(k·r−ωkt+ϕk) + c.c. ,

but different polariztions in the spherical basis.

Solution: The spherical basis is defined by,

ê±1 = 1√
2
(∓êx−ıêy) , ê0 = êz , êx = 1√

2
(ê−1−ê1) , êy = ı√

2
(ê1+ê−1) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag055.pdf
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Hence, we get (focussing only on the e−ıωkt terms),

E⃗lat(r) = E0



1

0

0


 eıkz + E0



cos θ

sin θ

0


 e−ıkz

= E0
(
eıkz + eıθ+e−ıθ

2 e−ıkz
)
êx + E0 e

ıθ−e−ıθ

2ı e−ıkzêy

= E0√
2

[
−(eıkz + e−ıkz−ıθ)ê1 + (eıkz + e−ıkz+ıθ)ê−1

]

=
√
2E0

[
−e−ıθ/2 cos(kz + θ

2 )ê1 + eıθ/2 cos(kz − θ
2 )ê−1

]
.

38.2.5.4 Ex: Sub-lattices

Consider two laser standing wave laser beams crossing each other under an angle of
90◦,

E⃗1 = ε⃗1e
ı(kx−ωt) and E⃗2 = ε⃗2e

ı(ky−ωt) ,

with arbitrary elliptical polarizations ε⃗i and study the scalar light-shift potential,

Us = −
αs
4
|E⃗ |2 ,

as well as the vector light-shift potential,

Uv = B⃗eff · F where B⃗eff = ıαv ε⃗
∗ × ε⃗

in the xy-plane. αv is the vector part of the atomic polarizability and B⃗eff an effective
magnetic field [362, 783, 28].

Solution: See the figure 38.6.

38.3 Photonic recoil on free and confined atoms

A trap confining the atomic motion can dramatically modify the way in which they
interact with light 5. For instance, a trapping potential may alter the scattering rate,
the scattering angle, and the transfer of photonic recoil. However, potentials do not
exist in microscopic reality, not more than friction forces do. What exists, as we learn
in electrodynamics, are electromagnetic fields exerting Coulomb and Lorentz forces.
When we write down the Hamiltonian Ĥ = p2/2m+V (r) in quantum mechanics, we
already make an important approximation, because the potential V (r) is an artifact
obtained by tracing over all those degrees of freedom, which are necessary to generate
a force field that can be approximated by a conservative potential.

5The interaction also depends on other parameters, such as the geometry of the confinement
potential and on cooperative effects (bosonic stimulation), but this will be discussed later.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_ForcaElmag06.pdf
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Figure 38.6: (code) Lattice potential for different polarizations.

In the great majority of situations, the approximation is very good. Problems may
however arise, when the momentum conservation comes into play, which is the case
e.g. of light scattering from ultracold atoms being accelerated by the photonic recoil
and shifting the scattered light via the Doppler effect. We then have to address the
issue of photonic recoil conserving (or not) the momentum.

Let us begin with a recapitulation of the classical picture of the scattering pro-
cess applying the rules of energy and momentum conservation to the elastic collision
between a free atom and a photon. This process is known as Compton scattering.

38.3.1 Recoil- and Doppler-shift in classical mechanics

In classical mechanics we speak of elastic scattering when no energy is transferred
to internal degrees of freedom of the collision partners, so that kinetic energy and
momentum stay conserved. This concept can be transferred to quantum particles
(e.g. atoms) and photons. In elastic Compton scattering, if the atoms keep their
initial internal excitation, the law of momentum conservation requires the transfer of
photonic momentum to the scattering atom which, consequently, changes its kinetic
energy. To compensate for this kinetic energy change, the frequency of the scattered
light must change in order to preserve the total energy, as illustrated in Fig. 38.7(b).

We will calculate in the following the frequency distribution of the light scattered
by an atom as a function of its initial velocity p1, of the frequency ω1 of the incident
light and of the scattering angle, that is, the angle between the modes k1 and k2. We
begin by writing the laws of conservation of energy and momentum,

ℏk1 + p1 = ℏk2 + p2 (38.35)

ℏω1 +
p21
2m

= ℏω2 +
p22
2m

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_SubLattices.m
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Figure 38.7: (a) Kicking an atom along its dispersion relation. (b) Scheme of the Compton-
scattering of light.

Eliminating p2 from the second equations, we obtain,

ℏω1 −
ℏ2k21
2m

− ℏk1 · p1

m
= ℏω2 +

ℏ2k22
2m

− (ℏk1 + p1) · ℏk2

m
. (38.36)

The photonic recoils of the incident and of the scattered light are almost equal,

ωrec ≡
ℏk21
2m
≃ ℏk22

2m
, (38.37)

such we can approximate,

ω2 = ω1

1− ℏω1

mc2 −
p1
mc cos∢(k1, p1)

1− ℏω1

mc2 cos∢(k1, k2)−
p1
mc cos∢(p1, k2)

, (38.38)

using ω1 = ck1, or also,

ω2 − ω1 = ω1

ℏω1

mc2 [−1 + cos(ϑin − ϑout)] + p1
mc (cosϑout + cosϑin)

1− ℏω1

mc2 cos(ϑin − ϑout)−
p1
mc cosϑout

, (38.39)

where we call the angles ϑin = ∢(k1, p1), ϑout = ∢(k2, p1), and ϑ = ϑin − ϑout =
∢(k1, k2). For non-relativistic velocities, the denominator is approximately 1:

ω2 − ω1 = 2ωrec(−1 + cosϑ) + k1v1(cosϑout + cosϑin) , (38.40)

with p1 = mv1. The first term describes the recoil shift and the second term the
Doppler shift.

The second term vanishes for initially at resting atoms, p1 = 0, and Eq. (38.40)
simplifies to,

ω2 − ω1 = 2ωrec(−1 + cosϑ) . (38.41)

It also vanishes for atoms which have no velocity component in the scattering plane
spanned by the wavevectors k1 and k2, that is ϑout = 180◦−ϑin 6, for which case we
get the maximum recoil shift,

ω2 − ω1 = −4ωrec . (38.42)

6This situation is often realized in Bragg scattering from optical lattices [1219, 1221, 1220].
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The recoil shift is a consequence of momentum conservation.

The recoil shift is typically on the order of ω2−ω1 ≈ (2π) 10 kHz, which in many
situations is negligible (e.g. when we deal with thermal atomic clouds), such that we
can consider the scattering as elastic., i.e. the first term can be disregarded. Con-
sidering, for simplicity, only backscattering, cosϑout = cosϑin = 1, then Eq. (38.40)
simplifies to,

ω2 − ω1 = 2k1v1 . (38.43)

Obviously, the frequency shift depends on the initial velocity through the Doppler
shift k1v1. In a thermal gas, the velocities are distributed according to the Maxwell-
Boltzmann distribution. Therefore, Rayleigh scattering of light off a cloud of free
thermal atoms is subject to Doppler broadening 7.

38.3.1.1 Roadmap

For the discussion of optical forces on confined atoms we will consecutively discuss
the following questions:

1. Energy and momentum conservation upon scattering of light from a single atom
confined in weak or strong trapping potentials (inhomogeneous systems);

2. scattering from atoms confined in anisotropic traps (strong confinement in one
and weak confinement in the other direction);

3. cooperativity (bosonic stimulation) (of the scattered light, not of the atomic
momentum) shapes the static structure factor 8;

4. discrete translation invariant (periodic) systems, where quasi-momentum (Bloch
bands, lattices);

5. lattices made of laser beams with fixed phase, explicit pots. V (r) = ℏgeık·rb̂+
c.c.;

6. lattices made of laser beams with mobile phase.

7. how does the trap modify scattering rates, scattering angles (in particular in
case of anisotropic traps), dynamic structure factor?

8. how to calculate a dynamic structure factor?

9. differentiate the term elastic scattering with respect to resonance fluorescence
(internal) and recoil (external).

7This Doppler broadening is explored e.g. in RIR spectroscopy, where the momentum distribution
in p1 reveals as a frequency distribution ∆ω = ω2 − ω1 of Bragg-scattered light, which can be
measured by beating with an irradiated idler mode, which can be chosen as being identical to k2.

8In [1219, 1220], we argue that pf = 0 and that êz · ki = −êz · kf , so that we can disregard
momentum conservation. The scattering is elastic although (electronically) on resonance, because it
is not vibrationally on resonance.
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38.3.2 Kicking a free atom

A conceptual difficulty arises from the incompatibility of scattering picture (generally
described in homogeneous space with momentum conservation) and the trapping pic-
ture (when it is described in inhomogeneous space without momentum conservation).
The difficulty can be avoided by separating the processes into a ’kick’ followed by a
harmonic oscillation, for which we have to calculate the time-dependence of the states
and the observables. We will leave the discussion of such a scattering process to 38.3.3
and for the time being just focus on the time evolution of a harmonic oscillator that
just received a kick.

By a ’kicking’ an atom we denote a change of momentum within an arbitrarily short
amount of time. The shorter the kick-time the larger is, according to Heisenberg’s
uncertainty relation, the spectrum of possible kinetic energies that can be reached by
the kick (see Sec. 27.4.3). However, the spectrum is restricted by the free-particle
dispersion relation, as illustrated in Fig. 38.7(a).

The kick is not a realistic physical concept, as it corresponds to an infinitely
strong and infinitely short force 9. In a microscopic scattering process it assumes an
infinitely heavy collision partner, while we are more interested in photon scattering.
Consequently, in this case the spectrum of reachable energies is determined by the
frequency of the photon and the free-particle dispersion relation. We will now turn
our attention to the (Compton-)scattering of light by free atoms.

38.3.3 (In-)elastic light scattering from a single weakly or strongly
confined atom

We mentioned in the last subsection that a scattering process is elastic when none of
the collision partners changes its internal excitation energy. The situation becomes,
however, more complex when one of the collision partners is confined in a potential,
as we will show in the following.

38.3.3.1 Cooperativity in light scattering

In light scattering cooperativity means breaking of the isotropic symmetry for the
angular distribution of scattered modes. In this sense, the anisotropic scattering from
an atom confined in an anisotropic trap is cooperative. But there are other cooperative
scattering effects messing with isotropy and shaping the density-of-states, like the
Purcell effect in the presence of an optical cavity or a photonic band gap concentrating
optical modes in a specific solid angles [596]. Another cooperative effect, which is
observed in the presence of other atoms, has to do with bosonic stimulation by the
optical output mode (as in Bragg scattering [1219, 1221, 1220]) or the momentum
sidemode (as in stimulated matter wave 4WM). These effects, which all need to be
considered in calculations of the static structure factor ruling the scattering of light,
are often strong enough to hide the role of an anisotropic trapping potential. In the
following subsections we will disregard all these effects and concentrate on a single
trapped atom.

The simple picture of Compton scattering presented in Sec. 38.3.1 holds for free
atoms, whose dynamics is totally understood in terms of their internal electronic

9which is what allows us to write down a potential



38.3. PHOTONIC RECOIL ON FREE AND CONFINED ATOMS 2073

excitation (Ĥele), the kinetic energy of their center-of-mass (Ĥcm = p2

2m ), the radiation

field (Ĥrad) (which may be treated classically under the circumstances discussed here),
and the coupling (Ĥint) of all three degrees of freedom,

Ĥfree = Ĥele + Ĥcm + Ĥrad + Ĥint . (38.44)

Transition probabilities are readily calculated using Fermi’s Golden rule, because
the density-of-states distributions for the final radiation modes receiving the scat-
tered photons (photonic density-of-states) and the recoil modes receiving the scat-
tered atoms (phononic density-of-states) are white, that is, without resonances, and
isotropic.

In the presence of an imposed trapping potential, an additional term appears in the
Hamiltonian, which has the capacity of dramatically changing the scattering features,

Ĥcm =
p2

2m
+ V̂trap(r) . (38.45)

The confining potential may or may not depend on the internal state of the atom.
For ions in a Paul trap it does not depend, but for atoms in magnetic traps it usually
depends,

Ĥatom = |g⟩Ĥcm,g⟨g|+ |e⟩(Ĥcm,e + ℏω0)⟨e| (38.46)

Ĥcm,j =
p̂2

2m
+ Vj(r) ,

where ω0 is the frequency of the atomic transition. In the following, however, we will
treat potentials that are independent of the internal atomic state.

38.3.3.2 Resolved sideband regime

As discussed in Sec. 34.6.5, incident light is absorbed by an atom harmonically os-
cillating in a trap with frequency ωtrp on a spectrum of discrete sidebands separated
by ωtrp with amplitudes given by Jn(kv0/ωtrp). The modulation index kv0/ωtrp =
kx0 = 2πx0/λ corresponds to the Lamb-Dicke parameter. When the modulation am-
plitude is within the so-called Lamb-Dicke regime, kv0 ≪ ωtrp, the first sidebands
become smaller than the carrier, J1(kv0/ωtrp) < J0(kv0/ωtrp) and, therefore, do not
contribute to the Doppler width of the frequency distribution. That is, the linear
Doppler effect vanishes.

The relative size of the characteristic frequencies ωrec, ωtrp, and Γ define charac-
teristic regimes, as illustrated in the table.

confinement sidebands

weak η > 1 unresolved
ωtrp

Γ < 1

strong η < 1 resolved
ωtrp

Γ > 1
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Figure 38.8: Absorption profile in the regimes of (a) weak binding (η > 1) for the cases of
and unresolved sidebands (blue curve) and resolved sidebands (red curve), and (b) strong
binding (Lamb-Dicke regime η < 1) for the same cases as in (a).

38.3.3.3 The Mößbauer effect

The role of photonic recoil in the scattering of light by confined atoms has been
unraveled by Mößbauer, who performed scattering experiments of γ-photons on a 57Fe
crystal on a narrow transition of this isotope at 14 keV (0.086 nm). The linewidth
of this transition, Γ ≈ (2π) 1MHz, is much narrower than the recoil-shift, ωrec ≈
(2π) 500MHz ≫ Γ, so that we should expect the scattered light to be considerably
recoil-shifted and Doppler-broadened. In fact, the recoil-shift should be so large, that
scattered photons cannot be reabsorbed by other atoms on this transition being at
rest. This is not what Mößbauer observed in his experiments. He found that scattered
photons can be reused for subsequent scattering, which means that the scattering must
be elastic.

The explanation for this unexpected observation is that, if the nucleus is embedded
in a crystal, the vibrational frequencies, which are even higher than the photonic recoil
frequency, ωtrp ≈ 2π · 3THz, are unreachable. That is to say, we are in the resolved
sidebands Lamb-Dicke regime, ωtrp ≫ ωrec ≫ Γ. Here, the phonons corresponding
to the vibrations cannot be excited, so that the recoil momentum must be absorbed
by the whole lattice, whose entire mass is so large, that the photon frequency is not
recoil-shifted by the scattering process. Hence, the first-order Doppler effect is avoided
and the measured width of the transition is just the natural linewidth. Furthermore,
the atom remains in the same vibrational state of their localizing potential. This is
the Mößbauer effect.

γ for 57Fe optical for 172Yb+

photon energy ≈ 14 keV ≈ 4× 1018 Hz ≈ 3 eV ≈ 640THz

recoil ≈ 2meV ≈ 500MHz ≈ 10−10 ≈ 20 peV ≈ 5 kHz ≈ 10−11

linewidth ≈ 5 neV ≈ 1MHz ≈ 2× 10−13 ≈ 5 feV ≈ 1Hz ≈ 2× 10−15

lattice vibrations ≈ 10meV ≈ 3THz ≈ 3 neV ≈ 1MHz

Table 38.1: Comparison of γ-radiation and the optical regime.

A similar effect can be observed with trapped atoms driven on very narrow tran-
sitions, as we will discuss in the following.
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38.3.3.4 Coupling of internal and external motion by photonic recoil,
tracing over the internal excitation

When discussing the transfer of momentum to a harmonic oscillator in 24.6.2, we did
not say how the momentum shift could be realized in practice. As we have seen in
the example of the Mößbauer effect, a possible way is via the photonic recoil received
on a light scattering process. The coupling of the relevant degrees of freedom of the
system induced by the absorption of a photon by an atom is accounted for by an
additional interaction term Ĥint in the Hamiltonian. The relevant degrees of freedom
are the electronic orbital |i⟩, the vibrational state |n⟩, and the number of photons |N⟩
in the light mode, assumed to be a plane wave E⃗(r, t) = E0êye

ıkzz−ıωt. Neglecting the
quantum nature of the light, we will disregard this degree of freedom in the following.
Assuming that the trapping potential is the same for all electronic orbitals, as in
(38.46), the total state can be expressed as a product state, |n, i⟩ ≡ |i⟩ ⊗ |n⟩. The
interaction Hamiltonian,

Ĥint =
ℏΩ
2

(eıkẑâ|e⟩⟨g|+ e−ıkẑâ†|g⟩⟨e|)− |e⟩ℏω⟨e| , (38.47)

couples the dynamics on the internal transition, given by the Rabi frequency ℏΩ ≡
⟨e|dy|g⟩E0, with the absorption (or stimulated emission) of a photon â, and the trans-
fer of a recoil momentum. The last term comes from the transformation into the
interaction picture 10. With this our total Hamiltonian (38.46) becomes,

Ĥ = ℏωtrp(b̂†b̂+ 1
2 ) + |e⟩ℏ(ω0 − ω)⟨e|+ ℏΩ

2 (eıkẑ|e⟩⟨g|+ e−ıkẑ|g⟩⟨e|) . (38.48)

So, vibrational states are only coupled via electronic transitions,

⟨n, g|Ĥint|0, g⟩ = 0 and ⟨n, e|Ĥint|0, g⟩ = 1
2ℏΩ⟨n, e|eıkẑ|0, g⟩ . (38.49)

Hence, we have to span the complete Hilbert space of all operators like σ̂† =
∑
n |n⟩⟨n|⊗

|e⟩⟨g|.
We can expand the system’s state into,

|ψ(t)⟩ =
∞∑

n=0

(cn,g|n, g⟩+ cn,e|n, e⟩ , (38.50)

and insert it together with the Hamiltonian (38.48) into the Schrödinger equation.
Projecting onto the states ⟨n, g| and ⟨n, e|, we easily derive the following equations of
motion,

dcn,g
dt

= −ıωtrp(n+ 1
2 )cn,g −

ıΩ

2

∞∑

m=0

cm,e⟨n|e−ıkẑ|m⟩

dcn,e
dt

= −ıωtrp(n+ 1
2 )cn,e − ı(ω0 − ω)cn,e −

ıΩ

2

∞∑

m=0

cm,g⟨n|eıkẑ|m⟩
. (38.51)

10Note, that this Hamiltonian cannot be used to describe spontaneous emission. To do so, we need
to allow for 3D systems and decay modes,

Ĥ = ℏωtrp(|n⟩⟨n|+ 1
2
) + ℏ(ω0 − ω)|e⟩⟨e|+ ℏΩ

2
(e−ıki ·̂rσ̂†âki

+ c.c.) + ℏg
∑
kf

(eıkf ·̂rσ̂â†kf
+ c.c.) .
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The fact that only terms proportional to ⟨n|eikẑ|m⟩ contribute can be understood
in terms of the Franck-Condon overlap between the vibrational states to be coupled.
And the fact that the energy of the harmonic oscillator, and thus the effective detuning
∆n ≡ ω − ω0 − ωtrp(n+ 1

2 ), depend on the vibrational state couples the internal and
the external dynamics.

Figure 38.9: (a) Absorption (1) and Rayleigh scattering (2) in a weakly confining trap, where
the momentum must stay conserved. (b) Illustration of the regime ωrec > Γ, where the atom
moves during the absorption process. (c) Absorption and Rayleigh scattering in a strongly
confining trap.

Nevertheless, the off-diagonal coupling elements only contain the degrees of free-
dom of the harmonic oscillator.

38.3.3.5 Momentum kick by photonic recoil

We said earlier that a momentum kick can drive an atom from the vibrational ground
state |0⟩ into a coherent superposition of states |α⟩, except when the Lamb-Dicke
parameter is very small. When the kick is realized via photonic recoil, e.g. when an
electronically excited atom decays to the ground state, the frequency of the emitted
photon depends on the final vibrational state of the atom. That is we expect a
coherent superposition of light frequencies, which in the limit η > 1 generates a
Doppler broadening and in the limit η < 1 stays unshifted as for elastic scattering.

Let us now consider a single confined atom and address the question of the ab-
sorption probability. In first-order perturbation, using the Hamiltonian (38.48), the
transition rate for absorption of a photon incident in z-direction is given by Fermi’s
Golden Rule,

1

τ
=

d

dt
|⟨n, e|eıĤt/ℏ|0, g⟩|2 ≃ 2π

ℏ2
|⟨n, e|Ĥ|0, g⟩|2 (38.52)

=
2π

ℏ2
|⟨n, e|ℏΩ2 (eıkẑσ̂† + e−ıkẑσ̂)|0, g⟩|2 =

πΩ2

2
|⟨n, e|eıkẑ|0, e⟩|2 .

Obviously, it is thus sufficient to calculate ⟨n|eikẑ|0⟩, i.e. we can trace over the internal
degrees of freedom. Using our previous results (24.136), we find with α = −ikatrp/

√
2,

1

τ
=
πΩ2

2
|⟨n|α⟩|2 =

πΩ2

2
e−|α|

2 |αn|2
n!

. (38.53)



38.3. PHOTONIC RECOIL ON FREE AND CONFINED ATOMS 2077

The interpretation of this result is that the absorption of a photon by an atom in
state |0, g⟩ transfers recoil by leaving the vibrational state of the atom in a coherent
superposition state. Inversely, for the emission process from state |0, e⟩ within the
Lamb-Dicke regime, most of the time we will encounter the emitted photon at the
resonance frequency ω0, and rarely at ω0 − ωtrp. In any case, energy conservation is
satisfied, since,

∑

n

nℏωtrp⟨n|α⟩⟨α|n⟩ =
∑

n

nℏωtrpe−|α|
2 |α|2n
n!

= ℏωtrp|α|2
∑

n

ne−|α|
2 |α|2n−2
(n− 1)!

=
ℏ2k2

2m
⟨α|α⟩ = ℏωrec . (38.54)

Thus energy and momentum conservation are automatically satisfied by the way the
kick is implemented.

38.3.3.6 A single anisotropically trapped atom in first-order perturbation

Let us now consider a single atom (e.g. a trapped ion) confined in an 3-dimensional
anisotropic trap (e.g. strong confinement in one and weak confinement in the other
direction) and address the question, whether the scattering will be anisotropic, as well.
We generalize the problem to three dimensions by allowing for quantized vibrational
states in three dimensions, σ̂† =

∑
n |n⟩⟨n| ⊗ |e⟩⟨g| with |n⟩ = |nx, ny, nz⟩.

In first-order perturbation, using the Hamiltonian (38.48), the transition rate for
absorption or emission is given by Fermi’s Golden Rule,

1

τ
=

d

dt
|⟨n, e|eıĤt/ℏ|0, g⟩|2 ≃ 2π

ℏ2
|⟨n, e|ℏΩ2 (eık·̂rσ̂† + e−ık·̂rσ̂)|0, g⟩|2 (38.55)

=
πΩ2

2
|⟨nx, e|eıkx̂|0, e⟩⟨ny, e|eıkŷ|0, e⟩⟨nz, e|eıkẑ|0, e⟩|2 .

Obviously, it is thus sufficient to calculate ⟨nj |eıkẑ|0⟩, i.e. we can trace over the
internal degrees of freedom. Using our previous results (24.136), we find with αj =
−ıkjatrp,j/

√
2,

1

τ
=
πΩ2

2
|⟨nx|αx⟩⟨ny|αy⟩⟨nz|αz⟩|2 =

πΩ2

2
e−|αx|2−|αy|2−|αz|2 |αnx

x α
ny
y αnz

z |2
nx!ny!nz!

.

In Exc. 38.3.5.1 we calculate and illustrate the transition matrix elements ⟨0|eıkẑ|0⟩
and ⟨n|eıkẑ|0⟩.

38.3.3.7 A single anisotropically trapped atom in second-order perturba-
tion

To understand Rayleigh scattering, we need to go to second perturbation order sum-
ming over all intermediate vibrational states according to the Kramers-Heisenberg
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formula,

dσ

dΩ
=

d

dt
|⟨n, g,kf |eıĤt/ℏ|0, g,ki⟩|2 ≃

2π

ℏ2
|⟨n, g,kf |

∑

m

Ĥ(1)|m, e⟩⟨m, e|Ĥ(1)

ωi − ωm
|0, g,ki⟩|2

=
πℏ2Ω4

8

∣∣∣∣∣
∑

m

⟨n,kf |e−ıq·̂r|m⟩⟨m|eıq·̂r|0,ki⟩
Ei/ℏ+ (0ωx + 0ωy + 0ωz +

3
2 )− Em/ℏ− (mxωx +myωy +mzωz +

3
2 )

∣∣∣∣∣

2

=
πℏ2Ω4

8

∣∣∣∣∣∣
∑

mx,my,mz

⟨nx, ny, nz|e−ikf ·̂r|mx,my,mz⟩⟨mx,my,mz|eıki ·̂r|0, 0, 0⟩
(Ei − Em)/ℏ−mxωx −myωy −mzωz

∣∣∣∣∣∣

2

=
πℏ2Ω4

8

∣∣∣∣∣∣
∑

mx,my,mz

∏

j=x,y,z

⟨nj |e−ikjfrj |mj⟩⟨mj |eikjirj |0⟩
(Ei − Em)/ℏ−mxωmx −myωmy −mzωmz

∣∣∣∣∣∣

2

.

(38.56)

The transition matrix elements can be calculated via (24.141). This expression rep-
resents (in the same time) the dynamic structure factor of the single trapped atom.

Example 225 (Axial incidence): Let us consider the particular case of Rayleigh
scattering from the ground state of light incident in the direction ki ≡ kiz êz.
We can then simplify,

dσ

dΩ
=
πℏ2Ω4

8

∣∣∣∣∣∑
mz

⟨0|e−ıkxf x̂|0⟩⟨0|e−ıkyf ŷ|0⟩⟨0|e−ıkzf ẑ|mz⟩⟨mz|eıkziẑ|0⟩
−mzωtrp

∣∣∣∣∣
2

=
πℏ2Ω4

8
e−|αfx|2−|αfy|2−|αfz |2−|αiz |2

∣∣∣∣∣∑
mz

1

(Em − Ei)/ℏ−mzωtrp,z

αmz
fz α

mz
iz

mz!

∣∣∣∣∣
2

=
πℏ2Ω4

8
e−(kf ·atrp)

2/2−(ki·atrp)
2/2

∣∣∣∣∣∑
mz

1

(Em − Ei)/ℏ−mzωtrp,z

(− 1
2
kfzkiza

2
trp,z)

mz

mz!

∣∣∣∣∣
2

,

where atrp ≡ (atrp,x atrp,y atrp,z). Looking into scattering into transverse di-
rection, kf,z = 0, we get,(

dσ

dΩ

)
⊥
=

πℏ4Ω4

8|Em − Ei|2
e−k2

fxa
2
trp,x/2−k2

fya
2
trp,y/2−k2

iza
2
trp,z/2 .

Looking into backscattering, kf,z = −ki,z,(
dσ

dΩ

)
∥
=
πℏ2Ω4

8
e−kiatrp,z)

2

∣∣∣∣∣∑
mz

1

(Em − Ei)/ℏ−mzωtrp,z

(− 1
2
k2iza

2
trp,z)

mz

mz!

∣∣∣∣∣
2

.

we expect a spectrum with vibrational resonances.

38.3.3.8 Discussion of scattering from a single weakly or strongly confined
particle

We assume that the lifetime of an atomic transition is much shorter than an oscillation
period (or the Rabi-frequency), Γ,Ω≫ ωtrp, the position of the atoms does not change
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during a transition process, i.e. we have a Franck-Condon transition in position space
[853] 11.
For weakly confined particles:

• Energy and momentum conservation holds during absorption or scattering pro-
cess. Absorption, fluorescence, and Rayleigh scattering are just like for free
particles (i.e. inelastic because of photon recoil). Thus, transitions must start
and end on the dispersion curve, e.g. for scattering at an initially resting atom,

ℏωi = ℏωf +
p2f
2m
− ℏ∆ωtrap and ki = ℏkf + pf . (38.57)

• U-shaped absorption spectrum

• Doppler-cooling picture of shrinking ellipse in phase space [655], but not during
the oscillation of the atom in the trap.

• Message: If your atom is weakly confined, you may not neglect the recoil-shift.

• The momentum is conserved during the scattering process, provided the process
is fast enough, i.e. Γ≫ ωtrp. What the trap does afterward with the momentum
is its own problem [1383], not the one of the light field.

For strongly confined particles:

• Momentum conservation does not hold during the scattering process, it is ab-
sorbed by the trap. Light scattering is totally elastic (no recoil shift). Never-
theless, absorption and fluorescence, Rayleigh and Raman scattering must end
up on vibrational sidebands.

• motional sideband spectrum

• in the resolved sideband regime, we may achieve sideband cooling [422]

• when the sidebands are not resolved, we still can do stimulated Raman sideband
cooling (Bragg spectroscopy)

• Message: If your atom is strongly confined, you may do Rayleigh or Raman.

Discuss momentum conservation from (??) comparing ℏ2k2/2m and mω2
trpẑ

2/2.

38.3.3.9 Rigid lattice: single atom in a standing wave cavity mode

Let us restrict to a single dimension and discuss the problem of kicking a single
atom confined in a standing plane light wave. We want to describe the physical
situation after an attempted kick including the optical lattice system and satisfying
all conservation laws. The problem is that we need to describe the atomic motion
quantum-mechanically! 12.

11Vertical transitions in the potential curve.
12The harmonic oscillator picture cannot we used for shallow potentials supporting only 0 or 1

vibrational states.
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The situation in a linear optical cavity is different, because the counterpropagating
light modes just form a single one,

â− = â+ , (38.58)

so a photon backscattered between the two modes always ends up in original mode
after having been reflected from a cavity mirror. Then, the dipole potential terms
simplifies to,

2ℏU0|α+|2 sin 2klatẑ . (38.59)

Now, the momentum of the cavity light fields is certainly not conserved, since the
photonic recoil upon reflection of light at a mirror is absorbed by the mirror, which
is not included in our model. However, the atom does (probably) not know about
the photon’s problems: when, accelerated by the dipole force, it redistributes photons
between counterpropagating light modes, it wants to see its momentum conserved.
But if both light modes are identical, then the momentum transfer can only be in
exact units of 2ℏklat, without frequency- or phase-shifts of the light modes possible.
Or in other words: Either the momentum kick satisfies ∆p = 2ℏklat, or it simply does
not occur, the atom gets transparent with respect any attempt of motional excitation.

In practice, this means nothing else, than that the process of scattering a photon
incident from an arbitrary direction at an optical lattice needs to fulfill the Bragg
condition not only for the optical modes, but also for the recoil modes, and that the
scattering must be elastic, as in the Mößbauer effect.

For the case that the momentum kick is commensurate with twice the photonic
recoil of the laser beams,

∆p = 2ℏklat , (38.60)

we have a simple picture in terms of a coherent redistribution of photons between
lattice beams. But what happens, if this is not the case?

In the case of an atom vibrationally embedded in a crystal, the distribution of
phononic modes is so dense and broad, that the interesting questions are: ’Where
does the momentum go?’ and ’How is it distributed over the modes?’ In the case
of a single atom sitting in a 1D optical lattice, the distribution of phononic modes
is sparse and sharp, since it is shaped by the commensurability condition. Here, the
interesting questions should be: ’How likely is it, that the atom really responds to my
momentum kick attempt?’ and ’How does this probability depend on the amplitude
∆p of the kick?’

The second term of the Hamiltonian (38.58) is the dipole potential generated by
the counterpropagating laser beams. It contains the phononic reservoir. Its expression
is more complicated than that of a harmonic oscillator, which can easily be quantized
in a canonical way. Nevertheless, hence, should be possible to derive from it (i) the
vibrational structure of the standing wave potential and (ii) the transition probability
between vibrational states, when the atom is kicked.

The scattering of light off a rigid lattice is totally understood in terms of the
dynamic structure factor [878]. Indeed, the dynamic structure factor includes all kind
of cooperative effects: those due to ’bosonic stimulation’, to peculiarities of the spatial
distribution, and of the photonic density of states [878]. We want to calculate the
scattering rate. For internal energetic excitation we would calculate,

1

τ
∝ |⟨f |e−iĤt|i⟩|2 . (38.61)
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In first order, the expansion of the expression yields Fermi’s Golden rule (in second
order the Kramers-Heisenberg rule). From there we get the photonic density of states
...

Figure 38.10: (a) Raman anti-Stokes transition on a particle confined in a trapping potential
V(z). (b) Raman anti-Stokes transition on a free particle between motional states determined
by the dispersion relation E(p).

For momentum kicks it would be,

dσ

dΩ
∝ |⟨f |e−ik·̂r|i⟩|2 . (38.62)

Expanding this do we get in first order the structure factor? And the phononic density
of states?

How elastic is the scattering from an atom trapped in the Lamb-Dicke regime in
a ring cavity standing wave?

The dynamic structure factor is measured by Bragg spectroscopy. We did NOT
Bragg spectroscopy [1219, 1157] and we found elastic scattering (no recoil-shift). How
is this possible? Also we measured the static structure factor in [1219]. How about
the dynamic?

What are the question we want to respond?

• Bragg spectroscopy from trapped particles avoids to have to treat spontaneous
emission!

• Imagine an excited atom in the vibrational ground state of an anisotropic trap.
Will it emit preferentially in particular directions? I.e. will light be preferentially
scattered within a frozen dimension?

• What is the relationship to Hemmerich’s ring cavity quantum computer [606]
(see Sec. 42.2.5)?
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38.3.4 Optical cooling in of trapped atoms

Figure 38.11: (a) Illustration of Doppler cooling of strongly trapped ions via a shrinking of
the phase-space ellipse, (b) sideband cooling.

38.3.5 Exercises

38.3.5.1 Ex: Transition elements in anisotropic harmonic traps

a. Calculate and illustrate ⟨0|e−ık·r̂|0⟩ for an anisotropic trap with cylindrical sym-
metry.
b. Calculate ⟨n|e−ık·̂r|0⟩ and ∑nx,ny,nz

⟨n|e−ık·̂r|0⟩.

Solution: a. We characterize our trap by atrp = (ar,trp ar,trp az,trp) and calculate,

⟨0|e−ık·̂r|0⟩ = ⟨0|e−ıkxx̂|0⟩⟨0|e−ıky ŷ|0⟩⟨0|e−ıkz ẑ|0⟩ = ⟨0|αx⟩⟨0|αy⟩⟨0|αz⟩
= e−|αx|2/2e−|αy|2/2e−|αz|2/2 = e−k

2
ra

2
trp,re−k

2
za

2
trp,z/2 .

The result exhibited in Fig. 38.12 shows that the transition between vibrational ground
states is facilitated in directions, where the Lamb-Dicke parameter is small. This
is simply, because for large Lamb-Dicke parameter higher vibrational states may be
excited.
b. The results are exhibited in Fig. 38.13.

38.3.5.2 Ex: Periodicity of a lattice

Calculate eıap̂e2ıkẑe−ıap̂.

Solution: Using the Baker-Hausdorff formula,

eıap̂/ℏe2ıkẑe−ıap̂/ℏ = eıap̂/ℏe2ıkẑ−ıap̂+[2ıkẑ,−ıap̂/ℏ]/2

= eıap̂/ℏe−ıap̂/ℏ+2ıkẑ+[−ıap̂/ℏ,2ıkẑ]/2−2ak[p̂/ℏ,ẑ]

= eıap̂/ℏe−ıap̂/ℏe2ıkẑe−2ıak = e2ık(ẑ−a) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_RecoilElmag01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_RecoilElmag02.pdf
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Figure 38.12: (code) (a) Equipotential line of the trapping potential. (b) Angular distri-

bution of the Lamb-Dicke parameter for λ = 689 nm, m = 88u, ωx = ωy = 105 s−1, and

ωz/ωx = 1, 2, 3 (red,green,blue). (c) Corresponding angular distribution of the transition

matrix element.
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Figure 38.13: (code) (Left) Angular distribution of the transition matrix elements.

38.3.5.3 Ex: Energy commutators

Calculate the commutator between the kinetic and the potential energy for (a) a har-
monic oscillator and (b) a standing wave dipolar potential.

Solution: a. For a harmonic oscillator we have,

Ĥ =
p̂2

2m
+
m

2
ω2ẑ2

ẑ(t) = e−ıĤt/ℏẑ(0)eıĤt/ℏ

p̂(t) = e−ıĤt/ℏp̂(0)eıĤt/ℏ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_VibraLamb.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_VibraLamb.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_VibraLamb.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_VibraLamb.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_VibraLambN.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LightMatter/Sol_LM_Forces_RecoilElmag03.pdf
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With this we calculate the commutator between kinetic and potential energy for a
harmonic oscillator,

[
p̂2

2m
,
m

2
ω2ẑ2] =

ω2

4
[p̂2, ẑ2] =

ω2

4
(p̂[p̂, ẑ]ẑ + p̂ẑ[p̂, ẑ] + [p̂, ẑ]ẑp̂+ ẑ[p̂, ẑ]p̂) = −ıℏω

2

2
(p̂ẑ+ẑp̂) .

b. For a standing wave dipolar potential we have,

Ĥ =
p̂2

2m
+ U0 sin

2 kẑ =
p̂2

2m
+ U0

(
k2ẑ2 − 1

3
k4ẑ4 +

2

45
k6ẑ6 + ...

)

ẑ(t) = e−ıĤt/ℏẑ(0)eıĤt/ℏ

p̂(t) = e−ıĤt/ℏp̂(0)eıĤt/ℏ .

With Baker-Hausdorff eÂeB̂ = eÂ+B̂+[Â,B̂]/2 we find,

[Â, B̂] =

[
p̂2

2m
,U0 sin

2 kẑ

]
=
U0

2m

[
p̂2, (kẑ)2 − (kẑ)4

3 + ...
]

=
k2U0

2m
(p̂[p̂, ẑ]ẑ + p̂ẑ[p̂, ẑ] + [p̂, ẑ]ẑp̂+ ẑ[p̂, ẑ]p̂...)

=
−ıℏk2U0

m
(2p̂ẑ − ıℏ...) = ...

e−ıĤt/ℏ = e
−(ı/ℏ)t

(
p̂2

2m+U0 sin2 kẑ
)
= ... .

38.4 Driven atomic motion

The degree of freedom of atomic motion can be used for interesting studies of a new
kind. For them being a microscopic object we expect the emergence of quantum effects
in some circumstances. In free space the spectrum of atomic motion is continuous.

38.4.1 Map representations

38.4.1.1 Poincaré map

Given is the differential equation,

ẋ = f(x, t) , (38.63)

with the initial condition x(τ) = x0 with the solution x(x0, t, τ). Be t = a and t = b
two fixed points. The Poincaré map ϕ relates in initial value a to the value of the
solution at point b, i.e. x0 ← ϕx0 = x(x0, b, a). In other words, if one can find the
system function Φ of the time-discrete dynamical system, ϕn+1 = Φ(ϕn), then P is
the Poincaré map.

In dynamical systems, a Poincaré map or Poincaré section, is the intersection
of a trajectory which moves periodically (or quasi-periodically, or chaotically), in
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a space of at least three dimensions, with a transversal hypersurface of one fewer
dimension. More precisely, one considers a trajectory with initial conditions on the
hyperplane and observes the point at which this trajectory returns to the hyperplane.
Imagine as stroboscopic illumination. The Poincaré section refers to the hyperplane,
and the Poincaré map refers to the map of points in the hyperplane induced by the
intersections.

It differs from a recurrence plot in that space, not time, determines when to
plot a point. For instance, the locus of the moon when the earth is at perihelion is a
recurrence plot; the locus of the moon when it passes through the plane perpendicular
to the earth’s orbit and passing through the sun and the earth at perihelion is a
Poincaré map.

38.4.1.2 Circle map and annulus map for periodic forcing

The equation of motion of a periodically forced dynamical system, e.g. a self-sustained
oscillator, in the vicinity of a limit cycle can be reduced to [1031],

ϕ̇ = ω0 + ϵF (ϕ, t) . (38.64)

Note that this equation does not describe a real motion, since there is only one spatial
variable. Nevertheless, it is useful whenever inertia can be neglected. The r.h.s. of
this equation is a 2π periodic function of phase ϕ and a T periodic function of time
t. Thus the phase space of the dynamical system is a two-dimensional torus (see
Fig. 38.14).

t

�

Figure 38.14: Toroidal phase space of the limit-cycle oscillator. Time goes along the ring,
phase winds around the cross section.

If ϵ ≪ 1, then ϕ̇ ≈ (ϕ(t + T ) − ϕ(t))/T , and the phase space can be reduced to
a one-dimensional map called circle map by stroboscopic mapping with time interval
T ,

ϕ(t+T ) = ϕ(t)+ω0T+ϵ

∫ t+T

t

Fdt = ϕ(t)+ω0T+ϵ[G(t+T )−G(t)] ≃ ϕ(t)+ω0T+ϵTG(t) .

(38.65)
Defining ϕn ≡ ϕ(t+ nT ),

ϕn+1 = mod2π [ϕn + ω0T + ϵF (ϕn)] . (38.66)

If ϵ = 0, we get a circle shift. For rational periods ω0T = 2πp/q, each point of the
circle is periodic with period q. The rotation number is,

ρ(ϕ0) = lim
n→∞

ϕn − ϕ0
2πn

. (38.67)
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The observed frequency is Ω = ρω0. Close to rational periods it tends to lock. This
is visualized by the devil’s staircase and the Arnold tongue.
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η/2π
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1.5
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η/2π

0

0.5

1

ε
Figure 38.15: (code) (a) Devil’s staircase of locking ranges and (b) Arnold tongues in the

circle map ϕn+1 = ϕn + ω0T + ϵ sinϕn.

The annulus map is used in 2D. As an example, the standard map for the equation
ϕ̈+K sinϕ = 0 would be ϕn+1 = ϕn + Pn+1 and Pn+1 = Pn +K sinϕn.

38.4.2 Driven oscillators

A driven self-sustained oscillator or limit-cycle oscillator are described by circle maps,
as shown above. Their dynamics is described by the so-called Kuramoto model ex-
plained below. Although forced rotators are not self-sustained, they behave in a
similar way, if driven by a constant force. Examples are the δ-kicked rotor and the
resistively shunted Josephson junction discussed in Sec. 21.4.4.

38.4.2.1 Self-sustained oscillators and the Kuramoto model

The Kuramoto model is given by the following equation [667] 13,

θ̇n =
K

N

∑

m

sin(θn − θm)− ξn(t) . (38.68)

The Kuramoto model describes, how an ensemble of coupled harmonic oscillators
oscillating at different frequencies will synchronize, if their number and their mutual
coupling exceeds a critical value. This paradigm is very rich of examples, since it
applies as well to physical systems like Huygens’ coupled pendulums (illustrated in

13For two coupled limit-cycle oscillators the Kuramoto equations read,

θ̇1 = ω1 + 1
2
K sin(θ2 − θ1) and θ̇2 = ω2 + 1

2
K sin(θ1 − θ2) ,

such that, defining θ ≡ θ1 − θ2, we obtain the so-called Adler equation (see (21.99) and 37.2.2),

θ̇ = ∆ω −K sin θ .

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_CircleMap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_CircleMap.m
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Fig. 38.16) and arrays of Josephson junctions or lasers, as it describes biological
systems like the cardiac pacemakers cells, firing neurons, firefly flashes and cricket
concerts [1273]. The variance of the oscillator frequencies introduces a random mixing
of the phase space, which may be described by a stochastic Langevin force, which
introduces fluctuations in the (otherwise deterministic) center-of-motion. Another
prominent system is the collective atomic recoil laser discussed in Sec. 42.2. The
Kuramoto model corresponds to a mean-field theory. It has been shown that this
leads to a phase transition (in time domain). Cooperative action starts at a threshold
value.

Figure 38.16: Huygen’s pendulum.

38.4.2.2 Synchronization of limit-cycle oscillators

It is an interesting question, why the Kuramoto model is able to map physical systems
anyway! While it is clear, that it predicts synchronization of the phases θn in equa-
tion (38.68), its application to coupled pendulums is less obvious. Indeed, we would
rather expect coupled pendulums to beat, rather then synchronize their oscillations.
Synchronization would lower entropy, which is not possible in closed systems. In fact,
Huygens did his observation with pendulum clocks rather than physical pendulums,
which is totally different, because each clock provides energy and friction in such
a way as to maintain the oscillation at a constant amplitude. Hence, the physical
system is not closed, as the Kuramoto model suggests.

But even for pendulum clocks synchronization seems to be an artefact of the
Kuramoto model, because in order to synchronize two pendulums, one has to speed
up the first and slow down the second. If the pendulums have finite mass, this requires
inertial terms, which are absent from the Kuramoto model. Hence, the Kuramoto
equation does not follow immediately from a mechanical model, but at some limit or
approximation.

The Kuramoto model does not map exactly a real physical system, but grasps
some of their features and exhibits them in an illustrative way. In this sense, its
applicability to a vast variety of systems is not surprising.

Even in the case of coupled driven pendulums, a derivation of the Kuramoto
equation from first principles is not obvious. One might start from the mechanical
eequations of motion,

ẍn + βẋn + ω2
nxn + g

∑

m

(xn − xm) = F cosωt , (38.69)

where we let the oscillators have different frequencies ωn, but they couple with the
same strength g to all other oscillators, where ω2

n ≫ g. As a simplification we only
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consider limit-cycle oscillation of the individual oscillators. The role of the force
is reduced to assuring this boundary condition, so that if we impose solutions like
xn ≡ eıωt+ıθn we do not need an explicit force term, F ≡ 0,

ıθ̈ne
ıωt+ıθn − (ω2 + θ̇2n)e

ıωt+ıθn + ıβ
(
ω + θ̇n

)
eıωt+ıθn + ω2

ne
ıωt+ıθn (38.70)

+ g
∑

m

(
eıωt+ıθn − eıωt+ıθm

)
= 0 .

The imaginary part is,

θ̈n + βθ̇n + βω − g
∑

m

sin(θm − θn) = 0 . (38.71)

Neglect inertia and defining K ≡ g/β and reıψ ≡ N−1∑m e
ıθm ,

θ̇n = ω +Kr sin(ψ − θn) . (38.72)

This shows that dissipation is an essential ingredient for the Kuramoto model. The
assumption of a driving and a friction force is necessary to ensure a constant kinetic
energy for every oscillator despite the existence of a coupling, i.e. an energy exchange
between the oscillators. Every oscillator is coupled to a reservoir, and this coupling
provides or receives the excess energy and entropy resulting from the mutual coupling
between the oscillators. The model also has been extended to include inertial effect
[3],

mθ̈n + θ̇n = ω +Kr sin(ψ − θn) . (38.73)

The numerical simulation of Eq. (38.68) with real coupling does not exhibit syn-
chronization (be careful to avoid numerical errors). This is not astonishing, because
it is a linear closed system not driven by any dissipative force. Energy is not lost, the
evolution is deterministic, thus reversible, thus no entropy is produced or reduced.
In contrast synchronization would indicate that entropy has been reduced. There-
fore synchronization must have something to do with imaginary coupling...? And
nonlinearity in the case of Huygens’ pendulum.

38.4.3 Forced rotator

38.4.3.1 Constant forcing

The phase space of a free undamped rotator is shown in Fig. 38.17.
By adding a torque and friction, we obtain the forced rotator. Its behavior is similar

that of the δ-kicked rotor. The damped rotator equation has many applications in
various domains. In the form,

d2φ

dt2
+ γ

dφ

dt
+
g

l
sinφ = T/I , (38.74)

it describes a physical pendulum of length l and moment of inertia I, if a friction
force and a torque T are applied (see Sec. 4.1.7). In the form,

d2φ

dt2
+

1

τ

dφ

dt
+KAB sinφ = −1

τ
(ωlo − ω0) , (38.75)
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Figure 38.17: (code) Phase space trajectories of undamped pendulum.

it describes a phase-locked loop (PLL) (see Sec. 55.3.5). Here τ is the integration
time of the low-pass filter, A and B are the amplitudes of the master and slave lasers,
K the amplitude of the local oscillator, ωlo its frequency, and ω the center frequency
of the VCO. In the form,

C
Φ0

2π

d2φ

dt2
+

1

R

dφ

dt
+ Ic sinφ = i , (38.76)

it describes resistively shunted Josephson junctions (see Sec. 21.4.4). Here Φ0 = h/2e,
C is the capacitance of the junction, R its resistance, and Ic the critical current
through the junction. In the form,

1

2U

d2φ

dt2
+

8νg2N2κ

(κ2 + 4ν2)
2

dφ

dt
+

ΩmwN

2
sinφ =

g2N2κ

κ2 + 4ν2
, (38.77)

it describes merging BECs in a ring cavity (see Sec. 47.5.4). The synchronizing degrees
of freedom are relative phases of the Broglie waves. Irreversible dissipation is obtained
via coupling to an optical cavity followed cavity decay.

Harmonically forced rotators are described by annulus maps. In the presence of
dissipation, the rotator can be overdamped, e.g. vanishing capacitance in the JJ. The
equation of motion then reduces to that of a self-sustained oscillator described by a
circle map. Phase-locking of the dipole moments of the transitions in a V-type three-
level system, like for the Correlated spontaneous Emission Laser (CEL) is such an
example. The Adler equation, which describes the CEL, resembles the equation for
a resistively shunted Josephson junction [663] for the approximation Φ̈ = 0. For the
CEL irreversibility, is achieved via optical pumping followed by spontaneous emission.

In all cases, quantum systems synchronize, provided there is some resistive dis-
sipation (spontaneous emission, cavity friction, ..). I.e. forcing against friction is a
necessary precondition for synchronization.

38.4.3.2 Periodic forcing

Expect classically chaotic behavior.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_PendulumPhasespace.m
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Figure 38.18: (a) Schemes for PLL/CEL and (b) merging BEC (right). PLL corresponds to
a locking of the induced dipole moments (green and red elliptic curves). CEL corresponds
to a correlation of the spontaneous emission (green and red waves). Noise reduction by
synchronization analogous to CEL.

An interesting question is whether the Kuramoto phase transitions considered here
are quantum phase transitions, i.e. whether they occur at T = 0. For the merging
BEC system the temperature resides in thermal excitations. How about the PLL,
where inversion is a precondition for lasing?

A rich system to study dynamical localization, quantum resonance, and quantum
synchronization is the δ-kicked rotor.

38.4.4 Periodically kicked quantum rotor

The δ-kicked rotor is the paradigm of Hamiltonian chaos. Experimentally, 100 µK
cold atoms are released from a MOT, and a fast succession of light pulses is applied.
The light is a far-detuned standing wave.

Atom optical systems have a number of advantages: 1. It is relatively simple
to generate highly nonlinear potentials, in which the dynamics of trapped particles
exhibits classical chaos. 2. The duration of an experiment can easily exceed the
quantum break time. 3. The isolation from environment is sufficient to allow for
persistent quantum interferences. 4. Negligible dissipation permits quantum effects
to get visible.

A presentation on the subject is available here (watch talk).

38.4.4.1 Classical evolution

At short times (shorter than the quantum break time) the δ-kicked rotor behaves
classically. I.e. the initial spatial distribution of the MOT diffuses into a Gaussian
momentum distribution. The energy growth is diffusive. These are signatures of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/KickedRotor
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chaotic behavior. The Hamiltonian of a δ-kicked rotor is,

Ĥ ′ =
p̂′2

2m
+ V0 cos 2kLx̂

′
∞∑

n=−∞
δ(t− nT ) , (38.78)

where T is the time interval between the pulses, t is an integer counting the pulses.
The equation of motion follows from ˙̂x′ = ∂Ĥ/∂p̂′ and ˙̂p′ = −∂H/∂x̂′,

m¨̂x′ = 2kLV0 sin 2kLx̂

∞∑

n=−∞
δ(t− n) . (38.79)

With the abbreviations ωr ≡ 2ℏk2L/m and k̄ ≡ 2ωrT , we go to dimensionless units

via Ĥ = Ĥ ′k̄2/2ℏωr, K = V0k̄
2/2ℏωr, t = t′/T , x̂ = 2kLx̂

′, and p̂ = p̂′k̄/2ℏkL, we
get,

Ĥ =
p̂2

2
+K cos x̂

∞∑

n=−∞
δ(t− n) . (38.80)
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Figure 38.19: (code) (a) Phase diagram and (b) histogram of the classical kicked rotor.

38.4.4.2 Dynamical localization

At longer times the momentum distribution turns exponential, which is a clear in-
dication of dynamical localization. This is quantum suppression of chaotic diffusion,
i.e. of stochasticity. This is at first surprising, because all quantum problems have
probabilistic, i.e. stochastic interpretations. Apparently, the fact that the density of
states in quantum mechanics is discrete, leads to periodic time evolutions. (This is
because the Fourier spectrum of a periodic motion is discrete.) This gives rise to
periodic orbits in situations, where classical mechanics predicts chaos.

The suppression of energy transport in the rotor can be interpreted as Anderson
localization (in angular momentum rather than in space) [450]. The randomness of
disordered lattices in the Anderson problem is replaced by pseudo-randomness in the
phase of the δ-kicks. Dynamical localization suppressed chaotic diffusion by coherence
effects. Typical pulse lengths for δ-kicks are 300 ns. This would work in the ring cavity
at low finesse.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_ClassicalKickedrotor.m
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The classical dynamics of the δ-kicked rotor is solely determined by the stochas-
ticity parameter K. For K > 4 the dynamics is predominantly chaotic. The quantum
mechanics are additionally specified by k̄. The scaled version of commutation relation,
[x̂′, p̂′] = ıℏ, reads,

[x̂, p̂] = ık̄ . (38.81)

Obviously, k has the meaning of a scaled Planck constant measuring the action scale
of our system.

Technical issues are: 1. Finite pulse shapes reduce chaos and hence dynamical
localization [728, 729]. 2. Noise and dissipation also lead to delocalization, i.e. the
classical limits are recovered, i.e. instead of localization after the quantum break time,
momentum continues to diffuse with a coefficient dependent on the amount of noise.

38.4.4.3 Quantum resonance

However, at specific periods between the kicks, i.e. when time interval equals the
inverse of the recoil shift, the ballistic expansion is observed, i.e. there is a constant
and uniform acceleration force. There is no localization any more, but a quadratic
increase of energy. This is due to quantum resonance. Quantum resonances occur
when k̄/2π is integer or a simple rational number. This can be understood as follows:
The kicks occur when Tv = λ/4 × m/n, the Bragg condition is fulfilled, i.e. the
transitions takes place at the edges of a Brillouin zone. While quasimomentum is
always conserved, with every kick the atoms jump into the next higher band increasing
their energy by one recoil unit. These are the accelerator modes.

38.4.4.4 δ-kicked rotor in the gravitational field

Gravitation [451, 1163] helps stabilizing quantum resonances.
In the gravitational field, −mgx̂′, the equation of motion reads,

m¨̂x′ = 2kLV0 sin 2kLx̂

∞∑

n=−∞
δ(t− n) +mg . (38.82)

The scaled Hamiltonian of a δ-kicked rotor is, using f ≡ mgT/ℏkL,

Ĥ =
p̂2

2
− fx̂+K cos x̂

∞∑

n=−∞
δ(t− n) , (38.83)

We transform into the accelerated frame via P̂ = p̂− ft,

Ĥg = eıfx̂tĤe−ıfx̂t =
1

2
(P̂ + ft)2 +K cos x̂

∞∑

n=−∞
δ(t− n) . (38.84)

Separate band and quasimomentum via P̂ = N + β, N = −ı ∂∂θ . The evolution
over one period is then,

e−ıĤgt = e−ıK cos x̂mod2π− ıτ
2 (N+β+fn+f/2)2 . (38.85)
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38.4.4.5 Impact of noise and dissipation

The standard map of a δ-kicked rotor is [451, 206]

Jn+1 = Jn − k sin θn+1 − sgn(ϵ)τη (38.86)

θn+1 = θnsgn(ϵ)Jnmod2π .
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Figure 38.20: (code) Standard map of the gravitationally accelerated δ-kicked rotor. The

parameters are τ = 6.26, k = 1.329, η = τ ∗ pi/20, θ0 = 0.42, and J0 = 0.

In the presence of dissipation, the dissipative map is derived [1431]

Figure 38.21: (code) Dissipative map of the gravitationally accelerated δ-kicked rotor.

38.4.4.6 Quantum synchronization

Quantum accelerator modes are the non-dissipative counterparts of mode locking:
The δ-kicked rotor with gravity leads to the same map as the Josephson junction
with dissipation. Hence, the classical mode locking mechanism underlying quantum
accelerator modes renders them a robust tool for efficient quantum state control,
deep in the quantum realm [206]. Accelerator modes are due to stability islands in
pseudo-classical phase space.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_RotorStandardMap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_RotorStandardMap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Forces_RotorDissipativeMap.m


2094 CHAPTER 38. ATOMIC MOTION IN FORCE FIELDS

All map are necessarily classical constructs. To get quantum maps, a master equa-
tion treating dissipation via additional Lindblad terms can be simulated by quantum
Monte-Carlo procedures [1431]. As an example, one may consider the formation of
Shapiro steps in δ-kicked atomic clouds in the presence of dissipation. For strong dis-
sipation, quantum fluctuations can be suppressed by quantum synchronization when
the system is close to the classical limit. In the quantum limit, there is a steady
phase slip washing out the synchronization plateaus. For weak dissipation in the
classical limit, chaotic behavior can lead to multivalued synchronization frequencies
(the dissipative map can have different attractors). In the quantum limit, chaos is
stabilized.

A dissipative quantum system at zero temperature can only tunnel towards its
lowest energy state when a biasing dc-signal is applied. As the bias periodically
changes its sign due to the action of a driving field, tunneling makes the particle
move periodically towards its corresponding lowest energy state, as long as the driving
period is much longer than the typical tunneling time. In contrast, a short driving
periods, finite temperature quantum noise promotes and assists synchronization. This
is similar to the stochastic resonance.

One could have the impression that the whole quantum synchronization business
is nothing else a reinvention of the CEL [1251].

One of the defining features of quantum mechanics in entanglement, i.e. the im-
possibility to factorize a system into its constituents. It seems, that in an appropriate
classical limit only chaotic systems can preserve a significant amount of entangle-
ment [429]. E.g. as long as two coupled oscillators are classically uncorrelated and
behave chaotically, quantum entanglement can exist no matter the value of ℏ. As
soon as they synchronize, chaos disappears and so does entanglement. In fact chaos
disappears mainly in the classical limit, since it does really exist in the quantum
limit, where quantum noise is large enough to drive the system away from periodic
attractors and swamp the fractal structure found in the chaotic classical attractor.

The quantum correlations do not have classical counterparts yet they persist in the
classical limit. Some understanding can be gained if we consider that in order to obtain
the classical limit, it is sufficient that the state of the system be localized relative to a
large classical action. However, in order to guarantee that the entanglement between
the two oscillators can be eliminated from the system, we require that the localization
of the wavefunction be of the order of ℏ. Hence, satisfying the classical limit does not
imply that entanglement will be removed.

38.4.5 Chaos

’Chaos is found in greatest abundance wherever order is being sought. It always
defeats order, because it is better organized.’ [T. Pratchett, Diskworld novela, ’Inter-
esting times’]

38.4.5.1 Classical chaos versus quantum chaos

The classical chaos or deterministic chaos arises of unprecisely known initial condi-
tions. The signatures of chaos are an exponential sensitivity of the systems’ trajectory
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to initial conditions and self-similarity. The first one is measured by the Lyapunov
exponent. Hopf bifurcation.

While in the classical world chaos is encountered everywhere, in quantum mechan-
ics this is not obvious, because the fundamental equation of motion, the Schrödinger
equation, is linear. Counterintuatively, and although quantum mechanics is intrin-
sically probabilistic, there are systems at the boundary of quantum and classicality
where chaos is inhibited and stabilized by quantum mechanics. The quantum chaos
thus behaves very differently from classical chaos.

38.4.5.2 Quantum synchronization

How to find a system that suits for quantum synchronization? Start checking the
following requirements: 1. In the classical limit the system should behave chaotic
(this is fulfilled with the CARL). 2. There must be a continuous degree of freedom
that can be quantized, e.g. atomic motion, tunneling flux, etc.. 3. Feasibility of weak
dissipation. 4. ...

A particularity of atoms interacting with optical ring cavities is that they are lit-
erally haunted by synchronization. Examples are: 1. Kuramoto type synchronization
of the motion of individual atoms. This effects is known as CARL. 2. Mode lock-
ing of the optical fields to resonances of the cavity. This effect is at the origin of
laser cooling. 3. Fusion of independent but coupled BECs under the action of an
irreversible cycling scheme. This effects is analogous to resistively shunted Josephson
junctions. 4. Tunneling between adjacent wells of the standing wave in the cavity,
and the interplay of superfluidity and Mott insulation.

Some of the synchronization phenomena are essentially classical. Nevertheless, the
protagonists of the system are all quantum objects. For example, 1. the momentum
of individual atoms is discretized when kBT < ℏωr. 2. Quantum statistical effects,
quantum correlations and entanglement come into play when T < Tc. 3. BECs
are zero-temperature objects, and (at optical wavelengths) the universe represents
an effective zero-temperature reservoir to which the cavity couples. Hence, it is an
obvious question whether and in what sense quantum effects are going to effect the
synchronization process itself. It is important to be aware that the fact that the
synchronizing modes are quantum objects does not mean that the coupling force
exhibits quantum behavior.

To construct an approach to quantum synchronization in the ring cavity system,
in the following, we will start recalling another well-studied system, the atom optical
δ-kicked rotor. This system bears analogies with an array of coupled Josephson junc-
tions. Both, the coupled JJs and the δ-kicked rotor, have been proposed for studies
of quantum synchronization [533]. We will try to find out analogies with ring cavity
dynamics, e.g. the JJ like fusion of BECs [663].

The question addressed is that of classical-quantum mechanical correspondence,
i.e. what happens if ℏ→ 0?

For strong coupling, classical nonlinear synchronization phenomena emerge on
microscopic scales. Is mode locking necessarily strictly a (semi-)classical effect? No!
An example is the atom optical quantum accelerator, i.e. δ-kicked atoms in the field
of gravity. The δ-kicked rotor serves as prototype for classical and quantum chaos.
In Sec. 42.8.2 we show how to simulate quantized motion.
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T.W. Hänsch et al., Cooling of Gases by Laser Radiation [581]DOI

D.J. Wineland et al, Laser Cooling of Atoms [1382]DOI

A. Ashkin, Trapping of atoms by resonance radiation pressure [51]DOI

E.L. Raab et al., Trapping of Neutral Sodium Atoms with Radiation Pressure [1065]DOI

Ph.W. Courteille et al., Highly Versatile Atomic Micro Traps Generated by Multi-
frequency Magnetic Field Modulation [299]DOI

38.5.2 on nonlinear dynamics

D.L. Shepelyanski, Localization of diffusive excitation in multi-level systems [1199]DOI

G. Behinaein et al., Exploring the phase space of the quantum delta kicked accelerator
[111]DOI

A. Buchleitner et al., Quantum Accelerator Modes from the Farey Tree [206]DOI

G.G. Carlo et al., Dissipative Quantum Chaos: Transition from Wave Packet Col-
lapse to Explosion [233]DOI

F.S. Cataliotti et al., Josephson Junction Arrays with Bose-Einstein Condensates
[240]DOI

Qijin Chen et al., Shapiro steps observed in a dc superconducting quantum interfer-
ence device with multiple junctions in each arm [249]DOI

G.J. Duffy et al., Experimental investigation of early-time diffusion in the quantum
kicked rotor using a Bose-Einstein condensate [394]DOI

M.J. Everitt et al., Persistent entanglement in the classical limit [429]DOI

S. Fishman et al., Chaos, quantum recurrences, and Anderson localization [450]DOI

S. Fishman et al., Stable quantum resonances in atom optics [451]DOI

B.G. Klappauf et al., Quantum chaos with cesium atoms: pushing the boundaries
[729]DOI

F.L. Moore et al., Atom optics realization of the quantum δ-kicked rotor [916]DOI

https://www.researchgate.net/publication/46648662_Laser_Cooling_and_Trapping/link/02bfe510786cf162ac000000/download
https://archive.org/details/AtomicPhysicsChristopherJ1.Foot/page/n3
http://doi.org/10.1119/1.18911
http://doi.org/10.1016/0030-4018(75)90159-5
http://doi.org/10.1103/PhysRevA.20.1521
http://doi.org/10.1103/PhysRevLett.40.729
http://doi.org/10.1103/PhysRevLett.59.2631
http://doi.org/10.1088/0953-4075/39/5/005
http://doi.org/10.1016/0167-2789(87)90123-0
http://doi.org/10.1103/PhysRevLett.97.244101
http://doi.org/10.1103/PhysRevLett.96.164101
http://doi.org/10.1103/PhysRevLett.95.164101
http://doi.org/10.1126/science.1062612
http://doi.org/10.1063/1.1447598
http://doi.org/10.1103/PhysRevE.70.056206
http://doi.org/10.1088/1367-2630/7/1/064
http://doi.org/10.1103/PhysRevLett.49.509
http://doi.org/10.1103/PhysRevLett.89.084101
http://doi.org/10.1016/S0167-2789(98)00221-8
http://doi.org/10.1103/PhysRevLett.75.4598


38.5. FURTHER READING 2097

J. Ringot et al., Experimental Evidence of Dynamical Localization and Delocalization
in a Quasiperiodic Driven System [1098]DOI

S. Schlunk et al., Experimental observation of high-order quantum accelerator modes
[1163]DOI

D.A. Steck et al., Quantum Feedback Control of Atomic Motion in an Optical Cavity
[1247]DOI

I. Steiner et al., Quenching Phase Noise: Correlated Spontaneous Emission versus
Phase Locking [1251]DOI

O.V. Zhirov et al., Quantum synchronization [1431]DOI

R. Kohlhaas et al., Phase Locking a Clock Oscillator to a Coherent Atomic Ensemble
[?]DOI

T.E. Lee et al., Quantum Synchronization of Quantum van der Pol Oscillators with
Trapped Ions [?]DOI

Minghui Xu et al., Conditional Ramsey Spectroscopy with Synchronized Atoms [?]DOI

http://doi.org/10.1103/PhysRevLett.85.2741
http://doi.org/10.1103/PhysRevLett.90.124102
http://doi.org/10.1103/PhysRevLett.92.223004
http://doi.org/
http://doi.org/
http://doi.org/10.1103/PhysRevX.5.021011
http://doi.org/10.1103/PhysRevLett.111.234101
http://doi.org/10.1103/PhysRevLett.114.103601


2098 CHAPTER 38. ATOMIC MOTION IN FORCE FIELDS



Part VI

Collective Scattering of Light
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Chapter 39

Cooperativity in light
scattering

In Chp. 34 we discussed the interaction of light with individual atoms. In the practice
of spectroscopy, however, we often work with ensembles of scatterers. Depending on
their spatial distribution (e.g. disordered, quasi-continuous, periodic), their motion
(hot gas or cold cloud), the possible existence of correlations between them, the
presence of boundary conditions (e.g., free space, cavities, or photon bands), and
finally, in case of degenerate quantum gases, of a possible bosonic stimulation of the
scattering process, we expect new collective effects. In this chapter we will discuss
several examples, in particular, localization effects induced by disorder, super- and
subradiance, Bragg scattering, and the formation of forbidden photonic bands in
periodic lattices. Phenomena leading to self-organization, such as the collective atomic
recoil laser, will be discussed in Chp. 42.

Figure 39.1: (a) Artist’s view of multiple scattering of a photon through a dilute cloud. (b)
Atomic cloud as a bulk object characterized by a refraction index n(r). (c) Illustration of a
photonic band in an optical lattice.

This chapter starts with introducing as the main theoretical tools the structure
factor and the coupled dipoles model. In Sec. 39.1 we will derive the formalism and
learn, how to employ it to calculate, e.g. the spatial distribution of light scattered by
an atomic cloud and the radiation pressure force on the atoms focusing on situations,
where interatomic interactions induced by the incident light can be neglected. In
Sec. 39.2 we will, disregarding the atomic’s cloud graininess and disorder, introduce
the smooth density approximation and compare it to macroscopic Mie scattering.
In Sec. 39.3 we will focus on cooperative effects inducing collective lineshifts and
broadenings, such as the Lorentz-Lorenz and the Lamb shift. We will also discuss
disorder-induced localization effects, super- and subradiance. In Sec. 39.2 we investi-
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gate Bragg scattering, i.e. scattering from periodically ordered atoms, and finally in
Sec. 40.2 we study scattering from correlated atoms.

39.1 Theoretical tools and models

As mentioned above, the process of light scattering by an atomic cloud depends on
several factors, many of which can be summarized by a quantity called the structure
factor. This structure factor, obtained in perturbation theory, describes the prob-
ability for the light to be scattered into a particular direction as a function of the
properties of the atomic cloud (spatial distribution, motion, etc.). The quantity is
well suited for dealing with stationary situations.

On the other hand we have at our disposal a microscopic theory called the cou-
pled dipole model. In this model we treat every individual atom as a dipole, which
interacts with all other atoms by rescattering the incident light. The resolution of the
Schrödinger equation allows, several approximations having been made, to calculate
the dynamics of the system.

39.1.1 The structure factor and definition of cooperativity

One way of characterizing the scattering process is by structure factor. The static
structure factor is the normalized response of a system to a perturbation with the
wave vector q. It can be understood as the final density of states for the atom after
the scattering process. In contrast, the dynamic structure factor also considers the
final density of states for the emitted or scattered photon. That is, on one hand, the
frequency and momentum of the photon must satisfy the Bragg condition. On the
other hand, the density of available states can also be structured, for example, when
the scattering process takes place inside a cavity.

In lowest-order perturbation theory (Fermi’s Golden Rule) we get the general
expressions [713],

dσ

dΩsdω
=

(
dσ

dΩs

)

1

S(q, ω) , (39.1)

that is, the effective scattering cross section is reduced to the effective Rayleigh scatter-
ing cross section by an isolated atom times a geometric term called dynamic structure
factor,

S(q, ω) ≡ 1
2π

∫
dteıωt⟨ρ̂(q, t)ρ̂†(q, 0)⟩ , (39.2)

where,

ρ̂(q, t) =

∫

V

n̂(r, t)eıq·rd3r (39.3)

is Fourier transform of the atomic density. Thus, S(q, ω) is the Fourier transform of
the density-density correlation function. On the other hand,

∫
eıωtdω = 2πδ(t), and

we calculate the static structure factor,

S(q) ≡
∫
S(q, ω)dω = ⟨ρ̂(q, 0)ρ̂†(q, 0)⟩ . (39.4)
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In the equations (39.2) and (39.3) we have written the quantities ρ̂(q, t) and n̂(r, t)
as operators, in order to allow for the possibility, that the atomic ensemble is a
quantum gas, i.e. a Bose-Einstein condensate characterized by a single wavefunction
ψ̂(r, t) normalized to the density distribution, ρ̂(r, t) = ψ̂†(r, t)ψ̂(r, t). We shall return
to this subject in Sec. 47.1.1. In the following, we will restrict ourselves to atoms
localized in space with well-defined velocities and calculate the structure factor (i) for
disordered clouds of atoms excited by the passage of a photon in Sec. 39.1.6 and
(ii) for Bragg scattering by optical lattices in Sec. 39.4. In these cases, we find in the
literature often another definition of the structure factor as the expectation value of
the Fourier transform of the atomic density,

S(q) = ⟨ρ̂(q)⟩ , (39.5)

Thus, it describes the amplitude of the electric field of the scattered radiation. In order
to avoid confusion we will call this quantity structure coefficient and denote it by a
calligraphic S. We study the structure factor for various atomic density distributions
in Excs. 39.1.8.1 to 39.1.8.3.

Example 226 (Structure factor of a discrete cloud): In case of discrete
clouds, n(r, t) =

∑
j δ

(3)(r − rj), we can disregard the quantum nature of the
operators. The relationship (39.3) immediately gives,

ρ(q, t) =
∑
j

eıq·rj(t) (39.6)

and the relationship (39.2),

S(q, ω) = 1
2π

∫
dteıωtρ(q, t)ρ∗(q, 0) = 1

2π

∫
dteıωt

∑
j,k

eıq·[rj(t)−rk(0)] . (39.7)

Assuming atoms fixed in space, rj(t) = rj ,

S(q, ω) =
∑
j,k

eıq·(rj−rk)δ(ω) . (39.8)

That is, without recoil the light must be scattered elastically.

The notion of cooperativity is fundamental for any problem involving scattering of
radiation and, depending on the specific area of physics, is called by many different
names, such as Purcell factor, cavity-to-free-space scattering ratio, or phase matching
condition. Here, we will regard cooperativity as any deviation of the structure
factor from isotropy . For example, Bragg scattering and optical cavities are highly
cooperative, because they favor scattering in particular directions 1.

39.1.2 The scalar coupled dipoles model

In the following, we develop the coupled dipoles model, within which we define the
structure factor for light scattering by a cloud of scatterers making the following
assumptions:

1Note that cooperativity does not request the atoms to interact and exists in the single scattering
regime. In the multiple scattering regime other forms of collective phenomena, such as collective
Lamb shifts emerge, as we will see later on.
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• The light is (mostly) treated as a scalar field. That is, we disregard effects due
to the polarization of light and assume two-level atoms. Generalizations are
shown in Sec. 39.5.4 [1214, 859].

• Atoms are supposed to be fixed in space. That is, we disregard the Doppler shift
of moving atoms and the photonic recoil. Therefore, it will suffice to consider
the static structure factor.

• Atoms are initially uncorrelated and not degenerate. That means that we ne-
glect effects such as bosonic stimulation or Fermi blocking 2.

Be ω0 the frequency of the incident light, ωa the frequency of the atomic resonance,
and ω the frequency of the scattered light. The Hamiltonian is nothing more than
the generalization of (35.222) to several assumed atoms located at the positions rj ,

Ĥ =

N∑

j=1

ℏgk0
(σ̂je

−ıωat + σ̂†je
ıωat)(â†k0

eıω0t−ık0·rj + âk0
e−ıω0t+ık0·rj )

+
∑

k

N∑

j=1

ℏgk(σ̂je−ıωat + σ̂†je
ıωat)(â†ke

ıωkt−ık·rj + âke
−ıωkt+ık·rj )

. (39.9)

Here, Ω0 = 2gk0
√
n0 is the Rabi frequency of the interaction between an atom and

the incident light (which is treated as a classical field with n0 photons), σ̂j is the
deexcitation operator for the j-th atom, âk is the photon annihilation operator, and
gk = d

√
ω/(ℏϵ0Vph) describes the coupling between the atom and the vacuum modes

the volume of which is Vph. The j-th atom has its lower and upper states denoted by
|gj⟩ and |ej⟩, respectively. That is, we treat the atoms as simple two-level systems.
We also assume that all atoms are excited by the same unperturbed incident laser
beam, thus neglecting their dephasing along the laser path or induced by near-field
effects (which could arise for large spatial densities).

Within the rotating wave approximation RWA the Hamiltonian simplifies to,

Ĥ = ℏ
N∑

j=1

[gk0 σ̂j â
†
k0
eı(ω0−ωa)t−ık0·rj + h.c.] (39.10)

+ ℏ
N∑

j=1

∑

k

[gkσ̂j â
†
ke
ı(ωk−ωa)t−ık·rj + h.c.] .

The RWA only considers energy-conserving terms in single-photon processes. But
this is an artifact from the field quantization. Energy conservation can be warranted
by considering multi-photon virtual processes, which as a whole, conserve energy.
These terms appear in the full Hamiltonian, but are neglected in the RWA. While the
RWA often is a good assumption in single atom quantum optics, this is frequently
not the case for collective scattering. Here, we adopt the RWA to a simplify the
subsequent solution of the Schrödinger equation, but we will need to generalize the
results obtained a posteriori, as shown in the discussion of Sec. 39.1.4.

2Spontaneous emission by an atom in a Fermi gas of temperature T = 0 can not occur if the
photon wave vector is inside the Fermi lake, q < kF .
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We call |0⟩a = |g1, .., gN ⟩ the atomic ground state, |j⟩a = |g1, .., ej , .., gN ⟩ the
state where only the atom j is excited, and we assume that the system is in a the
superposition of states described by 3,

|Ψ(t)⟩ = α(t)|0⟩a|n0⟩k0
|0⟩k +

N∑

j=1

βj(t)|j⟩a|n0 − 1⟩k0
|0⟩k (39.11)

+
∑

k

γk(t)|0⟩a|n0 − 1⟩k0
|1⟩k .

With this ansatz we imply that at every instant of time, there can be at most only
one excitation in the atomic cloud. The temporal evolution of the amplitudes is
obtained by inserting the Hamiltonian and the ansatz into the Schrödinger equation,
ıℏ∂t|Ψ(t)⟩ = Ĥ|Ψ(t)⟩. Once the evolution of the amplitudes is calculated, we can
determine the observables of the system, such as the radiative pressure force or the
amplitudes of the scattered radiation fields or the fields inside the cloud.

Figure 39.2: Scheme of the interaction of a light beam with a sample of atoms.

Example 227 (Interaction Hamiltonian in the rotating frame): The
Hamiltonian in the rotating wave approximation is,

Ĥ = ℏg
(
σ̂e−ıωat + σ̂†eıωat

)(
â†eıω0t + âe−ıω0t

)
≃ ℏg

(
σ̂â†eı∆0t + σ̂†âe−ı∆0t

)
.

For the Pauli matrices we have the following rules,

[σ̂z, σ̂] = −σ̂ and [σ̂z, σ̂
†] = σ̂† ,

such that,

[σ̂z, Ĥ] = ℏg
(
−eı∆0tâ†σ̂ + e−ı∆0tâσ̂†

)
[σ̂z, [σ̂z, Ĥ]] = ℏg

(
eı∆0tâ†σ̂ + e−ı∆0tâσ̂†

)
= Ĥ

[σ̂z, [...[σ̂z, Ĥ]]...] = ℏg
[
(−1)neı∆0tâ†σ̂ + e−ı∆0tâσ̂†

]
.

3This ansatz is well adapted to situations where the RWA holds. Otherwise, additional counter-
rotating terms must be included [458].
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Using the Baker-Haussdorff formula,

eıω0tσ̂z Ĥe−ıω0tσ̂z = Ĥ + [ıω0tσ̂z, Ĥ] + 1
2!
[ıω0tσ̂z, [ıω0tσ̂z, Ĥ]] + ...

= ℏg
∞∑
n=0

(ıω0t)
n

n!

[
(−1)neı∆0tâ†σ̂ + e−ı∆0tâσ̂†

]
= ℏgeı∆0tâ†σ̂

∞∑
n=0

(−ıω0t)
n

n!
+ ℏge−ı∆0tâσ̂†

∞∑
n=0

(ıω0t)
n

n!

= ℏg
(
e−ıωatâ†σ̂ + eıωatâσ̂†

)
.

39.1.2.1 Temporal evolution of the amplitudes

The time evolution of the amplitudes is obtained by inserting the Hamiltonian Ĥ and
the ansatz |Ψ(t)⟩ into the Schrödinger equation,

∂

∂t
|Ψ(t)⟩ = − ı

ℏ
Ĥ|Ψ(t)⟩ . (39.12)

one obtains with Ω0 = 2gk0
√
n0,

α̇(t) = −ıΩ0

2 e
ı∆0t

N∑

j=1

βj(t)e
−ık0·rj (39.13)

β̇j(t) = −ıΩ0

2 α(t)e
−ı∆0t+ık0·rj −

∑

k

ıgkγk(t)e
−ı∆kt+ık·rj

γ̇k(t) = −ıgkeı∆kt
N∑

j=1

βj(t)e
−ık·rj .

We set the initial conditions,

α(0) = 1 , βj(t) = 0 , γk(t) = 0 . (39.14)

For low excitation rate, we can set α(t) ≃ 1. Integrating the third equation,

γk(t) = −ıgk
N∑

j=1

e−ık·rj
∫ t

0

eı∆kt
′
βj(t

′)dt′ , (39.15)

and substituting it into the second equation,

β̇j(t) = −ıΩ0

2 α(t)e
−ı∆0t+ık0·rj −

∑

k

g2k

N∑

m=1

eık·(rj−rm)

∫ t

0

eı∆k(t
′−t)βm(t′)dt′ .

(39.16)
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39.1.3 The Markov approximation

For small systems, R < λ, we can make use of the Markov approximation, which holds
when the collective decay time tdecay < R/c. Larger systems persist memory effects,
which may lead to (Rabi) collective Rabi oscillations. In the Markov approximation
given by βj(t

′) ≃ βj(t) the integro-differential equation (which is equivalent to a dif-
ferential equation of arbitrarily high order) reduces to a simple first order differential
equation. Defining 4,

βj ≡ β̃je−ı∆0t+ık0·rj , (39.17)

we obtain,

d

dt
α(t) = −ıΩ0

2

N∑

j=1

β̃j(t) (39.18)

d

dt
β̃j(t) = ı∆0β̃j(t)−

Ω2
0

4

N∑

m=1

∫ t

0

β̃m(t′)dt′

−
∑

k

g2k

N∑

m=1

eı(k−k0)·(rj−rm)

∫ t

0

e−ı(ωk−ω0)t
′′
β̃m(t− t′′)dt′′ ,

where we substituted t′′ ≡ t− t′ in the last integral. Now, using the Markov approx-
imation β̃m(t− t′′) ≃ β̃m(t), with lim

t→∞

∫ t
0
e−ı(ωk−ω0)t

′
dt′ = πδ(ωk − ω0), and with the

rate of spontaneous emission,

Γ ≡ Vph
πc

k20g
2
k0 , (39.19)

the third term becomes for the case m = j,

∑

k

g2k

∫ t

0

e−ı(ωk−ω0)t
′′
β̃j(t− t′′)dt′′ ≃

∑

k

g2kβ̃j(t)πδ(ωk − ω0) (39.20)

=
Vph
(2π)3

β̃j(t)

∫
g2kπδ(ωk − ω0)d

3k =
Vph
(2π)3

β̃j(t)4πg
2
k0πk

2
0

1

c
=

Γ

2
β̃j(t) .

The third term becomes for the case m ̸= j, evaluating the sum over the wavevectors
by
∑

k →
Vph

(2π)3

∫
d3k,

∑

k

g2k

N∑

m̸=j

eı(k−k0)·(rj−rm)

∫ t

0

e−ı(ωk−ω0)t
′′
β̃m(t− t′′)dt′′ (39.21)

≃
∑

k

g2k

N∑

m̸=j

eı(k−k0)·(rj−rm)β̃m(t)πδ(ωk − ω0)

=
Vph
(2π)3

N∑

m ̸=j
β̃m(t)

∫
g2ke

ı(k−k0)·(rj−rm)πδ(ωk − ω0)d
3k =

Γ

2

N∑

m ̸=j
γjmβ̃m(t) ,

4Later on we will be particularly interested in so-called timed Dicke states characterized by β̃j = β̃
independent on j.
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with

γjm ≡
2

Γ

Vph
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

g2ke
ı(k−k0)·(rj−rm)π

c
δ(k − k0)k2 sin θdkdθdϕ . (39.22)

Finally,

d

dt
β̃j(t) = ı∆0β̃j(t)−

Ω2
0

4

N∑

m=1

∫ t

0

β̃m(t′)dt′ − Γ

2

N∑

m=1

γjmβ̃m(t) , (39.23)

or

d

dt
α(t) = −ıΩ0

2

N∑

j=1

β̃j(t) (39.24)

d

dt
β̃j(t) = ı∆0β̃j(t)− ı

Ω0

2
α(t)− Γ

2

N∑

m=1

γjmβ̃m(t) .

This means that the problem is reduced to finding the γjm. Continuing the eval-
uation of Eq. (39.22),

γjm =
1

Γ
g2k

Vph
4π2c

e−ık0·(rj−rm)

∫ ∞

0

∫ 2π

0

∫ 1

−1
eık|rj−rm| cos θd cos θdϕδ(k − k0)k2dk

=
1

Γ
g2k
Vph
πc

e−ık0·(rj−rm)

∫ ∞

0

sin k|rj − rm|
k|rj − rm|

δ(k − k0)k2dk

= e−ık0·(rj−rm) sin k0|rj − rm|
k0|rj − rm|

. (39.25)

Isolating the self-decaying term and assuming low saturation, α(t) = 1, we get,

˙̃
βj =

(
ı∆0 −

Γ

2

)
β̃j −

ıΩ0

2
− Γ

2

∑

m ̸=j
γjmβ̃m . (39.26)

In Exc. 39.1.8.4 we will analyze the validity of the Markov approximation for typical
cold atoms experiments.

39.1.4 General solution with exponential kernel, validity of the
RWA

The RWA is valid for max(Ω,Γn)≪ ω,

∫ t

0

dt · e−ı(ωk−ω0)t ≃ P
(

1

ωk + ω0

)
− ıP

(
1

ωk − ω0

)
+ πδ(ωk − ω0) . (39.27)

The whole expression leads to the exponential kernel, the first two terms are the
cosine part, the third term is the sine part. The rotating wave approximation consists
in neglecting the first term, i.e. it only concerns the cosine part of the kernel.
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Within the RWA we got 5,6,

γjm = e−ık0·(rj−rm) ı sin(k0|rj − rm|)
ık0|rj − rm|

. (39.28)

Without the RWA we would have found [1186, 1178, 1180, 1283],

γjm = e−ık0·(rj−rm) e
ık0|rj−rm|

ık0|rj − rm|
. (39.29)

An alternative derivation from a Green function approach to the master equation is
presented in Sec. 41.3.2 (see Eq. (41.94)).

There has been a controversy between Friedberg and Scully about the role of
virtual photons (or collective Lamb-shift) [468, 1282, 469, 1181]. These terms result
from counterrotating terms in the rotating wave approximation. Scully assumes timed
Dicke states in infinitely large clouds and finds the contributions weak. Friedberg
does a mode expansion of the cloud and finds that different modes decay at different
velocities. This yields time-dependent radiation patterns, which can be temporarily
larger in backward direction.

Normally, the RWA is a good approximation, when Ω≪ ω. Deviations from this
approximations lead e.g. to the Bloch-Siegert shift and important corrections for very
far-detuned (quasi-electrostatic) optical trapping. The above requirement is not well
satisfied for our experiment, since ΩN =

√
NΩ ≃ 1..10 THz.

Be |b1b2...aj ...bN ⟩ the state with all atoms in the ground state except atom j being
in the excited state. Hence, the cloud’s state is simply expressed by the wavefunction,

Ψatom(t) =

N∑

j=1

βj(t)|b1b2...aj ...bN ⟩ . (39.30)

For large σ the radiation pressure is independent on the choice of the kernel.
In fact we may even set the kernel to 0. For small σ there appears a considerable
deviation. Interestingly, the imaginary part of the kernel gets important for higher
densities, even when the optical density is maintained, e.g. by compressing the cloud
in z-direction. This means that the collective Lamb shift becomes more apparent is
small compressed clouds. But we postpone a more thorough discussion to Sec. 39.3.

The analytic expansion into eigenmodes assumes the RWA. Hence, the numerics
deviate from the analytics for small σ and large N . Is it possible to generalize the
expansion to the exponential kernel (see [1283])? The authors also suggest that the
scattered radiation be frequency-shifted due to the imaginary part of the kernel. This
might be an interesting observable for experiments.

39.1.4.1 Low collective saturation

Note that for low saturation, α(t) = 1, the first term simply becomes − ı
2Ω0. Even

though the single atom excitation rate may be small in case of large detuning, the

5Note that dipole-dipole interactions are mediated by the exchange of virtual photons. Hence,
they are included in the Hamiltonian when the RWA is NOT applied.

6Note that Maxwell’s equations contain non-RWA terms.
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collective Rabi frequency
√
NΩ can be large. The presence of many excitations in

the cloud means, that higher Dicke states are populated. Then we may expect a
complicated many-body dynamics, if decay into other states than the timed Dicke
state is possible.

Even though the single atom excitation rate may be small in case of large detuning,
the collective Rabi frequency

√
NΩ can be large. The presence of many excitations

in the cloud means, that higher Dicke states are populated. Then we may expect a
complicated many-body dynamics, if decay into other states than the timed Dicke
state is possible.

The model we use (ground state + first excited state in the times Dicke basis) does
not allow more than 1 photon for N atoms. For such a model, neglecting saturation
means ’much’ less than 1 atom in the excited state, i.e. the probability of having the
any atom in the excited state is less than 1. But having N atoms, this means that
each atoms should have a excited state population of much less than 1/N . Including
the saturation in the naive way, means that when this term NΩ2

0 is not negligible,
than we will have less atoms in the first excited state of the timed Dicke basis, than
if when we would neglect saturation. This is precisely why we call this saturation,
we cannot take more atoms away from the ground state, because the system cannot
absorb more than one photon. But when this term is not longer negligible, then
in a cloud of N atoms, this does not prevent us from taking atoms away from the
ground state (we have N atoms which each can take one photon). Either the term is
negligible (and we could drop it) or we will try to keep its contribution (even at first
order in NΩ2

0), but then we cannot neglect the possibility of having 2 atoms excited.

39.1.4.2 Steady-state solution

In steady-state the equations of the coupled dipoles model can be solved numerically
for an arbitrary (ordered or disordered) cloud of immobile atoms located at positions
rj illuminated by an electric field.

Assuming scalar light and the validity of the Markov approximation, and further-
more defining β̄j ≡ β̃je

ık0·rj and Ω̄0(rj) ≡ Ω0(rj)e
ık0·rj , and using the exponential

kernel,

γ̄jm =
eık0|rj−rm|

ık0|rj − rm|
, (39.31)

the Eq. (39.26) for the atomic states reads,

d

dt
β̄j =

(
ı∆0 −

Γ

2

)
β̄j −

ıΩ̄0(rj)

2
− Γ

2

∑

m̸=j

γ̄jmβ̄m . (39.32)

Defining the matrix,

Mjm ≡ (ı∆0 − Γ
2 )δjm − Γ

2 (1− δjm)γ̄jm =




ı∆0 − Γ
2 ıγ12

Γ
2 · · ·

ıγ21
Γ
2 ı∆0 − Γ

2
...

. . .


 , (39.33)
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we can rewrite Eq. (39.34) as,

d

dt
β̄j =

∑

m

Mjmβ̄m −
ı

2
Ω̄0(rj) . (39.34)

The steady-state solution of is simply obtained by ˙̄βj = 0 [298, 225],

Mjmβ̄m(∞) = ı
2 Ω̄0(rj) . (39.35)

This equation can now be solved by the dipole moment amplitudes,

β̄m(∞) = (Mjm)−1 ı
2 Ω̄0(rj) , (39.36)

where we use the exponential kernel,

γjm =
eık0(|rj−rm|+δjm)

ık0(|rj − rm|+ δjm)
, (39.37)

where the trick with the δjm-symbol helps to remove divergences for equal atom
positions.

In this form the solution is immediately suitable for numerical implementation of
the coupled dipoles model, although in practice the number of atoms is limited to
N < 10000 for ordinary PCs.

39.1.4.3 Limit of dilute clouds

Dilute clouds are characterized by a large interatomic distance k0|rj − rm| ≫ 1. In
this case, the non-diagonal elements of the kernel (39.33) quickly vanish, and the
equations of motion (39.34) decouple to,

d

dt
β̄j =

(
ı∆0 −

Γ

2

)
β̄j −

ı

2
Ω̄0(rj) . (39.38)

39.1.4.4 Characterization of the atomic cloud in steady-state

Plot the spacial dependence of the phases of the atomic dipoles, ϕ(rj) = Im (ln β̃j).

39.1.4.5 Time-dependence

In order to calculate the time-dependence, we reconsider the equation (39.34) for the
excitation amplitudes. Its solution is formally given by the sum of the general solution
of the homogeneous equation and a particular (e.g. the asymptotic) solution of the
inhomogeneous equation,

β̄j(t) = eMjmtβ̄m(0) + (I− eMjmt)β̄m(∞) . (39.39)

Inserting the steady-state solution we finally get,

β̄j(t) = eMjmtβ̄m(0) + (I− eMjnt)M−1mn
ı
2 Ω̄0(rm) . (39.40)
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Figure 39.3: Phase delay in the excitation of the atomic dipoles (a) without rescattering
(γjm = 0) and (b) with rescattering.

39.1.5 Calculation of light scattering in steady-state

To calculate the distribution of scattered light, we start from the Heisenberg equation
for the field operator [458],

dâk
dt

=
1

ıℏ
[âk, Ĥ] = −ıgkeı(ωk−ωa)t

N∑

j=1

σ̂je
−ık·rj . (39.41)

where the fast oscillating term proportional to eı(ωk+ωa)t has been neglected. Now,

Êsct(r, t) =
∑

k

Ekâk(t)eı(k·r−ωkt) , (39.42)

where Ek =
√
ℏωk/2ε0Vph. Integrating Eq. (39.41) with âk(0) = 0, inserting it in

Eq. (39.42), and approximating the sum over the modes k by an integral, we obtain,

Êsct(r, t) = −ı
Vph
8π3

N∑

j=1

∫ t

0

dt′σ̂j(t− t′)eıωat

∫
d3k Ekgkeık·(r−rj)−ıckt

′
. (39.43)

Introducing spherical coordinates, d3k = dkk2dϕdθ sin θ, and integrating the angular
part Eq. (39.43) becomes,

Êsct(r, t) = −ı
Vph
4π2

N∑

j=1

1

|r− rj |

∫ t

0

dt′σ̂j(t− t′)eıωat
′× (39.44)

×
∫
dkkEkgk[e−ıck(t

′−|r′−rj |/c) − e−ıck(t′+|r′−rj |/c)] .

Assuming the radiation spectrum centered around k ≃ k0, we approximate kEkgk ≃
k0Ek0gk0 . Then, extending the lower limit of integration of k to −∞, we obtain for
t < |r− rj |/c [1049, 816],

Êsct(r, t) ≃ −
dk20
4πε0

N∑

j=1

eık0|r−rj |

|r− rj |
σ̂j(t− |r− rj |/c) . (39.45)
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where we may neglect the radiation retardation in the limit t≫ σR/c. Using (39.19)
and expressing the coupling strength,

ℏgk = dEk with Ek =

√
ℏωk

2ε0Vph
, (39.46)

we get,

Êsct(r, t) ≃ −
ıℏΓ
2d

N∑

j=1

γoj(r)σ̂j(t) , (39.47)

where we defined the abbreviation,

γoj(r) ≡
eık0|r−rj |

ık0|r− rj |
. (39.48)

When applied on the state of Eq. (39.11), neglecting virtual transitions, it yields
Êsct|Ψ⟩ = Esct|g1, ..., gN ⟩, where Esct is the electric field radiated by the excited atoms.
Once the excitation amplitudes βj(∞) are known, the scattered light field and the
total field can easily be calculated via [1137],

Esct(r) = ⟨Êsct(r)⟩ = −
ıℏΓ
2d

N∑

j=1

γoj(r)βj(∞) and Etot = Elas + Esct , (39.49)

Example 228 (Light scattering from a Gaussian beam): Fig. 39.4 shows
an example of light scattering from an incident light field parametrized as a
Gaussian beam, as shown in (18.293),

Elas(r) = ϵ̂E0 w0

w(z)
e−r

2/w(z)2+ıkz+zıkr2/2R(z)−ıφ(z) = ϵ̂
ℏ
|d|Ω0(r)e

ık0·r . (39.50)

Note that, for the chosen parameters, the result does not depend on the inter-

action terms. I.e. we can as well set the kernel to 0.

Note, that the phase factor eık0·r can either be attributed to the atomic dipole
moments or to the field. Here, N = 125 atoms are periodically arranged in a three-
dimensional cubic lattice.

39.1.6 Calculation of the steady-state radiation pressure force

Let us now calculate the radiative pressure force exerted by an incident beam of
light k0 on an atom j located at position rj inside an atomic cloud, as illustrated in
Fig. 39.2,

dp̂j
dt

= F̂j = −∇rj Ĥ . (39.51)

Inserting the Hamiltonian in the RWA (39.10),

F̂j = ıℏk0gk0

[
σ̂j â
†
k0
eı(ω0−ωa)t−ık0·rj − h.c.

]
(39.52)

+
∑

k

ıℏkgk
[
σ̂j â
†
ke
ı(ωk−ωa)t−ık·rj − h.c.

]
.
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Figure 39.4: (code) (a) Geometry of light scattering from a cubic lattice with lattice constant

d = 100 nm. The light is irradiated from below and is partially reflected. (b) Intensity

distribution of scattered light along the yellow plane.

Introducing ∆0 = ω0−ωa, the expectation value of the force separates in two contri-
bution,

⟨F̂j⟩ ≡ Faj + Fej = ıℏk0gk0
[
α∗(t)βj(t)e

ı∆0t−ık0·rj − c.c.
]

(39.53)

+
∑

k

ıℏkgk
[
βj(t)γ

∗
k(t)e

ı(ωk−ωa)t−ık·rj − c.c.
]

= ıℏk0gk0 [α
∗(t)β̃j(t)− c.c.]

+
∑

k

ıℏkgk
[
β̃j(t)e

−ı(ω0−ωk)t+ı(k0−k)·rjγ∗k(t)− c.c.
]
,

where we reintroduced the abbreviation (39.17). In particular, the term m = j in the
sum of Fej vanishes since

∑
k k = 0. Substituting γk with equation (39.16),

Faj + Fej = ıℏk0gk0 [α
∗(t)β̃j(t)− c.c.] (39.54)

−
∑

k

ℏkg2k

[
β̃j(t)e

−ı(ω0−ωk)t+ı(k0−k)·rj
N∑

m=1

eık·rm
∫ t

0

e−ı(ωk−ωa)t
′
β̃∗m(t′)dt′ − c.c.

]

= −2ℏk0gk0Im [α∗(t)β̃j(t)]

−
∑

k

ℏkg2k
N∑

m=1

[
β̃j(t)e

ı(k0−k)·(rj−rm)

∫ t

0

eı(ω0−ωk)(t
′−t)β̃∗m(t′)dt′ − c.c.

]
,

and applying the Markov approximation (39.20),

Faj + Fej = −2ℏk0gk0Im [α∗(t)β̃j(t)] (39.55)

−
∑

k

ℏkg2k
N∑

m=1

[eı(k0−k)·(rj−rm) π
c δ(k − k0)β̃j(t)β̃∗m(t)− c.c.] .

This is the expression for the force acting on an atom at the position rj . Knowing
the stationary excitation amplitudes βj(∞) and assuming α(∞) ≃ 1, the radiation
pressure force can numerically be calculated. Remembering Ω0 = 2gk0 we get for the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMScalar.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMScalar.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMScalar.m
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absorption force acting on atom j,

Faj = −2ℏk0gk0Im β̃j(∞) . (39.56)

To evaluate the emission force acting on atom j, for every atom m of the sum, we
need to average over all possible scattering angles. To do so, we choose a reference
frame in which the z-component of k is directed along r̂jm =

rj−rm
|rj−rm| , that is,

k = êx,jmk sin θjm cosϕjm + êy,jmk sin θjm sinϕjm + r̂jmk cos θjm , (39.57)

and evaluate the sum over the wavevectors by
∑

k →
Vph

(2π)3

∫
d3k,

Fej = −
N∑
m=1

β̃j(∞)β̃∗m(∞)
Vph
(2π)3

π

c

∫
R3

dθjmdϕjmdk ℏk

sin θjm cosϕjm

sin θjm sinϕjm

cos θjm

× (39.58)

× g2k[eı(k0−k)·(rj−rm)δ(k − k0)k2 sin θjm − c.c.

= −ℏk0 Γ

8π

N∑
m=1

eık0·(rj−rm)β̃j(∞)β̃∗m(∞)

∫ π

0

∫ 2π

0

dθjmdϕjm

sin θjm cosϕjm

sin θjm sinϕjm

cos θjm

×
× e−ık·|rj−rm| cos θjm sin θjm − c.c. .

remembering Γ =
Vph

πc k
2
0g

2
k0

from Eq. (39.19). The integrals over ϕjm vanishes
whereas the integral over θjm becomes, using,

∫ π

0

dθ sin θ cos θe−ıα cos θ = 2ı
α cosα− sinα

α2
= −2ıj1(α) , (39.59)

we find,

Fej = −ℏk0
Γ

4

N∑

m=1

eık0·(rj−rm)β̃j(∞)β̃∗m(∞)r̂jm× (39.60)

×
∫ π

0

cos θjm sin θjme
−ık|rj−rm| cos θjmdθjm − c.c.

= ıℏk0
Γ

2

N∑

m=1

eık0·(rj−rm)β̃j(∞)β̃∗m(∞)r̂jmj1(k|rj − rm|)− c.c.

= −ıℏk0
Γ

2

N∑

m=1

fjmβ̃j(∞)β̃∗m(∞)− c.c. ,

where we defined 7,

fjm = −j1(k|rj − rm|)eık0·(rj−rm)r̂jm . (39.61)

7For exploitation in MATLAB we may express the spherical Bessel function by a Bessel function
of the first kind: jn(x) =

√
π/2xJn+1/2(x).
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In summary we got,

Faj = −ıℏk0Ω0Im β̃j(∞)

Fej = −ıℏk0Γ
N∑

m=1

fjmIm [β̃j(∞)β̃∗m(∞)]
. (39.62)

The steady state absorption and the emission part of the radiation pressure force on
the center of mass of the atomic cloud follow from,

Fa =
1

N

∑

j

⟨F̂aj⟩ and Fe =
1

N

∑

j

⟨F̂ej⟩ . (39.63)
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Figure 39.5: (code) Force distribution upon scattering of a photon by an atom of an spherical

Gaussian cloud (a) without and (b) with rescattering according to Eqs. (39.63).

As long as the RWA and the Markov approximation are valid and only the lowest
Dicke state is considered (no collective saturation), this simulation is supposed to be
exact and contains all the physics including, e.g. multiple scattering. Fig. 39.5 shows
a comparison of the cases when the off-diagonal components of the kernel (39.37)
are present or not. Apparently, the presence of rescattering dramatically spoils the
radiation pressure force, a phenomenon that we will extensively study in Secs. 39.1.7
and 39.2 [458, 66, 67, 1035, 139, 68].

39.1.7 The structure coefficient of the ’timed’ Dicke state

When a beam of light passes through an atomic cloud, its phase fronts will excite the
atomic dipole moments as it traverses the cloud. That is, understanding the beam
as a plane wave eı(k0·r−ωt), the dipoles start to oscillate with relative phase delays
eık0·(rj−rm) depending on their position along the optical axis k0. The resulting
collective state has been termed timed Dicke state [1182]. Assuming that this phase
delay is the only parameter distinguishing two atoms, we may write with Eq. (39.17),

β̃j(t) = βj(t)e
ı(∆0t−k0·rj) ≡ 1√

N
β(t) , (39.64)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_HaloForce.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_HaloForce.m
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where β is the macroscopic dipole moment. Note, that the fact that β(t) does not
depend on the atomic position does not imply a continuous density distribution. The
atoms are still sitting at their positions rj ; only are their dipole moments synchronized
to the incident light wave.

The assumption of a timed Dicke state for the atomic cloud is, nevertheless, an
approximation which is not always good [458]. For example, it neglects dispersive
phase shifts of the excitation of the atomic dipole moments by the pump laser beam
being delayed on its propagation due to its interaction with the atoms. If such phase
shifts (and absorption as well) are radially inhomogeneous, this can lead to deforma-
tion of the pump laser beam’s phase front and thus to lensing. We will discuss this
in Exc. 39.1.8.5 and in Sec. 39.2.

39.1.7.1 Structure coefficient for ’timed’ Dicke states

We start again with the Eqs. (39.24) inserting the ansatz of timed Dicke states,

β̇(t) =
1

N

N∑

j=1

β̇(t) =
1√
N

N∑

j=1

d

dt
β̃j(t) (39.65)

=
1√
N

N∑

j=1

(
ı∆0β̃j(t)− ı

Ω0

2
α(t)− Γ

2

N∑

m=1

γjmβ̃m(t)

)

=

(
ı∆0 −

Γ

2
NsN

)
β(t)− ı

√
NΩ0

2
α(t) ,

where we introduced the abbreviation,

sN ≡
1

N

1

N

N∑

j,m=1

γjm . (39.66)

Taking the kernel from (39.25), we get,

sN =
1

N

2

Γ

Vph
(2π)3

∫

R3

g2k
1

N

N∑

j,m=1

eı(k−k0)·(rj−rm)π

c
δ(k − k0)k2 sin θdkdθdϕ

=
1

N

2

Γ

Vph
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

g2kN |SN (k, θ, ϕ)|2π
c
δ(k − k0)k2 sin θdkdθdϕ

=
1

4π

∫ π

0

∫ 2π

0

|SN (k0, θ, ϕ)|2 sin θdθdϕ , (39.67)

introducing the normalized structure coefficient,

SN (k) ≡ ρ(q) = 1

N

N∑

j=1

eı(k−k0)·rj , (39.68)

where q = k− k0 and ρ(q) is the structure coefficient defined in (39.3).
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In steady state, β̇(t) = 0, and disregarding saturation, α(t) ≃ 1, the solution of
(39.65) reads,

β(∞) =

√
NΩ0

2∆0 + ıΓNsN
, (39.69)

such that,

|β(∞)|2 =
NΩ2

0

4∆2
0 +N2Γ2s2N

(39.70)

Im [α(∞)β∗(∞)] =
N3/2ΓΩ0sN

4∆2
0 +N2Γ2s2N

.

The time-dependent solution is easily obtained as,

β(t) = β(0)e(ı∆0−ΓNsn/2)t + β(∞) . (39.71)

The evolution of the cloud very much depends on the initial conditions, e.g. βj(0) = 1
for the uniformly excited symmetric state βj(0) = eık0·rj for timed Dicke states.

In cylindrical coordinates the structure coefficient can be written,

S(k, θ, ϕ) = 1

N

N∑

j=1

eı(kxj sin θ cosϕ+kyj sin θ cosϕ+(k cos θ−k0)zj) . (39.72)

It basically tells the angular distribution of the scattered light. Fig. 39.6 shows nu-
merical calculations and analytical approximations of the structure factor for various
shapes and sizes of the atomic cloud. Obviously, the radiation pattern very much
depends on the size of the spherical cloud. For R < λ it is isotropic, for R > λ
scattering mainly occurs in forward direction. Furthermore, if the cloud is ellipsoidal
the radiation pattern is shifted into forward direction.

39.1.7.2 Time evolution of radiation modes

We are interested in the power emitted into the solid angle Ωk, P (t) ∝ |γk(t)|2. For
timed Dicke state (39.64) we get immediately from the equations of motion,

γ̇k(t) = −ıgkeı∆kt
N∑

j=1

βj(t)e
−ık·rj (39.73)

= −ıgkeı(∆k−∆0)t
1√
N
β(t)

N∑

j=1

eı(k0−k)·rj = −ıgkeı(∆k−∆0)t
√
NSN (k) .

We see that the time-dependence factorizes from the structure factor, which is the
only component containing an angular dependence. The same holds for symmetric
Dicke states defined by |βj | = |βm|.
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Figure 39.6: (code) Numerical calculation of S(k, θ) according to (39.68) for 104 atomic

positions rj chosen by a random number generator. For the graphs (a-b) the cloud is homo-

geneous and spherical and has the sizes R = λ (red) and R = 10λ (blue). For the graphs

(c-d) the cloud is Gaussian and spherical and has the same sizes as (a-b). For the graphs

(d-e) the cloud is homogeneous and ellipsoidal with aspect ratio Rz/Rρ = 3 and has the same

radial sizes as in (a-b).

39.1.7.3 Light scattering in the ’timed Dicke state’

The scalar electric field scattered by an arbitrary distribution of atoms has been
calculated in (39.49). Substituting the stationary timed Dicke state (39.69), we get,

Esct(r) = −
ıℏΓ
2d

√
NΩ0

2∆0 + ıΓNsN

N∑

j=1

eık0|r−rj |

ık0|r− rj |
. (39.74)

Note that the ’timed Dicke’ state starts from the assumption of an infinitely extended
plane wave incident light field. This excludes situations where the incident beam size
is smaller than the cloud’s size.

39.1.7.4 Force in the ’timed Dicke state’ on a particular atom in a cloud

The time-dependent expressions (39.56) for the forces in the coupled dipoles model
can be further evaluated for timed Dicke states (39.64),

Faj + Fej (39.75)

= −2ℏk0gk0√
N

Im β(t)−
∑

k

ℏkg2k
N

N∑

m=1

[
eı(k0−k)·(rj−rm)π

c
δ(k − k0)|β(t)|2 − c.c.

]

= −2ℏk0gk0√
N

Im β(t)−
∑

k

ℏkg2k
[
SN (k)e−ı(k−k0)·rj π

c
δ(k − k0)|β(t)|2 − c.c.

]
.
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Figure 39.7: (code) Time-dependent of (a) the dipole amplitudes and (b) the forces for

σ = 1, ∆0 = 20Γ, Ω0 = 0.01Γ, and η = 1.

Evaluating the sum over the wavevectors by
∑

k →
Vph

(2π)3

∫
d3k,

Faj + Fej =
−2ℏk0gk0√

N
Im β(t) (39.76)

− |β(t)|2 Vph
(2π)3

∫ ∞
0

∫ π

0

∫ 2π

0

ℏkg2k
[
SN (k, θ, ϕ)e−ı(k−k0)·rj π

c
δ(k − k0)− c.c.

]
k2 sin θdθdϕdk .

Let us consider an atom sitting on axis, rj = 0, and use cylindrical coordinates,
k0 = k0êz and k = êxk sin θ cosϕ+ êyk sin θ sinϕ+ êzk cos θ, and using the definition
(39.19) of Γ,

Faj + Fej =
−2ℏk0gk0√

N
êzIm β(t) (39.77)

− |β(t)|2 Γ

8π
ℏk0

∫ π

0

∫ 2π

0

(êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ) [SN (k, θ, ϕ)− c.c.] sin θdθdϕ .

Using the abbreviation,

f̃N ≡
1

4π

∫ π

0

∫ 2π

0

Re SN (k0, θ, ϕ) sin θ cos θdθdϕ , (39.78)

the z-component becomes,

Fzaj + Fzej = −
2ℏk0gk0√

N
Im β(t)− |β(t)|2Γℏk0f̃N . (39.79)

In steady state and normalizing to the standard radiation pressure,

Fz1j = Γℏk0
Ω2

0

4∆2
0 + Γ2

= ℏk0σ(∆)
I

ℏω
, (39.80)

where σ(∆0) is the optical cross section and I the intensity of the incident light, we
can write,

Fzaj + Fzej
Fz1j

=

(
−2ℏk0gk0√

N
Im β(∞)− |β(∞)|2Γℏk0f̃N

)
4∆2

0 + Γ2

Γℏk0Ω2
0

. (39.81)

Finally, inserting the the expression (39.69) for the dipole moment, we obtain for the
timed Dicke state,

Fzaj + Fzej
Fz1j

=
(2∆0/Γ)

2 + 1

(2∆0/Γ)2 +N2s2N
N(sN − f̃N ) , (39.82)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceTime.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceTime.m
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using Ω0 = 2gk0 .
The factors sN and fN can be calculated exactly, as will be done in Exc. 39.1.8.6,

sN =
1

N2

N∑

j,m=1

sin(k0|rj − rm|)
k0|rj − rm|

cos[k0(zj − zm)] (39.83)

fN =

√
π

2

1

N2

N∑

j,m=1

J3/2(k0|rj − rm|)
(k0|rj − rm|)3/2

k0(zj − zm) sin[k0(zj − zm)] .

However, this is only practicable for atom numbers small enough for numerical sim-
ulations. For larger atom number we may use the analytic expressions including the
disorder term [141].

39.1.7.5 Force on the center of mass of the cloud

The force acting on the center of mass of the atomic cloud is given by the average of
the forces (39.76) sensed by particular atoms,

Fa + Fe =
1

N

N∑
j=1

(Faj + Fej) (39.84)

= −2ℏk0gk0√
N

Im β(t)

− |β(t)|2 Vph
(2π)3

∫
R3

ℏkg2k

[
SN (k, θ, ϕ)

1

N

N∑
j=1

e−ı(k−k0)·rj π

c
δ(k − k0)− c.c.

]
k2 sin θdθdϕdk

=
−2ℏk0√

N
gk0Im β(t)− |β(t)|2 Vph

(2π)3

∫
R3

ℏkg2k2|SN (k, θ, ϕ)|2 π
c
δ(k − k0)k2 sin θdθdϕdk .

Using cylindrical coordinates, k0 = k0êz and k = êxk sin θ cosϕ + êyk sin θ sinϕ +
êzk cos θ, and the definition of Γ,

Fa + Fe =
−2ℏk0√

N
êzgk0Im β(t) (39.85)

− |β(t)|2 Γ

8π
ℏk0

∫ π

0

∫ 2π

0

(êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ) 2|SN (k, θ, ϕ)|2 sin θdθdϕ .

Using the abbreviation,

fN ≡
1

4π

∫ π

0

∫ 2π

0

|SN (k0, θ, ϕ)|2 sin θ cos θdθdϕ , (39.86)

we get for the z-component an analogous formula to (39.79),

Fza + Fze =
−2ℏk0gk0√

N
Im β(t)− |β(t)|2 Γ

8π
ℏk0

∫ π

0

∫ 2π

0

2|SN (k, θ, ϕ)|2 sin θ cos θdθdϕ

= −2ℏk0gk0√
N

Im β(t)− |β(t)|2Γℏk0fN . (39.87)

In steady state and normalizing again to the standard radiation pressure (39.80),

Fza + Fze
Fz1

=

(
−2ℏk0gk0√

N
Im β(∞)− |β(∞)|2Γℏk0fN

)
4∆2

0 + Γ2

Γℏk0Ω2
0

. (39.88)
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Finally, inserting the the expression (39.69) for the dipole moment, we obtain for the
timed Dicke state,

Fza + Fze
Fz1

=
(2∆0/Γ)

2 + 1

(2∆0/Γ)2 +N2s2N
N(sN − fN ) , (39.89)

using Ω0 = 2gk0 . Inserting the expressions (39.67) for sN and (39.86) for fN , we may
also write,

F0a + F0e

Fz1
=

(2∆0/Γ)
2 + 1

(2∆0/Γ)2 +N2s2N
N

1

4π

∫ π

0

∫ 2π

0

|SN (k, θ, ϕ)|2(1− cos θ) sin θdθdϕ .

(39.90)

Let us assume in the following that the scattering of every single photon can
be treated independently [1180]. In particular, the density distribution may change
between two scattering events. The force is something like the first moment of the
structure factor. This makes it so adapted to measure fluctuation-induced deviations
from the structure coefficient 8.
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Figure 39.8: (code) (a-c) Calculation of the structure coefficient |S(k = k0, θ, ϕ = 0)|2 for an

isotropic homogeneous density distribution. (d-f) Calculation of the force I(θ) =
∫ 2π

0
|S(k =

k0, θ, ϕ)|2(1 − cos θ)dϕ. The red curves show numerical calculations based on (39.68), the

green curves show analytical calculations according to (39.98). (a,d) k0R = 1 and N = 100.

(b,e) k0R = 5 and N = 100. (c,f) k0R = 5 and N = 1000.

We want to compare this force to the force acting on a cloud of N uncorrelated
scatterers, i.e. atoms receiving recoil from the pump photons but reemitting isotrop-

8Insert a clarifying discussion of what we said in the EPDJ and what we did not: We said there is
a collective effect coming from the structure factor of the cloud. We did NOT say that interatomic
interactions are essential...!
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ically,

⟨Func,z⟩ =
Vph
(2π)3

σ(∆)
I

ℏω
ℏk0

∫ ∞

0

∫ π

0

∫ 2π

0

|SN (k, θ, ϕ)|2k2 sin θdθdϕdk . (39.91)

For such a cloud the structure coefficient is SN = N−1/2. Note that this is unlike N
atoms in the Dicke limit, where SN = 1.

A dense homogeneous cloud with SN (k) ∝ δ3(k0 − k) does not scatter light and
experiences no force, ⟨Fhom⟩ = 0. This is however not true any more in the limit of
small extended clouds, where fluctuations introduce disorder. This can be shown by
simulating a random atomic distribution rj and integrating the resulting force over all
possible k. For simplicity we assume a very sharp momentum distribution, |k| = |k0|
or

Vph

2π2

∫∞
0
k2dk = 1,

⟨Fz⟩ = σ(∆)
I

ℏω
k0(sN − fN ) . (39.92)

Finally to compare with experiment we evaluate the ratio,

⟨Fz⟩
⟨Func,z⟩

= 1− fN
sN

. (39.93)

We describe the cloud as being made of two fractions: An isotropically scattering
fraction of N0 =

√
N disordered atoms, whose structure factor is Siso(k) = 1, and

a forward scattering homogeneous cloud with structure factor Shom(k) = δk0,k. The
surface integration of the total structure factor,

SN (k) =
N0

N
Siso(k) +

N −N0

N
Shom(k) =

N0

N
+
N −N0

N
δk0,k ≃

N0

N
(39.94)

yields the same N -dependence of the force,

⟨Fz⟩
⟨Fiso,z⟩

=
1

4πN2

∫ π

0

∫ 2π

0

|
√
N |2(1− cos θ) sin θdθdϕ =

1

N
. (39.95)

The interpretation is the following. In the experimentally realized situation, we
are very far in the large cloud limit completely dominated by forward scattering,
which means that if the cloud were homogeneous no radiation pressure force should
be expected at all. However diffuse scattering from disordered atoms (or fluctuations)
disturbs the forward scattering. It is this scattering which gives rise to radiation
pressure.

There is an interesting analogy: Diffuse scattering not only inhibits forward scat-
tering in homogeneous clouds, but also coherent backscattering from ordered struc-
tures. E.g. in optical lattices [1220] it disturbs the detection of photonic band gaps.
In an optical lattice the atoms are in the Dicke limit and do not absorb photonic re-
coil. Hence, no displacement due to radiation pressure is expected. However, diffuse
scattering is observed as absorptive features in the spectra [146, 1220].

The Bragg scattering is expressed by a periodic structure factor. A widely used
approach to describe the impact of disordered atoms in lattices is to divide the cloud
into a perfectly ordered part with density nfDW and isotropically scattering part
with density n(1 − fDW ) [1220]. The factor fDW is known as Debye-Waller factor.
In Exc. 39.1.8.7 we try an alternative traetment of radiation pressure based on a
Monte-Carlo simulation.
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39.1.7.6 Cooperative scattering and single photon superradiance

A non-isotropic structure factor scattering light into a specific direction of space
(e.g. the Bragg angle) at a rate scaling like Nα with α > 1 needs several ’cooperating’
particles. In this sense cooperation only means, that the particles be arranged in space
in a particular way, i.e. in a lattice or in a particular bulk shape like a homogeneous
sphere or a Gaussian cigar-shaped density distribution. It also immediately becomes
clear that disorder ought to play a major role. However, cooperation goes further,
since cooperative scattering can be observed in spontaneous emission of an atomic
cloud being excited by just a single photon. Single-photon superradiance is the topic
of the following sections.

For now let us state that a non-isotropic structure factor results in collective
scattering. The density distribution (which is the Fourier transform of the structure
factor) can adopt two extremes: A periodic lattice results in backscattering into
specific directions, a homogeneous clouds shows nothing but forward scattering. Both
situations are never perfectly realized, but are subject to density fluctuations (Debye-
Waller factor in a lattice, radiation pressure in a homogeneous cloud).

A single photon on its trip through an atomic cloud successively excites the atomic
dipole moment thus establishing a phase relation between potential radiators [404,
1284, 1181, 1286]. One could think that the scattering process localizes atom and
photon, i.e. only one atom scatters. However, we don’t know which atom scatters, and
this introduces a correlation of the dipole moments along the propagation direction
of the light beam.

Figure 39.9: Scattering of a photon by an atom of an ellipsoidal cloud.

While normally the radiation rate of a dilute cloud is ∝ N , in the presence of
coherent interactions it scales as ∝ N2. Coherent interactions are not conditioned to
overlapping space functions of the atoms, i.e. it is not compulsory that the density
be n−1/3 > λ. For example, scattering from ordered structures also scales as ∝ N2

[691]. However, the scattering will be dramatically different if n−1/3 < λ.

Spontaneous emission radiation pattern from uncorrelated scatterers only depend
on the relative orientation of σ̂ and B⃗, but not on the k-vector of the incident light.
This also holds for Dicke superradiance in the small cloud limit, but not for large
clouds. Here forward scattering dominates.

We have seen in this section that, despite its simplicity, the coupled dipoles model
has a large range of applications. It allows for a deeper understanding of known clas-
sical phenomena and, as we will study in Excs. 41.2.4.7 to 41.2.4.1 and in forthcoming
sections, it allows to unravel new effects.
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39.1.8 Exercises

39.1.8.1 Ex: Structure coefficient of a linear array

a. Based on the definition (39.1) compute the structure factor of a linear array of
point-like scatterers.
b. Based on the definition (39.2) compute the structure factor of a linear array of 10
Gaussian density distributions.

Solution: a. See Fig. 39.10. b. See Fig. 39.11.

-100 -50 0 50 100
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-100
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0

50

100

y
(μ
m
)

Figure 39.10: (code) Linear array of scatterers separated by 2 nm at λ = 797 nm.

Figure 39.11: (code) Linear array of Gaussian density distributions separated by 2 nm at

λ = 797 nm.

39.1.8.2 Ex: Structure factor of a cloud

a. Based on the definition (39.1) compute the structure coefficient of (i) a slit, (ii) a
pinhole, and (iii) a homogeneous spherical cloud.
b. Based on the definition (39.3) compute the structure coefficient of a homogeneous
spherical cloud.

Solution: a. The structure coefficient is the Fourier transform of the density, S(k) =

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureArray.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFourierDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureFourierDisorder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure02.pdf
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∫
n(r)eık·rd3r. In 1D it describes the diffraction through a slit,

∫ R

−R
eıkrdr =

2

k
sin kR .

In 2D it describes the diffraction by a pinhole,

∫

disk

eık·rd2r =

∫ R

0

∫ 2π

0

reıkrdϕdr =
2π

k2
[cos kR+ kR sin kR− 1 + ı(sin kR− kR cos kR)] .

In 3D the structure factor is,

∫

sphere

eık·rd3r =
∫ R

0

∫ 2π

0

∫ π

0

r2eıkr cos θ sin θdθdϕdr =
4π

k3
(sin kR− kR cos kR) .

b. The structure factor can be evaluated from S(q) = ⟨ρ(q)ρ∗(q)⟩, where ρ(q) =∫
V
n(r)eıq·rd3r [1085, 333],

S(q) =

∫
d3r

∫
d3r′n(r)n(r′)eıq·(r−r

′) =
4π

V

∫ R

0

r2eıq·rdr
4π

V

∫ R

0

r′2e−ıq·r
′
dr′

=

(
4π

q3V

)2

(sin qR− qR cos qR)2 = 9
(sin qR− qR cos qR)2

(qR)6
,

with V = 4π
3 R

3 and n(r) = 1
V . In particular we have,

S(q)
R≪λ−→ 1 and S(q)

R≫λ−→ 0 .

The structure factor is then identical to the collective cooperativity ΥN = S(q).

39.1.8.3 Ex: Structure coefficient and Snell’s law

Calculate the structure coefficient for a light beam passing through a plane interface
between two dielectrics.

Solution: We set the interface in the xy-plane and assume that for z < 0 > the
refraction index in 1, and for z > 0 it is nrfr. The structure coefficient is the Fourier
transform of the density. Hence,

S(k) =
∫
[1 + (nrfr − 1)Θ(z)]eık·rd3r = δ(k) + (nrfr − 1)δ(kx)δ(ky)

∫ ∞

0

eıkzzdz

= δ(k) + (nrfr − 1)δ(kx)δ(ky)
1

ıkz
= ... .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure03.pdf
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39.1.8.4 Ex: Validity of Markov approximation

a. Calculate the single-atom scattering rate for a rubidium cloud of N = 106 atoms
driven with P = 100mW laser power focused into a waist of w0 = 100µm and de-
tuned by ∆ = (2π) 100GHz from the D2-line at 780 nm [225].
b. Assume for the cloud a homogeneous spherical density distribution with radius
R = 250/k0. Based on Ref. [1284] estimate whether the Markov approximation is
valid.

Solution: a. The single-atom excitation rate is for the specified parameters,

γex = N
σ(∆)I

ℏω
≃ 6.5 · 109 s-1 .

b. The superradiant deexcitation rate is for k0R = 250 assuming a homogeneous
spherical cloud [1284],

γdeex = N
27Γ

8(k0R)2
≃ 2 · 109 s-1 .

Hence the assumption of single-photon Dicke superradiance is questionable. The con-
dition for having less than one photon in the cloud is for smooth clouds γex ≪ γdeex.
This means,

NΓ

(2σ)2
≫ Nσopt

I

ℏω
= N

Γ2

4∆2
0 + 2Ω2

0 + Γ2

Ω2
0

Γ
≪ NΓ

(2σ)2

using Ω2
0 = σ0Γ

I
ℏω . For ∆0 ≫ Γ,Ω0 we get,

Ω2
0

4∆2
0

(2σ)2 ≪ 1 .

For disordered clouds the condition reads

Ω2
0

4∆2
0

N ≪ 1 .

39.1.8.5 Ex: Lensing by a dense atomic cloud with the coupled dipoles
model

Simulate the pump laser phase shift and lensing by a small dense cloud by the coupled
dipoles model for red and blue detuning. Discuss the influence of rescattering by re-
moving artificially the off-diagonal terms from the scattering kernel. Discuss whether
lensing is observed within the timed Dicke approximation.

Solution: The question is, whether the fact that the pump laser is depleted (par-
tially absorbed) and phase-shifted is contained in the CDM, although we assumed in
its derivation α ≃ 1. As illustrated in Fig. 39.12, red detuning leads to focusing, blue

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure06.pdf
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Figure 39.12: (code) Phase profile upon scattering from a (strontium) spherical Gaussian

cloud k0σr = 15 of 1000 atoms for (a) red detuning of ∆ = −5Γ and (b) blue detuning

∆ = 5Γ. (c,d) Difference of the phase shifts of the atomic dipoles located at positions zj of

the optical axis calculated by Eqs. (39.36) and (39.69).

detuning to defocusing. Note, that removing the off-diagonal elements of the kernel
does not change the result. Lensing also occurs when calculating the steady-state of
the atomic cloud within the timed Dicke approximation. However, the phase shift will
be underestimated by an amount depending on the cloud’s optical density.

39.1.8.6 Ex: Exact calculation of projected structure coefficients

Calculated the integrals (39.66), (39.78), and (39.86).

Solution: With the real part of the kernel (39.25), we see immediately,

sN ≡
1

4π

∫ π

0

∫ 2π

0

|SN (k0, θ, ϕ)|2 sin θdθdϕ =
1

N2

N∑

j,m=1

Re γjm

=
1

N2

N∑

j,m=1

sin k0rjm
k0rjm

cos k0zjm .

Also,

fN ≡
1

4π

∫ π

0

∫ 2π

0

|SN (k0, θ, ϕ)|2 sin θ cos θdθdϕ = ...

=
1

N2

N∑

j,m=1

j1(k0rjm)

k0rjm
k0zjm sin k0zjm .

Finally,

f̃N ≡
1

4π

∫ π

0

∫ 2π

0

Re SN (k0, θ, ϕ) sin θ cos θdθdϕ = ...

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMLensing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMLensing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMLensing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDMLensing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure08.pdf
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39.1.8.7 Ex: Monte-Carlo simulation of cooperative radiation pressure

In a regime of negligible interatomic interaction single photons are scattered by indi-
vidual atoms, which thereby receive the entire photonic recoil. That is, the accelera-
tion occurs in quantized steps, which can be easily resolved in experiments [649, 1217]
with Bose-Einstein condensates. In the absence of collective effects, we generally ob-
serve halo-shaped momentum distributions. Because of the recoil received upon ab-
sorption, the halos are centered at ℏk, and since the emission is generally isotropic,
they have a radius of ℏk. On the other hand, as we have seen earlier, cooperative
effects can suppression radiation pressure. In the following we try a different approach
based on a Monte-Carlo simulation with a Langevin force.
This approach starts from the idea that it is possible to simulate the radiation pres-
sure without explicit calculation of the force by treating the scattering process as a
Langevin force. The simulation describes the scattering of single photons by individ-
ual atoms. Cooperativity is included 1. in the scattering rate, which is influenced by
collective effects, 2. by weighing the probability for the direction (θ, ϕ) into which the
photons are scattered with the structure factor. The enhancement of the collective
scattering rate corresponds to the rate of absorption part of the radiation pressure,
9,10

γc = γR
Fc,abs
F1,abs

= σopt(∆0)
I

ℏω
· 4∆2

0 + Γ2

4∆2
0 +N2Γ2s2N

N ,

where sN = N−1 + (2σ)−2. The structure factor is numerically calculated for a ran-
domly distributed cloud.

Solution: We proceed as follows,

1. For a given push laser intensity, detuning and atom number we estimate the
total number of scattered photons within a given time interval, nph = γc∆t.

2. We generate a random distribution of N atom in position space, {rj(0)|j ∈
[1, N ]}.

3. We calculate the structure factor S(θ, ϕ) = 1
N

∑N
j=1 e

i(k0−k)rj .

4. We generate a random distribution of N atom in the momentum space {pj(0)},
e.g. for a BEC pj(0) = 0.

5. Now we simulate the scattering of a single photon by picking an atom labeled
µ = int(Nζ) chosen from a uniformly distributed random number ζ ∈ [0, 1].

6. Then we pick a randomly chosen direction for the emitted photon by identifying
the azimuth ϕ = 2πξϕ with a uniformly distributed random number ξϕ ∈ [0, 1],

and extracting the elevation θ from 2π
∫ θ
0
|S(θ, ϕ)|2 sin θ′dθ′ = ξθ ∈ [0, 1].

9Note that in reality the scattering of a photon converts the scattering atom into a coherent
superposition of directions into which the atom might have scattered. This is of course not described
by the simulation.

10Although the atomic motion is frozen, it is not correct to say that the external degree of freedom
is not involved in the collective dynamics, since the spatial atomic distribution shapes the structure
factor.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_FactorStructure09.pdf
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7. The momentum of the µth atom is modified by pµ(t+ dt) = pµ(t) + ℏk− ℏk0,
where the recoil is given by k−k0 = k0êx sin θ cosϕ+k0êy sin θ sinϕ+k0êz(cos θ−
1).

8. We repeat the steps 2 to 6 nph times.

The final momentum distribution {pj(∆t)} can now be converted into a density n(r)
by discretizing the space. The density is now projected onto a CCD camera by column-
integration, A(x, z) =

∑
y n(r). Finally, we calculate from this image the center-

of-mass displacement, ∆zcm =
∑
x,z zA(x, z). Note that in this picture we don’t
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Figure 39.13: (code) Langevin simulation of radiation pressure for N = 10000 atoms and

50000 scattered photons with (a,b) σ = 1 and (b,d) σ = 3. η = 30. The figures (b,d) simulate

time-of-flight absorption images taken from the momentum distributions (a,c). (d-h) Same

as (a-d), but now every atom scatters exactly 1 photon.

need any knowledge about the collective optical cross section to predict the correct
momentum pattern after a certain amount of scattering events. However, the rate at
which photons are scattered (and hence the time scale to be chosen for the simulation)
is subject to collective effects.
However, the Monte-Carlo simulations do not give the same quantitative results as the
analytical calculations. Particularly the N -dependence is different. My present guess
is that the calculation of the scattering rate and its N -dependence are oversimplified.

39.1.8.8 Ex: Super- and subradiance with two atoms

Super- and subradiance have been observed in two ion crystals [1047, 364]. In this
exercise, we study this system in the framework of the coupled dipoles model.
a. Calculate the structure coefficient of this system.
b. Write down the equations of motion (39.26) and solve them in steady-state.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bec_Langevin.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bec_Langevin.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bec_Langevin.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bec_Langevin.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_SuperSubradiance01.pdf
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Figure 39.14: (code) (a) Simulated N -dependence of ∆zcm. The deviation from the theo-

retical expectation is quite large. In contrast 21∆z4cm (black diamonds) fits much better.

Why? (b) Histogram of the axial momentum distribution.

Solution: a. Two atoms separated by λ do not scatter only into forward and backward
direction. Their structure factor is,

S2(k) = 1
2

(
eı(k−k0)r0 + eı(k−k0)(r0+λêz)

)
= 1

2e
ı(k−k0)r0(1−eıλêzk) = 1

2 (1−e2πı cos θ) ,

setting r0 = 0 and k ≃ k0.
b. Let us consider two atoms separated by d ≡ |r1−r2|. Then the equations of motion
read,

β̇j(t) = −Γ
N∑

m=1

(
sin k0|rj − rm|
k0|rj − rm|

− ıcos k0|rj − rm|
k0|rj − rm|

)
βm(t)

= −Γβj(t)− Γ

N∑

m ̸=j

(
sin k0|rj − rm|
k0|rj − rm|

− ıcos k0|rj − rm|
k0|rj − rm|

)
βm(t) .

We find,

βj(t) = e
−
(
1± sin k0d

k0d

)
Γt
,

in qualitative agreement with [364].

39.1.8.9 Ex: Signatures of subradiance

Super- and subradiance are contained in the coupled dipoles model. Try to identify
the presence of subradiant states via a reduced decay rate of β(t) starting from the
timed Dicke state.

Solution: Simplifying by ∆0 = Ω0 = 0, we recover from Eq. (39.26)) [1180, 1283,
1286],

β̇j(t) = −Γβj(t) + ıΓ

N∑

j′ ̸=j

eık0|rj−rm|

k0|rj − rm|
βm(t) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bec_LangevinN.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bec_LangevinN.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bec_LangevinN.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_SuperSubradiance02.pdf
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Figure 39.15: (code) Phase profile of the total light in the presence of two atoms illuminated

by a Gaussian laser beam (a) without and (b) with off-diagonal elements of the kernel.

We numerically evaluate the equation in the Markov approximation. We find that the
offset (see Fig. 39.16).
1. is much larger for homogeneous than for Gaussian distributions;
2. is smaller for large clouds than for small ones;
3. is much larger for large aspect ratios σ.

0 100 200

j

0

2

4

β
j

×10−3(a)

0 100 200

Nγt

0

0.5

1

P

(b)

10−5 100

γt

0

0.5

1

P

(c)

10−5 100

γt

0

2

4

d
ev

P
×10−3(d)

Figure 39.16: (code) Calculation of the time evolution of P within the Markov approximation

for N = 200 atoms. Red: Gaussian distribution with σ = 1 and R = 5/k0 starting from

a timed Dicke state. Green: uniform distribution with σ = 1 and R = 5/k0 starting from

a timed Dicke state. Blue: uniform distribution with σ = 5 and R = 5/k0 starting from a

timed Dicke state. Yellow: uniform distribution with σ = 1 and R = 20/k0 starting from a

timed Dicke state. Cyan: uniform distribution with σ = 1 and R = 20/k0 starting from a

uniform excitation state.

39.1.8.10 Ex: Other applications of the coupled dipoles model

Discuss whether the coupled dipoles model can be extended to provide a micro-
scopic description of gaseous metamaterials (negative refractive index) and the Goos-
Hänchen, Imbert-Fedorov, Spin-Hall, and Ewald-Oseen effects, and interference with
a LO. Is it possible to check Ewald-Oseen’s theorem in media with negative refractive

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDM2AtomSuperradiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_CDM2AtomSuperradiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ScullyRadiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ScullyRadiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ScullyRadiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ScullyRadiance.m
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_SuperSubradiance03.pdf
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index?

Solution:

39.2 Continuous density distributions and Mie scat-
tering

In the last sections we developed the coupled dipoles model describing light scattering
from ensembles of individual microscopic particles by a set of equations of motion,
in the simplest case, one for every atomic dipole. This limits the number of atoms
that can be considered in numerical simulations to a few 1000. On the other hand,
most cold atom experiments nowadays are performed with 105 to 109 atoms. The
following section are devoted to introducing concepts and approximations allowing us
to understand light scattering from large atomic clouds.

The main step will consist in an approximation called smooth or continuous density
approximation, where the discrete distribution of point-like scatterers is replaced by
an inhomogeneous but smooth continuous density distribution characterized by a
refraction index field nrfr(r). The interaction of this density distribution with light is
then treated in the framework of Maxwell’s equations, i.e. inhomogeneities are treated
as macroscopic boundary conditions to the electromagnetic fields. In the following we
will term this regime as Mie scattering.

At first sight Rayleigh scattering from point-like particles and Mie scattering from
extended objects are quite different phenomena. Rayleigh scattering exhibits reso-
nances due to the internal structure of the particles, e.g. an atom. Mie scattering
shows resonances induced by the boundary conditions the scattering objects impose
to the field. On the other hand, from a microscopic viewpoint, any extended object
(e.g. a dielectric sphere) is nothing but an assembly of microscopic scattering parti-
cles. The question we need to study is then whether a description of the diffraction
from this object as the sum of the radiation patterns scattered from the individual
constituent particles is correct; or in how far the graininess of the cloud’s density dis-
tribution and cooperative effects arising from the interaction between the individual
particles play a role [225].

Interesting phenomena are expected in the transition regime between the limits
of a dense bunch of individual scatterers and macroscopic dielectric objects. One of
them is a strong modification of the radiation pressure force [298], which can conve-
niently be studied with atomic ensembles. The reason is that, in the smooth density
approximation, the cloud can be understood as a macroscopic object characterized
by a refraction index, which can be tuned over huge ranges by changing the cloud’s
density and volume, or by tuning the frequency of the incident light exploiting the
existence of atomic resonances. We will see in the following that it is possible to study
radiation pressure with cold atoms in the Rayleigh-Debye-Gans limit of small phase-
shifts, as well as in the Mie limit of large phase shifts [66]. Despite the absence of
sharp boundaries for the atomic cloud, we predict the occurrence of Mie resonances,
which could be detected experimentally [67].
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39.2.1 Continuous density approximation

In light scattering experiments, disorder (or granularity) plays a role when the number
of atoms projected onto a cross section perpendicular to the incident beam is small
enough so that a light mode focused down to the diffraction limit (that is ∼ λ2) would
be able to resolve and count the atoms. In other words, the stochastic fluctuations
induced by the random positions of the atoms can be neglected when the total number
of atoms N is larger than the number of modes ∼ σ2 that fit into the cloud’s cross
section, i.e. when the optical density is b0 = 3N/σ2 ≫ 1. Under this hypothesis, the
differential equation (39.26) for β̃j can be simplified by replacing the discrete sum
over atom positions by an integral over a density distribution ρ(r),

N∑

j=1

→
∫
ρ(r′)d3r′ and β̃j(t)→ β̃(r′, t) . (39.96)

For example, the smoothed structure coefficient reads,

S(k) = 1

N

N∑

j=1

eı(k−k0)rj =
1

N

∫
d3r′ ρ(r′)eı(k−k0)r

′
. (39.97)

In the Exc. 39.2.5.1 we calculate the structure coefficients for a homogeneous
spherical cloud of radius R and for a Gaussian ellipsoidal cloud with the rms-width
σρ,z:

Shomog.sphere(k) =
3

q3R3 (sin qR− qR cos qR) (39.98)

Sgauss.ellipse(k) = e−
1
2k

2σ2
ρ sin2 θ− 1

2σ
2
z(k cos θ−k0)2 .

The simulated structure factor (red curve in Figs. 39.17) agrees well with the analytical
expression (green curve). Since small clouds have a larger fluctuations, the fact that
the total force is a sum of intensities rather than amplitudes leads to a finite value at
large scattering angles θ.
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Figure 39.17: (code) (a) The red curve shows a calculation of the structure factor: |S(k =

k0, θ, ϕ = 0)|2 for 200 atoms randomly distributed in a homogeneous spherical cloud of

size R = 10/k0. The blue curve shows an average over 500 realizations of such a cloud

according to
∑200
m=1 |S(k, θ, ϕ = 0)|2. The black curve is an analytical calculation according

to Eq. (39.98) [1284]. (b) Same curves as in (a) but with a stretched y-axis.
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In the continuous limit defined by (39.96) for the equations of motion (39.32) 11,

˙̃
β(r, t) = ı

(
∆0 + ı

Γ

2

)
β̃(r, t)− ı

2
Ω0 −

Γ

2

∫
d3r′ρ(r′)

sin(k0|r− r′|)
k0|r− r′| β̃(r′, t)e−ık0·(r−r′) .

(39.99)

Transforming back to βj ≡ β̃eık0·r, we obtain the fundamental equation for the dipolar
excitation field,

β̇(r, t) = ı

(
∆0 + ı

Γ

2

)
β(r, t)− ıΩ0

2
eık0·r − Γ

2

∫
d3r′ρ(r′)

sin(k0|r− r′|)
k0|r− r′| β(r′, t) .

(39.100)

Example 229 (Connection between coupled dipoles model and Helmholtz
equation): The steady-state solution of (39.100) can also be obtained from the
Helmholtz equation of Maxwell’s theory [458, 66, 67], as shown in Sec. 19.3.2,

[∇2 + k20n
2
rfr(r)]β(r) = 0 defining n2

rfr(r) ≡ 1− 4πρ(r)

k30(2∆0/Γ + ı)
.

(39.101)

39.2.2 Simulations of the time evolution

We start from the second equation (39.18),

˙̃
βj(t) = ı∆0β̃j(t)−

Ω2
0

4

N∑

m=1

∫ t

0

β̃m(t′)dt′ (39.102)

−
∑

k

g2k

N∑

m=1

eı(k−k0)(rj−rm)

∫ t

0

e−ı(ωk−ω0)(t−t′)β̃m(t′)dt′ .

Substituting the timed Dicke state (39.64),

β̇(t) =
1

N

N∑
j=1

β̇(t) =
1√
N

N∑
j=1

˙̃
βj(t) (39.103)

= ı∆0β(t)− NΩ2
0

4

∫ t

0

β(t′)dt′ − Vph
(2π)3

∫
d3k g2kN

2|S(k)|2
∫ t

0

e−ı(ωk−ω0)(t−t′) β̃m(t′)√
N

dt′ ,

where we used
∑N
m=1 e

ı(k−k0)(rj−rm) = N2|S(k)|2 from Eq. (39.67). Finally, at
resonance and low saturation we may neglect the first two terms,

β̇(t) = −N Vph
(2π)3

∫

R
d3k

∫ t

0

dt′ g2kβ(t
′)eı(νk−ω)(t−t

′)|S(k)|2 (39.104)

= −N Vph
(2π)3

∫ t

0

dt′ β(t′)
∫ ∞

0

∫ π

0

g2ke
ı(νk−ω)(t−t′)|S(k, θ)|22πk2 sin θdθdk

= −N Vph
(2π)3

g2k

∫ t

0

dt′ β(t′)
∫ ∞

0

eı(νk−ω)(t−t
′)k2I(k)dk = −Ω2

N

∫ t

0

dt′ β(t′)G(t− t′) ,

11Note that the ’timed Dicke’ assumption (39.64) has not been used here.



2136 CHAPTER 39. COOPERATIVITY IN LIGHT SCATTERING

with the collective Rabi frequency ΩN =
√
Ngk and the surface integrated structure

factor,

I(k) =

∫ 2π

0

∫ π

0

|S(k, θ, ϕ)|2 sin θdθdϕ , (39.105)

and

G(τ) =
Vph
(2π)3

e−ıωτ
∫ ∞

0

eıckτk2I(k)dk , (39.106)

with ω = ck0 and νk = ck. The integral I(k) has been solved by Nicola for an
ellipsoidal Gaussian density distribution. It is quite close to,

I(k) ≃ I(k0) ≃
√
π

2

1

kσz
eF

2/2[1− erf (F/
√
2)] , (39.107)

with the Fresnel number F = kσ2
r/σz.
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Figure 39.18: (code) Averaging of the structure factor over the whole k-space.

39.2.2.1 Analytical method

To evaluate the above integro-differential equation, we use the rule for differentiating
integrals with variable boundaries,

∂

∂t

∫ ψ(t)

ϕ(t)

f(x, t)dx =

∫ ψ(t)

ϕ(t)

∂f(x, t)

∂t
dx+ f(ψ(t), t)ψ′(t)− f(ϕ(t), t)ϕ′(t) , (39.108)

it is easy to show,

∂

∂t

∫ t

0

f(t′)G(t− t′)dt′ = f(t)G(0) +

∫ t

0

f(t′)Ġ(t− t′)dt′ (39.109)

and to thusly evaluate the integral until ∂n

∂tnG(t − t′) gets smooth enough to be ne-
glected.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureIntegrated.m


39.2. CONTINUOUS DENSITY DISTRIBUTIONS AND MIE SCATTERING2137

39.2.2.2 Numerical method

We can directly solve the integro-differential equation numerically using,

G(τ) =

[
1 +

3c

4R
τ − c3

16R3
τ3
]
Θ(3R− cτ) , (39.110)

for a homogeneous spherical cloud and,

G(τ) =
kσ2

r

kσ2
r + icτ

e−(cτ/σz)
2/2 , (39.111)

for an ellipsoidal Gaussian cloud. The iteration is done via,

β(t+ dt) = β(t)− dt Ω2
N

∫ t

0

β(t′)G(t− t′)dt′ . (39.112)

The discretization is done via,

tm+1 = tm + dt (39.113)

βm+1 = βm − dt Ng2k
m∑

m′=1

βm′G(tm − tm′)dt .
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Figure 39.19: (code) Calculation of the time evolution of β for a homogeneous spherical

cloud. The parameters are λ ≃ 780 nm and c/Ω ≃ 30 cm with Ω =
√
Ngk for typically

gk ≃ 1MHz and N ≃ 106.

With the solution of the integro-differential equation β(t), we can calculate the
probability that atoms are excited [1284] 12,

P (t) = |β(t)|2 =
∑

j

|βj(t)|2 =

∫
d3r|β(t, r)|2 . (39.114)

12Compare to Jaynes-Cummings model in a CQED environment: A single photon is coherently
exchanged between the cavity and the atomic excitation, we get Rabi oscillations. Here, the atomic
cloud is the cavity.
We know that the Mollow triplet in the dressed states picture gives rive to an oscillating decay curve
resembling that of Fig. 39.19. Does this curve also have an interpretation in terms of collective
dressed states?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureTimeevolve.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureTimeevolve.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_StructureTimeevolve.m
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Example 230 (Solutions for a homogeneous spherical cloud): For a ho-
mogeneous spherical cloud, we find three regimes characterized by the size of
the cloud compared to the two length scales λ and c/Ω:

β(t) = β(0)


e−NΓt

e−27NΓt/8(k0R)2

cosΩte−3ct/8R

for R < λ≪ c/Ω

for λ < R≪ c/Ω

for λ≪ c/Ω < R

.

39.2.2.3 Complete numerical simulation

In order to be independent from initial conditions, we generate a random distribution
rj′ and solve the differential equation,

β̇j(t) = −Ng2k
∫ t

0

dt′
Vph
(2π)3

∫
d3k

1

N

N∑

j′=1

βj′(t
′)eı(νk−ω)(t−t

′)+ık(rj−rj′ ) . (39.115)

We propagate the amplitudes in time via,

βj(t+ dt) = βj(t)− dtg2k
Vph
(2π)3

∫ t

0

dt′
N∑

j′=1

βj′(t
′)
∫ ∞

0

k2eı(ck−ω)(t−t
′)Ijj′(k)dk ,

(39.116)

where Ijj′(k) ≡
∫ π
0

∫ 2π

0
eık[(xj−xj′ ) sin θ cosϕ+(yj−yj′ ) sin θ sinϕ+(zj−zj′ ) cos θ] sin θdθdϕ, and

discretize via,

tm+1 = tm + dt (39.117)

βj(tm+1) = βj(tm)− dt2g2k
m∑

m′=1

N∑

j′=1

βj′(tm′)Gjj′(tm − tm′) ,

with Gjj′(tm − tm′) =
Vph

(2π)3

∫∞
0
k2eı(ck−ω)(tm−tm′ )Ijj′(k)dk.

39.2.3 Radiation pressure force in macro- and microscopic scat-
tering

As mentioned at the beginning of this section, scattering of light by an extended ob-
ject such as an atomic ensemble or a dielectric sphere is fundamentally different from
scattering at a point-like scatterer such as a single atom. On one hand, the finite size
of the object leads to Mie scattering. On the other hand, the spatial distribution of
the scatterers rules the degree of cooperativity. Homogeneous and periodic distribu-
tions tend to scatter cooperatively, whereas disorder suppresses cooperativity. In an
atomic cloud, the amount of disorder can be tuned via the optical density seen by
the incident light, and its role can be studied via the radiation pressure exerted by
the light on the atomic cloud. We present an analytic expression for the radiation
pressure valid for any numbers of atoms and arbitrary density distributions, which in-
terpolates between the regimes of dominating disorder and dominating cooperativity.
Furthermore, we present first experimental signatures of radiation pressure reduction
due to cooperative scattering.
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The radiation pressure exerted by a plane wave laser beam with frequency ω0 and
wave vector k0 = k0êz on a single two-level atom with resonance frequency ωa = ω0−
∆0 is correctly described by the standard formula (39.80). Generalization to scattering
by atomic ensembles and extended objects is only possible, if a number of effects is
explicitly taken into account. The most important ones are named in the following.
a. Cooperativity and b. disorder : Cooperativity is the tendency of atoms located in the
same area of space, forming regular structures or being forced by the mode structure
of the environment (e.g. optical cavities) to scatter light synchronously into the same
direction, as in the case of Dicke superradiance. While homogeneously or periodically
distributed atoms concentrate the scattered light in specific solid angles by forward
or Bragg scattering, randomly distributed atoms do not cooperate and scatter light
isotropically. In this respect, cooperativity and disorder are antagonists. c. Mie
scattering and refraction: The finite volume and the shape of the cloud represent
an inhomogeneity at which light is scattered in a global way. As long as the optical
density is low, the pump mode depletion is mainly due to the fact, that the atomic
cloud distorts the phase front of the incident light. For high optical density, scattering
is predominantly absorptive. d. Multiple scattering and e. resonance fluorescence:
Near resonance, multiple scattering leads to radiation trapping. Even off-resonance,
inelastic scattering pumps resonant photons into the atomic cloud, which have a high
probability to be reabsorbed. Taking account of all these effects, the real radiation
pressure can differ by orders of magnitude from the naive prediction of the above
formula.

For smooth density distributions Fc is only limited by Mie scattering at the inho-
mogeneity represented by the finite extend of the atomic cloud [298]. The radiation
pressure depends on the number of atoms N in the volume, and the scaling Fc(N)
depends on the pump laser detuning and the radial cross section of the cloud. But
small scale inhomogeneity within the cloud, i.e. disorder, can play an eminent role for
collective scattering. This is the case, when the number of atoms is beyond a critical
value, which mainly depends on the volume and shape of the cloud. In the following
we will derive an analytic expression for the radiation pressure as a function of atom
number, which interpolates between the regimes of dominating disorder (single-atom
Rayleigh scattering) and dominating cooperativity (pure Mie scattering).

On the other hand, we point out, that we do not consider multiple scattering in
our treatment. This is a good assumption far from resonance, where the scattering is
predominantly Rayleigh scattering and inelastic scattering can safely be disregarded.
In contrast, our extensions of single to multi-atom scattering are not valid near reso-
nance.

The radiation pressure provides sensitive signatures for the impact of cooperativity
and disorder. We describe an experiment measuring the displacement of cold atoms
confined in a far-off resonance dipole trap and interpret our observations in terms of
collective scattering.

39.2.3.1 Radiation pressure for timed Dicke states

As a first approach we will calculate the radiation pressure for a timed Dicke state
from Eq. (39.89) by explicit analytical integration of the surface-integrated structure
factors s∞ and f∞ in the smooth density limit (39.96) for an ellipsoidal Gaussian
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smooth density distribution, as shown in Exc. 39.2.5.2. In the spherical case,

ρ(r) = ρ0e
−r2/2r̄2 with ρ0 =

N

(2π)3/2r̄3
, (39.118)

and introducing σ ≡ kr̄, we get,

s∞ =
1− e−4σ2

4σ2

σ≫1−→ 1

4σ2
(39.119)

f∞ =
1

4σ2

[
1− 1

2σ2
+

(
1 +

1

2σ2

)
e−4σ

2

]
σ≫1−→ s∞ − 2s2∞ .

Hence,

Fza + Fze
Fz1

=
(2∆0/Γ)

2 + 1

(2∆0/Γ)2 +N2s2∞
N(s∞ − f∞) . (39.120)

Note that the radiation pressure calculated from Eq. (39.120) also holds for elongated
ellipsoidal Gaussian clouds characterized by an aspect ratio η > 1, even though the
expressions for the surface-integrated structure factors become more complicated.

It is revealing to compare the smooth density expressions (39.120) with numer-
ical simulations based on randomly generated atomic distributions from which the
structure factor is directly from the sum (39.68). Interestingly, we find in certain pa-
rameter regimes (in particular at low atom numbers) considerable deviations between
sN , fN and s∞, f∞ and consequently between the numerical simulations and the ana-
lytic calculations of the radiation pressure. We attribute these deviations to disorder
in the atomic cloud, which is not seen in the smooth density limit, but naturally
incorporated in the numerical approach.

By comparison to numerical simulations [black solid lines and blue circles in
Figs. 39.20(a)] we found that the surface-integrated structure factors in the presence
of disorder are well described by [141],

sN =
1

N
+ s∞ and fN = f∞ . (39.121)

39.2.3.2 Cooperativity versus disorder

We expect disorder to play a dominant role, when the coarse graininess, which is
related to the average distance between two atoms, |ri − rj |, can be resolved by the
incident light. For the absorption process, this means that disorder gets important,
when the number of spatial modes supported by the pump laser in a radial cross
section of the atomic cloud,

Nca = s−1∞ ≃ 4σ2 , (39.122)

(for voluminous clouds) surpasses the number of atoms, N < Nca. This is just the
case, when the mean resonant optical density (for a ray passing through the center of
the cloud x = y = 0) is larger than 1,

b0 =

∫ ∞

−∞
dz ρ(z)σopt =

3N

σ2
=

12N

Nca
> 1 , (39.123)
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where σopt =
3λ2

2π is the resonant optical cross section and ρ(r) the spherical Gaussian
density distribution (39.118). For the scattering process, the number of modes avail-
able for the reemitted light also counts. Hence, the critical number of atoms that can
be resolved by light scattering is larger than Nca:

Nce = (s∞ − f∞)−1 ≃ 1
2 (2σ)

4 = 1
2Nca · σ2 . (39.124)
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Figure 39.20: (code) (a) Numerical evaluation of sN (blue circles) and fN (blue crosses) [225].

Analytical calculation of sN (black solid line) according to Eq. (39.121). Smooth density

limit of s∞ (red solid line) and f∞ (green crosses). The cloud is assumed spherical, η = 1, and

Gaussian with size σ = 5. (b) Numerical evaluation (blue circles) of the corresponding force

ratio as a function of atom number N for ∆0 = (2π) 2GHz and small collective saturation,√
NΩ0 ≪ ∆0. Analytical calculation in the smooth density limit (green solid line) and

according to Eq. (39.126) (black solid line). The magenta line traces the radiation pressure

force resulting from pump photon absorption only.

In order to simplify the discussion, we neglect saturation, Ω0 → 0. Using ∆0 ≫ Γ
and defining a third characteristic atom number,

Ncr =
2∆0

Γs∞
, (39.125)

Eq. (39.120) can be written,

Fc
F1
≃ 1 +N/Nce

1 + (N/Ncr)2
. (39.126)

In the limit of very large detunings, ∆0/Γ ≫ σ2 ≫ 1, the three introduced char-
acteristic atom numbers introduced in Eqs. (39.122), (39.124) and (39.125) satisfy
Nca < Nce < Ncr, and we obtain the N -dependence of the radiation pressure de-
picted in Fig. 39.20.

In the regime N < Nca, radiation pressure is dominated by the absorption process,
sN ≫ fN , because the emission is isotropic. The absorption radiation pressure exerted
on a hypothetical smooth density distribution occupying the same volume as the
atomic cloud [green line in Fig. 39.20] is dramatically reduced with respect to the
single-atom radiation pressure (cyan dash-dotted line). However, disorder suppresses
cooperativity and increases the radiation pressure up to the single-atom value. The
novelty as compared to Ref. [1180] is the fact that cooperativity and disorder not

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ForceDisorder.m
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only influence the collective emission of a photon by an atomic cloud, but also the
collective absorption of a photon from a pump laser beam.

Neglecting the photon reemission at higher atom numbers would result in an in-
crease of radiation pressure in the regime Nca < N < Nce (magenta line). However,
in this regime, the emission process becomes increasingly important, sN ≃ fN , be-
cause the emission changes its radiation pattern from isotropic to forward scattering.
Consequently, the radiation pressure is reduced with respect to its purely absorptive
component. This regime is still ruled by disorder, so that the critical atom number
for the impact of disorder on the absorption process, Nca, has no impact. It does not
even show up in the formula (39.126).

In the regime Nce < N < Ncr, disorder steps back and cooperativity wins, so
that the radiation pressure approaches the smooth density limit. Since in this regime,
the smooth density radiation pressure depends on atom number like ∝ N , as already
shown in Ref. [298], we observe an increase of the radiation pressure beyond the single-
atom value. This is only possible, because the collective enhancement of absorption
(magenta line) rises as fast with N , as the collective enhancement of emission.

For even higher atom numbers, Ncr < N , the radiation pressure dramatically
alters its N -dependency from ∝ N to ∝ N−1. This change of behavior is not caused
by the interplay of cooperativity and disorder, but can be understood within the
framework of Mie scattering, as discussed in the next section.

39.2.3.3 Rayleigh-Debye-Gans versus Mie scattering

Radiation pressure is observed in many experiments, as it is the basis for optical
cooling techniques (like magneto-optical traps) and limits the efficiency of resonant
absorption imaging of cold atoms, because their acceleration leads to considerable
Doppler-shifts. However, as stated before, the impact of disorder on radiation pressure
can only be seen for large optical densities, b≫ 1, which may partially explain, why
this effect has not been observed until two experiments explicitly searched for it
[141, 119] (see Fig. 39.21).

Depending on the parameter regime chosen, the measurements exhibited in Fig. 39.21
present data for reduced or enhanced radiation pressure for larger N . As explained
above, the reduction is understood as microscopic Rayleigh scattering at disordered
atoms together with superradiant acceleration of the decay, while the enhancement
is observed when the bulk cloud becomes so small and dense that it turns into an
inhomogeneous dielectric sphere refracting and lensing incident light by macroscopic
Mie scattering.

The question then remains why the radiation pressure, with increasing N , after an
initial rise the drops again. To answer this question we must have a look at the phase
shift induced in the pumjp light by the cloud’s refraction index.. From calculations
done in Secs. 18.2.4, 22.2.7 and 43.6.1 we know that (below saturation) the optical
density b and the phase shift φ are linked to the refraction index nrfr and the optical
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Figure 39.21: (code) (a) Double-logarithmic plot of the measured (symbols) and calculated

(lines) N dependence of the radiation pressure force. The red symbols and lines correspond

to the detuning ∆0 = (2π) 0.5GHz and the intensity I0 = 95mW/cm2. For the blue

symbols and lines, ∆0 = (2π)4GHz and I0 = 730mW/cm2. The red (bottom) and blue

(top) solid lines show calculations based on the full expression (39.120) without adjustable

parameters. The red (bottom) and blue (top) dotted lines represent just the fraction of

expression (39.120). The dash-dotted lines representing just the parentheses coincide for

both values of ∆0. (b) Same data as (a), but plotted as a function of the push beam phase

shift φ. In this diagram the dotted lines representing the fraction coincide for both values

of ∆0 [119].

scattering cross section σopt via,

ıb

2
+ φ =

ω

c

∫ ∞

−∞
[nrfr(r)− 1]dz =

(
ı− 2∆0

Γ

)
σopt(∆0)

∫ ∞

−∞
ρ(r)dz (39.127)

where σopt(∆0) =
2π

k2
Γ2

4∆2
0 + Γ2

and nrfr(r)− 1 = − 4πρ(r)

k30(2∆0/Γ + ı)
,

such that,

b = −σopt(∆0)

∫ ∞

−∞
ρ(r)dz = b0

Γ2

4∆2
0 + Γ2

and φ =
2∆0

Γ
b . (39.128)

Estimating coarsely k
∫∞
−∞[nrfr(r) − 1]dz ≃ σ[nrfr(r) − 1], where σ ≡ kr̄, we may

simplify,
ıb

2
+ φ = σ[nrfr(r)− 1] . (39.129)

At high atom numbers (i.e. in the smooth density limit), the dependency of the radi-
ation pressure on atom number (39.126) exhibits a maximum at Ncr. For an atomic
cloud with density n and the resonant optical density b0, the characteristic atom num-
ber can be expressed in terms of the phase shift φ experienced by the pump laser beam
on its path across the cloud. Absorption losses for the pump beam (e.g. resonance
fluorescence, whose differential cross section contributes σopt to the total scattering
cross section [816]) is completely negligible at large detunings. Only elastic Rayleigh
scattering occurs, which in the smooth density limit of Mie scattering becomes pure
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diffraction (real part of the refraction index). We can than understand the atomic
cloud as a non-absorbing dielectric sphere with a Gaussian index of refraction.

Rewriting Eq. (39.126) in terms of the refraction index,

Fc
F1
≃ N

1 + (2φ)2
2

(2σ)4
, (39.130)

we see that, as long as φ < 1
2 , the force increases linearly like ∝ N . The propor-

tionality comes from the perfect (in the sense of not spoiled by disorder) cooperative
enhancement of the scattering rate in the smooth density limit. The enhancement is
only limited by the finite size σ of the cloud, which is accounted for in the second
fraction. This regime, characterized by 13,

σ[nrfr(r)− 1]≪ 1 (39.131)

is termed the Rayleigh-Debye-Gans regime.
For larger phase shifts, φ > 1

2 , refraction more and more distorts the wavefront of
the pump beam, which spoils the pump mode depletion and hence reduces radiation
pressure. Consequently, the radiation pressure decreases again like N−1. This is the
Mie regime of scattering. The maximum is thus a pure diffraction effect, a so-called
Mie resonance. It corresponds to the nrfr, where the Rayleigh-Debye-Gans scattering
approximation looses its validity according to (39.131). In Excs. 39.2.5.3 and 39.2.5.4
we study Mie and Rayleigh-Debye-Gans scattering, and in 39.2.5.5 we discuss the
question is whether recoil is imparted to individual atoms or to the center-of-mass of
the whole cloud.

In the limit of the approximations made, our formula correctly describes the ra-
diation pressure force on extended objects. These objects can either be ensembles of
scatterers like homogeneous, ordered or disordered atomic clouds of arbitrary shapes
and volumes, or macroscopic objects like dielectric spheres. The formula thus rep-
resents a bridge between microscopic Rayleigh scattering and macroscopic Mie scat-
tering. At very low atom numbers, the atomic cloud basically represents a randomly
distributed bunch of scatterers, whose intrinsic disorder spoils cooperativity. The
radiation pressure is then well described by the single-atom value. At large atom
numbers, the atomic cloud forms a smooth density distribution characterized by an
almost perfect a cooperativity, which is only limited by Mie scattering.

39.2.3.4 Light scattering in the continuous density approximation

The scalar electric field scattered by an arbitrary distribution of atoms has been
calculated in (39.49). In the continuous density approximation (39.96), we get,

E⃗sct(r) = −
ıℏΓ
2d

N∑

j=1

eık0|r−rj |

ık0|r− rj |
βj(∞)→ − ıℏΓ

2d

∫
d3r′ρ(r′)

eık0|r−r
′|

ık0|r− r′|β(r
′,∞) .

(39.132)

13Note the necessity of another condition [nrfr(r) − 1] ≪ 1 termed Born approximation, which
demands that the incident wave be not appreciably reflected.
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In particular, for a timed Dicke state,

E⃗sct(r) = −
ıℏΓ
2d

√
NΩ0

2∆0 + ıΓNsN

N∑

j=1

eık0|r−rj |

ık0|r− rj |
(39.133)

→ − ıℏΓ
2d

√
NΩ0

2∆0 + ıΓ(1 +Ns∞)

∫
d3r′ρ(r′)

eık0|r−r
′|

ık0|r− r′| .

39.2.4 Spherical harmonics expansion and generalized timed
Dicke state

The results derived in (39.120) assumed the cloud to be in a timed Dicke state. As
we have seen in Exc. 39.1.8.5, timed Dicke states do not account for pump laser phase
shifts induced by the cloud’s refraction index. The timed Dicke states might work
well for homogeneous cylinders, but not for ellipsoidal clouds, which we assume in our
analytical treatments. Therefore, a better approach consists in expanding the cloud
into spherical harmonics. Under the assumption that the cloud is radially symmetric,
ρ(r) = ρ(r), we get [458],

β(r, θ, t) =

∞∑

n=0

√
2n+ 1

4π
αn(t)jn(k0r)Pn(cos θ)e

−ık0r cos θ , (39.134)

where the coefficients αn are the solutions of,

α̇n =

[
ı∆0 −

Γ

2
(1 + λn)

]
[αn − αn(∞)] , (39.135)

In steady state,

αn(∞) =
2ın
√
π(2n+ 1)Ω0

2∆0 + ıΓ(1 + λn)
, (39.136)

where,

λn ≡ 4π

∫ ∞

0

drρ(r)j2n(k0r) (39.137)

is the decay rate of eigenmode n.
Inserting this into the steady-state solution (39.100) and integrating over the vol-

ume,

⟨β∞⟩ ≡
2π

N

∫ 2π

0

dθ sin θ

∫ ∞

0

dr2ρ(r)β(r, θ) =
Ω0

N

∞∑

n=0

(2n+ 1)λn
2∆0 + ıΓ(1 + λn)

(39.138)

⟨|β∞|2⟩ ≡
2π

N

∫ 2π

0

dθ sin θ

∫ ∞

0

dr2ρ(r)|β(r, θ)|2 =
Ω2

0

N

∞∑

n=0

(2n+ 1)λn
4∆2

0 + Γ2(1 + λn)2
.

Example 231 (Spherical harmonics expansion for a Gaussian density
distribution): The density distribution determines the coefficients λn. For a

Gaussian distribution n(r) = N/[(2π)3/2σ3
R]e
−r2/2σ2

R using the sine kernel,

λn = N

√
π

2

e−σ
2

σ
In+1/2(σ

2) .
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For a homogeneous sphere, n(r) = n0, of radius σ = k0R, using the sine kernel
[[1283], Eq. (18)],

λn =
3N

2
[j2n(σ)− jn−1(σ)jn+1(σ)] .

39.2.4.1 Expansion of the radiation pressure forces

This allows us to calculate the forces,

Fa = −ℏk0Ω0ΓIm ⟨β∞⟩ (39.139)

Fe = −ℏk0Ω2
0Γ

∞∑

n=0

2(n+ 1)λnλn+1[4∆
2
0 + Γ2(1 + λn)(1 + λn+1)]

[4∆2
0 + Γ2(1 + λn)(1 + λn+1)]2 + 4∆2Γ2(λn+1 − λn)2

.
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Figure 39.22: (code) (a) Absorption, (b) emission, and (c) total force for a Gaussian cloud

with the following parameters: σ = 2, ∆0 = 10Γ, Ω0 = 0.001Γ, and η = 1. The magenta

dots show a fully numerical calculation for a randomly generated cloud according to formula

(39.63). The red lines show a calculation according to the complete formula (39.139). The

cyan dots show a calculation assuming timed Dicke states according to (39.82) via numerical

calculation of the structure factor according to (39.83) for the same randomly generated

cloud as for the full simulation. The blue lines are obtained within the timed Dicke state

approximation with structure factors estimated from formula (39.120). (d-f) Same as (a-c)

but with σ = 0.2.

As seen in Fig. 39.22, the results obtained via the complete analytical formula
(39.139) coincide with the fully numerical simulations according to formula (39.63).
But both disagree with analytical and numerical results obtained within the timed
Dicke state approximation.
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It is possible to approximate the Bessel function In+1/2(σ
2) and to obtain analyt-

ical solutions. The new formula works for σ ≫ 1 and η = 1 [458],

Fa =
Ω2

0

Γ

σ2

N
ln

(
1 +

N2Γ2sN
σ2(4∆2

0 + Γ2)

)
=

Ω2
0

4NΓs∞
ln

(
1 +

4N2Γ2s∞sN
4∆2

0 + Γ2

)
(39.140)

Fe = −Fa +
Ω2

0

∆0

σ2

N
arctan

∆ΓN

σ2
(
4∆2

0 + Γ2 + Γ2N
2σ2

) =
Ω2

0

4N∆0s∞
arctan

4∆0ΓNs∞
4∆2

0 + Γ2 + 2Γ2Ns∞

b0 =
3N

σ2

sN =
1

N
+ s∞ =

1

N
+

1

(2σ)2
.

39.2.4.2 Expansion of the scattered radiation intensity

The incident electric field is ...

The radiated electric field
ˆ⃗E(+)(r, t)|ψ⟩ where ˆ⃗E(+)(r, t) =

∑
k εkâke

ık·r−ıωkt,

ˆ⃗E(+)(r, t)|ψ⟩ =
∑

k

εkγk(t)e
ık·r−ıωkt|0⟩|1⟩k (39.141)

= −ıVphgk0εk0k0
4πc
√
N

e−ıω0t
N∑

j=1

βj(t)e
ık0·rj e

ık0|r−rj | − e−ık0|r−rj |
|r− rj |

.

We neglect the second term, which describes an incoming wave and go to smooth
densities. We expand into spherical harmonics and obtain,

ˆ⃗E(+)(r, t)|ψ⟩ = e−ıω0t
∞∑

n=0

Vphgk0εk0
c
√
N

λn
2∆0 + ıΓ(1 + λn)

Ω0(2n+1)ınh(1)n (k0r)Pn(cos θ) .

(39.142)

39.2.4.3 Mie resonances

It is an interesting question whether the maxima found in the curves of Fig. 39.22 can
be associated with Mie resonances [164, 1228, 125]. To show this we need to apply the
formalism of Mie scattering to atomic clouds with the smooth density approximation,
where it is described by a continuous refraction index, as studied in Ref. [66]. The Mie
formalism had been developed for homogeneous spheres, which can be dielectric or
absorptive. For more general refractive index distribution the formalism gets quickly
cumbersome 14. Also Mie resonances are generally though of being conditioned to
the existence of sharp boundaries.

The results of Ref. [66] surprisingly show that Mie resonances are expected for
parabolic distributions of atoms, as is the case for example for Bose-Einstein con-
densates in the Thomas-Fermi limit. However, the spectra of Mie resonances exhibit
much less structure. This is understood by the fact that ’whispering galery’ Mie reso-
nances may live on the surface of a sphere whose refraction index drops quadratically
to zero, while cavity type Mie resonances may not.

14There is a treatment for parabolic radial variations [703].
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39.2.5 Exercises

39.2.5.1 Ex: Structure coefficient of a homogeneous spherical and of a
Gaussian ellipsoidal cloud

a. Calculate the structure coefficient of a homogeneous spherical cloud of radius R,
and discuss the limits qR < 1 and qR < 1. Plot the structure coefficient as a function
of θ for various radii R.
b. Calculate the structure coefficient of an ellipsoidal Gaussian cloud having the rms-
widths σz and σr, and discuss the limits qR < 1 and qR < 1. Plot the structure
coefficient as a function of θ for various aspect ratios σz/σρ.

Solution: a. The case of a homogeneous cloud with volume V is recovered by n(r) =
N
V χ[r∈V ]. For a homogeneous spherical cloud [1178] of volume V = (4π/3)R3 the
structure coefficient becomes with q ≡ k− k0,

S∞(k) =
1

V

∫

sphere

eıq·rd3r =
3

4πR3

∫ R

0

∫ 2π

0

∫ π

0

r2eıqr cos θ sin θdθdϕdr

=
3

2R3

∫ R

0

r2
∫ 1

−1
eıqrududr =

3

q3R3
(sin qR− qR cos qR) .

In the small cloud limit, qR≪ 1, the density is well described by n(r) = Nδ3(r), and
the structure factor becomes,

S∞(k) = 1 .

For large homogeneous clouds, qR > 1, of limited size V we get,

S∞(k) = δk,k0 =
n0
N

∫

V

eı(k−k0)rd3r =
(2π)3

V
δ3(k− k0) =

6π2

R3
δ3(k− k0) .

b. The volume of an ellipsoidal Gaussian with the density distribution n(r) = n0e
−ρ2/2ρ̄2−z2/2z̄2

is V = (2π)3/2σ2
ρσz. We write the incident wavevector as k = kêz and the scattered

wavevector as k = k sin θ(êx cosϕ+ êy sinϕ) + kêz cos θ. With the Fourier transform∫
e−x

2/2σ2

eıkxdx =
√
2πσ e−σ

2x2/2 the structure coefficient becomes,

S∞(k) =
1

N

∫

R3

n0e
−ρ2/2σ2

ρ−z2/2σ2
zeıq·rd3r

=
1

(2π)3/2σ2
ρσz

∫

R3

e−ρ
2/2σ2

ρ−z2/2σ2
zeı(k−kêz)·rd3r

=
1

(2π)3/2σ2
ρσz

∫

R3

e−x
2/2σ2

ρ+ıkx sin θ cosϕe−y
2/2σ2

ρ+ıky sin θ sinϕe−z
2/2σ2

z+ıkz(cos θ−1)d3r

= e−
1
2σ

2
ρk

2 sin2 θ cos2 ϕe−
1
2σ

2
ρk

2 sin2 θ sin2 ϕe−
1
2σ

2
zk

2(cos θ−1)2

= e−
1
2k

2σ2
ρ sin2 θ− 1

2k
2σ2

z(cos θ−1)2 .

Again in the small cloud limit, σρ, σz < λ, the structure coefficient becomes

S∞(k) = 1 .
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In the large cloud limit, we get,

S∞(k) = δk,k0 =
(2π)3/2

σ2
ρσz

δ3(k− k0) .
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Figure 39.23: θ-dependence of the structure coefficients of (a) a homogeneous sphere for
kR = 1 (blue) and kR = 5 (red) and of an ellipsoidal Gaussian cloud (b) for σz/σρ = 1
(blue) and σz/σρ = 50 (red). The figures (c) and (d) are polar representations of the curves
in (a-b).

39.2.5.2 Ex: Force coefficients of a homogeneous spherical and of a
Gaussian ellipsoidal cloud

a. Calculate the force coefficients sN , f̃N , and fN from the Eqs. (39.66), Eqs. (39.78),
and Eqs. (39.86), respectively, for a homogeneous spherical cloud of radius R.
b. Repeat the calculation of (a) for an ellipsoidal Gaussian cloud having the rms-
widths σz and σr.

Solution: a.
b. The force coefficients are, setting k ≃ k0 [298] and η ≡ σz/σr and using the result
from Exc. 39.2.5.1(a),

s∞ =
1

4π

∫ π

0

∫ 2π

0

|S∞(k0, θ, ϕ)|2 sin θdθdϕ

=

√
πeσ

2/(η2−1)

4σ
√
η2 − 1

[
erf

(
σ(2η2−1)√

η2−1

)
− erf

(
σ√
η2−1

)]

η=1−→ 1− e−4σ2

4σ2

σ≫1−→ 1

4σ2
.
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Also,

f̃∞ =
1

4π

∫ π

0

∫ 2π

0

Re S∞(k0, θ, ϕ) sin θ cos θdθdϕ = ... .

And,

f∞ =
1

4π

∫ π

0

∫ 2π

0

|S∞(k0, θ, ϕ)|2 sin θ cos θdθdϕ

=
1

η2 − 1

[
η2s∞ −

1

4σ2
(1− e−4η2σ2

)

]

η=1−→ 1

4σ2

[
1− 1

2σ2
+

(
1 +

1

2σ2

)
e−4σ

2

]
σ≫1−→ s∞ − 2s2∞ .

39.2.5.3 Ex: RDG and Mie

Estimate whether it is possible to distinguish Rayleigh-Debye-Gans scattering from
Mie scattering in strontium spectra.

Solution: We need,

kv̄, ωrec ≪ Γ .

On the blue line,

kv̄ = k

√
kBT

m
≃ k

√
ℏΓblue
2m

≈ (2π)580 kHz

ωrec =
ℏk2

2m
= (2π)11 kHz .

It is easier on the red line

kv̄ = k

√
kBT

m
≃ k

√
ℏΓred
2m

≈ (2π)8.7 kHz

ωrec =
ℏk2

2m
= (2π)5 kHz .

39.2.5.4 Ex: Mie scattering from absorbing spheres

Calculate the force on a homogeneous dielectric sphere as a function of the absorptive
and dispersive part of the refraction index [703].

Solution: The result is shown in Fig. 39.24.
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Figure 39.24: (code) Force on a homogeneous dielectric sphere as a function of nrfr.

39.2.5.5 Ex: Momentum halos and heating, is the recoil cooperative?

Discuss the question is whether recoil is imparted to individual atoms or to the center-
of-mass of the whole cloud.

Solution: The individual recoil case corresponds to a product state, the shared re-
coil case to an entangled sum state. From radiation pressure force measurements it
is impossible to distinguish between both, but perhaps analyzing fluctuations versus
heating? On the other hand, even if a shared recoil state is generated, it may quickly
decohere into individual recoil states.
It might be necessary to include the external degrees of freedom into the formalism to
see which degrees is really affected by cooperativity 15, There might be an interesting
analogy between the transfer of recoil to individual particles and the photoeffect, where
individual electrons are ejected from a solid..
Let us consider cooperative scattering from two atoms. In the individual recoil case,
the momentum halo should be a spherical shell with azimuthal modulation. In the
shared recoil case, we expect a momentum blob somewhere inside the sphere. The
effect is analogous to the Mössbauer effect, where the interatomic interaction is me-
diated by the lattice. In our case, it is induced by light (light shift imprinted by the
dipole induced in atom j in atom m leads to level splitting gg, eg + ge, ee).

39.3 Scattering from disordered and dense clouds

39.3.1 Collective shifts and broadenings, vectorial light

The calculations show that the term identified as being responsible for disordered
scattering comes from the self-decaying term (diagonal in the matrix γjm), i.e. when
the excitation amplitude of the j-th atom decays by spontaneous emission. The other
process, that the j-th atom decays because of the decay of them-th atom, is described
by the non-diagonal elements.

The classical radiation pressure formula is recovered for λn = 0, which means that
the scattering is purely isotropic. The smooth density interpolation formula [298] is
recovered when λn ≪ 1 is assumed at all N .

15Note that the external degree of freedom is already contained in the Hamiltonian via the expo-
nential eıkr. The coordinate just has to be interpreted as an operator.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_MiescatteringParabolic.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_SmoothScattering05.pdf
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The impact of multiple scattering gets important, when the off-resonant optical
density exceeds 1, i.e. when,

b0 >
4∆2

0

Γ2
. (39.143)

We are interested in the question, whether it is possible to find signatures of col-
lective Lamb shift in experiments with cold atoms. The Lamb shift should appear,
e.g. in the spectra of the 1

N

∑
j |βj |2 (calculated or simulated using exponential ker-

nels). Indeed the dependence on ∆ show asymmetries in certain parameter regimes.
One of the features of the spectra is a strong central peak, which can be attributed
to multiple scattering.

But what if we were able to inhibit multiple scattering? In the case of the stron-
tium intercombination line, singly scattered photons are frequency-shifted by photonic
recoil, such that they cannot be reabsorbed by other atoms. This feature is not con-
tained in the coupled dipoles Hamiltonian, since in this model the external degrees of
freedom are frozen. Then, how does the time-evolution have to be modified for Sr?
Is it possible to construct the Hamiltonian in such a way that scattering intrinsically
occurs only once without having to include external degrees of freedom, photonic
recoil and the corresponding Doppler shift?

The eigenstates of the differential equation are found via βj(t) = βje
−λnt, where

Re λn are the decay rates of the modes n and Im λn are the frequency shifts [140].
According to [467] various frequency shifts may occur in ensembles of atoms due

to a. collisions (of ground state atoms) and b. radiation-induced interactions (partic-
ularly resonant interactions). The shifts can be categorized as follows:
1. Coulomb shift (instantaneous interactions), for E1-radiation the Coulomb shift
gives rise to the Lorentz shift for σ ≫ 0, for σ ≪ 0 the Lorentz shift goes to zero;
2. cooperative Lamb shift (exchange of virtual photons), photons are not only emit-
ting and reabsorbing virtual photons, but the photons may be reabsorbed by adjacent
atoms;
3. resonant collision shift (temporal correlations of dipole orientations), note that the
scattering amplitude is non-linear in the potential;
4. van der Waals shift (due to buffer gas collisions or to non-resonant levels, the
latter, however, being small).

39.3.1.1 Real and virtual photons

A virtual particle is a transient quantum fluctuation that exhibits some of the charac-
teristics of an ordinary particle, while having its existence limited by the Heisenberg
uncertainty principle. The concept of virtual particles arises in perturbation theory
of quantum field theory, where interactions between ordinary particles (e.g. particle
scattering or Casimir forces) are described in terms of exchanges of virtual particles
with limited lifetime. A process involving virtual particles can be described by a
schematic representation known as a Feynman diagram, in which virtual particles are
represented by internal lines.

A virtual particle does not necessarily carry the same mass as the corresponding
real particle, although it always conserves energy and momentum. The closer its char-
acteristics come to those of ordinary particles, the longer its lifetime. Virtual photons
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are the exchange particle for the electromagnetic interaction. I.e. electromagnetic
repulsion or attraction between two charges can be thought of as due to the exchange
of virtual photons between the charges.

As a consequence of quantum mechanical uncertainty, any object or process that
exists for a limited time or in a limited volume cannot have a precisely defined energy
or momentum. Hence, virtual particles which exist only temporarily do not typically
obey the mass-shell relation m2c2 = E2 − p2c2. The longer the lifetime of a virtual
particle, the more the energy and momentum approach the mass-shell relation ruling
the behavior of real particles. For instance, electromagnetic radiation consists of real
photons which may travel light years between the emitter and absorber, but electro-
static attraction and repulsion is a relatively short-range force that is a consequence
of the exchange of virtual photons.

By expressing an interaction in terms of the exchange of a virtual particle with
four-momentum q, where q is given by the difference between the four-momenta of
the particles entering and leaving the interaction vertex, both momentum and energy
are conserved at the interaction vertices of the Feynman diagram. A virtual particle
does not precisely obey the energy-momentum (or mass-shell) relation, that is, its
kinetic energy may not have the usual relationship to velocity, as it can be negative.
This is expressed by the expression off mass shell. The probability amplitude for a
virtual particle to exist tends to be canceled out by destructive interference over longer
distances and times. As a consequence, a real photon is massless and thus has only
two polarization states, whereas a virtual one, being effectively massive, has three
polarization states. Quantum field theory considers real particles as being detectable
excitations of underlying quantum fields, while virtual particles appear only as forces,
i.e. non-detectable excitations. Virtual particles are ’temporary’ in the sense that they
appear never appear as the observable inputs and outputs of a physical process.

Many observable physical phenomena can be interpreted in terms of virtual parti-
cles. For bosonic particles that exhibit rest mass when free and real, virtual interac-
tions are characterized by a relatively short range of the interaction force. Confine-
ment can lead to a short range, too. Examples of such short-range interactions are the
strong and weak forces, and their associated field bosons. For the gravitational and
electromagnetic forces, the zero rest-mass of the associated bosonic exchange particle
allows for long-range forces. However, in the case of photons, power and information
transfer by virtual particles is relatively short-ranged (restricted to only a few wave-
lengths of the field source), as is the case of inductive and capacitive coupling in the
near field zone of coils and antennas.

Some field interactions which may be interpreted in terms of virtual particles are:

• The electrostatic Coulomb force between electric charges and the magnetostatic
Lorentz force between magnetic dipoles are caused by the exchange of virtual
photons. In symmetric 3-dimensional space this exchange results in the inverse
square law for the electrostatic force and the inverse cube law for the magneto-
static force. Since the photon has no mass, the electric and magnetic potentials
have infinite range.

• Electromagnetic induction transfers energy to and from a magnetic coil via
a changing (electro)magnetic field. Much of the so-called near-field of radio
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antennas, where the magnetic and electric effects of the changing current in the
antenna wire and the charge effects of the wire’s capacitive charge may be (and
usually are) important contributors to the total EM field close to the source,
but both of which effects are dipole effects that decay with increasing distance
from the antenna much more quickly than do the influence of ’conventional’
electromagnetic waves that are ’far’ from the source. These far-field waves, for
which E is (in the limit of long distance) equal to cB, are composed of actual
photons. Actual and virtual photons are mixed near an antenna, with the
virtual photons responsible only for the ’extra’ magnetic-inductive and transient
electric-dipole effects, which cause any imbalance between E and cB. As distance
from the antenna grows, the near-field effects (as dipole fields) die out more
quickly, and only the ’radiative’ effects that are due to actual photons remain
as important effects. Although virtual effects extend to infinity, they drop off
in field strength as 1/r2 rather than the field of EM waves composed of actual
photons, which drop as 1/r. The electrical power in the fields, respectively,
decrease as 1/r4 and 1/r2.

• Quantum tunneling and evanescent waves may be considered a manifestation
of virtual particle exchanges. The range of forces carried by virtual particles is
limited by the uncertainty principle, which regards energy and time as conjugate
variables; thus, virtual particles of larger mass have more limited range.

• The strong nuclear force between quarks is the result of interaction of virtual
gluons. The residual of this force outside of quark triplets (neutron and proton)
holds neutrons and protons together in nuclei, and is due to virtual mesons such
as the π meson and ρ meson. The weak nuclear force is the result of exchange
by virtual W and Z bosons.

• The spontaneous emission of a photon due to the decay of an excited atom or
nucleus can be traced back to the quantization of the electromagnetic field.

• The Casimir effect, where the ground state of the quantized electromagnetic
field causes attraction between a pair of electrically neutral metal plates, and
the van der Waals force, which is partly due to a (relativistic) Casimir effect
between two atoms, are consequences of vacuum fluctuations.

• Vacuum polarization, which involves pair production or the decay of the vac-
uum, which is the spontaneous production of particle-antiparticle pairs (such as
electron-positron).

• The Lamb shift of energies of atomic levels.

The calculation of scattering amplitudes in theoretical particle physics requires the
use of some rather large and complicated integrals over a large number of variables.
These integrals do, however, have a regular structure, and may be represented as
Feynman diagrams. The appeal of the Feynman diagrams is strong, as it allows for a
simple visual presentation of what would otherwise be a rather arcane and abstract
formula. In particular, part of the appeal is that the outgoing legs of a Feynman
diagram can be associated with actual, on-shell particles. Thus, it is natural to
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associate the other lines in the diagram with particles as well, called the ’virtual
particles’. In mathematical terms, they correspond to the propagators appearing in
the diagram.

Figure 39.25: (a) Feynman diagram for one particle exchange scattering. The solid lines
correspond to real particles, e.g. electrons (of momentum p1 and so on), while the dotted
line corresponds to a virtual particle carrying momentum k, e.g. a virtual photon. (b) One-
loop diagram with fermion propagator. Virtual particles may be mesons or vector bosons,
as in the example above; they may also be fermions. However, in order to preserve quantum
numbers, most simple diagrams involving fermion exchange are prohibited. The image to
the right shows an allowed diagram, a one-loop diagram. The solid lines correspond to a
fermion propagator, the wavy lines to bosons.

In formal terms, a particle is considered to be an eigenstate of the particle number
operator â†â. In many cases, the particle number operator does not commute with
the Hamiltonian of the system, which implies that the particle number in an area of
space is not a well-defined quantity. Instead, like other quantum observables, it must
be represented by a probability distribution. Since these particles are not certain
to exist, they are called virtual particles or vacuum fluctuations of vacuum energy.
In a certain sense, they can be understood to be a manifestation of the time-energy
uncertainty principle in a vacuum.

An important example of the ’presence’ of virtual particles in a vacuum is the
Casimir effect. Here, the explanation of the effect requires that the total energy of all
of the virtual particles in a vacuum can be added together. Thus, although the virtual
particles themselves are not directly observable, they do leave an observable effect:
Their zero-point energy results in forces acting on suitably arranged metal plates or
dielectrics.

Virtual particles are often popularly described as coming in pairs, a particle and
antiparticle which can be of any kind. These pairs exist for an extremely short time,
and then mutually annihilate, or in some cases, the pair may be boosted apart using
external energy so that they avoid annihilation and become real particles. This may
occur in one of two ways. In an accelerating frame of reference, the virtual particles
may appear to be real to the accelerated observer; this is known as the Unruh effect.
In short, the vacuum of a stationary frame appears to the accelerated observer, to be
a warm gas of real particles in thermodynamic equilibrium.

39.3.1.2 Collective Lamb-shift

The Lamb shift results from the interaction of a (bound) valence electron with fluc-
tuations of the electromagnetic vacuum. The fluctuations smear out the electronic
orbit inside the Coulombian potential, thus leading to a shift. In the same time, if the
electron is on an excited orbit, they incite radiative decay, thus leading to spontaneous
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emission. The interaction takes place as an emission-reabsorption cycle of a virtual
photon associated to a transverse radiation field 16.

The Lamb shift can be manipulated by tailoring the vacuum’s mode structure,
e.g. by a cavity or by the presence of antennas such as other atoms. The impact of a
cavity on the Lamb shift and the spontaneous emission rate has been measured [596].

Figure 39.26: Scheme of collective Lamb shift.

Can we measure the collective Lamb-shift (impact of virtual photon processes)?
Perhaps mixing the input and the scattered light using heterodyne techniques. Mea-
sure the collective Lamb shift in an ordered lattice, as Desy scientists do? A problem
would be inhomogeneous light-shifts induced by the trapping potential and dipole-
dipole interactions of the atoms excited by the lattice beams. Our calculations and
simulations show that the impact of the exponential kernel decreases dramatically for
large σ. How can [1112] have seen an effect in the X-ray regime? What distinguishes
the collective Lamb-shift (impact of virtual photon processes) from shifts induced by
atomic dipole interactions responsible for ground state collisions. After all all these
are also mediated by virtual photons. Obviously, the interatomic interactions require
an additional term in the Hamiltonian.

Can we derive a Lorentz-Lorenz formula from our theory analogously to [1119]?
How to distinguish Lorentz-Lorenz shifts from collective dipole interactions? How are
they related to collective line shifts [922, 470]?

According to [470] the total collective Lamb shift is [1286, 1285],

∆ωlmb =

(
4

3
∓ 1

)
ρπ

ℏ
℘2 , (39.144)

where ℘ ≡ d/√4πε0 and d =
√
3πε0ℏΓ/k3. The minus sign holds for a homogeneous

slab, the plus sign for a homogeneous sphere.

∆ωlmb =

(
4

3
∓ 1

)
ρπ

4πε0ℏ
d2 =

(
4

3
∓ 1

)
ρ

4

3πΓ

k3
=
πρΓ

4k3
. (39.145)

The 4
3 term accounts for the Lorentz-Lorenz shift

∆ωLL =
ρπΓ

k3
. (39.146)

Fig. 39.27 shows the collective Lamb shift calculated numerically and approxi-
mated analytically.

16What is the relationship between the Lamb shift and the Bloch-Siegert shift for single atoms
without RWA and the collective Lamb-shift and the Lorentz-Lorenz shift with many atoms?
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Figure 39.27: Collective Lamb shift.

39.3.1.3 Lorentz-Lorenz shift

The Lorentz-Lorenz shift follows from the Clausius-Mossotti formula[see Eqs. (14.28)
and (16.29)],

n2rfr − 1 =

ραpol

ε0

1− ραpol

3ε0

. (39.147)

The formula results from the fact that the polarization of a medium is induced by
a local electric field resulting from a superposition of an external field and the field
produced by the polarization of the neighboring atoms. In quantum optics near atomic
resonances the polarisability can be approximated by [see (18.122)],

αpol =
e2

me

1

ω2
0 − ω2 − ıωγω

=
6πε0
k30

ω0γω0

ω2
0 − ω2 − ıωγω

≃ 6πε0
k30

Γ

2∆ + ıΓ
, (39.148)

with

γω =
e2ω2

6πε0mec3
=
ω2

ω2
0

Γ . (39.149)

Inserting this into the susceptibility,

χε =
3πρ

k30

1

∆/Γ− πρ/k30 + ı/2
≡ 3πρ

k30

1

(∆−∆ωLL)/Γ + ı/2
, (39.150)

defining the Lorentz-Lorenz shift

∆ωLL = −πρ
k30

Γ . (39.151)

For typical densities ρ ≃ 1012 cm-3, λ = 780 nm and Γ = (2π) 6MHz, we expect,

∆ωLL = (2π) 9 kHz . (39.152)

In scalar approximation

∆ωlmb = ∓
ρπΓ

2k3
≈ NΓ

R3k3
=
NΓ

σ3
, (39.153)

and there is no Lorentz-Lorenz contribution.
The Lorentz-Lorenz shift is due to static dipole-dipole interaction, not to virtual

photon exchange.
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39.3.1.4 Vectorial light

The procedure can be generalized to the vectorial case [1215, 1214, 859], where we
get a similar steady-state solution as in (39.37),

β⃗j = (Mjm)−1 ϵ̂ ı
2Ω0(rm) , (39.154)

only that the dipole moment amplitudes and the incident light field are now considered
as vectors. The expression for the matrix Mjm is the same as in (39.36). However,
the vectorial kernel must be calculated in a different way. Using the abbreviations,

rjm = rj−rm , rjm = |rj−rm|+δjm , cjm =
ı

k0rjm
− 1

(k0rjm)2
, (39.155)

the new vectorial kernel can be written,

γ
(3)
jm =

3γjm
2

(1 + cjm)r2jmδmn − (1 + 3cjm)rjmr⊺jm
r2jm

. (39.156)

The steady-state scattered light field and the total field are now,

E⃗sct(r) = − ıΓ
2

N∑
j=1

3γoj(r)

2

(1 + coj(r))k
2
0|r− rj |2β⃗j − (1 + 3coj(r))[(r− rj) · β⃗j ](r− rj)

|r− rj |2
.

(39.157)

A movie can be assisted at (watch movie).

39.3.2 Propagation of light within an absorber

The passage of coherent light through an absorber follows the Lambert-Beer law,

I = I0e
−αz satisfying I(mz) = I(z)m . (39.158)

The diffuse scattering follows a different law. Imagine that the photons homo-
geneously fill a given volume V = Az. Per unit time, a given amount of energy
E is pumped to the volume. The thicker the volume, the lower the energy density
u = E/Az and fewer photons reach the end of the absorber. This is the Ohm’s law.
The diffusively transmitted energy is,

I = I0
a

z
satisfying I(mz) = I(z)/m . (39.159)

39.3.2.1 Coherent backscattering

Shining coherent light on a homogeneous cloud, we expect no coherent scattering
(exception made of multiple-atom scattering in backward direction, CBS and of fluc-
tuations like speckle patterns). Like radiation trapping, coherent backscattering (CBS)
is a manifestation of interference in multiple scattering. Just like photon echoes it
is not due to interatomic correlations. While in radiation trapping this leads to an
energy storage inside the atomic cloud connected to destructive interference of the ra-
diation emitted to the cloud’s outside, when the coherent beam is reflected at a diffuse

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Cooperativity_CDMScalar_Movie.mp4
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scattered, one observes speckle patterns. This holds as well for laser light reflection as
for atomic wave reflections at a rough surface. See also (watch talk).

The coherent backscattering is an effect of constructive interference between two
light scattering paths having the exact time-reversed single scattering sequence,

I =

∣∣∣∣∣∣
∑

j

E⃗jeıφj

∣∣∣∣∣∣

2

=
∑

j

∣∣∣E⃗j
∣∣∣
2

+
∑

j ̸=k
E⃗j E⃗∗keı(φj−φk) . (39.160)

Only the second term makes speckles. However, the atomic motion smoothes out
the speckle pattern in all directions. Only in the presence of correlations in the
atomic positions they do not. E.g. in crystals or in the backscattering directions.
Therefore, the constructive interference depends strongly on the backscattering angle
ϑ. Fast atomic motion internal excitations can dynamically break the time-reversal
symmetry of the scattering path, esp. when the laser is close to resonance and the
phase delay per scattering process is long. Coherent backscattering is a weak form of
Anderson localization (also strong localization) of light.

39.3.3 Localization of light

For a long time, people tried to observe strong localization with light. Many prob-
lems have been identified, some have been circumvented: Path irreversibilities due
to internal structure, accumulated frequency shifts upon multiple photonic recoil,
retardation combined to Doppler shifts, inelastic scattering, collisions. Recent simu-
lations, however, suggest that strong localization would be impossible with vectorial
light [1215, 1214, 859].

The higher the scattering order (number of scattering atoms), the deeper you can
probe the cloud, involve higher-order correlation functions.

Strong localization is the inhibition of light propagation due to interference be-
tween multiple scattering paths. In fact the concept of a path for photons looses its
sense, since a scattered photon is reabsorbed before it has time to leave the atom:
We are approaching a regime where a dipolar description is more suited. The strong
localization has been interpreted as a metal-insulator transition. Thinking of CBS
with matter waves one is reminded the Mott insulating phase.

39.3.3.1 Anderson localization

In a disordered gas, interference between incident and reflected beams is averaged
out. In the absence of interference phenomena the total transmission of a disordered
medium is inversely proportional to the sample thickness (Ohm’s law). In contrast,
long-range spatial order can tolerate interferences, which may have dramatic influence
on the propagation of light, such as a vanishing diffusion constant: in this situation,
the medium behaves like an insulator (strong localization of light or Anderson lo-
calization in analogy to phase transitions to insulating states due to interference of
electron wavefunctions) and its total transmission decreases exponentially with the
samples thickness. Localization means that the transmission coefficient T of a plane
wave decays exponentially with the system length L. The decay length is measured

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/MirrorCBS
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by a so-called localization length λ(k) = −L/⟨lnT ⟩ (λ(k)−1 is also called the Lya-
punov exponent). For T → 0, 1, the localization length tends to λ → 0,∞. Multiple
scattering experiments on strong localization of microwaves and light have been per-
formed [1372]. A more accessible experimental situation is the so-called weak weak
localization of light regime which manifests as coherent backscattering [768].

In dilute gases, single photon scattering will predominate. If L is the size of the
sample and l = 1/nσ the mean free path, this regime where the Lambert-Beer law,
I ∼ e−αz, holds is delimited by 1 < kL < kl. At higher densities, multiple scattering
leads to random walk of photons inside the sample resulting in radiation trapping. In
this regimedelimited by 1 < kl < kL, Ohm’s law, I ∼ 1/z, rules diffusive propagation
of light. Interference effects may come into play when the sample is so dense that the
mean free path for a photon is no larger than its wavelength. This so-called Ioffe-Regel
criterion,

kl < 1 , (39.161)

describes the regime of strong localization in 3D disordered samples. In this regime,
ray optics does not apply. The propagation of radiation must rather be described by
field amplitudes, which can interfere. Closed paths lead to standing waves, i.e. con-
structive interference. This hinders light propagation out of small regions: The light
gets localized and the law is again exponential, I ∼ e−α̃z. In other words localization
arises from interference corrections to optical transport.

Figure 39.28: Illustration of the regime of single scattering, random walks, strong localization
in (a) disordered gases and (b) photonic band gaps.

Now atoms have the important advantage that, due to their internal structure, the
optical density can be tuned over wide ranges. However, for typical resonant cross
sections σ the density must still be larger than n > 1014 cm-3, which is a lot.

Connection to superradiance [680], where directional bundling of radiation favors
stimulated processes

Localization corresponds to a minimum in the density of states. E.g. PBGs arise
from suppression of many states by destructive interference.

39.3.4 Exercises

39.3.4.1 Ex: The green flash

Discuss whether the ’green flash’ at sunset could be due to superradiant extinction.
It can last seconds because refraction sweeps the ray through the spectrum (see the
movie Le rayon vert by Éric Rohmer).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_LocalizationShift01.pdf
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Solution:

39.3.4.2 Ex: Faraday effect with vectorial kernel in the coupled dipoles
model

Try to simulate the pump laser phase shift and lensing by a small dense cloud by the
coupled dipoles model for red and blue detuning. Discuss the influence of rescattering.

Solution:

39.4 Scattering from periodic structures and pho-
tonic bands

Long-range spatial ordering can have a dramatic influence on the propagation of light
and the cooperativity of scattering, as we have already pointed out in the introduction
of the structure factor in Sec. 39.1.1. This is true for the scattering of electronic waves
in crystals. But atomic gases can also be arranged in periodic luminous potentials
generated by dipolar forces (introduced in Sec. 38.2.2) exerted by counterpropagating
laser beams. Such potentials, called optical lattices, can be realized with various
geometries in 1, 2 or 3 dimensions. See also (watch talk).

Periodic structures are usually probed by Bragg scattering. This procedure can be
applied to atoms ordered in optical lattices [146, 1361, 1219, 1221]: A test beam with
wavevector kbrg and intensity Ibrg is irradiated into the atomic cloud, and the power
Ps of the first-order reflected beam by Bragg is detected under a solid angle Ωs. Bragg
diffraction is an interference effect of radiation patterns emitted by Rayleigh scattering
from periodically aligned point-like antennas, the interference being constructive in
only specified directions.

For optically dilute lattices, where multiple reflections can be neglected, the imag-
inary part of the atomic response is sufficient to describe Bragg reflection. For op-
tically dense lattices, multiple reflections between consecutive atomic layers lead to
interference phenomena between reflected and transmitted light fields and cause the
emergence of frequency bands, inside which the propagation of light waves through
the cloud is prohibited. These bands are known as forbidden photonic bands.

Photonic bands in optical lattices are interesting for several reasons:

1. They may facilitate the study of the phenomenon of Anderson localization. In
fact, Anderson location of light in atomic gases requires very high densities or
very large optical cross sections. Now, it is expected that, if the disorder is
realized within periodic structures near the Bragg condition, the high density
requirement is dramatically relaxed.

2. They modify the local density of states in a way to suppress spontaneous emis-
sion.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_LocalizationShift02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_LocalizationShift02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BraggScattering
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3. In optical lattices, unlike other systems, the scattering is very weak except when
the light is tuned close to atomic resonances. Consequently, the expected for-
bidden bands are very narrow. This bears the advantage that we can adjust
the optical density and tune the photon energy and the Bragg angle (i.e. the
quasi-momentum) independently, which facilitates the mapping of the disper-
sion relation.

4. Crystals are always hampered by defects in the periodicity [733]. In latest-
generation photonic crystals, the typical distance over which coherent light turns
diffuse is limited to less than 20 µm. This limitation plays no role in optical
lattices, where the delocalized photons rigorously guarantee perfect long-range
order, even though the Debye-Waller factor may introduce local disorder.

Spectra of photonic bands in atomic clouds were detected experimentally [1158]
in one-dimensional structures. Most of the above mentioned effects require omnidi-
rectional photonic bands, but this is technically very difficult, mainly because of the
narrow linewidth of the atomic transitions. We will develop this point in the course
of this section. We also mention the prediction of forbidden photon bands in Bose
condensates [852].

A presentation on this subject is available here (watch talk).

39.4.1 Bragg scattering

39.4.1.1 The reciprocal lattice

Let us consider a periodic direct lattice in real three-dimensional space whose elemen-
tary cells are located at positions,

Rn = n1a1 + n2a2 + n3a3 , (39.162)

where n = (n1, n2, n3) with nj ∈ Z and aj are linearly independent vectors describing
the distance of two adjacent elementary cells [308]. Functions extended over the
lattice, e.g. density distributions, are then supposed to be periodic,

n(r) = n(r+Rn) , (39.163)

such that they can be expanded in Fourier series similarly as we did for the introduc-
tion of the Bloch waves in Sec. 26.1,

n(r) = 1
V

∑

m

ρme
ıGm·r , (39.164)

where m = (m1,m2,m3) with mj ∈ Z. The Fourier coefficients are 17,

ρm =

∫ a1

0

∫ a2

0

∫ a3

0

n(r)e−2πı(m1x/a1+m2y/a2+m3z/a3)dxdydz =

∫ 1

0

n(r̃)e2πım·̃rd3r̃ .

(39.165)

17In crystallography ρm is called structure factor, but it is not to be confused with the structure
factor defined in (39.5).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/PhotonicBands
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The condition (39.163) then yields,

n(r) = 1
V

∑

m

ρme
ıGm·r = 1

V

∑

m

ρme
ıGm·reıGm·Rn = n(r+Rn) , (39.166)

from which we conclude that the vectors Gn of the reciprocal lattice must satisfy,

1
2πGm ·Rn ∈ Z . (39.167)

Example 232 (The reciprocal lattice in crystallography): In three dimen-
sions the reciprocal lattice can be constructed by,

Gm = m1b1 +m2b2 +m3b3 (39.168)

with b1 ≡ a2 × a3

V
, b2 ≡ a3 × a

V
, b3 ≡ a1 × a2

V

and V ≡ a1 · (a2 × a3) .

Knowing the density n1(r) within a single cell, which is often the case when the
overlap between the density distributions of adjacent cells is negligible, we can write
the global density distribution as,

n(r) = n1(r) ⋆
∑

m

δ(3)(r−Rm) . (39.169)

Example 233 (Elementary cell with Gaussian distribution): With the

ansatz n1(r) = n0e
−r2/2r̄2 , such that

∫
n1(r)d

3r = n0(2π)
3/2r̄3 = N1,

ρ(∆k) =
∑
m

eım∆k·R
∫
V

n1(r)e
ı∆k·rd3r (39.170)

=
1− eıNs∆kR

1− eı∆kR × n0

∫
V

e−x
2/2r̄2e−y

2/2r̄2e−z
2/2r̄2eı∆k·rd3r

≈ Nsδ(∆k − 2π/R)n0(2π)
3/2r̄3e−6∆k2r̄2 = Nδ(∆k − 2π/R)e−6∆k2xr̄

2

.

39.4.1.2 Impact of disorder in one-dimensional lattices

A wave be incident on a lattice in the direction k0 and scattered into the direction
ks ≡ k0 +∆k. The structure coefficient ρm describes the amplitude of radiation field
scattered by the lattice,

ρm =

∫

V

ρ(r)eı∆k·rd3r . (39.171)

Let the density distribution be,

n(r) =
∑

j

ρj(r) ⋆ δ
(3)(r− rj) = n1(r) ⋆

∑

j

δ(r− jêz λdip

2 ) , (39.172)
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that is, for perfect periodicity, introducing the density distribution of a unit cell and
a 1D lattice.

The Debye-Waller factor describes the diffusion of the density over the sites of the
lattice due to the thermal motion,

ρm =

∫

V

n1(r)e
ı∆k·rd3r

∑

j

eı(jêzλdip/2+u)∆k (39.173)

= fi
∑

j

eı(jêzλdip/2+u)∆k = ρmeıu∆k ,

with
eıu∆k ≈ e−|G|2u2/6 . (39.174)

Example 234 (Optical lattice): The exponential distribution e−6∆k2xr̄
2

is
called Debye-Waller factor and describes the smearing out of the population
over the lattice due to the thermal motion of the atoms. The δ-function sets
the wavevector of emitted light. That is, the power of light is only emitted in
particular directions given by the Bragg condition. Here, the solid angle ∆Ωs
does not depend on the thermal distribution (as long as the atoms are within
the Lamb-Dicke regime), but on the lattice size, which determines the goodness
of the approximation of the Airy function (the sum in the above equation) by
a Dirac δ-function. The width of the Airy function for a lattice of size w0 is
approximately ∆k = 2

√
3/w0. With this the solid angle is,

∆Ωs =
12

k2w2
0

. (39.175)

We can also estimate the solid angle from the diameter d of the Gaussian beam
at a distance x away from a scattering medium of size w0,

d = w0

√
1 +

(
λx

πw2
0

)2

(39.176)

∆Ωs =
πd2

x2
=

λ2

πw2
0

=
4π

k2w2
0

.

The power scattered into this solid angle is,

Ps = |As|2F 2∆Ωs = |As|2e−2WN2∆Ωs . (39.177)

It depends quadratically on the number of atoms. Strictly speaking, the deriva-

tion only applies to perfectly ordered lattices, i.e. all the lattice sites are equally

occupied. Defects lead to diffuse scattering, i.e. a background of isotropically

distributed power at the expense of Bragg scattering. The sharpness of the

Bragg radiation distribution remains intact.

We parametrize the density in an optical 1D lattice as follows:

nl(r) = n0e
(−x2−y2)/2σ2

re−z
2/2σ2

z (39.178)

na(r) =

Ns∑

m=1

δ(r−mdêz) ⋆ nl(r) =
Ns∑

m=1

nl(r−mdêz) .
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We will show in Exc. 39.4.4.1, that the structure factor is then,

Sk0
(k) =

n0
N

1− eıNsdqz

e−ıdqz − 1
e−q

2
xσ

2
r/2e−q

2
yσ

2
r/2e−q

2
zσ

2
z/2 . (39.179)

In Exc. 39.4.4.2 we derive the structure factor in spherical coordinates.

Some comments are needed:

1. The structure factor treatment assumes low optical density, which is not neces-
sarily guaranteed when the laser is tuned close to a resonance [1219].

2. As the structure factor is independent of the laser detuning, it will not reveal
any spectral structure, such as a band-gap or dip due to diffuse scattering. Also,
absorption is not incorporated into the model.

39.4.1.3 The structure factor and the Bragg condition

The reciprocal space, obtained by Fourier transformation of the periodic density dis-
tribution, also adopts the shape of a periodic lattice. The Bragg condition requires
that the difference between the incident and emitted wavevectors, ∆k ≡ ks − ki,
matches a vector of the reciprocal lattice, rj = jG. The Bragg condition is thus
automatically incorporated into the structure factor (39.216).

Figure 39.29: Several Bragg lattices.

With the lattice constant d = 1
2λdip the interference is constructive when the

difference of the paths of two beams reflected by different layers is a multiple of the
wavelength,

1
2λdip cosβi +

1
2λdip cosβs = λ . (39.180)

This is illustrated in Fig. 39.29(a). If the transverse distribution can be considered
as homogeneous, as shown in Fig. 39.29(b), we have as second condition,

βi = −βs . (39.181)

That is, the angles of incidence and reflection must be the same, as if we were dealing
with a dielectric mirror. In contrast, if the transverse extent of the atomic layers gets
smaller (until converging to the limit of a one-dimensional chain of point-scatterers,
G ≡ 2kdipêz), we return to the condition (39.180). In intermediate situations, illus-
trated in Fig. 39.29(c), and for λdip cosβi ̸= λ the reflection angle does not follow any
of the relations (39.180) and (39.181).
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39.4.1.4 Incoherent background

A finite size or defects in the periodic ordering of the atoms may lead to an isotropic
background of Rayleigh-scattered light,

dPs
dΩs

= |As|2
[
e−2W |F |2 +N1N(1− e−2W )

]
. (39.182)

The amount of photons scattered into the same solid angle as the one of Bragg
scattering is typically for 1D lattices,

(1− e−2W )N1N

e−2W |F |2 = (e2W − 1)
N1

N
≈ 0.002 . (39.183)

However, if we compare the total amount of coherently Bragg-scattered light, we
obtain,

(1− e−2W )N1N

e−2W |F |2
4π

dΩs
≈ 2500 . (39.184)

39.4.2 Transfer matrices calculation for 1D-lattices

For one-dimensional optical lattices, that is, when the atoms are trapped in a potential
dipole generated by a stationary light wave, we may consider applying the transfer
matrix formalism developed in Secs. 18.1.7 and 24.3. The premisses of this model are
the homogeneity and the infinite extent of the cloud in a direction transverse to the
optical axis.

Figure 39.30: Scheme for transfer matrices calculations on 1D-lattices.

With the notation introduced in Fig. 39.30 we find the equations relating the
incident electric fields with the transmitted and reflected ones. If the T -matrix and
the S-matrix are defined by [361],

(
E+z
E−0

)
= S

(
E+0
E−z

)
and

(
E+z
E−z

)
= T

(
E+0
E−0

)
, (39.185)
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they are connected by,

S =

(
S11 S12

S21 S22

)
=

(
T11 − T12T21

T22

T12

T22

−T21

T22

1
T22

)
(39.186)

and T =

(
T11 T12

T21 T22

)
=

(
S11 − S12S21

S22

S12

S22

−S21

S22

1
S22

)
.

From this follows,

S =

(
t r

r t

)
then T =

(
t− r2

t
r
t

− rt 1
t

)
, (39.187)

satisfying by construction detS = t2 − r2 ̸= 1 and det T = 1.
We calculate the reflection coefficient β of a classical polarizable sample from the

microscopic polarizability (18.122) and the optical density (depth) of a thin layer,
nδzσ0, where σ0 is the resonant optical cross section,

β = n
kbrgδz

2

αpol
ε0

=
nδz

2

6π

k2brg

−1
ı+ 2∆brg/Γ

=
nδzσ0

2

−1
ı+ 2∆brg/Γ

. (39.188)

We remember that the polarizability is linked to the macroscopic susceptibility χe =
nαpol/ε0

18. With

r =
ıβ

1− ıβ and t =
1

1− ıβ , (39.189)

satisfying by construction |t|2 + |r|2 = 1 = t− r and rt∗ + r∗t = 0, we get

Sβ =
1

1− ıβ

(
1 ıβ

ıβ 1

)
and Tβ =

(
1 + ıβ ıβ

−ıβ 1− ıβ

)
. (39.190)

We note that the employed model is classical, since we describe the gas by a
sequence of layers, each characterized by a refractive index. Applying the transfer
matrix model, we calculate how the incident and reflected light fields transform from
one layer to another. The intrinsically 1D model allows to calculate the reflection,
transmission, and absorption by the atomic lattice as a function of the incident laser
frequency.

We still need to multiply with the transfer matrix describing the propagation of
the incident beam through the layer,

Td =
(
eık·d 0

0 e−ık·d

)
, (39.191)

18Note the analogy to the calculation (40.113) made for the reflection coefficient of an atom in a
cavity in Sec. 40.2.2,

β =
k

πw2

αpol

ε0
=

6

k2w2

−1

2∆/Γ + ı
=

σ0

πw2

−1

2∆/Γ + ı
.
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such that the transfer matrix for passing the beam through an atomic layer is,

T = TβTd . (39.192)

For Ns layers we must obviously concatenate the matrices MNs . The reflection
coefficient is now simply,

rNs =
(T Ns)12
(T Ns)22

, (39.193)

and can be evaluated numerically or analytically [361]. If the incident beam hits the
cloud under an angle, k · d = kd cos θ = kzd, and furthermore, as shown in [363]
Eq. (A10), the theory must be generalized by replacing,

β → β

2
(cos−1 θ + cos θ) . (39.194)

However, for θ < 60◦ the correction is small.

39.4.2.1 Limit of optically dilute clouds

For optically dilute clouds, r ≪ 1, we expect standard Bragg scattering as described
by equation (39.190),

T = TβTd ≃
(

eıkzd ıβe−ıkzd

−ıβeıkzd e−ıkzd

)
, (39.195)

with k ·d = kd cos θ = kzd. Near the Bragg angle we have cos θ ≃ cos θbrg = λsp/λdip
and near resonance we have 2π/k = λ ≃ λsp, so that, with d = λdip/2, we obtain
kzd ≃ π and,

T Ns ≃
(

eıπ ıβe−ıπ

−ıβeıπ e−ıπ

)Ns

=

(
−1 −ıβ
ıβ −1

)Ns

= (−1)Ns

(
1 Nsıβ

−Nsıβ 1

)
,

(39.196)
which we will verify in Exc. 39.4.4.3. The total reflectivity being rNs

≃ Nsıβ, we get
the reflection,

|rNs
|2 ≃ N2

s β
2
spΓ

2
sp

4∆2 + Γ2
sp

. (39.197)

Thus, the profile of the reflection curve is Lorentzian.

Example 235 (Estimation of the reflectivity in the dilute cloud limit): In
resonance we estimate for typical experimental values Ns = 1000, n = 1017 cm3,
λdip = 797 nm, and Λbrg = 422 nm,

|rNs | = Ns
ndσsp

2
= Nsnλdip

3λ2
sp

8π
≈ 1.7 .

The high reflectivity is not physical, which shows that the assumption of op-

tically diluted clouds is not necessarily satisfied in experimentally achievable

parameter regimes. On the contrary we can expect to reach regimes, where the

clouds are optically so dense, that photonic bands can be expected. That is,

if the goal is to detect a band gap, it helps to have 1. many layers filled with

atoms, 2. high atomic densities per layer.
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39.4.2.2 Limit of optically dense clouds

In order to obtain analytical expressions in the regime of dense clouds, we write the
transfer matrix for a single layer, using the expressions (39.190) and (39.191), as
follows [363],

T = TβTd =
(
(1 + ıβ)eık·d ıβe−ık·d

−ıβeık·d (1− ıβ)e−ık·d

)
. (39.198)

Given that det T = 1, the matrix represents a unitary transformation and the eigen-
values can be cast into the form e±ıϕ. Letting,

cosΘ ≡ 1
2Tr T = cos kzd− β sin kzd , (39.199)

we can write the matrix,

T = I cosΘ + ıA sinΘ = eıΘA (39.200)

with

A =
1

sinΘ

(
β cos kzd+ sin kzd βe−ıkzd

−βeıkzd −β cos kzd− sin kzd

)
(39.201)

The eigenvectors of T , and therefore of each power of T , are Bloch states of the periodic
lattice. We verify in Exc. 39.4.4.4, that the following relationships are satisfied,

Tr A = 0 , A2 = 1 , detA = 1 . (39.202)

The eigenvalues of A sinΘ are λA ± 1. The eigenvalues of the transfer matrix are,

λ = cos kzd− β sin kzd± ı
√
1− (cos kzd− β sin kzd)2 = cosΘ± ı sinΘ (39.203)

= e±ı arccos(cos kzd−β sin kzd) = e±ıθ .

This decomposition allows us to calculate the transfer matrix for a succession of µ
layers. We get,

T µ = eıµθA = I cos(µθ) + ıA sin(µθ) (39.204)

= I cos [µ arccos(cos kzd− ζ sin kzd)] + iA sin [µ arccos(cos kzd− ζ sin kzd)] ,
which gives us the reflection coefficient,

rµ =
(T µ)12
(T µ)22

=
ı sin(µθ)T12

cos(µθ) + ı sin(µθ)T22
(39.205)

=
−ıβeikzd

sin θ cot(µθ)− ı sin kzd− ıβ cos kzd
.

This is the final result. Near the Bragg angle, cos θ ≃ 1, we have,

rNs
=

ıβ

sin θ cot(Nsθ)− ıβ
≃ ıNsζ

1− ıNsβ
(39.206)

|rNs |2 ≃
N2
s β

2
spΓ

2
sp

4∆2 + (1 + nβ2
sp)Γ

2
sp

.

The intensity reflection profile, therefore, is a Lorentzian also in the limit of thick
clouds. The additional condition for the occurrence of prohibited photonic bands is
a large number of atomic layers, Ns ≫ 1. We note that the model is an extension of
the Kronig-Penney model introduced in Sec. 26.3.
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39.4.2.3 Application of transfer matrices to real 1D optical lattices

The analytical treatment shown in the previous sections does not take account of
possible lattice imperfections, since the atomic layers are assumed to be identical,
infinitely thin, immobile and located at fixed periodic distances. Realistic optical
lattices are different for several reasons:

1. Atomic clouds are not perfectly localized in ultra-thin layers, but distributed
in a Gaussian way as a function of the cloud’s temperature. The Debye-Waller
factor (39.173) describes the impact of this distribution on the Bragg model.

2. The atoms are in thermal motion causing an inhomogeneous Doppler shift and
are affected by the photonic recoil received in each scattering process. This
causes a broadening of the reflection profiles and decreases the interference ca-
pability.

3. The number of atoms per layer may vary. Also, the global extent of the cloud is
not infinite, that is, we have Ns layers filled with atoms with a gradual decrease
at the confines of the cloud.

4. The atoms trapped in the optical potential are subjected to a dynamic Stark
shift 19 causing an inhomogeneous broadening of the atomic transition as well.

5. The periodicity of the lattice is slightly modified because the refractive index
experienced by the laser beams creating the dipole potential locally depends on
the atomic density concentrated in the lattice’s anti-nodes. The consequence is
a local decrease of the lattice constant d 20.

All of the aforementioned imperfections may be included in a numerical treatment
of the transfer matrices. For this we subdivide the atomic cloud into sufficiently thin
sublayers, as shown in Fig. 39.30. Each sublayer, being characterized by its own 2D
atomic density and its own shift from resonance, is described by an individual transfer
matrix. The matrices are concatenated, and the reflection profile is computed, as
shown in the expression (39.193) [1220]. Fig. 39.31 shows a numerical calculation
of a photonic band in a rubidium optical lattice. The experimental variables are
the incidence angle θ of the probe laser and its tuning ∆ from a transition λsp. ∆
determines σ and β via the polarizability (39.186) 21 and thus governs the propagation
of light inside the layers. θ determines kzd and thus probes the periodicity between
the layers.

Depending on the atomic density we can identify different behaviors 22:

19Or ’light-shift’, see Exc. 34.5.4.13.
20More correctly: If between λdip and λD1 a photonic band were created for the laser beams

that produce the optical lattice [363, 1360], these beams would be reflected without being able to
penetrate the lattice. In fact, the periodicity changes in such a way, that the frequency of the beams
is at the edge of the band gap. Deutsch et al. [363] showed that a self-consistent solution gives the
modified lattice constant,

d′ =
λdip

2

[
1 +

ϕdip

π
(1− sign∆dip)

]
,

where ϕdip = arctan
(
−∆dip

Γ
nd σD1(∆dip)

)
.

21∆ also enters kzd, but so weakly, that we can despise this dependence.
22The densities are assumed to be sufficiently low to eliminate collective effects such as, for example,

superradiance.
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1. At the limit of thin lattices, we do not expect multiple scattering. The absorptive
(imaginary) part of polarizability dominates, β ≈ Im β. Thus, the reflection
coefficient is almost real, reıϕ ≈ |r|, the phase shifts are negligible, the profile
of the reflection spectrum is symmetric. In this scheme, the interference of the
radiation patterns of individual atoms is destructive in all directions, except
under the Bragg angle. There are losses caused by scattering in non-paraxial
modes. They are also due to elastic Rayleigh scattering but, because of the
finite Debye-Waller factor, the radiation becomes diffuse and incoherent.

2. At the limit of thick lattices, we have multiple scattering. The (real) dispersive
part of the polarizability is β ≈ Re β. Thus, absorption is suppressed, we
observe large phase shifts and the reflection spectrum profile is asymmetric.
Multiple beam interference gives rise to global scattering.

Physically, the set parameters consistent of the quasi-momentum and the energy
of the Bloch wave, (Θ,∆), is more relevant because it allows analyzing the dispersion
relation 23. We observe the existence of energies ∆, where the real part of the quasi-
momentum vanishes (modulo π). The 3D representation in Fig. 39.31(e) illustrates
the occurrence of an avoided crossing due to the band gap at the edge of the Brillouin
zone.

Figure 39.31: (code) Numerical calculation of a photonic band in a 1D optical lattice

(wavelength Λdip = 797 nm) far-tuned from the rubidium D1 transition (λD1 = 795 nm).

The probe laser exciting the Bragg resonance is tuned close to the rubidium resonance at

λsp = 422 nm. We assume atomic densities of n = 4 · 1011 cm-3 and Ns = 40000 atomic

layers. (a) Real and imaginary parts of the reflection index (∝ polarizability) as a function

of detuning ∆. (b,c) Real and imaginary parts of the quasi-momentum (x-axis) as a function

of the detuning ∆. (d,e) 2D and 3D representation of the reflection coefficient.

23We note, that Θ via the relation (39.199) of the angle of incidence θ, but only weakly of the
energy ∆.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bandgap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bandgap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bandgap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bandgap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bandgap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bandgap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_Bandgap.m
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In fact, Bragg resonances can be understood in reciprocal space as reflections at
the edges of the Brillouin zone. Through the angle of incidence of the injected light
beam, we adjust the quasi-momentum. The frequency of the light beam determines
the energy. The forbidden photonic bands are caused by the formation of an energetic
gap in the dispersion relation induced by the interaction of the atoms with the optical
lattice.

39.4.2.4 Intensity distribution and LDOS within a lattice

The density matrix formalism outlined in Sec. 39.4.2 not only allows to calculate the
overall reflectivity of the 1D optical lattice, but also the local intensity I ∝ |E+a +E−a |2
at a point z = a inside the lattice [1220].

To calculate this intensity we assume that the network is located between the
points z = 0 and z = b of the optical axis with 0 < a < b. The transfer through the
entire structure is given by, (

E+b
E−b

)
= T

(
E+0
E−0

)
. (39.207)

We use the boundary condition that, E+0 being preset, there is no reflection of light
behind the last layer, i.e., E−b = 0. We obtain,

E−0 = −T21T22
E+0 and E+b =

(
T11 −

T12T21
T22

)
E+0 . (39.208)

Now we separate the entire structure into two parts T = T (b)T (a), such that the field
between the two parts is,

(
E+1
E−1

)
= T (a)

(
1

−T21/T22

)
E+0 . (39.209)

The sum gives,

E+1 + E−1 =

(
T (a)
11 + T (a)

21 −
T21
T22

(T (a)
12 + T (a)

22 )

)
E+0 . (39.210)

The local density of states (LDOS) in a photonic band can be evaluated from
[1324, 507],

N(ω) = 2ω
∑

k

δ(ω2 − ω2
k) . (39.211)

William found out:

keff =
dϕ

dz
, (39.212)

with ϕ = arctan(Im E/Re E). The E-field between two layers can be calculated using
transfer matrices. The density of the states is given as the derivative of the inverse
function of the dispersion relation:

N(ω) =
dkeff (ω)

dω
. (39.213)
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Figure 39.32: (code) The intensity decreases exponentially over a infinite lattice. For a finite

lattice (here Ns = 3000), the intensity approaches a constant value at the end of the lattice.

The graph shows in blue the intensity along the lattice, in red the exponential decay due

to absorption in a homogeneous cloud (Lambert-Beer law), in green the hyperbolic decay

following Ohm’s law and in cyan the transmission assuming a lattice of N layers.

39.4.2.5 Suppression of spontaneous emission in forbidden photonic bands

The decrease in the LDOS is equivalent to the suppression of spontaneous emission 24,
that is, an excited atom located inside the lattice will not be able to emit its photon.
This is the condition for a forbidden photonic band to be omnidimensional. Omni-
directional bands need three-dimensional lattices. Nevertheless, the reduction of the
spontaneous emission rate has already been observed in [596, 1387], which can be
interpreted as 1D photonic crystals.

39.4.2.6 Impurities

The formula (39.210) allows the calculation of the impact of localized defects in nu-
merical simulations. For example, it is instructive to look at the intensity profile along
the structure in the presence of a localized lattice defect. In Fig. 39.33(c) we observe
an intensity peak located at the 100-th atomic layer, exactly where the defect was
introduced. This peak corresponds to a localized evanescent wave. Photons can not
propagate freely through the lattice: they prefer to tunnel between lattice defects the
rather than propagate by radiation.

The curves (a-b) of Fig. 39.33 illustrate how an empty photonic band fills up with
localized states with well-defined energies when noise is added to the periodicity of
the lattice. This situation is similar to that in semi-conductors doped by donor and
acceptor states.

39.4.3 Photonic bands in the Bloch and the coupled dipoles
models

The transfer matrix model is limited in several respects:

1. Firstly, being intrinsically 1D, the model does not apply to 2D or 3D lattices.

2. Also, it does not incorporate the possibility of transverse disorder or effects
linked to the finite transverse extension of the atomic layers, for example, the

24For the same reason, resonant dipole-dipole interactions are suppressed [760].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_TransferLocalIntensity.m
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Figure 39.33: (code) (a,b) Dispersion relation as in Fig. 39.31, but in the presence of ran-

domly distributed defects. (c) Intensity profile along the lattice with a defect located in the

100esima atomic layer.

limitation of the number of layers participating in multiple reflection (’walk-off’)
[1221] or the impact of an imperfect mode matching [1219].

In contrast, the coupled dipoles model offers several advantages. An optical lattice
is, after all, nothing more than a periodically ordered diluted sample of atoms. Hence,
we can apply the coupled dipoles model introduced in Sec. 39.1.2 [1138, 1137]. The
advantages of this model are its applicability to 3D systems and finite and disordered
lattices. It also allows the inclusion of all kinds of inhomogeneities such as, for ex-
ample, the spatial intensity distribution of a focused incident laser, or the deviation
of the laser beam penetrating an atomic cloud due to refraction. On the other hand,
the model only lends itself to heavy numerical simulations, limiting it to some 10000
atoms.

39.4.3.1 The Bloch model and forbidden electronic bands

The Bloch model is another model to describe 3D periodic systems [37]. It was in-
troduced in Chp. 26 for 1D optical lattices. Its disadvantages are that it supposes
infinite lattices and the absence of defects.

The Bloch model is commonly used to describe the scattering of electron waves in
a solid, where the band gap originates from the Coulomb interaction of the electron
with the atoms of the solid crystal. In contrast, in photonic crystals, the modes with
high (low) frequency ω concentrate their energy in spatial regions with low (high)
dielectric index ϵ. Close to geometric (Mie) resonances this causes a repulsion in
the density distribution of photonic states, and the opening of a gap separating high
frequency bands (air bands) from low frequency bands.

In optical lattices the photons interact with the atomic resonances. Photons and
electrons are distinguished by their different dispersion relations and by the fact that
electronic waves are scalar and photonic waves are vectorial. The electrons of a crystal
are bound to an energy surface and follow the lines of the dispersion relation without
leaving the metal. In contrast, photons are usually injected into the structure, which
gives an additional degree of freedom. Therefore, any point in the phase diagram
can be reached and the dispersion relation only informs, where at which point the
transmission is stronger.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ImpurityLocalization.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ImpurityLocalization.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_ImpurityLocalization.m
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photonic crystal metal

lattice structure atoms in a stationary wave atoms in a crystal

particles photons electrons in a metal

equations of motion Maxwell Schrödinger

dispersion relation ℏk/c ℏk2/2m
tune Bragg angle and frequency voltage

band gap origin Im α absorption by atoms e− interacting with the atomic nuclei

band gap width < ω0 − ωdip interaction energy

Figure 39.34: Attempt of an artistic illustration of the isoenergetic surfaces for electrons in
a metal (left), photons in a 3D optical lattice (center), and photons in a 1D optical lattice
(right). The interaction of atoms with the lattice is much weaker than the interaction of
electrons with the metal, except close to resonances. Therefore, photonic bands are much
narrower than electronic bands.

39.4.3.2 3D photonic crystals

The reflection profile calculated in Fig. 39.31 resembles that of a dielectric mirror 18.6,
for the calculation of which we also use the transfer matrix formalism. A dielectric
coating consists of a periodic structure alternating high and low refractive index
materials. Such structures are called photonic crystals.

The basic equation describing such material derives simply from Maxwell’s equa-
tion, assuming macroscopic dielectric media, i.e., D(r) = ε(r)E⃗(r) with ε being real
and scalar and µ ≃ 1. After the expansion in eıωt, we obtain a master equation for
dielectrics,

ΘH(r) ≡ ∇×
(

1

ε(r)
∇×H(r)

)
=
ω2

c2
H(r) , (39.214)

with the condition of transversality ∇H(r) = 0 = D(r) and E⃗(r) =
(
−ic
ωε(r)

)
∇ ×

H(r) [676]. The Θ operator is linear and Hermitian. We define the internal product
analogously to quantum mechanics,

⟨F|G⟩ ≡
∫
drF(r)|G(r) . (39.215)

The scalar product of modes with different frequencies vanishes, ⟨Fω1 |Gω2⟩ = δω1,ω2
.

The field can be found by minimizing the energy function ⟨H|ΘH⟩
⟨H|H⟩ . We find that the

displacement field ⟨D⟩ is concentrated in regions, where ϵ(r) is large and is orthogonal
to the lower frequency modes.
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For periodic structures we can apply the reciprocal lattice theory in the same way
as we do in solid-state physics or in optical lattices. But now, the state of Bloch is a
vector: Hk(r) = eık·ruk(r). Inserting in the master equation gives,

Θkuk(r) ≡
[
(ık+∇)×

(
1

ε(r)
(ık+∇)× uk(r)

)]
=
ω(k)2

c2
uk(r) , (39.216)

together with uk(r) = uk(r+ r).

39.4.4 Exercises

39.4.4.1 Ex: Structure coefficient of a 1D lattice

Calculate the structure coefficient of the density distribution (39.178) and the square
|Sk0(k)|2.

Solution: We calculate,

Sk0
(k) =

1

N

∫

R3

na(r)e
ı(k−k0)·rd3r

=
1

N

Ns∑

m=1

eımdez·(k−k0)

∫

R3

nl(r)e
ı(k−k0)·rd3r

=
1

N
eıdez·(k−k0)

1− eıNsdêz·(k−k0)

1− eıdez·(k−k0)
n0

∫

R3

e(−x
2−y2)/2σ2

re−z
2/2σ2

zeı(k−k0)·rd3r

=
n0
N

1− eıNsdqz

e−ıdqz − 1

∫ ∞

−∞
e−x

2/2σ2
reıqxxdx

∫ ∞

−∞
e−y

2/2σ2
reıqyydy

∫ ∞

−∞
e−z

2/2σ2
zeıqzzdz

=
n0
N

1− eıNsdqz

e−ıdqz − 1
e−q

2
xσ

2
r/2e−q

2
yσ

2
r/2e−q

2
zσ

2
z/2 ,

and,

|Sk0(k)|2 =
n20
N2

1− cosNs(kz − k0z)d
1− cos(kz − k0z)d

e−(kx−k0x)
2σ2

re−(ky−k0y)
2σ2

re−(kz−k0z)
2σ2

z .

39.4.4.2 Ex: Structure coefficient in spherical coordinates

Write the structure coefficient (39.178) in spherical coordinates.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggGrat01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggGrat02.pdf


39.4. SCATTERING FROMPERIODIC STRUCTURES AND PHOTONIC BANDS2177

Solution: In spherical coordinates the structure coefficient can be written,

Sk0,θ0,0(k0, θ, ϕ)

=
1− eıNsd(kz−k0z)

1− eıd(kz−k0z) e−(kx−k0x)
2σ2

r/2e−(ky−k0y)
2σ2

r/2e−(kz−k0z)
2σ2

z/2

=
1− eıNsd(k0 cos θ−k0 cos θ0)

1− eıd(k0 cos θ−k0 cos θ0)
e−(k0 cosϕ sin θ−k0 cosϕ0 sin θ0)

2σ2
r/2×

× e−(k0 sinϕ sin θ−k0 sinϕ0 sin θ0)
2σ2

r/2e−(k0 cos θ−k0 cos θ0)
2σ2

z/2

=
1− eıNsdk0(cos θ−cos θ0)

1− eıdk0(cos θ−cos θ0) e−(sin
2 θ−2 cosϕ sin θ sin θ0+sin2 θ0)k

2
0σ

2
r/2e−(cos θ−cos θ0)

2k20σ
2
z/2 .

Assuming that we irradiate under the Bragg angle, 2dk0 cos θ0 = 2π, we obtain the
solid angle into which light is scattered by,

Sk0,θbrg,0(k0, θ, ϕ) =
1− eıNsdk0 cos θ−ıπNs

1 + eıdk0 cos θ
exp

[
−
(
cos θ − π

dk0

)2
k20σ

2
z

2

]
×

× exp

−
sin2 θ − 2 cosϕ sin θ

√
1−

(
π

dk0

)2

+ 1−
(

π

dk0

)2
 k20σ

2
r

2

 .

39.4.4.3 Ex: Reflection in the dilute cloud limit

Verify the calculation (39.196).

Solution: To calculate the total transfer matrix T Ns , we first diagonalize the matrix
T = UDU−1, where D is the matrix of eigenvalues and U a unitary transforma-
tion given by eigenvectors of T . Under the Bragg angle this matrix adopts the form
(39.190),

T =

(
−1 −ıβ
ıβ −1

)
.

We calculate,

U =

(
−ı ı

1 1

)
and D =

(
−1 + β 0

0 −1− β

)
.

We can now evaluate the transfer matrix for Ns layers,

T Ns = UDNsU−1 ≃ (−1)NsU

(
1−Nsβ 0

0 1 +Nsβ

)
U−1

= (−1)Ns

(
1 ıNsβ

−ıNsβ 1

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand01.pdf
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For a finite Bragg angle we obtain,

T Ns =

(
eıkd cos θ ıβe−ıkd cos θ

−ıβeıkd cos θ e−ıkd cos θ

)
,

with the eigenvalues cos(kd cos θ)±
√
β2 − sin2(kd cos θ).

39.4.4.4 Ex: Reflection in the dense cloud limit

Verify the representation (39.200).

Solution: a. The expression (39.200) is composed of two parts. First, we compare
the two sides of the equation,

T =

(
(1 + ıβ)eık·d ıβe−ık·d

−ıβeık·d (1− ıβ)e−ık·d

)

=

(
cos kzd− β sin kzd 0

0 cos kzd+ β sin kzd

)
+ ı

(
β cos kzd+ sin kzd βe−ıkzd

−βeıkzd −β cos kzd− sin kzd

)
= I cosΘ +A sinΘ .

Defining,

cosΘ ≡ cos kzd− β sin kzd
sinΘ = 1− cosΘ =

√
(cos kzd− β sin kzd)2 − 1 ,

it is easy to verify,

Tr A = 0

detA = − (1− β2) sin2 kzd+ 2β cos kzd sin kzd

sin2 Θ
=

(cos kzd− β sin kzd)2 − 1

sin2 Θ
≡ 1

AA =
(1− β2) sin2 kzd+ 2β cos kzd sin kzd

sin2 Θ

(
1 0

0 1

)
= I .

b. Since the A matrix is nilpotent, AA = I, we calculate,

sin(ΘA) = A sinΘ = ΘA− (ΘA)3

3!
+ ... = ΘA− Θ3A

3!
+ ... = A sinΘ

cos(ΘA) = A cosΘ = 1− (ΘA)2

2!
+ ... = 1− Θ2I

2!
+ ... = ı cosΘ .

39.4.4.5 Ex: Photonic band spectra

Plot the 1D-photonic band gap spectrum in a standing wave as a function of ∆pr and
n.

Solution: The result is shown in Fig. 39.35.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand03.pdf
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Figure 39.35: (code) 1D-photonic band gap spectrum in a standing wave as a function of

∆pr and n.

39.4.4.6 Ex: Intensity drop inside photonic bands

Plot the intensity of the probe on its passage through the 1D optical lattice.

Solution: The result is shown in Fig. 39.36.
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Figure 39.36: (code) Intensity of the probe on its passage through the 1D optical lattice.

39.4.4.7 Ex: Intensity drop inside photonic bands in the presence of
disorder

Simulate the intensity of the probe on its passage through the 1D optical lattice inthe
presence of disorder.

Solution: The result is shown in Fig. 39.37.

39.4.4.8 Ex: Photonic bands with sidebands

Plot the intensity of the probe on its passage through the 1D optical lattice as a
function of detuning in the presence of modulation sidebands.

Solution: The result is shown in Fig. 39.38.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_BraggBandgapN.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_BraggBandgapN.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cooperativity_BraggIntensityDrop.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand06.pdf
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Figure 39.37: (code) Comparing the signatures of band gaps with absorption.
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Figure 39.38: (code) Probing the band gap with MTS or FMS.

39.4.4.9 Ex: Photonic bands versus absorption

Compare the signatures of band gaps with absorption.

Solution: The result is shown in Fig. 39.39.
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Figure 39.39: (code) Comparing the signatures of band gaps with absorption.
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39.4.4.10 Ex: Structure of a diamond lattice

A geometric configuration of point-like scatterers that can exhibit a broad omnidi-
rectional photonic bandgap is the one of a diamond lattice [273, 1146, 37]. In this
exercise we will study such a diamond-shaped lattice.
a. Produce a geometric representation of the primitive cell and a Wigner-Seitz cell.
b. Study the optical lattice generated by the following configuration of incident lasers,

k0 = π
a (0,−2,−1) , k1 = π

a (2, 0, 1) , k2 = π
a (0, 2,−1) , k3 = π

a (−2, 0, 1)

with klaser = ωlaser/c =
√
5π/a.

c. Calculate the forbidden band according to [273, 1146, 37].

Solution: a. This configuration is based on the superposition of two fcc lattices [37],

â1,2,3 =
(
0, a2 ,

a
2

)
,
(
a
2 , 0,

a
2

)
,
(
a
2 ,

a
2 , 0
)

and â4,5,6 = ê1,2,3 +
(
a
4 ,

a
4 ,

a
4

)
. (39.217)

The vectors of the reciprocal lattice are obtained via,



b1x b2x b3x

b1y b2y b3y

b1z b2z b3z




⊺

2π =



a1x a2x a3x

a1y a2y a3y

a1z a2z a3z




−1

, (39.218)

yielding,
b̂ =

(
− 2π

a ,
2π
a ,

2π
a

)
,
(
2π
a ,− 2π

a ,
2π
a

)
,
(
2π
a ,

2π
a ,− 2π

a

)
. (39.219)

The Wigner-Seitz cell of the reciprocal lattice, referred as the first Brillouin zone, is
bordered by faces which can be given as,

|kx|+|ky|+|kz| = 3
2

2π

a
, |kx| =

2π

a
, |ky| =

2π

a
, |kz| =

2π

a
. (39.220)

b. The optical lattice obtained is illustrated in Fig. 39.40(c). For large forbidden
bands we choose k0a < 5, i.e. ωlaser > 1.4ω0. This gives the intensity distribution in
the optical lattice,

I(r) = I0 + I1

[
− cos

(
3∑

γ=1

êγ · r
)

+

3∑

γ=1

cos(êγ · r)
]
. (39.221)

c.

39.5 Further reading

39.5.1 on the coupled dipoles model

E. Akkermans et al., Photon Localization and Dicke Superradiance in Atomic Gases
[15]DOI

R. Bachelard et al., Cooperative scattering and radiation pressure force in dense
atomic clouds [458]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cooperativity_BraggBand08.pdf
http://doi.org/10.1103/PhysRevLett.101.103602
http://doi.org/10.1103/PhysRevA.84.013821
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Figure 39.40: (code) Characterization of the diamond lattice. (a) laser configuration, (b)

reciprocal space, (c) intensity distribution, and (d) Wigner-Seitz cell.

R. Bachelard et al., Resonances in Mie scattering by an inhomogeneous atomic cloud
[67]DOI

R. Bachelard et al., Collective effects in the radiation pressure force [68]DOI

H. Bender et al., Observation of cooperative Mie scattering from an ultracold atomic
cloud [120]DOI

T. Bienaimé et al., Observation of cooperative radiation pressure in presence of dis-
order [141]DOI

T. Bienaimé et al., Atom and photon measurement in cooperative scattering by cold
atoms [142]DOI

T. Bienaimé et al., Controlled Dicke Subradiance from a Large Cloud of Two-Level
Systems [143]DOI

R. Kaiser et al., Quantum Multiple Scattering [691]DOI

R. Friedberg et al., Frequency shifts in emission and absorption by resonant systems
ot two-level atoms [467]DOI

R. Friedberg et al., Effects of including the counterrotating term and virtual photons
on the eigenfunctions and eigenvalues of a scalar photon collective emission
theory [468]DOI
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Chapter 40

Coupling of atoms and optical
cavities and the CQED
regime

So far we have considered the coherent dynamics between atoms and radiation fields
in free space, and we extended the theory to take into account the dissipative coupling
to the electromagnetic vacuum by spontaneous emission and atomic motion. The vac-
uum represents a homogeneous and isotropic reservoir characterized by a continuous
white energy spectrum. The situation changes completely when we place the atom
inside an optical cavity which breaks the translational and rotational symmetries and
imprints a resonance structure into the density of photonic states. Obviously, the
cavity will profoundly change the atomic coupling to the electromagnetic vacuum,
and hence the way in which the atom reacts to incident light, as much with respect
to light scattering as with respect to optical forces.

Figure 40.1: Illustration of the mode structure of empty space.

In this chapter we analyze the coupled dynamics of atoms interacting with the
optical field modes of a cavity pumped by incident laser beams. We first concentrate
in Sec. 40.1 on empty cavities. Then in Sec. 40.2 we turn our attention to the impact
of atoms on the cavity dynamics, in particular its transmission spectrum. Cooperative
and collective effects that may be induced by cavities will be discussed in Chps. 41

2187
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and 42.

40.1 Light fields in cavities without atoms

The quantization of the electromagnetic field has been introduced in Chp. 35. Nev-
ertheless, we will consider the degree of freedom to be studied in this chapter, that
is, the electric field amplitude of a light field developing in a mode of an optical cav-
ity, as a classical entity. Therefore, there is no need to stress quantum mechanics
to derive the fundamental equations of motion, and a classical derivation is shown
in Sec. 40.2.5. Nevertheless, for reasons of consistency with later discussions, where
quantization is required, we will reproduce here the standard procedure, which con-
sists in constructing the Hamiltonian for the relevant degrees of freedom. The degree
of freedom under study being a mode of a cavity, we will label it by the field operator
â normalized to the electric field strength E⃗1 generated by a single photon, such that
|⟨â⟩|2 = n represents the number of photons in the cavity.

In this first section of this chapter we will only consider a bare cavity not containing
any matter which could interact with light. The mode of a linear cavity or the two
counterpropagating modes of a ring cavity are pumped by incident laser light. We
will first set up the equations of motion for the cavity fields and then discuss the main
quantities characterizing a cavity, such as free spectral range, mode volume, decay
rate, and single-photon field strength. Finally, we will calculate the density of states
of cavities.

40.1.1 Master equation

The Hamiltonian of a laser-pumped linear cavity mode â coupled to the continuum of
a heat bath represented by operators âω is (ℏ = 1) (see Sec. 36.2.4 and Exc. 36.2.6.1),

Ĥ = Ĥcavity + Ĥbath + Ĥcavity:bath + Ĥlaser:cavity

Ĥcavity = ω0â
†â

Ĥbath =
∑

ω

ωâ†ωâω

Ĥcavity:bath =
∑

ω

gcavity:bathâ
†
ωâ+ h.c.

Ĥlaser:cavity = ıηâ† + h.c.

, (40.1)

with [âω, â
†
ω′ ] = δω,ω′ . The part of the Hamiltonian Ĥlaser:cavity describes pumping

of the cavity with an external light field matched to the cavity mode. The standard
procedure consists in setting up the quantum Liouville equation for the total density
operator ρ̂total = ρ̂cavity ⊗ ρ̂bath and tracing the over the bath’s degrees of freedom
[488, 283]. From this procedure, as shown in Sec. 36.2.4, we derive a master equation
for the reduced density operator ρ̂cavity.

The inevitable coupling of the cavity to the environment, described by Ĥcavity:bath,
leads to irreversible losses. These losses can be described as spontaneous decay to the
continuous vacuum heat bath. The irreversibility of the process is readily understood
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Figure 40.2: Scheme of (a) a linear cavity and (b) a ring cavity with optical modes α±
pumped by incident light fields η± and decaying into the void with rate κ.

in terms of the phase space offered by the vacuum being much larger. In fact, whenever
discrete states are coupled to a continuum, the equilibrium is very much on the side of
the continuum, that is, discrete states decay. Since an optical cavity can be considered
a temperature reservoir T , where,

n̄ =
1

1− e−ℏω/kBT ) , (40.2)

is the mean thermal photon number, the Lindblad operator is,

Lbathρ̂ = κ
2 (n̄+ 1)(2âρ̂â† − â†âρ̂− ρ̂â†â) + κ

2 n̄(2â
†ρ̂â− ââ†ρ̂− ρ̂ââ†) (40.3)

+ β(2n̄+ 1)(2â†âρ̂â†â− (â†â)2ρ̂− ρ̂(â†â)2) .

We have already shown this in Exc. 36.2.6.1. The constants are the cavity decay rate
κ and the pump rate β. Note that at room temperature in the microwave regime,
n̄ may be as large as a few hundred photons, whereas in the optical regime we may
neglect the thermal excitation,

˙̂ρ = − ı
ℏ [Ĥ, ρ̂] + Lcav

Lcavρ̂(t) = −κ{â†âρ̂(t)− 2âρ(t)â† + ρ̂(t)â†â}
. (40.4)

The expectation values are given by a quantum Langevin equation [283],

α̇ = ⟨ ˙̂a⟩ = ı

ℏ
⟨[Ĥ, â]⟩ − κ⟨â⟩ = (−κ− ı∆c)α+ η , (40.5)

whose solution is easy to derive,

α(t) =

(
α(0)− η

κ+ ı∆c

)
e(−κ−ı∆c)t +

η

κ+ ı∆c
, (40.6)

or, using the electric field normalized to the amplitude of the field generated by a
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single photon, E⃗+cav = E⃗1α,

E⃗cav(z, t) = Re
[
E⃗1eı(kz−ωt)α(t) + E⃗1eı(−kz−ωt)α(t)

]
(40.7)

= 2E⃗1 cos kz Re [e−ıωtα(t)]

= 2E⃗1 cos kz Re

[(
α(0)− η

κ+ ı∆c

)
e(−κ−ıωc)t +

η

κ+ ı∆c
e−ıωt

]
.

The stationary solution is simply a Lorentzian,

|α(∞)|2 =
|η|2

κ2 +∆2
c

, (40.8)

which represents an approximation of the Airy function(18.263).
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Figure 40.3: (code) Transmission spectrum of a cavity via numerical solution of the master

equation (40.6) (solid line) and via the stationary solution (40.8) (crosses).

The result (40.7) shows that, letting η = 0, we see that the cavity field decays with
the time constant κ from the stationary situation. κ also corresponds to the HWHM
of the field intensity, |α(|∆c| = κ)|2 = 1

2 |α(0)|2. Note, that the intensity decays as

2κ, and the HWHM of the field amplitude is
∣∣α(|∆c| =

√
3κ)
∣∣ = 1

2 |α(0)|.
Example 236 (Evolution of the modes of a linear cavity): (40.7) also

shows that a cavity initially filled with a strong resonant light field |α(0)| ≫ η/κ

begins to oscillate at its own frequency ωc, before the pump dominates and

imposes its own frequency ω. This is illustrated in Fig. 40.4. .

Frequently, we are interested in the light reflected from a cavity. The reflective
response of the cavity to an incident pump beam Ein is,

E⃗+refl = rinE⃗+in + tinE⃗+cav . (40.9)

Also we may want to consider a temporal variation of the input field, for example of
its detuning, ∆c(t). In such cases, the equation (40.5) can not be integrated easily,
and we need to resort to numerical methods. The simplest (and least convergent)
method in a Newtonian iteration like,

E⃗+refl(t+ dt) = E⃗+refl(t) + dt tin

[
(−κ− ı∆c(t))E⃗+cav(t) + ηE⃗+in(t)

]
. (40.10)

We will study in Exc. 40.1.6.1 how a sudden change of the pump laser detuning may
lead to ringing with a fixed frequency ∆c. In Exc. 40.1.6.2 we will show, how it is
possible to empty an optical cavity in times shorter than 1/κ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavityTransmissionSpectrum.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavityTransmissionSpectrum.jl
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Figure 40.4: (code) Transient oscillations in a cavity pumped out of resonance.

40.1.2 Dynamics of an empty ring cavity

Linear cavities are characterized by the fact that they sustain standing light waves.
That is, at every point of the mode volume, there are field components pointing into
two counterpropagating orientations. In case of a ring cavity, we have two counter-
propagating modes α±, which may be independently pumped by laser beams η±.
Hence, the quantum Langevin equation (40.5) must be generalized to,

α̇±(t) = (−κ− ı∆c)α± + η± , (40.11)

and the general solution (40.6) to,

α±(t) =

(
α±(0)−

η±
κ+ ı∆c

)
e(−κ−ı∆c)t +

η±
κ+ ı∆c

. (40.12)

The two counterpropagating field modes will, provided they have the same polar-
ization, interfere and form a standing light wave. In contrast to linear cavities, the
phase of this standing wave is represents a degree of freedom, as it depends on the
phases of the two field modes α±, which in turn can be controlled by the incident
laser fields η±. To better understand the behavior of the phase as a function of the
pump beams, we analyze the interference of the two modes, which is described by,

α+α
∗
− =

(
α+(0)α

∗
−(0)−

η∗−α+(0)

κ− ı∆c
− η+α

∗
−(0)

κ+ ı∆c
+

η+η
∗
−

κ2 +∆2
c

)
e−2κt +

η+η
∗
−

κ2 +∆2
c

+ (40.13)

+

(
α+(0)

η∗−
κ− ı∆c

− η+η
∗
−

κ2 +∆2
c

)
e(−κ−ı∆c)t +

(
α∗−(0)

η+
κ+ ı∆c

− η+η
∗
−

κ2 +∆2
c

)
e(−κ+ı∆c)t .

To simplify this expression, we assume a symmetric pump, η± = ηe±ıϕ. We are
interested in the reaction of the field’s phase to a sudden change of ϕ. Now, we define
the initial stationary conditions for ϕ = 0 to be α±(0) =

η
κ+ı∆c

and obtain,

α+α
∗
− =

η2

κ2 +∆2
c

[
(1− eıϕ)2e−2κt + e2ıϕ + 2eıϕ(1− eıϕ)e−κt cos∆ct

]
. (40.14)

In resonance, ∆c = 0, the expression (40.14) simplifies to,

α+α
∗
− =

η2

κ2
[
(1− e−κt)eıϕ + e−κt

]2
. (40.15)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavityTransients.m
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This results shows that the cavity phase adjusts itself to the pump field in exponential
time κ−1:

tan θ =
Im α+α

∗
−

Re α+α∗−
=

(1− e−κt)2 sin 2ϕ+ 2(1− e−κt)e−κt sinϕ
(1− e−κt)2 cos 2ϕ+ 2(1− e−κt)e−κt cosϕ+ e−2κt

. (40.16)

For small phase slips ϕ≪ π, this reduces to,

θ = 2ϕ(1− e−κt) , θ̇ ≃ κ(2ϕ− θ) , θ̈ ≃ −κθ̇ . (40.17)

Hence, the pump represents a friction force for the phase.
Out of resonance but with negligible decay, κ ≃ 0, the expression (40.14) simplifies

to,

α+α
∗
− =

η2

∆2
c

[
1 + 2(e2ıϕ − eıϕ)(1− cos∆ct)

]
+ , (40.18)

such that,

tan θ =
2(sin 2ϕ− sinϕ)(1− cos∆ct)

1 + 2(cos 2ϕ− cosϕ)(1− cos∆ct)
, (40.19)

which, for very small angles ϕ, reduces to,

θ ≃ 4ϕ sin2
1

2
∆ct . (40.20)

40.1.2.1 Transfer function of a ring cavity

Cavities have a finite response time to frequency or amplitude fluctuations of the
pump light. To study this, we assume the light pumping a ring cavity to be subject
to a phase modulation with frequency Ω and amplitude ϕ0, that is, the quantum
Langevin equation (40.5) is,

(∂t + κ+ ı∆c)α± = ηe±ıϕ0 sinΩt , (40.21)

and has the solution,

α±(t) = e(−κ−ı∆c)t

(
α±(0) + η

∫ T

0

e(κ+ı∆c)τ±ıϕ0 sinΩτdτ

)
. (40.22)

For small amplitude oscillations, we can expand the pump term into a Fourier series
of Bessel functions,

α±(t) = e(−κ−ı∆c)t

(
α±(0) + η

∫ T

0

(
e(κ+ı∆c)τ ± ϕ0

2
e(κ+ı∆c)τ+ıΩτ ∓ ϕ0

2
e(κ+ı∆c)τ−ıΩτ

)
dτ

)
= e(−κ−ı∆c)tα±(0) + η

1− e(−κ−ı∆c)t

κ+ ı∆c
± ϕ0

2

eıΩt − e(−κ−ı∆c)t

κ+ ı∆c + ıΩ
∓ ϕ0

2

e−ıΩt − e(−κ−ı∆c)t

κ+ ı∆c − ıΩ

=
η

κ+ ı∆c
± ϕ0η

2

eıΩt − e(−κ−ı∆c)t

κ+ ı∆c + ıΩ
∓ ϕ0η

2

e−ıΩt − e(−κ−ı∆c)t

κ+ ı∆c − ıΩ

=
η

κ
± ıϕ0η

κ sinΩt− ΩcosΩt+Ωe−κt

κ2 +Ω2
. (40.23)
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In the last two steps, we defined for simplicity, α±(0) =
η

κ+ı∆c
and set ∆c = 0. After

some initial transients, when t≫ κ−1, we can write,

α±α
∗
± =

η2

κ2
+ ϕ20η

2

(
κ sinΩt− ΩcosΩt

κ2 +Ω2

)2

(40.24)

α±α
∗
∓ =

(
η

κ
± ıϕ0η

κ sinΩt− ΩcosΩt

κ2 +Ω2

)2

,

giving in analogy to (40.16),

θ = arctan
2ϕ0(κ

2 +Ω2)
(
κ2 sinΩt− κΩcosΩt

)

(κ2 +Ω2)
2 − ϕ20 (κ2 sinΩt− κΩcosΩt)

2 ≃ 2ϕ0
κ2 sinΩt− κΩcosΩt

κ2 +Ω2
.

At low frequencies, Ω ≪ κ, the phase of the cavity field goes as, θ(ϕ0) ≃ 2ϕ0 sinΩt,
and for high frequencies, Ω ≫ κ, as, θ(ϕ0) ≃ −2ϕ0 κΩ cosΩt. Thus, we observe a
low-pass behavior of the phase excursions of the cavity field with a cut-off frequency,
κ−1:

θm ≃
2ϕ0

1 + Ω/κ
. (40.25)

40.1.3 Characterization of the bare cavity

We first consider a linear cavity of length L pumped by a laser without any scatterer
located inside the cavity. The cavity spectrum is an equidistant comb of eigenfre-
quencies separated by,

δfsr ≡ τ−1rt =
c

2L
. (40.26)

The free spectral range δfsr is given in units of a real frequency. τ−1rt is the time for
a photon to make a round trip in the cavity. The amplitude decay rate of the cavity,

κ = τ−1κ =
πδfsr
F

. (40.27)

The intensity decay rate of the cavity, measured by ’cavity ring-down’ is κint = 2κ.
Note, that κint is also the FWHM width of the intensity transmission spectrum (see
Exc. 18.3.7.18), such that the finesse

F =
δfsr

κint/2π
(40.28)

is simply the ratio between the free spectral range and the FWHM of the cavity
intensity transmission curve, both measured in Hertz.

Example 237 (Finesse of a cavity): For example, for a cavity of length

L = 10 cm an intensity decay time of τint = 20 µs is measured, and we want to

evaluate the finesse. We begin calculating the free spectral range δfsr = c/2L ≈
1.5 GHz. Since the cavity field decays like E(t) = E0e

−κt and the intensity like

I(t) = E2
0e
−2κt, we get κ = 1/τκ = 1/2τint ≈ (2π) 4 kHz. Finally, the finesse is

F = πδfsr/κ ≈ 189000.
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For a cavity with a given geometry filled with a Gaussian mode of light with power
P , the intensity is determined by Gaussian optics 1,

I(r) =
2P

πw2(z)
e−2ρ

2/w2(z) and w(z) = w0

√
1 +

(
λz

πw2
0

)2

. (40.29)

Defining the mode volume via I(0)Vm ≡
∫
I(r)dV and evaluating the spatial integral

over the Gaussian mode along the cavity, we obtain,

Vm =
1

I(0)

∫ L

0

∫ ∞

0

∫ 2π

0

2P

πw2(z)
e−2ρ

2/w2(z)dϕρdρdz = π
2Lw

2
0 . (40.30)

Defining the amplitude of the electric field generated by a single photon via,

I(r) = nε0cE21 (r) , (40.31)

where n is the number of photons in the cavity, we calculate for the energy stored in
the cavity,

ℏω
2

=

∫
u1(r)dV =

1

c

∫
I1(r)dV =

1

c
I1(0)Vm . (40.32)

Hence,

|E⃗1(0)| =
√
I1(0)

ε0c
=

√
ℏω

2ε0Vm
. (40.33)

Resolve Exc. 18.4.4.2.The light power in the linear cavity can now be expressed using
its free spectral range (40.26),

P =
πw2

0

2
I(0) =

2Vm
L

nε0c|E⃗21 (0)| = 2Vmδfsrnε0
ℏω

2ε0Vm
= δfsrnℏω . (40.34)

We assume that the cavity is pumped by a laser beam. To estimate the pump
rate, we assume that the power Pinput be measured in transmission. The coefficient
η for resonant pumping is related to the number n of photons inside the cavity,

n = |α|2 =
η2

κ2
. (40.35)

The intracavity field is resonantly amplified by the finesse,

α =

√
F

π
αinput =

√
δfsr
κ
αinput . (40.36)

This gives,

η = κα = κ

√
I

cℏω
Vm =

√
κδfsrαinput =

√
κδfsr

√
Iinput
cℏω

Vm . (40.37)

In practice, the pump rate will depend on the quality of the phase matching of the
Gaussian beams and the impedance matching (in case of partially absorbing mirrors).

We will pursue the characterization of ring cavities including their interaction with
scattering atoms in Sec. 40.2.2.

1See script on Electrodynamics (2023), Sec. 7.4.1 and Exc. 7.4.3.1.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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40.1.3.1 The Schawlow-Townes limit

The Schawlow-Townes limit results from phase fluctuation of the standing light wave
in the cavity demand ∆ϕ = 1

n . Using the relationships (40.34) and (40.36), we find
[1385],

∆ωlaser =
κ

|α|2 = κ
δfsrℏωlaser

Pcav
= κ

δfsrℏωlaser
δfsr

κ Pout
= κ2

ℏωlaser
Pout

. (40.38)

Example 238 (Schawlow-Townes limit of a HeNe laser): For a typical
HeNe laser, F = 100, Pout = 1mW, L = 20 cm, we estimate,

∆ωlaser =

(
πδfsr
F

)2
hνlaser
Pout

=
( πc

2LF

)2 hνlaser
Pout

≈ (2π)30mHz .

40.1.4 Density of states in cavities

The density of states ρ(ω,k) of an optical cavity is defined by,

∫

R
ρ(ω,k)dωdΩ =

1

(2π)3

∫
d3xd3k , (40.39)

where R denotes the boundary imposed by the cavity. For free space photons we
calculate (see Eq. (34.22)),

4π

∫
ρfree(ω,k)dω =

V

(2π)3

∫
k2 sin θdθdϕdk =

V k3

6π2
=

V ω3

6π2c3
, (40.40)

such that,

ρfree(ω,k) = ρfree(ω) =
V ω2

(2πc)3
, (40.41)

is isotropic.
For light in a cavity, the density of states is modified with respect to free space,

because it becomes frequency-dependent and anisotropic. The frequency dependence
is expressed by the Airy formula,

L(ω) ≡ Icav
Iin

=

√
1 + (2F/π)2

1 + (2F/π)2 sin2 kL
, (40.42)

which will be derived in Excs. 40.1.6.3 and 40.1.6.4, and the anisotropy by,

R(êk) = 1 ∀ êk ∈ Ωcav , (40.43)

where Ωcav is the solid angle covered by the cavity mode. The formula,

ρcav(ω,k) = ρfree(ω)[1−R(êk)] + ρfree(ω)L(ω)R(êk) (40.44)

expresses that the density of states is nothing more than the structure factor of the
cavity.
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40.1.4.1 Confocal cavities

For a confocal cavity the solid angle is easy to calculate [596, 597]. Denoting by b is
the clear aperture of the cavity mirrors, we get,

Ωcav,con = 2

∫ 2π

0

∫ arcsin(2b/L)

0

sin θdθdϕ = 4π

(
1−

√
1− 4

b2

L2

)
. (40.45)

Expanding the root for small b≪ L, we get,

Ωcav,con ≃
8πb2

L2
. (40.46)

For non-degenerate geometries the functions L and R depend on the order mn of
the transverse Gaussian modes:

Lmn(ω) =
√
1 + (2F/π)2

1 + (2F/π)2 sin2(kL+ φmn)
and Rmn(êk) = 1 ∀ êk ∈ Ωmn ,

where φmn is the frequency shift of the transverse modes.

40.1.4.2 Expansion into Hermite-Gaussian modes

More correctly, êk ∈ Ωmn means that we must weigh the density of states by the
structure factor of the mode volume, which is nothing more than the Fourier transform
of the cavity mode function,

Rmn(êk) =
∫

êk∈Ωmn

d2k =

∫

R2

F
[
umn(r)

ℏω

]
d2k . (40.47)

For a Hermite-Gaussian mode with waist w(z) [see (18.313)],

umn(r) = ℏω
w0

w
e−2(x

2+y2)/w2

Hm(
√
2x/w)2Hn(

√
2y/w)2 . (40.48)

The Hermite polynomials are the eigenfunctions of the Fourier transform,

F [e−x2/2Hn(x)] = (−ı)ne−k2/2Hn(k) . (40.49)

Hence,

F
[

1
ℏωumn(r)

]
=

1

ℏω
w0

w
F
[
e−2(x

2+y2)/w2

Hm(
√
2x/w)2Hn(

√
2y/w)2

]
(40.50)

=
1

ℏω
w0

w
F
[
e−2x

2/w2

Hm(
√
2x/w)2

]
F
[
e−2y

2/w2

Hn(
√
2y/w)2

]

=
1

ℏω
w0

w
e−2k

2
xw

2

Hm(
√
2kxw)

2e−2k
2
yw

2

Hn(
√
2kyw)

2 m,n=0−→ 1

ℏω
w0

w
e−2(k

2
x+k

2
y)w

2

.

Finally,

Rmn(êk) =
∫
F
[
umn(r)

ℏω

]
d
(
kx
k

)
d
(
ky
k

)
(40.51)

=
1

ℏω
w0

w

∫
e−2k

2
xw

2

Hm(
√
2kxw)

2d
(
kx
k

) ∫
e−2k

2
yw

2

Hn(
√
2kyw)

2d
(
ky
k

)
.
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For the TEM00 mode, we get,

R00(êk) =
π

2k2w2
, (40.52)

using P =
∫
Imn(r)dxdy = 1

2πw
2I0. This coincides with the intuition, that for the

TEM00, the aperture is simply the divergence angle of the Gaussian mode.
The solid angle of a Gaussian mode in a non-degenerate cavity is calculated via,

Ωcav = 2 · πw(z)
2

z2
= 2 · πw

2
0

z2

(
1 +

(
λz

πw2
0

)2
)
. (40.53)

In the far field, we get,

Ωcav
z→∞−→ 8π

k2w2
0

. (40.54)

Example 239 (Solid angle for Hermite-Gaussian modes in a confocal
cavity): For confocal cavities, we must add

∑
mn F

[
1
ℏωumn(r)

]
up to a limit,

where the maximum Hm(
√
2kw) is cut by the finite aperture of the mirrors of

the cavity. Empirically, we find that Hn(ξ)
2e−ξ

2

has its maximum at ξmax =
13.7 · n1/2. From the condition umn(x, y, L) = 0 for xy > a2, we obtain,

xmaxymax < a2(
13.7 · n1/2

)2
=

√
2xmax

w(L)

√
2ymax

w(L)
<

2a2

w(L)2
→ a2k2w2

0

2L2
,

using w(L) = w0

√
1 +

(
λL
πw2

0

)2
→ λL

πw0
. Finally,

∑
mn

F
[

1

ℏω
umn(r)

]
=

π

2k2w2

∑
13.72m,n<a2k2w2

0/2L
2

=
π

2k2w2

1

13.72
a2k2w2

0

2L2
=

1

13.72
πa2

4L2
.

40.1.5 Cumulant expansion of correlation functions and power
spectra

40.1.5.1 Correlation functions

The evolution of the two-time correlation function of two operators Â and B̂ given
by,

R(t, τ) ≡ ⟨Â(t+ τ)B̂(t)⟩ , R(τ) = lim
t→∞
⟨Â(t+ τ)B̂(t)⟩ , (40.55)

with respect to the time delay τ is determined by,

d

dτ
R(t, τ) = ⟨[∂τ Â(t+ τ)]B̂(t)⟩ . (40.56)

Hence, the set of equations required to compute the correlation function can be derived
from the equation of motion for the operator Â. The cumulant expansion of the
correlation function then follows the same procedure as for a standard time evolution:
the set of equations is expanded to a certain order and completed.
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40.1.5.2 Steady state

If the original system is evolved up to a time t such that it is in steady state, i.e.
expectation values no longer change after that time, the set of equations determining
the correlation function has a special property. specifically, after the cumulant ex-
pansion has been performed, there can only be a single term in each product on the
right-hand-side of the set of equations that depends on τ . All other terms depend on
t alone, meaning that they are constant since they no longer change after the time t.
Therefore, the system of equations from which the correlation function is computed
is linear, in the sense that it can be written as,

d

dτ
y(τ) = My(τ) + d , (40.57)

where y(τ) is the vector of τ -dependent variables. The elements of the matrix M as
well as the vector d are given by steady-state expectation values and parameters, i.e.
they are independent of τ .

40.1.5.3 Power spectra

According to the Wiener-Khinchin theorem. the spectral density associated with a
correlation function is given by its Fourier transform,

S(t, ω) = 2Re

∫
e−ıωτR(t, τ)dτ . (40.58)

In order to compute this, we can solve the system of equations determining R(t, τ),
subsequently taking the Fourier transform. However, if we are not interested in the
temporal behavior of the correlation function, and if the system of which we want to
compute the spectrum is in steady state, we can directly compute the spectrum from
Eq. (40.57). To this end, we define

x(s) = L[y(τ)] , (40.59)

where L denotes the Laplace transform with respect to τ . Taking the Laplace trans-
form of Eq. (40.57), we have,

(sI−M)x(s) = y(0) +
d

s
. (40.60)

Note that the Laplace transform is equivalent to the Fourier transform at the point
where s = ıω, i.e. S(ω) = 2Re x1(ıω)}. Hence, instead of computing the time evolu-
tion of the correlation function we can directly compute the spectrum by solving the
linear equation,

x = (ıωI−M)−1[y(0) + 1
ıωd] . (40.61)

For larger systems, the method using a Laplace transform is usually faster than in-
tegrating a system of equations of the same size. Additionally, it avoids numerical
errors of the integration and the subsequent discrete Fourier transform.
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40.1.6 Exercises

40.1.6.1 Ex: Quick ullage of an optical cavity

Consider a linear cavity resonantly pumped by a laser beam until a stationary state
is reached. Suddenly, the phase of the incident light is changed by 180◦. Based on
equation (40.6), analyze the evolution of the light field inside the cavity.

Solution: We have seen in class that the evolution of the light field in the cavity
is given by (40.6). We now assume that the cavity is initially filled with the ampli-
tude,

α(0) ≡ η1
κ+ ı∆c

.

Suddenly, we change the phase and amplitude of the pumping wave, η1 −→ η2. The
amplitude now evolves as,

α(t) = (α(0)− η2
κ+ ı∆c

)e(−κ−ı∆c)t +
η2

κ+ ı∆c
=
η1 − η2
κ+ ı∆c

e(−κ−ı∆c)t +
η2

κ+ ı∆c
.

Therefore, the light amplitude vanishes at time,

t0 =
1

κ+ ı∆c
ln
η2 − η1
η2

.

Choosing η2 = −cη1 with large c we can minimize the time t0.

0.5 1 1.5 2 2.5
κt

50

100

150

200

|α
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Figure 40.5: (code) Quick ullage of an optical cavity.

40.1.6.2 Ex: Ringing of an optical cavity

Consider a linear cavity with resonant frequency ωc and the decay rate κ pumped by
a laser beam whose frequency is swept linearly over a range ω ∈ [−10κ, 10κ]. Prepare
a numerical simulation varying the time ∆t of the sweep.

Solution: See Fig. 40.6.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamMode01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavityPhaseOff.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamMode02.pdf
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Figure 40.6: (code) Sweeping the laser frequency which pumps a cavity.

40.1.6.3 Ex: Derivation of the Airy formula

Derive the Airy formula (40.42).

Solution: The electric field inside a cavity is,

Ecav = Eint1
eıkx − r2eık(2L−x)
1− r1r2eık2L

.

This has been shown in Exc. 18.3.7.18. From this we calculate,

L(ω) = Icav
Iin

= t21

∣∣∣∣
eıkx − r2eık(2L−x)
1− r1r2eık2L

∣∣∣∣
2

= t21
1 + r22 − 2r2 cos(2k(L− x))
1 + r21r

2
2 − 2r1r2 cos k2L

.

Averaging over the cavity field along the optical axis coordinate x, the cosine term in
the numerator vanishes. Hence the expression simplifies to,

L(ω) = t21
1 + r22

(1− r1r2)2 + 4r1r2 sin
2 kL

.

Assuming r1 = r2 =
√
R and t21 = T = 1−R, we get,

Icav
Iin

=
T

1−R
1+R
1−R

1 + 4R
(1−R)2 sin

2 kL
=

√
1 +

(
2F
π

)2

1 +
(
2F
π

)2
sin2 kL

,

using F = π
√
R

1−R . For sufficiently high finesse and close to resonance,

Icav
Iin
≃

2F
π

1 +
(
2F
π

)2
sin2 kL

≃
2F
π

1 +
(
2F
π

)2
( ∆
2δfsr

)2
=

δfsrκint

∆2 +
(
κint

2

)2 ,

with

kL = πN +
∆

2δfsr
and F =

δfsr
κint/2π

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavityRinging.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamMode05.pdf
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40.1.6.4 Ex: Airy formula for ring cavities

Derive the Airy formulas for a ring cavity laser-pumped through an incoupling mirror
with reflectivity ric and comprising two more high-reflecting mirrors with reflectivity
rhr. Calculate (a) the intracavity intensity, (b) the intensity of the light reflected
from the incoupler, and (c) the intensity of the light transmitted through the first
encountered high reflector. For each for intensity study the cases that (i) the ring
cavity is resonant and (ii) off-resonance. Also study the limit rhr → 1. Disregard
absorption losses.

Solution: a. The intracavity cavity field amplitude and intensity are,

Ecav(z)
Ein

= tic
∑

n

(−r2hrric)neık(nL+x) = tic
eıkx

1 + ricr2hre
ıkL

Icav(z)

Iin
=

Tic

1 +R2
hrRic + 2Rhr

√
Ric cos kL

.

On resonance, kL = π(2n+ 1),

I
(res)
cav (z)

Iin
=

1−Ric
(1−Rhr

√
Ric)2

Rhr=1−→ 1 +
√
Ric

1−√Ric
≃ 2

1−√Ric
≫ 1 ,

and off resonance, kL = π2n,

I
(off)
cav (z)

Iin
=

1−Ric
(1 +Rhr

√
Ric)2

Rhr=1−→ 1−√Ric
1 +
√
Ric
≃ 1−√Ric

2
≈ 0 .

b. The light amplitude and intensity reflected from the incoupler are,

Erfl(z)
Ein

= ric + ticr
2
hre

ıkL
∑

n

(−ricr2hr)neınkLtic = ric +
t2icr

2
hre

ıkL

1 + ricr2hre
ıkL

Irfl(z)

Iin
=

Ric +R2
hr + 2R2

hr

√
Ric cos kL

1 +R2
hrRic + 2Rhr

√
Ric cos kL

.

On resonance, kL = π(2n+ 1),

I
(res)
rfl (z)

Iin
=

Ric +R2
hr − 2R2

hr

√
Ric

1 +R2
hrRic − 2Rhr

√
Ric

Rhr=1−→ 1 ,

and off resonance, kL = π2n,

I
(off)
rfl (z)

Iin
=

Ric +R2
hr + 2R2

hr

√
Ric

1 +R2
hrRic + 2Rhr

√
Ric

Rhr=1−→ 1 .

c. The light amplitude and intensity transmitted through the first encountered high
reflector are,

Etrns(z)
Ein

= ticthre
ıka + tic

∑

n

(−r2hrric)neık(nL+a)thr = ticthre
ıka

(
1 +

1

1 + ricr2hre
ıkL

)

Itrns(z)

Iin
= TicThr

4 +R2
hrRic + 4Rhr

√
Ric cos kL

1 +R2
hrRic + 2Rhr

√
Ric cos kL

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamMode07.pdf
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On resonance, kL = π(2n+ 1),

I
(res)
trns (z)

Iin
= TicThr

Ric +R2
hr − 2R2

hr

√
Ric

1 +R2
hrRic − 2Rhr

√
Ric

Rhr=1−→ Thr

(
2−

√
Ric

)2 1 +
√
Ric

1−√Ric
≃ Thr

I
(res)
cav (z)

Iin
,

and off resonance, kL = π2n,

I
(off)
trns (z)

Iin
= TicThr

4 +R2
hrRic + 4Rhr

√
Ric

1 +R2
hrRic + 2Rhr

√
Ric

Rhr=1−→ 9

4
TicThr .

40.1.6.5 Ex: Filling rate for long cavities

Using the solution (40.6) try to calculate the transmission of a 15 km long cavity of
finesse F = 1000 as a function of time, when it is pumped by a suddenly switched on
laser. Analyze the results in the light of local causality.

Solution: The free spectral range is δfsr = c/2L = 30 kHz, the round-trip time
τrt = δ−1fsr = 0.33ms, the cavity linewidth κ = πδfsr/F = (2π) 15 kHz, and the cavity

decay time τκ = κ−1 = 10.6ms. Assuming resonance, ∆c = 0, the solution (40.6)
predicts position-independent filling of the cavity at a rate |η/κ|2. That is, we expect
instantaneous transfer of information over a long distance, which is not possible. This
means, that we must generalize the calculation leading to the solution (40.6).
The problem is, that the single resonant mode assumption becomes invalid when the
mode spacing is small and the step due to the sudden pump power increase so steep
that is involves a large band of Fourier components, which can transiently excite sev-
eral cavity modes.
The step response can be obtained as the Laplace transform of the frequency-dependent
transfer function [1417, 489](see Sec. 56.2.1). The transfer function for transmission
is just the Airy function, as shown in Exc. 18.3.7.18,

Etrns = Ein
(1−R)eıkL
1−Re2ıkL ≃ Ein

∑

N

1

1 + 2ı∆c/κ
,

with ∆c,N ≡ ω − ωN ≡ ω − N2πδfsr is the detuning from the N -th cavity ωN . We
describe the incident light by an oscillation suddenly switched on a time t = 0,

Ein(t) = E0θ(t)eıωt .

Using the rules for the Laplace transform, L[θ(t)] = 1
s and L[eıωtf(t)] = (Lf)(s−ıω)],

we get for the Laplace transform of this step signal,

L[Ein(t)] =
E0

s− ıω ,

showing that the sudden switch-on leads to a transient spectral broadening. In reality
the broadening depends on the switching time constant γ−1: the faster the switching,
the larger the broadening. The general response of the cavity in transmission is,

Etrns(t) = TAiry(t) ⋆ Ein(t) ,
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where the Laplace transform of the response function TAiry(t) is nothing else than the
cavity’s Airy function,

L[TAiry(t)] ≡ TAiry(ω) =
Etrns(ω)
Ein(ω)

≃
∑

N

κ/2

κ/2 + ıω − ıωN
.

With these informations, we calculate,

Etrns(t) = L−1 {L[TAiry(t) ⋆ Ein(t)]} = L−1 {L[TAiry(t)] · L[Ein(t)]}

= E0
∑

N

L−1
[

κ/2

κ/2 + s− ıωN
· 1

s− ıωN

]
.

For simplicity, let us consider a single cavity mode labeled N0 and resonant light,
ω = ωN0

. Then,

Etrns(t) = E0L−1
[

κ/2

κ/2 + s− ıωN0

1

s− ıωN0

]

= E0eıωN0
tL−1

[
κ/2

κ/2 + s

1

s

]
= E0eıωN0

t(1− e−κt/2)θ(t) ,

which is exactly what we would expect for large mode spacing, δfsr ≫ γ. Otherwise,
we need to consider the presence of non-resonant modes,

Etrns(t) = E0
∑

N

L−1
[

κ/2

κ/2 + s− ıωN
1

s− ıωN0

]

= E0eıωN0
tL−1

[
κ/2

κ/2 + s− ı(N −N0)2πδfsr

1

s

]
.

Introducing the abbreviation ∆N ≡ (N −N0)2πδfsr, we can also write,

Etrns(t) = E0eıωN0
t
∑

N

L−1
[

κ/2

(κ/2− ı∆N ) s+ s2

]
= E0eıωN0

t
∑

N

κ/2

(κ/2− ı∆N ) ∂t + ∂2t
.

Hence, ∑

N

Ëtrns +
(κ
2
− ı∆N

)
Ėtrns =

κ

2
Ein .

Coming back to the case of large mode separation, we may approximate the differential
equation by,

Ëtrns +
κ

2
Ėtrns =

κ

2
Ein ,

whose solution reproduces the previous result.

40.1.6.6 Ex: Fluorescence spectrum of an empty cavity

a. Calculate the fluorescence spectrum of an empty cavity pumped at a rate η classi-
cally via the autocorrelation function ⟨α∗(t+ τ)α(t)⟩.
b. Calculate the time evolution of the cumulants ⟨â⟩, ⟨â†â⟩, ⟨â†â†â⟩, ⟨ââ†â⟩, and
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⟨â†ââ†â⟩ expanding up to forth order.
c. Based on the results obtained in (b) and applying the quantum regression theorem
derive a set of linear differential equations for the autocorrelation functions ⟨â(τ)⟩,
⟨â†(t+τ)â(t)⟩, ⟨â†(t+τ)â†(t)â(t)⟩, ⟨â(t+τ)â†(t)â(t)⟩, and ⟨â†(t+τ)â(t+τ)â†(t)â(t)⟩.
Express them in matrix notation.
d. Calculate g(1)(τ), the fluorescence spectrum, and g(2)(τ) for the case η = 0.
e. Repeat the calculations in (c) to the case η ̸= 0.

Solution: a. The general solution of the inhomogeneous equation,

[∂t + κ+ ı∆c]f(t) = h (40.62)

is,

f(t) = [f(0)− f(∞)]e−(κ+ı∆c)t + f(∞) (40.63)

=
(
f(0)− h

κ+ı∆c

)
e−(κ+ı∆c)t + h

κ+ı∆c
.

Hence, the time-evolution according to (40.11) is,

αeıωt =

(
α(0)eıωt − η

κ+ ı∆c

)
e(−κ+ı∆c)t +

η

κ+ ı∆c
, (40.64)

or

α(t) = Ae(−κ−ıωc)t +Be−ıωt (40.65)

with A = α(0)− η

κ+ ı∆c
and B =

η

κ+ ı∆c
.

The autocorrelation is now,

⟨α∗(t+ τ)α(t)⟩ = lim
t→∞

1

t

∫ t

0

α∗(t′ + τ)α(t′)dt′ (40.66)

= lim
t→∞

1

t

∫ t

0

(
A∗e(−κ+ıωc)(t

′+τ) +B∗eıω(t
′+τ)

)(
Ae(−κ−ıωc)t

′
+Be−ıωt

′
)
dt′

= e(−κ+ıωc)τ lim
t→∞

1

t

∫ t

0

(
|A|2e−2κt′ +A∗Be(−κ−ıω+ıωc)t

′
)
dt′

+ eıωτ lim
t→∞

1

t

∫ t

0

(
AB∗e(−κ+ıω−ıωc)t

′
+ |B|2

)
dt′

= lim
t→∞

[
e(−κ+ıωc)τ

(
|A|2 e

−2κt − 1

−2κt +A∗B
e(−κ−ıω+ıωc)t − 1

(−κ− ıω + ıωc)t

)
+

+eıωτ
(
AB∗

e(−κ+ıω−ıωc)t − 1

(−κ+ ıω − ıωc)t
+ |B|2

)]

= lim
t→∞

[
e(−κ+ıωc)τ (0 + 0) + eıωτ (0 + |B|2)

]
= |B|2eıωτ .

Hence, the g(1)(τ) function is,

g(1)(τ) =
⟨α∗(t+ τ)α(t)⟩
⟨α∗(t)α(t)⟩ = eıωτ . (40.67)
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The spectrum should consist of an elastic peak at the Fourier frequency ν = ω. A
broadened spectrum could only be observed as a transient at shorter times t <∞.
b. From the Hamiltonian,

Ĥ = −∆câ
†â+ ıη(â− â†) , (40.68)

using the Heisenberg-Liouville equations, we derive the cumulant equations,

[∂t + κ− ı∆c]⟨â⟩ = η (40.69)

[∂t + 2κ]⟨â†â⟩ = η(⟨â†⟩+ ⟨â⟩)
[∂t + 2κ+ 2ı∆c]⟨â†â†⟩ = 2η⟨â†⟩ = 0

[∂t + 3κ+ ı∆c]⟨â†â†â⟩ = η⟨â†â†⟩+ 2η⟨â†â⟩ = 0

[∂t + 4κ]⟨â†â†ââ⟩ = 2η(⟨â†â†â⟩+ ⟨â†ââ⟩) = 0 .

The solution of the first equation (40.69) has already been derived in (40.64),

⟨â(t)⟩ = (⟨â0⟩ − ⟨â∞⟩)e−(κ+ı∆c)t + ⟨â∞⟩ (40.70)

=
(
⟨â0⟩ − η

κ+ı∆c

)
e−(κ+ı∆c)t + η

κ+ı∆c
.

In matrix notation, ∂ty =My + d, with

M =



ı∆c − κ 0 0 0 0 0 0

0 −ı∆c − κ 0 0 0 0 0

η η −2κ 0 0 0 0

0 2η̃ 0 2ı∆c − 2κ 0 0 0

0 0 2η̃ η̃ ı∆c − 3κ 0 0

0 0 0 0 0 −ı∆c − 3κ 0

0 0 0 0 2η̃ 2η̃ −4κ



y =



⟨â⟩
⟨â†⟩
⟨â†â⟩
⟨â†â†⟩
⟨â†â†â⟩
⟨â†ââ⟩
⟨â†ââ†â⟩


, d =



η

η

0

0

0

0

0


. (40.71)

The steady-state solution can be obtained from y = −M−1d. Neglecting phase-
invariant terms marked with η̃ vanish.
c. We can use the result to evaluate correlations such as ⟨â†(t + τ)â(t)⟩. To this
end we solve the second equation (40.69) using the quantum regression theorem, for
example,

d

dτ
⟨â†(t+ τ)â(t)⟩ = ⟨[∂τ â†(t+ τ)]â(t)⟩ (40.72)

= ⟨[η − (κ− ı∆c)â
†(t+ τ)]â(t)⟩

= ηα(t)− (κ− ı∆c)⟨â†(t+ τ)â(t)⟩ .
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The procedure can be extended to higher orders. Introducing the short-hand notation
â ≡ â(t+ τ) and â0 ≡ â(t) we get,

[∂τ + κ+ ı∆c]⟨â†â0⟩ = η⟨â0⟩ = 0 (40.73)

[∂τ + κ+ ı∆c]⟨â†â†0â0⟩ = η⟨â†0â0⟩ = 0

[∂τ + 2κ]⟨â†ââ†0â0⟩ = η(⟨â†â†0â0⟩+ ⟨ââ†0â0⟩) = 0 .

In matrix notation, ∂τy =My + d, with

M =


−κ+ ı∆c 0 0 0 0

0 −κ+ ı∆c 0 0 0

0 0 −κ+ ı∆c 0 0

0 0 0 −κ+ ı∆c 0

0 0 η η −2κ

 (40.74)

y =


⟨â⟩
⟨â†â0⟩
⟨â†â†0â0⟩
⟨ââ†0â0⟩
⟨â†ââ†0â0⟩

 , d = η


⟨â0⟩
⟨â†0â0⟩
⟨â†0â†0â0⟩
⟨â0â†0â0⟩
⟨â†0â0â†0â0⟩

 .

d. Without pumping, η = 0, the homogeneous equations are easy to solve,

⟨â†â0⟩ = ⟨â†0â0⟩e−(ı∆c+κ)τ (40.75)

⟨â†ââ†0â0⟩ = ⟨â†0â0â†0â0⟩e−(ı∆c+κ)τ ,

etc., so that,

g(1)(τ) = e−(ı∆c+κ)τ and g(2)(τ) = e−(ı∆c+κ)τ . (40.76)

The spectrum is a Lorentzian line,

F(⟨â†â0⟩)(ω) =
1

(ω −∆c)2 + κ2
. (40.77)

e. In the presence of pumping, η ̸= 0 we get,

⟨â0⟩ =
η

κ+ ı∆c
(40.78)

⟨â†â0⟩ =
(
⟨â†0â0⟩ − η⟨â0⟩

)
e−(κ+ı∆c)τ + η⟨â0⟩

=

(
⟨â†0â0⟩ −

η2

κ+ ı∆c

)
e−(κ+ı∆c)τ +

η2

κ+ ı∆c

⟨â†â†0â0⟩ =
(
⟨â†0â†0â0⟩ − η⟨â†0â0⟩

)
e−(κ+ı∆c)τ + η⟨â†0â0⟩

⟨â†ââ†0â0⟩ =
(
⟨â†0â0â†0â0⟩ − η(⟨â†â†0â0⟩+ ⟨ââ†0â0⟩)

)
e−2κτ + η(⟨â†â†0â0⟩+ ⟨ââ†0â0⟩) .
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40.2 Interaction of atoms with cavities

In Sec. 35.1 we have shown how to describe the dynamics of a single two-level atom
driven by a quantized electromagnetic field and embedded in an electromagnetic vac-
uum under the assumption that the driving field be a plane wave and the vacuum be
isotropic. In the following, we want to relax these conditions. We generalize Eq. (35.7)
replacing the plane wave eık·r by a mode function uk(r) and allowing the coupling
constant (35.17) gk to depend on k. Such a situation corresponds to placing the atom
inside an optical cavity whose macroscopic boundary conditions create a cooperative
environment for the atom. We note that the role of the cavity can be understood
as generating mirror images with which the atom interacts. Furthermore, both the
atomic excitation and the radiation fields may decay. On the other hand, we restrict
to non-interacting atoms, that is, free atoms or atoms trapped in external potentials
that only interact with each other via re-scattering of an incident radiation field,
i.e. no collisions and no properties requiring symmetrization of their wavefunctions.

In Sec. 40.2.1 we study a single atom or two atoms in a cooperative environment
(e.g. a cavity). In particular, we will find that spontaneous emission is affected by
the presence of a cavity. A wider discussion of scattering from correlated atoms
is postponed to Sec. 41.1. Then, in Sec. 40.2.2 we will introduce some parameters
characterizing the interaction between atoms and cavities. In particular, we will relate
the important notions of the cooperativity of several atoms and the structure factor
for light scattering introduced in 39.1.1 with the cavity-to-free space scattering ratio,
the finesse and the density-of-states of a cavity, simply by pointing out that a cavity
multiplies the number of atoms interacting with a light mode by the number of its
mirror images. In Secs. 40.2.3, 40.2.4, and 40.2.6 we study the Hamiltonian governing
the dynamics of a cavity mode interacting with a single immobile atom emphasizing
the phenomenon of normal mode splitting. In Sec. 40.2.5 we simplify the equations
of motion by adiabatically eliminating the internal atomic degree of freedom. Finally,
in Secs. 40.2.7 and 40.2.8 we study the impact of the atomic center-of-mass degree of
freedom (position and velocity) on the dynamics of the cavity fields. The discussion
of backaction of the cavity fields on the atomic motion is postponed to Chp. 42.

40.2.1 Spontaneous emission in a cooperative environment

40.2.1.1 Atoms in a cooperative environment

The quantization of the electromagnetic field has been presented in Sec. 35.1.1 for
the case of plane wave radiation modes. In the following, we want to generalize the
treatment to arbitrary field modes characterized by mode functions ukλ(r) labeled by
a wavevector and a polarization. These are classical vector functions satisfying the
vector Helmholtz equation and the transversality condition,

[∇2 + k2λ]ukλ(r) = 0 and ∇ · ukλ(r) = 0 , (40.79)

with kλ = ωkλ/c [897]. These classical functions are chosen to form an orthonormal
set, ∫

V

u∗kλ(r) · uk′λ′(r)d3r = δkk′δλ,λ′ . (40.80)
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In free space, the plane wave approximation is generally good,

ufreekλ (r) =
ϵ⃗λ√
V
eık·r , (40.81)

where ϵ⃗kλ is a polarization vector such that k·⃗ϵkλ = 0 and V is the photon quantization
volume.

Let us now rewrite the quantized transverse vector potential of the radiation field
(35.7) as,

Â(r, t) =
∑

kλ

√
ℏ

2ωkλε0
[ukλ(r)âkλ(t) + u∗kλ(r)â

†
kλ(t)] . (40.82)

The quantum properties of the electric and magnetic field operators are determined by
the bosonic annihilation and creation operators, âkλ(t) and â

†
kλ(t), respectively, with

usual commutation relations: [âkλ(t), âk′λ′(t)] = 0 and [âkλ(t), â
†
k′λ′(t)] = δkk′δλλ′ .

For weak-coupling between the atoms and the field, one has the contributions to
the Hamiltonian,

Ĥatom = ℏω0σ̂
z

Ĥfield =
∑

k

ℏωk[â
†
kλ(t)âkλ(t) +

1
2 ]

Ĥatom:field = −ıℏ
∑

k,λ

(σ̂+ + σ̂−)[gkλ(r)âkλ − g∗kλ(r)â†kλ]

, (40.83)

and,

gkλ(r) ≡
√

ωk

2ε0ℏ
d · ukλ(r) (40.84)

is a complex function associated with the coupling strength between the atom and
the field.

By solving the Heisenberg equations of motion for the atomic and field operators
within the Born and Markov approximations (or using the procedure leading to the
expression (35.234)), one obtains the spontaneous emission rate on a transition |e⟩ →
|g⟩ of frequency ω0:

Γ(r) = 2π
∑

k,λ

|gkλ(r)|2δ(ωk − ω0) . (40.85)

which is the same result obtained by the Weisskopf-Wigner theory [897]. To evaluate
the sum we need go to a continuous k-space via,

∑

k,λ

−→ lim
V→∞

∑

λ

V

8π3

∫
d3k . (40.86)
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Hence, in free space, inserting the mode function (40.82),

Γ(r) =
πω0

ε0ℏ
∑

k,λ

|d · ukλ(r)|2δ(ωk − ω0) (40.87)

=
ℏω0

8π2ε0ℏ2
lim
V→∞

∑

λ

∫
d3k |d · ϵ⃗kλ|2δ(ωk − ω0)

= lim
V→∞

∑

λ

∫ |d · ϵ⃗kλ|2E⃗2k
ℏ2

2πδ(ωk − ω0)
V

8π3c
k2dΩkdωk .

Plugging in the density of states for free space (22.53) and (34.23), we finally get,

Γ(r) =
∑

λ

∫ |d · ϵ⃗kλ|2E⃗2k
ℏ2

2πδ(ωk − ω0)ρ(ωk,k)dΩkdωk , (40.88)

where the density of states can now be arbitrarily shaped by the presence of boundary
conditions, such as optical cavities or dielectric or metallic surfaces.

Example 240 (Two atoms): Let us now consider two excited atoms labeled
by q = 1, 2, located at r1 and r2, and described by two of their eigenstates,
{|gq⟩, |eq⟩}. As usual, |gq⟩ is the eigenstate with lowest energy (Egq = − 1

2
ℏωq)

and longer lifetime, i.e. the ground state, whereas |eq⟩ is the eigenstate with
highest energy (Eeq = + 1

2
ℏωq). In presence of an external electromagnetic field,

the Hamiltonian of the two atom-field system in the electric dipole approxima-
tion is,

Ĥ =
∑
q=1,2

[Ĥ
(q)
atom + Ĥ

(q)
atom:field] + Ĥfield ,

where Ĥ
(q)
atom ≡ ℏωq ŝzq is the atomic Hamiltonian, with ŝzq ≡ 1

2
(|eq⟩⟨eq|−|gq⟩⟨gq|)

being the energy operator of the q-th atom, and Ĥ
(q)
atom:field ≡ −d̂q ·

ˆ⃗E(rq) is
the atom-field interaction Hamiltonian. The electric dipole moment operator
satisfies ⟨eq|d̂q|eq⟩ = 0 = ⟨gq|d̂q|gq⟩ and has non-vanishing off-diagonal ele-
ments, i.e. the eigenstates have no permanent dipole moment. We define the
dipole-moment matrix element as dq ≡ ⟨eq|d̂q|gq⟩. The description of the field
is identical to the case of one atom (40.81).
For weak-coupling between the atoms and the field, the interaction Hamiltonian
becomes,

Ĥatom:field = −ıℏ
∑
k,λ

∑
q=1,2

(ŝ+q + ŝ−q )[gkλ(rq)âkλ − g∗kλ(rq)â†kλ] ,

where ŝ+q ≡ |eq⟩⟨gq| and ŝ−q ≡ |gq⟩⟨eq| are the electric dipole raising and low-
ering operators, respectively, satisfying the well-known commutation and anti-
commutation relations: [ŝ+q , ŝ

−
q′ ] = 2ŝzqδqq′ , [ŝ

z
q , ŝ
±
q′ ] = ±ŝ±q δqq′ , and [ŝ+q , ŝ

−
q′ ]+ =

0 with (ŝ±q )
2 = 0.

By solving the Heisenberg equations of motion for the atomic and field opera-
tors within the Born and Markov approximations, one obtains the spontaneous
emission rate on a transition |eq⟩ −→ |gq⟩ of frequency ωq:

Γq = 2π
∑
k,λ

|gkλ(rq)|2δ(ωk − ωq) = πωq
ε0ℏ

∑
k,λ

|dq · ukλ(rq)|2δ(ωk − ωq) ,
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which is the same result obtained by the Weisskopf-Wigner theory [897]. In
addition, due to the coupling between the atoms through the vacuum field, one
also has the cross-damping spontaneous emission rate:

Γq(r1, r2) = Γq(r2, r1) =
πω0

ε0ℏ
∑
k,λ

Re [d1 · ukλ(r1)u
∗
kλ(r2) · d∗2] δ(ωk − ωq) ,

which shows explicitly the cooperative effect of the dipole-dipole interaction in

the spontaneous emission rate.

40.2.1.2 Modification of the natural linewidth by cavities

The cooperativity parameter of a cavity is defined as the rate at which an atom emits
into the volume of a cavity mode normalized to the rate at which it would scatter
into free space,

Υ ≡ Γcav
Γfree

. (40.89)

In a cavity, spontaneous emission is strongly modified [596, 597, 598]. An atom
interacting with a cavity will spontaneously emit into the cavity mode at an increased
(reduced) rate, depending on whether the cavity is resonant or out of resonance. The
natural width due to spontaneous decay and the line shift are calculated by integration
over the coupling force between the atom and every available field mode [see (40.87)],

Γ =
x |deg · ϵ⃗k|2|E⃗k|2

ℏ2
2πδ(ω0 − ωk)ρ(ωk,k)dΩkdωk

∆ω =
∑

i

x |dei · ϵ⃗k|2|E⃗k|2
ℏ2

1

ωei − ωk
ρ(ωk,k)dΩkdωk

, (40.90)

with the field amplitude per photon, |E⃗k| =
√

ℏωk/2ε0V , derived in (40.33), and the
index i running over all internal atomic states. These formulas are simply applications
of second-order perturbation theory (27.16) and of Fermi’s golden rule (27.111) for
transition probabilities both weighed with dynamic structure factor of the cavity.

We use the number of modes per unit of frequency range and per unit of solid
angle in free space derived in (40.41) (ρ/V is the density of states),

ρfree(ωk) =
V ω2

k

(2π)3c3
. (40.91)

Setting θk as the angle between the atomic dipole moment and the cavity axis (which
is not in place, yet, as we are still in free space), d · ϵ̂k = d cosαk = d cos(90◦ − θk) =
d sin θk,

Γfree =

∫
d2 sin2 θk

ℏ2
ℏω0

2ε0V
2π

V ω2
0

(2π)3c3
sin θdθdϕ (40.92)

=
d2k3

4πε0ℏ

∫ π

0

sin3 θdθ =
d2k3

3πε0ℏ
.
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Figure 40.7: Illustration of cooperativity in a cavity. An excited atom can decay by emitting
light into a cavity mode or into free space. Note that the cavity is not pumped directly by
an incident laser beam.

Since the integration covers the whole solid angle of space 4π and the free space is
isotropic, there is no preferred orientation, and we can perform the integration setting
θ ≡ θk. The result coincides with earlier calculations (34.46).

Now, we put the cavity in place, but tune it off resonance, such that no photons
can be emitted into the solid angle covered by the cavity. That is, in the presence of
the cavity, the solid angle of free space into which photons can be emitted is restricted.
We repeat the calculation (40.92), but now we are not free to choose the axis of the
coordinate system arbitrarily. Instead, we we assume that θk(θ, ϕ) ≃ const over the
small solid angle covered by the cavity, θ, ϕ ∈ Ωcav,

Γfree/∈cav =
∫

êk /∈cav

d2 sin2 θk
ℏ2

ℏω0

2ε0V
2π

V ω2
0

(2π)3c3
sin θdθdϕ (40.93)

≃ Γfree −
d2k3 sin2 θk
8π2ε0ℏ

∫

êk∈cav
sin θdθdϕ = Γfree

(
1− 3

8π
Ωcav sin

2 θk

)
.

Finally, we study the situation, when the cavity is in place but now tuned on
resonance. Then the density of states in the photon emission directions k ∈ cavity is
modulated by the Airy function (40.42),

ρcav(ωk,k) = ρfree(ωk)L(ωk) . (40.94)

That is, photons can be emitted into the cavity mode with increased probability.
Once again we repeat the calculation (40.92), but now inserting the density of states
of the cavity,

Γcav =

∫

êk∈cav

d2 sin2 θk
ℏ2

ℏω0

2ε0V
2πL(ω0)

V ω2
0

(2π)3c3
sin θdθdϕ (40.95)

≃ d2k3 sin2 θk
8π2ε0ℏ

L(ω0)

∫

êk∈cav
sin θdθdϕ = ΓfreeL(ω0)

3

8π
Ωcav sin

2 θk ,

where, in the last step, we substituted the free space decay rate (40.92). An analogous
calculation for the cooperative Lamb shift ∆ωcav is left to the Exc. 40.2.9.1:

Γcav = Γfree
3
8πΩcav sin

2 θkL(ω0)

∆ωcav = Γfree
3

32πΩcav sin
2 θk

L′(ω0)
L(ω0)

2δfsr
. (40.96)
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The quantities Γcav and Γfree∈cav are scattering rates into complementary solid
angles. Now, the total spontaneous emission rate, which determines the lifetime of
the radiating excited state and the spectral width of the transition is simply the sum
of the partial scattering rates,

Γ = Γfree/∈cav + Γcav (40.97)

= Γfree
(
1− 3

8πΩcav
)
sin2 θk + ΓfreeL(ω0)

3
8πΩcav sin

2 θk

= Γfree
[
1 + (L(ω0)− 1) 3

8πΩcav
]
sin2 θk .

Assuming for simplicity, θk = π/2, we find the extremes of the spontaneous emission
rate, Γenh and Γinh, when the cavity is on or off resonance. With a resonant high
finesse cavity the emission is obtained via kL→ 0,

Γenh = Γfree

[
1 +

(√
1 +

(
2F
π

)2 − 1

)
3
8πΩcav

]
≃ Γfree

(
1 + 3

4π2FΩcav
)
. (40.98)

assuming high finesse, F ≫ 1. With a non-resonant cavity, the emission is obtained
via kL→ π/2,

Γinh = Γfree


1 +


 1√

1 +
(
2F
π

)2 − 1


 3

8πΩcav


 ≃ Γfree

(
1− 3

8πΩcav
)
. (40.99)

For a small solid angle, we can expect a big increase of the scattering into the cavity,
but without noticeable inhibition of the total decay, Γinh ≃ Γfree.

If the atoms are saturated by an incident laser, they scatter light into the cavity
at a rate (apart from a factor 1

2 ),

Γcav = ΓfreeL(ω0)
3
8πΩcav . (40.100)

Without cavity the emission into the same solid angle is obtained via F → 0,

Γfree∈cav = Γfree
3
8πΩcav . (40.101)

The scattering will fill the cavity with photons, until the leakage equalizes the
pumping. When the balance is reached, Γcav will also be the rate at which photons
are emitted by the cavity mode. We calculate an example in Exc. 40.2.9.2.

40.2.1.3 Purcell factor for confocal and concentric cavities

Using the solid angle of a confocal cavity (40.48), the cooperativity parameter is,

Υ ≃ 3F

4π2
Ωcav =

3F

4π2

8πb2

L2
, (40.102)

where b is the clear aperture of the cavity mirrors. That is,

Υ =
F

π

6b2

L2
. (40.103)
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40.2.1.4 Purcell factor for the TEM00 cavity mode

With the solid angle (40.54) calculated for a this TEM00 cavity mode we calculate
the cooperativity parameter,

Υ ≡ Γcav
Γfree

= L(ω0)
3
8πΩcav =

√
1 +

(
2F

π

)2
3

8π
Ωcav (40.104)

≃ 3F

4π2
Ωcav =

Γenh
Γfree

− 1 =
3F

4π2

8π

k2w2
0

,

that is,

Υ =
F

π

6

k2w2
0

, (40.105)

which is also called Purcell factor.
Now, exploiting the relationships (40.54), (40.105), and (40.27),

Ωcav =
8π

k2w2
0

, Υ =
F

π

6

k2w2
0

,
F

π
=
δfsr
κ

, (40.106)

and defining a new quantity,
g2 = ΥκΓfree , (40.107)

which we will call the atom-field coupling strength, we may rewrite the prefactor
Γfree

3
8πΩcav for the case of Gaussian cavity modes,

Γfree
3

8π
Ωcav =

g2

2δfsr
. (40.108)

Close to a cavity resonance, kL = ω/2δfsr = (ωc +∆c)/2δfsr = 2πN +∆c/2δfsr,
the sine appearing in the Airy function (40.42) may be expanded sin kL = sin∆c/2δfsr ≃
∆c/2δfsr. Furthermore, assuming a high finesse, F ≫ 1, the Airy function simplifies
to,

L(ω0) =

√
1 + (2F/π)2

1 + (2F/π)2 sin2 ω
2δfsr

≃ 2F/π

1 + ∆2
a/κ

2
. (40.109)

Inserting this into the formulae (40.96), where we set θk = π
2 ,

Γcav ≃ g2κ
∆2

c+κ
2

∆ωcav ≃ −2g2∆c

∆2
c+κ

2

. (40.110)

Obviously, the atom-field coupling strength g plays a central role in the modification
of the emission spectra of atoms interaction with cavities. Therefore, we will have to
study this quantity more deeply in the next sections.

Example 241 (Cooperativity of non-degenerate and confocal cavities): For

example, for a non-degenerate linear cavity with finesse F = 110000 and waist

w0 = 50µm at 689 nm, the cooperativity is relatively weak, Υ ≃ 1. Still, at this
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Figure 40.8: (code) Spontaneous emission on the strontium atom cooling transition (λ =

689 nm, Γ = (2π) 7.6 kHz) in a L = 3.6 cm long cavity with F = 110000 and w0 = 50µm.

(a) Cooperativity L(ω) from Eq. (40.42) as a function of the detuning of the cavity.

(b) Linewidth Γcav from (40.96)(ii) and (c) frequency shift of the strontium transition from

Eq. (40.96)(ii). (d) Spontaneous emission into the cavity (blue) and into the open space

(red).

cooperativity, half of the spontaneously emitted photons go into a tiny solid an-

gle represented by the cavity. Confocal or concentric cavities may present more

favorable geometries [596, 597, 598]. With N0 = 104 saturated strontium atoms,

the light power scattered into the cavity is Pj = 20 fW. Estimation the cavity

transmission by T ≃ π/F , we expect that a number of T Pcav
ℏω = 107 s-1 photons

can be detected by a photodetector recording the photon number leaking out of

the cavity.

40.2.2 Characterization of the atom-field coupling

In Sec. 40.1.3 we started introducing a number of quantities characterizing empty
cavities. We will now pursue this task including their interaction with atoms. In
particular, we will introduce three important quantities allowing us to measure the
degree of quantization of the system: the cooperativity Υ, the saturation parameter
s, and the cavity resolution r.

40.2.2.1 The atomic dipole moment

As usual, the interaction strength of an atom with a light field is measured by the
atom-field coupling constant, which is precisely HALF the single photon Rabi fre-
quency. Using relationships derived in Sec. 40.1.3 and the expression (34.41) for the
atomic dipole moment d, we find,

g ≡ dE1(0)
ℏ

=

√
3πΓω

2k3Vm
=

√
3Γδfsr
k2w2

, (40.111)

where E1(0) the electric field produced by a single photon inside the cavity mode
volume Vm calculated in (40.30) and Γ is the spontaneous decay rate. See also (watch
talk).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavitySpontemission.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/CharacterizeCavity
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/CharacterizeCavity
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Figure 40.9: Relevant parameters for an atom interacting with a cavity.

40.2.2.2 Single atom reflection coefficient

Based on the complex atomic polarizability (18.122),

αpol
ε0
≃ 6π

k3
−1

ı+ 2∆/Γ
, (40.112)

the single atom reflection coefficient is defined as,

β∆ =
k

πw2

∣∣∣∣
Re αpol
ε0

∣∣∣∣ =
6

k2w2

2Γ|∆a|
4∆2

a + Γ

|∆|≫Γ−→ 6

k2w2

Γ

2|∆a|
, (40.113)

where ∆a = ω−ω0. The resonant reflection coefficient can be interpreted in terms of
a phase shift that depends on the matching between the resonant optical cross-section
of the atom, σ0 = 3λ2/2π, and the cross section of the optical mode,

β0 =
σ0
πw2

=
6

k2w2
=

2g2

δfsrΓ
. (40.114)

The total reflection coefficient is increased by the number of atoms N and the
number of photon round trips F in the cavity, which gives out of resonance,

NFβ∆ ≃ NF
6

k2w2

Γ

2∆a
= NF

g2

∆a

kV

ωπw2
= NU0

L

c
F =

NU0

κ
, (40.115)

where we introduced the light-shift produced by a single off-resonant photon and the
Rayleigh scattering rate produced by a single photon,

U0 ≃
g2

∆a
and γ0 ≃

g2Γ

∆2
a

. (40.116)

Using the dipole moment d =
√
3πε0ℏΓ/k3 and defining the electric field am-

plitude per photon E1 by the photon number n, the power P , and the intensity
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I = ε0cnphE21 = 2P/πw2
0, we calculate for the single-photon Rabi frequency (or atom-

field coupling strength),

g =
dE1
ℏ

=

√
1

ℏ2
3πε0ℏΓ
k3

I

ε0cnph
=

√
1

ℏ2
3πε0ℏΓ
k3

1

ε0cnph

2P

πw2
0

=

√
6

k2w2
0

Γ
P

nphℏω
.

(40.117)
The single-photon light shift (or atom-atom coupling strength) is,

U0 =
g2

|∆a|
=

6

k2w2
0

Γ

|∆a|
P

nphℏω
= β∆

P

nphℏω
, (40.118)

and the single-photon Rayleigh scattering rate,

γ0 =
g2Γ

∆2
a

=
6

k2w2
0

Γ2

∆2
a

P

nphℏω
. (40.119)

In a cavity the flux δfsr = P/nphℏω is just the photon round trip rate (or free
spectral range). 1/δfsr is the time a photon interacts with an atom. In free space,
this does not make sense to me, because I don’t know how define the mode volume. I
can however consider the interaction of a photon with an extended sample of length
L. In this case, a photon interacts with the sample for the time L/c, so that,

U0 =
g2

|∆a|
=

6

k2w2
0

Γ

|∆a|
c

L
= β∆

c

L
, (40.120)

and

γ0 =
g2Γ

∆2
a

=
6

k2w2
0

Γ2

∆2
a

c

L
. (40.121)

This means, we can use the CARL equations derived for a ring cavity by just substi-
tuting κ = δfsr = c/L, where L is now not the cavity but the sample length.

40.2.2.3 Optical density

Lambert-Beer’s law relates the amplitude of the field transmitted to the incident (see
also Eq. (43.140)),

Et
E0

= exp

[
ıσ(∆a)

(
ı

2
− ∆a

Γ

)∫ ∞

−∞
n(r)dz

]
= e−b/2eıφ . (40.122)

I.e. the field is shifted by an amount φ and absorbed by an amount b. The expo-
nent (called optical density) can be rewritten, if we assume a number of N atoms
homogeneously distributed over a cylinder with length L and radius r̄ = w0,

OD = ıσ(∆a)

(
ı

2
− ∆a

Γ

)∫ ∞

−∞
n(r)dz = σ0

Γ2

∆2
a

(
−1

2
− ı∆a

Γ

)∫ L

0

N

πr̄2L
dz (40.123)

= σ0
Γ2

∆2
a

(
−1

2
− ı∆a

Γ

)
N

πw2
0

=
6N

k2w2
0

Γ2

∆2
a

(
−1

2
− ı∆a

Γ

)

=
6N

k2w2
0

(
−1

2

Γ2

∆2
a

− ıΓ

∆a

)
= N

L

c
(−γ0 − ıU0) .



40.2. INTERACTION OF ATOMS WITH CAVITIES 2217

Hence, the parameters Nγ0 and NU0 are nothing else that the optical density per
photon round trip time δfsr = c/L,

OD =
−N(γ0 + ıU0)

δfsr
. (40.124)

40.2.2.4 Collective cooperativity

The frequency shift accumulated during a round trip in the cavity, δfsrβ0, becomes
noticeable, when it exceeds the linewidth of the cavity κ. From this condition, we
obtain the optical depth for a single passage through the atomic sample multiplied
by the finesse of the cavity, which is precisely the cooperativity parameter,

Υ ≡ δfsrβ0
κ

=
F

π

6

k2w2
=

2g2

κΓ
. (40.125)

The sensitivity to the atom number can be measured in terms of a critical atom
number Ncrt, which the system can resolve,

Ncrt =
4π

Fβ0
=

1

Υ
. (40.126)

While the strong coupling regime of the CQED requires Υ > 1 with a single atom,
collective cooperativity is reached with N atoms if NΥ > 1 [193, 285]. In this case,
the atomic ensemble couples to the mode like a single ’super-atom’, the coupling
force being magnified to gN = g1

√
N . We have already obtained this result within

the Jaynes-Cummings model for two indistinguishable atoms coupling to the same
light mode and forming a Dicke state (see Sec. 41.1.1).

40.2.2.5 Saturation parameter in cavities

The saturation parameter for a single photon is given by,

s =
2Ω2

1

Γ2
=

8g2

Γ2
, (40.127)

where Ω1 is the single photon Rabi frequency. Therefore, the number of photons
needed to saturate an atomic transition is,

nsat =
1

s
. (40.128)

We see, that there is a symmetry between Υ and s, that is, between Ncrt and nsat.
The regime NΥ > 1 denotes the collective behavior of N atoms in the same way as
nsat > 1 indicates saturation. While Υ depends only on the phase matching between
the atomic antenna and the cavity, s also depends on the cavity mode volume and
the natural decay rate.
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40.2.2.6 Cavity resolution parameter

Comparing the photonic recoil, which is given by,

ωrec =
ℏk2

2m
, (40.129)

with the resolution power of a cavity κ, we can define the resolution parameter,

r ≡ ωrec
κ

. (40.130)

Figure 40.10: (a) If the recoil-induced Doppler shift of the atom moving along the cavity
axis is smaller than the cavity linewidth, the light is preferentially scattered into the cavity
mode. (b) Else it is scattered outside the mode.

With the three parameters defined in Eqs. (40.125), (40.127), and (40.130) we are
able to measure the degree of quantization of the degrees of freedom involved in the
matter-light interaction in a cavity. The cooperativity Υ measures the resolvability
of single atoms in the atomic cloud, which depends on the phase matching between
the atomic antenna (i.e. its optical cross section) and the focus of the optical mode.
The saturation parameter s measures the resolvability of single photons in the cavity.
And the cavity resolution parameter r measures the resolvability of the Doppler-shift
due to the atomic center-of-mass motion caused by the absorption of a single photon.
If one wants to operate in an environment, where all degrees of freedom involved in
the atom-light interactions are fully quantized, the atoms need to be placed into a
cavity whose characteristic quantities are all large, Υ, s, r ≫ 1.

In Exc. 40.2.9.3 we compare the coupling force and other characteristic parameters
for various combinations of atomic species and optical cavities. In Exc. 40.2.9.4 we
calculate the number of photons in a cavity pumped in or out of resonance.

40.2.3 Jaynes-Cummings model for one or two radiation modes

To study the dynamics of the coupled atom-cavity system, we consider the Jaynes-
Cummings Hamiltonian (35.108) (or (40.83)), for a more concrete situation. That
is, we allow for optical pumping and decay of internal states with the rates R and
Γ, respectively, and we allow for inhomogeneous (however, mostly one-dimensional)
mode functions g(z) = geıkz. On the other hand, we stick to a single atom (or N
uncorrelated atoms), we disregard polarization and multi-mode excitation, and we
will explicitly consider and compare two well distinct cases, linear and ring cavities.
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40.2.3.1 Linear and ring cavities

From the Heisenberg equations with the Hamiltonian (40.83),

Ĥatom = −∆aσ̂
+σ̂−

Ĥcav = −∆câ
†â

Ĥatom:cav = g(z)â†σ̂− + h.c.

Ĥlaser:cav = −ıη(â− â†)

. (40.131)

The Hamiltonian for a single motionless atom interacting with two cavity modes
|+⟩ and |−⟩ (we may, for instance, consider the counterpropagating modes of a ring
cavity) reads,

Ĥatom = −∆aσ̂
+σ̂−

Ĥcav = −∆+â
†
+â+ −∆−â

†
−â−

Ĥatom:cav = g(z)â†+σ̂
− + h.c.+ g(z)â†−σ̂

− + h.c.

Ĥlaser:cav = −ıη+(â+ − â†+)− ıη−(â− − â†−)

. (40.132)

40.2.3.2 Time-evolution of an atom in a ring cavity

The coupling of the atom to the cavities g(z) will, in general, depend on the atomic
position. For simplicity let us, however, consider uniform and identical coupling,
g+(z) = g−(z) = g, and furthermore assume that both cavities be on resonance,
∆+ = ∆− = 0. Finally, neglecting spontaneous emission and pumping, the total
number of photons is conserved. With ∆a = ω − ωa we get,

Ĥ = ωâ†+â+ + ωâ†−â− + ω0(σ̂
+σ̂ − 1

2 ) + gâ†+σ̂
− + gâ†−σ̂

− + h.c. . (40.133)

Expanding the operators â± =
∑
n±
|n± − 1⟩⟨n±| and σ̂− = |1⟩⟨2| we can, expand

the state of the system like,

|ψ(t)⟩ =
n∑

k=0

cj,n+,n− |j, n+, n−⟩ . (40.134)

Alternatively, in analogy with Sec. 35.4.2, we may organize the Hilbert space in or-
thogonal subspaces, Ĥ =

⊕
n Ĥn, each one having N ≡ j + n+ + n− energy units

distributed over the atomic excitation state j = 0, 1 and the numbers of photons n±
in each mode. Hence, every subspace is of dimension 2N + 1. In this dressed states
picture, introducing the photon imbalance D ≡ n+−n− = −N, ..., N , we may expand
the coupled state like,

|ψ(t)⟩ =
∞∑

N=0

N∑

D=−N
c̃N,D|N,D⟩ . (40.135)
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Obviously, the set of three quantum numbers {j, n+, n−} is equivalent to the set of
two quantum numbers {N,D} and can be recovered by,

j = 1 + (−1)N+D−1 , n± = 1
2 (N ±D − j) . (40.136)

Hence, states with odd N +D are excited atomic states, and states with even N +D
are ground states. We may now write down the Hamiltonian,

ĤN = (N − 1
2
)ωI2N+1 + (40.137)

+
1

2



∆ g+
√
N

g+
√
N −∆ g−

√
1

g−
√
1 ∆ g+

√
N − 1

g+
√
N − 1

. . . g−
√
N − 1

g−
√
N − 1 ∆ g+

√
1

g+
√
1 −∆ g−

√
N

g−
√
N ∆


.

The subscripts of the coupling constants g+ = g− are there only to clarify to which
mode the photon belongs. Very far from resonance, where the interaction is dispersive,
we may treat the light field perturbatively, as shown in (35.130),

ĤN = (N − 1
2
)ωI2N+1 + (40.138)

+



∆
2
+

Ng2++0g2−
4∆

−∆
2
− Ng2++1g2−

4∆

∆
2
+

(N−1)g2++1g2−
4∆

−∆
2
− (N−1)g2++2g2−

4∆

. . .


,

or with g+ = g−,

(ĤN )DD′ =

[(
N +

1

2

)
ω − 1

2

g2

4∆
+ (−1)N+D

(
∆

2
+

(
N +

1

2

)
g2

4∆

)]
δDD′ .

(40.139)
If only the upper level of the atom interacts with both light fields, all terms with
negative light shift disappear,

(ĤN )DD′ =

[(
N +

1

2

)
ω +

1

2

Ng2

4∆
+ (−1)N+D

(
∆

2
+
N

2

g2

4∆

)]
δDD′ . (40.140)

As shown in Sec. 35.4.2, we propagate the evolution of the coupled state via

|ψ(t)⟩ = e−ıĤt|ψ(0)⟩. As the initial condition we may choose the atom to be in its
ground state and the two field modes in uncorrelated Glauber states,

cj,n+,n− = ⟨j, n+, n−|ψ⟩ = e−|α+|2/2−|α−|2/2 α
n+

+ α
n−
−√

n+!n−!
δj,0 (40.141)

= c̃N,δ = e−|α+|2/2−|α−|2/2α
(N+δ−j)/2
+ α

(N−δ−j)/2
−√

(N+δ−j
2 )!(N−δ−j2 )!

δ1+(−1)N+δ−1,0 .
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Figure 40.11: (code) Evolution of the coupled atom-ring cavity system. (a) Bloch vector,

(b) photon distributions, and (c) Husimi function.

The observables of interest are the atomic Bloch vector (34.163), whose compo-
nents are obtained from,

ρij = ⟨i|Trn+,n− ρ̂|j⟩ =
∑

n+,n−

⟨i, n+, n−|ψ⟩⟨ψ|j, n+, n−⟩ (40.142)

=
∑

n+,n−

c∗i,n+,n−
cj,n+,n− =

∑

n+,n−

c̃∗n++n−+i,n+−n−
c̃n++n−+j,n+−n− ,

the photon statistics in each mode,

pn+
= ⟨n+|Tri,n− ρ̂|n+⟩ =

∑

j,n−

⟨j, n+, n−|ψ⟩⟨ψ|j, n+, n−⟩ (40.143)

=
∑

j,n−

|cj,n+,n− |2 =
∑

j,n−

|c̃n++n−+j,n+−n− |2 ,

and analogously for pn− , and the field distribution functions, such as the Husimi
function,

πQ+(α) ≡ ⟨α+|Tr i,n−ρ̂|α+⟩ (40.144)

= e−|α+|2
∑

n−




∣∣∣∣∣∣
∑

n+

c1,n+,n−

αn√
n!

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣
∑

n+

c2,n+,n−

αn√
n!

∣∣∣∣∣∣

2

 ,

and analogously for Q−(α), or the Wigner functions W±(α) from the coefficients
c̃j,n+,n− , respectively, c̃N,δ, as shown in Secs. 35.2.2 and 35.4.3.

40.2.4 Normal-mode splitting in linear and ring cavities

The Jaynes-Cummings model introduced in Sec. 35.4 represents an idealized model of
the interaction of a single cavity mode with a single atom. In this section we reconsider
this model taking into account the facts that the coupling strength may vary in space

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_Opticats2Modes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_Opticats2Modes.m
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(via the introduction of mode functions) and that the cavity may interact with a
reservoir (via the introduction of couplings to pump fields and losses.

We will also study the phenomenon of normal mode splitting, which is one of the
most direct witnesses of an ongoing atom-cavity interaction (see the vacuum Rabi
splitting discussed in Exc. 35.4.5.4).

40.2.4.1 Linear cavities

The starting point is the full Jaynes-Cummings Hamiltonian within the RWA (40.131)
for an atom interacting with one mode of a linear optical cavity,

ĤJC = −∆aσ̂
+σ̂− −∆câ

†â+ g sin kz(â†σ̂− + âσ̂+)− ıη(â− â†) . (40.145)

For linear cavities normal mode splitting is derived in Exc. 40.2.9.5, where we compare
the solution obtained by full numerical integration of the Jaynes-Cummings Hamilto-
nian (40.131) with an analytical approximation obtained in the weak excitation limit
g|α|2 ≪ Γ,∆a

2,

α ≃ η

κ− ı∆c +
Ng2

Γ−ı∆a

=
η

κ+Nγ0 + ı(NU0 −∆c)
. (40.146)

The solution coincides with one obtained for a system, where the atomic degree of
freedom is adiabatically eliminated atom (see Sec. 40.2.5).

40.2.4.2 Ring cavities

The starting point is the full Jaynes-Cummings Hamiltonian within the RWA (40.132)
for an atom interacting with two modes of an optical cavity. For two counter-
propagating modes of a ring cavity it reads,

ĤJC = −∆aσ̂
+σ̂− −

∑

±
∆câ

†
±â± + g(â†±σ̂

−e∓ıkz + â±σ̂
+e±ıkz)− ıη±(â± − â†±) .

(40.147)
Note, that here, we do not treat the recoil e∓ıkz as a degree of freedom, but just
as a parameter depending on the location of the atom. (We will come back to this
in Chp. 42.) Decay processes can be considered in a master or in Heisenberg equa-
tions via jump operators L̂k = σ̂−, σ̂+, â+, â− describing decay processes occurring,
respectively, at rates γk = 2Γ, 2R, 2κ, 2κ.

40.2.4.3 (Anti-)Symmetric modes

Let us now introduce symmetric and anti-symmetric modes by,

b̂s =
1√
2
(â+e

ıkz + â−e
−ıkz) and b̂a = 1√

2
(â+e

ıkz − â−e−ıkz) , (40.148)

2Note that for N uncorrelated atoms, defining a bunching parameter via b ≡ 1
N

∑
j sin kzj and

introducing the abbreviations Uγ ≡ U0−ıγ0 and ∆κ ≡ ∆c+ıκ, the result (40.146) can be generalized
to,

α ≃ −ıη
NbUγ −∆κ

.
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that is,

â+ =
b̂s + b̂a√
2eıkz

and â− =
b̂s − b̂a√
2e−ıkz

, (40.149)

which satisfy the commutations rules [b̂s, b̂
†
s] = 1 = [b̂a, b̂

†
a]. We can then rewrite the

Hamiltonian,

ĤJC = −∆aσ̂
+σ̂− +

√
2g(b̂†sσ̂

− + b̂sσ̂
+)−

∑

±
∆câ

†
±â± − ıη±(â± − â†±) (40.150)

= Ĥatom + Ĥatom:cav + Ĥcav + Ĥlaser:cav .

We see that only the symmetric mode couples to the atom. On the other hand, both
modes contribute to the field energy,

Ĥcav = ∆c(â
†
+â+ + â†−â) = ∆c(b̂

†
sb̂s + b̂†ab̂a) . (40.151)

Now, let us check the pump terms,

Ĥlaser:cav = ıη+(â+ − â†+) + ıη−(â− − â†−) (40.152)

= ı√
2

[
(η+e

−ıkz + η−e
ıkz)b̂s − (η+e

ıkz + η−e
−ıkz)b̂†s

+(η+e
−ıkz − η−eıkz)b̂a − (η+e

ıkz − η−e−ıkz)b̂†a
]
.

For η+ = η− = η we get,

Ĥlaser:cav = η
√
2
[
ı(b̂s − b̂†s) cos kz + (b̂a + b̂†a) sin kz

]
. (40.153)

Hence, for kz = 0 only the symmetric mode is pumped (no central peak). On the other
hand, for kz = π

2 only the anti-symmetric mode is pumped, so that no normal-mode
splitting is expected.

For η− = 0 we get,

Ĥlaser:cav =
ıη+√

2

[
e−ıkz(b̂s + b̂a)− eıkz(b̂†s + b̂†a)

]
. (40.154)

Hence, both modes are pumped and we observe three peaks. The normal-mode split-
ting can be observed in transmission spectra, as we will demonstrate in the following.

40.2.4.4 Normal modes of a ring cavity

We start from the Hamiltonian (40.147) and derive the Heisenberg equations,

˙̂σ− = (ı∆a − Γ
2 )σ̂
− − ıg(eıkzâ+ + e−ıkzâ−)σ̂

z (40.155)

˙̂σz = 2ıg(eıkzâ+ + e−ıkzâ−)σ̂
+ − 2ıgσ̂−(e−ıkzâ†+ + eıkzâ†−)− Γ(I2 + σ̂z)

˙̂a± = (ı∆c − κ)â± − ıgσ̂−e∓ıkz + η± .

The stationary solution follows from the expectation values of these equations,

0 = (ı∆a − Γ
2 )⟨σ̂−⟩+ ıg(eıkz⟨â+σ̂z⟩+ e−ıkz⟨â−σ̂z⟩) (40.156)

0 = 2ıg(eıkz⟨â+σ̂+⟩+ e−ıkz⟨â−σ̂+⟩)− 2ıg(e−ıkz⟨â†+σ̂−⟩+ eıkz⟨â†−σ̂−⟩)− Γ(1 + ⟨σ̂z⟩)
0 = (ı∆c − κ)⟨â±⟩ − ıg⟨σ̂−⟩e∓ıkz + η± .
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Neglecting all correlations, we derive from (40.156)(i),

⟨σ̂−⟩ = −ıg
Γ
2 − ı∆a

(eıkzα+ + e−ıkzα−)⟨σ̂z⟩ . (40.157)

Substituting ⟨σ̂±⟩ in (40.156)(ii),
(
1 +

2g2

Γ2

4 +∆2
a

(|α+|2 + |α−|2 + e2ıkzα∗−α+ + e−2ıkzα∗+α−)

)
⟨σ̂z⟩ = −1 , (40.158)

and in (40.156)(iii),

(κ− ı∆c)α± −
g2

Γ
2 − ı∆a

(eıkz∓ıkzα+ + e−ıkz∓ıkzα−)⟨σ̂z⟩ = η± . (40.159)

Substituting ⟨σ̂z⟩ from (40.156) in (40.156),

(κ− ı∆c)α± −
g2(Γ2 + ı∆a)(α± + e∓2ıkzα∓)

Γ2

4 +∆2
a + 2g2(|α+|2 + |α−|2 + e2ıkzα∗−α+ + e−2ıkzα∗+α−)

= η± .

(40.160)
Assuming weak excitation, g|α±|2 ≪ Γ,∆a, this last expression simplifies to,

(
κ− ı∆c −

g2

Γ
2 − ı∆a

)
α± −

g2

Γ
2 − ı∆a

e∓2ıkzα∓ ≃ η± , (40.161)

or, using the abbreviations,

Uγ ≡ U0 − ıγ0 ≡
g2

∆a + ıΓ
=
g2(∆a − ıΓ2 )

Γ2

4 +∆2
a

, (40.162)

we write,
[κ+ ı(Uγ −∆c)]α± + ıUγe

∓2ıkzα∓ ≃ η± . (40.163)

Resolving for α±,

α± ≃
η± [κ+ γ0 + ı(U0 −∆c)]− η∓(γ0 + ıU0)e

∓2ıkz

[κ+ γ0 + ı(U0 −∆c)]
2 − (γ0 + ıU0)2

, (40.164)

from which we can determine the transmission,

T± =

∣∣∣∣
κα±
η±

∣∣∣∣
2

. (40.165)

This is illustrated in Fig. 40.12.

Example 242 (Generalization for many atoms): ForN uncorrelated atoms,
defining a bunching parameter via b ≡ 1

N

∑
j e

2ıkzj and introducing the abbre-
viations Uγ ≡ U0− ıγ0 and ∆κ ≡ ∆c+ ıκ, the result (40.146) can be generalized
to,

α± ≃ −ı η±(NUγ −∆κ)− η∓NbUγ
(NUγ −∆κ)2 − (N |b|2Uγ)2

. (40.166)
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Figure 40.12: (code) Normal-mode splitting in a ring cavity observed in transmission spectra

T+ calculated from (40.165) with g = κ, η+ = 0.1κ, and Γ = R = 0. (a) The blue curve is

obtained for one-sided pumping (η− = 0), the green curve for symmetric pumping (η− = η+
and kz = 0), and the red curve for anti-symmetric pumping (η− = η+ and kz = π/2). The

green dots are obtained for symmetric pumping via numerical integration of the Hamiltonian

(40.147). (b) Transmission spectra T+ (green) and T− (red) for one-sided pumping. (c) Phase

of the standing wave formed by backscattering of probe light into the mode α−.

Example 243 (Level splitting for some limiting cases): The first limiting
case consists in setting η± = 0 and assuming the light field to be classical. Then
we obtain the Rabi Hamiltonian studied in previous sections,

ĤRabi = −∆aσ̂
+σ̂− + 1

2
Ω(σ̂+ + σ̂−) =

(
0 1

2
Ω

1
2
Ω −∆a

)
.

Its eigenvalues: E1,2 = − 1
2
∆a ±

√
∆2
a +Ω2 exhibit the famous Autler-Townes

splitting.
The second limiting case consists adiabatically eliminating the atomic states.
This is valid if |∆a| ≫ Γ. Then we obtain the cavity Hamiltonian,

Ĥcav = U0(e
−2ıkzâ†+â− + e2ıkzâ+â

†
−) +

∑
±

(U0 −∆c)â
†
±â± − ıη±(â± − â†±) ,

with Lk = â+, â− and γk = 2κ, 2κ, again for the case z = η± = 0. The spectrum

is asymmetric because ∆a ̸= 0 3,4

3We note that, setting z = η± = 0, the cavity Hamiltonian Ĥcav = U0(â
†
+â− + â+â

†
−) − (∆c −

U0)
∑
± â
†
±â± has the same structure as the Rabi Hamiltonian, which we can write, introducing

annihilation and creation operators ψ̂g,e and ψ̂†g,e for atoms in ground and excited states, ĤRabi =
1
2
Ω(ψ̂†eψ̂g + ψ̂†gψ̂e) − ∆a

∑
j=g,e ψ̂

†
j ψ̂j . This emphasizes the analogy between Autler-Townes and

normal-mode splitting.
4As the atomic degrees of freedom have been eliminated, spontaneous emission must be reintro-

duced by hand when required.
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40.2.5 Adiabatic elimination of internal states

The equations of motion (40.11) describe the evolution of the light fields in counter-
propagating modes of a ring cavity. Without scatterer located in the mode volume,
the modes evolve independently. In contrast, a scatterer (e.g. an atom or a beam split-
ter) may redistribute photons between the modes, whose dynamics thereby becomes
coupled.

We will in the following assume the scatterer as immobile, except for Sec. 40.5.1,
where we consider a vibrating scatterer. Immobile scatterers can, for example, be
heavy masses, such as imperfections on the surfaces of the mirrors of the cavity
(scratches, dust particles, etc.), which can scatter light both, out of the cavity and
into the reverse cavity mode. In laser gyroscopes this backscattering may induce a
locking of counterpropagating modes and hamper their proper operation.

40.2.5.1 Classical derivation of coupled atom-ring cavity equations

The equations of motion (40.11) describe the light fields classically. Hence, it is not
surprising that they can be derived with entirely classical arguments. Here, we will
show this for a ring cavity in the presence of an atom sitting at a fixed position
z on the cavity’s optical axis. We understand the atom as a beamsplitter located
within the mode volume of the resonator and partially reflecting and transmitting
incident light with reflection and transmission coefficients (rβ , tβ) = (ıβ, 1 + ıβ) such
that r2β + t2β = 1. Transmitted (forward scattered) photons may be phase-shifted,
while reflected photons are backscattered into the counterpropagating mode of the
resonator.

Similarly, we treat the incoupling mirror as a beam splitter with coefficients
(rin, tin). The incident field Ein produces, in the cavity, field amplitudes of α± for
the co- and counterpropagating waves. As in (40.7), we normalize the amplitudes by
the numbers of photons n± ≡ |α±|2. After a round-trip time τ = δ−1fsr through the
mode volume we have in the position of the incoupling mirror the field,

α+(t+ τ) = rin(1 + ıβ)eıkLα+(t) + ıβr2ine
2ıkL−2ıkzα−(t) + tinα

in
+ (t) (40.167)

α−(t+ τ) = rin(1 + ıβ)eıkLα−(t) + ıβe2ıkzα+(t) + tin(1 + ıβ)eıkLαin− (t) .

L is the total length of the ring cavity. Obviously, we have kL = ω/δfsr. In the
vicinity of a resonance we have, ∆c ≪ δfsr, and the quantity ω/δfsr is almost integer,
ω ≃ 2πNδfsr −∆c, such that we can expand the exponential, eıkL = 1 − ı∆c/δfsr.
Thus, we obtain,

τα̇+ = −
[
1− rin(1 + ıβ)eıkL

]
α+ + ıβr2ine

−2ıkzα− + tinα
in
+ (40.168)

τα̇− = −
[
1− rin(1 + ıβ)eıkL

]
α− + ıβe2ıkzα+ + tin(1 + ıβ)αin− .

We now connect the transmission of the coupling mirror tin with the decay constant
κ assuming that the light can only leave the cavity through this mirror. We define,

κ ≡ T

τ
(40.169)
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as the part of the light lost during one round trip. Thus, tin =
√
T ≃

√
π/F =√

κ/δfsr. Besides that, tin is very small, such that,

t2in = 1− r2in ≃ 2(1− rin) . (40.170)

Thus, the first factor is,

δfsr
[
1− rin(1 + ıβ)eıkL

]
≃ δfsr − δfsr(1− t2in/2)(1 + ıβ)(1 + ı∆c/δfsr) (40.171)

≃ κ/2 + ıβ − ı∆c ≃ −κ/2 .

It gives the cavity losses for the two modes during one round trip. We assume here that
losses can only occur via the coupling mirror. However, all losses can be included in a
single appropriate κ. There are usually other losses due to scattering on the surface of
the mirrors or absorption by the atoms. Finally, we obtain for weak atomic reflection
and in resonance, that is, for β ≪ κ and ∆c = 0 the system of equations,

α̇+ = −κα+ + ıδfsrβ(1− t2in)e−2ıkzα− +
√
κδfsrα

in
+ (40.172)

α̇− = −κα− + ıδfsrβe
2ıkzα+ + (1 + ıβ)

√
κδfsrα

in
−

To calculate the value of β, we need the reflection coefficient of a single atom. It
depends on the polarizability,

rβ =
k

πw2

αpol
ε0

(
=

σ0
πw2

Γ

2∆a

)
. (40.173)

The optical potential to which the atom is exposed is,

ϕ =
I

2c

αpol
ε0

, (40.174)

where we write the intensity of light as,

I = 2ε0cE21 |α+e
ıkZ + α−e

−ıkZ | . (40.175)

We normalize once more to the field generated by a single photon, E1 =
√
ℏω/2ε0Vm

with the mode volume, Vm = π
2Lw

2. On the other hand, the potential can be deter-
mined directly through the Rabi frequency,

ϕ(r) =
ℏΩ(r)2

4∆a
, (40.176)

The Rabi frequency Ω(r)2 = 4g2|α+e
ıkZ + α−e−ıkZ |2 is normalized to the frequency

of Rabi generated by a photon g. Using the frequency shift (light-shift) by photon

(40.116), U0 = g2

∆a
, we can also write,

ϕ(r) = ℏU0|α+e
ıkZ + α−e

−ıkZ |2 . (40.177)

A comparison of the above equations gives,

rβ =
ıU0

δfsr
. (40.178)
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With an atom in the resonator, we have,

β =
ıU0

δfsr
. (40.179)

We define for convenience, η± =
√
κδfsrα

in
± and we suppose, that tin ≪ 1, rβ ≪ 1

and β ≪ 1. This ultimately leads to the result,

α̇± = −κα± − ıU0e
∓2ıkzα∓ + η± . (40.180)

Example 244 (Classical CARL equations): If we were to treat the atomic
position z as a degree of freedom, we could calculate the classical potential of
the stationary light wave, and therefore the dipole force,

F = −∇ϕ = −ℏU0∇Z=z|α+e
ıkZ + α−e

−ıkZ |2 , (40.181)

and, consequently, derive the dynamics of the scatterer via,

mz̈ = −2ıℏkU0(α+α
∗
−e

2ıkz − α∗+α−e−2ıkz) . (40.182)

This will be studied in Chp. 42. In the remaining sections of this chapter we

will assume the atom to be located at a fixed position.

In the above derivation we assumed, for simplicity, the pump laser on resonance
with the cavity, ∆c = 0. Relaxing this condition, an analogous derivation yields 5,

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0e
∓2ıkzα∓ + η± . (40.183)

40.2.5.2 Adiabatically simplified Hamiltonian

In a ring cavity, the simplified Hamiltonian,

Ĥ = (U0 −∆c)
∑

±
â†±â± − ıη±(â± − â†±) + U0(â+â

†
−e

2ıkz + â†+â−e
−2ıkz) ,

(40.184)
which can be obtained from the full Hamiltonian via adiabatic elimination of the
excited atomic state, already exhibits this phenomenon. With the above Hamiltonian
we derive from the Heisenberg equation,

˙̂a± = −ı[â±, â]− κâ± = (−κ+ ı∆c − ıU0)â± − ıU0e
∓2ıkzâ∓ + η± , (40.185)

which, after taking the expectation values and disregarding correlations, reproduces
the equations of motion (40.183). Of course, as we eliminated the internal atomic
degree of freedom, spontaneous emission is not accounted for. We may, however, in-
clude it phenomenologically via the substitution U0 → Uγ ≡ U0− ıγ0. The stationary
solution of Eq. (40.185) is exactly the same as the one derived for the full Jaynes-
Cummings model (40.164) under the assumption of weak excitation, g|α±| ≪ Γ,∆a,

α± = −ıη±(Uγ −∆κ)− Uγe∓2ıkzη∓
(Uγ −∆κ)2 − U2

γ

(40.186)

5Note, that we have not allowed for spontaneous emission by the atomic scatterer out of the cavity
mode. This approximation is only good far from resonance, ∆a ≫ Γ. We will see in Sec. 42.1.3, how
to generalize the equations of motion for near resonance cases.
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with the abbreviations,

Uγ ≡ U0 − ıγ0 , ∆κ ≡ ∆c + ıκ . (40.187)

Solve the Exc. 40.2.9.7.

40.2.6 Normal mode splitting induced by beam splitting

The fact that (in the weak excitation limit) normal mode splitting is fully described
by the classical field equations (40.183) shows that the phenomenon clearly is not a
quantum effect : a classical beam splitter inserted into the cavity does the same job.
We will now discuss the normal mode splitting in detail based on the adiabatically
simplified equations (40.187).

The equation (40.183) can be written as follows,

ı ˙⃗α =Wα⃗+ ıη⃗ , (40.188)

where α⃗ and η⃗ regroup the amplitudes α± and η±. This equation takes the form of a
Schrödinger equation, where,

W ≡
(
U0 −∆c − ıκ U0e

−2ıkz

U0e
2ıkz U0 −∆c − ıκ

)
(40.189)

would be the Hamiltonian describing the coupling between counterpropagating modes.
The eigenvalues of this matrix are,

W (1,2) = 2U0 −∆c − ıκ , −∆c − ıκ . (40.190)

This normal mode splitting 6 of the cavity results from the coupling of the two
cavity modes â†+â−. Obviously, the energies and widths of the eigenvalues do not
depend neither on the pump intensities η± nor the z-position of the atom. On the
other hand, the spectral behavior of α±, and hence the observable quantities, such as
the transmission

T± ≡
∣∣∣∣
κα±
η±

∣∣∣∣
2

(40.191)

depend on these parameters. In the following, we will study normal mode splitting
in a ring cavity by a discussion of the expression (40.164) for the cases of (i) anti-
symmetric pumping, (ii) symmetric pumping, and (iii) uni-directional pumping.

(i) Assuming γ0 = 0 and anti-symmetric pumping, η− = η+ and kz = π/2, the
expression (40.164) becomes,

α+ = η+
κ− ı(∆c − 2U0)

[κ− ı(∆c − U0)]2 + U2
0

(40.192)

⇒
∣∣∣∣
α+

η+

∣∣∣∣
2

=
1

κ2 +∆2
c

.

6The splitting is not exactly the vacuum Rabi splitting, which occurs when the excitation can
not be eliminated adiabatically. The vacuum Rabi splitting results from the Jaynes-Cummings
[1300, 312] and is caused by the coupling of internal and external states â†σ̂.
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That is, the transmission profile is a Lorentzian.
(ii) For symmetric pumping, η− = η+ and kz = 0,

α+ = η+
κ− ı∆c

[κ− ı(∆c − U0)]2 + U2
0

(40.193)

⇒
∣∣∣∣
α+

η+

∣∣∣∣
2

=
1

κ2 + (∆c − 2U0)2
.

Setting ∆c = ∆a we find from 0 ≡ d
d∆c

∣∣∣α+

η+

∣∣∣
2

a minimum at ∆c = 0 and two maxima

at ∆c = 2U0 =
√
2g. This is the usual normal mode splitting for a ring cavity.

(iii) For uni-directional pumping, η− = 0,

α+ = η+
κ− ı(∆c − U0)

[κ− ı(∆c − U0)]
2
+ U2

0

(40.194)

⇒
∣∣∣∣
α+

η+

∣∣∣∣
2

=
κ2 + (∆c − U0)

2

[κ2 −∆c(∆c − 2U0)]2 + 4κ2(∆c − U0)2
.

That is, the transmission profile is a more complicated and may exhibit up to three
peaks.

40.2.6.1 Unidirectional pumping

For unilateral pumping, η− = 0, and approximating γ0 = 0, the solution (40.164)
simplifies to,

α+(∞) = η+
χ

χ2 + U2
0

and α−(∞) = η+
ıU0e

2ıkz

χ2 + U2
0

. (40.195)

These formulas show that, for weak coupling, U0 ≪ κ, the counterpropagating mode
receives little light. On the other side, for strong coupling (or very high finesse) and
∆c = 0, the intensity is equally distributed, |α+|2 = |α−|2 = η+

2κ
7. We calculate the

splitting of normal modes in Exc. 40.2.9.8.
The counterpropagating modes form, by interference, a standing light wave giving

rise to a dipole potential in the form of a one-dimensional optical lattice. Defining
the phase θ = θ1 − θ2 through,

α+ ≡ |α+|e−ıθ1 and α− ≡ |α−|e−ıθ2 , (40.196)

we verify by the equation (40.7),

E+(ζ, t) = E1|α+(t)|eıkζ + E1|α−(t)|e−ıθ(t)e−ıkζ , (40.197)

and,

1
2ε0cE21

I(ζ, t) = 1
E21
E+(ζ, t)E−(ζ, t) (40.198)

= |α+(t)|2 + |α−(t)|2 + 2|α+(t)||α−(t)| cos(2kζ + θ) .

7This observation explains why perturbing effects such as backscattering from mirrors imperfec-
tions are dramatically magnified when the finesse is high.
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That is, the phase indicates the positions of the potential maxima. Inserting the
stationary solution for unilateral pumping (40.195), we derive the expression,

tan θ =
Im α+(∞)α∗−(∞)

Re α+(∞)α∗−(∞)
=

Im χıe−2ıkz

Re χıe−2ıkz
=
κ cos 2kz + (U0 −∆c) sin 2kz

κ sin 2kz − (U0 −∆c) cos 2kz
.

(40.199)
Or in other words, the phase of light determines the equilibrium position of the atom
(or vice versa). Two cases are interesting: (i) For ∆c = 0 and U0 ≫ κ the condition
(40.203) turns into tan θ = − tan 2kz. In this case, the phase of the backscattered
field adjusts in such a way, that the atom stays at the valleys of the anti-nodes.
(ii) For ∆c = U0 (or alternatively, when κ ≫ U0,∆c) the condition (40.203) turns
into tan θ = − tan(2kx+ π

2 ), such that the atom is at half height of the potential slope,
exactly at the position, where it is able to backscatter the maximum of photons from
the pumped mode α+ to the mode α−.
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Figure 40.13: (code) (columns 1 and 2) Steady state field values according to (40.188) for

bidirectional pumping with a single scatterer located at ϕ. (columns 3 and 4) Same for

unidirectional pumping. Here the location of the scatterer does not matter.

40.2.6.2 (Anti-)Symmetric pumping

Let us assume equal intensities for the pumps, but variable phases, η± = ηe±ıϕ, such
that ξ = e−2ıkz−ıϕ. Then, equation (40.164) simplifies to,

α±(∞) = η±
χ− ıUγξ±
χ2 + U2

γ

= η
χ− ıUγe∓2ıkz∓ıϕ

χ2 + U2
γ

. (40.200)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhaseSplitting.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhaseSplitting.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhaseSplitting.m
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The potential is calculated in the same way as in (40.198). The coherences are,

α±(∞)α∗±(∞) = η2 (κ−ı∆c∓2U0e
∓ıkz sin kz)(κ+ı∆c∓2U0e

±ıkz sin kz)
(κ2+2U0∆c−∆2

c)
2+4κ2(U0−∆c)2

α±(∞)α∗∓(∞) = η2 κ2+(∆c∓2ıU0e
∓ıkz sin kz)2

(κ2+2U0∆c−∆2
c)

2+4κ2(U0−∆c)2

e±2ıkz =
α∓α

∗
±

|α−α∗
+|

, (40.201)

such that the relative phase of the counter-propagating waves adjusts itself to,

tan θ =
Im α+(∞)α∗−(∞)

Re α+(∞)α∗−(∞)
=
κ2 sin 2ϕ+ 4U2

0 sin2(kz + ϕ) sin 2kz

κ2 cos 2ϕ− 4U2
0 sin2(kz + ϕ) cos 2kz

. (40.202)

The quantity η2/κ2 denotes the number of intracavity photons. According to the
formula (40.202), for a weak atom-field coupling, U0 ≪ κ, the phase adjusts itself to
the external pumps, θ → 2ϕ, while for strong coupling, it adjusts to the position of
the atom, θ → 2kz.

Example 245 (’Pulling’ of the optical mode by the atom): We study the
case U0 ≃ κ considering γ0 = 0 = ∆c and a particular external phase [482],
ϕ = π/2,

α±(∞) = ±ıη κ+ ıU0 ± U0e
∓2ıkz

κ2 + 2ıκU0
(40.203)

θ(∞) = arctan
−4U2

0 cos2 kz sin 2kz

κ2 + 4U2
0 cos2 kz cos 2kz

≃ arctan
−8U2

0

κ2 + 4U2
0

kz ,

expanding the last formula around kz = 0. Fig. 40.14 shows how, with the

increase in the coupling force between the field and the atoms, U0, the phase

tends to lock to the atomic position. However, the phase imposed by the external

pump competes for this privilege. Curiously, this is independent of laser power,

but depends only on the ratio between U0 and κ.

-0.5 0 0.5

kz (π)

-0.5

0

0.5

θ
(π
)

Figure 40.14: (code) ’Pulling’ of the phase by the atoms for U0/κ = 0, 0.2, 0.5, 1 and
√
2.

The solid curves show the exact phase, the ’dash-dotted’ curves the linear approximation

(40.207).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhasePulling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhasePulling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_PhasePulling.m
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Example 246 (Resonant case): Assuming that the cavity is in resonance,
∆c = 0, and pumped in a single direction, η− = 0, neglecting spontaneous
emission, γ0 = 0, and assuming low backscattering rates, Us ≪ κ,

α+(∞) ≃ η+
κ

and |α−(∞)| = Us
κ
|α+(∞)| .

Looking at short times, we find that the dynamics of the unpumped mode is
delayed, since,

α̇+(0) ≃ η+ and α̇−(0) ≃ −ıUsα+e
−2ıkrs ,

giving,

α+(0) ≃ η+t and α−(0) ≃ −ıUsη+ t
2

2
e−2ıkrs .

The complete solution of the equations (40.191) with unidirectional pumping,

η− = 0, will be derived in Exc. 40.2.9.9.

40.2.7 Time-dependent solutions

40.2.7.1 Time-dependent solution without pump

To calculate the homogeneous time-dependent solution of the equation of motion of
the ring cavity with η± = 0, we solve the Schrödinger equation (40.188) the way we
learned in quantum mechanics. We start by diagonalizing the matrix (40.189),

W =

(
U0 − ıκ U0e

−2ıkz

U0e
2ıkz U0 − ıκ

)
(40.204)

=

(
e−2ıkz −e−2ıkz

1 1

)(
2U0 − ıκ 0

0 −ıκ

)(
e−2ıkz −e−2ıkz

1 1

)−1
= UEWU

−1 ,

where EW is the matrix of eigenvalues and U a unitary transformation. So,

α⃗ = e−ıWtα⃗0 = Ue−iEW tU−1α⃗0 (40.205)

= e−κt−ıU0t

(
cosU0t −ıe−2ıkz sinU0t

−ıe2ıkz sinU0t cosU0t

)
α⃗0 .

In Exc. 40.2.9.7 we study the equation of motion numerically. We’ll see an alternative
calculation in Exc. 40.2.9.11. We calculate the coherence by,

α+(t)α
∗
−(t) = e−2κt

[
α0+α0−(cos

2 U0t+ e−4ıkz sin2 U0t) +
1
2 (α

2
0+ − α2

0−)ıe
−2ıkz sin 2U0t

]

z→0−→ e−2κt
[
α0+α0− + 1

2 (α
2
0+ − α2

0−)ı sin 2U0t
]
, (40.206)

making the transition to the Lamb-Dicke regime by z → 0. The phase of the standing
wave is,

tan θ =
Im α+(t)α

∗
−(t)

Re α+(t)α∗−(t)
z→0−→ α2

0+ − α2
0−

2α0+α0−
sin 2U0t . (40.207)

We see that, in resonance and without pumping, the field adjusts its phase to the atom
and also decays with the rate κ, while the atom redistributes the photons between
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modes with the (Rabi-)frequency 2U0. The formula (40.207) does not show any
damping of the phase dynamics in the Lamb-Dicke regime. Thus, in the absence of
pumping, the cavity dissipation reduces only the field amplitudes, but does not damp
the adjustment of the phase to the atomic position.

40.2.7.2 Time-dependent solution with fixed pump

To find the complete solution of the inhomogeneous Schrödinger equation (40.188),
we first calculate the stationary solution,

α⃗(∞) = −ıW−1η⃗ . (40.208)

This particular solution of the inhomogeneous equation, added to the general solu-
tion of the homogeneous equation, gives the general solution of the inhomogeneous
Schrödinger equation,

α⃗(t) = e−ıWtα⃗(0) + (1− e−ıWt)α⃗(∞) . (40.209)

We derive and analyze this solution in the Exc. 40.2.9.12.

Analytical solutions only exist in particular cases. However, they allow a better un-
derstanding of the dynamics. So let’s consider some limiting cases. In Exc. 40.2.9.13
we determine the steady state of an atom interacting with the modes of a unidirec-
tionally pumped annular cavity and calculate the stationary position of the atom in
a unidirectionally pumped ring cavity. In Exc. 40.2.9.14 we derive motion equations
for the ’intensities’ α±α∗± and ’coherences’ α±α∗∓.

40.2.8 Forced atomic vibration in a ring cavity

We now assume, that the atom is forced to vibrate by an external force. The vibration
is described by,

kz = kz0 sinωt . (40.210)

We consider small modulation excursions, 1 ≳ kz0 = kv
ω = 2ωrec

ω , which is equivalent
to saying that the oscillation frequency should exceed to recoil shift. In this (Lamb-
Dicke) regime the Bessel-expansion yields,

e±2ıkz0 sinωt =
∑

n

Jn(±2kz0)eınωt ≃ J0(2kz0)± 2ıJ1(2kz0) sinωt ≃ 1± 2ıkz0 sinωt .

(40.211)
The differential equations for the two counterpropagating ring cavity-field (40.183)
can then be written:

α̇± = (L− 2ıX sinωt)α± + η± , (40.212)

where,

L =

(
−κ− ıU0 −ıU0J0

−ıU0J0 −κ− ıU0

)
and X =

(
0 −ıU0J1

ıU0J1 0

)
. (40.213)
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We insert the ansatz α± =
∑
n α

(n)
± eınωt, where α̇

(n)
± = 0, into the equations and

project onto the basis eınωt:

ınωx
∑

n

α
(n)
± eınωt =

(
L−X(eıωt − e−ıωt)

)∑

n

α
(n)
± eınωt + η± (40.214)

=⇒ (L− ınω)α(n)
± +X(α

(n+1)
± − α(n−1)

± ) = −η±δn0 .

We define operators S↑↓n by α
(n+1)
± = S↑nα

(n)
± for n ≥ 0 and α

(n−1)
± = S↓nα

(n)
± for n ≤ 0

and obtain, [
L−ınω +X(S↑n − S↓n)

]
α
(n)
± = −η±δn0 . (40.215)

For n = 0, we get,

α±(∞) = α
(0)
± = −

[
L+X(S↑0 − S↓0)

]−1
η± . (40.216)

If we substitute in equation (40.214) α
(n)
± = S↑n−1α

(n−1)
± = S↓n+1α

(n+1)
± , we get for

n ≷ 0,

S↑n−1 =
[
L− ınω +XS↑n

]−1
X and S↓n+1 =

[
L− ınω −XS↓n

]−1
X . (40.217)

By recursive substitution of the lower into the upper equation, the stationary solution
can now be written by means of continued fractions,

S↑↓0 ≡
1

L− ıω ±X 1
L−2ıω±X 1

···
X
X . (40.218)

α±(∞) in Eq. (40.216) gives us the stationary solution of the differential equation,
time-averaged over an oscillation period.

If we are deep in the Lamb-Dicke regime, we need only consider the first order of
the continued fractions. We set S↑↓1 = 1 and obtain the simplified equations,

S↑0 = [L− ıω +X]
−1

X and S↓0 = [L− ıω −X]−1X (40.219)

α
(0)
± = −

[
L+X

(
S↑0 − S↓0

)]−1
η±

α
(1)
± = S↑0α

(0)
± and α

(−1)
± = S↓0α

(0)
± .

Explicitly,

S↑↓0 =
U0kz0

(κ+ ıU0 + ıω)2 + U2
0 (1− k2x20)

(
−U0(1± kz0) ı(κ+ ıU0 + ıω)

−ı(κ+ ıU0 + ıω) −U0(−1± kz0)

)

S↑0 − S↓0 =
−2U2

0 k
2x20

(κ+ ıU0 + ıω)2 + U2
0 (1− k2x20)

I2

α± = α
(0)
± + α

(1)
± eıωt + α

(−1)
± e−ıωt . (40.220)

Finally,

α± = −[1 + S↑0e
ıωt + S↓0e

−ıωt][L+X(S↑0 − S↓0)]
−1η± . (40.221)
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Figure 40.15: (code) (a) Photon number and (b) phase shift of the cavity in response to

a modulated atomic position. The parameters are kz0 = 1, κ = (2π) 20 kHz, ω = 2.5κ,

and η± = 10κ. (c) Spectrum recorded behind a cavity mirror with the transmittivity thr.

The spectrum is obtained as the Fourier transform of the g(1)(τ) correlation function of the

transmitted field Eout = thre
ıkaEcav, where e

ıka is a fixed phase factor depending on the

mirror position a (see Sec. 35.5.2).

The Fig. 40.15 shows how the phase of the ring cavity behaves in time for various
atom-field coupling constants.

It is interesting to study the oscillatory response of the cavity-field to a forced
atomic vibration, because it yields information about the cavity backaction. In fact,
as shown above, the vibrating atom imprints sidebands to the intracavity refractive
index [1141, 9]. The sidebands appear in the cavity transmission spectrum. A more
sophisticated method to detect the backaction could be to watch the response in the
beat signal to a periodic modulation of the incoupled fields with a vibrating atom,

α̇± = (−κ− ıU0)α± − ıU0e
∓2ıkz0 sinωtα∓ + ηe±ıϕ0 sinωϕt . (40.222)

We would expect a clear signature for resonance, ωϕ = ω. The sidebands of the
modulated pump would be coupled in, if they coincide. Instead of monitoring the
cavity field, we could search the signature of the backaction in the atomic response.
We will come back to this, when we discuss collective effects and the frequency shift
of the center-of-mass motion. Do the Exc. 40.2.9.15. In Exc. 40.2.9.16 we study
the spectrum of resonance fluorescence emitted by a ring cavity incorporating a beam
splitter, and in Exc. 40.2.9.16 we study the spectrum of resonance fluorescence emitted
by a linear cavity interacting with a single atom.

40.2.9 Exercises

40.2.9.1 Ex: Cooperative Lamb shift in a cavity

Calculate the cooperative Lamb shift in a cavity from the second formula (40.90) and
plot the result as a function of the cavity detuning.

Solution: The recipe to calculate the the cooperative Lamb shift is given by the second

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedFractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed01.pdf
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equation (40.90),

∆ω =
∑

i

x d2 sin2 θk
ℏ2

ℏω0

2ε0V

1

ωei − ωk
ρ(ωk,k)dΩkdωk .

Using previous results we can replace the density of states by (40.94), (40.91), and
(40.42) and the integral over small solid angle by,

∫

êk∈cav
sin2 θkdΩk ≃ 3

8πΩcav

for θk = π
2 . Using the abbreviation (40.92), we obtain,

∆ωcav =
∑

i

Γfree
3

16π2
Ωcav

∫ L(ωk)

ωei − ωk
dωk

=
∑

i

Γfree
3

16π2
Ωcav

∫ √
1 + (2F/π)2

1 + (2F/π)2 sin2 kL

1

ωei − ωk
dωk .

The only contribution to the difference in frequency shifts occurs near a resonance
ωk ≃ ωeg. Therefore,

∆ωcav ≃ Γfree
3

32π
Ωcav

L′(ωeg)
L(ωeg)

2δfsr = Γfree
3

32π
Ωcav

(2F/π)2 sin(ωeg/δfsr)

1 + (2F/π)2 sin2(ωeg/2δfsr)
.

The spectrum is shown in Fig. 40.16
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Figure 40.16: (code) Spectrum of the cooperative Lamb shift for three different finesses F .

40.2.9.2 Ex: Cooperative amplification for a rubidium gas in a cavity

Consider an non-degenerate cavity characterized by δfsr = 2GHz, F = 80, and
w0 = 6µm. In order to benefit from the cooperativity of the cavity, the atoms must
be within a volume axially delimited by the Rayleigh length and radially by the di-
ameter of the mode near its waist.
a. Calculate the Rayleigh length for a wavelength of 780 nm and the mode volume.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CooperativeLambShift.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed02.pdf
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b. For a given partial pressure of rubidium at room temperature of p ≈ 10−5 Pa,
calculate the average number of atoms within the mode volume.
c. Of these atoms only those with an axial Doppler shift below kvz < κ emit resonantly
into the cavity. Calculate the number of these atoms from the Maxwell-Boltzmann
distribution.
d. Calculate the cooperative amplification of the emission rate into the cavity.

Solution: a. The Rayleigh length is zR = kw2
0/2. This corresponds to a volume

of V ≃ πw2
0zR.

b. The average number of atoms inside the mode volume is,

Nm =
pV

kBT
≃ 120 .

c. The number of atoms within the given velocity range is,

Nkvz = Nm

(
m

2πkBT

)3/2 ∫
e−mv2/2kBT d3v

= Nm

(
πm

2kBT

)1/2 ∫ κ/k

0

e−mv
2
z/2kBT dvz

≃ Nm
(

πm

2kBT

)1/2
κ

k
= Nm

√
π
κ

kv̄
≃ 2 .

Note that the interaction time of an atom transversely crossing the cavity mode is

w0

√
kBT
m ≃ 17ms.

d. The emission rate into the cavity is now,

R = Γcav|êk∈cav
Nkvz = Γfree

√
1 +

(
2F

π

)2
3

8π

8π

k2w2
0

Nm
√
π
κ

kv̄
.

Without cavity,

R = Γfree ·
3

8π
· 8π

k2w2
0

·Nm
√
π
κ

kv̄
≃ 15000 s−1 .

With the cavity,

Υndg =
F

π
· 6

k2w2
0

≃ 0.06 ,

we obtain,

R = Γfree · η ·Nm
√
π
κ

kv̄
≃ 780000 .
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40.2.9.3 Ex: Characteristic parameters for various atom-cavity systems

Complete the following table calculating κ, Vm, ωr, g1, Υ, s, and r,

rubidium strontium

Γ 6MHz 6.8 kHz

F 250000 250000

L 100µm 3cm

w0 20µm 70µm

Solution: The completed table is,

rubidium strontium

Γ 6MHz 6.8 kHz

F 250000 250000

L 100µm 3cm

w0 20µm 70µm

κ 6MHz 16 kHz

Vm 0.0002mm3 1mm3

ωr 5 kHz 5 kHz

g1 18MHz 9 kHz

Υ 9 1

s 9 3

r 0.0008 0.3

40.2.9.4 Ex: Number of photons in a cavity

a. How many photons are in the mode of a cavity with finesse F = 80000 (i) in
resonance and (ii) out of resonance resonantly pumped with a laser power of Pin =
100µW?
b. What power must be injected to produce 1 photon inside the cavity?
c. Resonant backscattering by the cavity mirrors can scatter photons into the reverse
mode. Typically, P−/P+ ≃ 0.005. Hence, non−,cav = 1.5× 107 and noff−,cav = 0.01. Us-
ing advanced techniques it is possible to reduce the number of backscattered photons
by factor of > 20. Assuming that the losses due to backscattering are S = 1 ppm.
Can the resonant backscattering by the mirrors destroy a BEC?
d. What is the amplitude of the output signal in terms of photons?

Solution: a. The Airy formulas for the simplified case of a cavity with two iden-
tical mirrors give the intracavity intensity,

Pcav
Pin

=
1

T

(1−R)2
(1−R)2 + 4R sin2 δ/2

,

with T = 1−R. For δ = 2πN and δ = 2πN + π, we obtain respectively,

P oncav
Pin

=
1

T
and

P offcav

Pin
=

1

T

(1−R)2
(1 +R)2

≈ T

2
.
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From the finesse, F = π
√
R/(1 − R), we estimate the reflectivity of the mirrors

R ≈ 1 − π/F . Therefore, the fraction of the power injected in and out of resonance
are, P oncav/Pin ≃ 25000 and P offcav /Pin = 2 × 10−5. Pumping the cavity mode with
Pin = 100µW gives,

non+,cav =
Pin

Tℏωδfsr
= 3× 109 and noff+,cav = 2.3 ,

photons.
b. We need Pin/n

on
+,cav ≃ 0.3 pW.

c. The photon number reflected from one mirror into the waist (w0/4L)
2Snoncav ≃

7 × 10−3 into the cross section of a BEC (r̄/4L)2Snoncav ≃ 6 × 10−6. The effect is
negligible.
d. Assume an integration time of τ = 1µs. The count rate leaking out of the cavity
is,

R =
P−,out
ℏω

=
TP on−,cav

ℏω
= Tδfsrn

on
−,cav = κnon−,cav .

Within τ we count n−,outτ = κnon−,cavτ ≃ 2 × 106 photons. The photon counter can
only count 10 photons per τ .

40.2.9.5 Ex: Saturation-induced bistability in a linear cavity

a. Derive the equations of motion for N immobile atoms located at positions zj along
the optical axis of and interacting with a linear cavity.
b. Assuming steady-state and doing the mean-field approximation isolate an equation
for the cavity field α ≡ ⟨â⟩.
c. Simplify the equation for α for the case of perfect bunching zj = z and solve it
analytically. Identify the instability.
d. Discuss the weak excitation limit.
e. Derive the transmission spectrum in the weak excitation limit.
f. Write down the equation for n = |α|2 for the resonant case, ∆c = 0 = ∆a, in
terms of the single-atom cooperativity parameter Υ ≡ 4g2/γΓ and the single-photon
saturation parameter s1 ≡ 8g2/Γ2.

Solution: a. The Hamiltonian for the open Dicke model applied to N atoms dis-
tributed over the mode volume of a ring cavity within the RWA is,

Ĥ = Ĥfield + Ĥpump +

N∑

j=1

(Ĥ
(j)
atom + Ĥ

(j)
atom:field) (40.223)

with

Ĥ
(j)
atom = −∆aσ̂

+
j σ̂
−
j = −∆a

2 (I2 + σ̂zj ) (40.224)

Ĥfield = −∆câ
†â

Ĥpump = −ıη(â− â†)
Ĥ

(j)
atom:field = g sin kzj(âσ̂

+
j + â†σ̂−j ) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed05.pdf
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Using this Hamiltonian we derive the equations of motion for the individual atomic
operators,

˙̂σ−i = −ı[σ̂−i , Ĥ] + LΓσ̂
−
i (40.225)

= ı∆a

∑

j

[σ̂−i , σ̂
+
j ]σ̂
−
j − ıg

∑

j

â sin kzj [σ̂
−
i , σ̂

+
j ]− Γ

2 σ̂
−
i

= (ı∆a − Γ
2 )σ̂
−
i + ıgâσ̂zi sin kzi ,

and

˙̂σzi = −ı[σ̂zi , Ĥ] + LΓσ̂
z
i (40.226)

= −ıg
∑

j

â sin kzj [σ̂
z
i , σ̂

+
j ]− ıg

∑

j

â† sin kzj [σ̂
z
i , σ̂
−
j ] + 2Γσ̂+

i σ̂
−
i

= −2ıg sin kzi(âσ̂+
i − â†+σ̂−i )− Γ(I2 + σ̂zi ) ,

and for the field operators,

˙̂a = −ı[â, Ĥ] + Lκâ (40.227)

= ı∆c[â, â
†â] + η[â, â†]− ıg

∑

j

σ̂−j sin kzj [â, â
†]− κâ

= (ı∆c − κ)â− ıg
∑

j

σ̂−j sin kzj + η .

b. The stationary solution follows from the expectation values of the Eqs. (40.225),
(40.226), and (40.227),

(i) 0 = (ı∆a − Γ
2 )⟨σ̂−i ⟩ − ıg⟨âσ̂zi ⟩ sin kzi (40.228)

(ii) 0 = 2ıg sin kzi(⟨âσ̂+
i ⟩ − ⟨â†σ̂−i ⟩) + Γ(I2 − ⟨σ̂zi ⟩)

(iii) 0 = (ı∆c − κ)⟨â⟩ − ıg
∑

j

⟨σ̂−j ⟩ sin kzj + η .

Neglecting all correlations, we derive from (i),

⟨σ̂−i ⟩ =
−ıg

Γ
2 − ı∆a

α sin kzi⟨σ̂zi ⟩ . (40.229)

Substituting ⟨σ̂±i ⟩ in (ii),
(
1 +

2g2

Γ2

4 +∆2
a

|α|2 sin2 kzi
)
⟨σ̂zi ⟩ = 1 , (40.230)

and in (iii),

−(ı∆c − κ)α+
∑

j

g2

Γ
2 − ı∆a

α sin2 kzj⟨σ̂zj ⟩ = η . (40.231)

Substituting ⟨σ̂zj ⟩,

−(ı∆c − κ)α+
∑

j

g2(Γ2 + ı∆a)α sin2 kzj
Γ2

4 +∆2
a + 2g2|α|2 sin2 kzj

= η . (40.232)
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or, using the abbreviations Uγ ≡ U0 − ıγ0 and ∆κ ≡ ∆c + ıκ,

∑

j

Uγα sin2 kzj

1 + 2|Uγ/g|2|α|2 sin2 kzj
= ∆κα− ıη . (40.233)

c. From this in the case of perfect bunching, zj = z, we get,

α =
ıη

∆κ − NUγ sin2 kz
1+2|Uγ/g|2|α|2 sin2 kz

. (40.234)

With the abbreviation g −→ g sin kz,

α =
ıη

∆κ − NUγ

1+2|Uγ/g|2|α|2
, (40.235)

and defining Ũγ ≡ Uγ/g1, ∆̃κ ≡ ∆κ/g1, η̃ ≡ η/g1, Ñ ≡ N sin2 kz, and n ≡ |α|2,

α =
ıη̃

∆̃κ − NŨγ

1+2|Ũγ |2n

. (40.236)

From this we calculate the photon number,

n =
η̃2(1 + 2|Ũγ |2n)2

|∆̃κ|2(1 + 2|Ũγ |2n)2 −N
(
∆̃κŨ∗γ + ∆̃∗κŨγ

)
(1 + 2|Ũγ |2n) +N2|Ũγ |2

. (40.237)

Sorting the terms by powers of photon numbers we obtain a cubic equation, 0 =
An3 +Bn2 + Cn+D, with the coefficients,

A = 4|∆̃κ|2|Ũγ |4 (40.238)

B = 4|∆̃κ|2|Ũγ |2 − 2N
(
∆̃κŨ

∗
γ + ∆̃∗κŨγ

)
|Ũγ |2 − 4η̃2|Ũγ |4

C = |∆̃κ|2 −N
(
∆̃κŨ

∗
γ + ∆̃∗κŨγ

)
+N2|Ũγ |2 − 4η̃2|Ũγ |2

D = −η̃2 .

The roots of the cubic equation are given by,

R ≡ 3

√
36CBA− 108DA2 − 8B3 + 12

√
3A
√

4C3A− C2B2 − 18CBAD + 27D2A2 + 4DB3

(40.239)
and

X± ≡
R

6A
± 6AC − 2B2

3AR
(40.240)

so that,

n0 = X− −
B

3A
, n± = −1

2
X− −

B

3A
± ı
√
3

2
X+ . (40.241)

From this expression we numerically find n = |α+ + α−|2, which we ca use to finally
obtain α.
d. Assuming weak excitation, g|α±| ≪ Γ,∆a, expression (40.233) simplifies to,
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Figure 40.17: (code) Normal mode spectrum using the formula (40.244).

Uγα
∑

j

sin2 kzj = ∆κα− ıη . (40.242)

That is, defining the bunching parameter b ≡ 1
N

∑
j sin

2 kzj,

NUγαb = ∆κα− ıη . (40.243)

Resolving for α we finally get,

α(∞) ≃ −ıη
NUγb−∆κ

=
η

χ
=

η

κ+ ı(NbU0 −∆ca −∆c)
, (40.244)

defining χ ≡ ı(NbUγ −∆κ) and ∆ca ≡ ∆c −∆a. Hence, finite bunching only effects
the efficient number of atoms participating in the normal-mode splitting.
e. The excitation spectrum for Γ ≃ 0 is derived from the steady-state solution using
the request, 0 = d

d∆ca
|α(∞)|2. We get,

∆ca = NbU0 −∆a =
Nbg2

∆a
−∆a . (40.245)

Assuming, ∆ca = 0, we have the normal-mode splitting,

∆a = ±g
√
Nb . (40.246)

The transmission is illustrated in Fig. 40.18.
f. From Eq. (40.234) we get,

n =
η2∣∣∣∆κ − NUγ

1+2|Uγ/g|2n

∣∣∣
2 , (40.247)

and thus,

n =
η2

κ2

(
1 + s1n

1 + s1n+ NΥ
2

)2

. (40.248)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_LinearcavityHighway.m
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Figure 40.18: (code) Normal mode spectrum using the formula (40.244).

40.2.9.6 Ex: Emission spectrum of atoms in a linear cavity below satu-
ration

a. Derive the mean-field evolution equation for the intracavity field α(t) = ⟨â(t)⟩ for
a linear cavity driven below saturation.
b. Is it possible to calculate the autocorrelation spectrum and the emission spectrum
of the cavity from ⟨α∗(t+ τ)α(t)⟩ [226, 1039]?
c. Calculate numerically the emission spectrum of a linear cavity interacting with
many atoms using for the cavity mode a Fock state expansion up to a cut-off photon
number of ncutoff = 10. Assume (η,Γ, N, g1,∆) = (0.1κ, 0.002κ, 100000, 0.002κ, 0).
Interpret the result [949, 497].

Solution: a. We use the steady-state solution, Eqs. (40.229) and (40.230), for the
atomic state derived from the Maxwell-Bloch equations in Exc. 40.2.9.5,

⟨σ̂−i ⟩ =
−ıg

Γ
2 − ı∆a

α sin kzi⟨σ̂zi ⟩ = Uγ

g α sin kzi⟨σ̂zi ⟩ (40.249)

1 =

(
1 +

2g2 sin2 kzi
Γ2

4 +∆2
a

|α|2
)
⟨σ̂zi ⟩ =

(
1 + 2 sin2 kzi

∣∣∣Uγ

g

∣∣∣
2

|α|2
)
⟨σ̂zi ⟩ . (40.250)

However, instead of inserting them into the steady-state equation of the field amplitude
(40.228)(iii), we insert them into time-dependent mean-field equation (40.227),

˙̂a = ı∆κâ− ıg
∑

j

σ̂j sin kzj + η . (40.251)

This yields,

α̇ = ı∆κα− ıUγα
∑

j

sin2 kzj⟨σ̂zj ⟩+ η (40.252)

=


ı∆κ − ıUγ

∑

j

sin2 kzj

1 + 2 sin2 kzi|Uγ/g|2|α|2


α+ η .
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Below saturation, the denominator simplifies dramatically, and with b ≡ 1
N

∑
j sin

2 kzj
we obtain,

α̇ ≃ ı(∆κ −NbUγ)α+ η = −χα+ η , (40.253)

with χ ≡ ı(NbUγ −∆κ) = κ+ ı(NbU0 −∆c). For the initial condition α(t) = 0 it is
easy to see that this equation is solved by,

α(t) =
η

χ
(1− e−χt) . (40.254)

b. Naively, one might think that the autocorrelation function and the spectrum are
given, respectively by,

g(1)(τ) ≡ ⟨α
∗(t+ τ)eıωτα(t)⟩
⟨α∗(t)α(t)⟩ with ⟨...⟩ ≡ lim

t→∞
1

t

∫ t

0

...dt′ (40.255)

and S(ν) = Fg(1)(τ) .

The autocorrelation function strongly dominated by an elastic peak, since,

⟨α∗(t+ τ)eıωτα(t)⟩ = η2

|χ|2 e
ıωτ lim

t→∞
1

t

∫ t

0

(1− e−χ∗(t′+τ))(1− e−χt′)dt′ = η2

|χ|2 e
ıωτ ,

(40.256)
which is not what we expect, because the fluorescence spectrum should contain in-
elastic contributions from two normal-modes. The problem is due to the fact that,
deriving the expression we approximated the cavity field by its first-order mean-field,
α = ⟨â⟩, while the spectrum requires evaluation of second-order correlations. That
is, ⟨α∗(t + τ)eıωτα(t)⟩ is NOT the correct way to calculate the autocorrelation, but
⟨â∗(t+ τ)eıωτ â(t)⟩.
Actually, using the Julia package ’QuantumCumulants.jl’, we can derive the following
closed set of equations for the expectation values of the observables and their correla-
tions,

[∂ − ı∆c + κ]⟨â⟩ = η (40.257)

[∂ + 2κ]⟨â†â⟩ = ıNg1(⟨âσ̂1,21⟩ − ⟨â†σ̂1,12⟩) + η(⟨â†⟩+ ⟨â⟩)
[∂ + Γ]⟨σ̂1,22⟩ = ıg1(⟨â†σ̂1,12⟩ − ⟨âσ̂1,21⟩)

[∂ + ı∆c +
Γ
2 + κ]⟨â†σ̂1,12⟩ = ıg1

[
⟨σ̂1,22⟩+ (2⟨σ̂1,22⟩ − 1)⟨â†â⟩ − 4⟨â†⟩⟨â⟩⟨σ̂1,22⟩

+(N − 1)⟨σ̂1,21σ̂2,12⟩]
[∂ + Γ]⟨σ̂1,21σ̂2,12⟩ = ıg1(⟨â†σ̂1,12⟩ − ⟨âσ̂1,21⟩)(1− 2⟨σ̂1,22⟩) ,

as well as for the two-times correlations,

[∂ + ı∆c + κ]⟨â†a0⟩ = ıNg1⟨σ̂1,21â0⟩ (40.258)

[∂ + Γ
2 ]⟨σ̂1,21â0⟩ = ıg1[1− 2⟨σ̂1,22⟩]⟨â†â0⟩ .

Here, phase-invariant expectation values have been set to zero and interatomic corre-
lations ignored by dropping sums over atom number

∑N
i=1 and substituting the single-

atom coupling strength g1 by a collective coupling strength gN = g1
√
N . A numerical
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Figure 40.19: (code) Emission spectrum of a linear cavity driven below saturation using the

quantum cumulants expansion.

calculation using the Julia ’QuantumCumulants.jl’ package is shown in Fig. 40.19.
c. Alternatively, using the Julia package ’QuantumOptics.jl’, we can numerically

simulate the Hamiltonian for a single atom via a Fock state expansion of the cavity
field up to a certain cut-off photon number. The result is exhibited in 40.21. It shows
the appearance of an elastic peak and two Mollow triplets due to their beating with the
normal modes. The normal modes are separated by gN , Mollow sidebands are split by
gN
√
2.

The structure of the emission spectrum can be interpreted as follows. As we have
already seen in Sec. 35.9.3, the Mollow splitting results from a modulation of sponta-
neous emission by Rabi flopping, whose frequency depends on the photon number as
g
√
n. Similarly, normal-mode splitting would be modulation of cavity decay by Rabi-

type flopping between counterpropagating modes. In a linear cavity this doesn’t change
n, hence we do not expect an n-dependence of normal mode splitting. In contrast the
flopping between counterpropagating modes depends on the atom number as NU0.
Transmission is modulated the collective Rabi oscillation of atoms.
The lowest eigen-energies of the Jaynes-Cummings ladder are,

ω0 = 0

ω1 = ω ± 2g
√
1

ω2 = 2ω ± 2g
√
2

ω3 = 3ω ± 2g
√
3 ,

as confirmed by the graph 40.21(b). Hence, the transition frequencies starting from
the first excited state are,

ω1 − ω0 = ω + 2g
√
1

ω1 − ω0 = ω − 2g
√
1 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_EmissionCumulants.jl
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and including the second excited state,

ω2 − ω1 = ω + 2g(
√
2 + 1)

ω2 − ω1 = ω + 2g

ω1 − ω0 = ω + 2g(
√
2− 1)

ω1 − ω0 = ω + 2g(
√
2− 1)

ω2 − ω1 = ω − 2g

ω2 − ω1 = ω − 2g(
√
2− 1) .

In summary, Autler-Townes splitting is due to Rabi flopping of the degree of freedom

Figure 40.20: Eigenvalue spectrum of the Jaynes-Cummings model due to the first two
excited states.

σ̂− and depends on
√
n. Analogously, normal mode splitting is due to a flopping of α

and depends on N . This might be interesting for calibrating g
√
N via normal-mode

splitting and, simultaneously g
√
n via Mollow splitting.
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Figure 40.21: (code) (a) Emission spectrum of a linear cavity. (b) Dependence of the peaks’s

location observed in (a) on the atom-cavity coupling strength g. (thick red/blue lines)

Lower and upper Mollow central peaks, respectively. They are separated by normal-mode

splitting. (thin red/blue lines) Corresponding Mollow sidebands, (green) elastic peak due

to cavity pumping, and (dotted) separations between Mollow central peaks and sidebands.

(c) Dependence of the peaks’ heights on g. (green) Elastic peak, (yellow) central Mollow

peaks, (cyan) outer Mollow sideband, (magenta) inner Mollow sideband.
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40.2.9.7 Ex: PDH-probing atoms in a ring cavity

Calculate the steady-state reflection of a phase-modulated laser beam from a ring
cavity neglecting backscattering from the atoms. Demodulate the reflection signal
with the modulation frequency.

Solution: The steady-state solution (40.146) is,

α+ =
η+ − ıUγe−2ıkzα−
κ− ı(∆c − Uγ)

,

where we now neglect α− ≃ 0. Assuming that only the input coupler has finite trans-
mission, with η+ =

√
κδfsrβin from Eq. (40.37), the light leaking out of the cavity is

then,

βout =

√
κ

δfsr
α+ =

κβin
κ− ı(∆c − Uγ)

.

Note, that without atoms, Uγ = 0, we recover the Airy function derived in Exc. 18.3.7.18.
If the incident light is described by,

βin = β0,in

[
J0(M)eı∆ct + J+1(M)eı(∆c+Ω)t + J−1(M)eı(∆c−Ω)t

]
,

the reflection signal becomes (Ω≫ κ),

βrefl = βin + βout = β0,in
∑

n=0,±1
Jn(M)eı(∆c+nΩ)t

(
1 +

κ

κ− ı(∆c + nΩ− Uγ)

)
.

Introducing the abbreviation,

Ln(∆c, U0) ≡ 1 +
κ

κ− ı(∆c + nΩ− Uγ)
,

the demodulated intensity is,

Re eıΩt+ıθ
|βrefl|2
β2
0,in

= Re eıΩt+ıθ

∣∣∣∣∣
∑

n=0,±1
Jn(M)eınΩtLn(∆c, U0)

∣∣∣∣∣

2

= Re eıθJ0(M)J1(M) [L0(∆c, Uγ)L
∗
1(∆c, Uγ)− L∗0(∆c, Uγ)L−1(∆c, Uγ)] + ... .

After low-pass filtering, the oscillating terms disappear and we recover the standard
PDH-signal, only that the error signal now is a measure for the one-photon light shift
caused by the atoms.

40.2.9.8 Ex: Normal mode splitting of a ring cavity

Consider the stationary fields (40.166) developing in a ring cavity containing a homo-
geneous cloud of atoms and pumped in one direction, η− = 0. For this system.
a. Calculate the transmission of the cavity in the direction of mode α+ as a function
of the detunings ∆a and ∆c and the number of atoms.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed07.pdf
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Figure 40.22: (code) PDH-signal induced by one-photon light shift. κ = 0.1Ω, γ0 = 0.05Ω,

and ∆c = 0.

Transmission spectra can be recorded under various boundary conditions. Calculate
the transmission
b. keeping the laser at a fixed frequency ω and varying the cavity length ωc;
c. tuning a cavity resonance to the atomic transition, ωc = ωa, and varying the laser
frequency ω;
d. same as (d), but now calculate the detunings ∆ch where the transmission drops to
1/2;
e. keeping the cavity constant at an arbitrary frequency ωc and varying the laser fre-
quency ω;
f. keeping the laser locked to the cavity, ω = ωc +NU0, and now ramping the cavity
across the atomic resonance.

Solution: a. The stationary solution for one-way pumping is,

α+ ≃ −ı
η+(NUγ −∆κ)

(NUγ −∆κ)2 − (N |b|2Uγ)2
.

For a homogeneous cloud b = 1
N

∑
j e

2ıkzj = 0, so that,

α+ ≃
−ıη+

NUγ −∆κ
,

or, substituting the abbreviations [312],

α+ =
η+

κ− ı∆c +
g2N

Γ−ı∆a

. (40.259)

The transmission is given by (40.191),

T+ =

∣∣∣∣
κα+

η+

∣∣∣∣
2

=
κ2(Γ2 +∆2

a)

(κΓ + g2N −∆c∆a)2 + (Γ∆c + κ∆a)2
. (40.260)

Fig. 40.23 shows cavity transmission spectra.
Defining ∆̃c ≡ ∆c/κ and ∆̃a ≡ ∆a/Γ and using the definition (40.125) of the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_AtomProbingPDH.m
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Figure 40.23: (code) Normal mode splitting of an annular cavity for the strontium intercom-

bination line: κ/2π = 690 kHz, Γ/2π = 7.6 kHz and g/2π = 8.7 kHz. (b) Convolution with

a Lorentzian of 1MHz width. (c) Dependence of the normal mode splitting on the atom

number. The black lines are solutions of Eq. (40.262).

cooperativity, we can also write,

T+ =
1 + ∆̃2

a(
1 +N Υ

2 − ∆̃c∆̃a

)2
+ (∆̃c + ∆̃a)2

.

b. Keeping the laser at a fixed frequency ω (so that ∆a is constant) and varying the
cavity length ∆c, we obtain from (40.260),

0 =
∂T+
∂∆c

= − [−2∆a(κΓ + g2N −∆c∆a) + 2Γ(κ∆a + Γ∆c)]κ
2(Γ2 +∆2

a)

· · · ,

yielding,

∆c =
g2N∆a

Γ2 +∆2
a

= U0 . (40.261)

c. Tuning a cavity resonance to the atomic transition, ωc = ωa, and varying the laser
frequency, we obtain from (40.260),

0 =
∂T+

∂∆a
=
∂∆2

a

∂∆a

∂T+

∂∆2
a

= 2∆a
∂

∂∆2
a

κ2∆2
a + κ2Γ2

∆4
a + (κ2 + Γ2 − 2g2N )∆2

a + (κΓ + g2)2

=
κ2[∆4

a + (κ2 + Γ2 − 2g2N )∆2
a + (κΓ + g2N )2]− [2∆2

a + (κ2 + Γ2 − 2g2N )][κ2∆2
a + κ2Γ2]

· · · .

The solution of this equation,

∆2
a = −Γ2 ± gN

√
2Γ2 + g2N + 2κΓ , (40.262)

is plotted in Fig. 40.23(c) as a black line. For cases of very narrow atomic resonances,
κ≫ Γ, we may simplify,

∆2
a ≃ ±g2N

√
1 +

4κΓ

2g2N
= ±Ng2

√
1 +

Ncrt
N

, (40.263)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_NormalModeSplitting.m
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where Ncrt = 4/Υ is the critical atom number (40.126) and Υ the cooperativity
(40.125).
d. For ∆c = ∆a the transmission (40.260) simplifies to,

T (∆a = ∆c) =
κ2(Γ2 +∆2

c)

(κΓ + g2N −∆2
c)

2 + (Γ + κ)2∆2
c

.

Then from T (∆ch) =
1
2 we get,

∆2
ch =

κ2−Γ2+2g2N
2 ±

√
(κ2−Γ2+2g2N )2

4 + κ2Γ2 − 2κΓg2N − g4N
≃ κ2

2 + g2N ± κ
√

κ2

4 + g2N .

The last approximation hold for Γ≪ κ, gN . Now,

∆2
ch =

{
g2N ± κgN for gN ≫ κ

κ2

2 + g2N ±
(
κ2

2 + g2N −
g4N
κ2

)
for gN ≪ κ

.

such that for gN ≪ κ,

|∆ch| = κ,
g2N
κ .

The detunings are indicated as circles in Fig. 40.18.
e. Keeping the cavity constant at an arbitrary frequency ωc, and varying the laser
frequency,

0 =
∂T+
∂ω

=
∂

∂ω

κ2[Γ2 + (ω − ωa)2]
[κΓ + g2 − (ω − ωc)(ω − ωa)]2 + [κ(ω − ωa) + Γ(ω − ωc)]2

.

f. Typically, a locking electronics will maintain the pump laser locked to a cavity
resonance, even if the cavity resonance is shifted by the refraction index imposed by
atoms in the mode volume, that is,

∆c = NU0 = ω − ωc =
g2N∆a

Γ2 +∆2
a

.

Substituting the above boundary condition into the expression for the transmission,

T+ =
1

(
1 +

g2N/κΓ

1+∆2
a/Γ

2

)2 =
1

(
1 + NΥ/2

1+∆2
a/Γ

2

)2 .

We are now seeking transmission resonances upon varying the cavity length ωc. How-
ever, we already see from the expression for T+, that the transmission is maximized
for ∆a = 0.

40.2.9.9 Ex: Time-dependent solution for a ring cavity pumped from
one side below saturation

Derive the complete solution of the adiabatic field equations (40.183).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed10.pdf
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Solution: For one-sided pumping with χ ≡ κ + ı(Uγ − ∆c) the equations of mo-
tion read,

α̇+ = −χα+ − ıUγe−2ıkzα− + η+

α̇− = −χα− − ıUγe2ıkzα+ .

To decouple the differential equations from each other we derive one and insert the
other,

α̈+ = −χα̇+ − ıUγe−2ıkzα̇−
= −χα̇+ + ıUγe

−2ıkz(χα− + ıUγe
2ıkzα+)

= −χα̇+ + ıUγe
−2ıkz

(
χ

[
α̇+ + χα+ − η+
−ıUγe−2ıkz

]
+ ıUγe

2ıkzα+

)

= −2χα̇+ − (U2
γ + χ2)α+ + χη+

and

α̈− = −χα̇− − ıUγe2ıkzα̇+

= −χα̇− + ıUγe
2ıkz(χα+ + ıUγe

−2ıkzα− − η+)

= −χα̇− + ıUγe
2ıkz

(
χ
α̇− + χα−
−ıUγe2ıkz

+ ıUγe
−2ıkzα− − η+

)

= −2χα̇− − (U2
γ + χ2)α− − ıUγe2ıkzη+ .

This shows that we expect a damped oscillation tending toward the stationary solution.
Making the ansatz,

α+ = eλt +
χη+

χ2 + U2
γ

and α− = eλt +
−ıUγe2ıkzη+
χ2 + U2

γ

,

we obtain λ = −χ± ıUγ . Hence,

α+ = e−χt(A+e
ıUγt +B+e

−ıUγt) +
χη+

χ2 + U2
γ

and

α− = e−χt(A−e
ıUγt +B−e

−ıUγt)− ıUγe
2ıkzη+

χ2 + U2
γ

.

Inserting the solutions into the original differential equations yields,

A− = −A+e
2ıkz and B− = B+e

2ıkz .

A± and B± depend on initial conditions. For example, setting α±(0) = 0 we get,

A+ = − 1

χ− ıUγ
η+
2

and B+ = − 1

χ+ ıUγ

η+
2

,
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and finally,

α+(t) =
η+

χ2 + U2
γ

[
χ− e−χt(χ cosUγt− Uγ sinUγt)

]

α−(t) =
−ıe2ıkzη+
χ2 + U2

γ

[
Uγ − e−χt(Uγ cosUγt+ χ sinUγt)

]
.

Using the abbreviations,

Uγ ≡ U0 − ıγ0 =
g2

∆2
a + (Γ/2)2

, ∆κ ≡ ∆c + ıκ , χ ≡ ı(Uγ −∆κ) ,

the time-dependent field amplitudes can also be written,

1
ıη+

α+(t) = −
1
2e
ı∆κt

∆κ
+

1
2e
ı(∆κ−2Uγ)t

2Uγ −∆κ
+

1

∆κ

Uγ −∆κ

2Uγ −∆κ

e−2ıkz

ıη+
α−(t) =

1
2e
ı∆κt

∆κ
+

1
2e
ı(∆κ−2Uγ)t

2Uγ −∆κ
− 1

∆κ

Uγ
2Uγ −∆κ

.

That is, we expect a sideband spectrum with frequency components at 0, ∆c, and
∆c − U0. At long times,

1
ıη+

(
α+

α−

)
t→∞−→ 1

∆κ(2Uγ −∆κ)

(
Uγ −∆κ

−Uγe2ıkz

)
,

we recover the usual steady-state solution. On resonance, ∆c = 0 = ∆a, with the
definition of the cooperativity,

Uγ =
−2ıg2
Γ

, ∆κ = ıκ , Υ ≡ 4g2

κΓ

we get,

κ
η+
α+(t) = −

e−κt

2
−

1
2e
−κ(1+Υ)t

Υ+ 1
+

1
2Υ+ 1

Υ+ 1

κe−2ıkz

η+
α−(t) =

e−κt

2
−

1
2e
−κ(1+Υ)t

Υ+ 1
−

1
2Υ

Υ+ 1
.

40.2.9.10 Ex: Filling and drainage of a ring cavity with one fixed atom

Calculate by simulation of the classical cavity equations, how a laser-pumped ring
cavity fills and looses photons in the presence of a single immobile atom.

Solution: The result of the simulation is shown in Fig. 40.24. Only the mode α+ is
pumped until a time corresponding to κt = 0.5, when it is switched off. The parame-
ters are κ = (2π) 10 kHz, U0 = 2κ, ∆c = 0, and η = 10κ. We see that the intensities
of the modes |α±|2 do not depend on the atom’s location, but the interference signal
|α+ − α−|2 does.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed11.pdf
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Figure 40.24: (code) Filling and drainage of the two counter-propagating modes of a laser-

pumped ring cavity. Red curves show |α+|2, green curves |α−|2, and black curves |α+−α−|2.
The atom is located at kz = 0 (solid line) and kz = 0.1 (dash-dotted line).

40.2.9.11 Ex: Position of the phase without pumping of the cavity

Solve the Schrödinger equation (40.189) by inserting ansatz,

α⃗ = α⃗1e
−λ1t + α⃗2e

−λ2t ,

where λ1 = κ+ 2ıU0 and −λ2 = κ are the eigenvalues of the matrix (40.189).

Solution: We obtain,(
(−κ− 2ıU0)α1+e

−κt−2ıU0t − κα2+e
−κt

(−κ− 2ıU0)α1−e
−κt−2ıU0t − κα2−e

−κt

)

=

(
(−ıU0 − κ)(α1+e

−κt−2ıU0t + α2+e
−κt)− ıU0e

−2ıkz(α1−e
−κt−2ıU0t + α2−e

−κt)

−ıU0e
2ıkz(α1+e

−κt−2ıU0t + α2+e
−κt) + (−ıU0 − κ)(α1−e

−κt−2ıU0t + α2−e
−κt)

)
.

Separating the terms proportional to e−κt−2ıU0t e e−κt, we obtain 4 relations,




α1+

α2+

α1+

α2+


 =




e−2ıkzα1−
−e−2ıkzα2−
e−2ıkzα1−
−e−2ıkzα2−


 .

We can now write the solution as,

α⃗ =

(
1

e2ıkz

)
α1+e

−κt−2ıU0t +

(
1

−e2ıkz

)
α2+e

−κt ,

or, defining the abbreviation βn ≡ eıkzαn+,

α± = e∓ıkzβ1e
−κt−2ıU0t ± e−ıkzβ2e−κt .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_CavityFilling.m
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40.2.9.12 Ex: Dynamics of a standing wave in a symmetrically pumped
ring cavity

Solve and discuss the equation (40.209).

Solution: To obtain the inhomogeneous solution of the equation of motion for the
ring cavity, we insert the general solution of the homogeneous equation into the equa-
tion of motion including a pump field, but assuming time-dependent coefficients βj(t).
This gives,

β̇1(t) =
1
2e

(χ−ıU0)t(η+e
−ıkz − η−eıkz) = ıηe(χ−ıU0)t sin[−kz + ϕ(t)] ,

β̇2(t) =
1
2e

(χ+ıU0)t(η+e
−ıkz + η−e

ıkz) = ηe(χ+ıU0)t cos[−kz + ϕ(t)] .

For a stationary pump, ϕ(t) = ϕ, a particular solution of the above differential equa-
tions is,

β1(t) = ı
η

χ− ıU0
e(χ−ıU0)t sin(−kz + ϕ) ,

β2(t) =
η

χ+ ıU0
e(χ+ıU0)t cos(−kz + ϕ) .

A particular solution of the inhomogeneous field equation is, therefore,

e±ıkzα±(t) = ±β1(t)e−(χ−ıU0)t + β2(t)e
−(χ+ıU0)t

= ±ı η

χ− ıU0
sin(−kx+ ϕ) +

η

χ+ ıU0
cos(−kz + ϕ) .

The general solution of the inhomogeneous equation is the sum of the general solution
of the homogeneous equation and a particular solution of the inhomogeneous equation,

e±ıkzα±(t) = ±β1(t)e−(χ−ıU0)t + β2(t)e
−(χ+ıU0)t ± β1e−(χ−ıU0)t + β2e

−(χ+ıU0)t

α±(t) = η
±ı(χ+ ıU0) sin(−kz + ϕ) + (χ− ıU0) cos(−kz + ϕ)

χ2 + U2
0

± β1e−(χ−ıU0)t∓ıkz + β2e
−(χ+ıU0)t∓ıkz .

Note that the specific initial condition, α±(0) = α±(∞), is realized for ∓β1 = β2.
Further insight comes from the phase of the cavity field. The field adjusts to the
atomic position by pulling its phase to the position of the atom, as long as the coupling
is strong enough. Interestingly, the pumping force does not matter to the stationary
situation. It only determines the speed of the self-adjustment process. This can be
seen from a time-dependent analysis. We look at the phase ϕ = π/2 and focus on
U0 ≪ κ,

α±(t) ≃ ı
η

κ

(
±1 + 2U0

κ
sin(kz)e∓ıkz

)
+ (β2 ± β1)e−κt∓ıkz

≃ ı η
κ

(
±1 + 2U0

κ
kz

)
+ (β2 ± β1)e−κt(1∓ ıkz)

≃ ı η
κ

(
±1 + 2U0

κ
kz

)
+ (β2 ± β1)e−κt .
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such that,

α+α
∗
− =

(
ı
η

κ

(
1 +

2U0

κ
kz

)
+ (β2 + β1)e

−κt
)(
−ı η
κ

(
1 +

2U0

κ
kz

)
+ (β2 − β1)e−κt

)

θ = arctan
−2β1 ηκe−κt

(
1 + 2U0

κ kz
)

(β2
2 − β2

1)e
−2κt + η2

κ2

(
1 + 2U0

κ kz
)2 .

The time constant to reach the steady-state value is κ, and we retrieve the stationary
formula for long times τ . During this period, small oscillations can occur with the
period 2U0. To summarize, there is a competition between the phase of the field being
defined by the coupling or by the atoms. The equilibrium depends on the ratio U0/κ.
Interestingly, the pump rate only matters during the transitional regime.

40.2.9.13 Ex: Stationary position of the atom in a unidirectionally
pumped ring cavity

What is the steady state position of an atom interacting with the modes of a unidi-
rectionally pumped ring cavity?

Solution: To find the phase of the stationary wave we assume for simplicity, that
the mode α+ is stable, α̇+ = 0. Also, we consider a scatterer fixed at a position Z,
and look at the stationary solution,

0 = −κα− − ıU0e
2ıkzα+ ,

leading to,

|α+e
ıkZ +α−e

−ıkZ |2 =

∣∣∣∣α+e
ıkZ − ıU0

κ
e−ıkZ+2ıkzα+

∣∣∣∣
2

∼ 1+
U2
0

κ2
+

2U0

κ
sin 2k(z−Z) .

The slope of the standing wave is just where the sinus disappears, that is, Zpente = z.
Therefore, the scatterer is located right at the middle of the slope of the stationary
wave, which it produced in the first place. The atoms are accelerated to the valley,
that is, in the same direction as the wavevector of the pump field. Then, the standing
wave again tries to regenerate itself at the new location of the scatterer. This means
that the wave must continuously adjust its phase to the accelerated atoms. The atoms
are always on the slope, etc. That is, the CARL starts running 8.

40.2.9.14 Ex: Equations of motion for intensities and coherences in a
ring cavity

Derive from the equations (40.183) the equations of motion for intermodal coherences
α+α

∗
+, α−α

∗
−, α+α

∗
−, and α−α

∗
+.

8Representations of numerical simulations can be contemplated here:
http://www.ifsc.usp.br/∼strontium/ → Research → Quantum Sensing → History of CARL → Chil-
dren’s corner.
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Solution: We obtain,

d

dt
(α±α

∗
± + 2κ) = ıU0(e

±2ıkzα±α
∗
∓ − e∓2ıkzα∓α∗±) + η∗±α± + η±α

∗
±

d

dt
(α±α

∗
∓ + 2κ) = (α±α

∗
± − α∓α∗∓) + η∗∓α± + η±α

∗
∓ .

The quantities α±α∗∓ describe a redistribution of photons between counterpropagating
waves.

40.2.9.15 Ex: Backaction of atomic vibration on the modes of a sym-
metrically pumped ring cavity

a. Calculate the Lamb-Dicke parameter for gravitation-induced Bloch oscillations in
a strontium gravimeter, as well as the modulation index. Is the continued fractions
method applicable?
b. Study the dynamics of the counterpropagating light modes of a ring cavity in the
presence of an atom whose position is periodically modulated with a given frequency
by numerical integration of the equations of motion (40.183). Compare with the re-
sults obtained by the method of continued fractions proposed in Sec. 40.2.8.

Solution: a. The recoil shift and the Bloch oscillation frequency are, respectively,

ωrec =
ℏk2

2m
, νblo =

mg

2ℏk
.

With this we calculate for the gravitation-induced Bloch oscillations in a strontium
gravimeter a Lamb-Dicke parameter of

ηblo =

√
ωrec
2πνho

=

√
ℏk2
2m

ℏk
πmg

≈ 2.4 .

The modulation index is,

kz0 =
kv

2πνho
=

2ωrec
2πνho

= 2η2blo ≈ 12.5 .

Hence, the continued fractions method is NOT applicable. In contrast, the cavity
linewidth does not matter.
b. The equations of motion (40.183), modified to account for the periodic vibration of
the atom, are,

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0e
∓2ıkz0 sinωtα∓ + η± ,

ω being the vibration frequency and kz0 the modulation excursion. The results of the
simulation are exhibited in Fig. 40.25. Interestingly, we find that the cavity linewidth
does not matter.
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Figure 40.25: (code) (a) Photon number and (b) phase shift of the cavity in response to

a modulated atomic position. The chosen parameters are kz0 = 2π, κ = (2π) 440 kHz,

ω = (2π) 745 kHz, η± = 10κ, U0 = −κ. The initial photon number is |α|2 = 16. (c)

Spectrum recorded behind a cavity mirror with the transmittivity thr. The spectrum is

obtained as the Fourier transform of the g(1)(τ) correlation function of the transmitted field

Eout = thre
ıkaEcav, where e

ıka is a fixed phase factor depending on the mirror position a

(see Sec. 35.5).

40.2.9.16 Ex: Fluorescent emission of a ring cavity for one-sided pump-
ing in the adiabatic approximation

Based on the solution of the adiabatic field equations derived in Exc. 40.2.9.9 calculate
the emission spectrum of the ring cavity driven below saturation (where the adiabatic
approximation is good) from one side (η− = 0) for both counter-propagating direc-
tions (α±). Compare with numerical solutions.

Solution: In Exc. 40.2.9.9 we found,

α±(t) = A±e
(−χ+ıU0)t +B±e

(−χ−ıU0)t + C±

= A±e
(−κ+ı∆c)t +B±e

[−κ+ı(∆c−2U0)]t + C± ,

where we assume Uγ = U0 and χ = κ+ ı(U0 −∆c) and,

A+ =
−η+/2
χ− ıU0

, B+ =
−η+/2
χ+ ıU0

, C+ =
χη+

χ2 + U2
γ

A− =
e2ıkzη+/2

χ− ıU0
, B+ =

−e2ıkzη+/2
χ+ ıU0

, C− =
e2ıkzıU0η+
χ2 + U2

γ

.

Now, we need to calculate the correlation function,

⟨tα∗+(t+τ)eıωτα+(t)⟩ = eıωτ lim
t→∞

∫ t

0

[(
A∗+e

(−κ−ı∆c)(t+τ) +B∗+e
[−κ−ı(∆c−2U0)](t+τ) + C∗+

)
×

×
(
A+e

(−κ+ı∆c)t +B+e
[−κ+ı(∆c−2U0)]t + C+

)
]
dt′ .

Using,

lim
t→∞

∫ t

0

e−(a+ıb)tdt′ = lim
t→∞

1− e−(a+ıb)t
a+ ıb

=
1

a+ ıb
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedModulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedModulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedModulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedModulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedModulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedModulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ContinuedModulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed18.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_DynamCqed18.pdf
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we find,

⟨tα∗+(t+ τ)eıωτα+(t)⟩

= eıωτ




e(−κ−ı∆c)τ |A+|2 1
2κ + e[−κ−ı(∆c−2U0)]τ |B+|2 1

2κ + |C+|2t
+e(−κ−ı∆c)τA∗+B+

1
2κ+2ıU0

+ e[−κ−ı(∆c−2U0)]τA+B
∗
+

1
2κ−2ıU0

+e(−κ−ı∆c)τA∗+C+
1

κ+ı∆c
+A+C

∗
+

1
κ−ı∆c

+e[−κ−ı(∆c−2U0)]τB∗+C+
1

κ+ı(∆c−2U0)
+B+C

∗
+

1
κ−ı(∆c−2U0)




= eıωτ




e(−κ−ı∆c)τ
(
|A+|2
2κ +

A∗
+B+

2κ+2ıU0
+

A∗
+C+

κ+ı∆c

)

+e[−κ−ı(∆c−2U0)]τ
(
|B+|2
2κ +

A+B
∗
+

2κ−2ıU0
+

B∗
+C+

κ+ı(∆c−2U0)

)

+t|C+|2 + A+C
∗
+

κ−ı∆c
+

B+C
∗
+

κ−ı(∆c−2U0)


 .

The autocorrelation function is now,

g(1)(τ) =
⟨tα∗+(t+ τ)eıωτα+(t)⟩
⟨tα∗+(t)α+(t)⟩

=
e−κτeıωτ

(
Xe−ı∆cτ + Y eı(2U0−∆c)τ + Z

)

X + Y + Z

and the emission spectrum,

S(ν) = Fg(1)(τ)

=
1

X + Y + Z

(
X

κ

(ν − ω +∆c)2 + κ2
+ Y

κ

(ν − ω + 2U0 −∆c)2 + κ2
+ Zδ(ν − ω)

)

with ∆ = ν − ω the detuning of the analyzing frequency filter.
The numerical solution is exhibited in Fig. 40.26.
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Figure 40.26: (code) (a) Transmission spectra and (b) emission spectra. The parameters are

η+ = 0.1κ, η− = 0, and U0 = κ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_EmissionBeamsplitter.jl
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_EmissionBeamsplitter.jl
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40.3 Noise analysis of Bragg scattering in cavities

40.3.1 Fluorescence versus absorption

Consider a atoms in a cavity mode irradiated from the side [1295]. Every atom emits
m photons, a fraction α of which goes into the cavity mode and is detected. Hence,
c = αma photons are counted, from which we infer the atom number and the noise,

a =
c

αm
(40.264)

∆af = a
∆c

c
=

c

αm

√
c

c
=

√
1

αm
a . (40.265)

For absorption 2σ/πw2 = 4α with σ = 3λ2/2π. The photons missing in the transmit-
ted beam are those scattered out of the cavity. If mi photons come in, ma = 4αmia
photons are scattered out. The main contribution to the absolute noise in the de-
tected signal evidently comes from the shot noise of the incident probe beam, not
from atom number fluctuations. Hence,

∆af = a
∆c

c
=

c

4αm

∆c

c
=

1

4αm
∆c =

1

4αm
∆mi =

1

4αm

√
4αm =

√
1/4αm .

(40.266)
Consider a fluctuating number of atoms a. Each one scatters a fluctuating number

of photons n, which are all detected. What information does the statistics of n
containt about a? Let us first define the fluctuation and correlations function for the
atom number,

∆a2 = ⟨a2⟩ − ⟨a⟩2 (40.267)

gaa ≡
⟨a2⟩ − ⟨a⟩
⟨a⟩2 =

∆a2 − ⟨a⟩
⟨a⟩2 + 1 .

The probability to encounter a atoms is given by a distribution function ρ(a). The
probability to measure na photons at a fixed atom number is distribution according
to ε(n, a). Hence, the mean value of photon counts is,

⟨n⟩ =
∑

a,n

ρ(a)ε(n, a)n =
∑

a

ρ(a)
∑

n

ε(n, a)n =
∑

a

ρ(a)⟨na⟩ , (40.268)

where ⟨na⟩ is the mean value of photon numbers at a fixed given atom number a and
the fluctuation and correlations function are,

∆n2a = ⟨n2a⟩ − ⟨na⟩2 (40.269)

gnn ≡
⟨n2a⟩ − ⟨na⟩
⟨na⟩2

=
∆n2a − ⟨na⟩
⟨na⟩2

+ 1 .

It is reasonable to assume ⟨na⟩ = a⟨p⟩ where ⟨p⟩ is the mean number of photons
scattered by an individual atom. We then get,

⟨n⟩ =
∑

a

ρ(a)a⟨p⟩ = ⟨p⟩
∑

a

ρ(a)a = ⟨a⟩⟨p⟩ . (40.270)
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Again we calculate the mean square of the counted photon numbers,

⟨n2⟩ =
∑

a,n

ρ(a)ε(n, a)n2 =
∑

a

ρ(a)⟨n2a⟩ (40.271)

=
∑

a

ρ(a)(⟨na⟩2gnn + ⟨na⟩)

=
∑

a

ρ(a)(⟨na⟩2gnn + a⟨p⟩) = gnn
∑

a

ρ(a)⟨na⟩2 + ⟨n⟩ .

If the distribution ε(n, a) is Poissonian with the mean value a⟨p⟩,

ε(n, a) = e−a⟨p⟩
(a⟨p⟩)n
n!

(40.272)

and the atom distribution is also Poissonian,

ρ(a) = e−⟨a⟩
⟨a⟩n
a!

(40.273)

the total distribution is,

κ(n) =
∑

a

ρ(a)ε(n, a) =
∑

a

e−⟨a⟩
⟨a⟩n
a!

e−a⟨p⟩
(a⟨p⟩)n
n!

. (40.274)

Hence

gnn = gaa +
⟨p⟩
⟨n⟩ . (40.275)

40.3.2 Correlations in Bragg scattering

Light scattered from ultracold atoms arranged in a periodic optical lattice contains
information about the quantum state of the system. The goal of the following cal-
culations is to study the angular dependence and the coherence characteristics of the
scattered light for the cases of propagating wave or cavity-enhanced input and output
modes.

We consider a 1D grating with lattice constant d with N atoms distributed over
M lattice sites. K of the lattice sites are illuminated by a pump laser. The full
Hamiltonian for the problem of Bragg scattering at quantum correlated atoms is
given in [870, 871, 873, 872]. The authors derive the Bose-Hubbard model and set up
the Heisenberg equations of motion. Then however they dramatically simplify them
by preventing tunneling. The correlations are then reintroduced ad hoc, when they
assume particular wavefunctions, e.g. Mott insulator, superfluid or coherent states.
The lattice is irradiated by a pump laser a0, the scattered probe laser a1 is detected.
The angles of both modes with respect to the lattice can be chosen freely. The multi-
particle Hamiltonian is, after adiabatic elimination of excited atomic states assumed
to be valid for large detunings ∆la = ωl − ωa between atomic resonance and light
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Figure 40.27: (a) Geometry of the scattering problem. (b) Possible experimental setup for
measuring Bragg diffraction from CARL.

frequency,

Ĥ = Ĥf + Ĥa

with Ĥf =
∑

l

ℏωlâ†l âl − ıℏ
∑

l

(η∗l âl − ηlâ†l )

and Ĥa =

∫
d3rΨ̂†(r)Ĥa1Ψ̂(r) +

2πasℏ2

m

∫
d3rΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

with ĥa1 =
p̂2

2ma
+ Vcl(r) + ℏg20

∑

l,m

u∗l (r)um(r)â†l âm
∆ma

.

.

Here, âi is the annihilation operator of mode i, ηl the pumping rate of mode 1, Ψ̂(r)
the atomic field operator, as the s-wave scattering length, Vcl the lattice potential,
and ui the mode functions of the light fields.

For a strong potential and a weak pump, we derive the Bose-Hubbard-Hamiltonian
with the ansatz of Wannier functions Ψ̂(r) =

∑
i b̂iw(r− ri),

Ĥ = Ĥf+

M∑

i,j=1

Jcli,j b̂
†
i b̂j+ℏg20

∑

l,m

â†l âm
∆ma




K∑

i,j=1

J lmi,j b̂
†
i b̂j


+

U

2

M∑

i=1

b̂†i b̂i(b̂
†
i b̂i−1) (40.276)

and with the terms denoting the coefficients for the quantum motion of the atoms,
the contribution of the light modes, and the interatomic interaction within a site,
respectively

Jcli,j =

∫
d3rw(r− ri)

(
−ℏ2∇2

2m
+ Vcl(r)

)
w(r− rj) (40.277)

J lmi,j =

∫
d3rw(r− ri)u

∗
l (r)um(r)w(r− rj)

U =
4πasℏ2

ma

∫
dr|w(r)|4 .
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We now make the approximation that tunneling is only possible between nearest
neighbors. Then the coefficients Jcl do not depend on index i of the potential site,

Jcli,i = Jcl0 , Jcli,i±1 = Jcl . (40.278)

so that

Ĥ = Ĥf + Jcl0 N̂ + JclB̂ + ℏg20
∑

l,m

â†l âm
∆ma

(
K∑

i=1

J lmi,i n̂i

)
(40.279)

+ ℏg20
∑

l,m

â†l âm
∆ma




K∑

⟨i,j⟩
J lmi,j b̂

†
i b̂j


+

U

2

M∑

i=1

n̂i(n̂i − 1) .

where n̂i = b̂†i b̂i is the atom number operator, B̂ =
∑M
i=1 b̂

†
i b̂i+h.c., N̂ =

∑K
i=1 n̂i the

atom number is conserved g0 is the atom-field coupling constant.
Let us calculate the Heisenberg equations from ıℏ ˙̂x = [x̂, Ĥ],

˙̂al = −ı



ωl +

g20
∆la

K∑

i=1

J lli,in̂i

︸ ︷︷ ︸
non-resonant dispersion

+
g20
∆la

K∑

⟨i,j⟩
J lli,jb

†
i bi

︸ ︷︷ ︸
tunneling



âl − ig20

∑

m ̸=l

am
∆ma

(
K∑

i=1

J lmi,i n̂i

)

︸ ︷︷ ︸
scattering into al

− ıg20
∑

m̸=l

âm
∆ma




K∑

⟨i,j⟩
J lmi,j b̂

†
i b̂i




︸ ︷︷ ︸
correction to scattering due to tunneling

+ηl . (40.280)

and

˙̂
bi = −

ı

ℏ


Jcl0 + ℏg20

∑

l,m

â†l âm
∆ma

J lmi,i + Un̂i


 b̂i −

ı

ℏ


Jcl + ℏg20

∑

l,m

â†l âm
∆ma

J lmi,i+1


 b̂i+1

− ı

ℏ


Jcl + ℏg20

∑

l,m

â†l âm
∆ma

J lmi,i−1


 b̂i−1 . (40.281)

The system contains additionally to the Bose-Hubbard model terms describing long-
range interactions. This interaction is mediated by the light field.

40.3.3 Scattering from deep lattice

[873] derive the following Heisenberg equation for Bragg scattering reminiscent to the
CARL model. The deep lattice is characterized by large Vcl, small overlap of Wannier
functions, no tunneling (Jcl = 0, J lmi,j = 0 for i ̸= j). With the approximation:

J lmi,i = u∗l (ri)um(ri), neglect atomic localization,

˙̂a1 = −ı
(
ω1 +

g20
∆1a

K∑

i=1

|u1(ri)|2n̂i
)
â1 − ı

g20a0
∆la

K∑

i=1

u∗1(ri)u0(ri)n̂i − κâ1 + η1 .

(40.282)
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In the equation for the matter wave only the first term doesn’t vanish. This only con-

cerns the phase, not the atom number operator. The term for dispersion
g20
∆1a

∑K
i=1 |u1(ri)|2n̂i

be small compared to the the(weak coupling) rest. âj → aje
−ıωt is a slowly varying

envelope. A stationary solution is:

a1 = CD̂ (40.283)

with

C ≡ − ig20a0
∆0a(κ− ı∆01)

(40.284)

D̂ ≡
K∑

i=1

u∗1(ri)u0(ri)n̂i ≡
K∑

i=1

Ain̂i .

Consider a 1D-lattice with sites at xm = m ·d (m = 1, 2, ...,M). We scatter a running
wave a0 at the lattice and look at the expectation value of the scattered light field,

⟨a1⟩ = C⟨D̂⟩ = C

K∑

m=1

eimδkxd⟨n̂m⟩ (40.285)

= Cneı(K+1)α−/2
sin(Kα−/2)
sin(α−/2)

.

Here α− = δkxd and δkx = (k0 − k1)x = k(sinΘ0 − sinΘ1). The above equation de-
scribes classical diffraction. The expectation value of the light field thus only depends
of the atom number per lattice site n. The photon number and statistics however
depend on higher moments of n̂i, i.e. on quantum correlations and quantum statistics.

The mode functions or traveling waves are

uβ(rm) = eımkβxd , (40.286)

where β = 0, 1. For standing waves

uβ(rm) = cos(ımkβxd) . (40.287)

40.3.4 Correlations

We now assume all sites ⟨n̂i⟩ to be identical to an arbitrary specific site ⟨n̂a⟩, so
that ⟨n̂2i ⟩ = ⟨n̂2a⟩. Furthermore, we assume a steep lattice, ⟨n̂in̂j ̸=i⟩ ≡ ⟨n̂an̂b⟩. The
expectation value for the field is then,

⟨D̂⟩ = ⟨n̂a⟩
K∑

i=1

Ai ≡ A⟨n̂a⟩ . (40.288)
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It can be measured by homodyne techniques. The photon count rate is,

⟨D̂∗D̂⟩ =
K∑

i,j=1

A∗iAj⟨n̂in̂j⟩ =
K∑

ı̸=j

A∗iAj⟨n̂in̂j⟩+
K∑

i=1

|Ai|2⟨n̂2i ⟩ (40.289)

= ⟨n̂an̂b⟩
(
|A|2 −

K∑

a

|Aa|2
)

+ ⟨n̂2a⟩
K∑

i=1

|Ai|2

= ⟨n̂an̂b⟩|A|2 + (⟨n̂2a⟩ − ⟨n̂an̂b⟩)
K∑

i=1

|Ai|2 ,

and its variance is

⟨D̂∗D̂⟩ − |⟨D̂⟩|2 = ⟨n̂an̂b⟩|A|2 + (⟨n̂2a⟩ − ⟨n̂an̂b⟩)
K∑

i=1

|Ai|2 −
∣∣∣∣∣
K∑

i=1

Ai⟨n̂i⟩
∣∣∣∣∣

2

(40.290)

= (⟨n̂an̂b⟩ − ⟨n̂a⟩2)|A|2 + (⟨n̂2a⟩ − ⟨n̂an̂b⟩)
K∑

i=1

|Ai|2

= (δn̂aδn̂b) |A|2 + (⟨δn̂2a⟩ − ⟨δn̂aδn̂b⟩)
K∑

i=1

|Ai|2 .

In the last equation we used the definition δn̂i ≡ n̂i − ⟨n̂i⟩ for which ⟨δn̂iδn̂j⟩ =
⟨n̂in̂j⟩ − ⟨n̂a⟩2 is easy to show.

40.3.4.1 Variance of photon number

The photon number variance is,

(∆nph)
2 = ⟨n2ph⟩ − ⟨nph⟩2 = ⟨∆n2ph⟩+ ⟨nph⟩
= |C|4(⟨D̂∗2D̂2⟩ − ⟨D̂∗D̂⟩) + |C|2⟨D̂∗D̂⟩ .

40.3.5 Probing atomic correlations with traveling waves

Using the above relationships with traveling waves,

⟨a1⟩ = C⟨n̂a⟩
K∑

i=1

u∗1(ri)u0(ri) = C⟨n̂a⟩ei(K+1)d(k0x−k1x) sin
K
2 d(k0x − k1x)

sin 1
2d(k0x − k1x)

. (40.291)

Analogously the correlation function gives,

⟨a∗1a1⟩ = |C|2
(
⟨n̂an̂b⟩

∣∣∣∣
∑K

m=1
u∗1(rm)u0(rm)

∣∣∣∣
2

+
(
⟨n̂2a⟩ − ⟨n̂an̂b⟩

)∑K

m=1
|u0(rm)||u1(rm)|

)

(40.292)

= |C|2
(
1− cosKd(k0x − k1x)
1− cos d(k0x − k1x)

⟨n̂an̂b⟩+K
(
⟨n̂2a⟩ − ⟨n̂an̂b⟩

))
.
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Its variance is

⟨a∗1a1⟩ − |⟨a1⟩|2 = |C|2
(
1− cosKd(k0x − k1x)
1− cos d(k0x − k1x)

(⟨n̂an̂b⟩ − |⟨n̂a⟩|2) +K(⟨n̂2a⟩ − ⟨n̂an̂b⟩)
)
.

(40.293)

Various techniques are possible, heterodyne or spectral measurements. Or one may
tune the Bragg angle. The above Bragg technique may be applied to various types of
quantum correlation [871, 873].

40.3.6 Quantum statistics for typical atomic distributions

If the number of illuminated lattice sites is much smaller than the total number
of sites, then the coherent state is a good approximation for the calculation of the
features of the scattered light in the limit N,M → ∞ with finite N

M . Far from the

diffraction maxima the approximation also holds for M ∝ K. Now n ≡ N
M is the

expectation value of the atom number per potential site and NK ≡ K N
M = nK.

40.3.6.1 Mott insulator

Products of Fock states at each lattice site, exactly ni atoms per lattice site. The
number of atoms per lattice site does not fluctuate n̂i, neither does the total number
of atoms K. No quantum correlations between lattice sites.

The Mott insulating state is described by,

|ψmi⟩ =
N∏

m=1

|ψm⟩m . (40.294)

Hence the atom numbers per site are uncorrelated. The correlation is,

⟨a∗1a1⟩ = |C|2
1− cosKd(k0x − k1x)
1− cos d(k0x − k1x)

⟨n̂a⟩2 = |⟨a1⟩|2 . (40.295)

Its variance is ⟨a∗1a1⟩ − |⟨a1⟩|2 = 0. The behavior is identical to classical Bragg
scattering,

⟨n̂an̂b⟩mi = ⟨n̂a⟩2 (40.296)

⟨δn̂aδn̂b⟩mi = 0 for a ̸= b

⟨∆n̂a⟩mi = 0 .

In ⟨D̂∗2D̂2⟩, all terms with 2, 3, or 4 lattice sites factorize; are closest to the
classical state. Consider uniform filling with n = N

M atoms per lattice site.

40.3.6.2 Superfluid state

Every atom is delocalized over all sites. This causes fluctuating atom numbers in
K < M sites. All terms involving 2, 3, or 4 lattice sites do not factorize. The SF
state is a superposition of all possible Fock states with N atoms in M sites.
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The superfluid state,

|ψsf ⟩ =
1√
N !

(
1√
M

N∑

m=1

b†m

)N
|0⟩ (40.297)

b̂i|ψsf (N,M)⟩ =
√
N

M
|ψsf (N − 1,M)⟩sf

⟨ψsf |b̂†mi b̂mi |ψsf ⟩ =
N !

Mm(N −m)!
.

In particular in the photon number variance there are terms like ⟨D̂∗2D̂2⟩ contain-
ing contributions like ⟨nanbncnd⟩. With [bi, b

†
j ] = δij we find,

⟨n̂i⟩ = ⟨b†i bi⟩ (40.298)

⟨n̂2i ⟩ = ⟨b†i bib†i bi⟩ = ⟨b†i bi⟩+ ⟨b†i2b2i ⟩
⟨n̂3i ⟩ = ⟨b̂†i b̂i⟩2 + ⟨b̂†2i b̂2i ⟩+ ⟨b̂†3i b̂3i ⟩
⟨n̂4i ⟩ = ⟨b†i bi⟩+ 7⟨b†2i b2i ⟩+ 6⟨b†3i b3i ⟩+ ⟨b†4i b4i ⟩

⟨n̂an̂b⟩ = ⟨b†ab†bbabb⟩ = ⟨b
†2
i b

2
i ⟩

⟨n̂an̂bn̂c⟩ = ⟨b†3i b3i ⟩
⟨n̂an̂bn̂cn̂d⟩ = ⟨b†4i b4i ⟩
⟨n̂2an̂bn̂c⟩ = ⟨b†3i b3i ⟩+ ⟨b†4i b4i ⟩
⟨n̂3an̂b⟩ = ⟨b†2i b2i ⟩+ 3⟨b†3i b3i ⟩+ ⟨b†4i b4i ⟩
⟨n̂2an̂2b⟩ = ⟨b†2i b2i ⟩+ 2⟨b†3i b3i ⟩+ ⟨b†4i b4i ⟩

This yields,

2⟨n̂an̂bn̂cn̂d⟩ − 3⟨n̂2an̂bn̂c⟩+ ⟨n̂3an̂b⟩ = N
N − 1

M2
(40.299)

−⟨n̂an̂bn̂cn̂d⟩+ ⟨n̂2an̂bn̂c⟩ = N(N − 1)
N − 2

M3

⟨n̂an̂bn̂cn̂d⟩ − 2⟨n̂2an̂bn̂c⟩+ ⟨n̂2an̂2b⟩ = N
N − 1

M2

−6⟨n̂an̂bn̂cn̂d⟩+ 12⟨n̂2an̂bn̂c⟩ − 4⟨n̂3an̂b⟩ − 3⟨n̂2an̂2b⟩+ ⟨n̂4⟩ =
N

M

and hence the formula found by [873] simplifies to,

⟨D̂∗2D̂2⟩ =
∣∣∣∣∣
K∑
i=1

Ai

∣∣∣∣∣
4

N !

M4(N − 4)!
+

( K∑
i=1

A2
i

)(
K∑
i=1

A∗i

)2

+ c.c.+ 4

∣∣∣∣∣
K∑
i=1

A2
i

∣∣∣∣∣
2 K∑
i=1

|Ai|2
 N !

M3(N − 3)!

+ 2

( K∑
i=1

|Ai|2
)2

+
1

2

∣∣∣∣∣
K∑
i=1

A2
i

∣∣∣∣∣
2
 N !

M2(N − 2)!
+ 2

[(
K∑
i=1

|Ai|2Ai
)

K∑
i=1

A∗i + c.c.

]
N !

M(N − 1)!

+
K∑
i=1

|Ai|4 N
M

. (40.300)
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40.3.6.3 Coherent state

Approximation of the SF state. Product of local coherent states. Fluctuating atom
numbers in K ≤ M sites, but also fluctuating total number (which is a drawback).
No correlations between several different states. The approximation is good only for
K < M .

Approximation to superfluid state,

|ψco⟩ = e−N/2
N∏

m=1

eb̂
†
i

√
N/M |0⟩m (40.301)

b̂i|ψco(N,M)⟩ =
√
N

M
|ψco(N − 1,M)⟩co

⟨ψco|b̂†mi b̂mi |ψco⟩ =
Nm

Mm
.

The correlation functions are derived analogously to the superfluid state.

Mott insulator state superfluid state coherent state

⟨n̂2i ⟩ n2 n2(1− 1
N ) + n n2 + n

(∆ni)
2 0 n(1− 1

M ) n

⟨n̂2K⟩ NK N2
K(1− 1

N ) +NK N2
K +NK

(∆n̂K)2 0 NK(1− K
M ) NK

⟨n̂an̂b⟩ n2 n2(1− 1
N ) n2

⟨δn̂aδn̂b⟩ 0 − N
M2 0

40.3.6.4 Self-organized states

An interesting case occurs when self-organization populates only odd or even (Mott
insulating) states as found by Vuletic. For us the more important cases are 1. thermal
clouds with partial ordering into a lattice (CARL) and 2. arrays of BECs localized at
different lattice sites. Try,

|ψso⟩so =
1√
N !

M∏

m=1

(
1√
Nm

Nm∑

i=1

b†i

)
|0⟩ . (40.302)

[1036] shows what correlations are building up under CARL action. Also Suppl. Carl,
”Quantized motion” and ”Coherence”.

Let us interpret the observations: The expectation value of the field amplitude,
⟨a1⟩ only depends on the mean atom number. The angular dependence is like in for
classical Bragg scattering.

Number of scattered photons ⟨a∗1ai⟩ (intensity depends for certain angles on the
density correlation. From this one obtains the structure factor. Two terms contribute
to the angular dependence of the intensity: the first one depends on |A|2, i.e. it goes
quadratically with the field amplitude. the second term is proportional to ⟨n̂2⟩ −
⟨n̂an̂b⟩, i.e. contains quantum fluctuations.
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Variance R(θ0, θ1): the term with classical angular distribution |A|2 only appears,
when pair correlations ⟨n̂an̂b⟩ do not vanish. So, not only the spatial structure of
the lattice leads to diffraction, but also the distribution of the fluctuations. Here, the
spatial distribution of the fluctuations ⟨δn̂aδn̂b⟩ can be either zero (MI) or identical
with the density distribution. In the first case, only the fluctuation at each lattice
site ⟨δn̂2⟩ contributes to the noise, in the second case, pair correlations contribute to
the classical distribution |A|2.

The spatial distribution of the noise may differ from that of the average density.
Additional peaks are obtained in the angular distribution.

40.3.7 Results and questions

40.3.7.1 1D optical lattice in transversely pumped cavity

System: Pump beam orthogonal to lattice (θ0 = 0), light scattered in the direction
of the lattice

(
θ1 = π

2

)
, scattering into the resonator mode. Atoms at the distance

d = λ/2 in the antinodes of a standing wave. Then:

D̂ =

K∑

m=1

u∗1(rk)u0(rk)n̂k =

K∑

m=1

cos(mdk1 sin θ1)n̂k cos(mdk0 sin θ0)n̂k (40.303)

=

K∑

m=1

cos(πm)n̂k =

K∑

m=1

(−1)2m−1n̂k .

⟨D̂⟩ disappears and thus also field amplitude (for both states). This corresponds
to destructive interference (even K).

Photon number ⟨a†1a1⟩ proportional to,

⟨D̂∗D̂⟩ = ⟨n̂an̂b⟩|A|2 + (⟨n̂2⟩ − ⟨n̂an̂b⟩)
K∑

i=1

|Ai|2 = (⟨n̂2⟩ − ⟨n̂an̂b⟩)K . (40.304)

for MI disappears (⟨n̂2⟩ − ⟨n̂an̂b⟩)K, for SF it becomes,

(⟨n̂2⟩ − ⟨n̂an̂b⟩)K =

(
N2

M2
− N

M2
+
N

M
− N2

M2
+

N

M2

)
K (40.305)

=
N

M
K = NK .

The MI state does not scatter photons into resonator mode, SF state scatters a number
of photons proportional to the atom number:

⟨ai⟩MI = 0 = ⟨ai⟩SF (40.306)

⟨a†iai⟩MI = 0 , ⟨a†iai⟩SF = |C|2NK .

The mean photon number already yields information on the atomic quantum state.
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40.3.7.2 Running waves

Running wave:
u0,1(r) = exp(ımk0,1d) . (40.307)

Then

Am = u∗1(rm)u0(rm) = eimα− (40.308)

α− = k0xd sinΘ0 − k1xd sinΘ1 .

We obtain for the noise:

R = ⟨δn̂aδn̂b⟩
sin2(Kα−/2)

sin2(α−/2)
+
(
⟨δn̂2⟩ − ⟨δn̂aδn̂b⟩

)
K . (40.309)

For the various states,

RMI = 0 (40.310)

RCO = nK = NK

RSFK
= − N

M2

sin2(Kα−/2)

sin2(α−/2)
+
N

M
K .

Intensity of scattered light,

⟨D̂∗D̂⟩ = ⟨n̂an̂b⟩|A|2 +
(
⟨n̂2⟩ − ⟨n̂an̂b⟩

) K∑

i=1

|Ai|2 (40.311)

⟨D̂∗D̂⟩MI = 0

⟨D̂∗D̂⟩Inc = K⟨n̂2⟩ = nK

⟨D̂∗D̂⟩SF =

(
N2

M2
− N

M2

)
sin2(Kα−/2)

sin2(α−/2)
+
N

M
K .

MI and SF states are distinguishable in the diffraction minimum, and no distinction
is possible in the maximum, because there are no fluctuations in the total number of
atoms. Scattering at the maximum can be considered as a superradiance, since the
intensity is proportional to N2

K . At the minimum, scattering for MI is suppressed,
scattering from SF proportional to NK .

For even K the terms with |A|2 disappear. Therefore, we only get a dependence
from ⟨n̂2⟩ − ⟨n̂an̂b⟩, i.e. the difference between local and non-local fluctuations. For
running waves is the proportionality factor K.

40.3.7.3 Standing waves

If one of the two modes (pump or probe mode) is a standing wave in a resonator, the
angular dependence of the noise becomes even stronger. We obtain new maxima in
the classical diffraction (first terms in Eqs. (17, 18)) and the angular dependence of
the second terms is no longer isotropic, |Ai|2 returns a doubling of the lattice period
or the frequency. This results in new peaks in the noise, where classically nothing is
to be expected,

u0,1(r) = cos(mk0,1d) . (40.312)
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Figure 40.28: (code) For θ1 = π
2
(Probe light along lattice axis), different angles of the pump

light, P+ = 1 W, λ0 = λ1 = 794nm, λG = 820 nm. There are 150 filled lattice sites.

40.3.7.4 Questions

[871] assumes a classical incident light field, which means that the fluctuations in
the Bragg-scattered light solely arise from quantum fluctuations in the atomic cloud.
However, in reality the pump laser will have Poissonian fluctuations as well, ⟨δa0⟩ ≠ 0.
How to treat conditional probabilities?

Binomial distribution,

P (m)
n =

(
m

n

)
pn(1− p)m−n . (40.313)

Poisson distribution,

Pn =
λn

n!
e−λ (40.314)

for large n small p we have B
(n)
k ≃ Pk with λ = np. Thermal distribution,

Pn =
n̄n

(1 + n̄)1+n
. (40.315)

Thermal distribution,

Pn =
eℏω(n+1/2)kBT

∑
n e

ℏω(n+1/2)kBT
. (40.316)

Photon noise at non-Bragg angles should disappear for K →∞?
In principle g(2)(τ) can be determined in two ways: 1. Autocorrelation of a time-

dependent intensity I(t), 2. Normalized histogram of coincidences in a Hanbury-
Brown-Twiss type experiment. In the first case, intensity trace can be gathered
by a photon detector in current (i.e. integration) mode or by photon counting and
summing up all counts within predefined time-intervals. This method is suitable to
detect classical correlations or technical noise. However this method deletes the most
interesting part of the information, which is photon statistics at short times. Fur-
thermore, a photon counter has a finite bandwidth (in our case τ−1bw = 5MCnts/s). A
single trace can thus only reproduce correctly the statistics of photons separated by
τdist > τbw. If the coherence time τcoh is shorter, quantum effects like antibunching
will not become visible. This is why Hanbury-Brown-Twiss is needed [1171].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_BraggNoise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_BraggNoise.m
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It is possible to generate arbitrary g(2)(τ) by tailoring the waiting time distribution
between photons. We have a 5 ns resolution photon arrival time trace (SR430) or a 5µs
resolution photon arrival time histogram (single-photon detector). In an experiment,
we may couple the probe light leaking out of a cavity mirror through a fiber into a
single-photon detector. A multi channel scaler counts the numbers of photons nph
detected in subsequent time-intervals of given length τ . Now what is the noise ∆nph?
Is it the width of the histogram H(nph)?

Maximum count rate: 5 counts/µs. Time scale for CARL dynamics: 1µs. Photon
number in cavity for P+ = 1W is n+ = 109 and for P− = 1mW is n− = 106.
Outcoupled power is Pout,− = P− × 2 ppm. Outcoming photons per second nout,− =
P−/ℏω × 1 s ≃ 1010.

Experimentally, superfluid lattices may correspond to condensates in shallow stand-
ing waves, where atoms can tunnel form site to site. Arrays of uncorrelated conden-
sates in deep lattice would then be described by coherent states. What are the real
quantum correlations in the cavity? What correlations does the CARL instability
generate?

[871] assumes perfect ordering, even for the superfluid case. Superfluidity for him
only means perfect mobility of the atoms between discrete, well-localized lattice sites.
In practice however we will have a finite Debye-Waller factor. Can this have an impact
on the quantum statistics of the scattered light?

[871] assumes the scattered light be stored in a cavity. Does the fact that we look
at the outcoupled light modify the quantum statistics?

Is it possible to monitor the quantum correlations developing during CARL using
the Bragg scattering noise analysis? Imagine we run a CARL experiment in high
finesse and observe the superradiant ringing on a 100µs time scale. We could use a
weak collinear probe laser in low finesse to couple into the cavity short pulses (not
limited by the cavity decay time). Hence, the CARL is quasi in steady state, when we
detect the response of the Bragg scattering of the probe. The probe may be separated
from other overlapping beams ⟨a1⟩ through homodyning, ⟨a∗1a1⟩. The Bragg angle
can be tuned by changing the wavelength.

The treatment only holds for optically dilute clouds, otherwise the scattering rate
saturates. This means that only a small fraction of photons is scattered only the
Bragg angles.

The portion of photons scattered into the cavity has to be integrated over the
solid angle of the cavity mode. Far from the Rayleigh length we have tanα ≃ α =
w(z)/w0 = λ/π/w0 ≈ 0.13◦.

How about light Rayleigh-scattered out of the incidence plane?

40.4 Interaction of atoms with surfaces

40.4.1 Local density of states for atoms near surfaces

In the following sections we consider two-level atoms interacting with meta-materials.
An atom consists of a discrete set of levels between which electric or magnetic transi-
tions characterized by dipole moments d can be excited via vectorial laser light. The
meta-material medium is defined by its spatially and frequency dependent relative
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permittivity, ε(r;ω) and relative permeability, µ(r;ω) 9.

The way how the atom and the medium interact can be understood introducing
the notion of the photonic local density of states (LDOS). The medium shapes, via ε
and µ, the LDOS for any radiation field the medium can sustain, assuming that the
atom itself does not modify the LDOS. To calculate the density of states one must
solve Maxwell equations and obtain the Green function G(r, r′;ω), which completely
describes the material. The density of states is proportional to the imaginary part
of Green function. Furthermore, the Green function permits to calculate easily the
propagation of an incident light field through the medium 10, and hence the local
radiation intensity E⃗(r;ω).

After this, one has to set up the Hamiltonian for the atom located at position ra
near the dielectric and solve, with a suitable ansatz, the Schrödinger equation. This
yields the time evolution of the atomic state excitation probabilities [682, 41].

40.4.1.1 Density of states from Maxwell’s equations

The density of states (DOS), the group velocity, and the distribution function are
necessary for calculating various macroscopic quantities like specific heat, thermal
conductivity, energy density, and radiation intensity. The local density of states
(LDOS) is a generalization of the DOS and, unlike the DOS, a position dependent
quantity. Like the DOS, the LDOS depends on the type of carrier - electron, phonon,
or photon. It is generally related to the Green’s function of the appropriate govern-
ing equation (Schrödinger equation for electrons, wave equation for long wavelength
phonons, and Maxwell’s equation for photons) and boundary conditions. Here, we
are concerned with the photonic or electromagnetic LDOS [946].

The electromagnetic LDOS is related to the dyadic Green’s function (DGF) of
the vector Helmholtz equation. In free space the electric field and the magnetic
field contributions are equal in the absence of scatterers. In other circumstances,
however, there is a contribution to the LDOS from the magnetic field energy, and
it is related to the magnetic DGF. Since the pioneering work of Purcell it is well
known that the spontaneous emission rate of molecules is strongly affected by their
vicinity to macroscopic objects. The LDOS (both electric and magnetic) also plays
an important role in Casimir forces between objects. The Maxwell stress tensor in
vacuum at thermal equilibrium can be expressed compactly in terms of the electric
and magnetic DGF.

The spectral electric and magnetic fields are governed by the macroscopic Maxwell’s
equations (18.194). These equations can be converted to the vector Helmholtz equa-
tion for electric and magnetic fields (18.195). To invert these equations and express
the electric and magnetic fields as integrals over the source regions, we make use of
the dyadic Green’s function (DGF) which also obeys the dyadic version of the vector
Helmholtz equation (18.197). The electric field is obtained as a convolution integral
(18.196).

9Note that the assumption of Drude type function is often a good one.
10Note that even without incident radiation the medium influences the atomic dynamics via the

LDOS.
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40.4.1.2 Local density of states (LDOS) and the decay rate

The concepts of density of states (DOS) and local density of states (LDOS) can be
introduced starting from the situation of a non-absorbing and non-dispersive medium,
ε(r;ω) = ε(r) ∈ R>0, embedded in a closed cavity with volume V = L3 assuming that
L≪ λ, λ being the wavelength in vacuum). Then, a discrete set of eigenmodes of the
vector Helmholtz equation can be obtained solving the eigenvalue equation [235],

∇×∇× en(r) = ε(r)
ω2
n

c2
en(r) , (40.317)

yielding the eigenvalues ωn/c as well as the eigenfunctions en(r). Since the differential
operator is Hermitian, the eigenfunctions are orthogonal,

∫
ε(r)e∗m(r) · en(r)d3r = δmn . (40.318)

The DOS ρ(ω) at a frequency ω counts the number of eigenmodes in an infinitely
small frequency range and is defined as,

ρ(ω) = 1
V

∑

n

δ(ω − ωn) . (40.319)

This DOS is a global quantity that characterizes the spectral density of eigenmodes of
the medium as a whole. A local quantity ρ(r, ω) (LDOS) can be introduced through
a summation weighted by the amplitude of the eigenmodes at point r,

ρ(r, ω) =
∑

n

|ên(r)|2δ(ω − ωn) . (40.320)

This relation defines the LDOS in the particular case of a medium for which a discrete
set of eigenmodes can be introduced.

The (electric) LDOS (40.320) can be reformulated in terms of the electric Green
function G(r, r′, ω) being the solution of the vector Helmholtz equation (18.197) set-
ting µr(r, ω) = 1. The solution can be cast into the shape,

G(r, r′, ω) = c2
∑

n

ê∗n(r
′)⊗ ên(r)

[
PV

(
1

ω2
n − ω2

)
+

ıπ

2ωn
δ(ω − ωn)

]
. (40.321)

With this result, the LDOS can be written,

ρ(r, ω) =
2ω

πc2
Im Tr G(r, r, ω) (40.322)

=
2ω

πc2
Tr c2

∑

n

e∗n(r)⊗ en(r)
π

2ωn
δ(ω − ωn) =

∑

n

e∗n(r) · en(r)δ(ω − ωn) .

This result shows that shows that the correct counting of eigenmodes is implicit in
the Green function, although the latter can be computed by solving the Helmholtz
equation without referring to any set of eigenmodes. In particular, the expression
(40.322) even holds for lossy media, when a basis of eigenmodes cannot be defined
[235].
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40.4.1.3 Power radiated by a classical dipole

The Green tensor defined by (18.199) permits the calculation of the electric field
generated by a current density according to (18.196).

For a classical point-dipole the solution can be given explicitly (see example 108).
The radiated power is simply,

P = − 1
2Re

∫
j∗(r) · E⃗(r)d3r . (40.323)

With the current density parametrized as j(r) = ḋegδ(r − rs) = −ıωdegδ(r − rs) we
get,

P =
ω

2
Im [d∗eg · E⃗(rs)] . (40.324)

From (40.323) we obtain,

P =
µ0ω

3

2
|deg|2Im [êd G(r, r′, ω) êd] , (40.325)

where êd is the unit vector along the dipole. In this expression we assume that the
source point rs is located in vacuum, but the Green function G(r, rs, ω) can describe
an arbitrary environment surrounding the emitter. In particular, the emitted power
calculated in this way accounts both for far-field radiation and absorption in the
environment.

In the case of a dipole with a fixed orientation êd, we can define a projected LDOS
(sometimes called partial LDOS),

ρd(rs, ω) =
2ω

πc2
Im [êd G(rs, rs, ω) êd] (40.326)

so that the full LDOS is,

ρ(rs, ω) =
∑

êdx,êdy,êdz

ρd(rs, ω) =
2ω

πc2
Im Tr G(rs, rs, ω) . (40.327)

The projected LDOS accounts for radiation by an electric dipole with a given orien-
tation,

P =
πω2

4ε0
|deg|2ρd(rs, ω) . (40.328)

Example 247 (LDOS in free space): In the particular case of a dipole placed
in 3D free space, the power transferred to the environment equals the power
radiated to far-field radiation. It can be obtained from the free-space dyadic
Green function G0(r, rs, ω), whose imaginary part at r = rs is obtained from
the Green tensor (18.207)calculated for a bulk medium by setting r = r′ = rs,

Im G(0)(rs, rs, ω) = k0
6π

I . (40.329)

With this, the projected LDOS (40.326) along êd becomes,

ρ
(0)
d (rs, ω) =

ω2

3π2c3
, (40.330)



2276 CHAPTER 40. COUPLING OF ATOMS AND OPTICAL CAVITIES

and the full LDOS (40.327),

ρ(0)(rs, ω) =
ω2

π2c3
. (40.331)

The emitted power becomes,

P (0) =
ω4

12πε0c3
|deg|2 . (40.332)

40.4.1.4 Spontaneous emission by a quantum emitter in the weak cou-
pling regime

In (18.126) we established a relationship between the power emitted by a classical ra-
diator and a spontaneous emission by a quantized two-level system. The spontaneous
emission rate can be evaluated in perturbation theory from Fermi’s golden rule,

P

ℏω
−→ πω2

4ε0
|d|2ρd(rs, ω) =

πωeg
ℏε0
|d̂eg|2ρd(rs, ωeg) = Γ . (40.333)

The correction factor comes from the fact that in quantum mechanics, unlike in in
classical mechanics, positive and negative frequency components are treated sepa-
rately as absorption resp. stimulated emission.

In free space, with the formula (40.330) we calculate for the relationship between
spontaneous emission rate and the induced dipole moment,

Γ(0) =
ω3
eg

3πℏε0c3
|deg|2 , (40.334)

which coincides with the expression (34.41).

40.4.1.5 Purcell factor and Lamb shift

The Purcell factor is defined as the ratio between the decay rates in the presence and
in the absence of boundary conditions. It can this be evaluated from the expression
(40.333) as,

Γ

Γ(0)
=

ρd(rs, ω)

ρ
(0)
d (rs, ω)

=
6πc

ωeg
Im êd G(rs, rs, ω) êd . (40.335)

40.4.2 Interaction between atomic dipoles

Until now we concentrated on simple dipole in the environment of dielectric bound-
aries. We will now extend the formalism to interacting dipoles located at positions ri
and rj continuing the discussion of Sec. 18.3.1.

Intermolecular energy transfer can occur through two mechanisms, namely, radiation-
less short-range transfer, also called Förster transfer, and radiative long-range transfer
[399, 1151]. In the former the distance R between donor and acceptor is small com-
pared with the electronic-energy-transfer wavelength R ≪ λA. The free-space trans-
fer rate behaves as R−6, which can be explained by the instantaneous (longitudinal)
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Coulomb interaction between the two molecules. In the latter the intermolecular dis-
tance substantially exceeds the transition wavelength, R ≫ λA. The observed R−2

dependence of the transfer rate can be regarded as being the result of emission and
reabsorption of real (transverse) photons, see Sec. 40.2.1 and example 240.

The Purcell factor (40.335) allows us to calculate the modification of the decay
rate in the presence of a Green tensor. In the absence of boundaries we use the bulk
medium Green tensor (18.214),

Γ
(b)
ij = 3λΓ(0)ê∗d Im Gb(ri, rj , ω) êd (40.336)

= 3
2Γ

(0)

[
(1− (êd · êR)2)

sin kR

kR
+ (1− 3(êd · êR)2)

(
cos kR

k2R2
− sin kR

k3R3

)]
,

where k2 = (ω/c)2εµ and R ≡ ri − rj .
Similarly, the Lamb shift can be calculated,

∆
(b)
ij = − 3

2λΓ
(0)ê∗d Re Gb(ri, rj , ω) êd (40.337)

= 3
4Γ

(0)

[
(1− (êd · êR)2)

cos kR

kR
− (1− 3(êd · êR)2)

(
sin kR

k2R2
+

cos kR

k3R3

)]

Again, the second line is obtained for free space using (18.214).
At long distances, kR > 1, the results (40.336) and (40.337) simplify to,

∆
(b)
ij ≃ 3

4Γ
(0)[1− (êd · êR)2] cos kRkR

Γ
(b)
ij ≃ 3

2Γ
(0)[1− (êd · êR)2] sin kRkR

, (40.338)

and at very long distances, kR ≫ 1, ∆ij → 0 ← Γij . This atomic dipole-dipole
interaction interaction will play a role in the generation of interatomic correlations
studied in Sec. 41.3.2. Do the Exc. 40.4.4.1.

40.4.2.1 Derivation of the Hamiltonian

First for one atom interacting with a dielectric then for two atoms,

Ĥ =

∫
d3r

∫ ∞

0

dωℏωf̂†(r, ω)f̂(r, ω)+
N∑

i=0

ℏωiσ̂+
i σ̂i−

N∑

i=0

∫ ∞

0

dω
[
d̂i · E⃗(ri, ω) +H.c.

]
.

(40.339)
Here, f̂(r, ω) are polaritonic bosonic operators associated with the annihilation of the
corresponding matter-light elementary excitations. The field operator is [474, 1211],

E⃗(r, ω) = ı⃗ϵ

√
ℏ
πε0

ω2

c2

∫ √
Im εr(r′, ω)G(r, r′, ω)f̂(r′, ω)d3r′ . (40.340)

40.4.3 Metamaterials

Ray optics (lenses, shadows, ..) for a≫ λ, photonic crystals for a ≃ λ, optical crystals
and metamaterials for a≪ λ [1190, 1045].
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The permittivity ϵ and the permeability µ at optical frequencies are in general
very different from the static values. E.g. for vacuum and electrically inactive media
ϵ = 1, for metals ϵ < 0. For vacuum and magnetically inactive media µ = 1, for
resonant ferromagnets and antiferromagnets µ < 0.

e
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electric
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neg. index
materials

transparent
dielectrics

evanescent
waves

natural
materials

not natural at opt. freqs.
magnetic metamaterialspurely artificial materials

limited natural materials
electric metamaterials

Figure 40.29: Metamaterials.

At low frequencies, conductors/metals are good as metamaterials, because they
strongly respond to electromagnetic fields. At optical frequencies only the electric
dipolemoment interacts with matter. Magnetic interaction is suppressed by the fac-
tor (2µB/eaB)

2 = α2. Therefore, resonant enhancement of optical magnetism is

necessary, e.g. nanostructured L − C-circuits of wavelength-sized E⃗ and H⃗ guiding
oscillations of a propagating light wave.

40.4.4 Exercises

40.4.4.1 Ex: Coupled dipoles model near dielectrics

Develop the vectorial coupled dipoles model in the vicinity of a dielectric using the
Green tensor formalism.

Solution: In free space the vectorial coupled dipoles model can be written (see Eq. (39.26)),

dβi
dt

=
∑

j

(δijı∆−Kij)βj −
ıΩ

2
eık·ri , (40.341)

where the kernel is given by the projection of the Green tensor G(ri, rj , ω0) on the
dipoles êdi and êdr respectively located at ri and rj,

Kij = −
3πıΓ

k
ê∗di G(ri, rj , ω) êdj . (40.342)

In the absence of boundaries the Green tensor is simply the one derived for bulk media
Gb(ri, rj , ω0) given by the expression (18.206). Let us first concentrate on this case.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_SurfaceAtom01.pdf
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Decomposing the kernel into real and imaginary parts,

K
(b)
ij =

Γ
(b)
ij

2
+ ı∆

(b)
ij =

3λΓ(0)

2
ê∗di [Im Gb(ri, rj , ω)− ıRe Gb(ri, rj , ω)] êdj . (40.343)

We also find,

Γ
(b)
ii = 3

2Γ
(0) and ∆

(b)
ii = 0 . (40.344)

Note, that in the scalar approximation the Green tensor reduces to the well known
formula,

Gb(ri, rj , ω0) ≃ I
eık|ri−rj |

4π|ri − rj |
, (40.345)

so that,

K
(b)
ij ≃

3Γ

4

eık|ri−rj |

ık|ri − rj |
−→ Γ

2
e−ık·(rj−rm) e

ık|rj−rm|

ık|rj − rm|
. (40.346)

Now, the only thing we need to do to account for boundaries is to generalize the Green
tensor,

G = Gb + Gd , (40.347)

where Gd accounts for the presence of a dielectric. Then,

dβi
dt

=


δijı∆−

∑

j

(K
(b)
ij +K

(d)
ij )


βj −

ıΩ

2
eık·ri (40.348)

=

[
ı(∆−∆

(d)
ii )−

(
Γ
(b)
ii )

2 +
Γ
(d)
ii

2

)]
βi −

∑

j ̸=i

(
Γ
(b)
ij

2 +
Γ
(d)
ij

2 + ı∆
(b)
ij + ı∆

(d)
ij

)
βj − ıΩ

2 e
ık·ri .

(40.349)

In particular, without dielectric,

dβi
dt

=

(
ı∆− Γ

(b)
ii

2

)
βi −

∑

j ̸=i
K

(b)
ij βj −

ıΩ

2
eık·ri . (40.350)

With a dielectric but for only a single atoms,

dβi
dt

=

[
ı(∆−∆

(d)
ii )−

(
Γ
(b)
ii

2
+

Γ
(d)
ii

2

)]
βi −

ıΩ

2
eık·ri . (40.351)

40.4.4.2 Ex: Scattering Green tensor above a dielectric surface

In this exercise we calculate the Green tensor for two atomic dipoles above a homo-
geneous dielectric filling the z < 0 half space.
a. Formulate the problem.
b. Simplify the scattering Green tensor obtained by [682] for that situation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Cavities_SurfaceAtom02.pdf
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Figure 40.30: Scattering Green tensor for region-wise homogeneous dielectrics.

c. Simplify the Green tensor by assuming all atoms aligned along the y-axis at equal
height from the dielectric.
d. Assume the atomic dipole moment to be aligned along the z-axis.
e. Derive the Green tensor for a single atom above the dielectric.

Solution: a. We assume the environment composed of regions characterized by dif-
ferent locally homogeneous permittivities,

ϵ(r, ω) = ϵ(z, ω) = Θ(z) + ϵ(ω)Θ(−z) = 1 + χε(ω)Θ(−z) (40.352)

µ(r, ω) = 1 .

Supposing that the dipole sits in the region z > 0, the Green tensor is then,

G(r, r′, ω) =
{
Gb(r, r′, ω) + Gd(r, r′, ω) for z, z′ > 0

Gd(r, r′, ω) for z > 0 > z′
(40.353)

The bulk Green tensor Gb has been calculated in (18.206) under the assumption that
whole space is homogeneous with permittivity ϵ(ω) = 1. Gd is scattering Green tensor.
Now, we need to solve the inhomogeneous Helmholtz equation,

[
∇r ×∇r ×−ω

2

c2 ϵ(r, ω)
]
(Gb(r, r′, ω) + Gd(r, r′, ω)) = δ(3)(r− r′)I . (40.354)

Using (18.199) the bulk Green function can be removed and, for r, r′ ∈ region 1,
we are left with the scattering part of the Green function, which needs to satisfy the
homogeneous Helmholtz equation [1313, 210],

[
∇r ×∇r ×−ω

2

c2 χε(ω)Θ(−z)
]
Gd(r, r′, ω) = 0 . (40.355)

To deduce the Green tensor for a stratified background, it is convenient to expand
it into plane waves. The Fourier transform of the Green tensor for a bulk medium
(18.206) leads to [1002],

Gb(ri, rj , ω) =
1

(2π)3k2

∫
Ik2 − k′ ⊗ k′

k′2 − k2 eık
′·rd3k′ . (40.356)
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Exploiting the translational invariance of the system in the (x, y) plane, the expression
can be simplified to,

Gb(ri, rj , ω) =
ı

8π2k2

∫
Ik2 − k′k′

k′z
eık

′·rdk′xdk
′
y −

êz ⊗ êz
k2

δ(3)(r) , (40.357)

using

k = ω/c , k′z ≡
√
k2 − k′2x − k′2y , k′ ≡ k′xêx+k′yêy+k′z[Θ(z)−Θ(−z)]êz .

(40.358)
We introduce a new coordinate system,

êk ≡
k′

k′
, ês ≡

k′ × êz
|k′ × êz|

, êp ≡ êk × êl , (40.359)

such that the direction ês corresponds to s-polarization and êp to p-polarization. Using
I = êxêx + êyêy + êzêz = êkêk + êsês + êpêp, we find,

Gb(ri, rj , ω) =
ı

8π2

∫
êsês + êpêp

k′z
eık

′·rdk′xdk
′
y −

êzêz
k2

δ(3)(r) . (40.360)

Now, we put the dielectric in the lower half space and extend the Green tensor. Ac-
cording to [1313, 1002, 210, 682] the scattering Green tensor for two dipole located
above a homogeneous dielectric filling the z < 0 half space is given by,

Gd(ri, rj , ω) =
ı

4π

∫ ∞

0

kρ
kz

(
Gs(ρ, ϕ, zi, zj , kρ, kz)−

k2z
k2
Gp(ρ, ϕ, zi, zj , kρ, kz)

)
dkρ ,

(40.361)

where ρ ≡
√
x2ij + y2ij, cosϕ ≡ xij/ρ, and k2 = k2ρ + k2z ≡ k2x + k2y + k2z .

b. The task can be performed by simply setting µi = µII = 1 and εi = 1 in the
formulas presented by [682]. The Green tensor for s-polarization is then given by,

Gs = rseıkz(zi+zj)

2


J0(kρρ)



1 0 0

0 1 0

0 0 0


+ J2(kρρ)




cos 2ϕ − sin 2ϕ 0

− sin 2ϕ − cos 2ϕ 0

0 0 0




 .

(40.362)
For p-polarization,

Gp = rpeıkz(zi+zj)

2


J0(kρρ)



1 0 0

0 1 0

0 0 −2k2ρ/k2z


 (40.363)

+
2ıkρ
kz

J1(kρρ)




0 0 cosϕ

0 0 sinϕ

− cosϕ − sinϕ 0


+ J2(kρρ)



− cos 2ϕ sin 2ϕ 0

sin 2ϕ cos 2ϕ 0

0 0 0






with the Fresnel factors,

rp =
ε(ω)kz − kdz
ε(ω)kz + kdz

, rs =
kz − kdz
kz + kdz

, (40.364)
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and

kdz ≡
√
ε(ω)k2 − k2ρ such that Re kdz > 0 , (40.365)

and a suitable Drude-Lorentz model for ε(ω). Note that both matrices composing Gs
describe a projection onto the xy-plane. The second matrix additionally describes a
an azimuthal rotation around the z-axis. The first matrix composing Gp describes a
stretching of the z-coordinate, the second ???, and the third is identical to the second
component of Gs.
c. Assuming all atoms aligned along the y-axis, we may set ϕ = 0. The Green tensors
then simplify to,

Gs = rse2ıkzzi

2



J0(kρρ) + J2(kρρ) 0 0

0 J0(kρρ)− J2(kρρ) 0

0 0 0


 (40.366)

Gp = rpe2ıkzzi

2



J0(kρρ)− J2(kρρ) 0

2ıkρ
kz

J1(kρρ)

0 J0(kρρ) + J2(kρρ) 0

− 2ıkρ
kz

J1(kρρ) 0 − 2k2ρ
k2z
J0(kρρ)


 .

d. Furthermore, if the dipoles are oriented long êd = dêz,

ê∗z Gs êz = 0 and ê∗z Gp êz = −
k2ρ
k2z
rpe2ıkzziJ0(kρρ) . (40.367)

e. The result is simply obtain from (40.353) and (40.354) by setting ri = rj and
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Figure 40.31: (code) Lamb-shift and Purcell factor.

using J0(0) = 1 and Jν(0) = 0.

40.5 Further reading

A.N. Poddubny et al., Microscopic model of Purcell enhancement in hyperbolic meta-
materials [1041]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Cavities_ScatteringGreenTensor.m
http://doi.org/10.1103/PhysRevB.86.035148
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Chapter 41

Correlated atoms,
entanglement and quantum
gates

In Chps. 34 to 38 we concentrated on understanding the interaction of single atoms
with light fields. In particular, we introduced the Rabi and the Jaynes-Cummings
model. In Chp. 39 we introduced the coupled dipoles model for the interaction of
many atoms with a single photon. In the following chapters, we will extend these
models to several and many atoms and many photons 1.

model RWA symmetry atom # photon # section

Rabi no P 1 n 34.4

Jaynes-Cummings yes U(1) 1 n 35.4

Dicke no P > 1 n 41.1

Tavis-Cummings yes U(1) > 1 n 41.2.2, 41.3.3

It does not come as a surprise that totally new phenomena arise from the collective
interaction of several atoms with a single light mode. For instance, the atomic cloud
can evolve toward a spin-squeezed or an entangled state, or it can emit light in a
super- and subradiant way. The interplay between collective processes and processes
favoring an individualization of the atom-light interaction is subtle, and the different
models used to understand the processes only grasp partial aspects. The difficulty
arises from the complexity of the task of describing the dynamics of N evolving in
a Hilbert space of dimension 2N . Approximations used to reduce the complexity of
the Hilbert space come at the price of eventually loosing some interesting features.
On the other hand, they may also help to crystallize fundamental symmetries, which
allow us to deepen our intuition on the collective behavior of the many-body system.

Famous models used in the description of collective scattering are (among oth-
ers) the Dicke model and the Tavis-Cummings model (see table above). The Dicke
model (presented in Sec. 41.1) assumes a total indistinguishability of the atoms, the

1Other models, such as the Ising model, the Heisenberg model, or the Bose-Hubbard model are
not treated here.
P is the parity operator defined in Eq. (41.79). The unitary group U(1) corresponds to the circle
group consisting of all complex numbers with absolute value 1 under multiplication.

2285
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Tavis-Cummings (discussed in Sec. 41.4 and used for the purpose of quantum com-
putation) makes use of the rotating-wave approximation. Both models are based on
the assumption of non-interacting atoms, neither by ground state collisions nor via
radiation exchange, which certainly is a good assumption in the case of dilute atomic
samples. On the other hand, we saw in the discussion of the coupled dipoles model
in Chp. 39 that already the presence of a single photon in an atomic cloud leads
noticeable interatomic interaction effects. In Sec. 41.3 we will extend the Dicke model
to interacting atoms.

Finally, new phenomena arise from the presence of optical cavities shaping the
spatial and spectral distribution of electromagnetic vacuum modes (see Chp. ??) and
from the consideration of photonic recoil (see Chp. 42).

41.1 The Dicke model in the mean-field approxima-
tion

As we have seen in Sec. 23.3.9, the Hilbert space increases exponentially with the
numbers of particles considered, the dimension of the Hilbert space of N particles be-
ing 2N . This obviously presents a problem for numerical simulations, and simplifying
models are needed. One of them is the Dicke model, where the N atoms are described
as spin- 12 particles and their collective interaction with a single mode light field via
a single collective spin S with S = N/2. In this model, the dimension of the Hilbert
space only scales polynomially as 2S + 1.

In the next sections, we will introduce this model detailing its advantages and
limitations and emphasizing its relations to super- and subradiance, spin squeezing
and entanglement. In particular we will show that, when the coupling between the
light and matter crosses a critical value, the Dicke model shows a mean-field phase
transition to a superradiant phase.

41.1.1 Dicke states

The Hilbert space of the Dicke model [366, 610] is given by (the tensor product of)
the states of the cavity and of the two-level atoms 2. The Hilbert space of the cavity
can be spanned by Fock states |n⟩. Choosing the basis |+⟩ ≡

(
0
1

)
and |−⟩ ≡

(
1
0

)
, the

states of each two-level atom j = 1, 2, .., N are defined through the spin operators
ŝj = (ŝxj , ŝ

y
j , ŝ

z
j ) acting only an individual atom 3,

ŝxj |...± ...⟩ = 1
2 |...∓ ...⟩ (41.1)

ŝyj |...± ...⟩ = ±ı 12 |...∓ ...⟩
ŝzj |...± ...⟩ = ± 1

2 |...± ...⟩ ,

and satisfying the spin algebra,

[ŝxj , ŝ
y
k] = ıŝzjδj,k , (41.2)

2Dicke states can also be introduced in the context of the Jaynes-Cummings model (see
Sec. 41.1.1).

3Note, that here and in the following we set ℏ ≡ 0 for simplicity.
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and related to the Pauli spin matrices (23.47) via,

ŝ = 1
2
⃗̂σ , ŝ± = ŝx ± ıŝy = 1

2 (σ̂x ± ıσ̂y) = σ̂± . (41.3)

The Hamiltonian of the Dicke model is,

Ĥ = −∆câ
†â+

N∑

j=1

(
−∆aŝ

z
j + 2g(â+ â†)ŝxj + 2ıg(â− â†)ŝyj

)
. (41.4)

Sometimes in literature the single-atom coupling strength (or half the single-atom
single-photon Rabi frequency) is normalized to the atom number, g ≡ λ/

√
N . The

coupling can be written as the sum of two terms: a co-rotating term that conserves
the number of excitations and is proportional to âσ̂+ + â†σ̂− and a counter-rotating
term proportional to âσ̂− + â†σ̂+.

The above Hamiltonian assumes that all the spins are identical, i.e. they have the
same transition frequency, they do not interact with each other, and they equally
couple to the radiation field (e.g. a cavity mode). For the simple system of only
two not mutually interacting spins, s1 and s2, simultaneously coupling to the same
radiation field, the Dicke model has been introduced in Sec. 25.4.2. There, we have
shown that the spin operators can be added, Ŝ = ŝ1 + ŝ2, and the total system be
represented in a coupled basis, where [ŝ1 · ŝ2, Ŝ2] = 0 = [ŝ1 · ŝ2, Ŝ2

z ]. This concept can
be generalized to an arbitrary number of spins, that is, under the above assumption,
one can define macroscopic collective spin operators,

Ŝα ≡
N∑

j=1

ŝαj with [Ŝx, Ŝy] = ıŜz , (41.5)

and α = x, y, z. Using these operators, one can rewrite the above Hamiltonian as

Ĥ = −∆câ
†â−∆aŜz + 2gârŜx − 2gâiŜy (41.6)

with â = âr + ıâi, and it is easy to see that,

[Ĥ, Ŝ2] = 0 ̸= [Ĥ, Ŝz] . (41.7)

That is, the Dicke Hamiltonian preserves the spin ⟨Ŝ2⟩, but interaction with a light
field can change the projection ⟨Ŝz⟩. We will see in the following that this fact as
important consequences for interaction dynamics of atomic ensembles coupled to a
single light mode.

Example 248 (Conservation of total spin under coherent interaction): More

generally, a coherent interaction described by a Hamiltonian that only depends

on collective spin components, H = H(Ŝx, Ŝy, Ŝz), cannot change the total spin

|S|. This is easy to see by doing a Taylor expansion of the Hamiltonian in

the spin components and using [Ŝ, Ŝ2] = 0. As a consequence a coherent (su-

perradiant) spin state will stay coherent forever, unless individual atom-light

interactions or decay processes occur.
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41.1.1.1 Degeneracies of Dicke states

Let us now look at states having the same number N of energy packets counting free
photons n and atomic excitations N−n. For example with N = 2, the following states
are possible. The normalization factors are simply the Clebsch-Gordan coefficients.

|S,M⟩ |N
2
,M⟩ |N

2
− 1,M⟩

|n⟩ # = 1 # = 1

0 |1, 1⟩ = |++⟩
1 |1, 0⟩ = 1√

2
(|+−⟩+ | −+⟩) |0, 0⟩ = 1√

2
(|+−⟩ − | −+⟩)

2 |1,−1⟩ = | − −⟩

The right column of the above table contains a singlet state, which decouples from the
triplet states (center column). The fact that it decouples from the deexcited triplet
state makes the singlet state stable or subradiant 4. See also Fig. 41.10.

For example with N = 3 (see also Exc. 25.4.5.14),

|S,M⟩ |N
2
,M⟩ |N

2
− 1,M⟩

n # = 1 # = 2

0 | 3
2
, 3
2
⟩ = |+++⟩

1 | 3
2
, 1
2
⟩ ∼ |++−⟩+ |+−+⟩+ | −++⟩ | 1

2
, 1
2
⟩

2 | 3
2
,− 1

2
⟩ ∼ |+−−⟩+ | −+−⟩+ | − −+⟩ | 1

2
,− 1

2
⟩

3 | 3
2
,− 3

2
⟩ = | − −−⟩

Example with N arbitrary,

|S,M⟩ |N
2
,M⟩ |N

2
− 1,M⟩ |N

2
− 2,M⟩

|n⟩ # = 1 # = N − 1 # = N(N−3)
2

0 |N
2
, N

2
⟩ = |++++...⟩

1 |N
2
, N

2
− 1⟩ ∼∑perm. | −+++...⟩ |N

2
− 1, N

2
− 1⟩

2 |N
2
, N

2
− 2⟩ ∼∑perm. | − −++...⟩ |N

2
− 1, N

2
− 2⟩ |N

2
− 2, N

2
− 1⟩

...
...

...

N |N
2
,−N

2
⟩ = | − − −−..⟩

We see that the Dicke states are not made to unambiguously label degenerate
states. States |S,M⟩ with S < |M | are largely degenerate. The degeneracy of a Dicke
state with S ≤ N

2 , that is, the number of states |+⟩N+ |−⟩N− composing a single Dicke
state labeled by |S,M⟩ is [492],

# =
(2S + 1)N !

(N2 + S + 1)!(N2 − S)!
. (41.8)

Transitions between energetically degenerate states |S,M⟩ and |S,M ′⟩ with M =M ′

but S ̸= S′ are prohibited.

4Note that, while superradiance as well as subradiance can be explained by classical radiator
models, such as the coupled dipoles model.
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41.1.1.2 Mean-field approximation and light field elimination

The mean-field approximation consists in replacing the photonic operators by their
expectation values, i.e. assuming classical light. This allows us to remove the light
energy term from the Hamiltonian and replace the coupling strength by the n-photon
Rabi frequency, Ω = 2g

√
n. The Hamiltonian then becomes just a generalization of

the semiclassical one-atom Hamiltonian (34.166) to large spins,

Ĥ = Ŝ ·G = −∆a Ŝz +Re Ω Ŝx + Im Ω Ŝy , (41.9)

allowing for complex Rabi frequencies.

Figure 41.1: (a) Illustration of the Bloch sphere. (b) Bloch spheres of the various su-
per/subradiant states with N = 5 atoms. (c) Illustration of (i) a subradiant state, (ii) a fully
stretched coherent spin state, and (iii) a spin-correlated state for N = 3 atoms.

In the absence of spontaneous emission, any pure single-atom state is given by,

|ψ⟩ = |ϑ, φ⟩ = cos ϑ2 |+⟩+ eıφ sin ϑ
2 |−⟩ , (41.10)

where the angles ϑ and φ point to a location on the Bloch sphere characterizing the
state of the atom. For example, a single initially deexcited atom having been subject
to a π

2 -pulse ends up in the state |π2 , 0⟩. The expectation value of the spin operator
in this state is simply obtained from,

⟨ϑ, φ|Ŝz|ϑ, φ⟩ = cos2 ϑ2 ⟨+|Ŝz|+⟩+ sin2 ϑ2 ⟨−|Ŝz|−⟩ = 1
2 cosϑ (41.11)

⟨ϑ, φ|Ŝ+|ϑ, φ⟩ = eıφ sin ϑ
2 cos ϑ2 ⟨+|Ŝ+|−⟩ = 1

2e
ıφ sinϑ ,

yielding,

⟨ϑ, φ|Ŝ|ϑ, φ⟩ = 1
2



cosφ sinϑ

sinφ sinϑ

cosϑ


 . (41.12)

We will also denote the probability of finding the system in state |±⟩ by,

p+ = ⟨P̂±⟩ = |⟨+|ψ⟩|2 = cos2 ϑ2 = 1− p− . (41.13)
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41.1.1.3 Collective spin states

Let us now study the system obeying the Hamiltonian (41.9) in detail. The spin
operators Ŝ satisfy a SU(2) algebra explained in Sec. 25.3.2, i.e. Ŝ × Ŝ = ıŜ. The
common eigenstates of Ŝ2 and Ŝz are denoted by |S,M⟩,

Ŝz = Ŝ+Ŝ− − Ŝ−Ŝ+ with Ŝz|S,M⟩ =M |S,M⟩ (41.14)

N̂± ≡ 1
2 (NI± Ŝz) with N̂±|S,M⟩ = 1

2 (N ±M)|S,M⟩ .

From this we conclude that S = N/2 is half the number of atoms andM the inversion.
We consider an ensemble of N = N+ +N− two-level atoms excited by a definite

number of M photons, such that,

N = N+ +N− and 2M = N+ −N− . (41.15)

Hence, N± = N
2 ±M is the number of atoms in each of the two states. The N atoms

can occupy 2N different collective states. However, when the atoms are identical and
couple uniformly to the same light mode, all states where the same number of atoms
is excited are energetically degenerate, and the total energy available to the system
is,

E =Mωc . (41.16)

The degeneracy of each many-body state with a given inversion M is given by the
binomial coefficient,

# =

(
N

N
2 +M

)
=

(
N

N+

)
=

(
N

N−

)
such that

N∑

N+=0

(
N

N+

)
= 2N . (41.17)

Therefore, we may set,

|S,M⟩ ≡ |+⟩N+ |−⟩N− . (41.18)

These states are called Dicke states 5.
For the special case N = 2 the transformation from the basis |+⟩N+ |−⟩N− , used in

the Tavis-Cummings model, to the basis |S,M⟩, used in the Dicke model, is a unitary
transformation. It has been extensively discussed in Sec. 25.4 at the example of two
spins, whose complete Hilbert space can be expanded in the uncoupled or in the
coupled basis. For N > 2 the situation is more complicated, since the degeneracies of
both models are different. It is important to be aware that S is not simply half the
atom number, but runs over S = N

2 ,
N
2 − 1, ..., depending on how the individual spins

couple together. The degeneracy of an angular momentum state |S,M⟩ with a specific
inversion M but undefined orbital momentum S is determined by the condition 0 ≤
S ≤M , and given by,

# = N
2 − |M |+ 1 . (41.19)

5In Sec. 25.4.3 we used for the coupling of two spins the notation |(s1, s2)s,m⟩. For coupling N
spins, we should write in analogy,

|(

N︷ ︸︸ ︷
1
2
, .., 1

2
), S,M⟩ ≡ |N,S,M⟩ .

Mostly, we will however drop the (constant) number N .
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For example, for N = 2 the possible spin states are given by |s1 − s2| ≤ S ≤ s1 + s2,
that is, S = 0, 1. And for N = 5, M = 3

2 is supported by S = 3
2 and 5

2 . Obviously,
the degeneracy (41.19) is lower than (41.17) except for N = 2. Dicke states may be
represented as vectors pointing to the surface of a so-called Bloch sphere of radius,

∥⟨N,S,M |Ŝ2|N,S,M⟩∥ = S(S + 1) , (41.20)

as illustrated in Fig. 41.1(b).

41.1.1.4 Dicke Hamiltonian for 2 atoms from the Tavis-Cummings model

We start from the collective Dicke Hamiltonian (41.4) for two atoms assuming ωa1 =
ωa2 and g1 = g2, that is, both atoms are identical and inside the mode volume
of the field to which they couple with equal strength, and apply the rotating wave
approximation. The Hamiltonian then factorizes into a diagonal matrix of 4 by 4
blocks characterized by a given number of total excitations,

Ĥn =




(n+ 1)ωc − ωa g
√
n g

√
n 0

g
√
n nωc 0 g

√
n

g
√
n 0 nωc g

√
n

0 g
√
n g

√
n (n− 1)ωc + ωa


 . (41.21)

Each block has two degenerate non-shifted eigenvalues and two non-degenerate shifted
eigenvalues,

E = nωc and E = nωc ±ϖn with ϖn ≡
√

(ωc + ωa)2 − 4g2n . (41.22)

The description of the dynamics can be simplified by reducing the order of the matrix
by calculating the average of the lines 2 and 3,

ĤD =



(n+ 1)ωc − ωa g

√
2n 0

g
√
2n nωc g

√
2n

0 g
√
2n (n− 1)ωc + ωa


 , (41.23)

and opting for a new base defined by,

|ψ⟩ =
∑

n



c22 n−1
c12 n

c11 n+1


 |n⟩ , (41.24)

with c12 n = c21 n. The new Hamiltonian (41.23) has exactly the same eigenvalues as
the complete one (41.23), λ = nωc, nωc±ϖn, but without degeneracies. If we assume
furthermore that the excitation is resonant, ωc = ωa, with high intensity, n = |α|2 for
all n, defining the Rabi frequency Ω ≡ 2g

√
n our matrix becomes,

ĤD ≃



|α|ω Ω√

2
0

Ω√
2
|α|ω Ω√

2

0 Ω√
2
|α|ω


 , (41.25)
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with the eigenvalue matrix,

En = U†nĤDUn ≃



|α|ω − Ω

|α|ω
|α|ω +Ω


 , (41.26)

and the eigenvector matrix,

Un ≃ 1
2



−1

√
2 1√

2 0 −
√
2

1 −
√
2 −1


 . (41.27)

With this we can derive the propagator,

e−ıĤnt = 1
2e
−ıα2ωt




1 + cosαΩt −
√
2ı sinαΩt −1 + cosαΩt

−
√
2ı sinαΩt 2 cosαΩt −

√
2ı sinαΩt

−1 + cosαΩt −
√
2ı sinαΩt 1 + cosαΩt




αΩt=π/2−→ 1
2e
−ıπ/2·αω/Ω




1 −
√
2ı −1

−
√
2ı 0 −

√
2ı

−1 −
√
2ı 1


 .

The generalization to three atoms or N atoms is straightforward and will be left
to Exc. 41.1.6.2.

41.1.2 Coherent spin states

By the fact that the individual spins are additive and the Hamiltonian linear in the
spin operators, Ĥ ∝ Ŝz, we know that the Schrödinger equation will be satisfied by
product states,

|ΨN ⟩ =
N∏

k=1

|ϑk, φk⟩k , (41.28)

where |ϑk, φk⟩k is the state of the k-the atom given by (41.10).
Coherent spin states now consist of N atoms, all being in the same state. In

Exc. 41.1.6.3 we present another equivalent definition. Since the atoms are indistin-
guishable by the radiation field, we may as well drop the labeling index k,

|ΨN ⟩ = |ϑ, φ⟩N =

N∑

k=0

√(
N

k

)
cosN−k ϑ2 |+⟩N−k eıkφ sink ϑ2 |−⟩k , (41.29)

in agreement with (36.58), or equivalently, using the Dicke state notation (41.18),

|ϑ, φ⟩N =

2S∑

k=0

√(
2S

k

)
cos2S−k ϑ2 e

ıkφ sink ϑ2 |S, S − k⟩ . (41.30)
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Hence, similarly to the coherent state of a harmonic oscillator, which consists of a
Poissonian distribution of number states, the coherent spin state consists of a binomial
distribution of N+ atoms in one state and N − N+ in the other. Note also, that
by construction, the coherent spin states are stretched, S = N/2. That is, they
can be represented by a vector of length N equal to the radius of the (generalized)
Bloch sphere 6. In other words, S is a conserved quantum number as already shown
in (41.7), and this feature does not change under the influence of the Hamiltonian
(41.9). These states are called superradiant. Nevertheless, other states |S,M⟩ are
possible with S ≤ N

2 . These are squeezed, subradiant, or entangled states.
In the following we will study some of the properties of the coherent spin states.

For instance, in Exc. 41.1.6.4(a) we calculate the expectation values of coherent spin
states,

⟨ϑ, φ|N Ŝ|ϑ, φ⟩N = S



cosφ sinϑ

sinφ sinϑ

cosϑ


 . (41.31)

Hence, the spin evolves on the surface of a Bloch sphere with radius,

∥⟨ϑ, φ|N Ŝ|ϑ, φ⟩N∥ = S while still ∥⟨ϑ, φ|N Ŝ2|ϑ, φ⟩N∥ = S(S + 1) . (41.32)

For the number of atoms in each state we expect,

⟨N̂+⟩ = N
2 + 1

2 ⟨Ŝz⟩ = N cos2 ϑ2 = Np+ = N(1− p−) = N − ⟨N−⟩ . (41.33)

41.1.3 Rotations, spin excitation and precession

We learn in quantum mechanics how to use Pauli matrices to describe rotations in
the Bloch vector space (see Exc. 23.3.10.5). We will now extend this formalism to
our collective spin space. A useful rule for the subsequent calculations, proved in
Exc. 41.1.6.5, is the following,

eıF (Ŝz)Ŝ+e
−ıF (Ŝz) = Ŝ+e

ı[F (Ŝz+I)−F (Ŝz)] , (41.34)

where F is an arbitrary function. For F (Ŝz) ≡ ϕŜz the unitary transform eıF (Ŝz)

denotes a rotation about the z-axis, which we will study in the example below. For
F (Ŝz) ≡ ζŜ2

z it generates squeezing along the z-axis, which we will study in the next
section. Furthermore, we define the rotation matrices about the Cartesian axis,

Rx(γ) ≡



1 0 0

0 cos γ − sin γ

0 sin γ cos γ


 , Ry(γ) ≡



cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ


 ,

Rz(γ) ≡



cos γ − sin γ 0

sin γ cos γ 0

0 0 1


 , (41.35)

for which it is possible to show (with α = x, y, z),

Rα(γ)Ŝ = eıγŜα Ŝe−ıγŜα . (41.36)
6An illustration of the generalized Bloch sphere is attempted in Fig. 41.29.
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Example 249 (Rotation about Ŝz): Defining F (Ŝz) ≡ ϕŜz the relationship
(41.34) tells us,

eıϕŜz Ŝ+e
−ıϕŜz = Ŝ+e

ıϕ ,

and consequently,

eıϕŜz Ŝe−ıϕŜz =


1
2
(eıϕŜ+ + e−ıϕŜ−)

1
2ı
(eıϕŜ+ − e−ıϕŜ−)

Ŝz

 =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 Ŝ ≡ Rz(ϕ)Ŝ .

Furthermore,

e−ıϕŜz |ϑ, φ⟩N =

2S∑
k=0

√√√√(2S
k

)
cosN−k ϑ

2
eıkφ sink ϑ

2
e−ıϕ(S−k)|S, S − k⟩

= e−ıϕS
(
e−ıϕ cos ϑ

2
|+⟩+ eı(φ+ϕ) sin ϑ

2
|−⟩
)N

= e−ıϕS |ϑ, φ+ ϕ⟩N .

We also find,

⟨ϑ, φ|NRz(ϕ)Ŝ|ϑ, φ⟩N = N
2

cos(φ+ ϕ) sinϑ

sin(φ+ ϕ) sinϑ

cosϑ

 = ⟨ϑ, φ+ ϕ|N Ŝ|ϑ, φ+ ϕ⟩N .

To vary the polar angle ϑ of a coherent spin state |ϑ, φ⟩, we first rotate the
coordinate system about the z-axis until φ = 0, then rotate about the y-axis by
the desired angle θ, and finally rotate back about the z-axis to reach the initial
azimuth φ,

⟨ϑ, φ|NRz(φ)R−1
y (θ)R−1

z (φ)Ŝ|ϑ, φ⟩N = N
2

cosφ sin(θ + ϑ)

sinφ sin(θ + ϑ)

cos(θ + ϑ)

 = ⟨ϑ+θ, φ|N Ŝ|ϑ+θ, φ⟩N .

The rotation about the x-axis is derived in Exc. 41.1.6.6, and in Exc. 41.1.6.7

we write down the explicit rotation matrix for two atoms.

Rotations such as the ones described by Rα(γ) are generated by the Dicke Hamil-
tonian (41.9), since the solution of the Schrödinger equation is,

|Ψ(t)⟩ = e−ıĤt|Ψ(0)⟩ = e−ıtŜxRe Ωx−ıtŜyIm Ωy−ıtŜz∆|Ψ(0)⟩ . (41.37)

That is, the Dicke Hamiltonian generates rotations Rx(Re Ωxt), Ry(Im Ωyt), and
Rz(∆t). This confirms that rotations do only transform coherent states into each
other. Nevertheless, there are other unitary operations that transform coherent states
into states that cannot be represented by coherent states. One example for this is
squeezing.

41.1.3.1 Rotation algebra

The example 249 shows that rotations from an initial towards an arbitrary coherent
spin states can be parametrized by a pair of Euler angles. Using (23.200) [328],

Urt(ϑ, φ) = eıφŜzeıϑŜy = e−ıϑêφ·Ŝ = e−ıϑ(−Ŝx sinφ+Ŝy cosφ) = e−
ϑ
2 (Ŝ+e

−ıφ−Ŝ−e
ıφ)

R(ϑ, φ)Ŝ ≡ U†rt(ϑ, φ)ŜUrt(ϑ, φ) (41.38)
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with êφ = −êx sinφ+ êy cosφ. With this we find,

|ϑ, φ⟩N = Urt(ϑ, φ)|S, S⟩ . (41.39)

41.1.4 Uncertainties, quantum projection noise and spin squeez-
ing

Measuring the population of a coherently excited two-level system by projecting it
onto an energy eigenstate introduces quantum projection noise. Although this inher-
ent noise spoils the determination of the resonance frequency, it can to some extent
be surpassed by spin squeezing [1380]. The projection noise limit has been observed
with ions [653, 642] and with atomic clouds [1143]. The reduction of the noise by spin
squeezing has been observed with ions [1127], micromasers [1074], and atomic clouds
[572, 763]. Also, a weakly entangled state of two modes was observed for continuous
spin variables [689]. Very strong squeezing spin can be obtained in a Mott insulator
state, as demonstrated by [537].

First, we want to show that the Heisenberg uncertainty of a coherent spin state is
nothing else than the quantum projection noise studied in Sec. 36.3.2. On one hand,
we have,

⟨ϑ, φ|N (∆Ŝz)
2|ϑ, φ⟩N = ⟨ϑ, φ|N Ŝ2

z |ϑ, φ⟩N − (⟨ϑ, φ|N Ŝz|ϑ, φ⟩N )2 (41.40)

=

N∑

k=0

(
N

k

)
(N2 − k)2pN−k+ pk− −

(
N∑

k=0

(
N

k

)
(N2 − k)pN−k+ pk−

)2

=
(
N2

4 −N2p+p− +Np+p−
)
−
(
N
2 (p+ − p−)

)2
= Np+p− .

On the other hand, we have seen in (36.57) that this results corresponds to the
variance of quantum projection noise,

(∆r)2 =

N∑

r=0

(r −Np±)2PN,r,± (41.41)

=

N∑

k=0

(N2 − k + N
2 (p+ − p−))2

(
N

k

)
pN−k+ pk− = Np+p− .

The Heisenberg uncertainty relation (23.91) applied to angular momentum oper-
ator satisfying [Ŝx, Ŝy] = ıŜz states,

∆Ŝx∆Ŝy ≥ 1
2 |Ŝz| . (41.42)

Since there are no quantum correlations between the particles, the uncertainty of
coherent spin states is additive (see Exc. 25.3.4.5),

(∆Ŝα)
2 =

N∑

k=0

(∆ŝαk )
2 . (41.43)
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For a coherent spin state we can calculate explicitly [see Exc. 41.1.6.4(b)],

⟨ϑ, φ|N


∆Ŝ2

x

∆Ŝ2
y

∆Ŝ2
z


 |ϑ, φ⟩N = N

4



1− sin2 ϑ cos2 φ

1− sin2 ϑ sin2 φ

sin2 ϑ


 . (41.44)

Figure 41.2: Illustration of the uncertainty of the spin components of a coherent spin state.

Example 250 (Uncertainty of a coherent spin state after a π
2
-pulse): A

π
2
-pulse applied to a cloud in the collective ground state generates the state
|ϑ, φ⟩ = |π

2
, 0⟩. This is somewhat analogous to the beam splitting of a photonic

Fock state discussed in Sec. 35.8. Interestingly, a Fock state seems more natural
for an atomic cloud, while the Glauber state is more natural for a photonic
mode. For example, for the particular state |π

2
, 0⟩ we find from (41.44),

(∆Ŝx)
2 = 0 and (∆Ŝy)

2 = (∆Ŝz)
2 = S

2
.

Note, that spin squeezing along the z-axis could be obtained by quantum non-
demolition measurement of the inversion, that is, by measuring Ŝz without influencing
the populations of the ground and excited state.

41.1.4.1 Spin squeezing by one-axis twisting

We have seen in the last section, that rotations influence the distribution of the
uncertainty among the Cartesian coordinates in a specific way. It is, however, possible
to manipulate the uncertainty distribution without rotating the collective spin state.
An example with great practical importance is the concept of spin squeezing. It
consists in establishing appropriate quantum correlations are between the individual
spins, such as to partly cancel out fluctuations in one direction augmenting them in
the other direction.

Squeezing of spin is not as straightforward as squeezing of bosons, since the un-
certainty relations are essentially different [724]. To study spin-squeezing along the
z-axis let as analyze the unitary transformation,

Qz(ζ)Ŝ ≡ eıζŜ
2
z Ŝe−ıζŜ

2
z . (41.45)
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Figure 41.3: Illustration of the uncertainty in (a) a coherent state and (b) a spin-squeezed
state.

Specifying the rule (41.34) for the particular case F (Ŝz) ≡ ζŜ2
z , we get,

eıζŜ
2
z Ŝ+e

−ıζŜ2
z = Ŝ+e

2ıζ(Ŝz+1/2) , (41.46)

and hence,

Qz(ζ)Ŝ = eıζŜ
2
z Ŝe−ıζŜ

2
z =




1
2 (Ŝ+e

2ıζ(Ŝz+1/2) + e−2ıζ(Ŝz+1/2)Ŝ−)
1
2ı (Ŝ+e

2ıζ(Ŝz+1/2) − e−2ıζ(Ŝz+1/2)Ŝ−)

Ŝz


 . (41.47)

Let us now apply the squeezing operator to the state |π2 , 0⟩. In Exc. 41.1.6.8 we
show that,

⟨π2 , 0|NeıζŜ
2
z Ŝe−ıζŜ

2
z |π2 , 0⟩N =



1

0

0


 N

2 cosN−1 ζ (41.48)

⟨π2 , 0|NeıζŜ
2
z



Ŝ2
x

Ŝ2
y

Ŝ2
z


 e−ıζŜ

2
z |π2 , 0⟩N =



N + 1

N + 1

2


 N

8 +




1

−1
0


 N(N−1)

8 cosN−2 2ζ .

The dependencies of the uncertainties as a function of the squeezing parameter are
plotted in Fig. 41.4. We see that the uncertainties never get smaller than the un-

squeezed value. The reason is that, since the unitary transform eıζŜ
2
z commutes with

Ŝz, the prescription (41.45) does not immediately lead to squeezing along the z-axis.

Nevertheless, the prescription does generate quantum correlations in Ŝx and Ŝy,
which can be transformed to squeezing by subsequently rotating the collective spin
about the x-axis [724]. As shown in Exc. 41.1.6.9, a rotation by an angle ν does not
modify the x-component,

⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

xe
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N (41.49)

= N(N+1)
8 + N(N−1)

8 cosN−2 2ζ − N2

4 cos2N−2 ζ ,

but it modifies the other ones,

⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

y,ze
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N (41.50)

= N
4 {1 + N−1

4 [A±
√
A2 +B2 cos(2ν + arctan B

A )]} ,
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〈Ŝx〉/S
〈Ŝ2
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Figure 41.4: (code) (a) Uncertainties calculated in (41.48) as a function of the squeezing

parameter. (b) Uncertainties after application of squeezing operator as a function of the

rotation angle ν about the x-axis.

with A ≡ 1 − cosN−2 2ζ and B ≡ 4 sin ζ cosN−2 ζ. We study spin squeezing in
Exc. 41.1.6.10 to 41.1.6.13. In Exc. 41.1.6.14 we investigate, whether double Fock
states can lead to Heisenberg-limited interferometry, and in Exc. 41.1.6.15 we study
entanglement witnesses with coherent spin states.

Obviously, since squeezed states are obtained from coherent states by unitary
transform, they are still normalized,

⟨ϑ, φ|Ne−ıζŜ2
zeıζŜ

2
z |ϑ, φ⟩N = 1 . (41.51)

Example 251 (Conditional spin-squeezing by non-demolition measure-
ment): Technically, spin-squeezed states can be generated in experiments by
quantum non-demolition measurements [163, 309, 1135]. Another idea would
be to arrange for totally uniform spin-spin coupling, since this generates terms
like,

Hss =

N∑
i,j ̸=i

κij ŝ
z
i ŝ
z
j ≃ κ

N∑
i,j ̸=i

ŝzi ŝ
z
j = κŜ2

z . (41.52)

In a cloud this latter idea is not realizable, because the interatomic coupling

strength depends on the distance between the atoms, but if the atoms are cou-

pled via their interaction with a common mode of an optical cavity it should be

feasible.

41.1.5 Bosonic modes: Analogy between harmonic oscillators
and collective spin states

Owing to the equidistant spectrum of their excitation levels, harmonic oscillator
modes and collective spin states share many particularities, which will allow us to
transfer various notions from the well-known harmonic oscillator studied in Sec. 24.6
to the spin ensembles. Respectively expanded on Fock states and Dicke states, the
oscillator operators and the spin operators are approximately linked by the Holstein-
Primakoff prescription, which will be worked out below. Also, we appreciated in

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Squeezing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Squeezing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Squeezing.m
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Sec. 35.2 the utility of quasi-probability distributions for the estimation of quantum
correlations in light modes, which we will apply to spin systems below. Light fields
and spin systems are examples of what is called a bosonic mode.

41.1.5.1 Mapping Fock and Dicke states

The operators â, â† contain all information on a light mode. Similarly, Ŝ+, Ŝ−, Ŝz
contain all information on a collective spin state. In the Heisenberg picture their
unitary evolution under some operation (displacement, rotation, squeezing, etc.) is
obtained from,

â±(t) = U(t)â±(0)U†(t) versus Ŝ(t) = U(t)Ŝ(0)U†(t) . (41.53)

While the state of a light mode is given by an expectation value corresponding to
a point in an infinite two-dimensional quadrature phase space, the state of a spin
ensemble is represented as a vector in a generalized Bloch sphere,

α(t) = ⟨ψ(0)|â±(t)|ψ(0) versus S(t) = ⟨ΨN (0)|Ŝ(t)|ΨN (0)⟩ . (41.54)

By the fact that the light mode is represented by a 2D complex plane, the commu-
tation rule involves two field operators, while for the Bloch sphere, which is embedded
in 3D space, with respect to a fixed coordinate system the commutation rule involves
three field operators,

[â, â†] = 1 versus [Ŝ+, Ŝ−] = 2Ŝz . (41.55)

This has consequences for the uncertainty relations,

[x̂, p̂†] ≥ 1
2 versus [Ŝx, Ŝy] ≥ 1

2 |⟨Sz⟩| . (41.56)

On the other hand, as long as we are only interested in coherent evolutions, as
shown in the example 248, the total angular momentum is a constant of motion. This
means that an initially fully stretched collective spin state is restricted to evolve on the
outer (superradiant) shell of the generalized Bloch sphere, which is a two-dimensional
surface,

|α⟩ = |Re α,Im α⟩ versus |ΨN ⟩ = |ϑ, φ⟩N . (41.57)

As shown in Sec. 41.1.3, rotations do not influence any spin correlations. Therefore,
we may as well introduce a local Cartesian coordinate system, rotated such that Ŝz is
diagonal on this basis, and calculate its expectation value ⟨Sz⟩ =M . We immediately
see that the commutation rules (41.55) then become equivalent,

[â, â†] = 1 versus [Ŝ+, Ŝ−] = 2M , (41.58)

as well as the corresponding uncertainty relations. In this basis the correlations can
be expanded on a 2D phase space parametrized by the angles ϑ and φ.
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41.1.5.2 The Holstein-Primakoff prescription

In the limit of large atom numbers the Dicke Hamiltonian can be approximated by
a system of two coupled quantum oscillators. The mapping is done via the so-called
Holstein-Primakoff transformation. The transformation is a mapping of the spin
operators to boson creation and annihilation operators, effectively truncating their
infinite-dimensional Fock space to finite-dimensional subspaces. Let us consider a
spin operator Ŝ defined by its commutation behavior [Ŝx, Ŝy] = ıŜz and characterized
by its eigenvectors |S,M⟩,

Ŝ2|S,M⟩ = S(S + 1)|S,M⟩ , Ŝz|S,M⟩ =M |S,M⟩ , (41.59)

with the projection quantum number M = −S,−S + 1, . . . , S − 1, S. We consider
a single particle of spin S and take the state |S,M = +S⟩ as a vacuum for a set of
boson operators, and each subsequent state with lower projection quantum number
as a boson excitation of the previous one,

|S, S − n⟩ 7→ 1√
n!
(b̂†)n|0⟩ . (41.60)

Each additional boson then corresponds to a decrease of M in the spin projection.
Thus, the spin raising and lowering operators Ŝ± = Ŝx ± ıŜy satisfying so that

[Ŝ+, Ŝ−] = 2Ŝz correspond to bosonic annihilation and creation operators, respec-
tively. The precise relations between the operators must be chosen to ensure the cor-
rect commutation relations for the spin operators. The resulting Holstein-Primakoff
transformation can be written as,

Ŝ+ =
√
2S

√
1− b̂†b̂

2S b̂ , Ŝ− =
√
2S b̂†

√
1− b̂†b̂

2S , Ŝz = (S − b̂†b̂) . (41.61)

Figure 41.5: Illustration of the Holstein-Primakoff transformation.

The transformation is particularly useful in the case where S is large, when the
square roots can be expanded as Taylor series, to give an expansion in decreasing
powers of S [1278, 145]. We will verify the commutation relations in Exc. 41.1.6.16.
The Holstein-Primakoff approximation allows us to rewrite the Hamiltonian (41.6)
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as,

ĤHP = −∆câ
†â−∆aŜz + 2g(â+ â†)Ŝx (41.62)

= −∆câ
†â−∆a(S − b̂†b̂) + 2g(â+ â†)

√
2S

(√
1− b̂†b̂

2S b̂+ b̂†
√

1− b̂†b̂
2S

)

≃ −∆câ
†â− 1

2∆ab̂
†b̂+ 2gN (â+ â†)(b̂+ b̂†) ,

with the collective coupling strength gN ≡ g
√
N . The Hamiltonian (41.62) describes

two coupled quantum oscillators without rotating-wave approximation [426] 7, a sys-
tem which has already been discussed in Sec. 35.8.8 in the context of beamsplitters.

41.1.5.3 Quasi-probability distributions on the Bloch sphere

The operators contain all information on possible quantum correlations, and it is now
interesting to quantify and illustrate the formation of such correlations under some
manipulation. This is the purpose of the quasi-probability distributions.

The evolution of collective states and operators of a harmonic oscillator (resp. spin
system) under the influence of a Hamiltonian is conveniently calculated by expanding
them on a Fock (resp. Dicke) basis and evaluating propagators via unitary transfor-
mations, as in Eq. (41.53). On the other hand, quantum correlations become more
visible on a Glauber (resp. coherent spin state) basis.

Now, the close analogy between harmonic oscillators and spin systems allows us
to apply concepts elaborated for the harmonic oscillator to collective spin states.
One example is the notion of quasi-probability distributions introduced in Sec. 35.2
for Glauber states, which we will apply to collective spin states below. In quantum
optics a frequently used distribution function is the Wigner function Wρ(α, α

∗) char-
acterizing a light mode via an expansion into a coherent states basis |α⟩ spanning
the complex quadrature plane. The purpose of this section is to derive an analogous
function for collective spin states Wρ(ϑ, φ).

We proceed by expanding an arbitrary state of a light mode on the Fock basis
(24.115), which is similar to expanding coherent spin states on the Dicke basis (41.30),

|ψ⟩ =
∞∑

n=0

cn|n⟩ versus |ΨN ⟩ =
∑

M=+S,..,−S
cS,M |S,M⟩ (41.63)

with

cn(t) = ⟨n|e−ıĤtψ(0)⟩ versus cS,M (t) = ⟨n|e−ıĤtΨN (0)⟩ . (41.64)

In particular for coherent states (resp. spin states),

|α⟩ =
∞∑
n=0

e−|α|
2/2αn√
n!

|n⟩ (41.65)

versus |ϑ, φ⟩N =
∑

M=+S,..,−S

√√√√( N

S +M

)
cosS−M ϑ

2
eı(S+M)φ sinS+M ϑ

2
|S,M⟩ .

7The Jaynes-Cummings model describes coupling of an atom to a harmonic oscillator mode [426].
In contrast (see 4.4 ).



2302 CHAPTER 41. CORRELATED ATOMS, ENTANGLEMENTANDQUANTUMGATES

We note that both Fock and Dicke states have no phase in phase space. Phases
are generated by summing Fock (resp. Dicke) states with different dynamical phase
factors corresponding to their energies.

For numerical simulations we also expand operators on the Fock (resp. Dicke)
basis,

â =

∞∑

n,n′=0

δn′,n−1
√
n|n′⟩⟨n| , â† =

∞∑

n,n′=0

δn′,n+1

√
n+ 1|n′⟩⟨n|

versus Ŝ± =
∑

M,M ′=+S,..,−S
δM ′,M±1

√
S(S + 1)−M(M ± 1)|S,M ′⟩⟨S,M |

Ŝz =
∑

M,M ′=+S,..,−S
δM ′,MM |S,M ′⟩⟨S,M | . (41.66)

In the case of light modes, any point in phase space is reached via a displacement
operator (see Eq. (24.111)). Similarly, any point on the Bloch sphere is reached via
rotations about two axes [732, 328],

|α⟩ = D(α)|0⟩ versus |ϑ, φ⟩N = Urt(ϑ, φ)|S,−S⟩

= eαâ
†−α∗â|0⟩ = eıφŜzeıϑŜy |0, 0⟩N .

(41.67)

The Fock (resp. Dicke) basis may not the best one to reveal the existence of
quantum correlations. The purpose of quasi-probability distributions defined on a
basis of Glauber (resp. coherent spin) states is to provide a better characterization,
in particular, on non-Gaussian collective states.

Example 252 (Distributions for Gaussian spin states (coherent and
squeezed)): Let us now define proper quasi-probability distributions in analogy
to those introduced for Glauber space in Sec. 35.2 8. In analogy to the exam-

ple 207 we may, based on the rotation operatorR(ϑ, φ)|S, S⟩ = eıϑ(Ŝx sinφ−Ŝy cosφ)|S, S⟩|ϑ, φ⟩N
introduced in (41.38) and the parity operator for rotations given by [732],

Ms =
1

R

2S∑
ℓ=0

√
2ℓ+ 1

4π
(γℓ)

−sTℓ0 with γℓ =
R
√
4π(2S)!√

(2S + ℓ+ 1)!
√

(2S − ℓ)!
(41.68)

and Tℓm =

√
2ℓ+ 1

2S + 1

S∑
M,M′=−S

(
S ℓ

M ′ m

∣∣∣∣∣ SM
)
|S,M ′⟩⟨S,M |

with R =
√
S/2π define a generalized probability distribution,

Xρ(ϑ, φ, s) = Tr ρ̂Urt(ϑ, φ)MsU
†
rt(ϑ, φ) −→ ⟨ΨN |Urt(ϑ, φ)MsU

†
rt(ϑ, φ)|ΨN ⟩ ,

(41.69)
where the second expression holds for pure states. The displacement operator
from (35.56) is here replaced by a rotation parametrized by two Euler angles.
From (41.69) the usual probability distributions follow as,

Qρ(ϑ, φ) ≡ Xρ(ϑ, φ,−1) , Wρ(ϑ, φ) ≡ Xρ(ϑ, φ, 0) , Pρ(ϑ, φ) ≡ Xρ(ϑ, φ, 1)
(41.70)

8Compare (35.65) to (24.142).
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The parity operator is expanded on the Dicke basis according to the recipe

(41.68). To visualize a distribution function, we evaluate (41.69) for every point

(ϑ, φ) of the Bloch sphere.

With increasing spin number S, the parity operatorsMs converge to the infinite-

dimensional operators Πs of (35.57), while rotations transform into translations

along the tangent of a sphere. For pure states the Wigner function is thus given

by a rotation of the parity operator.

41.1.5.4 Expansion of non-Gaussian spin states

As long as a collective spin state can be expanded on a collective Dicke basis of
superradiant states or reached by coherent evolution from such a state, it remains pure
and can be represented by a probability distribution using the procedure outlined in
the example 252. The states |S, S⟩, |S,M⟩, the |W⟩-state, and |ϑ, φ⟩N are illustrated
in Fig. 41.6. Other non-Gaussian spin states can be reached, and are also shown,
e.g. the |N00N⟩-state, the Greenberger-Horne-Zeilinger state |GHZ⟩, or the generalized
spin cat state |cat⟩,

|W⟩ = |S, S − 1⟩ (41.71)

|GHZ⟩ = 1√
2
(| ↑⟩2S | ↓⟩0 + | ↑⟩0| ↓⟩2S) = 1√

2
(|S, S⟩+ |S,−S⟩)

|N00N⟩ = 1√
2
(| ↑⟩2S | ↓⟩0 + eıNϑ| ↑⟩0| ↓⟩2S) = 1√

2
(|S, S⟩+ eı2Sϑ|S,−S⟩)

|cat⟩ = cos ϑ2 |S, S⟩+ eıφ sin ϑ
2 |S,−S⟩

|squeezed⟩ = e−ıζŜ
2
y/2|S, S⟩ .

Figure 41.6: (code) P , W , and Q-distributions on the Bloch sphere for various states.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Wigner4SpinStates.m
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41.1.5.5 Continuous variable quantum information

Continuous variable quantum information is the area of quantum information science
that makes use of physical observables with continuous spectra, like the strength of
an electromagnetic field. Continuous-variable quantum computation is performed on
infinite-dimensional Hilbert spaces and may be called ”analog”, while qubit quantum
computation is performed on finite-dimensional Hilbert spaces (2N withN the number
of qubits) and may be called ”digital”.

Bosonic modes are examples of systems being studied for the implementation of
continuous-variable quantum information. By modeling each mode of the electro-
magnetic field as a quantum harmonic oscillator with its associated field operators,
one defines a canonically conjugate pair of variables for each mode, the so-called
quadratures, which span a phase space on which Wigner quasi-probability distribu-
tions can be defined. Quantum measurements on such a system can be performed
using homodyne and heterodyne detectors. Interestingly, qubits can be encoded into
a continuous variable [530]. The procedure is easily understood at the example of a
two-level atom dispersively interacting with a cavity mode studied within the Jaynes-
Cummings model in Sec. 35.4.2 and illustrated in Fig. ?? and in the Exc. 35.4.5.6.
See also Sec. 41.5.1.

In all approaches to quantum computing, it is important to know whether a task
under consideration can be carried out efficiently by a classical computer. An algo-
rithm might be described in the language of quantum mechanics, but upon closer
analysis, reveals to be implementable using only classical resources [529], even if
making use of quantum entanglement. When the Wigner quasi-probability represen-
tations of all the quantities (states, time evolutions and measurements) involved in
a computation are non-negative, then they can be interpreted as ordinary probabil-
ity distributions, indicating that the computation can be modeled as an essentially
classical one [876].

41.1.6 Exercises

41.1.6.1 Ex: Dicke states and Clebsch-Gordan coefficients

Discuss the relationship between coherent Dicke states and Clebsch-Gordan coeffi-
cients at the example of two coupled spins.

Solution: Note, that only fully stretched Dicke states are considered. For N =
2 = 2S, we have in the coupled basis,

|ϑ, φ⟩2 = (cos ϑ2 |+⟩+ eıφ sin ϑ
2 |−⟩)2

= cos2 ϑ2 |+⟩|+⟩+ e2ıφ sin2 ϑ2 |−⟩|−⟩+ eıφ cos ϑ2 sin ϑ
2 (|+⟩|−⟩+ |−⟩|+⟩) ,

and in the uncoupled basis,

|ϑ, φ⟩2 =

N∑

k=0

√(
2

k

)
cosN−k ϑ2 e

ıkφ sink ϑ2 |S, S − k⟩

= cos2 ϑ2 |1, 1⟩+
√
2eıφ cos ϑ2 sin ϑ

2 |1, 0⟩+ e2ıφ sin2 ϑ2 |1,−1⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing15.pdf
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Comparing both basis for φ = 0,

cos2 ϑ2 |+⟩|+⟩+ sin2 ϑ2 |−⟩|−⟩+ cos ϑ2 sin ϑ
2 (|+⟩|−⟩+ |−⟩|+⟩)

= |ϑ, 0⟩2

= cos2 ϑ2 |1, 1⟩+
√
2 cos ϑ2 sin ϑ

2 |1, 0⟩+ sin2 ϑ2 |1,−1⟩ ,

and for ϑ = 0, π2 , π,

|+⟩|+⟩ = |0, 0⟩2 = |1, 1⟩
1
2 |+⟩|+⟩+ 1

2 |−⟩|−⟩+ 1
2 (|+⟩|−⟩+ |−⟩|+⟩) = |π2 , 0⟩2 = 1

2 |1, 1⟩+ 1√
2
|1, 0⟩+ 1

2 |1,−1⟩
|−⟩|−⟩ = |π, 0⟩2 = |1,−1⟩ ,

from which we deduce,




|+,+⟩
1√
2
(|−,+⟩+ |+,−⟩)
|−,−⟩


 =



|1, 1⟩
|1, 0⟩
|1,−1⟩


 .

The same relationship is obtained by eliminating the singlet state from the unitary
Clebsch-Gordan transformation between basis vectors from a coupled and an uncoupled
basis,




|+,+⟩
|−,+⟩
|+,−⟩
|−,−⟩


 = UCGC




|1, 1⟩
|1, 0⟩
|0, 0⟩
|1,−1⟩


 with UCGC = (U†CGC)

−1 =




1 0 0 0

0 1√
2

1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1



.

41.1.6.2 Ex: Dicke Hamiltonian for 3 atoms

Generalize the Dicke Hamiltonian (41.23) to 3 atoms.

Solution:

41.1.6.3 Ex: Coherent spin states

Show that the coherent spin state is an eigenstate of the operator Ŝϑ,φ ≡ Ŝx sinϑ cosφ+
Ŝy sinϑ sinφ+ Ŝz cosϑ.

Solution: Using,

⟨ϑ, φ|N Ŝ|ϑ, φ⟩N = N
2



sinϑ cosφ

sinϑ sinφ

cosϑ


 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing01.pdf
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we immediately see,

⟨ϑ, φ|N Ŝϑ,φ|ϑ, φ⟩N = ⟨ϑ, φ|N
(
Ŝx sinϑ cosφ+ Ŝy sinϑ sinφ+ Ŝz cosϑ

)
|ϑ, φ⟩N

= N
2 ⟨ϑ, φ|N |ϑ, φ⟩N = N

2 .

41.1.6.4 Ex: Collective spin of a coherent spin state

a. Calculate the expectation values for all spin components of the collective spin Ŝ in
a coherent spin state see also Exc. 25.3.4.8.
b. Calculate the uncertainties for all spin components of the collective spin Ŝ in a
coherent spin state and check the uncertainty relation.

Solution: a. Let us first remember,

Ŝx = 1
2 (Ŝ+ + Ŝ−) , Ŝy = 1

2ı (Ŝ+ − Ŝ−) , Ŝz =
1
2 [Ŝ+, Ŝ−]

Ŝ2
x = 1

4 (Ŝ
2
+ + Ŝ2

− + Ŝ+Ŝ− + Ŝ−Ŝ+) , Ŝ2
y = − 1

4 (Ŝ
2
+ + Ŝ2

− − Ŝ+Ŝ− − Ŝ−Ŝ+) .

For the sake of notational compactness we introduce the abbreviations,

p+ ≡ cos2 ϑ2 and p− ≡ sin2 ϑ2 so that
√
p+p− = 1

2 sinϑ .

With the expression (41.31) for a coherent spin state we calculate, with a little help
from MAPLE,

⟨ϑ, φ|N Ŝ+|ϑ, φ⟩N =

2S∑

k,l=0

√(
2S

l

)(
2S

k

)
p
2S−l/2−k/2
+ e−ı(l−k)φpl/2+k/2− ⟨S, S − l|Ŝ+|S, S − k⟩

= eıφ
2S∑

k=0

(
2S

k

)
k cos4S−2k+1 ϑ

2 sin2k−1 ϑ2 = N
√
p+p− = Seıφ sinϑ ,

and analogously,

⟨ϑ, φ|N Ŝz|ϑ, φ⟩N =

N∑

k=0

(
N

k

)
(S − k)p2S−k+ pk− = N

2 −Np− = S cosϑ .

Hence, as expected, the total spin is just the sum of the individual spins calculated in
25.3.4.8,

⟨ΨN |Ŝ|ΨN ⟩ = ⟨ϑ, φ|N Ŝ|ϑ, φ⟩N = S



cosφ sinϑ

sinφ sinϑ

cosϑ


 .
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b. Now, we calculate the higher orders,

⟨ϑ, φ|N Ŝ2
+|ϑ, φ⟩N = ⟨ϑ, φ|N Ŝ2

−|ϑ, φ⟩N

=

N∑

k,l=0

√(
N

l

)(
N

k

)
p
N−k/2−l/2
+ eı(k−l)φpk/2+l/2− ⟨S, S − l|Ŝ2

+|S, S − k⟩

=

N∑

k,l=0

√(
N

l

)(
N

k

)√
k(2S − k + 1)(k − 1)(2S − k + 2)p

N−k/2−l/2
+ eı(k−l)φpk/2+l/2− δl,k−2

= e2ıφ
N∑

k=0

N !pN−k+1
+ pk−1−

(k − 2)!(N − k)! = e2ıφ(N − 1)Np+p− ,

and

⟨ϑ, φ|N Ŝ+Ŝ−|ϑ, φ⟩N =

N∑

k,l=0

√(
N

l

)(
N

k

)
p
N−k/2−l/2
+ eı(k−l)φpk/2+l/2− ⟨S, S − l|Ŝ+Ŝ−|S, S − k⟩

=

N∑

k,l=0

√(
N

l

)(
N

k

)
(2S + 2Sk − k2 − k)pN−k/2−l/2+ eı(k−l)φpk/2+l/2− δl,k

=

N∑

k=0

(
N

k

)
(N +Nk − k2 − k)pN−k+ pk− = Np2+ +N2p+p− ,

and

⟨ϑ, φ|N Ŝ−Ŝ+|ϑ, φ⟩N =

N∑

k,l=0

√(
N

l

)(
N

k

)
p
N−k/2−l/2
+ eı(k−l)φpk/2+l/2− ⟨S, S − l|Ŝ−Ŝ+|S, S − k⟩

=

N∑

k,l=0

√(
N

l

)(
N

k

)
(2Sk − k2 + k)p

N−k/2−l/2
+ eı(k−l)φpk/2+l/2− δl,k

=
N∑

k=0

(
N

k

)
(Nk − k2 + k)pN−k+ pk− = Np2− +N2p+p− .

From this we cross-check,

⟨ϑ, φ|N Ŝz|ϑ, φ⟩N = 1
2 ⟨ϑ, φ|N Ŝ+Ŝ− − Ŝ−Ŝ+|ϑ, φ⟩N = N

2 (p
2
+ −Np2−) = N

2 cosϑ .

Also,

⟨ϑ, φ|N Ŝ2
z |ϑ, φ⟩N =

N∑

k,l=0

√(
N

l

)(
N

k

)
p
N−k/2−l/2
+ eı(k−l)φpk/2+l/2− ⟨S, S − l|Ŝ2

z |S, S − k⟩

=

N∑

k,l=0

√(
N

l

)(
N

k

)
(N2 − k)2p

N−k/2−l/2
+ eı(k−l)φpk/2+l/2− ⟨S, S − l|S, S − k⟩

=

N∑

k=0

(
N

k

)
(N2 − k)2pN−k+ pk− = N2

4 +N(1−N)p+p− ,
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and

⟨ϑ, φ|N Ŝ2
x|ϑ, φ⟩N = ⟨ϑ, φ|N 1

4

[
Ŝ+Ŝ− + Ŝ−Ŝ+ + Ŝ2

+ + (Ŝ2
+)
†
]
|ϑ, φ⟩N

= 1
4 [Np

2
+ +Np2− + 2N2p+p− + 2N(N − 1)p+p− cos 2φ]

= 1
4 [N +N(N − 1) sin2 ϑ cos2 φ] ,

and

⟨ϑ, φ|N Ŝ2
y |ϑ, φ⟩N = ⟨ϑ, φ|N 1

4

[
Ŝ+Ŝ− + Ŝ−Ŝ+ − Ŝ2

+ − (Ŝ2
+)
†
]
|ϑ, φ⟩N

= 1
4 [Np

2
+ +Np2− + 2N2p+p− − 2N(N − 1)p+p− cos 2φ]

= 1
4 [N +N(N − 1) sin2 ϑ sin2 φ] .

In summary,

⟨ϑ, φ|N Ŝ2
x|ϑ, φ⟩N = 1

4 [N +N(N − 1) sin2 ϑ cos2 φ]

⟨ϑ, φ|N Ŝ2
y |ϑ, φ⟩N = 1

4 [N +N(N − 1) sin2 ϑ sin2 φ]

⟨ϑ, φ|N Ŝ2
z |ϑ, φ⟩N = 1

4 [N
2 −N(N − 1) sin2 ϑ] ,

confirming,

⟨ϑ, φ|N Ŝ2
x + Ŝ2

y + Ŝ2
z |ϑ, φ⟩N = N(N+1)

4 = S(S + 1) .

Also,

⟨ϑ, φ|N∆Ŝ2
x|ϑ, φ⟩N = 1

4 [N +N(N − 1) sin2 ϑ cos2 φ]− N2

4 sin2 ϑ cos2 φ = N
4 [1− sin2 ϑ cos2 φ]

⟨ϑ, φ|N∆Ŝ2
y |ϑ, φ⟩N = 1

4 [N +N(N − 1) sin2 ϑ sin2 φ]− N2

4 sin2 ϑ sin2 φ = N
4 [1− sin2 ϑ sin2 φ]

⟨ϑ, φ|N∆Ŝ2
z |ϑ, φ⟩N = 1

4 [N
2 −N(N − 1) sin2 ϑ]− N2

4 cos2 φ = N
4 sin2 ϑ = N sin2 ϑ2 cos2 ϑ2 .

Interestingly, we find, ∆Ŝ2
x +∆Ŝ2

y +∆Ŝ2
z = N

2 . Finally,

⟨ϑ, φ|N∆Ŝ2
x|ϑ, φ⟩N ⟨ϑ, φ|N∆Ŝ2

y |ϑ, φ⟩N = N2

16

(
1− sin2 ϑ cos2 φ

) (
1− sin2 ϑ sin2 φ

)

= N2

16

(
cos2 ϑ+ sin4 ϑ cos2 φ sin2 φ

)
,

which is obviously larger than (⟨ϑ, φ|N 1
2 Ŝz|ϑ, φ⟩N )2.

41.1.6.5 Ex: Unitary spin transformations

Prove the relationship eıF (Ŝz)Ŝ+e
−ıF (Ŝz) = Ŝ+e

ı[F (Ŝz+I)−F (Ŝz)].

Solution: First we remember (ℏ = 1),

[Ŝz, Ŝ+] = [Ŝz, Ŝx + ıŜy] = Ŝx + ıŜy = Ŝ+

[Ŝz, [Ŝz, Ŝ+]] = Ŝ+ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing03.pdf


41.1. THE DICKE MODEL IN THE MEAN-FIELD APPROXIMATION 2309

keeping in mind, that [Ŝ+, [Ŝz, Ŝ+]] = 0 ̸= [Ŝz, [Ŝz, Ŝ+]]. First choosing F (Ŝz) ≡ tŜz,

we apply the transformation U = e−ıtŜz to the rising ladder operator,

U†Ŝ+U = eıtŜz Ŝ+e
−ıtŜz = Ŝ+ + (ıt)[Ŝz, Ŝ+] +

(ıt)2

2! [Ŝz, [Ŝz, Ŝ+]] + ...

= Ŝ+ + (ıt)Ŝ+ + (ıt)2

2! Ŝ+ + ...

= Ŝ+

∞∑

k=0

(ıt)k

k! Ik = Ŝ+e
ıtI = Ŝ+e

ıt[Ŝz+I−Ŝz ] .

Second, we can show that,

[Ŝ2
z , Ŝ+] = ŜzŜ+ + Ŝ+Ŝz = Ŝ+(I+ 2Ŝz)

[Ŝ2
z , [Ŝ

2
z , Ŝ+]] = [Ŝ2

z , Ŝ+](I+ 2Ŝz) .

Now, choosing F (Ŝz) ≡ tŜ2
z , we apply the transformation U = e−ıtŜ

2
z to the rising

ladder operator,

U†Ŝ+U = eıtŜ
2
z Ŝ+e

−ıtŜ2
z = Ŝ+ + (ıt)[Ŝ2

z , Ŝ+] +
(ıt)2

2! [Ŝ2
z , [Ŝ

2
z , Ŝ+]] + ...

= Ŝ+ + ıtŜ+(I+ 2Ŝz) +
(ıt)2

2! Ŝ+(I+ 2Ŝz)(I+ 2Ŝz) + ...

= Ŝ+

∞∑

k=0

(ıt)k

k! (I+ 2Ŝz)
k = Ŝ+e

ıt(I+2Ŝz) = Ŝ+e
ıt[(Ŝz+I)2−Ŝ2

z ] .

Third, we can show,

[Ŝnz , Ŝ+] = Ŝ+Ŝ
n−1
z + Ŝz[Ŝ

n−1
z , Ŝ+] =

n∑

k=1

Ŝk−1z Ŝ+Ŝ
n−k
z

[Ŝnz , [Ŝ
n
z , Ŝ+]] = ... .

Now, choosing F (Ŝz) ≡ tŜnz , we apply the transformation U = e−ıtŜ
n
z to the rising

ladder operator,

U†Ŝ+U = eıtŜ
n
z Ŝ+(0)e

−ıtŜn
z = Ŝ+ + ıt[Ŝnz , Ŝ+] +

(ıt)2

2! [Ŝnz , [Ŝ
n
z , Ŝ+]] + ...

= ... .

41.1.6.6 Ex: Rotation about the x-axis

How does the collective spin transform under rotation about the x-axis?

Solution: First we remember,

[Ŝx, Ŝ+] = −Ŝz , [Ŝx, [Ŝx, Ŝ+]] = ıŜy , [Ŝx, [Ŝx, [Ŝx, Ŝ+]]] = −Ŝz
[Ŝx, Ŝy] = ıŜz , [Ŝx, [Ŝx, Ŝy]] = Ŝy , [Ŝx, [Ŝx, [Ŝx, Ŝy]]] = ıŜz

[Ŝx, Ŝz] = −ıŜy , [Ŝx, [Ŝx, Ŝz]] = Ŝz , [Ŝx, [Ŝx, [Ŝx, Ŝz]]] = −ıŜy .
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With this,

Rx(θ)Ŝα ≡ eıθŜx Ŝαe
−ıθŜx = Ŝ+ + (ıθ)[Ŝx, Ŝα] +

(ıθ)2

2!
[Ŝx, [Ŝx, Ŝα]] + ...

Rx(θ)Ŝ+ ≡ Ŝ+ − (ıθ)Ŝz +
(ıθ)2

2!
ıŜy + ... = Ŝx + ıŜy cos θ − ıŜz sin θ

eıθŜx Ŝe−ıθŜx =




Ŝx

Ŝy cos θ − Ŝz sin θ
Ŝy sin θ + Ŝz cos θ


 =



1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 Ŝ ≡ Rx(θ)Ŝ .

41.1.6.7 Ex: Spin operators for two atoms

Calculate explicitly for the case of two atoms the rotation matrices eıγŜα for α =

x, y, z. Check the relationship eıγŜα Ŝe−ıγŜα = Rα(γ)Ŝ by explicit calculation.

Solution: In the case of two atoms we have S = 1. The spin ladder operators
are explicitly,

Ŝ+ =



0 1 0

0 0 1

0 0 0


 , Ŝ− =



0 0 0

1 0 0

0 1 0


 ,

so that the spin matrices become,

Ŝx = 1
2



0 1 0

1 0 1

0 1 0


 , Ŝy = 1

2



0 −ı 0

ı 0 −ı
0 ı 0


 , Ŝz =

1
2



1 0 0

0 0 0

0 0 −1


 ,

and their squares,

Ŝ2
x = 1

4



1 0 1

0 2 0

1 0 1


 , Ŝ2

y = 1
4




1 0 −1
0 2 0

−1 0 1


 , Ŝ2

z = 1
4



1 0 0

0 0 0

0 0 1


 .

The transformation matrix eıγŜz is easy to calculate,

eıγŜz =



eıγ/2 0 0

0 1 0

0 0 e−ıγ/2


 .
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For the other transformations we need to diagonalize the spin operators. For eıγŜx

the eigenvalue and eigenvector matrices are,

Ux =




1
2 − 1√

2
1
2

1√
2

0 − 1√
2

1
2

1√
2

1
2


 , Êx =




1√
2

0 0

0 0 0

0 0 − 1√
2




eıγŜx = Uxe
ıγÊxU−1x = 1

2



cos γ√

2
+ 1 ı

√
2 sin γ√

2
cos γ√

2
− 1

ı
√
2 sin γ√

2
2 cos γ√

2
ı
√
2 sin γ√

2

cos γ√
2
− 1 ı

√
2 sin γ√

2
cos γ√

2
+ 1


 .

and for eıγŜy ,

Uy =



− 1

2
1√
2
− 1

2

− ı√
2

0 ı√
2

1
2

1√
2

1
2


 , Êy =




1√
2

0 0

0 0 0

0 0 − 1√
2




eıγŜy = Uye
ıγÊyU−1y = 1

2




cos γ√
2
+ 1

√
2 sin γ√

2
− cos γ√

2
+ 1

−
√
2 sin γ√

2
2 cos γ√

2

√
2 sin γ√

2

− cos γ√
2
+ 1 −

√
2 sin γ√

2
cos γ√

2
+ 1


 .

We check the relationship by showing that,

eıγŜz Ŝxe
−ıγŜz = 1

2




0 eıγ/2 0

e−ıγ/2 0 eıγ/2

0 e−ıγ/2 0


 = Ŝx cos γ − Ŝy sin γ = [Rz(γ)Ŝ]x ,

and analogously for the other components.

41.1.6.8 Ex: Spin squeezing

a. Calculate ⟨π2 , 0|NeıζŜ
2
z Ŝe−ıζŜ

2
z |π2 , 0⟩N .

b. Calculate ⟨π2 , 0|NeıζŜ
2
z∆Ŝ2

x,y,ze
−ıζŜ2

z |π2 , 0⟩N .

Solution: a. We calculate,

⟨π
2
, 0|NeıζŜ2

z Ŝxe
−ıζŜ2

z |π
2
, 0⟩N

= 1
22S

2S∑
k,l=0

√√√√(2S
l

)(
2S

k

)
⟨S, S − l| 1

2

(
Ŝ+e

2ıζ(Ŝz+1/2) + e−2ıζ(Ŝz+1/2)Ŝ−
)
|S, S − k⟩

= 1
2

1
22S

2S∑
k,l=0

 √(
2S
l

)(
2S
k

)√
S(S + 1)− (S − k)(S − k + 1)e2ıζ(S−k+1/2)δl,k−1

+
√(

2S
l

)(
2S
k

)
e−2ıζ(S−k−1+1/2)

√
S(S + 1)− (S − k)(S − k − 1)δl,k+1


= 1

2N+1

N∑
k=0

(
N !eıζ(N−2k+1)

(k − 1)!(N − k)! +
N !e−ıζ(N−2k−1)

k!(N − k − 1)!

)
= N

2
cosN−1 ζ .
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Analogously,

⟨π2 , 0|NeıζŜ
2
z Ŝye

−ıζŜ2
z |π2 , 0⟩N = −ı

2N+1

N∑

k=0

(
N !eıζ(N−2k+1)

(k − 1)!(N − k)! −
N !e−ıζ(N−2k−1)

k!(N − k − 1)!

)
= 0 ,

and,

⟨π2 , 0|NeıζŜ
2
z Ŝze

−ıζŜ2
z |π2 , 0⟩N = ⟨π2 , 0|N Ŝz|π2 , 0⟩N = 0 .

b. Now, from (41.47) we have,

Ŝ′ ≡ eıζŜ2
z Ŝe−ıζŜ

2
z =




1
2

(
Ŝ+e

2ıζ(Ŝz+1/2) + e−2ıζ(Ŝz+1/2)Ŝ−
)

1
2ı

(
Ŝ+e

2ıζ(Ŝz+1/2) − e−2ıζ(Ŝz+1/2)Ŝ−
)

Ŝz .




The square of the x-component is, using [Ŝ+Ŝ−, Ŝz] = 0,

Ŝ
′2
x = 1

4

(
Ŝ+e

2ıζ(Ŝz+1/2)Ŝ+e
2ıζ(Ŝz+1/2) + e−2ıζ(Ŝz+1/2)Ŝ−e

−2ıζ(Ŝz+1/2)Ŝ− + Ŝ+Ŝ− + Ŝ−Ŝ+

)
.

Evaluating it for an atomic cloud having suffered a π
2 -pulse,

⟨π
2
, 0|N Ŝ′2

x |π2 , 0⟩
N = 1

22S+2

2S∑
k,l=0

√√√√(2S
k

)(
2S

l

)
⟨S, S − l|Ŝ′2

x |S, S − k⟩

= 1
22S+2

2S∑
k,l=0

√√√√(2S
k

)(
2S

l

) ⟨S, S − l|Ŝ+e
2ıζ(Ŝz+1/2)Ŝ+e

2ıζ(Ŝz+1/2)|S, S − k⟩
+⟨S, S − l|e−2ıζ(Ŝz+1/2)Ŝ−e

−2ıζ(Ŝz+1/2)Ŝ−|S, S − k⟩
+⟨S, S − l|Ŝ+Ŝ− + Ŝ−Ŝ+|S, S − k⟩



= 1
2N+2

N∑
k=0


e2ıζ(N−2k+2)

√
N !

k!(N−k)!
N !

(k−2)!(N−k+2)!

√
k − 1

√
N − k + 2

√
k
√
N − k + 1

+e−2ıζ(N−2k−2)
√

N !
k!(N−k)!

N !
(k+2)!(N−k−2)!

√
k + 2

√
N − k − 1

√
k + 1

√
N − k

+ N !
k!(N−k)! (k + 1)(N − k) + N !

k!(N−k)!k(N − k + 1)


= 1

2N+2

N∑
k=0

(
e4ıζN !xkyN−k

(k − 2)!(N − k)! +
e4ıζN !ykxN−k

k!(N − k − 2)!
+

N !(k + 1)

k!(N − k − 1)!
+

N !(N − k + 1)

(k − 1)!(N − k)!

)
= e4ıζ

2N+2 (N − 1)Nx2(x+ y)N−2 × 2 + N(N+1)
8

,

where we used the abbreviations x ≡ e−2ıζ and y ≡ e2ıζ . Now,

⟨π2 , 0|N Ŝ
′2
x |π2 , 0⟩N = N(N+1)

8 + N(N−1)
8 cosN−2 2ζ .

For ζ = 0 we recover the result from Exc. 41.1.6.4,

⟨ϑ, φ|N Ŝ2
x|ϑ, φ⟩N = 1

4

[
N +N(N − 1) sin2 π2 cos2 0

]
= N2

4 .

Analogously, we find,

⟨π2 , 0|N Ŝ
′2
y |π2 , 0⟩N = N(N+1)

8 − N(N−1)
8 cosN−2 2ζ .
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41.1.6.9 Ex: Rotation of spin squeezed states

Calculate ⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

x,y,ze
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N .

Solution: For the x-coordinate the calculation is easy, because,

⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

xe
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N = ⟨π2 , 0|NeıζŜ
2
z∆Ŝ2

xe
−ıζŜ2

z |π2 , 0⟩N ,

where we can exploit the result of Exc. 41.1.6.8, yielding,

⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

xe
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N = N(N+1)
8 +N(N−1)

8 cosN−2 2ζ−N2

4 cos2N−2 ζ .

For the x- and y-coordinates, we note,

⟨π2 , 0|NeıνŜxeıζŜ
2
z Ŝy,ze

−ıζŜ2
ze−ıνŜx |π2 , 0⟩N = 0 .

Hence, we get for the y-coordinate,

⟨π
2
, 0|NeıνŜxeıζŜ

2
z∆Ŝ2

ye
−ıζŜ2

ze−ıνŜx |π
2
, 0⟩N = ⟨π

2
, 0|NeıνŜxeıζŜ

2
z∆Ŝ2

ye
−ıζŜ2

ze−ıνŜx |π
2
, 0⟩N

= ⟨π
2
, 0|NeıνŜxeıζŜ

2
z Ŝ2

ye
−ıζŜ2

ze−ıνŜx |π
2
, 0⟩N

= ⟨π
2
, 0|NeıνŜx −1

4

(
Ŝ+e

2ıζ(Ŝz+1/2) − e−2ıζ(Ŝz+1/2)Ŝ−
)2
e−ıνŜx |π

2
, 0⟩N

= −1
4
⟨π
2
, 0|NeıνŜx

(
e2ıζŜz Ŝ+e

2ıζŜz Ŝ+e
2ıζŜz + e−2ıζŜze−2ıζŜz Ŝ−e

−2ıζŜz Ŝ− − 2Ŝ2 − 2Ŝ2
z

)
e−ıνŜx |π

2
, 0⟩N

= −1
4
⟨π
2
, 0|NeıνŜx

(
Ŝ2
+e

6ıζ(Ŝz+1) + e−6ıζ(Ŝz+1)Ŝ2
− − 2Ŝ2 − 2Ŝ2

z

)
e−ıνŜx |π

2
, 0⟩N

??? .

And for the z-coordinate,

⟨π
2
, 0|NeıνŜxeıζŜ

2
z∆Ŝ2

ze
−ıζŜ2

ze−ıνŜx |π
2
, 0⟩N = ⟨π

2
, 0|NeıνŜx Ŝ2

ze
−ıνŜx |π

2
, 0⟩N

= ⟨π
2
, 0|NeıνŜx Ŝze

−ıνŜxeıνŜx Ŝze
−ıνŜx |π

2
, 0⟩N = ⟨π

2
, 0|N (Ŝy sin ν + Ŝz cos ν)

2|π
2
, 0⟩N

=
1

22S

N∑
k,l=0

√√√√(N
k

)(
N

l

)
⟨S, S − l|

(
1
2ı
Ŝ+ sin ν − 1

2ı
Ŝ− sin ν + Ŝz cos ν

)2
|S, S − k⟩

=
1

2N

N∑
k,l=0

√√√√(N
k

)(
N

l

)
− sin2 ν

4

√
k − 1

√
2S − k + 2

√
k
√
2S − k + 1δl,k−2

+ sin2 ν
4

(k + 1)(2S − k)δl,k + sin2 ν
4

k(2S − k + 1)δl,k

− sin2 ν
4

√
k + 2

√
2S − k − 1

√
k + 1

√
2S − kδl,k+2

+cos2 ν(S − k)2δl,k

 ,

discarding all imaginary terms. Carrying out the calculations,

⟨π2 , 0|NeıνŜxeıζŜ
2
z∆Ŝ2

ze
−ıζŜ2

ze−ıνŜx |π2 , 0⟩N = N
4 .
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41.1.6.10 Ex: Spin squeezing with two atoms

a. For a system of two atoms, write down the coherent state |ϑ, φ⟩2 = |π2 , 0⟩2 in the
Tavis-Cummings basis and in the Dicke state basis.
b. Derive the matrix representation for the squeezing operator along the z-axis and
apply this operator to the above coherent spin state.
c. Compare spin squeezing with entanglement.

Solution: a. We get in the Tavis-Cummings basis,

|ϑ, φ⟩2 =
(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)2

= cos2 ϑ2 |++⟩+ eıφ sin ϑ
2 cos ϑ2 (|+−⟩+ |+−⟩) + e2ıφ sin2 ϑ2 | − −⟩ ,

such that,

|π2 , 0⟩2 = 1
2 (|+⟩+ |−⟩)2 = 1

2 (|++⟩+ |+−⟩+ | −+⟩+ | − −⟩) ,

while in the Dicke state basis, using

|ϑ, φ⟩2 =

N∑

k=0

√(
N

k

)
cosk ϑ2 e

ı(N−k)φ sinN−k ϑ2 |S,M⟩ with N = 2

= cos2 ϑ2 |1, 1⟩+ 2eıφ sin ϑ
2 cos ϑ2 |1, 0⟩+ e2ıφ sin2 ϑ2 |1,−1⟩ ,

such that,

|π2 , 0⟩ = 1
2 |1, 1⟩+ |1, 0⟩+ 1

2 |1,−1⟩ . (41.72)

b. Using the matrix representation of the spin operator,

Ŝz =




1
2 0 0

0 0 0

0 0 − 1
2


 and Ŝ2

z =




1
4 0 0

0 0 0

0 0 1
4


 ,

we find,

eıζŜ
2
z =



eıζ/4 0 0

0 1 0

0 0 eıζ/4




Applying this operator to the coherent spin state, we get,

eıζŜ
2
z |ϑ, φ⟩N =

N∑

k=0

√(
N

k

)
cosk ϑ2 e

ı(N−k)φ sinN−k ϑ2 e
ıζ(S−k)2 |S, S − k⟩ ,

such that,

eıζŜ
2
z |π2 , 0⟩2 = eı2φ+ıζ sin2 ϑ2 |1, 1⟩+

√
2 cos ϑ2 e

ıφ sin ϑ
2 |1, 0⟩+ cos2 ϑ2 e

ıζ |1,−1⟩
= eıζ

2 |1, 1⟩+ 1√
2
|1, 0⟩+ eıζ

2 |1,−1⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing08.pdf


41.1. THE DICKE MODEL IN THE MEAN-FIELD APPROXIMATION 2315

Obviously, this state cannot be represented by a (stretched) coherent state (41.72).
c. In the Tavis-Cummings basis we calculate,

Ŝz =




1

0

0

−1


 , Ŝ2

z =




1

0

0

1


 , eıζŜ

2
z =




eıζ

1

1

eıζ


 .

Hence,

eıζŜ
2
z 1
2




1

1

1

1


 = 1

2




eıζ

1

1

eıζ


 ,

only the stretched states are influenced by the squeezing operator. In a Ramsey inter-
ferometer this may be exploited to generate entanglement, |++⟩+ | − −⟩.

41.1.6.11 Ex: Mølmer-Sørensen gate

Derive the matrix representation for the two-qubit Mølmer-Sørensen gate eıζŜ
2
x .

Solution: With the definition (25.77),

Ŝk = 1
2 (σ̂k ⊗ I2 + I2 ⊗ σ̂k)

we can verify,

Ŝx = e−ıπŜy/2Ŝze
ıπŜy/2 .

Using (24.153),

eıζŜ
2
x = eıζe

−ıπŜy/2Ŝze
ıπŜy/2e−ıπŜy/2Ŝze

ıπŜy/2

= ee
−ıπŜy/2ıζŜ2

ze
ıπŜy/2

= e−ıπŜy/2eıζŜ
2
zeıπŜy/2

=




1
2




1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1







−1


eıζ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 eıζ




1
2




1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1




= 1
2e
ıζ




1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1


 .

Alternatively, we can search the eigenvalue matrix Ê and the eigenvector matrix U of

the operator Ŝ2
x = U−1EU and calculate eıζŜ

2
x = eıζU

−1EU = U−1eıζEU , which yields
the same result. Applying the gate to the two-qubit ground state we generate the fully
entangled EPR state.
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41.1.6.12 Ex: Spin-squeezing via one-axis twisting

For a Dicke state with N = 8 atoms, program the matrix representations of the op-
erators Ŝ±, Ŝ, Rα(θ), and Qα(ζ) for α = x, y, z defined in the script, as well as the
vector representation of the state |ϑ, φ⟩.
a. Starting from the ground state |ϑ, φ⟩ = |0, 0⟩, simulate the following time evolu-
tion: (i) π

2 -pulse with the Hamiltonian Ĥ = ΩŜx, where Ω is the Rabi frequency,

(ii) interaction-free precession with the Hamiltonian Ĥ = ∆Ŝz where ∆ is the detun-
ing during a time T , (iii) π

2 -pulse with the Hamiltonian Ĥ = ΩŜx, (iv) projection of

the energy axis. Plot the time evolution of the expectation values ⟨Ŝα⟩ and ∆Ŝα.
b. Starting from the ground state |ϑ, φ⟩ = |0, 0⟩, simulate the following time evolu-
tion: (i) π

2 -pulse with the Hamiltonian Ĥ = ΩŜy, where Ω is the Rabi frequency,
(ii) squeezing pulse along the z-axis with the squeezing parameter ζ = 0.6, (iii) π

2 -

pulse with the Hamiltonian Ĥ = ΩŜx. Plot the time evolution of the expectation
values ⟨Ŝα⟩ and ∆Ŝα. A movie can be seen at (watch movie).

Solution: a. See plots of Fig. 41.7.

Figure 41.7: (code) Ramsey sequence.

b. See plots of Fig. 41.8.

Figure 41.8: (code) Squeezing sequence.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing09.pdf
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41.1.6.13 Ex: Two-axis countertwisting

Study the Hamiltonian,

Ĥ = ζ(Ŝ2
π/2,π/4 − Ŝ2

π/2,−π/4) =
ζ
2ı (Ŝ

2
+ − Ŝ2

−)

with Ŝϑ,φ defined in Exc. 41.1.6.3 in view of its squeezing features of an initial coher-
ent spin state |0, φ⟩ [724].

Solution: The squeezing propagator generated by the Hamiltonian,

Ĥ = ζ(Ŝx + ıŜy)
2 − (Ŝx − ıŜy)2 = ζ(ŜxŜy + ŜyŜx)

is
Qz(ζ) = eıĤt = eıζt(ŜxŜy+ŜyŜx)

and we want to know

⟨ϑ, φ|Neıζt(ŜxŜy+ŜyŜx)∆Ŝ2
x,y,ze

−ıζt(ŜxŜy+ŜyŜx)|ϑ, φ⟩N .

Note also,

ŜxŜy, ŜyŜx] = ŜxŜy[Ŝy, Ŝx] + [Ŝx, Ŝy]ŜxŜy = 0

eıζt(ŜxŜy+ŜyŜx) = eıζtŜxŜyeıζtŜyŜx

Ŝ2
x − Ŝ2

y = ı[Ŝz, ŜxŜy] .

41.1.6.14 Ex: Interferometry with double Fock states

Discuss numerically whether, assuming as the initial state a double spin Fock state
of the form |+⟩N1 |−⟩N2 , Heisenberg limited interferometry can be done within the
Dicke model [184].

Solution: Here, we want to study a product of two coherent spin states (in anal-
ogy to the superposition of two Glauber modes),

|ψ⟩ = |ψ1⟩|ψ2⟩ = |ϑ1, φ1⟩N1 |ϑ2, φ2⟩N2 = (p1+|+⟩+ p1−|−⟩)N1(p1+|+⟩+ p1−|−⟩)N1

=

2S1∑

k=0

√(
2S1

k

)
p
S1−k/2
1+ p

k/2
1−

2S2∑

l=0

√(
2S2

l

)
p
S2−l/2
2+ p

l/2
2− |S1,M1;S2,M2⟩ .

Now, we construct operators acting on the whole Hilbert space,

|ψ⟩ ≡ |ψ1⟩ ⊗ |ψ2⟩ , Ĵα ≡ Ŝ(1)
α ⊕ Ŝ(2)

α = (Ŝ(1)
α ⊗ I) + (I⊗ Ŝ(2)

α ) ,

for all α = x, y, z,±. The partial operators themselves are sums,

Ŝ(µ)
α =

N∑

k=1

Ŝ
(1)
k,α ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing10.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SpinSqueezing11.pdf


2318 CHAPTER 41. CORRELATED ATOMS, ENTANGLEMENTANDQUANTUMGATES

with µ = 1, 2. E.g. for two particles, one in each group µ, defining the basis {| −
−⟩, | −+⟩, |+−⟩, |++⟩}, we have,

Ĵx = (Ŝx ⊗ I) + (I⊗ Ŝx)
Ĵ2
x = (Ŝx ⊗ I)2 + (I⊗ Ŝx)2 + (Ŝx ⊗ I)(I⊗ Ŝx) + (Ŝx ⊗ I)(I⊗ Ŝx) .

For the general case,

Ĵ±|S1,M1;S2,M2⟩ =
√
S1(S1 + 1)−M1(M1 ± 1)|S1,M1 ± 1;S2,M2⟩

+
√
S2(S2 + 1)−M2(M2 ± 1)|S1,M1;S2,M2 ± 1⟩

Ĵz|S1,M1;S2,M2⟩ =M1|S1,M1;S2,M2⟩+M2|S1,M1;S2,M2⟩ .

The linear expectation values are easy to calculate,

⟨ϑ1, φ1|N1⟨ϑ2, φ2|N2 Ĵ+|ϑ1, φ1⟩N1 |ϑ2, φ2⟩N2

= ⟨ϑ1, φ1|N1 Ŝ
(1)
+ |ϑ1, φ1⟩N1 + ⟨ϑ2, φ2|N2 Ŝ

(2)
+ |ϑ2, φ2⟩N2

= S1e
ıφ1 sinϑ1 + S2e

ıφ2 sinϑ2 ,

and so on. However, the situation is more complicated for higher momenta, such as,

⟨ϑ1, φ1|N1⟨ϑ2, φ2|N2 Ĵ2
+|ϑ1, φ1⟩N1 |ϑ2, φ2⟩N2 ,

which have to be calculated numerically.
We consider the initial state,

|+⟩N1 |−⟩N2 = |N1, S1,M1;N2, S2,M2⟩ = |N1,
N1

2 ,−N1

2 ;N2,
N2

2 ,+
N2

2 ⟩ .

It’s like making a π
2 -pulse and doing a complete spin-squeezing by measuring the atom

number difference. The resulting state is NOT a coherent spin state, and the one-
cloud Dicke model does not apply. This is analogous to combining two photonic Fock
states at a beamsplitter and may be an example of sub SQL without entanglement
[191]. See plots of Fig. 41.9.

Figure 41.9: (code) Heisenberg-limited interferometry with two initial Fock states.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_SpinDoubleFock_Movie.m
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41.1.6.15 Ex: Entanglement criteria

A sufficient entanglement criterion for an N -qubit state is, that it violates one of the
following inequalities [1315, 1316],

⟨∆Ŝ2
z ⟩

⟨Ŝx⟩2 + ⟨Ŝy⟩2
≥ 1

N

⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩+ ⟨Ŝ2
z ⟩ ≤ N(N+2)

4

⟨∆Ŝ2
x⟩+ ⟨∆Ŝ2

y⟩+ ⟨∆Ŝ2
z ⟩ ≥ N

2

⟨Ŝ2
k⟩+ ⟨Ŝ2

m⟩ − N
2 ≤ (N − 1)⟨∆Ŝ2

n⟩
(N − 1)[⟨∆Ŝ2

k⟩+ ⟨∆Ŝ2
m⟩] ≥ ⟨Ŝ2

k⟩+ N(N−2)
4 ,

for (kmn) = (123). Verify that, according to these criteria, coherent Dicke states are
not entangled.

Solution: With the results of Excs. 41.1.6.3 and 41.1.6.4 we find for coherent Dicke
states immediately,

⟨∆Ŝ2
z ⟩

⟨Ŝx⟩2 + ⟨Ŝy⟩2
=

1

N sin2 φ
≥ 1

N

⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩+ ⟨Ŝ2
z ⟩ = N

2 + N4

4

⟨∆Ŝ2
x⟩+ ⟨∆Ŝ2

y⟩+ ⟨∆Ŝ2
z ⟩ = N

2

⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩ − N
2 − (N − 1)⟨∆Ŝ2

z ⟩ = −N2 + N
4 sin2 ϑ ≤ 0

(N − 1)[⟨∆Ŝ2
x⟩+ ⟨∆Ŝ2

y⟩]− ⟨Ŝ2
z ⟩ − N(N−2)

4 = 0 .

41.1.6.16 Ex: Consistency of the Holstein-Primakoff transform

Verify that the relations (41.61) satisfy [Ŝ+, Ŝ−] ≃ 2Ŝz and [Ŝx, Ŝy] ≃ ı
2 Ŝz.

Solution: Using [b̂, b̂†] = 1 we find,

[Ŝ+, Ŝ−] = 2S

[√
1− b̂†b̂

2S b̂, b̂†
√

1− b̂†b̂
2S

]
≃ 2S

[(
1− b̂†b̂

4S

)
b̂, b̂†

(
1− b̂†b̂

4S

)]

= 2
(
S − b̂†b̂+ 1

16S

[
b̂†b̂â, b̂†b̂†b̂

])
≃ 2Ŝz ,

and

[Ŝx, Ŝy] =
[
1
2 (Ŝ+ + Ŝ−), 1

2ı (Ŝ+ − Ŝ−)
]
= −1

4ı [Ŝ+, Ŝ−] ≃ ı
2 Ŝz .
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41.1.6.17 Ex: Dicke model of Bloch oscillations in the two-mode approx-
imation

In the limit where Bloch oscillations can be modeled by a two-level system [1139] we
may try a representation within the Dicke model and illustrate the dynamics on a
Bloch sphere [1135]. The gravitational acceleration corresponds to a modification of
kinetic energy without modification of the momentum state populations and without
excitation of quantum coherences between them. Since the kinetic energy is repre-
sented by the vertical axis of the Bloch sphere, we may visualize acceleration via a
rotation of the Bloch sphere, e.g. about the y-axis. The interpretation of the rotated
Bloch sphere remains the same: the xy-plane shows the coherences and the z-axis the
populations. Once this works, we can treat the thermal atomic cloud as a coherent
spin state, e.g. squeeze it [724] or simulate trajectory of individual atoms inhomoge-
neously [345] 9,10.

Solution: Assuming that, at any time, at most two discrete momentum states n
and n+ 1 are coupled, the Hamiltonian (26.70) becomes,

H̃ = 4ℏωrecn2|2nℏk⟩⟨2nℏk|+ 4ℏωrec(n+ 1)2|2(n+ 1)ℏk⟩⟨2(n+ 1)ℏk|
+ V0

4 (|2(n+ 1)ℏk⟩⟨2nℏk|+ |2nℏk⟩⟨2(n+ 1)ℏk|) .

Introducing spin operators for every single motional two-level atom,

σ̂+ ≡ |p+ 2ℏk⟩⟨p| , σ̂x ≡ σ̂+ + σ̂− , σ̂z ≡ [σ̂+, σ̂−]−

2σ̂+σ̂− = |p+ 2ℏk⟩⟨p+ 2ℏk| = [σ̂−, σ̂+]+ − [σ̂−, σ̂+]− = I+ σ̂z

2σ̂−σ̂+ = |p⟩⟨p| = [σ̂−, σ̂+]+ + [σ̂−, σ̂+]− = I− σ̂z ,

we get,

H̃ = 4ℏωrecn2σ̂−σ̂+ + 4ℏωrec(n+ 1)2σ̂+σ̂− + V0

4 (σ̂+ + σ̂−)

= 8ℏωrec(n+ 1
2 )σ̂

z + 8ℏωrec(n2 + n+ 1
2 ) +

V0

4 σ̂
x .

Finally, we go to the collective Dicke Hamiltonian,

Ĥ =
∑

j

H̃j = 8ℏωrec(n+ 1
2 )Ŝ

z + 8ℏωrec(n2 + n+ 1
2 ) +

V0

4 Ŝ
x .

41.1.6.18 Ex: Uncertainty relation in different bases

In Exc. 41.1.6.4 the principal axes of the uncertainty ellipsoid of a coherent spin
state have been derived for a fixed Cartesian coordinate system. Now, express the
uncertainty ellipsoid in a local Cartesian basis anchored to spherical coordinates by
ê′x = êr, ê

′
y = êθ, and ê′z = êϕ. Why is the radial projection onto the surface of the

9Note that, In order to simulate a series of Bloch oscillations, we must change the basis by hand
after each Bragg reflection.

10An interesting question is, whether the Dicke picture can be extended to CARL (see Sec. 42.3.5).
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generalized Bloch sphere invariant upon rotation? Interprete the projection of the
uncertainty ellipsoid onto the radial axis and its dependency on rotation.

Solution: According to Exc. 25.3.4.8 the commutation rules for an angular mo-
mentum satisfying [Ŝx, Ŝy] = ıŜz is xxx. If now the system is in an eigenstate of Ŝz,
xxx. That is, the uncertainty relation describes a 2D disk tangential to the surface
of the Bloch sphere, very similar to the situation in a 2D phase space, e.g. of a 1D
harmonic oscillator.

41.2 Super- and subradiance in open systems

The abstract spin formalism developed in the last sections revealed propagators al-
lowing us to rotate and squeeze coherent spin states, but it did not tell us how to
implement them physically. For this, we need to solve equations of motion derived
from Hamiltonians realizable in the laboratory. In the following sections, we will set
up the fundamental equations of motion (master or Heisenberg-Liouville) for open
systems of N atoms subject to spontaneous emission collectively interacting with a
single light mode subject to cavity decay and pumped by an external source.

We will discuss constants of motion of the Dicke and of the Tavis-Cummings model
and phase transitions to superradiant states in the mean-field and in the Holstein-
Primakoff approximation. Finally, we will present recent experimental realizations of
Dicke phase transitions, namely superradiant self-ordering and superradiant lasing.

41.2.1 Models for open systems and phase transitions

We have already seen, that the spin quantum number S is preserved under the effect
of the Dicke Hamiltonian (41.6). The spherical harmonics |S,M⟩ are orthonormal and
the spin operators Ŝ± and Ŝx,y,z or their combinations do not allow for transitions
between states with different S,

[Ĥ, Ŝ2] = 0 with Ŝ2 = 1
2 (Ŝ+Ŝ− + Ŝ−Ŝ+) + Ŝ2

z (41.73)

but [Ĥ, Ŝz] = ı(Im Ω Ŝx −Re Ω Ŝy) ̸= 0 .

Hence, under the effect of the Dicke Hamiltonian an initial state |N,S,M⟩ can only
change its magnetic quantum number |N,S,M⟩ −→ |N,S,M ′⟩, and the manifolds
with a given S form closed sub-spaces (see Exc. 41.2.4.1). In other words, once we
start in a superradiant state |N,S,M⟩ = |N, N2 ,+N

2 ⟩, spin conservation excludes
subradiant states, which allowed us to restrict to the superradiant Dicke subspace.
Transitions between Dicke subspaces are only possible via physical processes that act
on individual atoms, e.g. decay or phase fluctuation processes, as we will see later
[498, 1429].

41.2.1.1 The generalized open Dicke model

In the presence of spontaneous decay or dephasing, superradiant spin conservation is
no longer guaranteed. Let us have a look at the master equation for a set of N atoms
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Figure 41.10: (a) Illustration of the Dicke states for N = 6. Hamiltonian interactions are in
depicted in red. Superradiant decay occurs through a cascade from state M = S to state
M = −S. Spontaneous emission and phase noise leads to transitions along the blue arrows.
The lowest states in each S subspace are dark and can only decay through a (subradiant)
dark states cascade. (b) Scheme of the Dicke model.

coupled with the strength g to the mode of a cavity and additionally pumped by a
classical laser field η [137, 723] (see (36.48)). After transformation into the rotating
frame we have,

˙̂ρ = ı[ρ̂, ĤgD] +
∑
γ Lγ,L̂ρ̂ or

˙̂
A = −ı[Â, ĤgD] +

∑
γ L
†
γ,L̂
Â

ĤgD = −∆câ
†â−∆aŜz + g(âŜ+ + Ŝ−â†) + g′(âŜ− + Ŝ+â

†)− ıη(â− â†)

and Lγ,L̂ρ̂ ≡ γ(2L̂ρ̂L̂† − L̂†L̂ρ̂− ρ̂L̂†L̂)

and L†
γ,L̂
Â ≡ γ(2L̂†ÂL̂− L̂†L̂Â− ÂL̂†L̂)

.

(41.74)
The different coupling strengths g and g′ allow us to isolate the counter-rotating
terms, in order to discuss their relevance. The usual open Dicke model is obtained
from the generalized Dicke Hamiltonian ĤgD by setting g′ ≡ g, while the rotating
wave approximation is done by setting g′ ≡ 0. The rates γ describe possible decay
processes to which the degrees of freedom L̂ are subject. The most relevant decay
processes are listed in the following table:

decay rate γ dissipative operator L̂ physical process

κ â cavity decay

ϕ â†â cavity phase jitter

γ = Γ/2 Ŝ− =
∑
j ŝ
−
j collective (superradiant) atomic decay

γ1 = Γ1/2 ŝ−j (transverse) single-atom decay

ξ1 ŝ+j single-atom optical pumping

β1 ŝzj single-atom dephasing
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Γ = 2γ is the collective longitudinal atomic decay, κ and ϕ describe collective
decay respectively collective phase noise of the cavity, while Γ1 = 2γ1, ξ1, and β1
stand for spontaneous emission, optical pumping via higher-lying levels, and phase
fluctuation of individual atoms. The latter decay processes are described by sums of
Lindbladians over all atoms. In Exc. 41.2.4.2 we derive the Heisenberg equations for
the relevant degrees of freedom,

˙̂a = (ı∆c − κ− ϕ)â− ı(gŜ− + g′Ŝ+) + η (41.75)

˙̂
S− = (ı∆a − γ1 − ξ1 − β1 + ΓŜz)Ŝ− + 2ıŜz(gâ+ g′â†)

˙̂
Sz = −ıŜ+(gâ+ g′â†) + ı(gâ† + g′â)Ŝ− − ΓŜ+Ŝ− −N(γ1 − ξ1)I− 2(γ1 + ξ1)Ŝz

˙̂s−j = (ı∆a − γ1 − ξ1 − β1)ŝ−j + 2ı(gâ+ g′â†)ŝzj
˙̂szj = −ı(gâ+ g′â†)ŝ+j + ı(gâ† + g′â)ŝ−j − γ1(I− 2ŝzj ) + ξ1(I+ 2ŝzj ) .

In Exc. 41.2.4.3 we verify that these equations of motion do not change the spin Ŝ.
Neglecting all dissipation processes but Γ, the Eqs. (41.75) can be rewritten in terms
of observables as,

˙̂S =




(g + g′)(â+ â†)

ı(g − g′)(â− â†)
−∆a


× Ŝ+ Γ

2



−Ŝx + {Ŝx, Ŝz}
−Ŝy + {Ŝy, Ŝz}
−2Ŝz − 2Ŝ2

x − 2Ŝ2
y


 . (41.76)

Only the terms Lγ1 , Lξ1 , and Lβ1 can change Ŝ2. The Ŝ2 and Ŝz eigenvalues
determine the coupling strength of the many-atom (Dicke) state to the cavity mode
and the coherent, external drive. This coupling determines the rate of cavity photon
generation as well as the pumping strength. The magnitude of the coupling strength
distinguishes between superradiance and subradiance. For superradiant states the
coupling strength scales superlinear in N , while for subradiant states the scaling is
sublinear in N , and some subradiant states are dark. Dark means that the collec-
tive coupling to the cavity and the coherent, external drive of these states vanishes,
meaning these states cannot decay via collective interactions e.g. by creating a cavity
photon. However these states still decay into other states via the decay and dephas-
ing processes Lγ1 and Lβ1

acting individually on the emitters, see Fig. 41.10. Hence,
spontaneous decay is an individualization process [498]. Generally, the spin preserving
contributions in the master equation (41.78) generate quantum correlations leading
to collective behavior (both super- and subradiance are collective effects) and the
non-preserving terms destroy correlations leading to individualization (all properties
scale exactly linear in N). However only the spin non-preserving contributions intro-
duce coupling between superradiant and subradiant states, thus in order to prepare
subradiant states an interplay of collectivity and individualization is necessary. Based
on these considerations, we may distinguish between collective versus individual be-
havior and superradiant versus subradiant behavior. The latter are special cases of
collective behavior. This twofold distinction seems crucial when investigating super-
and subradiance in the presence of dephasing and individual decay. In Exc. 41.2.4.4
we study superradiant decay.
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41.2.1.2 Symmetries of the Dicke and the Tavis-Cummings model

The total number of excitations,

N̂ex ≡ â†â+ Ŝz (41.77)

is a constant of motion only for the Tavis-Cummings Hamiltonian, i.e. the Dicke
Hamiltonian with RWA, g′ = 0, and in the absence of pumping, η = 0,

[ĤgD, N̂ex] = η(â− â†) + 2g′(Ŝ−â− Ŝ+â
†) . (41.78)

That is, the Dicke Hamiltonian preserves the excitation number, except for the
counter-rotating terms, which can only change the excitation number by ±2.

The Dicke model without RWA, g′ = g, has one global symmetry 11,

P : (â, σ̂±)→ (−â,−σ̂±) . (41.79)

Because P squares to unity, it has two eigenvalues, 1 and −1. This symmetry is
associated with a conserved quantity: the parity of the total number of excitations,
P = (−1)Nex . This parity conservation is a consequence of the preserved excitation
number. A state of the Dicke model is said to be normal when this symmetry is
preserved, and superradiant when this symmetry is spontaneously broken.

41.2.2 Superradiant Dicke phase transition

The interesting feature of the set of equations (41.75) is, that the degrees of freedom
are macroscopically populated, yet, they follow the rules of quantum mechanics. For
instance, we may expect them to behave as order parameters for macroscopic phase
transitions. We will study one such example in the following.

41.2.2.1 Equilibrium Dicke phase transition

The Dicke model predicts a phase transition to a superradiant state, when the coupling
strength g exceeds a certain critical value. To see this we simplify the Hamiltonian
(41.6) by the mean-field approximation,

ωcâ
†â = ωcα

2 , (41.80)

where the field amplitude α is a real number, and calculate the free energy as a
function of α,

F (α) ≡ − 1
β lnZ(α) with Z(α) = Tr e−βĤ (41.81)

and Ĥ = ωcα
2 +

∑
j
ĥj

and ĥj = ωaŝ
z
j + 4gαŝxj .

11For a Dicke picture of CARL see Exc. 42.5.7.1.
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Z(α) is the partition function, ĥj the single-atom Hamiltonian, and β ≡ 1/kBT .
Carried out in Exc. 41.2.4.5, the calculation results in,

F (α) = ωcα
2 − N

β ln(2 coshβE) (41.82)

where ± E ≡ ⟨ĥj⟩ = ±
√(

ωa

2

)2
+ (gα)2

are the single-atom energy eigenvalues. The minimum of the free energy as a function
of the field amplitude, F ′(α) = 0, yields a critical coupling strength gc,

gc
√
N = 1

2

√
ωcωa coth

βωa

2 , (41.83)

Below gc the free energy minimizes for α = 0, and beyond gc it minimizes for α > 0,
as seen in Fig. 41.11.
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H
z)

100

2-500

200

Figure 41.11: (code) Free energy as a function of coupling strength and photon number.

Beyond the critical coupling strength gc the minimum of the free energy splits opening the

way for two possible equilibrium states of the mean-field phase.

Note that the critical coupling smoothly evolves down to zero temperature (β → 0),
where one obtains gc =

√
ωcωa/2N

12.

41.2.3 Beyond mean-field

We already applied the mean-field approximation in the derivation of the semiclas-
sical Dicke Hamiltonian (41.9) and the Dicke phase transition (41.80). Some effects,
however, are intrinsically to the existence of interatomic correlations, as for example,
superradiant lasing 13

12Note, that in the thermodynamic limit, N → ∞, the operators can be replaced by [723]:

Ŝx
N→∞−→ 1

2
N̂ cos φ̂ and Ŝy

N→∞−→ 1
2
N̂ sin φ̂ .

In this case, the operators commute [Ŝx, Ŝy ] → 0.
13Interestingly, spin-squeezing, which is also based on interatomic correlations, can be described

within the mean-field approximation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DickeTransition.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DickeTransition.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DickeTransition.m
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41.2.3.1 Cumulant expansion

Often we are interested in quantum correlations rather than in the mean-field behavior
of an operator. The cumulant expansion allows to study higher-order correlations
by gradually removing lower-order ones. We introduce the correlation or cumulant
expectation value between operators Â and B̂ [756, 1140],

⟨Â⟩ ≡ ⟨Â⟩c (41.84)

⟨ÂB̂⟩ ≡ ⟨Â⟩⟨B̂⟩+ ⟨ÂB̂⟩c
⟨ÂB̂Ĉ⟩ ≡ ⟨Â⟩⟨B̂⟩⟨Ĉ⟩+ ⟨Â⟩⟨B̂Ĉ⟩c + ⟨B̂⟩⟨ÂĈ⟩c + ⟨Ĉ⟩⟨ÂB̂⟩c + ⟨ÂB̂Ĉ⟩c .

The lowest order mean-field approximation consists in neglecting ⟨ÂB̂⟩c ≃ 0.

Example 253 (Superradiant lasing): In a conventional laser amplification

and optical phase coherence are established by stimulated photon emission from

a population-inverted medium. This results in the Schawlow-Townes spectral

linewidth, proportional to the square of the cavity decay width and inversely

proportional to the photon number in the cavity. As Dicke showed, the coher-

ence can also be stored in the emitters that constitute the gain medium provided

they interact collectively with common radiation field modes [341]. If the sponta-

neous decay rate is much smaller than the cavity decay rate very narrow emission

bandwidths far below the cavity decay width can be achieved. In Exc. 41.2.4.6

we study superradiant lasing in the Dicke model [868]. Cavity-mediated su-

perradiance can also be described within the Tavis-Cummings model [226]. It

represents an extension of the Jaynes-Cummings model for several atoms. We

discussed such systems in Sec. 41.5.

Figure 41.12: (a) Principle scheme of standard lasing. Here, the coherence is stored in
the cavity field. The gain profile is much larger than the cavity width (good-cavity limit,
κ ≪ 1

2
Γg), as shown in (c). The laser frequency follows any (technical) cavity fluctuation:

ωlas = ωcav + ωg
2κ
Γg

. (b) Superradiant lasing. Here, the coherence is stored in the gain. We

are in the bad-cavity limit, κ≫ Γg, as shown in (d). The laser frequency is robust to cavity

fluctuations: ωlas = ωg + ωcav
Γg

2κ
.
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41.2.3.2 Superradiant lasing in the Holstein-Primakoff approximation

The superradiant phase transition was originally predicted by the Dicke model [366,
610]. It occurs when the strength of the interaction between the atoms and the field
is greater than the energy of the non-interacting part of the system 14. The collective
Lamb shift, relating to the system of atoms interacting with the vacuum fluctuations,
becomes comparable to the energies of atoms alone, and the vacuum fluctuations
cause the spontaneous self-excitation of matter.

The transition can be readily understood by the use of the Holstein-Primakoff
transformation applied to an ensemble of two-level atoms, as shown in Sec. ??, as
a result of which the atoms become harmonic oscillators with frequencies equal to
the difference between the energy levels. If the interaction between the atomic and
the field oscillator is so strong that the system collapses in a ferroelectric-like phase
transition. In Exc. 41.2.4.8 we will derive the Heisenberg equations for the open Dicke
model in the Holstein-Primakoff approximation.

Example 254 (Finding instabilities via retarded Green’s functions): Let
us consider a set of linear Heisenberg equations,

v̇i(t) =Mijvj(t) and v̇†i (t) =M†ijv
†
j (t) .

The retarded Green’s function is defined by,

Gij(t) ≡ −ı⟨[vi(t), v†j (0)]⟩θ(t) .

Its time derivative is,

Ġij(t) ≡ −ı⟨[vi(t), v†j (0)]⟩δ(t)− ı⟨v̇i(t)v†j (t)⟩θ(t) + ı⟨v†j (t)v̇i(t)⟩θ(t) .

Defining the equal-time correlation function by,

Sij ≡ ⟨[vi(0), v†j (0)]⟩ ,

we get,

Ġij(t) = −ıSijδ(t)− ıMik⟨vk(t)v†j (t)⟩θ(t) + ıMik⟨v†j (t)vk(t)⟩θ(t)
= −ıSijδ(t)− ıMik⟨[vk(t), v†j (t)]⟩θ(t) = −ıSijδ(t) +MikGkj(t) .

With the Fourier transform f(ω) =
∫∞
−∞ dteıωtf(t) we finally get,

G(ω) = (M + ıωI)−1ıS .

For example, we may consider the system of two coupled oscillators studied in
Sec. 35.8.8. In this case,

v ≡


â

â†

b̂

b̂†

 such that S = diag (1,−1, 1,−1) .

14This is similar to the case of superconductivity in ferromagnetism, which leads to the dynamic
interaction between ferromagnetic atoms and the spontaneous ordering of excitations below the
critical temperature.
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In Exc. ?? we have shown that (setting Ω′ ≡ Ω),

M =


−ıω − κa 0 − ıΩ

2
− ıΩ

2

0 ıω − κa ıΩ
2

ıΩ
2

− ıΩ
2

− ıΩ
2

−ıω − κb 0
ıΩ
2

ıΩ
2

0 ıω − κb

 .

Thus,

GR(ω)−1 = S−1(ωI−ıM) =


ω − ωa + ıκa 0 −Ω

2
−Ω

2

0 −ω − ωa − ıκa −Ω
2

−Ω
2

−Ω
2

−Ω
2

ω − ωb + ıκb 0

−Ω
2

−Ω
2

0 −ω − ωb − ıκb

 .

The superradiant transition corresponds to the requirement that one of the
eigenvalues of M goes to zero [341, 723], or equivalently,

0 = detGR(ω)−1 = ω2
aω

2
b + ω2

aκ
2
b − ωaΩ2ωb + κ2

aω
2
b + κ2

aκ
2
b ,

yielding,

Ω =

√
(ω2
a + κ2

a)(ω
2
b + κ2

b)

ωaωb
.

Example 255 (Dicke phase transition with a superfluid gas in an optical

cavity): [105]

41.2.4 Exercises

41.2.4.1 Ex: Relationship between super- and subradiance and cooper-
ativity

a. Discuss whether super- and subradiant states can be transformed into each other
via unitary transformations.
b. Seek an interpretation of super- and subradiance as a modification of the structure
factor by cooperativity.

Solution:

41.2.4.2 Ex: Heisenberg equation for the open Dicke model

Derive the Heisenberg equation for the open Dicke model.

Solution: We start from the generalized Dicke Hamiltonian and the general form
of the Lindbladian (41.74) to derive the Heisenberg equation,

d

dt
Â = −ı[Â, ĤgH ] + L†κ,âÂ+ L†

Γ,Ŝ−
Â+ L†γ1,ŝ−Â+ L†ξ1,ŝ+Â+ L†β1,ŝz

Â ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance04.pdf
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considering the dissipation processes,

L†κ,âÂ = κ(â†[Â, â] + [â†, Â]â)

L†
ϕ,â†â

Â = ϕ(â†â[Â, â†â] + [â†â, Â]â†â)

L†
Γ,Ŝ−

Â = Γ(Ŝ+[Â, Ŝ−] + [Ŝ+, Â]Ŝ−)

L†γ1,ŝ−Â = γ1
∑

j
(ŝ+i [Â, ŝ

−
i ] + [ŝ+i , Â]ŝ

−
i )

L†ξ1,ŝ+Â = ξ1
∑

j
(ŝ−i [Â, ŝ

+
i ] + [ŝ−i , Â]ŝ

+
i )

L†β1,ŝz
Â = β1

∑
j
(ŝzi [Â, ŝ

z
i ] + [ŝzi , Â]ŝ

z
i ) ,

describing respectively the decay and phase jitter of the cavity field and superradiant
decay, which are collective processes, and the single atom processes spontaneous decay,
optical pumping, and phase noise. Using the commutation rules,

[ŝzi , ŝ
±
j ] = ±ŝ±j δij and [ŝ+i , ŝ

−
j ] = 2ŝzjδij ,

and the relationships ŝx,y,z = 1
2 σ̂

x,y,z and ŝ± = σ̂±, yielding,

ŝzj ŝ
±
j = 1

2 [ŝ
+
j , ŝ
−
j ]ŝ

+
j = ± 1

2 ŝ
±
j = −ŝ±j ŝzj and ŝ±j ŝ

∓
j = 1

2 (I∓ 2ŝzj ) ,

we find,

˙̂a = −ı[â, ĤgH ] + L†κ,ââ+ L
†
ϕ,â†â

â

= ı∆c[â, â
†]â− 2ıg[â, â†]Ŝ− − 2ıg′Ŝ+[â, â

†]

+ η[â, â†] + κ(â†[â, â] + [â†, â]â) + ϕ(â†â[â, â†]â+ [â†, â]ââ†â)

= (ı∆c − κ− ϕ)â− 2ı(gŜ− + g′Ŝ+) + η ,

and,

˙̂
S− = −ı[Ŝ−, ĤgH ] + L†

Γ,Ŝ−
Ŝ− + L†γ1,ŝ− Ŝ− + L†ξ1,ŝ+ Ŝ− + L†β1,ŝz

Ŝ−

= ı∆a[Ŝ−, Ŝz]− 2ıg[Ŝ−, Ŝ+]â− 2ıg′[Ŝ−, Ŝ+]â
† + Γ[Ŝ+, Ŝ−]Ŝ−

+ γ1
∑

j
[ŝ+j , ŝ

−
j ]ŝ
−
j + ξ1

∑
j
ŝ−j [ŝ

−
j , ŝ

+
j ] + β1

∑
j
(ŝzi [ŝ

−
j , ŝ

z
i ] + [ŝzi , ŝ

−
j ]ŝ

z
i )

= (ı∆a − γ1 − ξ1 − β1 + 2ΓŜz)Ŝ− + 4ıŜz(gâ+ g′â†) .

and,

˙̂
Sz = −ı[Ŝz, ĤgH ] + L†

Γ,Ŝ−
Ŝz + L†γ1,ŝ− Ŝz + L

†
ξ1,ŝ+

Ŝz + L†β1,ŝz
Ŝz

= −2ıg[Ŝz, Ŝ+]â− 2ıgâ†[Ŝz, Ŝ−]− 2ıg′â[Ŝz, Ŝ−]− 2ıg′[Ŝz, Ŝ+]â
† + Γ(Ŝ+[Ŝz, Ŝ−] + [Ŝ+, Ŝz]Ŝ−)

+ γ1
∑

j
(ŝ+j [ŝ

z
j , ŝ
−
j ] + [ŝ+j , ŝ

z
j ]ŝ
−
j ) + ξ1

∑
j
(ŝ−j [ŝ

z
j , ŝ

+
j ] + [ŝ−j , ŝ

z
j ]ŝ

+
j )

+ β1
∑

j
(ŝzj [ŝ

z
j , ŝ

z
j ] + [ŝzj , ŝ

z
j ]ŝ

z
j )

= −2ıŜ+(gâ+ g′â†) + 2ı(gâ† + g′â)Ŝ− − 2ΓŜ+Ŝ− − 2
∑

j
(γ1ŝ

+
j ŝ
−
j − ξ1ŝ−j ŝ+j )

= −2ıŜ+(gâ+ g′â†) + 2ı(gâ† + g′â)Ŝ− − 2Γ(Ŝ2
+ − Ŝ2

z + Ŝz)−N(γ1 − ξ1)I− 2(γ1 + ξ1)Ŝz .
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and,

˙̂s−j = −ı[ŝ−j , ĤgH ] + L†
Γ,Ŝ−

ŝ−j + L†γ1,ŝ− ŝ
−
j + L†ξ1,ŝ+ ŝ

−
j + L†β1,ŝz

ŝ−j

= ∆aı[ŝ
−
j , ŝ

z
j ]− 2ıgâ[ŝ−j , ŝ

+
j ]− 2g′ı[ŝ−j , ŝ

+
j ]â
† − γ1[ŝ+j , ŝ−j ]ŝ−j + ξ1ŝ

−
j [ŝ
−
j , ŝ

+
j ]

+ β1(ŝ
z
j [ŝ
−
j , ŝ

z
j ] + [ŝzj , ŝ

−
j ]ŝ

z
i )

= (ı∆a − γ1 − ξ1 − β1)ŝ−j + 4ı(gâ+ g′â†)ŝzj ,

and,

˙̂szj = −ı[ŝzj , ĤgH ] + L†
Γ,Ŝ−

ŝzj + L†γ1,ŝ− ŝ
z
j + L†ξ1,ŝ+ ŝ

z
j + L†β1,ŝz

ŝzj

= −2ıg(â[ŝzj , ŝ+j ] + [ŝzj , ŝ
−
j ]â
†)− 2ıg′(â[ŝzj , ŝ

−
j ] + [ŝzj , ŝ

+
j ]â
†) + γ1(ŝ

+
j [ŝ

z
j , ŝ
−
j ]− [ŝ+j , ŝ

z
j ]ŝ
−
j )

+ ξ1(ŝ
−
j [ŝ

z
j , ŝ

+
j ]− [ŝ−j , ŝ

z
j ]ŝ

+
j ) + β1(ŝ

z
j [ŝ

z
j , ŝ

z
j ] + [ŝzj , ŝ

z
j ]ŝ

z
i )

= −2ı(gâ+ g′â†)ŝ+j + 2ı(gâ† + g′â)ŝ−j − 2γ1ŝ
+
j ŝ
−
j + 2ξ1ŝ

−
j ŝ

+
j

= −2ı(gâ+ g′â†)ŝ+j + 2ı(gâ† + g′â)ŝ−j − γ1(I− 2ŝzj ) + ξ1(I+ 2ŝzj ) .

41.2.4.3 Ex: Spin conservation in the open Dicke model

a. Show that the Dicke Hamiltonian (41.74) with g′ = g preserves the spin Ŝ2.
b. Show that the Dicke Hamiltonian (41.74) with g′ = 0 preserves the spin Ŝ2.
c. Verify whether the dissipative terms of the open Dicke model preserve the spin Ŝ2.

Solution: a. For the coherent part of the Dicke Hamiltonian with g′ = g it is easy to
see,

−ı[Ŝ, Ĥ] = −ı[Ŝ, ωaŜz + 4g(â+ â†)Ŝx] =




−ωaŜy
ωaŜx − 4g(â+ â†)Ŝz

4g(â+ â†)Ŝy


 ,

so that d
dt Ŝ

2 = Ṡ · Ŝ+ Ŝ · Ṡ = 0.
b. For the coherent part of the Dicke Hamiltonian with g′ = 0 it is easy to see,

−ı[Ŝ, Ĥ] = −ı[Ŝ, ωaŜz + 2g(âŜ+ + â†S−)] =




−ωaŜy + 2ıg(â− â†)Ŝz
ωaŜx − 2g(â+ â†)Ŝz

2g(â+ â†)Ŝy − 2ıg(â− â†)Ŝx


 ,

so that d
dt Ŝ

2 = Ṡ · Ŝ+ Ŝ · Ṡ = 0. The results are expected, since we know that

[Ŝ2, Ĥ] = 0 for both Hamiltonians.
c. Using the results of Exc. 41.2.4.2,

LŜ =




1
2LŜ+ + 1

2LŜ−
1
2ıLŜ+ − 1

2ıLŜ−
LŜz


 =




Γ(Ŝ+Ŝz + ŜzŜ−)

−ıΓ(Ŝ+Ŝz − ŜzŜ−)
−2ΓŜ+Ŝ−


 ,
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Finally, we find after elementary algebra,

d
dt Ŝ

2 = LŜ · Ŝ+ Ŝ · LŜ = −2Γ(Ŝ+Ŝ− + 2Ŝ2
z ) ̸= 0 .

Note, that for a single atom, Ŝz = 1, we get LŜ2 = 0.

41.2.4.4 Ex: Superradiant enhancement

For the open Dicke model consider the Heisenberg equations (41.75) without coherent
mean-field, â = 0, and disregarding single-atom decoherence, γ1 = ξ1 = β1 = 0. Solve
the equation of motion for the collective spin projection Ŝz for an arbitrary coherent
spin state |S,M⟩ and discuss the collective decay rate as a function of the collective
inversion ⟨Ŝz⟩.

Solution: The equation of motion is,

˙̂
Sz = −2ΓŜ+Ŝ− .

Hence,

⟨Ṡz⟩ = −2Γ⟨S,M |Ŝ+Ŝ−|S,M⟩
= −2Γ

√
(S −M + 1)(S +M)

√
(S +M)(S −M + 1)

= −2Γ(S +M)(S −M + 1) .

Hence, the decay rate depends on the instantaneous collective inversion ⟨Ŝz⟩ =M ,

⟨S, S|Ṡz|S, S⟩ = −2NΓ

⟨S, 0|Ṡz|S, 0⟩ = −(N
2

2 +N)Γ

⟨S,−S|Ṡz|S,−S⟩ = −2Γ(S − S)(S + S + 1) = 0 .

It is superradiantly enhanced when M = 0.

41.2.4.5 Ex: Equilibrium phase transition

a. Calculate the free energy of the Hamiltonian (41.6) in the mean-field approxima-
tion.
b. Minimize the free energy as a function of the field amplitude α for various coupling
strengths g. Help: Expand the expression for F ′(α) for small values of α. Derive the
expression for the critical coupling strength.

Solution: a. We perform the mean-field approximation via,

ωcâ
†â = ωcα

2 ,

where α is a real variational parameter. The Hamiltonian then reads,

Ĥ = ωcα
2 +

∑

j

ĥj with ĥj = ωaŝ
z
j + 4gαŝxj .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance055.pdf
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The matrix representation of the single-particle Hamiltonian is,

⟨s′,m′|ĥj |s,m⟩ = ωa⟨ 12 ,m′|ŝzj | 12 ,m⟩+ 2gα⟨ 12 ,m′|ŝ+j + ŝ−j | 12 ,m⟩ =
(

1
2ωa 2gα

2gα − 1
2ωa

)
,

with the eigenvalues,

E± = ±
√

ω2
a

4 + 4g2α2 ≡ E ,

and the trace of the propagator,

Tr e−βĥj =
∑

j=±
⟨j|e−βĥj |j⟩ = ⟨+|e−βĥ|+⟩+ ⟨−|e−βĥ|−⟩ = e−βE + eβE = 2 coshβE .

The partition function is now,

Z(α) = Tr e−βĤ = e−βωcα
2
(
Tr e−βĥj

)N
= e−βωcα

2

(2 coshβE)N ,

and the free energy,

F (α) ≡ − 1
β lnZ(α) = ωcα

2 − N
β ln(2 coshβE)

= ωcα
2 − N

β ln

(
2 cosh

√(
βωa

2

)2
+ (2βgα)2

)
.

b. The minimum of the free energy is obtained via,

0
!
= F ′(α) = 2ωcα−Nβα(2g)2

tanh

√(
βωa

2

)2
+ (2βgα)2

√(
βωa

2

)2
+ (2βgα)2

≃ 2ωcα− 2Nβα(2g)2
tanhβωa
βωa

,

after a Taylor expansion in α. Hence, resolving for the critical coupling strength gc,

gc
√
N =

1

2

√
ωaωc coth

βωa

2 .

41.2.4.6 Ex: Superradiant lasing

a. Consider the generalized open Dicke model Hamiltonian (41.74) neglecting counter-
rotating terms, g′ ≡ 0, as well as pumping and phase fluctuations of the cavity modes,
η = ϕ ≡ 0. Derive the Heisenberg equations for the operators â, ŝ−j , ŝ

z
j , â

†ŝ−j , ŝ
+
i ŝ
−
j ,

and â†â.
b. Calculate the expectation values of the equations of motion for all degrees of free-
dom and for the products specified in (a) assuming that all atoms are equal. Now,
assume that the phase-invariance is not broken, ⟨â⟩ = ⟨â†⟩ = ⟨ŝ±1 ⟩ = 0, and apply a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance07.pdf
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cumulant expansion up to second order.
c. Assuming the system to be in steady state solve the system of equations for the
operators and products specified in (a) analytically. Assume γ1 ≪ g ≪ κ and plot
â†â as a function of the atom number N and the optical pumping rate ξ1.
d. In which parameter regimes do you observe superradiant lasing?
e. Express ⟨Ŝ2⟩ and ⟨Sz⟩ in terms of single particle spin operators.
f. Evaluating ⟨S2⟩ and ⟨Sz⟩ via the solution of the equations of motion, we find the
steady-state quantum numbers always around M ≃ ±S [341]. Explain how this fact
can induce squeezing, once ⟨Sz⟩ > 0.

Solution: a. For the specified case the Dicke Hamiltonian is [868, 341],

Ĥ = −∆câ
†â−∆aŜz + 2g(âŜ+ + Ŝ−â

†) .

The equations of motion for the degrees of freedom are simply obtained from (41.75),

˙̂a = (ı∆c − κ)â− 2ıgΣj ŝ
−
j

˙̂s−j = (ı∆a − γ1 − ξ1 − β1)ŝ−j + 4ıgâŝzj
˙̂szj = −γ1(I− 2ŝzj ) + ξ1(I+ 2ŝzj )− 2ıgâŝ+j + 2ıgâ†ŝ−j .

For the operator products we get,

d

dt
(â†â) = â† ˙̂a+ ˙̂a†â

= â†[(ı∆c − κ− ϕ)â− 2ıgΣj ŝ
−
j ] + [(−ı∆c − κ− ϕ)â† + 2ıgΣj ŝ

+
j ]â

= 2κâ†â+ 2ıgΣj(ŝ
+
j â− â†ŝ−j ) ,

and,

d

dt
(â†ŝ−j ) = â† ˙̂s−j + ˙̂a†ŝ−j

= â†
[
(ı∆a − γ1 − ξ1 − β1)ŝ−j + 4ıgâŝzj

]
+
[
(−ı∆c − κ)â† + 2ıgΣiŝ

+
i

]
ŝ−j

= (ı∆a − γ1 − ξ1 − β1 − ı∆c − κ)â†ŝ−j + 2ıg
[
2â†âŝzj +

1
2
(NI− 2Σiŝz) + Σi ̸=j ŝ

+
i ŝ
−
j

]
,

and with i ̸= j,

d

dt
(ŝ+i ŝ

−
j ) = ŝ+i ˙̂s−j + ˙̂s+i ŝ

−
j

= ŝ+i
[
(ı∆a − γ1 − ξ1 − β1)ŝ−j + 4ıgâŝzj

]
+
[
(−ı∆a − γ1 − ξ1 − β1)ŝ+i − 4ıgŝzi â

†
]
ŝ−j

= −2(γ1 + ξ1 + β1)ŝ
+
i ŝ
−
j + 4ıg(ŝ+i ŝ

z
j â− â†ŝzi ŝ−j ) .

b. The expectation values of the above equations are, assuming that all atoms are
equal, ⟨ŝj⟩ = ⟨ŝ1⟩, and setting for simplicity the cavity on resonance with the atoms,
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∆c = ∆a = 0,

⟨ ˙̂a⟩ = −κ⟨â⟩ − 2ıgN⟨ŝ−1 ⟩ = 0

⟨ ˙̂s−1 ⟩ = −(γ1 + ξ1 + β1)⟨ŝ−j ⟩+ 4ıg⟨âŝz1⟩ = 0

⟨ ˙̂sz1⟩ = ξ1 − γ1 + 2(ξ1 + γ1)⟨ŝz1⟩ − 4gIm ⟨â†ŝ−1 ⟩
∂t⟨â†â⟩ = −2κ⟨â†â⟩+ 4NgIm ⟨â†ŝ−1 ⟩

∂tIm ⟨â†ŝ−1 ⟩ = −(γ1 − ξ1 + β1 + κ)Im ⟨â†ŝ−j ⟩+ 2g[2⟨ŝzj â†â⟩+ 1
2
(N − 2Σi⟨ŝz⟩) + (N − 1)⟨ŝ+2 ŝ−1 ⟩]

∂t⟨ŝ+2 ŝ−1 ⟩ = −2(γ1 + ξ1 + β1)⟨ŝ+2 ŝ−1 ⟩+ 4ıg(⟨ŝ+2 âŝz1⟩ − ⟨ŝz2â†ŝ−1 ⟩) .

Now we apply the cumulant expansion (41.84) setting ⟨â⟩ = ⟨â†⟩ = ⟨ŝ±1 ⟩ = 0 and
neglecting third-order correlations, e.g. ⟨ŝzi ŝ+i ŝ−j ⟩ = 0. That is,

⟨ŝzj â†â⟩c = ⟨ŝzj ⟩⟨â†â⟩c and ⟨ŝzi ŝ+j â⟩c = ⟨ŝzi ⟩⟨ŝ+j â⟩c .

c. Postulating the system to be in steady state we set all derivatives = 0. Then above
system of equations can then be solved analytically. If N ≃ N − 1,

4gIm ⟨â†ŝ−1 ⟩c = ξ1(1− 2⟨ŝz1⟩)− γ1(1 + 2⟨ŝz1⟩)
2NgIm ⟨â†ŝ−1 ⟩c = κ⟨â†â⟩c

(β1 + κ+ ξ1 + γ1)Im ⟨â†ŝ−1 ⟩c = g
[
1 + 2(1 + 2⟨â†â⟩c)⟨ŝz1⟩+ 2N⟨ŝ+2 ŝ−1 ⟩c

]

8g⟨ŝz1⟩cIm ⟨â†ŝ−1 ⟩c = 2(ξ1 + β1 + γ1)⟨ŝ+1 ŝ−2 ⟩c .

Introducing the abbreviations d0 ≡ ξ1−γ1
ξ1+γ1

and nc ≡ κ
2Ng ⟨â†â⟩c,

Im ⟨â†ŝ−1 ⟩c = nc from (ii)

2⟨ŝz1⟩ = d0 −
4g

ξ1 + γ1
nc from (i)

⟨ŝ+1 ŝ−2 ⟩c =
4g

ξ1 + β1 + γ1
⟨ŝz1⟩cIm ⟨â†ŝ−1 ⟩c

=
2g

ξ1 + β1 + γ1

(
d0 −

4g

ξ1 + γ1
nc

)
nc from (iv)

β1 + κ+ ξ1 + γ1
g

nc = 1 + 2

(
1 + 2

2Ng

κ
nc

)
⟨ŝz1⟩+ 2N⟨ŝ+2 ŝ−1 ⟩c from (iii) .

Inserting the first three expressions into the last equation,

0 = −β1 + κ+ ξ1 + γ1
g

nc + 1 +

(
1 +

4Ng

κ
nc +

4Ng

ξ1 + β1 + γ1
nc

)(
d0 −

4g

ξ1 + γ1
nc

)
,

we obtain a quadratic equation in nc, namely 0 = An2
c+Bnc+C, with the coefficients,

A = − 16Ng2

ξ1 + γ1

(
1

κ
+

1

ξ1 + β1 + γ1

)

B = −β1 + κ+ ξ1 + γ1
g

− 4g

ξ1 + γ1
+ 4Ngd0

(
1

κ
+

1

ξ1 + β1 + γ1

)

C = 1 + d0 .
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Figure 41.13: Superradiant lasing for the parameters g = (2π) 3Hz, κ = (2π) 150 kHz,
γ1 = (2π) 1.6mHz, β1 = (2π) 0.16Hz, and ∆c = ∆a.

Fig. 41.13 plots the intracavity photon number â†â as a function of the atom number N
and the optical pumping rate ξ1. d. The superradiant laser spectrum can be calculated
as the Fourier transform of the first-order correlation from,

d

dt
[â†(t)â(0)] =

[
−κâ†(t) + 2ıgΣj ŝ

+
j (t)

]
â(0)

d

dt
[ŝ+j (t)â(0)] =

[
−β1ŝ+j (t)− 4ıgŝzj (t)â

†(t) + 2γ1ŝ
+
j (t)ŝ

z
j (t)− 2ξ1ŝ

z
j (t)ŝ

+
j (t)

]
â(0) .

Neglecting higher than second-order correlations, we get the expectation values,

d

dt

(
⟨â†(t)â(0)⟩
⟨ŝ+j (t)â(0)⟩

)
≃
(

−κ 2ıNg

−4ıg⟨ŝzj (t)⟩ −β1 − 2γ1 − 2ξ1

)(
⟨â†(t)â(0)⟩
⟨ŝ+j (t)â(0)⟩

)
.

e. We find,

S2 = 1
4

N∑

i,j=1

ˆ⃗σi · ˆ⃗σj = 1
4

N∑

j=1

ˆ⃗σ2
j +

1
4

N∑

i̸=j

(σ̂xi σ̂
x
j + σ̂yi σ̂

y
j + σ̂zi σ̂

z
j )

= N
4
ˆ⃗σ2
1 +

1
4

N∑

i ̸=j
[(σ̂+

i + σ̂−i )(σ̂
+
j + σ̂−j )− (σ̂+

i − σ̂−i )(σ̂+
j − σ̂−j ) + σ̂zi σ̂

z
j ]

= N
4

[
(σ̂x)2 + (σ̂y)2 + (σ̂z)2

]
+ 1

4

N∑

i ̸=j
(4σ̂−i σ̂

+
j + σ̂zi σ̂

z
j ) =

N
4 3I +

N∑

i ̸=j
(ŝ−i ŝ

+
j + ŝzi ŝ

z
j ) .

Hence,

S(S + 1) = ⟨S2⟩ = 3N
4 +

N∑

i ̸=j
⟨ŝ−i ŝ+j ⟩+ ⟨ŝzi ŝzj ⟩ and M = ⟨Sz⟩ =

N∑

j=1

⟨ŝzj ⟩ .

Evaluating ⟨S2⟩ and ⟨Sz⟩ via the solution of the equations of motion, we the steady-
state quantum numbers always around M ≃ ±S [341].
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f. Upon superradiant lasing [1429, 341] finds strong optical pumping to subradiant
states, in particular |S,±S⟩. This is similarly to [263], only that the interatomic
coupling is mediated by a cavity rather than interatomic interaction. Assuming the
bulk part of the population in |S,±S⟩ we may simplify the problem. From,

Ŝ±|S,M⟩ =
√
S(S + 1)−M(M ± 1)|S,M ± 1⟩

for dominating subradiant states |S≃|M |,M⟩ for M ≃ S ≥ 0,

Ŝ+|S,M⟩ = 0 and Ŝ−|S,M⟩ =
√
|M |(|M |+ 1)−M(M − 1)|S,M−1⟩ ≃

√
2S|S,M−1⟩ ,

and for M ≃ −S ≤ 0

Ŝ−|S,M⟩ = 0 and Ŝ+|S,M⟩ =
√
|M |(|M |+ 1)−M(M + 1)|S,M+1⟩ ≃

√
2S|S,M+1⟩ .

That is, when the atoms are individually pumped to M = −S ≤ 0 states |S,−S⟩,
subsequent coherent coupling may only drive transitions to higher states |S, S + 1⟩.
Hence, we may define a Holstein-Primakoff approximation using |S,−S⟩ as the ground
state from which higher-lying oscillator states can be reached via creation operators,

Ŝ+ =
√
2Sb̂† .

In contrast, when the atoms are individually pumped to M = S ≥ 0 states |S, S⟩
subsequent coherent coupling may only drive transitions to lower states |S, S − 1⟩, so
that the corresponding Holstein-Primakoff approximation uses |S, S⟩ as the ground
state from which lower-lying oscillator states can be reached via creation operators,

Ŝ− =
√
2Sb̂† .

Therefore, the Hamiltonian can be simplified as,

Ĥ = g(â†Ŝ− + âŜ+) =

{
g(â†b̂† + âb̂) for M ≥ 0

g(â†b̂+ âb̂†) for M ≤ 0

For M ≥ 0 the Hamiltonian describes squeezing.

Figure 41.14: Illustration of the normal (below) and inverted (above) population of the
harmonic oscillator levels in the Holstein Primakoff approximation (see also Sec. 36.2.4).



41.3. INTERACTING ATOMS 2337

41.2.4.7 Ex: Superradiant lasing and the Schawlow-Townes limit

Discuss whether superradiant lasing beats the Schawlow-Townes limit.

Solution:

41.2.4.8 Ex: Heisenberg equation for the open Dicke model in the
Holstein-Primakoff approximation

Derive the Heisenberg equations for the open Dicke model in the Holstein-Primakoff
approximation.

Solution: Starting from the Hamiltonian,

ĤHP = −∆câ
†â−∆ab̂

†b̂+ 2gN (â+ â†)(b̂+ b̂†)

we readily derive,

˙̂a = ı∆câ− 2ıgN (b̂+ b̂†) and
˙̂
b = ı∆ab̂− 2ıgN (â+ â†) .

41.3 Interacting atoms

When two atoms excited to an internal level of energy hc/λ are so close together
that the range of their dipole moments overlap without forming a molecular bonding,
aB ≪ R ≪ λ, they may exhibit cooperative relaxation. The atoms are coupled via
the radiation that they are susceptible to emit into the same continuum. The coupled
atomic dipoles oscillate and decay in phase. The decays is accelerated one leads to
an intense burst of coherent and spatially directional radiation. This phenomenon is
termed superradiance [366, 1085]. We may view superradiance as destructive inter-
ference of the dipolar radiation patterns of all atoms in all but one direction of space
triggered by the first spontaneous decay. The superradiant enhancement is largest
when half of the atoms are deexcited. The correlated atoms can be in a Dicke state
(then the total dipole moment is always zero) or in a product state (then the net
dipole moment is non-zero at half-deexcitation). In the second case, we also talk
about superfluorescence. In this case, an excited initially incoherent sample develops
correlations due to the emission process. One can also imagine the case that the
emission patterns pairwise cancel, and the decay is thus inhibited. This is called sub-
radiance. Superradiance has been used in the microwave domain as a spectroscopic
method in the observation of photon echoes.

Correlated quantum jumps are, in a sense, the few-atoms precursors of superradi-
ance. Accelerated spontaneous decay has been predicted for atoms whose distance
is shorter than the wavelength of the decaying transition [1174, 797]. Super- and
subradiance has been observed in a system of two ion trapped in a Paul trap [364].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_SuperSubradiance08.pdf
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41.3.1 Rydberg blockade

Rydberg atoms (i.e. atoms in excited Rydberg states) exhibit huge polarizabilities
inducing large interaction energies even at relatively modest densities. These can
be so strong, that the presence of a single Rydberg-excited atom can drive out of
resonance the frequencies of transitions connected to the Rydberg state for several
neighboring atoms once the exciting laser is sufficiently narrow-band. This effect
called Rydberg blockade can be described by the following interaction Hamiltonian
[1110, 1243],

ĤRydberg =
∑

i>j

κij
1
2 (σ̂

z
i − 1) 12 (σ̂

z
j − 1) with κij/2π =

C6

r6ij
, (41.85)

where 1
2 (σ̂

z
i − 1) = |e⟩i⟨e| is the probability of finding the i-th atom in an excited

state and C6 interatomic van der Waals interaction coefficient of the transition.

Example 256 (Two interacting Rydberg atoms): In this example we study
Rydberg blockade for two interacting Rydberg atoms. In this case, the Hamil-
tonian can be cast into the matrix form,

Ĥ = −∆aŜz +ΩŜ+ +Ω∗Ŝ− + ĤRydberg =


∆a

1
2
Ω 1

2
Ω∗ 0

1
2
Ω∗ 0 0 1

2
Ω∗

1
2
Ω 0 0 1

2
Ω

0 1
2
Ω 1

2
Ω∗ −∆a + κ12

 .

The master equation can be numerically solved using the procedure outlined in

example 257. The result of such a simulation is shown in Fig. 41.15. Comparing

0 0.5 1 1.5 2

Ωt/π

0

0.5

1

ρ

(a)

0 0.5 1 1.5 2

Ωt/π

0

0.5

1

ρ

(b)

Figure 41.15: (code) Populations in a system of two two-level atoms interaction via van der

Waals forces. Initially (Ωt < π) only one atom is driven, after that only the other. We

assume Ω ≫ Γ and C6 = 4 · 107. The interatomic distance is (a) kr12 = 0.5, respectively,

(a) kr12 = 5. (blue) ρ11,11, (cyan) ρ12,12, (magenta) ρ21,21, (red) ρ22,22, (black dotted) ρ
(1)
22 ,

and (black) ρ
(2)
22 .

the evolutions calculated in Fig. 41.15 for large and small interatomic distances,

we see that the excitation of the first atom impedes the excitation of the second

one when the interaction is strong.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleRydberg.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleRydberg.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleRydberg.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleRydberg.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleRydberg.m
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Note, that an interesting situation occurs when the coupling is completely uniform
(e.g. mediated by a cavity), κij ≃ κ,

ĤRb ≃ 1
8κ(Ŝ

2
z − 2Ŝz + 1) , (41.86)

as pointed out in Eq. (41.52). Such Hamiltonians may be interesting for the generation
of spin-squeezing.

41.3.2 Dipole-dipole interactions in the non-linear optics regime

The mean-field Dicke model totally neglects interactions between the atoms due to
the exchange of real or virtual photons, i.e. neither resonant dipole-dipole interactions
nor van der Waals interactions are considered [50, 137, 383, 416, 1099, 1110, 1197].
That is, interaction terms such as,

ĤIsing = −
N∑

i,j ̸=i
∆ij σ̂

+
j σ̂
−
i (41.87)

are absent from the Hamiltonian. Spin-spin interactions are studied in the so-called
Ising model, which is interesting in the context of (anti-)ferromagnetism [479, 480, 499,
723, 1434]. The negligence of interaction was, of course, the reason for the simplicity
of the Dicke model and its manageability for large atom numbers. On the other hand,
in Sec. 39.1.2 we have studied dipole-dipole interactions in the linear optics regime
allowing for at most a single photon to interact with the cloud.

In this section, we will consider dipole-dipole interactions in very small dilute
clouds interacting with an arbitrary number of photons. The possibility for the cloud
of storing as many photons as there are atoms is common to the Dicke model. Here,
we will call it the non-linear optics regime, as several photons may team up to excite
higher Dicke excitations states. In particular, we will study two interacting atoms as
done by the milestone experiment of DeVoe and Brewer [364]. Do the Exc. 41.3.4.1.

The starting point is the collective many-atoms Hamiltonian (39.9) of the scalar
coupled dipoles model. After tracing over the vacuum modes, one obtains the master
equation 15 [1090],

Ĥ = 1
2

∑
j

[
Ω(rj)σ̂

+
j + h.c.

]
−∑i,j ∆jiσ̂

+
j σ̂
−
i

L[ρ̂] = 1
2

∑
i,j Γij

(
2σ̂−j ρ̂σ̂

+
i − σ̂+

i σ̂
−
j ρ̂− ρ̂σ̂+

i σ̂
−
j

)

L†[Â] = 1
2

∑
i,j Γij

(
2σ̂+

i Âσ̂
−
j − σ̂+

i σ̂
−
j Â− Âσ̂+

i σ̂
−
j

)

∆i ̸=j ≡ − 3λΓ
2 ê∗d Re G(ri, rj , ω0) êd and ∆jj ≡ ∆a

Γi ̸=j ≡ 3λΓ ê∗d Im G(ri, rj , ω0) êd and Γjj ≡ Γ

(41.88)

The expression for the line shifts ∆ij and the decay rates Γij have been derived in
Sec. 40.4.1 from the bulk Green’s tensor in free space. Assuming ∆ji = 0 = Γji

15In return, the equations of motion (39.26) for the excitation amplitude should follow as the
Heisenberg equation with the above Hamiltonian.
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and Ω(rj) = Ω we recover the mean-field Dicke model, where interaction terms are
completely neglected,

Ĥ = 1
2Ω
∑

j

(σ̂+
j + h.c.)−∆a

∑

j

σ̂+
j σ̂
−
j . (41.89)

With (41.88) we set up either the master or the Heisenberg-Liouville equations,

˙̂ρ = −ı[Ĥ, ρ̂] + L[ρ̂] (41.90)

˙̂
A = −ı[Â, Ĥ] + L†[Â] .

Note that in principle, the collective many-atom system (41.88) can be mapped to a
single-atom multilevel system,

d

dt
ˆ⃗ϱ =Mϱ⃗ , (41.91)

which is more amenable to numeric simulation using the methods presented in Sec. 34.7.
However, analytically this is only simple to do in the case of two atoms, which can be
mapped to a four-level system. This will be shown in Exc. 41.3.4.2.

Example 257 (Diagonalizing collective decay): The Lindbladian describing
collective decay in (41.88) can be recast into a standard form by diagonalizing
the real matrix Γ ≡ (Γij) [1090], that is, we define a unitary transformation
T = (T ⊺)−1 ≡ (Tjk),

D = T ⊺ΓT =⇒ Γ̃kδkj =
∑
j

T ⊺
ikΓijTjk

or Γ = TDT ⊺ =⇒ Γij =
∑
k

TjkΓ̃kδkjT
⊺
jk .

Note that all coefficients not ornamented by a ’hat’ can be moved around freely.
Now, substituting the Γij ,

L[ρ̂] = 1
2

∑
k,i,j

[
2σ̂−i TikΓ̃kδkiT

⊺
jkρ̂σ̂

+
j − σ̂+

i TikΓ̃kδkiT
⊺
jkσ̂
−
j ρ̂− ρ̂σ̂+

i TikΓ̃kδkiT
⊺
jkσ̂
−
j

]
.

Now, defining new composite decay channels,

Π̂−k =
∑
j

Tkj σ̂
−
j , Π̂+

k =
∑
j

σ̂+
j T

⊺
kj ,

we find,

L[ρ̂] = 1
2

∑
k

Γ̃k[2Π̂
+
k ρ̂Π̂

−
k − Π̂+

k Π̂
−
k ρ̂− ρ̂Π̂+

k Π̂
−
k ] .

Single-atom spontaneous emission simply follows from the assumption that Γij =
Γ1δij ,

L[ρ] = 1
2

∑
j

Γ[2σ̂−j ρ̂σ̂
+
j − σ̂+

j σ̂
−
j ρ̂− ρ̂σ̂+

j σ̂
−
j ] .

On the other hand, Dicke superradiance follows from the assumption that Γij =
Γ. Introducing the collective spin operator, Ŝ± ≡∑j σ̂

±
j ,

L[ρ] = 1
2

∑
i,j

Γ[2σ̂−i ρ̂σ̂
+
j − σ̂+

i σ̂
−
j ρ̂− ρ̂σ̂+

i σ̂
−
j ]

= 1
2
Γ[2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂− ρ̂Ŝ+Ŝ−] .

The uniform all-to-all coupling required for Dicke superradiance can be realized,

when the atoms are localized in an area of space smaller than λ3 or in a cavity.
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41.3.2.1 Equations of motion in the presence of dipole-dipole coupling

We start from the Hamiltonian and jump operators (41.88) and derive the Heisenberg-
Liouville equation (41.90),

˙̂σ−k = −ı[σ̂−k , Ĥ] + L[σ̂−k ] (41.92)

= ı
2Ω(rk)σ̂

z
k − ı∆aσ̂

z
kσ̂
−
k − ı

N∑

j̸=k

∆kj σ̂
z
kσ̂
−
j + Γ

2 σ̂
z
kσ̂
−
k +

N∑

j̸=k

Γkj

2 σ̂zkσ̂
−
j .

Now, we assume low atomic excitation, ⟨σ̂zk⟩ ≃ −1, that is, most atoms are in the
ground state. Then we may neglect correlations and find,

˙̂σ−k ≃
(
ı∆a − Γ

2

)
σ̂−k − ı

2Ω(rk) +

N∑

j̸=k

(
ı∆kj − Γkj

2

)
σ̂−j (41.93)

or taking the expectation values,

β̇k ≃
(
ı∆a − Γ

2

)
βk − ı

2Ω(rk) +

N∑

j ̸=k

(
ı∆kj − Γkj

2

)
βj . (41.94)

These are just the equations of motion of the coupled dipoles model derived in
Sec. 39.1.2. Evaluation of the coeffficients (41.88)(iv-v) yields the exponential kernel
postulated in (39.29).

In Exc. 41.3.4.3 we derive them from the linear optics scalar coupled dipoles model,

∆j ̸=i ≡ −
Γ cos krji
krji

and Γj ̸=i ≡
Γ sin krji
krji

(41.95)

with rji = |rj − ri|. These terms arise from the so-called scalar approximation of
(40.338), where we neglect 1/R2 and 1/R3 terms and set (êd · êR) = 0.

Example 258 (Two atoms with dipole-dipole interactions): For the case
of only two atoms located at rj , using the basis defined in (25.75), we find the
Hamiltonian [263],

Ĥ =


0 1

2
Ω∗(r2)

1
2
Ω∗(r1) 0

1
2
Ω(r2) −∆a

1
2
∆21

1
2
Ω∗(r1)

1
2
Ω(r1)

1
2
∆12 −∆a

1
2
Ω∗(r2)

0 1
2
Ω(r1)

1
2
Ω(r2) −2∆a

 , (41.96)

with Ω(r) = Ω0e
ık·rj . For two atoms the master equations (41.88) can easily be

solved numerically by setting 16,

σ̂±1 = σ̂± ⊗ I and σ̂±2 = I⊗ σ̂± , (41.97)

as usual and,
⟨i, j|ρ̂|m,n⟩ = ρij,mn , (41.98)

16Remember, that the formal solution of coherent part of the master equation can be written as

ρ̂(t) = L(t)ρ̂(0) = e−ıĤtρ̂(0)eıĤt.
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where the indices i,m = 1, 2 refer to the first atom and the indices j, n = 1, 2
to the second. The populations of the Dicke states |11⟩, |12⟩, |21⟩, and |22⟩
are then given by ρij,ij , and the populations of the (anti-)symmetric states
|ψ⟩(s,a) = 1√

2
(|1, 2⟩ ± |2, 1⟩) are calculated via,

⟨ψ|(s,a)ρ̂|ψ⟩(s,a) = 1
2
(ρ12,12 ± ρ12,21 ± ρ21,12 + ρ21,21) . (41.99)

The temporal evolution of the populations in one and two atom systems, initially

driven by a laser field which is then suddenly switched off, is shown in Fig. 41.16.

Note that super and subradiance do occur for ∆12 = 0 = ∆a but necessitate

Γij ̸= 0.
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1

ρ
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(c)

Figure 41.16: (code) (a) Response of a single two-level atom driven by a laser light with

Ω = 5Γ, ∆ = −Γ. The curves show (blue) the ground state and (red) the excited state

populations. The light is switched off at Γt = 0.5. (b) Response of two atoms j = 1, 2 located

at kzj = ±5 driven by the same laser light as in (a). (cyan and magenta) populations of

the states |eg⟩ and |ge⟩. The two black lines show the populations of the (anti-)symmetric

states 1√
2
(|eg⟩ ± |ge⟩). (c) Same as (c) but with kzj = ±0.5.

In Excs. 41.3.4.4 to 41.3.4.6 we study the impact of dipole-dipole interactions

on super- and subradiance. In Exc. 41.3.4.7 we study three interacting two-level

atoms, and in Exc. 41.3.4.8 we study two non-interacting three-level atoms.

Example 259 (Blackbody radiation-induced superradiance): In Exc. 34.6.7.9
we studied blackbody radiation-induced transitions in a single atom. The proce-
dure can be generalized to several atoms [1359]. For two atoms the Liouvillean
reads,

˙̂ρ = Lbbρ̂

= − 1
2

∑
i,j=1,2

Γij
(
[ρ̂σ̂i, σ̂

†
j ] + [σ̂i, σ̂

†
j ρ̂]
)
− 1

2

∑
i,j=1,2

(Γij + γδij)
(
[ρ̂σ̂†j , σ̂i] + [σ̂†j , σ̂iρ̂]

)
,

with Γijδ(t− t′) ∝ ⟨Êi(t)Êj(t′)⟩ containing both the real and the virtual photon

exchange.

41.3.3 Cavity-mediated spin-exchange interactions

In the preceding sections we got to know two fundamentally different types of inter-
atomic interactions, that is, Rydberg and dipole-dipole type interactions. Both are

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleInteractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleInteractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleInteractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleInteractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleInteractions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleInteractions.m
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generally nearest neighbor interactions and thus inhomogeneous. Let us neverthe-
less make the assumption of uniform coupling to simplify the discussion. Then the
Rydberg blockade term (41.85) reads,

Ĥ = 1
2

∑

i ̸=j
κij σ̂

z
j σ̂

z
i ≃ κŜ2

z , (41.100)

and the Ising interaction term (41.87) becomes,

ĤIsing = −
∑

i̸=j

∆ij σ̂
+
j σ̂
−
i ≃ −∆IsingŜ+Ŝ− . (41.101)

A way of achieving uniform coupling consists in coupling all atoms with the same
strength to the same cavity mode. This is what we will discuss in the next subsection.
Do the Exc. 41.3.4.9.

In the full open system Dicke model κ and, Γ1 describe physical processes, namely
cavity decay and atomic spontaneous emission, while Γ is introduced as a mere collec-
tive decay rate, not rooted in a physical process. In reality, collective decay processes
may be caused by interatomic contact interactions, but as we will see in the following,
they can also be induced by coupling of the atoms to a common light mode.

Indeed, in the bad cavity limit, upon adiabatic elimination of the light mode,
the cavity parameters ∆c and κ are replaced by Uc and κc, which take over the
role of a collective shift and decay process. This is seen in the Hamiltonian and the
Lindbladian, after adiabatic elimination of the light mode, by the fact that the terms
depending on κc have exactly the same structure as those for which collective decay
at a rate Γ had been postulated in the full open Dicke model.

The systems do not differ in concept, but only in details: uniform coupling versus
nearest neighbors, inhomogeneities of the light field versus disordered clouds, etc..

41.3.3.1 Adiabatic elimination of the modes of a bad high-finesse cavity

The collective Jaynes-Cummings Hamiltonian for a linear cavity (see Exc. 40.2.9.5),

ĤJC = −∆câ
†â−ıη(â−â†)+

N∑

i=1

[
−∆a

2 (I2 + σ̂zi ) + g sin kzi(σ̂
+
i â+ â†σ̂−i )

]
, (41.102)

becomes in the case of perfect bunching, zi = z, introducing the abbreviation g −→
g sin kz,

ĤJC = −∆câ
†â− ıη(â− â†)−∆a(

N
2 I2 + Ŝz) + g(Ŝ+â+ â†Ŝ−) , (41.103)

where we introduced collective operators, Ŝα ≡ 1
2

∑N
i=1 σ̂

α
i for α = x, y, z. Disregard-

ing collective decay, Γ = 0, the Heisenberg equations become,

˙̂a = (ı∆c − κ)â− ıgŜ− + η (41.104)

˙̂
S− = (ı∆a − Γ1

2 )Ŝ− + 2ıgŜzâ

˙̂
Sz = −Γ1(

N
2 I2 + Ŝz)− ıg(Ŝ+â− â†Ŝ−) .
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Using η ≡ ηr + ıηi we can reshape (41.104) in a real notation,

˙̂ar = 1
2
( ˙̂a+ ˙̂a†) = −κâr −∆câi − gŜy + ηr

˙̂ai = 1
2ı
( ˙̂a− ˙̂a†) = −κâi +∆câr − gŜx + ηi

˙̂
Sx = 1

2
(
˙̂
S− +

˙̂
S+) = −Γ1

2
Ŝx +∆aŜy − g{âi, Ŝz} − ıg[âr, Ŝz]

˙̂
Sy = ı

2
(
˙̂
S− − ˙̂

S+) = −Γ1
2
Ŝy −∆aŜx − g{âr, Ŝz}+ ıg[âi, Ŝz]

˙̂
Sz = ∂t

1
2
[Ŝ+, Ŝ−] = −Γ1(

N
2
I2 + Ŝz) + g({âi, Ŝx}+ {âr, Ŝy}+ ı[âr, Ŝx]− ı[âi, Ŝy])

(41.105)

The equations are equivalent to those derived by [805].

Example 260 (Simplification for independent â and Ŝ): As long as â
and Ŝ are independent, we may simply set {â, Ŝ} = 2âŜ and [â, Ŝ] = 0. The
equations (41.105) can then be written in compact matrix notation,

˙̂S = −ı[Ŝ, Ĥ] + LΓ1/2Ŝ =

−
1
2
Γ1 ∆a −2gâi

−∆a − 1
2
Γ1 −2gâr

2gâr 2gâi −Γ1


ŜxŜy
Ŝz

−
 0

0

Γ1
N
2
I2


(41.106)

=

 2gâr

−2gâi
−∆a

×
ŜxŜy
Ŝz

− Γ1


1
2
Ŝx

1
2
Ŝy

N
2
I2 + Ŝz

 .

The equations (41.105) are just the Heisenberg-Liouville equations (41.76) derived
from the open Dicke model and the open Tavis-Cummings model Hamiltonian, re-
stricting to many immobile atoms and a single cavity mode. In the bad cavity limit,
κ ≫ g, the cavity field is effectively slaved to the internal atomic dynamics. Hence,
we may assume ˙̂a ≡ 0 and adiabatically eliminate the field. Setting ˙̂ar = 0 = ˙̂ai in
Eq. (41.105)(i-ii) we calculate,

Ω̂r ≡ 2gâr = 2Uc(Ŝx − ηi/g)− 2κc(Ŝy − ηr/g) (41.107)

Ω̂i ≡ 2gâi = −2κc(Ŝx − ηi/g)− 2Uc(Ŝy − ηr/g) ,

where we introduced the abbreviations,

Uκ ≡ Uc − ıκc with Uc ≡
g2∆c

∆2
c + κ2

and κc ≡
g2κ

∆2
c + κ2

. (41.108)

Uc is the cooperative cavity Lamb-shift and κc is the Purcell-enhanced atomic decay
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rate. Substituting (41.107) in the Eqs. (41.105)(iii-v) leads to 17,

˙̂
Sx = −(Γ1

2 + κc)Ŝx + (∆a − Uc)Ŝy − 2(Ucη̃r + κcη̃i)Ŝz + κc{Ŝx, Ŝz}+ Uc{Ŝy, Ŝz}
˙̂
Sy = −(∆a − Uc)Ŝx − (Γ1

2 + κc)Ŝy + 2(Ucη̃i − κcη̃r)Ŝz − Uc{Ŝx, Ŝz}+ κc{Ŝy, Ŝz}
˙̂
Sz = 2(κcη̃i + Ucη̃r)Ŝx − 2(Ucη̃i − κcη̃r)Ŝy − Γ1(

N
2 I+ Ŝz)− 2κcŜz − 2κc(Ŝ

2
x + Ŝ2

y)

.

(41.109)
Assuming [Ŝk, Ŝl] = 0 these equations simplify to the form (41.106). The number

of intracavity photons is found via,

n̂ = 1
2g (Ω̂

2
r + Ω̂2

i ) = 2|Uκ/g|2[(gŜx − ηi)2 + (gŜy − ηr)2] . (41.110)

100 105

nη

10−10

10−5

100

n
/n

η

(a)

100 105

nη

0

0.5

1

1.5

2

√
〈s2 j

〉

(b)

100 105

nη

-1

-0.5

0

〈s
z j
〉

(c)

Figure 41.17: (code) Pump power dependence of (a) the intracavity photon number, (b) the

total atomic spin, and (c) its projection onto the population axis.

It is interesting to consider some special cases. For example, for small Ŝx,y ≪ η,
the collective dynamics will be externally controlled and the atomic spins may be
considered as decorrelated. Close to the cavity resonance, ∆c ≪ κ, Eq. (41.107)
becomes,

Ω̂r ≃ 2
g (κcηr − Ucηi) =

2g(κcηr −∆cηi)

∆2
c + κ2

−→ 2gηr
κ

(41.111)

Ω̂i ≃ 2
g (κcηi + Ucηr) =

2g(κηi +∆cηr)

∆2
c + κ2

−→ 2gηi
κ

.

I.e. the operators Ω̂r,i become real and the cavity feedback disappears. such that we
recover the linear collective Dicke model.

17Equivalently, in complex notation,

∆κâ = gŜ− + ıη

(∂t +
Γ1
2
)
˙̂
S− = ı∆aŜ− + 2Uκ(ıŜ− − 1

g
η)Ŝz

(∂t + Γ1)Sz = −Γ1
N
2
I2 − κc{Ŝ+, Ŝ−}+ 1

g
ηUκŜ+ + 1

g
η∗U∗κ Ŝ− .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_StationaryPowerEliminated.m
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41.3.3.2 Hamiltonian for the Tavis-Cummings model after adiabatic elim-
ination of the modes

Alternatively, we can try to derive a simplified Hamiltonian from which the Heisenberg-
Liouville equations under adiabatic elimination of the cavity mode can be derived
directly.

We have seen in Sec. 34.5.3, using the effective Hamiltonian approach, that the
Heisenberg equation decomposes in a commutator and an anti-commutator. The
complete Heisenberg-Liouville equation reads,

˙̂S = −ı[Ŝ, Ĥ] + Lκc,Ŝ−
Ŝ+

∑

j

LΓ1/2,ŝ
−
j
Ŝ

with Ĥ = −2Im (η̃Uκ)Ŝx − 2Re (η̃Uκ)Ŝy −∆aŜz + UcŜ+Ŝ−

. (41.112)

As shown in Exc. 41.3.4.10, we recover exactly the equations of motion (41.109). The
complete absence of the field from the equations of motion shows that, in the bad
cavity limit, any coherence of the coupled atom-cavity system is entirely contained in
the atomic cloud.

Comparing this model to the one of the open system Dicke model (41.74), we
notice that the cavity decay plays the role of a collective decay mechanism.

41.3.3.3 The XX-Heisenberg model

Without pumping and neglecting spontaneous emission, η = Γ1 = 0, we obtain the
simplified Hamiltonian of the Tavis-Cummings model (41.76) with RWA, g′ = 0,

ĤTC = −∆aŜz + UcŜ+Ŝ− , (41.113)

also known as the effective Hamiltonian of the XX-Heisenberg model. For large N ≫ 1
the second term can safely be approximated by 1

2Uc{Ŝ+, Ŝ−} [956]. The Heisenberg-
Liouville equations can then be written,

˙̂S =



2UcŜx − 2κcŜy

2UcŜy + 2κcŜx

−∆a


× Ŝ . (41.114)

Analogously, inserting (41.107) into the above Heisenberg-Liouville equations of
the Dicke model (41.76) without RWA, g′ = g, we obtain neglecting η = Γ = 0,

˙̂S =



4UcŜx − 4κcŜy

0

−∆a


× Ŝ . (41.115)

Example 261 (One-axis twisting in the XX-Heisenberg model): The cou-
pling strength

√
N+N− ≤ N

2
between the cavity mode and the atoms depends

on the inversion. Hence, this leads to an inversion-dependent frequency shift
known as one-axis twisting 18. In the mean field treatment we simply replace

18This is somewhat analogous to the photon number-dependent phase shift observed in dispersive
interaction in the Jaynes-Cummings model.
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the operators by their expectation values. Setting ∆a = 0 in the Heisenberg-

Liouville equations (41.114) and neglecting terms
˙̂
Sz ∝ Ŝz, we get,

˙̂S ≃

2(κcŜx + UcŜy)Ŝz

2(κcŜy − UcŜx)Ŝz
−2κc(Ŝ2

x + Ŝ2
y)

 .

Starting from the initial condition, S⃗ = (0, 0, N/2), we see that the instantaneous

collective dipole moment Ŝ2
x + Ŝ2

y determines the decay of the inversion, while

the inversion Ŝz twists the dipole moment [868, 835, 959, 957, 956]. Collective

decay occurs at a rate Ŝ−
√
κc/2. It is easy to see that ∂tŜ

2 = Ŝ · ˙̂S+ ˙̂S · Ŝ = 0.

-2
2

0

2

S
z

Sy

0

Sx

2

0
-2 -2

Figure 41.18: (code) One-axis twisting.

41.3.4 Exercises

41.3.4.1 Ex: Calculating with collective operators

The collective spin operators for an ensemble of J atoms with M internal levels are
defined as,

Ŝ =

J∑

j=1

σ̂j = σ̂ ⊗ IM ⊗ IM ⊗ ...+ IM ⊗ σ̂ ⊗ IM ⊗+... ,

or more explicitly,

Ŝkl =

J∑

j=1

σ̂klj = |k⟩⟨l| ⊗ IM ⊗ IM ⊗ ...+ IM ⊗ |k⟩⟨l| ⊗ IM ⊗+... ,

with the spin matrices satisfying,

σ̂klj σ̂
mn
j = δlmσ̂

kn
j and [σ̂kli , σ̂

mn
j ] = δij(δlmσ̂

kn
j − δknσ̂mlj )

∑M
m=1 σ̂

mm
j = IM and

∑J
j=1

∑M
m=1 σ̂

mm
j = NIM .

Verify that for the case of atoms subject to spin-spin interaction,

Ĥ ̸=
∑

j,m

σ̂mmj Ĥσ̂mmj .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_XXOneAxisTwisting.m
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Solution: We calculate,

ŜklŜmn =
∑

i,j

σ̂kli σ̂
mn
j =

∑

j

δlmσ̂
kn
j +

∑

i̸=j

σ̂kli σ̂
mn
j = δlmŜkn +

∑

i ̸=j
σ̂kli σ̂

mn
j

[Ŝkl, Ŝmn] =
∑

i,j

[σ̂kli , σ̂
mn
j ] =

∑

i,j

δij(δlmσ̂
kn
j − δknσ̂mlj ) = δlmŜkn − δknŜml .

A Hamiltonian with spin-spin interactions is generally composed of a sum of terms
such as,

Ĥ = aσ̂mnk + bσ̂mnk σ̂pql .

With this,
∑

j,r

σ̂rrj Ĥσ̂
rr
j = a

∑

j,r

σ̂rrj σ̂
m,n
k σ̂rrj + b

∑

j,r

σ̂rrj σ̂
m,n
k σ̂p,ql σ̂rrj

= aσ̂m,nk δkj + a
∑

j

σ̂m,nk (1− δkj) + b
∑

j,r

σ̂rrj σ̂
m,n
k σ̂p,ql σ̂rrj

̸= aσ̂m,nk + bσ̂mnk σ̂pql .

41.3.4.2 Ex: Liouvillean for two dipole-coupled atoms

a. From the master equation (41.88) set up the Liouvillean M for a system of two

atoms coupled via dipolar radiation allowing to write the master equation as ˙⃗ϱ =Mϱ⃗.
b. Discuss the Lindblad term in the limit, kr12 → 0.
c. We have seen in Exc. 34.6.7.9, how to write down the master equation for a two-level
atom whose levels are coupled by blackbody radiation. Extend the procedure to two
dipole-coupled two-level atoms whose levels are only coupled by blackbody radiation.

Solution: a. We have already introduced master equations for two- and three-level
systems in Secs. 34.5.2 and 34.7.1. This concept can be extended to two coupled two-
level systems [110], which can be mapped as a four-level system. We start from the
master equation,

dρ̂

dt
= −ı[Ĥ, ρ̂]+Lincohρ̂ with Lincohρ̂ = 1

2

2∑

i,j=1

Γij(2σ̂
−
j ρσ̂

+
i − σ̂+

i σ̂
−
j ρ̂− ρ̂σ̂+

i σ̂
−
j ) ,

first concentrating on the coherent part,

Lcohρ̂ = −ı[Ĥ, ρ̂] .
The Hamiltonian and the density operator are given by,

Ĥ =




∆a
1
2Ω

1
2Ω
∗ 0

1
2Ω
∗ 0 1

2∆21
1
2Ω
∗

1
2Ω

1
2∆12 0 1

2Ω

0 1
2Ω

1
2Ω
∗ −∆a


 and ρ̂ = ρ̂† =




ρ11,11 ρ11,12 ρ11,21 ρ11,22

ρ12,11 ρ12,12 ρ12,21 ρ12,22

ρ21,11 ρ21,12 ρ21,21 ρ21,22

ρ22,11 ρ22,12 ρ22,21 ρ22,22


 ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_InterRadiance03.pdf
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with the abbreviations,

∆12 = ∆21 ≡ −Γ
cos kr12
kr12

and Γ12 = Γ21 ≡ Γ
sin kr12
kr12

and Γ11 = Γ22 = Γ ,

Thus, we have 16 equations to describe the evolutions of the 16 components of the
total density matrix (ρij). After rearranging the density operator like,

ˆ⃗ϱ =(ρ11,11 , ρ11,12 , ρ11,21 , ρ11,22 , ρ12,11 , ρ12,12 , ρ12,21 , ρ12,22 , ...

... , ρ21,11 , ρ21,12 , ρ21,21 , ρ21,22 , ρ22,11 , ρ22,12 , ρ22,21 , ρ22,22) ,

the coherent Liouvillean can be cast into the form (see also Sec. 34.7.1),

Lcohρ̂ = −ı[Ĥ, ρ̂] ≜ − ı(Ĥ ⊗ I4 − I4 ⊗ Ĥ∗)ˆ⃗ϱ =Mcoh
ˆ⃗ϱ ,

or explicitly,

Mcoh = −ı




−Ĥ∗ +∆aI4 1
2ΩI4

1
2Ω
∗I4 0

1
2Ω
∗I4 −Ĥ∗ 1

2∆12I4 1
2Ω
∗I4

1
2ΩI4

1
2∆12I4 −Ĥ∗ 1

2ΩI4
0 1

2ΩI4
1
2Ω
∗I4 −Ĥ∗ −∆aI4


 .

For the incoherent part, where the two spins operators are,

σ̂±1 ≡ σ± ⊗ I and σ̂±2 ≡ I⊗ σ̂± .

we express the Lindblad operator,

Lincohρ̂ = 1
2Γ
(
2σ−1 ρ̂σ̂

+
1 − σ̂+

1 σ
−
1 ρ̂− ρ̂σ̂+

1 σ
−
1

)
+ 1

2Γ
(
2σ−2 ρ̂σ̂

+
2 − σ̂+

2 σ
−
2 ρ̂− ρ̂σ̂+

2 σ
−
2

)

+ 1
2Γ12

(
2σ−2 ρ̂σ̂

+
1 − σ̂+

1 σ
−
2 ρ̂− ρ̂σ̂+

1 σ
−
2

)
+ 1

2Γ12

(
2σ−1 ρ̂σ̂

+
2 − σ̂+

2 σ
−
1 ρ̂− ρ̂σ̂+

2 σ
−
1

)

= LΓ + LΓ12
,

with

LΓ ≡ Γ
2


2ρ21,21 + 2ρ12,12 2ρ21,22 − ρ11,12 2ρ12,22 − ρ11,21 −2ρ11,22
2ρ22,21 − ρ12,11 2ρ22,22 − 2ρ12,12 −2ρ12,21 −3ρ12,22
2ρ22,12 − ρ21,11 −2ρ21,12 −2ρ21,21 + 2ρ22,22 −3ρ21,22
−2ρ22,11 −3ρ22,12 −3ρ22,21 −4ρ22,22

 ,

and

LΓ12 ≡ Γ12
2


2ρ12,21 + 2ρ21,12 2ρ12,22 − ρ11,21 2ρ21,22 − ρ11,12 0

2ρ22,12 − ρ21,11 −ρ12,21 − ρ21,12 2ρ22,22 − ρ12,12 − ρ21,21 −ρ21,22
2ρ22,21 − ρ12,11 2ρ22,22 − ρ12,12 − ρ21,21 −ρ12,21 − ρ21,12 −ρ12,22

0 −ρ22,21 −ρ22,12 0

 ,
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as

Mincoh =




G F1 F2 0

0 G − 1
2ΓI4 − 1

2Γ12I4 F2

0 − 1
2Γ12I4 G − 1

2ΓI4 F1

0 0 0 G − ΓI4


 with G = − 1

2




0 0 0 0

0 Γ Γ12 0

0 Γ12 Γ 0

0 0 0 2Γ




with F1 =




0 Γ Γ12 0

0 0 0 Γ12

0 0 0 Γ

0 0 0 0


 and F2 =




0 Γ12 Γ 0

0 0 0 Γ

0 0 0 Γ12

0 0 0 0


 .

The master equation is now solved as,

ϱ⃗(t) = e(Mcoh+Mincoh)tϱ⃗(0) .

b. In the limit kr12 → 0 we get for the Lindblad term,

0.1 Liouvillean of two dipole-coupled atoms

M = −ı[Ĥ, ρ̂] = −ı×



ρ11,11 ρ11,12 ρ11,21 ρ11,22 ρ12,11 ρ12,12 ρ12,21 ρ12,22 ρ21,11 ρ21,12 ρ21,21 ρ21,22 ρ22,11 ρ22,12 ρ22,21 ρ22,22
0 − 1

2Ω∗ − 1
2Ω 0 1

2Ω Γ Γ12 0 1
2Ω∗ Γ12 Γ 0 0 0 0 0 ρ11,11

− 1
2Ω ∆a − 1

2Γ − 1
2∆12 − 1

2γ − 1
2Ω 0 1

2Ω 0 Γ12 0 1
2Ω∗ 0 Γ 0 0 0 0 ρ11,12

− 1
2Ω∗ − 1

2∆12 − 1
2γ ∆a − 1

2Γ − 1
2Ω∗ 0 0 1

2Ω Γ 0 0 1
2Ω∗ Γ12 0 0 0 0 ρ11,21

0 − 1
2Ω∗ − 1

2Ω 2∆a − Γ 0 0 0 1
2Ω 0 0 0 1

2Ω∗ 0 Γ12 Γ 0 ρ11,22
1
2Ω∗ 0 0 0 −∆a − 1

2Γ − 1
2Ω∗ − 1

2Ω 0 1
2∆12 − 1

2Γ12 0 0 0 1
2Ω∗ 0 0 Γ ρ12,11

0 1
2Ω∗ 0 0 − 1

2Ω −Γ − 1
2∆12 − 1

2Γ12 − 1
2Ω 0 1

2∆12 − 1
2Γ12 0 0 0 1

2Ω∗ 0 Γ12 ρ12,12
0 0 1

2Ω∗ 0 − 1
2Ω∗ − 1

2∆12 − 1
2Γ12 −Γ − 1

2Ω∗ 0 0 1
2∆12 − 1

2Γ12 0 0 0 1
2Ω∗ 0 ρ12,21

0 0 0 1
2Ω∗ 0 − 1

2Ω∗ − 1
2Ω ∆a − 3

2Γ 0 0 0 1
2∆12 − 1

2Γ12 0 Γ Γ12
1
2Ω∗ ρ12,22

1
2Ω 0 0 0 1

2∆12 − 1
2Γ12 0 0 0 −∆a − 1

2Ω∗ − 1
2Ω 0 1

2Ω 0 0 Γ12 ρ21,11
0 1

2Ω 0 0 0 1
2∆12 − 1

2Γ12 0 0 − 1
2Ω −Γ − 1

2∆12 − 1
2Γ12 − 1

2Ω 0 1
2Ω 0 Γ ρ21,12

0 0 1
2Ω 0 0 0 1

2∆12 − 1
2Γ12 0 − 1

2Ω∗ − 1
2∆12 − 1

2Γ12 −Γ − 1
2Ω∗ 0 0 1

2Ω 0 ρ21,21
0 0 0 1

2Ω 0 0 0 1
2∆12 − 1

2Γ12 0 − 1
2Ω∗ − 1

2Ω ∆a − 3
2Γ 0 0 0 1

2Ω ρ21,22
0 0 0 0 1

2Ω 0 0 0 1
2Ω∗ 0 0 0 −2∆a − Γ − 1

2Ω∗ − 1
2Ω 0 ρ22,11

0 0 0 0 0 1
2Ω 0 0 0 1

2Ω∗ 0 0 − 1
2Ω −∆a − 3

2Γ − 1
2∆12 − 1

2Γ12 − 1
2Ω ρ22,12

0 0 0 0 0 0 1
2Ω 0 0 0 1

2Ω∗ 0 − 1
2Ω∗ − 1

2∆12 − 1
2Γ12 −∆a − 3

2Γ − 1
2Ω∗ ρ22,21

0 0 0 0 0 0 0 1
2Ω 0 0 0 1

2Ω∗ 0 − 1
2Ω∗ − 1

2Ω −2Γ ρ22,22




1

Figure 41.19: Liouvillean for two dipole-coupled atoms.

Γ12 → Γ and |∆12| → ∞ ,

and consequently,

Lincohρ̂ = 1
2Γ
[
2(σ̂−1 + σ̂−2 )ρ̂(σ̂

+
1 + σ̂+

2 )− (σ̂+
1 + σ̂+

2 )(σ̂
−
1 + σ̂−2 )ρ̂− ρ̂(σ̂+

1 + σ̂+
2 )(σ̂

−
1 + σ̂−2 )

]

= Γ[2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂− ρ̂Ŝ+Ŝ−] .

That is, in this limit the single-atom decay mentioned in (41.74) turns into a collective
decay.
c. The master equation is [1359],

dρ̂

dt
= Lbbρ̂

= − 1
2

∑

i,j=1,2

(Γij +Rij)
(
[ρ̂σ̂+

j , σ̂
−
i ] + [σ̂+

j , σ̂
−
i ρ̂]
)
− 1

2

∑

i,j=1,2

Rij
(
[ρ̂σ̂−j , σ̂

+
i ] + [σ̂−j , σ̂

+
i ρ̂]
)
,
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with Rijδ(t − t′) ∝ ⟨Êi(t)Êj(t′)⟩ containing both the real and the virtual photon ex-
change. With Γ = Γii, Γ12 = Γ21, R = Rii, and R12 = R21, we find,

˙̂ρ = Γ
2

∑

i=1,2

(
2σ̂−i ρ̂σ̂

+
i − ρ̂σ̂+

i σ̂
−
i − σ̂+

i σ̂
−
i ρ̂
)
+ Γ12

2

∑

i ̸=j

(
2σ̂−j ρ̂σ̂

+
i − ρ̂σ̂+

i σ̂
−
j − σ̂+

i σ̂
−
j ρ̂
)

+R
∑

i=1,2

(
σ̂+
i ρ̂σ̂

−
i + σ̂−i ρ̂σ̂

+
i − ρ̂

)
+ R12

2

∑

i̸=j

(
2σ̂+

i ρ̂σ̂
−
j + 2σ̂−j ρ̂σ̂

+
i − ρ̂{σ̂−j , σ̂+

i } − {σ̂−j , σ̂+
i }ρ̂

)

= LΓ + LΓ12 + LR + LR12 .

with LΓ and LΓ12
derived in part (b) and

LR = R




ρ12,12 − ρ11,11 + ρ21,21 ρ21,22 − ρ11,12 ρ12,22 − ρ11,21 −ρ11,22
ρ22,21 − ρ12,11 ρ11,11 − ρ12,12 + ρ22,22 −ρ12,21 −ρ12,22 + ρ11,21
ρ22,12 − ρ21,11 −ρ21,12 ρ11,11 − ρ21,21 + ρ22,22 ρ11,12 − ρ21,22

−ρ22,11 −ρ22,12 + ρ21,11 ρ12,11 − ρ22,21 ρ12,12 + ρ21,21 − ρ22,22




,

and

LR12
= R12




ρ21,12 + ρ12,21 ρ12,22 − ρ11,21 ρ21,22 − ρ11,12 0

ρ22,12 − ρ21,11 −ρ12,21 − ρ21,12 ρ11,11 + ρ22,22 − ρ12,12 − ρ21,21 ρ11,12 − ρ21,22
ρ22,21 − ρ12,11 ρ11,11 + ρ22,22 − ρ12,12 − ρ21,21 −ρ12,21 − ρ21,12 ρ11,21 − ρ12,22

0 ρ12,11 − ρ22,21 ρ21,11 − ρ22,12 ρ21,12 + ρ12,21




.

41.3.4.3 Ex: Super- and subradiant linewidth and decay rates from the
coupled dipoles model

Calculate super- and subradiance linewidth and lineshifts for two atoms interacting
via dipole-dipole interaction using the linear optics scalar coupled dipoles model cul-
minating in Eq. (39.26) using the exponential kernel (39.29).

Solution: We consider two atoms located next to each other at positions ± r122 of
the z-axis, i.e. [1090],

r1 = r12
2 êz , r2 = − r122 êz with |r1 − r2| = r12 ≪ λ .

We also set êz ⊥ k0. Then, the Rabi frequencies Ω(rj) = Ω0e
ık0·rj at the atomic

positions can be written,

Ω(r1) = Ω0e
ıkr12/2 = Ω∗(r2) ≃ Ω0 .

Using the linear optics ansatz (39.11) yields for the amplitudes βj = ⟨j|ψ⟩ and βj =
β̄je
−ı∆0t+ık0·rj the equation of motion (39.26),

d

dt
β̄j =

(
ı∆0 −

Γ

2

)
β̄j −

ıΩ0

2
− Γ

2

∑

m̸=j

e−ık0·(rj−rm) e
ık0|rj−rm|

ık0|rj − rm|
β̄m ,

which for the case of two atoms reads, for êz ∥ k0,

d

dt
β̄1 =

(
ı∆0 −

Γ

2

)
β̄1 −

ıΩ0

2
− Γ

1

ık0r12
β̄2 ,
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and for êz ⊥ k0,

d

dt
β̄1 =

(
ı∆0 −

Γ

2

)
β̄1 −

ıΩ0

2
− Γ

eık0r12

ık0r12
β̄2

=

(
ı∆0 −

Γ

2

)
β̄1 −

ıΩ0

2
− Γ

(
cos k0r12
ık0r12

+
sin k0r12
k0r12

)
β̄2 .

That is,

d

dt

(
β̄1

β̄2

)
= ıĤeff

(
β̄1

β̄2

)
− ıΩ0

2

with Ĥeff =


 ∆0 +

ıΓ
2 ıΓ

(
cos k0r12
ık0r12

+ sin k0r12
k0r12

)

ıΓ
(

cos k0r12
ık0r12

+ sin k0r12
k0r12

)
∆0 +

ıΓ
2


 .

The eigenvalues of the effective Hamitonian are then,

E = ∆0 ± Γ
cos k0r12
k0r12

+ ıΓ

(
1

2
± sin k0r12

k0r12

)
.

Hence, for r12 ≪ λ the super/sub-radiant lifetimes and energy shifts are,

Γ± = Γ

(
1± sin kr12

kr12

)
≷ Γ and ∆± = ±Γcos kr12

2kr12
.

41.3.4.4 Ex: Super- and subradiance in a two atom system

Calculate the temporal behavior of the (anti-)symmetric states ρS,A = 1
2 (ρ12,12 +

ρ21,21 ± ρ12,21 ± ρ21,12) from the master equation (41.88) or the Liouville equation
(41.90). Consider in particular the case of absent driving, Ω = 0.

Solution: With the Rabi frequency, Ω = Ω0e
ıkr12/2 and the abbreviations,

Ω+ ≡
√
2Ω0 cos

kr12
2 and Ω− ≡

√
2Ω0 sin

kr12
2

and Γ± ≡ Γ± Γ12 = Γ
(
1± sin kr12

r12

)
,

we obtain for the antisymmetric state,

2
d

dt
ρA =

d

dt
(ρ12,12 + ρ21,21 − ρ12,21 − ρ21,12)

= Ω0 sin
kr12
2 (−ρ11,12 − ρ12,11 + ρ11,21 + ρ21,11 − ρ22,12 − ρ12,22 + ρ22,21 + ρ21,22)

+ ı(Γ− Γ12)(ρ12,12 + ρ21,21 − ρ12,21 − ρ21,12 + ρ22,22)

=
√
2Ω−Re (−ρ11,12 + ρ11,21 − ρ22,12 + ρ22,21) + ıΓ−(2ρA + ρ22,22)
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and for the symmetric state,

2
d

dt
ρS =

d

dt
(ρ12,12 + ρ21,21 + ρ12,21 + ρ21,12)

= −ıΩ0 cos
kr12
2 (ρ11,12 − ρ12,11 + ρ11,21 − ρ21,11 + ρ22,12 − ρ12,22 + ρ22,21 − ρ21,22)

+ ı(Γ + Γ12)(ρ12,12 + ρ12,21 + ρ21,12 + ρ21,21 − ρ22,22)
=
√
2Ω+Im (ρ11,12 + ρ11,21 + ρ22,12 + ρ22,21) + ıΓ+(2ρS − ρ22,22) .

Hence, after switching off the light, Ω = 0,

d

dt
ρS,A = ıΓ±(ρS,A ∓ 1

2ρ22,22) .

41.3.4.5 Ex: Two-atom toy model for super- and subradiance

Calculate the eigenvalues and eigenvectors of the Hamiltonian (41.100) for two two-
level atoms located at rj = ± r122 êz with rji = |rj − ri| ≪ λ [364]. Consider the limits
(a) absent coupling, ∆12 = 0, (b) resonant driving, ∆a = 0, and (c) absent driving,
Ω = 0. (d) Analyze the full Hamiltonian.

Solution: The two atoms are subject to the Rabi frequencies, Ω(r1) = Ω0e
ıkr12/2 =

Ω∗(r2), so that,

Ĥ ′ ≡ Ĥ −∆aI =




∆a
1
2Ω

1
2Ω
∗ 0

1
2Ω
∗ 0 1

2∆12
1
2Ω
∗

1
2Ω

1
2∆12 0 1

2Ω

0 1
2Ω

1
2Ω
∗ −∆a


 , (41.116)

with ∆12 = −Γ cos kr12
kr12

.
a. In the limit of absent coupling, ∆12 = 0, we obtain,

Ĥ ′ ≡ Ĥ −∆aI =




∆a
1
2Ω

1
2Ω
∗ 0

1
2Ω
∗ 0 0 1

2Ω
∗

1
2Ω 0 0 1

2Ω

0 1
2Ω

1
2Ω
∗ −∆a


 .

The eigenvalue and the eigenvector matrices are, with the abbreviations G ≡
√
∆2
a + |Ω|2,

Ê′ ≡ Ê+∆a =




−G 0 0 0

0 0 0 0

0 0 0 0

0 0 0 G


 and U =




−G+∆a

Ω 0 1 G+∆a

Ω
Ω∗

Ω −Ω∗

Ω − 2∆a

Ω
Ω∗

Ω

1 1 0 1
−G−∆a

Ω 0 −1 G−∆a

Ω


 .
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2354 CHAPTER 41. CORRELATED ATOMS, ENTANGLEMENTANDQUANTUMGATES

We easily verify UÊ′U−1 = H ′ and propagate UeıÊ
′tU−1 numerically.

b. On resonance, ∆a = 0, and additionally assuming Ω = Ω∗ we obtain,

Ĥ −∆aI ≃




0 1
2Ω

1
2Ω 0

1
2Ω 0 1

2∆12
1
2Ω

1
2Ω

1
2∆12 0 1

2Ω

0 1
2Ω

1
2Ω 0


 ,

with the eigenvalues, E1 = − 1
2∆12, E2 = 0, and E3,4 = 1

4∆12 ± 1
4

√
16Ω2 +∆2

12.
c. In the absence of driving, Ω = 0, we obtain,

Ĥ −∆aI ≃




∆a 0 0 0

0 0 1
2∆12 0

0 1
2∆12 0 0

0 0 0 −∆a


 .

The eigenvalue and the eigenvector matrices are,

Ê′ ≡ Ê+∆a =




∆a 0 0 0

0 1
2∆12 0 0

0 0 − 1
2∆12 0

0 0 0 −∆a


 and U =




1 0 0 0

0 1√
2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1




.

(41.117)
d. Applying the unitary transformation (41.117) to the full Hamiltonian (41.116), we
find,

U−1(Ĥ −∆aI)U =




∆a
1
2Ω+ − ı

2Ω− 0
1
2Ω+

1
2∆12 0 1

2Ω+

− ı
2Ω− 0 − 1

2∆12 − ı
2Ω−

0 1
2Ω+ − ı

2Ω− −∆a


 ,

introducing the effective Rabi frequencies for the two single-excitation modes,

Ω+ ≡
√
2Ω0 cos

kr12
2 and Ω− ≡

√
2Ω0 sin

kr12
2

and ∆± ≡ ∓ 1
2∆12 = ±Γ cos kr12

2r12
.

Hence, we see that the dipole-dipole interaction generates two collective 0,1,2-photon
eigenstates |gg⟩, |±⟩ = 1√

2
(|eg⟩ ± |ge⟩), and |ee⟩. The pump efficiently couples to

the superradiant state, but only very weakly to the long-lived (subradiant) state. The
steady-state population of the long-lived mode then presents three typical regimes, de-
pending on the pump strength. First, for the lowest intensities (linear-optics regime),
the population of |ee⟩ is negligible and the single-excitation modes |±⟩ are driven only
directly from the pump, so one obtains the following scaling for their population:

P± ≃ s±
2 ∝ s with s± =

2Ω2
±

Γ2
± + 4(∆a ∓ 1

2∆±)
2
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the effective saturation parameter for each mode, and

s0 =
2Ω2

0

Γ2 + 4∆2
a

,

the single-atom one. This single-excitation regime holds for s± ≪ 1, i.e. Ω+ ≪ ∆. As
the drive strength is increased, the doubly-excited state |ee⟩ is substantially populated
thanks to the strong coupling of the drive to the superradiant state:

P+ ≃ s+
2 ∝ s and Pee ∝ s2 .

Then, the |−⟩ state gets an additional population by decay from |ee⟩, at rate Γ−,
leading to a long-lived population that grows quadratically with the saturation param-
eter: Pee ∝ s2. Finally, for the largest values of the saturation parameter, i.e. with
a Rabi frequency such that the dynamics of each atom is dominated by the drive
(Ω0 ≫ ∆≫ Γ,|∆±|), the system is cast into a separable state described by the density
matrix,

ρ̂ = 1
2

⊗

j=1,2

(|gj⟩⟨gj |+ |ej⟩⟨ej |) .

This mixed state projects equally on the states |gg⟩, |+⟩, |−⟩, and |ee⟩, resulting in
P− ≃ 1

4 . Hence, the strong pump overcomes the weak coupling of subradiant modes
which, in the linear-optics regime, prevents one to populate them efficiently. The
present mechanism is analogous to optical pumping, where an excited state (here |ee⟩)
is directly driven by the laser, and induces a population in the long-lived state (here
|−⟩) by incoherent decay.

41.3.4.6 Ex: Impact of dipole-dipole interactions on super- and subra-
diance

Here, we use the two-atom toy model studied in Fig. 41.16 to demonstrate the emer-
gence of subradiant modes as a consequence of dipole-dipole interaction [364]. Calcu-
late numerically the anti-symmetric state population ρ̂A given in Eq. (41.99) at very
long times as a function of the saturation parameter s and the interatomic distance
krij . Interpret the results.

Solution: Fig. 41.20 shows the dependence of the decay rate of the subradiant anti-
symmetric states of two atoms interacting via dipole-dipole coupling on the saturation

parameter s =
2Ω2

0

Γ2+4∆2 and their distance.

41.3.4.7 Ex: Three interacting atoms

Numerically integrate the master equation (41.88) for three atoms.

Solution: We simply extend the procedure demonstrated in the example 257 to three
atoms,

σ̂±1 = σ̂± ⊗ I⊗ I , σ̂±2 = I⊗ σ̂± ⊗ I , σ̂±3 = I⊗ I⊗ σ̂± .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_InterRadiance06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_InterRadiance06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_InterRadiance07.pdf
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10−5 100

s

10−5

100

ρ
A

krij = 0.02
0.05
0.2
0.5
2

Figure 41.20: (code) Dependence of the population of the subradiant anti-symmetric state

of two atoms interacting via dipole-dipole coupling on the saturation parameter and their

distance.

0 5 10

Γt

0

0.5

1

ρ

Figure 41.21: (code) Populations in a system of three interacting two-level atoms.

The result of such a simulation is shown in Fig. 41.21.

41.3.4.8 Ex: Two non-interacting three-level atoms

Extend the two two-level atoms toy model of example 257 to two non-interacting
three level atoms |1⟩-|2⟩-|3⟩ in cascade configuration.
a. Write down the total Hamiltonian and its matrix representation chosing an appro-
priate basis.
b. Write down the Lindbladian and numerically solve the master equation.

Solution: a. The total Hamiltonian is,

Ĥ =
∑

j=1,2

[
−∆aσ̂

22
j + 1

2Ωa(σ̂
12
j + σ̂21

j )−∆bσ̂
32
j σ̂

23
j + 1

2Ωs(σ̂
23
j + σ̂32

j )
]
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleSubradiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleSubradiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_DipoleSubradiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Dipole3Atoms.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_InterRadiance08.pdf
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Choosing the one-atom basis as,

|1⟩ =



1

0

0


 , |2⟩ =



0

1

0


 , |3⟩ =



0

0

1




the single-atom Hamiltonian can be expressed as,

ĥ =




0 1
2Ωa 0

1
2Ωa −∆a

1
2Ωb

0 1
2Ωb −∆b


 .

The collective operators can be constructed via,

σ̂mn1 = |m⟩⟨n| ⊗ I3 , σ̂mn2 = I3 ⊗ |m⟩⟨n|
ρkk1 = ρk·,k·(ρ·1,·1 + ρ·2,·2 + ρ·3,·3) , ρkk2 = (ρ1·,1· + ρ2·,2· + ρ3·,3·)ρ·k,·k ,

yielding the two-atom collective Hamiltonian,

Ĥ = Ĥ1 + Ĥ2 = ĥ⊗ I3 + I3 ⊗ ĥ

=



0 1
2
Ωa 0 1

2
Ωa 0 0 0 0 0

1
2
Ωa −∆a

1
2
Ωb 0 1

2
Ωa 0 0 0 0

0 1
2
Ωb −∆b 0 0 1

2
Ωa 0 0 0

1
2
Ωa 0 0 −∆a

1
2
Ωa 0 1

2
Ωb 0 0

0 1
2
Ωa 0 1

2
Ωa −∆a −∆a

1
2
Ωb 0 1

2
Ωb 0

0 0 1
2
Ωa 0 1

2
Ωb −∆a −∆b 0 0 1

2
Ωb

0 0 0 1
2
Ωb 0 0 −∆b

1
2
Ωa 0

0 0 0 0 1
2
Ωb 0 1

2
Ωa −∆a −∆b

1
2
Ωb

0 0 0 0 0 1
2
Ωb 0 1

2
Ωb −∆b −∆b


.

b. With the Lindbladian,

Lρ̂ = 1
2Γ12

∑

j=1,2

(2σ̂12
j ρ̂σ̂

21
j −σ̂21

j σ̂
12
j ρ̂−ρ̂σ̂21

j σ̂
12
j )+ 1

2Γ13(2σ̂
23
j ρ̂σ̂

32
j −σ̂32

j σ̂
23
j ρ̂−ρ̂σ̂32

j σ̂
23
j ) ,

the extended master equation is readily set up and can be numerically solved using
the procedure outlined in example 257. The result of such a simulation is shown in
Fig. 41.22.

41.3.4.9 Ex: Rydberg blockade versus spin-spin interaction

a. Direct interactions (e.g. dipole-dipole coupling or van der Waals interaction) gen-
erate collective energy shifts ∆ij and collective decay Γij (see Sec. 41.3.2 or examples
257 and 258). Discuss why these terms are not observed in Hamiltonians describing
Rydberg blockade.
b. Verify whether the operators ŜzŜz or Ŝ+Ŝ− generate anti-diagonal terms in the
Hamiltonian [956].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_InterRadiance09.pdf
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0 5 10

Γt

0

0.5

1

ρ

Figure 41.22: (code) Populations in a system of two interacting three-level atoms.

Solution: Spin-spin interactions introduce collective energy shifts ∆ij in the Hamil-
tonian and collective decay terms Γij in the Lindbladian, which come additionally to
single-atom detunings ∆ and spontaneous emission Γ. Spin-spin interaction terms
typically have the shape,

Ĥ ∝ σ̂m1 σ̂n2 = σ̂m ⊗ σ̂n = (σ̂m ⊕ I)(I⊕ σ̂n)

=




σ11
1 σ

11
2 σ11

1 σ
12
2 σ12

1 σ
11
2 σ12

1 σ
12
2

σ11
1 σ

21
2 σ11

1 σ
22
2 σ12

1 σ
21
2 σ12

1 σ
22
2

σ21
1 σ

11
2 σ21

1 σ
12
2 σ22

1 σ
11
2 σ22

1 σ
12
2

σ21
1 σ

21
2 σ21

1 σ
22
2 σ22

1 σ
21
2 σ22

1 σ
22
2


 ,

where,

σ̂m1 =

(
σ11
1 σ12

1

σ21
1 σ22

1

)
and σ̂n2 =

(
σ11
2 σ12

2

σ21
2 σ22

2

)

can be arbitrary Pauli matrices. The Hamiltonians for Rydberg blockade do not pro-
vide anti-diagonal terms in contrast to spin-spin interactions,

Ĥ ∝ σ̂m1 + σ̂n2 = σ̂m ⊕ σ̂n = (σ̂m ⊕ I) + (I⊕ σ̂n)

=




σ11
1 + σ11

2 σ12
2 σ12

1 0

σ21
2 σ11

1 + σ22
2 0 σ12

1

σ21
1 0 σ22

1 + σ11
2 σ12

2

0 σ21
1 σ21

2 σ22
1 + σ22

2


 .

The main difference is, however, that van der Waals interactions are essentially co-
herent, while dipole-dipole coupling generates correltaions via spontaneous decay Γij.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Dipole3Levels.m
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b. We find (see also Sec. 41.3.3),

Ŝ2
z = (σ̂z1 + σ̂z2)(σ̂

z
1 + σ̂z2) = (σ̂z ⊗ I+ I⊗ σ̂z)(σ̂z ⊗ I+ I⊗ σ̂z)

=




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 ,

but

Ŝ+Ŝ− = (σ̂+
1 + σ̂+

2 )(σ̂
−
1 + σ̂−2 ) = (σ̂+ ⊗ I+ I⊗ σ̂+)(σ̂− ⊗ I+ I⊗ σ̂−)

= Ŝ2 − Ŝ2
z − Ŝz =




0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2


 .

41.3.4.10 Ex: Adiabatic elimination of the cavity mode, general case

Derive the equations of motion (41.109) for a system consisting of many atoms inter-
acting with a single cavity mode after adiabatic elimination of the cavity mode.

Solution: We start from the Heisenberg-Liouville equation (41.112) including col-
lective and single-atom decay,

˙̂S = −ı[Ŝ, Ĥ] + Lκc,Ŝ−
Ŝ+ 1

2 (LΓ1/2,Ŝ+
+ LΓ1/2,Ŝ−

)Ŝ , (41.118)

with the Hamiltonian (η̃ ≡ η/g),

Ĥ = −2Im (η̃Uγ)Ŝx − 2Re (η̃Uγ)Ŝy −∆aŜz + UcŜ+Ŝ− , (41.119)

where

Re η̃Uγ = Re (η̃r + ıη̃i)(Uc − ıκc) = Ucη̃r + κcη̃i (41.120)

Im η̃Uγ = Re (η̃r + ıη̃i)(Uc − ıκc) = Ucη̃i − κcη̃r ,

with Uκ ≡ Uc− ıκc. To prepare the calculations we first set up tables of useful expres-

sions. The Heisenberg equation
˙̂
Sα = −ı[Ŝα, Ĥ] leads to the following relationships

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_InterRadiance10.pdf
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between Hamiltonian terms and equations of motion:

Ĥ = −ı[Ŝx, Ĥ] = −ı[Ŝy, Ĥ] = −ı[Ŝz, Ĥ] = −ı[Ŝ+, Ĥ] = −ı[Ŝ−, Ĥ] =

Ŝx 0 −Ŝz Ŝy −ıŜz ıŜz

Ŝy Ŝz 0 −Ŝx Ŝz Ŝz

Ŝz −Ŝy Ŝx 0 0 0

Ŝ2
x 0 −{Ŝx, Ŝz} {Ŝx, Ŝy} −ı{Ŝx, Ŝz} ı{Ŝx, Ŝz}
Ŝ2
y {Ŝy, Ŝz} 0 −{Ŝx, Ŝy} {Ŝx, Ŝz} {Ŝx, Ŝz}
Ŝ2
z −{Ŝy, Ŝz} {Ŝx, Ŝz} 0 0 0

ŜxŜy ŜxŜz −ŜzŜy Ŝ2
y − Ŝ2

x Ŝ−Ŝz − Ŝx Ŝ+Ŝz + Ŝx

ŜyŜx ŜzŜx −ŜyŜz Ŝ2
y − Ŝ2

x

ŜxŜz −ŜxŜy Ŝ2
x − Ŝ2

z ŜyŜz ı(Ŝ2
x − Ŝ2

z )− ŜxŜy ı(Ŝ2
z − Ŝ2

x)− ŜxŜy
ŜzŜx −ŜyŜx Ŝ2

x − Ŝ2
z ŜzŜy

ŜyŜz Ŝ2
z − Ŝ2

y ŜyŜx −ŜxŜz
ŜzŜy Ŝ2

z − Ŝ2
y ŜxŜy −ŜzŜx

Ŝ+ ıŜz −Ŝz 0 0 ıŜz

Ŝ− −ıŜz −Ŝz 0 −ıŜz 0

Ŝ2 0 0 0 0 0

Ŝ+Ŝ− {Ŝy, Ŝz} − Ŝy Ŝx − {Ŝy, Ŝz} 0 −2ıŜ+Ŝz −2ıŜzŜ−
(41.121)

Exploiting the rules (41.121) and,

Ŝ± = Ŝx ± ıŜy , Ŝ+Ŝ− = Ŝ2
x + Ŝ2

y + Ŝz , Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z , (41.122)

for the coupled atom-cavity system we arrive at,

−ı[Ŝ, Ĥ] =

 0

2(Ucη̃i − κcη̃r)Ŝz
−2(Ucη̃i − κcη̃r)Ŝy

+

−2(Ucη̃r + κcη̃i)Ŝz

0

2(Ucη̃r + κcη̃i)Ŝx

+

(∆a − Uc)Ŝy
(Uc −∆a)Ŝx

0

+

 Uc{Ŝy, Ŝz}
−Uc{Ŝx, Ŝz}

0

 .

(41.123)

On the other hand, the Lindbladian LL̂X̂ = L̂†[X̂, L̂] + [L̂†, X̂]L̂ applied to collective
spin operator yields:

L̂ = LL̂Ŝx = LL̂Ŝy = LL̂Ŝz = LL̂Ŝ+ = LL̂Ŝ− =

Ŝ+ −{Ŝx, Ŝz} − Ŝx −{Ŝy, Ŝz} − Ŝy 2Ŝ−Ŝ+ −{Ŝ+, Ŝz} − Ŝ+ −{Ŝ−, Ŝz} − Ŝ−
Ŝ− {Ŝx, Ŝz} − Ŝx {Ŝy, Ŝz} − Ŝy −2Ŝ+Ŝ− {Ŝ+, Ŝz} − Ŝ+ {Ŝ−, Ŝz} − Ŝ−
Ŝz −Ŝx −Ŝy 0 −Ŝ+ −Ŝ−

(41.124)

Exploiting the rules (41.123) and,

LL̂(X̂ + Ŷ ) = LL̂X̂ + LL̂Ŷ , (41.125)
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we arrive at,

LŜ+
Ŝ =

−{Ŝx, Ŝz} − Ŝx−{Ŝy, Ŝz} − Ŝy
2Ŝ−Ŝ+

 , LŜ−
Ŝ =

{Ŝx, Ŝz} − Ŝx{Ŝy, Ŝz} − Ŝy
−2Ŝ+Ŝ−

 , LŜz
Ŝ =

−Ŝx−Ŝy
0

 ,

(41.126)
and consequently, for the coupled atom-cavity system,

Lκc,Ŝ−
Ŝ = κc

{Ŝx, Ŝz} − Ŝx{Ŝy, Ŝz} − Ŝy
−2Ŝ+Ŝ−

 , 1
2

∑
j

(L
Γ1/2,ŝ

−
j
+L

Γ1/2,ŝ
+
j
)Ŝ = Γ1

2

 −Ŝx
−Ŝy

−(NI2 + 2Ŝz)

 .

(41.127)
Putting everything together we obtain the equations of motion,

˙̂S =

 −κc − Γ1
2

∆a − Uc −2κcη̃i − 2Ucη̃r)

Uc −∆a −κc − Γ1
2

2Ucη̃i − 2κcη̃r

2κcη̃i + 2Ucη̃r −2Ucη̃i + 2κcη̃r −2κc − Γ1
2


ŜxŜy
Ŝz

 (41.128)

+ 2Uc

{Ŝy, Ŝz}{Ŝx, Ŝz}
0

+ 2κc

 {Ŝx, Ŝz}
{Ŝy, Ŝz}
−2(Ŝ2

x + Ŝ2
y)

− Γ1
2

 0

0

NI2

 .

Approximating {Ŝα, Ŝβ} ≃ 2ŜαŜβ,

˙̂S ≃



−Γ1

2 ∆a −Ω̂i
−∆a −Γ1

2 −Ω̂r
Ω̂i Ω̂r −Γ1






Ŝx

Ŝy

Ŝz


−




0

0

Γ1
N
2 I2


 , (41.129)

with the abbreviations,

Ω̂r ≡ 2gâr = 2Uc(Ŝx − ηi/g)− 2κc(Ŝy − ηr/g) (41.130)

Ω̂i ≡ 2gâi = −2κc(Ŝx − ηi/g)− 2Uc(Ŝy − ηr/g) ,

41.4 Quantum correlations and entanglement

The concept of entanglement arose in quantum mechanics by Einstein, Podolski and
Rosen’s famous Gedankenexperiment, today called the EPR paradox [411]. In his
Gedankenexperiment, Einstein tried to prove the necessity of hidden variables for
quantum mechanics to be a complete theory. Consequently, we begin this chapter by
introducing the notion of entangled particles and recapitulating the discussion of the
EPR paradox.

Since Feynman discovered the utility of entangled states for quantum computation
[1009, 268], this area of research exploded with thousands of theoretical researchers,
but few experiments, due to the enormous technical difficulties of creating and con-
trolling these states. On the other side, states of entangled photons already play an
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important role in quantum cryptography [123]. And in the context of metrology, spin-
squeezed correlated quantum states offer the possibility of quantum noise reduction
in frequency standards [1380].

Among the various systems proposed for the realization of entangled states and
quantum computing gates we will only discuss one idea, which is based on the mutual
coupling of atoms through a Jaynes-Cummings-like interaction mediated by an optical
mode.

41.4.1 The EPR paradox and GHZ states

Let us imagine two maximally correlated particles produced by a suitable source,
which fly freely without interaction in opposite directions along the y-axis toward two
detectors a and b. The particles have an internal degree of freedom (spin) |±⟩a,b,
which can be measured in various directions, for example, z or x by operators σ̂a,bz
or σ̂a,bx . Since the particles are completely entangled, the result of a measurement
on the first particle σ̂az allows the prediction of the result of another measurement σ̂bz
performed on the second particle, and similarly for σ̂ax and σ̂bx. Why is that?

The theory of hidden variables proposed by Einstein, Podolsky and Rosen [411]
postulates, that the total state describing the two particles contains all information
about the way, how the particles should behave at the detectors. The information
was imprinted on each one of the two particle’s when they were created in the source,
i.e. the total state must be of the type,

|ψ⟩ =
(
±az ±bz
±ax ±bx

)
, (41.131)

where the notation should be read as a decision table.

Figure 41.23: (a) Generation of entangled photon via parametric down-conversion. (b)
Energy conservation upon parametric down-conversion. (c) Illustration of the EPR paradox.

On the other hand, quantum mechanics postulates that the reduction of the
wavepacket describing the particle at detector a decides spontaneously on the re-
sult of the measurement at detector b. This decision has no physical cause. If the
particles move with the speed of light, this decision is not restricted by local causality
[601]. The state, also called Bell state, can be given in the form,

|ψ⟩ = |+a +b⟩+ | −a −b⟩ . (41.132)

In Exc. 41.4.4.1 we check that this state cannot be expressed as a product state. Let
us have a closer look at the EPR state (41.132) and imagine that particle ’a’ (the one
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that will later be analyzed by detector a) is embarked with Alice on a starship, while
particle ’b’ flies with Bob in opposite direction.

We introduce a basis choosing z as the quantization axis, that is, the basis vectors

|+⟩z =
(
1

0

)
, |−⟩z =

(
0

1

)
(41.133)

are eigenvectors of the Pauli matrix σ̂z. On the other hand,

|+⟩x = 1√
2

(
1

1

)
, |−⟩x = 1√

2

(
1

−1

)
(41.134)

are eigenvectors of the Pauli matrix σ̂x. Quantum mechanics now tells us that, before
any measurement, the wavefunction is in a superposition of states |+⟩ and |−⟩. That
is, in the z-basis, using the tensor notation, we may write the entangled state (41.132)
as,

|ψ⟩ = 1√
2
(|+⟩z ⊗ |+⟩z + |−⟩z ⊗ |−⟩z) . (41.135)

But we can also express it in the x-basis,

|ψ⟩ = 1√
2

(
|+⟩x+|−⟩x√

2
⊗ |+⟩x+|−⟩x√

2
+ |+⟩x−|−⟩x√

2
⊗ |+⟩x−|−⟩x√

2

)
(41.136)

= 1
2
√
2

(
|+⟩x ⊗ |+⟩x + |+⟩x ⊗ |−⟩x + |−⟩x ⊗ |+⟩x + |−⟩x ⊗ |−⟩x

+|+⟩x ⊗ |+⟩x − |+⟩x ⊗ |−⟩x − |−⟩x ⊗ |+⟩x + |−⟩x ⊗ |−⟩x

)

= 1√
2
(|+⟩x ⊗ |+⟩x + |−⟩x ⊗ |−⟩x) .

A generalization of this calculation to arbitrary rotations of the detector will be
studied in Exc. 41.4.4.2.

After some time, Alice measures her spin in z-direction, i.e. performs a measure-
ment of σ̂z. Her measurement not only collapses the wavefunction of Alice’s spin a in
either one of the states |±⟩z, but it instantaneously also collapses the wavefunction
of Bob’s spin along the z-direction,

|ψ⟩↷
{
|+⟩z ⊗ |+⟩z = |+⟩z ⊗ |+⟩x+|−⟩x√

2

|−⟩z ⊗ |−⟩z = |+⟩z ⊗ |+⟩x−|−⟩x√
2

(41.137)

Hence, if Bob measures along the z-axis, his measurement will be predefined by Alice’s
measurement. On the other hand, if tries to measure along the x-axis, he will find a
random result with a probability of 1

2 for each outcome 19. That is, the direction of
measurement in Alice’s experiment fixes the quantization axis for Bob’s experiment.

Two hypotheses have been put forward: The first one is that Alice’s experiment
sends information to Bob’s experiment. Alice’s particle told Bob’s particle which spin

19Due to Bob’s measurement along the x-axis Alice’s wavefunction should collapse along the x-axis,
as well. But according to quantum mechanics, Alice should be unable to know the spin value in x-
direction, since she already knows the spin the z-direction, which is not allowed by the commutation
rules,

[σ̂az , σ̂
a
x] = ıℏσ̂ay , [σ̂bz , σ̂

b
x] = ıℏσ̂by .
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state he should be in. But this hypothesis violates the locality requirement of special
relativity claiming that information cannot travel faster than light. Einstein called
it ’spooky action at a distance’. The second hypothesis is to assume that quantum
mechanics does not violate locality, but that the particles carry with them ’local
hidden variables’ 20 (like a proper DNA) whose values would be set right from the
moment of the separation of the particles and which would determine the outcomes
of any future spin measurement. Then, quantum mechanics would not be a complete
theory, because it has nothing to say about these hidden variables.

41.4.1.1 Bell’s inequality

In 1964 John S. Bell suggested an experimental test for the EPR paradox [114]. He
proposed a theorem formulated as an inequality, the famous Bell’s inequality, stating
that if the local hidden variables hypothesis proposed by Einstein is correct, then the
inequality must be satisfied by experiment.

There are many versions of Bell’s inequality, all of them are equivalent. Let us
follow Bell’s argumentation and assume Alice and Bob to use Stern-Gerlach magnets
oriented in arbitrary directions a ≡ êϑ,φ, respectively, b ≡ êϑ′,φ′ to measure the
expectation values,

⟨ψ|ˆ⃗σ · a⊗ I|ψ⟩ and ⟨ψ|I⊗ ˆ⃗σ · b|ψ⟩ (41.138)

respectively, on an anti-symmetric entangled two-spin state 21,

|ψ⟩ = 1√
2
(|+⟩z ⊗ |−⟩z − |+⟩z ⊗ |−⟩z) . (41.139)

Let us first do the quantum calculation. Using the rules for Pauli matrices and
the anti-symmetry of the entangled state,

σ̂x|±⟩z = |∓⟩z , σ̂y|±⟩z = ±ı|∓⟩z , σ̂z|±⟩z = ±|±⟩z , (41.140)

we derive in Excs. 41.4.4.3 and 41.4.4.4 the general relationship,

⟨ψ|ˆ⃗σ · a⊗ ˆ⃗σ · b|ψ⟩ = −a · b , (41.141)

which is the quantum mechanical correlation function for a joined measurement of
Alice and Bob.

On the other hand, if local hidden variables exist, Alice’s measurement is deter-
mined by the orientation a of her magnets and a (set of) hidden variable(s) λ, which
are also available to Bob, whose measurement is determined by the orientation b of
his magnets,

A(a, λ) ≡ ⟨ψ|ˆ⃗σ · a⊗ I|ψ⟩ = ±1 and B(b, λ) ≡ ⟨ψ|I⊗ ˆ⃗σ · b|ψ⟩ = ±1 , (41.142)

with the crucial assumption that A does not depend on b and B not a. Let us assume a
probability distribution ρ(λ) for the hidden variable satisfying

∫
ρ(λ)dλ = 1. Then the

20Note the difference to non-local hidden variables assumed by de Broglie and David Bohm in
their formulation of quantum mechanics.

21The anti-symmetric state is chosen here for symmetry reasons facilitating the quantum calcula-
tion, but the arguments hold for any entangled state.
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joint probability distribution P (a,b) should coincide with the quantum mechanical
correlation function,

P (a,b) =

∫
A(a, λ)B(b, λ)ρ(λ)dλ = ⟨ψ|ˆ⃗σ · a⊗ ˆ⃗σ · b|ψ⟩ ≥ −1 . (41.143)

For example, let the hidden variable now be unit vector λ⃗ with uniform probability
distribution over all directions, such that,

A(a, λ) = sign(a · λ⃗) and B(b, λ) = −sign(b · λ⃗) . (41.144)

Then,

P (a,b) = −
∫

sign(cosϑaλ)sign(cosϑbλ)ρ(ϑλ)dϑλ (41.145)

= −
∫ ϑb

ϑa

sign(cosϑλ)dϑλ = −1 + 2
π∠(a,b) .

This probability distribution clearly deviates from the quantum prediction, in partic-
ular at angles ∠(a,b) = π

2 , as seen in Fig. 41.24(a).
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Figure 41.24: (code) (a) Joint probability distribution P (a,b) in local hidden variables

theory (red) and correlation function ⟨ψ|σ⃗ · a ⊗ σ⃗ · b|ψ⟩ in quantum mechanics (blue). (b)

Verification of Bell’s inequality.

Let us finally derive Bell’s inequality. Because of (41.142) for the anti-symmetric
state we have the relation B(b, λ) = −A(b, λ) and A(a, λ) = A(a, λ)−1 allowing us
to derive,

P (a,b)− P (a, c) = −
∫

[A(a, λ)A(b, λ)−A(a, λ)A(c, λ)] ρ(λ)dλ (41.146)

=

∫
A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] ρ(λ)dλ ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Bell.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Bell.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Bell.m
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and

|P (a,b)− P (a, c)| ≤
∫
|A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] |ρ(λ)dλ (41.147)

≤
∫
[1−A(b, λ)A(c, λ)]ρ(λ)dλ

=

∫
ρ(λ)dλ+

∫
A(b, λ)B(c, λ)ρ(λ)dλ = 1 + P (b, c) .

This inequality derived from the local hidden variables assumption is violated by
quantum mechanics, since,

|⟨ˆ⃗σ · a⊗ ˆ̃σ · b⟩ − ⟨ˆ⃗σ · a⊗ ˆ̃σ · c⟩| = | − a · b+ a · c| (41.148)

≤ 1− b · c = 1 + ⟨ˆ⃗σ · b⊗ ˆ⃗σ · c⟩

is not satisfied for arbitrary choices of a, b, and c. To see this we plot in Fig. 41.24(b),

1− cos∠(b, c)− | cos∠(a,b)− cos∠(a, c)| , (41.149)

finding that this quantity becomes negative for some choices of the projection vectors.

Example 262 (EPR paradox using GHZ states): Here, we show a modified
version of the EPR experiment proposed by Greenberger, Horne and Zeilinger
(GHZ) based on the GHZ state [535]. They imagined a source creating three
correlated non-interacting spin 1

2
particles labeled a, b, and c flying toward

three Stern-Gerlach type magnetic detectors, which measure the spins in x or
in y-direction. The correct state is either quantum,

|ψ⟩ = |+a +b +c⟩z − | −a −b −c⟩z , (41.150)

or

|ψ⟩ = |+⟩z ⊗ |+⟩z ⊗ |+⟩z − |−⟩z ⊗ |−⟩z ⊗ |−⟩z , (41.151)

in tensor notation, or it contains hidden variables, that is, instructions telling
the detectors which measurement result to exhibit upon arrival of a particle,

|ψ⟩ =
(
±ax ±bx ±cx
±ay ±by ±cy

)
. (41.152)

Now, using the quantum mechanical rules (41.140), we obtain,

σ̂x ⊗ σ̂x ⊗ σ̂x|ψ⟩ ≡ σ̂axσ̂bxσ̂cx|ψ⟩ = −|ψ⟩ , (41.153)

but also,

σ̂axσ̂
b
yσ̂

c
y|ψ⟩ = σ̂ay σ̂

b
xσ̂

c
y|ψ⟩ = σ̂ay σ̂

b
yσ̂

c
x|ψ⟩ = |ψ⟩ . (41.154)

Hidden variables in a state |ψ⟩ that is not a coherent superposition should at
least be able to predict how each particle will behave in its respective detector,
when we measure each one of the two spin components. From all possible com-
bination only eight combinations can satisfy the requirement (41.154) written
as,

⟨σ̂ax⟩⟨σ̂by⟩⟨σ̂cy⟩ = ⟨σ̂ay⟩⟨σ̂bx⟩⟨σ̂cy⟩ = ⟨σ̂ay⟩⟨σ̂by⟩⟨σ̂cx⟩ = 1 . (41.155)
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Figure 41.25: Scheme of the EPR experiment proposed by Greenberger, Horne and Zeilinger.

These are,

(
⟨σax⟩ ⟨σbx⟩ ⟨σcx⟩
⟨σay⟩ ⟨σby⟩ ⟨σcy⟩

)
= (41.156)(

+++

+++

)(
+−−
+−−

)(
−+−
−+−

)(
−−+

−−+

)(
+++

−−−

)(
+−−
−++

)(
−+−
+−+

)

but none of them satisfies (41.153) written as,

⟨σ̂ax⟩⟨σ̂bx⟩⟨σ̂cx⟩ = −1 . (41.157)

Therefore, the local hidden variables assumption is incompatible with quantum

mechanics, and the EPR critique of quantum mechanics regarding its incom-

pleteness must be refuted 22.

Which one of the two pictures is correct, the local hidden variables assumption or
quantum mechanics, can actually be tested by Wheeler’s delayed choice experiment.
It consists of using pairs of correlated photons emitted in different directions, where
they are expected by photodetectors. Polarizers located in front of the detectors
fix the quantization axis to êx or êy, but the choice of the axis is made only after
the photons were created by the source, in order to avoid possible backactions of
the polarizers on the source 23. Bell’s inequality condition [114] predicts a statistics
for the results of repeated measurements where the orientation of the polarizers is
randomly varied. The experiment run by Aspect [56, 54] showed that the assumption
of local hidden variables violates local realism and thus confirmed quantum mechanics
as being a complete theory.

22Note that the coupling of different degrees of freedom is not an entanglement, but it is the
condition for being able to generate entanglement.

23We note that first attempts to demonstrate wave-particle duality with single photons in dilute
laser beams are not really conclusive, because the attenuation of a coherent state does NOT result
in a single photon states (non-classical Fock state). Even if on average only less than one photon is
in the interferometer, this may still be a Glauber state. Nonetheless, real single photon experiments
involving the deexcitation of individual atoms by emission of two photons, produced the same result.
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41.4.2 Information entropy

According to von Neumann, we can define the von Neumann entropy, also called
quantum information entropy as,

S ≡ −⟨log2 ρ̂⟩ = Tr (ρ̂ log2 ρ̂) = −
∑

n

ρ̂n log2 ρ̂n , (41.158)

where ρn ≡ ⟨n|ρ̂|n⟩. For statistically independent systems the density operator is
ρ̂ = ρ̂1 ⊗ ρ̂2 and the entropy is additive S = S1 + S2. The entropy is observable, that
is, independent of the basis and invariant with respect to unitary transformations.
Therefore, ρ̂ can be diagonalized and can be assumed diagonal in the following ex-
amples. For N independent qubits the density operator ρ̂(N) and the entropy S(N)

are:

ρ̂(0) = |+⟩⟨+| , S(0) = 0 bit

(41.159)

ρ̂(1) = 1
2
(|+⟩⟨+|+ |−⟩⟨−|) , S(1) = 1 bits

ρ̂(2) = 1
4
(|++⟩⟨++ |+ |+−⟩⟨+− |+ | −+⟩⟨−+ |+ | − −⟩⟨− − |) , S(2) = 2 bits

ρ̂(N) = 1
2N

(|++...⟩⟨++ ...|+ ...) , S(N) = N bits .

The set is canonical and the entropy maximal. On the other hand, if the states are
entangled, the entropy is always less than S(N) = N bits. For the state of maximally
entangled spins, we have,

ρ(N)
corr =

1
2N

(|++...+⟩⟨++ ...+ |+ | −−...−⟩⟨−− ...− |) , S(N)
corr = 1 bit . (41.160)

Entropy is a measure for the degree of entanglement of a system. For a Dicke state
|J,M⟩ the entropy is,

SJM = − log2

(
2J

J +M

)
. (41.161)

For beam splitters, the information entropy is calculated as follows: A Fock state
|N⟩ = |+⟩N divided by a beam splitter is described by,

2−N/2(|+⟩+ |−⟩)N = 1
2N/2

N∑

n=0

(
N

n

)
|+⟩N−n|−⟩n (41.162)

ρ
(N)
split =

1
2N

N∑

n,m=0

(
N

n

)(
N

m

)
|+⟩N−n|−⟩n⟨+|N−m⟨−|m

ρ
(N)
split =

1
2N

N∑

n=0

(
N

n

)(
N

n

)
|+⟩N−n|−⟩n⟨+|N−n⟨−|n .

For the information entropy, we obtain,

S
(N)
split = N + 1

2N

N∑

n=0

(
N

n

)
log2

(
N

n

)
. (41.163)
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The division of a beam is an incoherent process in the sense that it increases the
entropy. The process is irreversible. The divided beams can not be recombined by
a coherent process. For example, an interferometer always has two output ports.
However, the phase is preserved.

The quantum information content is defined by the deviation from maximum en-
tropy,

Q = Smx − Sactual . (41.164)

If the system is in a mixed state, the entropy measures deviations from a pure state
behavior [99].

41.4.3 Classical and quantum correlations

Correlation is described by a system of coupled differential equations, each one de-
scribing another degree of freedom. The correlation between a degree of freedom and
the rest of the system is lost, if their dynamics decouples. In quantum mechanics, this
translates into the impossibility of factorizing the full density matrix of the correlated
states. The correlation index is defined as the informational content of the correlation
between two systems,

I = Q− (Qa +Qb) (41.165)

= Smx,tot − Sactual,tot − (Smx,a − Sactual,a + Smx,b − Sactual,b)
= Sactual,a + Sactual,b − Sactual,tot .

Classical correlations are those which are allowed by a local realistic theory, whereas
quantum correlations are incompatible with the classical notion of local realism [99].

A measure for the entanglement of two modes is the cross-correlation of their
intensity at equal times,

g
(2)
a,b(0) =

⟨â†(t)â(t)b̂†(t)b̂(t)⟩
⟨â†(t)â(t)⟩⟨b̂†(t)b̂(t)⟩

. (41.166)

The Cauchy-Schwartz relation,

g
(2)
a,b(τ) ≤

√
g
(2)
a,a(τ)

√
g
(2)
b,b (τ) (41.167)

only applies to classical states. Quantum states satisfy,

g
(2)
a,b(τ) ≤

√[
g
(2)
a,a(τ) +

1

Ia(τ)

]√[
g
(2)
b,b (τ) +

1

Ib(τ)

]
, (41.168)

where Ik(τ) = ⟨k̂†(t)k̂(t)⟩.

Example 263 (Classical versus quantum correlations): A simple example

for a classical correlation is the following: Imagine a white and a red billiard

ball. Both are put in black boxes and embarked on star-ships heading off at

light speed in opposite directions without letting the commanders know their

color. When after one year of travel they open the boxes and verify the color of
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their respective balls, they immediately know the color of the ball on the other

star-ship. This ’measurement’ is not limited by the speed of light, which would

take two years to pass information between the star-ships.

A quantum correlation is more tricky than that. To get closer to the essence

of quantum correlations, let us refine the classical example: Now, we assume

that the billiard balls are made of different materials, so that we have one heavy

white or red ball and one light white or red ball. Again they are embarked on

star-ships. The commanders are now advised to open the boxes and EITHER

sense the weights of the balls OR look at them to acknowledge their colors.

The difference of the quantum world begin here already: If the billiard balls were

quantum particles, e.g. photons, the measurements of their properties would be

exclusive.

Now, assume furthermore that instead of one box the star-ships embark 10

boxes, each one receiving one of two balls.

41.4.4 Exercises

41.4.4.1 Ex: Bell states

Show that the Bell states cannot be written as products of two states.

Solution: In the product state,

(c+|+⟩+ c−|−⟩)2 = c2+|++⟩+ c2−| − −⟩+ c+c−|+−⟩+ c−c+| −+⟩
the coefficients must satisfy c+c− = 0 in order to have a Bell state, which is only
possible if either c+ or c− is zero.

41.4.4.2 Ex: Behavior of entanglement upon rotation of the quantization
axis

Show that the anti-symmetric entangle Bell state remains entangled upon rotation of
the quantization axis, that is,

|+⟩ϑ,φ ⊗ |−⟩ϑ,φ − |−⟩ϑ,φ ⊗ |+⟩ϑ,φ ∝ |+⟩z ⊗ |−⟩z − |−⟩z ⊗ |+⟩z ,
where |±⟩ϑ,φ are the eigenstates of the Pauli spin operator ˆ⃗σ.

Solution: Choosing the eigenstates of the rotated basis as,

|+⟩ϑ,φ ≡ |ϑ, φ⟩ = cos ϑ2 |+⟩z + eıφ sin ϑ
2 |−⟩z

|−⟩ϑ,φ ≡ |π − ϑ, φ+ π⟩ = sin ϑ
2 |+⟩z − eıφ cos ϑ2 |−⟩z .

we see,

|ψ⟩ = 1√
2
[|ϑ, φ⟩ ⊗ |π − ϑ, φ+ π⟩ − |π − ϑ, φ+ π⟩ ⊗ |ϑ, φ⟩]

= 1√
2

[(
cos ϑ2 |+⟩z + eıφ sin ϑ

2 |−⟩z
)
⊗
(
sin ϑ

2 |+⟩z − eıφ cos ϑ2 |−⟩z
)

−
(
sin ϑ

2 |+⟩z − eıφ cos ϑ2 |−⟩z
)
⊗
(
cos ϑ2 |+⟩z + eıφ sin ϑ

2 |−⟩z
)]

= −−eıφ√
2

[|+⟩z ⊗ |−⟩z − |−⟩z ⊗ |+⟩z] .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell02.pdf
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41.4.4.3 Ex: Rotations with Pauli matrices

a. Verify,

e−ı(π/4)σ̂k σ̂me
ı(π/4)σ̂k = ϵkmnσ̂n + δkmσ̂k with (kmn) = (xyz) .

b. Prove,

|ϑ, φ⟩ = e−ıφ(σ̂z−I)/2e−ıϑσ̂y/2|0, 0⟩ = eıφ/2e−ıφσ̂z/2e−ıϑσ̂y/2|+⟩ .

c. Solve the eigenvalue equations,

ˆ⃗σ · êz|ϑ, φ⟩ = m|ϑ, φ⟩ and ˆ⃗σ · êρ|ϑ, φ⟩ = m|ϑ, φ⟩ ,

with êρ ≡ êx cosϕ+ êy sinϕ.

Solution: a. This follows as a generalization of Exc. 23.3.10.5 with the definition
of the Pauli matrices.
b. We show,

|ϑ, φ⟩ = cos ϑ2 |+⟩+ eıφ sin ϑ
2 |−⟩ = ...

c. The eigenvalue equation for polar quantization axis is,

σ⃗ · êz|ϑ, φ⟩ = σ̂z|ϑ, φ⟩ =
(
1 0

0 −1

)
(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)

= cos ϑ2 |+⟩ − eıφ sin ϑ
2 |−⟩ ≡ m

(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)
,

which can only be true for m = 1 with |ϑ, φ⟩ = |0, φ⟩ = |+⟩ or m = −1 with |ϑ, φ⟩ =
|π, φ⟩ = |−⟩. Hence,

Pm=1 = ⟨ϑ, φ|0, φ⟩⟨0, φ|ϑ, φ⟩ = 1
2 = ⟨ϑ, φ|π, φ⟩⟨π, φ|ϑ, φ⟩ = Pm=−1

⟨ϑ, φ|σ⃗ · êz|ϑ, φ⟩ = cosϑ = ±1 = m .

For the azimuthal quantization axis,

σ⃗ · êρ|ϑ, φ⟩ = (σ̂x cosϕ+ σ̂y sinϕ)|ϑ, φ⟩ =
(

0 e−ıϕ

eıϕ 0

)
(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)

= eıϕ cos ϑ2 |−⟩+ e−ıϕeıφ sin ϑ
2 |+⟩ ≡ m

(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)
,

which can only be true for m = 1 with |ϑ, φ⟩ = |π2 , ϕ⟩ or m = −1 with |ϑ, φ⟩ =
|π2 , π + ϕ⟩. Hence,

Pm=1 = ⟨ϑ, φ|π2 , ϕ⟩⟨π2 , ϕ|ϑ, φ⟩ = 1
2 = ⟨ϑ, φ|π2 , π + ϕ⟩⟨π2 , π + ϕ|ϑ, φ⟩ = Pm=−1

⟨ϑ, φ|σ⃗ · êρ|ϑ, φ⟩ = cos(φ− ϕ) sinϑ = ±1 = m .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell03.pdf
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41.4.4.4 Ex: Projections of single-atom spins and their correlations

a. Calculate explicitly ⟨ϑ, φ|ˆ⃗σ|ϑ, φ⟩ and ⟨ϑ′, φ′|ˆ⃗σ · êϑ,φ|ϑ′, φ′⟩, where |ϑ, φ⟩ are the
states defined in (41.10), using the basis z⟨+| = (1 0) and z⟨−| = (0 1).
b. For the anti-symmetric entangled two-atom spin state defined in (41.139) calculate

the spin projection correlations ⟨ψ|ˆ⃗σ · êϑ,φ ⊗ ˆ⃗σ · ê′ϑ,φ|ψ⟩.

Solution: Using the rules (41.140) for Pauli matrices on the anti-symmetric en-
tangled two-spin state, we can readily show,

⟨ψ|σ̂x ⊗ σ̂x|ψ⟩ = ⟨ψ|σ̂y ⊗ σ̂y|ψ⟩ = ⟨ψ|σ̂z ⊗ σ̂z|ψ⟩ = −1
⟨ψ|σ̂x ⊗ σ̂y|ψ⟩ = ⟨ψ|σ̂y ⊗ σ̂z|ψ⟩ = ⟨ψ|σ̂z ⊗ σ̂x|ψ⟩ = 0 .

a. The choice of the basis sets z as the quantization axis for which the Pauli matrices
are defined. We consider an arbitrary projection axis given by the vector |ϑ, φ⟩. From
now on dropping the subscript z, using the Pauli matrix rules, it is easy to see,

⟨ϑ, φ|ˆ⃗σ|ϑ, φ⟩ = Rz(φ)Ry(ϑ)êz =



sinϑ cosφ

sinϑ sinφ

cosϑ


 = êϑ,φ .

Likewise,

⟨ϑ′, φ′|ˆ⃗σ · êϑ,φ|ϑ′, φ′⟩

=
(
cos ϑ

′

2
⟨+|+ e−ıφ

′
sin ϑ′

2
⟨−|
)
(σ̂x sinϑ cosφ+ σ̂y sinϑ sinφ+ σ̂z cosϑ)

(
cos ϑ

′

2
|+⟩+ eıφ

′
sin ϑ′

2
|−⟩
)

= êϑ,φ · êϑ′,φ′ .

Also,

|π−ϑ,−φ⟩ = cos π−ϑ2 |+⟩+e−ıφ sin π−ϑ
2 |−⟩ = sin ϑ

2 |+⟩+e−ıφ cos ϑ2 |−⟩ = e−ıφσ̂x|ϑ, φ⟩ ,

and,
σ̂zσ̂yσ̂x|ϑ, φ⟩ = σ̂zσ̂yσ̂x

(
cos ϑ2 |+⟩+ eıφ sin ϑ

2 |−⟩
)
= −ı|ϑ, φ⟩ .

b. The correlations are,

⟨ψ|ˆ⃗σ · êϑ,φ ⊗ ˆ⃗σ · ê′ϑ,φ)|ψ⟩

= ⟨ψ|


σ̂x ⊗ σ̂x sinϑ cosφ sinϑ′ cosφ′ + σ̂x ⊗ σ̂y sinϑ cosφ sinϑ′ sinφ′

+σ̂x ⊗ σ̂z sinϑ cosφ cosϑ′ + σ̂y ⊗ σ̂x sinϑ sinφ sinϑ′ cosφ′

+σ̂y ⊗ σ̂y sinϑ sinφ sinϑ′ sinφ′ + σ̂y ⊗ σ̂z sinϑ sinφ cosϑ′

+σ̂z ⊗ σ̂x cosϑ sinϑ′ cosφ′ + σ̂z ⊗ σ̂y cosϑ sinϑ′ sinφ′
+σ̂z ⊗ σ̂z cosϑ cosϑ′

 |ψ⟩

= −

sinϑ cosφ

sinϑ sinφ

cosϑ


sinϑ′ cosφ′

sinϑ′ sinφ′

cosϑ′

 = −êϑ,φ · ê′ϑ,φ = − cos∡(êϑ,φ, ê
′
ϑ,φ) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell04.pdf
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41.4.4.5 Ex: Entanglement

Upon detecting the polarization of one photon in an entangled photon pair the po-
larization of the other photon gets determined. Does this lead to a faster than light
communication? Justify your answer. How would you demonstrate the no-cloning
theorem from the assumption that relativistic causality should prevail.

Solution:

41.4.4.6 Ex: Entanglement

Three photon are prepared in the GHZ state defined as,

|ψ⟩ = 1√
3
(|h⟩1|h⟩2|h⟩3 + |v⟩1|v⟩2|v⟩3) .

Show that, when the components of polarization are measured along the axes that
have an angle of 45◦ with respect to the original axes, corresponding to the states,

|h′⟩ = 1√
2
(|h⟩+ |v⟩) and |v′⟩ = 1√

2
(|h⟩ − |v⟩) ,

one gets necessarily an even number of photons with vertical polarization v′.

Solution: Inserting the basis transform,

|h⟩ = 1√
2
(|h′⟩+ |v′⟩) , |v⟩ = 1√

2
(|h′⟩ − |v′⟩)

in to the GHZ state, we get,

|ψ⟩ = 1√
3

1√
2
3

[
(|h′⟩+ |v′⟩)⊗ (|h′⟩+ |v′⟩)⊗ (|h′⟩+ |v′⟩) + (|h′⟩ − |v′⟩)⊗ (|h′⟩ − |v′⟩)⊗ (|h′⟩ − |v′⟩)

]
= 1√

6

[
|h′⟩ ⊗ |h′⟩ ⊗ |h′⟩+ |h′⟩ ⊗ |v′⟩ ⊗ |v′⟩+ |v′⟩ ⊗ |v′⟩ ⊗ |h′⟩+ |v′⟩ ⊗ |h′⟩ ⊗ |v′⟩

]
,

which confirms the assertion.

41.4.4.7 Ex: NOON state

A NOON state is a quantum-mechanical many-body entangled state:

|ψNOON⟩ =
|N⟩a|0⟩b + eıNθ|0⟩a|N⟩b√

2
, (41.169)

which represents a superposition of N particles in mode a with zero particles in mode
b, and vice versa. Usually, the particles are photons, but in principle any bosonic field
can support NOON states.
Two-photon NOON states, where N = 2, can be created deterministically from two
identical photons and a 50:50 beam splitter. This is called the Hong-Ou-Mandel effect
in quantum optics. Three- and four-photon NOON states cannot be created deter-
ministically from single-photon states, but they have been created probabilistically
via post-selection using spontaneous parametric down-conversion.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_EPRandBell07.pdf
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Solution: NOON states are an important concept in quantum metrology and quan-
tum sensing for their ability to make precision phase measurements when used in an
optical interferometer. For example, consider the observable,

A = |N, 0⟩⟨0, N |+ |0, N⟩⟨N, 0| , (41.170)

The expectation value of A for a system in a NOON state switches between +1 and −1
when the phase changes from 0 to π/N . Moreover, the error in the phase measurement
becomes,

∆θ =
∆A

|d⟨A⟩/dθ| =
1

N
. (41.171)

This is the so-called Heisenberg limit, and gives a quadratic improvement over the
standard quantum limit.

41.5 Creating quantum correlations

Since the experimental verification of Bell’s inequality [57] numerous ideas were pro-
posed for the creation and application of correlated states in distant particles. Real-
istic proposals on how to create such states are often based on a Jaynes-Cummings
type coupling between states of atomic excitation and the degrees of freedom of a
harmonic oscillator. The Jaynes-Cummings dynamics has been extensively studied
in micromasers, where the non-resonant interaction of an atomic transition with the
TEM00 mode of a stored radiation field generates quantum coherences. In very high
finesse cavities, light field states with sub-Poissonian photon statistics can be gener-
ated and stored for macroscopic times, and schemes for the creation of Fock states
and Schrödinger cat states were proposed and tested. Furthermore, the electronic ex-
citation states of atoms successively traversing a micromaser can be correlated under
suitable conditions. The availability of fundamental techniques motivated proposals
for the investigation of phenomena such as EPR correlations, quantum teleportation,
and quantum switching [382]. On the other hand, quantum coherences are very fragile
to dissipation and rapidly decay when exposed to perturbations.

Jaynes-Cummings type dynamics can also be realized with a single ion stored in a
Paul trap, where the interaction of its mechanical motion with an electronic transition
[157] can induce very stable quantum coherences in the vibrational degrees of freedom.
Schrödinger cat states have already been demonstrated in this system [866], as well
as fundamental parts of a quantum computer, the quantum controlled not gate [866]
and the quantum phase gate [1320]. In Sec. 41.5.1 we present a possible extension of
these ideas to several atoms in a collective Jaynes-Cummings type interaction (also
called Tavis-Cummings model) with a single harmonic oscillator mode.

In order to correlate particles, they must be able to exchange information, that is,
they must interact in some way. One method uses ions trapped in a linear Paul trap,
where they form a straight chain, individually driven by laser beams and coupled to
each other via their vibrational degrees of freedom mediated through Coulomb repul-
sion [268]. We present this idea in Sec. 41.5.2. Such scenarios have been implemented
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to create the first quantum computers. Another way consists in trapping neutral
atoms in a dual optical lattice and let them undergo controlled collisions [661], as will
be discussed in Sec. 41.5.3.

Alternative approaches to realizing quantum gates use dipole-dipole interactions
[194], conditional Raman adiabatic passages by laser-induced excitation of interatomic
dipole-dipole interactions [823], or interactions between permanent dipoles of atoms
in Rydberg states [662] 24

41.5.1 Correlating atoms in the Jaynes-Cummings model

In Sec. 35.4 we showed already that the Jaynes-Cummings model is able to perform
coherent operations on a two-level system –which from now on we will call qubit–,
such as the population inversion (NOT-gate) and the controlled dephasing of an ex-
cited dipole moment (phase gate). These operations are fundamental for applications
in quantum information, however, we still lack essential ingredients allowing us to
entangle states of two, three or more qubits in order to perform a quantum register of
qubits. Once these register are realized, we must define coherent quantum operations
called quantum gates.

41.5.1.1 Tavis-Cummings model for 2 atoms

In Sec. 35.4 we showed, how a Jaynes-Cummings interaction between an atom and
a radiation field can exchange quantum correlations. It is reasonable to expect that,
when we have two (or more) atoms interacting with the same radiation field, we can
exchange correlations between atoms via the field. This would allow the implemen-
tation of entanglement protocols and quantum gates. We will disregard spontaneous
processes, such that all couplings are then coherent and the processes reversible.

In Sec. 23.3.9 we learned, how to span a Hilbert space of various particles. We
will now apply these notions in the scope of generalizing the Jaynes-Cummings model
to two atoms interacting with the same optical mode, without spontaneous decay
processes considered. The system is often referred to as the Tavis-Cummings model.
The Hamiltonian of the system, which consists of two non-interacting atoms, both
coupled in the same optical mode, is,

Ĥ = ωâ†â+
∑

i=1,2

ωai(σ̂
+
i σ̂
−
i − 1

2 ) +
∑

i=1,2

1
2gi(t)(âσ̂

+
i + â+σ̂−i ) . (41.172)

The suffix denotes the individual atoms. Note that the coupling constant gi(t) can
be considered as time dependent, which may be useful for modeling radiation pulse
envelopes. In matrix representation the Hamiltonian acting on the subspace of n
photons is,

|ψ⟩ =
∑

n




c11 n+1

c12 n

c21 n

c22 n−1


 |n⟩ where cij ≡1 ⟨j|2⟨i|⟨n|ψ⟩ (41.173)

24A system to create quantum correlations is the optical parametric oscillator (OPO).
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for example, ⟨n| ⊗ ⟨1| ⊗ ⟨1| = ⟨n|(1 0 0 0), ⟨n| ⊗ ⟨2| ⊗ ⟨1| = ⟨n|(0 1 0 0), and so on.
The atomic transition operators are generalized to,

σ̂−1 =
∑

n

|n⟩σ̂− ⊗ I⟨n| =
∑

n

|n⟩




1

1

0

0


 ⟨n| (41.174)

σ̂−2 =
∑

n

|n⟩I⊗ σ̂−⟨n| =
∑

n

|n⟩




1

0

1

0


 ⟨n| , etc. .

The Hamiltonian is, on this basis,

Ĥ =
∑
n

|n⟩


nω − ωa1

2
− ωa2

2

nω − ωa1
2

+ ωa2
2

nω + ωa1
2
− ωa2

2

nω + ωa1
2

+ ωa2
2

 ⟨n|

+
∑
n

|n− 1⟩√n


0

g2

g1

0 g1 g2 0

 ⟨n|+∑
n

|n+ 1⟩
√
n+ 1


0 g2 g1 0

g1

g2

0

 ⟨n| .
(41.175)

Now, we can rearrange the subspaces and finally get,

Ĥ =
∑
n

|n⟩


(n+ 1)ω − ωa1

2
− ωa2

2
g1
√
n g2

√
n

g1
√
n nω + ωa1

2
− ωa2

2
g2
√
n+ 1

g2
√
n nω − ωa1

2
+ ωa2

2
g1
√
n+ 1

g2
√
n+ 1 g1

√
n+ 1 (n− 1)ω + ωa1

2
+ ωa2

2

 ⟨n| .
(41.176)

The density operator for the subspace is,

ρ̂ =




|n+ 1⟩|1⟩1|1⟩2 1⟨1|2⟨1|⟨n+ 1| |n+ 1⟩|1⟩1|1⟩2 1⟨1|2⟨2|⟨n| ...

|n⟩|1⟩2|1⟩2 1⟨1|2⟨1|⟨n+ 1| ...

|n⟩|2⟩1|2⟩2 1⟨1|2⟨1|⟨n+ 1| ...

|n− 1⟩|2⟩1|2⟩2 1⟨1|2⟨1|⟨n+ 1| ...


 , (41.177)

if the basis is again defined by equation (41.174).

41.5.1.2 Resonant excitation

To discuss the case of resonant excitation, ∆1 = ∆2 = 0, let us assume identical
atoms, ωa1 = ωa2 ≡ ω0, and equal Rabi frequencies, g1 = g2 ≡ g. Assuming dipolarly
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forbidden strongly saturated transition, n = α2 for all n, the Hamiltonian simplifies
considerably,

Ĥn =




nω g
√
n g

√
n

g
√
n nω g

√
n

g
√
n nω g

√
n

g
√
n g

√
n nω


 ,

the eigenvalues can be calculated and the time evolution matrix becomes, using the
abbreviation φ ≡ gt√n,

e−ıĤnt = e−ıĤ
A1
n te−ıĤ

A2
n t =




cos2 φ ı sinφ cosφ ı sinφ cosφ − sin2 φ

ı sinφ cosφ cos2 φ − sin2 φ ı sinφ cosφ

ı sinφ cosφ − sin2 φ cos2 φ ı sinφ cosφ

− sin2 φ ı sinφ cosφ ı sinφ cosφ cos2 φ


 .

(41.178)
For a π-pulse, we get,

e−ıĤnt π/2−→ 1
2




1 ı ı −1
ı 1 −1 ı

ı −1 1 ı

−1 ı ı 1


 . (41.179)

It is interesting to note that some superposition states completely separate from
the optical mode,

e−ıĤnt




0

1

−1
0


 =




0

1

−1
0


 and e−ıĤnt




1

0

0

−1


 =




1

0

0

−1


 . (41.180)

41.5.1.3 Dispersive excitation

In the dispersive limit, ∆i ≫ n1/2gi, the dynamic evolution can be evaluated from a
first order perturbative approach, analogous to the one already made for the standard
JCM model. In this approach, the off-diagonal matrix elements (41.176) generate a
light-shift of the energy levels appearing on the diagonal of the approximated matrix.

Using the abbreviation Λi ≡ g2i /∆i, the temporal evolution matrix e−ıĤnt can now
be evaluated from,

Ĥn = −∆1 +∆2

2
I4 (41.181)

+


nΛ1 + nΛ2

−nΛ1 + (n+ 1)Λ2

(n+ 1)Λ1 − nΛ2

−(n+ 1)Λ1 − (n+ 1)Λ2

 .
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We now assume that the light field only interacts with the upper level, as in the case
of the dual resonance configuration studied in Exc. 35.4.5.4. This can be taken into
account, neglecting those terms in the matrix (41.180) rotating with a positive Rabi
frequency. Letting, moreover, ∆1 = ∆2 and Ω1 = Ω2, we obtain,

Ĥ(1)
n =




0

−nΛ
−nΛ

−2(n+ 1)Λ


 . (41.182)

Thus, the temporal evolution is,

e−ıĤnt =




1

e−nΛ

e−nΛ

e−2(n+1)Λ


 . (41.183)

For Λ = π,

e−ıĤnt π−→




1

−1
−1

1


 . (41.184)

41.5.1.4 Bloch vector and the Q-function in the JC model with 2 atoms

Despite the more complex structure of the Hilbert space, the Bloch vectors of the
individual atoms and the Q-function can be evaluated in analogy to Sec. 35.4.2. The
Bloch vector is,

ρ⃗A1 = 1√
2




√
2 Re ρ12(A1)√
2 Im ρ12(A1)

ρ22(A1) − ρ11(A1)


 where ρij(A1) = Tr |i⟩1⟨j|ψ⟩⟨ψ| . (41.185)

In particular we have,

ρ22(A1) =
∑

i,j,n

2⟨j|1⟨i|⟨n|1⟩1⟨2|ψ⟩⟨ψ|n⟩|i⟩1|j⟩2 (41.186)

=
∑

j,n

2⟨j|1⟨2|⟨n|ψ⟩⟨ψ|n⟩|1⟩1|j⟩2

=
∑

n,m,m′

⟨n|
(
c2,1,m|m⟩⟨m′ + 1|c∗1,1,m′+1 + c2,2,m|m′ − 1⟩⟨m′|c∗1,2,m′⟩

)
|n⟩

=
∑

n

(c∗1,1,nc2,1,n + c∗1,2,nc2,2,n) .
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Summarizing,

ρ12(Ai ̸=Aj) =
∑
n(c
∗
1,1,ncj,i,n + c∗i,j,nc2,2,n)

ρ11(Ai ̸=Aj) =
∑
n(|c1,1,n|2 + |ci,j,n|2)

ρ22(Ai ̸=Aj) =
∑
n(|cj,i,n|2 + |c2,2,n|2)

. (41.187)

The function Q(α) for the JC dynamics of 2 atoms is,

Q(α) = 1
π
⟨α|ρ̂field|α⟩ = 1

π
⟨α|
∑
i,j

2⟨j|1⟨i|ψ⟩⟨ψ|i⟩1|j⟩2|α⟩ (41.188)

= 1
π
⟨α|
∑
m,n

(c∗2,2,m−1c2,2,n−1|n− 1⟩⟨m− 1|+ c∗1,2,mc1,2,n|n⟩⟨m|

+ c∗2,1,mc2,1,n|n⟩⟨m|+ c∗1,1,m+1c1,1,n+1|n+ 1⟩⟨m+ 1|⟩)|n⟩|α⟩

= e−|α|
2

[∣∣∣∣∣∑
n

c2,2,n−1
αn√
n!

∣∣∣∣∣
2

+

∣∣∣∣∣∑
n

c1,2,n
αn√
n!

∣∣∣∣∣
2

+

∣∣∣∣∣∑
n

c2,1,n
αn√
n!

∣∣∣∣∣
2

+

∣∣∣∣∣∑
n

c2,2,n+1
αn√
n!

∣∣∣∣∣
2]

.

41.5.1.5 Correlating 2 atoms in the JC model

The investigations of the last section can be applied to describe the transfer of quan-
tum coherence from one atom to another. The size of our system is now increased
by the additional degrees of freedom, provided by internal states of the second atom.
A suitable basis was defined in equation (23.124). Now, we imagine the following
Gedankenexperiment: Starting from the initial condition that two adjacent atoms
are in their respective electronic ground states, we assume a microwave π/2-pulse to
create simultaneously, but independently on both atoms, a superposition of the HFS
levels. Then, a non-resonant optical π-pulse interacts with the upper HFS level of
the first atom |1⟩A1, and afterward the second atom |2⟩A2. Instead of reducing the
atomic states and preparing a Schrödinger cat state in the optical field, (as we did
in Sec. 35.4), we now project the field state onto the coherent state |β⟩ and leave
the atoms in a correlated state. The total procedure can be resumed by tracing the
evolution of the whole state in the following suggestive way [64, 509]:




|β⟩
0

0

0




π/2 microwave
↷ 1

4




1

ı

ı

−1


 |β⟩

π opt+atom1
↷ 1

4




|β⟩
−ı| − β⟩
ı|β⟩
| − β⟩




π opt+atom2
↷ 1

4




|β⟩
−ı| − β⟩
−ı| − β⟩
−|β⟩




π/2 microwave
↷ 1

4




1

0

0

1


 |β⟩+

1

4




1

0

0

−1


 | − β⟩

reduction↷ 1
2




1

0

0

−1


 |β⟩ . (41.189)

If this procedure is extended to an arbitrary number of atoms, obviously all atoms
being excited by the same optical mode before its projection in a coherent state |β⟩
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are included in the entangled state,

|ψ⟩ = 1
4



1

:

1


 |β⟩+ 1

4




1

:

−1


 | − β⟩ . (41.190)

Finally, the correlation of the spin orientation of the atoms must be probed with
additional laser light fields, which are selectively irradiated onto the atoms and res-
onantly tuned to a rapidly decaying optical transition. The states correlated in this
way show a relatively low order entanglement, the von Neumann information entropy
only being S′ = −⟨log2 ρ⟩ = N − 1.

Re ρ12
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−
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Figure 41.26: (code) Evolution of the state during a Jaynes-Cummings interaction with 2

atoms: (a) Bloch vector for the two atoms, (b) time evolution of the coherence ρ12 showing

the phenomenon of collapse and revival, (c) distribution of photons, and (d) Q(α)-function.

In a matricial notation the entangling gate can be expressed defining the state,

⟨ψ| =
(
c+β11 c+β12 c+β21 c+β22 c−β11 c−β12 c−β21 c−β22

)
(41.191)

= ⟨β| ⊗ ⟨atom1| ⊗ ⟨atom2| .

In this basis, the dispersive π-pulse is represented by,

Udisp ≡



1

−1
−1

1

1

−1
−1

1


. (41.192)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Optibits.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Optibits.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_Optibits.m


41.5. CREATING QUANTUM CORRELATIONS 2381

A resonant π/2-pulse acting on the both atoms simultaneously does,

Ureson ≡ I⊗ U (2)

π/2 ⊗ I = 1√
2



1 ı ı −1
ı 1 −1 ı

ı −1 1 ı

−1 ı ı 1

1 ı ı −1
ı 1 −1 ı

ı −1 1 ı

−1 ı ı 1


. (41.193)

Now, concatenating and projecting on the Glauber state |β⟩ we obtain, a posteriori,
a unitary entangling gate,

Uentangl ≡ Trβ |β⟩⟨β|UresonUdispUreson|β⟩⟨β| = 1√
2




1 0 0 −1
0 −1 −1 0

0 −1 −1 0

−1 0 0 1


 (41.194)

such that




1

0

0

−1


 = Uentangl




1

0

0

0


 .

41.5.2 Phononic quantum gate

The normal mode coupling can be used to create quantum entanglement. A suggested
procedure to correlate two atoms ’1’ and ’2’ is shown in Fig. 41.27 [269, 606]. The
atoms are regarded as qubits with the possible states of excitation |g⟩ and |e⟩. Ad-
ditionally, the atoms are trapped (either they are ions in a linear ion trap or atoms
in standing light wave sustained by a ring cavity). The are assumed to be cooled to
the vibrational ground state |0⟩, from which they can be coherently excited to the
second collective vibrational mode |1⟩ by means of a Raman transition, as illustrated
in Fig. 41.27.

The sequence reads,

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩
|e1⟩|g2⟩|0⟩
|e1⟩|e2⟩|0⟩

step 1
↷

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩

−ı|g1⟩|g2⟩|1⟩
−ı|g1⟩|e2⟩|1⟩

step 2
↷

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩

+ı|g1⟩|g2⟩|1⟩
−ı|g1⟩|e2⟩|1⟩

step 3
↷

|g1⟩|g2⟩|0⟩
|g1⟩|e2⟩|0⟩
|e1⟩|g2⟩|0⟩
−|e1⟩|e2⟩|0⟩

.

(41.195)
Using the tensor notation |ψ⟩ ⊗ |ψ⟩ ≡ |ψ1⟩|ψ2⟩ and introducing a matrix notation by
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Figure 41.27: Scheme for an XOR-gate in an ion trap or a ring-cavity (see text for expla-
nation). The four possible initial collective states respond differently to a predefined laser
pulse sequence. Possible transitions are represented by solid lines, impossible transitions by
dashed lines. |a⟩ is an auxiliary excited level.

defining a basis as,

|g⟩⊗ |g⟩ =




1

0

0

0


 , |g⟩⊗ |e⟩ =




0

1

0

0


 , |e⟩⊗ |g⟩ =




0

0

1

0


 , |e⟩⊗ |e⟩ =




0

0

0

1


 , (41.196)

we can set up the truth table for this gate, also known as Cirac-Zoller gate, as,

|ψ⟩ |ψ⟩ |ψ⟩ ⊗ |ψ⟩
|g⟩ |g⟩ |g⟩ ⊗ |g⟩ 1

|g⟩ |e⟩ |g⟩ ⊗ |e⟩ 1

|e⟩ |g⟩ |e⟩ ⊗ |g⟩ 1

|e⟩ |e⟩ −|e⟩ ⊗ |e⟩ −1

=⇒ UCZ =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 . (41.197)

We now define a new basis for the second atom only via |a2⟩ = 1√
2
(|g2⟩+ |e2⟩) and

|b2⟩ = 1√
2
(|g2⟩ − |e2⟩). The basis transform corresponds to,




|g⟩ ⊗ |a⟩
|g⟩ ⊗ |b⟩
|g⟩ ⊗ |a⟩
|g⟩ ⊗ |b⟩


 = 1√

2
I⊗H




|g⟩ ⊗ |g⟩
|g⟩ ⊗ |e⟩
|g⟩ ⊗ |g⟩
|g⟩ ⊗ |e⟩


 where I⊗H = 1√

2




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1




(41.198)
is the Hadamard gate applied to the second qubit. Finally, we obtain the controlled
NOT gate,

UXOR = (I⊗H)UCZ(I⊗H)−1 =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 . (41.199)
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In particular, if |ψ1⟩ is initially in a superposition state, the states |ψ1⟩ and |ψ2⟩ end
up entangled,

UXOR(|g⟩+ |e⟩)⊗ I = 1√
2
(|g⟩ ⊗ |g⟩+ |e⟩ ⊗ |e⟩) . (41.200)

41.5.3 Quantum gates via controlled collisions

The proposed conditional quantum operation is based on a conditional collisional
phase shift, the condition being that the atoms are in a particular state of excitation.
In a suggestive notation for the Bloch vector of a particle subject to a resonant
radiation pulse, the interaction is described by,

| ↓⟩ π/2−→ | ↓⟩+ ı| ↑⟩ π/2−→ | ↑⟩ π/2−→ | ↓⟩ − ı| ↑⟩ π/2−→ | ↓⟩ . (41.201)

Jaksch demonstrated the following phase gate,

↓↓
↑↓
↓↑
↑↑

−→

↓↓
− ↓↑
↑↓
↑↑

. (41.202)

This gate is equivalent to the XOR port for the qubits defined by ↓ and ↓ ± ↑, since,

↓ (↓ ± ↑)
↑ (↓ ± ↑) −→

↓ (↓ ∓ ↑)
↑ (↓ ± ↑) . (41.203)

41.5.4 Exercises

41.5.4.1 Ex: Generating a Bell state

Show that the operation
c

X01(H0 ⊗ I), where H0 is the Hadamard gate acting on the

first qu-bit and
c

X01 the controlled NOT acting on the second qubit, applied to the
2-qubit ground state generates entanglement.

Solution: We find,

c

X01(H0 ⊗ I) =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




[
1√
2

(
1 1

1 −1

)
⊗
(
1 0

0 1

)]



1

0

0

0


 = 1√

2




1

0

0

1


 .

41.6 Quantum gates

In quantum information we use the notions introduced in the preceding sections and
formalize the calculation. In this section, we present a brief formal introduction to

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_MakeEntangle01.pdf
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the field of quantum computation with qubit matrices. The formalism is abstract, but
we may keep in mind a chain of entangled ions confined in a linear Paul trap. We will
show how the electronic states of the ions are correlated to form a single collective
state, and how quantum gates can be realized on such correlated particles. With three
ions, an arbitrary quantum gate can be implemented, which includes and generalizes
the three-bit Toffoli gate.

Example 264 (Boolean versus linear algebra): The mathematical formal-

ism underlying classical computing is the Boolean algebra, while the formalism

underlying quantum computing is the linear algebra. It is important to stress

that everything you can do on a classical computer, can you do on a quantum

computer, and vice versa. The question is simply whether you can do it in due

time.

To construct a quantum gate, we need at least two qubits spanning a 4-dimensional
Hilbert space, since H2 ⊗H2 and H1 ⊗H4 are isomorph, that is,

|ε⟩0|µ⟩1 = (|0⟩0 + ı|1⟩0)(|0⟩1 + ı|1⟩1) =




|0⟩0|0⟩1
ı|0⟩0|1⟩1
ı|1⟩0|0⟩1
−|1⟩0|1⟩1




≜ |0⟩0|εµ⟩1 = |00⟩1 + ı|01⟩1 + ı|10⟩1 − |11⟩1 =




|00⟩1
ı|01⟩1
ı|10⟩1
−|11⟩1


 .

(41.204)

A presentation on the subject is available at (watch talk). See also the websites IBM
Circuit Composer, Qiskit, Cirq, and Pennylane.

41.6.1 The qubit

As we have seen above, the two principle ways a light mode acts on a two-level
system are the resonant interaction and the dispersive interaction. From the Jaynes-
Cummings model (35.125) and (35.132),

R(τ) ≡
(
cos π2 τ ı sin π

2 τ

ı sin π
2 τ cos π2 τ

)
τ→1−→

(
ı

ı

)
,

D(τ) ≡
(
eıπτ 0

0 1

)
τ→1−→

(
−1

1

)
.

(41.205)

These two gates are particular cases of the most fundamental single qubit quantum
gate, which can be written as,

U3(ϑ, φ, λ) =

(
cos ϑ2 −eıλ sin ϑ

2

eıφ sin ϑ
2 eıλ+ıφ cos ϑ2

)
, (41.206)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumGates
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://qiskit.org/
https://quantumai.google/cirq
https://pennylane.ai/
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which is a unitary operation since detU3(ϑ, φ, λ) = eı(λ+φ). Special cases are the
Hadamard gate,

H ≡ U3(
π
2 , 0, π) =

1√
2

(
1 1

1 −1

)
, (41.207)

and the phase gate,

U1(φ) ≡ U3(0, φ, 0) =

(
1 0

0 eıφ

)
. (41.208)

Phase rotations about particular angles receive specific names. For example,

Z ≡ −σ̂z = U1(π) = | − q0⟩⟨q0| , (41.209)

is simply the negative Pauli z-matrix defined in (23.47). The negation in the Hilbert
space H2,

X ≡ σ̂x = U3(π, 0, π) = |q̄0⟩⟨q0| , (41.210)

is simply the Pauli x-matrix.
The general state of a qubit is a quantum superposition in the Hilbert space H2,

|ε⟩ = α|0⟩+ ıβ|1⟩ =
(
α

ıβ

)
. (41.211)

The possible outcomes of a measurement of its state are represented by a classical
truth table,

|q0⟩
|0⟩
|1⟩

, for example |01⟩ =
(
0

1

)
. (41.212)

The only difference is, that now the possible values are not restricted to the binaries
0 or 1, but can be anything between 0 and 1, provide the total wavefunction stays
normalized.

Analogously to to classical logic circuits, which can be represented by concatenated
symbols, quantum circuits can be composed by concatenations of unitary operations.
This is illustrated in Fig. 41.28.

41.6.2 Quantum gates of 2 qubits, the ’controlled NOT’ gate

We can generalize the single-qubit algebra to arbitrary registers using the direct sum
and the external product defined in (23.124) and (23.126),

|q1 q0⟩
|0 0⟩
|0 1⟩
|1 0⟩
|1 1⟩

, for example |01⟩ =




0

1

0

0


 . (41.213)
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Figure 41.28: (a) Common symbols for fundamental classical gates and (b) for quantum
gates. (c) Example of a quantum circuit generating Bell type entanglement.

Single qubit gates can be embedded in multi qubit registers. For example, the negation
of ’NOT’ gate in H4 can be applied either to the first or the second qubit 25,

X0 =̂ I⊗ X̂ = |q1, q̄0⟩⟨q1, q0|

X1 =̂ X̂ ⊗ I = |q̄1, q0⟩⟨q1, q0|
. (41.214)

The most interesting two-qubit quantum gate is the ’controlled NOT’ gate or antiva-
lence, which we will now discuss in detail. This gate is originally defined on H2⊗H2.
The quantum operation is implemented by first going to the Hilbert space H1 ⊗H4,
applying the unitary transform,

I⊕X =

(
I2

X

)
, (41.215)

where X has been defined in Eq. (41.210), and finally returning to H2 ⊗H2:

|ε⟩0|µ⟩1 ≜ |0⟩0|εµ⟩1 N̂−→ δε=0|ε⟩0|µ⟩1 + δε=1|ε⟩1
(
1 ı

ı 1

)2

|µ⟩1 ≜ |ε⟩0|ε⊕ µ⟩1
|0⟩0|0⟩1
ı|0⟩0|1⟩1
ı|1⟩0|0⟩1
−|1⟩0|1⟩1

 ≜


|00⟩1
ı|01⟩1
ı|10⟩1
−|11⟩1

 N̂−→


|00⟩1
ı|01⟩1
ı|11⟩1
−|10⟩1

 ≜


|0⟩0|0⟩1
ı|0⟩0|1⟩1
ı|1⟩0|1⟩1
−|1⟩0|0⟩1

 .

(41.216)

25Note that we call ’first’ the rightmost qubit.
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The short-hand notation of the ’controlled NOT’ operation on H4 can be written as,

c

X10 =̂ I⊕X = |q1, q1 ⊕ q0⟩⟨q1, q0|
c

X01 =̂ S(I⊕X)S = |q0 ⊕ q1, q0⟩⟨q1, q0|
. (41.217)

where the ’SWAP’ operator S has been defined in (23.130). When the qubits addressed
by a gate are not identified from their position in the tensor product, an index at the
gate symbol indicates which qubits are involved. For example, X0 inverts the first

qubit q0, and
c

X0→1 =
c

X01 controls the state of the second qubit q1 by the first one.

Example 265 (Controlled NOT gate): We can easily verify,

c

X10 = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗X (41.218)

=

(
1 0

0 0

)
⊗
(
1 0

0 1

)
+

(
0 0

0 1

)
⊗
(
0 1

1 0

)
=

(
I 0

0 X

)
,

and

c

X01 = I| ⊗ |0⟩⟨0|+X ⊗ |1⟩⟨1| (41.219)

=

(
1 0

0 1

)
⊗
(
1 0

0 0

)
+

(
0 1

1 0

)
⊗
(
0 0

0 1

)
= S

c

X10S .

41.6.3 Fundamental and universal quantum gates of 3 qubits
and more

We now consider three qubits in H8 ≡ H2 ⊗H2 ⊗H2. The truth table has the shape,

|q2 q1 q0⟩
|0 0 0⟩
|0 0 1⟩
|0 1 0⟩
|0 1 1⟩
|1 0 0⟩
|1 0 1⟩
|1 1 0⟩
|1 1 1⟩

, for example |010⟩ =



0

0

1

0

0

0

0

0


. (41.220)

We choose I8 as the basis of H8. We assume that the number represented by the
state |q2, q1, q0⟩ is [q2q1q0]binary = [22q2 + 21q1 + 20q0]decimal.

The unitary transform implemented by a quantum gate can be understood as a
permutation of the basis vectors in the truth table. We can generalize the permutation
rules (23.130) to 3D Hilbert spaces H2 ⊗ H2 ⊗ H2, where M ⊗ N ⊗ R = S01(N ⊗
M ⊗ R)S01 = S12(M ⊗ R ⊗ N)S12 = S01(R ⊗ N ⊗M)S02, with the transformation
matrices,

S01 = I⊗ S , S12 = S⊗ I , S02 = S01S12S01 , (41.221)



2388 CHAPTER 41. CORRELATED ATOMS, ENTANGLEMENTANDQUANTUMGATES

where the operator S has again been taken from (23.130). In Exc. 41.6.6.4 we derive
the explicit matricial forms of Sij .

Examples of fundamental three-qubits gates are, in short notation, the negation
in H8,

X0 =̂ I⊗ I⊗X = |q2, q1, q̄0⟩⟨q2, q1, q0| (41.222)

X1 =̂ I⊗X ⊗ I = |q2, q̄1, q0⟩⟨q2, q1, q0|
X2 =̂ X ⊗ I⊗ I = |q̄2, q1, q0⟩⟨q2, q1, q0| ,

the antivalence,

c

X10 ≡ I⊗ (I⊕X) = |q2, q1, q1 ⊕ q0⟩⟨q2, q1, q0|
c

X01 ≡ S01
c

X10S01 = |q2, q0 ⊕ q1, q0⟩⟨q2, q1, q0|
c

X02 ≡ S12
c

X01S12 = |q0 ⊕ q2, q1, q0⟩⟨q2, q1, q0|
c

X20 ≡ S02
c

X02S02 = |q2, q1, q2 ⊕ q0⟩⟨q2, q1, q0|
c

X21 ≡ S02
c

X01S02 = |q2, q2 ⊕ q1, q0⟩⟨q2, q1, q0|
c

X12 ≡ S12
c

X21S12 = |q1 ⊕ q2, q1, q0⟩⟨q2, q1, q0| ,

(41.223)

from which we get explicitly, as verified in Exc. 41.6.6.5,

c

X10 =


I

X

I
X

 ,
c

X20 =


I

I
X

X

 ,
c

X21 =

I
I

X ⊗ I

 .

(41.224)

It is possible to show that all quantum logic gates can be reduced to a universal
so-called Toffoli gate [95],

H8 U−→ H8

|q2, q1, q0⟩ U−→ |q2, q1, (q2 ∧ q1)⊕ q0⟩
I8

U−→ U ,

(41.225)

or in short-hand notation,

cc

X210 = I⊕ I⊕X = |q2, q1, (q2 ∧ q1)⊕ q0⟩⟨q2, q1, q0| =
(
I6

σ̂x

)
, (41.226)

as will be shown in Exc. 41.6.6.6 and 41.6.6.7.

Obviously, to perform quantum calculations, we need at least two qubits and op-
erations acting simultaneous on both. Do the Excs. 41.6.6.8 to 41.6.6.9.
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gate symbol matrix

identity I U3(0, 0, 0)

inversion X = NOT σ̂x = U3(π, 0, π)

Pauli Y Y σ̂y = U3(π,
π
2 ,

π
2 )

Pauli Z Z σ̂z = U1(π)

S gate S σ̂z = U1(
π
2 )

T gate T σ̂z = U1(
π
4 )

Hadamard gate H 1√
2

(
1 1

1 −1

)

swap gate S = SWAP




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




controlled X
c

X = CX I⊕ σ̂x =

(
I2 0

0 σ̂x

)

controlled Z
c

Z = CZ I⊕ σ̂z =
(
I2 0

0 σ̂z

)

controlled H
c

H = CH I⊕H =

(
I2 0

0 H

)

Toffoli
cc

X = CCX I⊕ I⊕ σ̂x =

(
I6

σ̂x

)

Figure 41.29: Illustration of the possible states of a 5-qubit system.

Until now, we restricted to pure states |ψf ⟩ =
⊗

k[αk|0⟩k+βk|1⟩k] generated from
an initial eigenstate |ψi⟩ =

⊗
k |0⟩k by reversible quantum computing. The density

operator can then be written,

ρ̂ = |ψf ⟩⟨ψf | = U |ψi⟩⟨ψi|U† . (41.227)

In the next section, following up on Sec. 34.3.3, we will discuss how projective mea-
surements introduce irreversibility into the evolution of the density operator.
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41.6.4 State propagation and projective measurements

The measurement of a qubit projects the Hilbert space on its two possible outcomes.
For example, measuring the first out of three qubits means,

H⊗H⊗H measure−→
{
|0⟩ ⊗ H ⊗H
|1⟩ ⊗ H ⊗H . (41.228)

We consider a density matrix ρ̂ operating on the entire Hilbert space and define
projectors,

P̂
(n)
j = I⊗ ...⊗ |n⟩j⟨n| ⊗ ...⊗ I with n = 0, 1 . (41.229)

that, applied to a specific qubit qj , project its state onto the eigenstate |0⟩ or |1⟩,
respectively. A projective measurement of the j-th qubit with two possible outcomes

|qj⟩ = |0⟩, |1⟩ with the respective probabilities p
(0)
j , p

(1)
j , generates the mixed states

reduced density operator,

ρ̂redj =
∑

n=0,1

p
(n)
j

P̂
(n)
j ρ̂P̂

(n)
j

Tr ρ̂P̂
(n)
j

. (41.230)

Note that, a priori, ρ̂redj has the same rank as ρ̂, but a more diagonal structure, since
some coherences have been traced out.

41.6.4.1 Quantum state tomography

Any density operator of a pure or mixed state of an individual qubit can be expanded
as,

ρ̂j =
1
2

(
I+ aj σ̂

x
j + bj σ̂

y
j + cj σ̂

z
j

)
= 1

2

(
1 + cj aj − ıbj
aj + ıbj 1− cj

)
, (41.231)

where,
σ̂kj = I⊗ ...⊗ σ̂k ⊗ ...⊗ I , (41.232)

and σ̂k are the Pauli matrices. The parameters aj , bj , and cj can be determined by
measurements,

⟨ˆ⃗σj⟩ = Tr ρ̂ˆ⃗σj =



aj

bj

cj


 , (41.233)

where ρ̂ is the density matrix of the whole system.

41.6.4.2 Measurements on a single qubit

A single qubit |ψ⟩ = α|0⟩ + β|1⟩, normalized as |α|2 + |β|2 = 1, is described by the
density operator,

ρ̂ =

(
ρ00 ρ01

ρ10 ρ11

)
= |ψ⟩⟨ψ| =

(
|α|2 αβ∗

α∗β |β|2

)
. (41.234)
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A projective measurement of the qubit with two possible outcomes, |q⟩ = |0⟩, |1⟩ with
the respective probabilities p(0) = |α|2 and p(1) = |β|2, generates the mixed states
reduced density operator,

ρ̂red = p(0)
|0⟩⟨0|ρ̂|0⟩⟨0|
Tr ρ̂|0⟩⟨0| + p(1)

|1⟩⟨1|ρ̂|1⟩⟨1|
Tr ρ̂|1⟩⟨1| = |α|2|0⟩⟨0|+ |β|2|1⟩⟨1| . (41.235)

Some physical processes may not only project the density operator onto a specific
basis, but onto a particular eigenstate,

ρ̂ −→ ρ̂prj = |0⟩⟨0|ρ̂|0⟩⟨0| . (41.236)

Example 266 (Quantum Zeno effect on a single qubit): As an example, let
us express the quantum Zeno effect in quantum computing language. Starting
from a two-level system in its ground state,

ρ̂in =

(
1 0

0 0

)
, U3(ϑ, 0, 0) =

(
cosϑ − sinϑ

sinϑ cosϑ

)
,

we perform small rotations,

ρ̂rot = U3(ϑ, 0, 0)ρ̂
inU3(ϑ, 0, 0)

† =

(
cos2 ϑ cosϑ sinϑ

cosϑ sinϑ sin2 ϑ

)(
1 0

0 0

)
,

before measuring the system,

ρ̂red = cos2 ϑ
|0⟩⟨0|ρ̂rot|0⟩⟨0|
Tr ρ̂rot|0⟩⟨0| + sin2 ϑ

|1⟩⟨1|ρ̂rot|1⟩⟨1|
Tr ρ̂rot|1⟩⟨1| =

(
cos2 ϑ 0

0 sin2 ϑ

)
.

Discarding the possibility that the system be excited, we project it system onto
the ground state,

ρ̂fin = |0⟩⟨0|ρ̂red|0⟩⟨0| = |0⟩⟨0|U3(ϑ, 0, 0)ρ̂
inU3(ϑ, 0, 0)

†|0⟩⟨0| =
(
cos2 ϑ 0

0 0

)
.

On the other hand, repeating the procedure n times with ϑ = π
2n

and n → ∞,
we find,

ρ̂fin = lim
n→∞

(
|0⟩⟨0|U3(

π
2n
, 0, 0)ρ̂inU3(

π
2n
, 0, 0)†|0⟩⟨0|

)n
=

(
limn→∞ cos2n π

2n
0

0 0

)
= ρ̂in .

That is, the evolution of the system is frozen by too many measurements.

Figure 41.30: Quantum Zeno effect on a single qubit.
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41.6.4.3 Measurements in two qubit systems

Let us now consider a two-qubit system q1⊗q0 described by the initial density matrix,

ρ̂ = ρ̂1 ⊗ ρ̂0 =

(
|α1|2 α1β

∗
1

α∗1β1 |β1|2

)
⊗
(
|α0|2 α0β

∗
0

α∗0β0 |β0|2

)
(41.237)

=

(
(ρ1)00 (ρ1)01

(ρ1)10 (ρ1)1

)
⊗
(
(ρ0)00 (ρ0)01

(ρ0)10 (ρ0)1

)
=




ρ00⊗00 ρ00⊗01 ρ10⊗00 ρ01⊗01
ρ00⊗10 ρ00⊗11 ρ01⊗10 ρ01⊗11
ρ10⊗00 ρ10⊗01 ρ11⊗00 ρ11⊗01
ρ10⊗10 ρ10⊗11 ρ11⊗10 ρ11⊗11


 ,

where we defined ρkl⊗mn ≡ (ρ1)kl(ρ0)mn. Projective measurements of qubit q1 with
two possible outcomes, |q1⟩ = |0⟩, |1⟩, with the respective probabilities p(0) = |α1|2
and p(1) = |β1|2, yields the reduced density operator,

ρ̂red1 = p(0)
[|0⟩⟨0| ⊗ I]ρ̂[|0⟩⟨0| ⊗ I]

Tr ρ̂[|0⟩⟨0| ⊗ I]
+ p(1)

[|1⟩⟨1| ⊗ I]ρ̂[|1⟩⟨1| ⊗ I]
Tr ρ̂[|1⟩⟨1| ⊗ I]

(41.238)

=
|α1|2

ρ00⊗00 + ρ01⊗01




ρ00⊗00 ρ00⊗01 0 0

ρ01⊗00 ρ01⊗01 0 0

0 0 0 0

0 0 0 0


+

|β1|2
ρ10,10 + ρ11,11




0 0 0 0

0 0 0 0

0 0 ρ10⊗10 ρ10⊗11
0 0 ρ11⊗10 ρ11⊗11


 .

The inversion of qubit q1 is,

⟨σ̂z1⟩ = Tr ρ̂ [σ̂z ⊗ I] = ρ00,00 + ρ01,01 − ρ10,10 − ρ11,11 . (41.239)

Figure 41.31: Projective measurement. After an operation U , two qubits remain in an
entangled state ρ̂. Measurement of qubit q1 reduces the state to ρ̂red, while transferring the
information to a classical channel c.

Example 267 (Measurements on disentangled qubits): As a particular
case, let us first consider two disentangled qubits |ψ⟩ = |q1⟩ ⊗ |q0⟩ = [α1|0⟩ +
β1|1⟩]⊗ [α0|0⟩+ β0|1⟩], such that,

ρ̂ =


α1α0

α1β0

β1α0

β1β0

(α∗1α∗0 α∗1β
∗
0 β∗1α

∗
0 β∗1β

∗
0

)
(41.240)

=


|α1|2|α0|2 |α1|α∗0β∗0 α1β

∗
1 |α0|2 α1β

∗
1α0β

∗
0

|α1|2α∗0β0 |α1|2|β0|2 α1β
∗
1α
∗
0β0 α1β

∗
1 |β0|2

α∗1β1|α0|2 β1α
∗
1α0β

∗
0 |β1|2|α0|2 |β1|2α0β

∗
0

α∗1β1α
∗
0β0 α∗1β1|β0|2 |β1|2α∗0β0 |β1|2|β0|2

 .
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A projective measurements of qubit q1 with two possible outcomes, |q1⟩ =
|0⟩1, |1⟩1 with the respective probabilities p0 = |α1|2 and p1 = |β1|2, yields
the reduced density operator,

ρ̂red1 = p(0)
[|0⟩⟨0| ⊗ I]ρ̂[|0⟩⟨0| ⊗ I]

Tr ρ̂[|0⟩⟨0| ⊗ I]
+ p(1)

[|1⟩⟨1| ⊗ I]ρ̂[|1⟩⟨1| ⊗ I]
Tr ρ̂[|1⟩⟨1| ⊗ I]

(41.241)

= |α1|2


|α0|2 α0β

∗
0 0 0

α∗0β0 |β0|2 0 0

0 0 0 0

0 0 0 0

+ |β1|2


0 0 0 0

0 0 0 0

0 0 |α0|2 α0β
∗
0

0 0 α∗0β0 |β0|2


= [|α1|2|0⟩⟨0|+ |β1|2|1⟩⟨1|]⊗ ρ̂0 .

The inversion of qubit q1 is,

⟨σ̂z1⟩ = |α1|2 − |β1|2 . (41.242)

That is, we are left with a mixture of two product states, |0⟩⊗ [α0|0⟩+β0|1⟩] or
|1⟩⊗ [α0|0⟩+ β0|1⟩]. Analogically, a projective measurements of qubit q0 yields,

ρ̂red0 = |α0|2ρ̂1 ⊗ |0⟩⟨0|+ |β0|2ρ̂1 ⊗ |1⟩⟨1| (41.243)

and ⟨σ̂z0⟩ = |α0|2 − |β0|2 .

Example 268 (Measurements on entangled qubits): Now, we consider two
entangled qubits |ψ⟩ = α[|0⟩⊗ |0⟩] + β[|1⟩⊗ |1⟩], with |α|2 + |β|2 = 1, such that,

ρ̂ =


α

0

0

β

(α∗ 0 0 β∗
)
=


|α|2 0 0 αβ∗

0 0 0 0

0 0 0 0

α∗β 0 0 |β|2

 . (41.244)

Projective measurements of qubit q1 with two possible outcomes yields in both
of the two cases, |q1⟩ = |0⟩, |1⟩, the reduced density operator,

ρ̂red1 = p(0)
[|0⟩⟨0| ⊗ I] ρ̂[|0⟩⟨0| ⊗ I]

Tr ρ̂[|0⟩⟨0| ⊗ I]
+ p1

[|1⟩⟨1| ⊗ I]ρ̂[|1⟩⟨1| ⊗ I]
Tr ρ̂[|1⟩⟨1| ⊗ I]

(41.245)

=


|α|2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 |β|2

 = |α|2[|0⟩⟨0| ⊗ |0⟩⟨0|] + |β|2[|1⟩⟨1| ⊗ |1⟩⟨1|] .

A projective measurements of qubit q1 would yield exactly the same result.

41.6.5 The field of quantum information

The possibility to experimentally control, manipulate and read out individual qubits
gave birth to a new field of physics in the past two decades now called quantum in-
formation. This fields includes the more specific areas of quantum processing (which
itself splits into the subareas of quantum computing and quantum simulation), quan-
tum communication, and quantum sensing (see Sec. 36.5).
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Figure 41.32: Key technologies of the second quantum revolution.

The fundamental epitomic systems on which the quantum information technologies
are based are listed in the table below. Although the correspondence is oversimplified,
it gives a coarse idea of the involved areas of quantum mechanics. Technological rev-
olutions have often been triggered by paradigmatic ’paradoxes’ which, in fact, were
mostly dramatized juxtapositions of classical and innovative concepts and stop being
paradoxical, once they have been resolved by a more complete theory. The table also
lists the cornerstone paradoxes of quantum information technologies.

area quantum computing communication sensing

system two-level atom / spin harmonic oscillator propagation of free atom

device qubit photon interferometer

phenomenon quantum entanglement superposition & measurement

paradox EPR paradox Schrödinger cat

41.6.5.1 Physical implementation of quantum computers

Quantum entanglement and information processing protocols for quantum computing
have been implemented with various technologies (see table below for a non-exhaustive
list), some of them pursued by private companies. Every approach has its advantages
and disadvantages, the main figures of merit being the qubit number, the qubit connec-
tivity, and the gate fidelity. Other important factors are scalability, qubit homogeneity,
and ease of fabrication and use.
physical system description companies publications

ions trapped ion array IonQ, AQT [915, 840]

neutral atoms optical lattice - [28]

transmons superconducting JJ arrays IBM, Google, ... [49]

molecules NMR on bonds in molecules - [1401]

NV centers color centers in diamond - [1025]

quantum dots quantum dots arrays diraq [814]

photons polarization or timing - [1268]

Example 269 (Quantum volume of perfect processor): The quantum vol-
ume of an N -qubit quantum processor is a metric invented by IBM that char-
acterizes the largest random quantum circuit that the device can efficiently
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simulate. The formula for quantum volume is given by:

quantum volume = N2 ×maximal depth . (41.246)

In the case of a perfect N -qubit processor, the maximal depth is equal to

N since each gate can be applied in parallel on all qubits, and there are N

such layers. Therefore, the quantum volume of a perfect N -qubit processor is

quantum volume = N3. This means that a perfect N -qubit quantum processor

can efficiently simulate random quantum circuits of up to N3 gates. However,

in reality, quantum processors suffer from errors due to various sources such

as decoherence and imperfect gate operations, and as a result, their quantum

volume is typically much lower than this theoretical limit.

41.6.5.2 Quantum sensing 2.0

Many sensors are based on interferometry, as explained in Sec. 36.5.3. The circuit
exhibited in Fig. 41.33 visualizes the basic principle of an interferometer. The two
Hadamard gates correspond to Ramsey pulses, and the controlled U gate realizes the
interaction, which transfers information from the U gate to the sensing qubit.

Figure 41.33: Quantum interferometry.

As mentioned in Sec. 36.3.2 and in Sec. 41.1.4, the sensitivity of interferometers
can be enhanced when correlated particles are used. In Exc. 41.6.6.13 we show how
the interferometer of Fig. 41.33 can be modified in order to benefit from correlated
particles.

41.6.5.3 Quantum Fourier transform

The quantum Fourier transform (QFT) is a linear transformation on qubits and the
quantum analogue of the inverse discrete Fourier transform. The quantum Fourier
transform is a part of many quantum algorithms, notably Shor’s algorithm for factor-
ing and computing the discrete logarithm or the quantum phase estimation algorithm
for estimating the eigenvalues of a unitary operator.

The quantum Fourier transform can be performed efficiently on a quantum com-
puter, with a particular decomposition into a product of simpler unitary matrices.
Using a simple decomposition, the discrete Fourier transform on 2n amplitudes can
be implemented as a quantum circuit consisting of only O(n2) Hadamard gates and
controlled phase shift gates, where n is the number of qubits. This can be compared
with the classical discrete Fourier transform, which takes O(2n) gates, which is ex-
ponentially more than in the classical case. However, the quantum Fourier transform
acts on a quantum state, whereas the classical Fourier transform acts on a vector, so
not every task that uses the classical Fourier transform can take advantage of this
exponential speedup.
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The quantum Fourier transform is the classical discrete Fourier transform applied
to the vector of amplitudes of a quantum state, where we usually consider vectors of
length N = 2n. The classical Fourier transform acts on a vector (x0, x1, . . . , xN−1) ∈
CN and maps it to the vector (y0, y1, . . . , yN−1) ∈ CN according to the formula:

yk =
1√
N

N−1∑

n=0

xnω
∓kn
N , (41.247)

where k = 0, 1, . . . , N−1 and ωN = e2πı/N and ωnN is an N th root of unity. The lower
sign holds for the inverse FT.

Similarly, the quantum Fourier transform acts on a quantum state |x⟩ =∑N−1
i=0 xi|i⟩

and maps it to a quantum state
∑N−1
i=0 yi|i⟩ according to the same formula (41.247).

In case that |x⟩ is a basis state, the quantum Fourier Transform can also be expressed
as the map,

|x⟩ 7→ 1√
N

N−1∑

k=0

ωxkn |k⟩ . (41.248)

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or
a quantum gate, similar to a Boolean logic gate for classical computers) acting on
quantum state vectors, where the unitary matrix is given by,

FN =
1√
N




1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)




(41.249)

where ω = ωN . Do the Excs. 41.6.6.10 and 41.6.6.11.
The QFT is unitary,

FF † = I , (41.250)

and can be efficiently performed on a quantum computer. The quantum gates used
in the circuit are the Hadamard gate and the controlled phase gate Rm,

H = 1√
2

(
1 1

1 −1

)
and Rm =

(
1 0

0 e2πı/2
m

)
, (41.251)

with e2πı/2
m

= ω(2m) the primitive 2m-th root of unity. The circuit is composed of H
gates and the controlled version of Rm.

All quantum operations must be linear, so it suffices to describe the function on
each one of the basis states and let the mixed states be defined by linearity. This is
in contrast to how Fourier transforms are usually described. We normally describe
Fourier transforms in terms of how the components of the results are calculated on
an arbitrary input. This is how you would calculate the path integral or show BQP is
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Figure 41.34: Quantum circuit for QFT with n qubits (without rearranging the order of
output states).

in PP. But it is much simpler here (and in many cases) to just explain what happens
to a specific arbitrary basis state, and the total result can be found by linearity.

The quantum Fourier transform can be approximately implemented for any N ;
however, the implementation for the case where N is a power of 2 is much simpler.
As already stated, we assume N = 2n. We have the orthonormal basis consisting of
the vectors |0⟩, . . . , |2n − 1⟩. The basis states enumerate all the possible states of the
qubits, |x⟩ = |x1x2 . . . xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩, where |xj⟩ indicates that qubit
j is in state xj , with xj either 0 or 1. By convention, the basis state index x orders
the possible states of the qubits lexicographically, i.e. by converting from binary to
decimal in this way:

x = x12
n−1 + x22

n−2 + · · ·+ xn2
0 . (41.252)

It is also useful to borrow fractional binary notation:

[0.x1 . . . xm] =

m∑

k=1

xk2
−k . (41.253)

For instance, [0.x1] =
x1

2 and [0.x1x2] =
x1

2 + x2

22 . With this notation, the action of
the quantum Fourier transform can be expressed in a compact manner:

QFT(|x1x2 . . . xn⟩) =
1√
N

(
|0⟩+ e2πı [0.xn]|1⟩

)
⊗
(
|0⟩+ e2πı [0.xn−1xn]|1⟩

)
⊗ · · ·

⊗
(
|0⟩+ e2πı [0.x1x2...xn]|1⟩

)
, (41.254)

where we have used [0.x1x2...xm] = [x1x2...xn]/2
m. This can be seen by rewriting

the formula for the Fourier transform in the binary expansion:

QFT(|x⟩) = 1√
N

2n−1∑

k=0

ωxkn |k⟩ = ... =
1√
N

n⊗

j=1

(
|0⟩+ ωx2

n−j

n |1⟩
)
. (41.255)
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Now, we have ωx2
n−j

n = e
2πı
2n x2

n−j

= e2πı(x2
−j). Let,

f(j) = x2−j = 2−j
n∑

r=1

xr2
n−r =

n∑

r=1

xr2
n−j−r (41.256)

=

n−j∑

r=1

xr2
n−j−r +

n∑

r=n−j+1

xr2
n−j−r = a(j) + b(j) .

then a(j) ∈ N0, because 2
n−j−r ≥ 0, for n−j−r ≥ 0, and b(j) = 0.xn−j+1xn−j+2 . . . xn,

thus the (2) becomes:

e2πıf(j) = e2πı(a(j)+b(j)) = e2πıa(j) · e2πıb(j) = e2πı[0.xn−j+1xn−j+2···xn] , (41.257)

since e2πıa(j) = 1 for all j. Then we can write:

QFT(|x1x2 . . . xn⟩) =
1√
N

n⊗

j=1

(
|0⟩+ ωx2

n−j

n |1⟩
)

(41.258)

=
1√
N

n⊗

j=1

(
|0⟩+ e2πı[0.xn−j+1xn−j+2...xn]|1⟩

)

=
1√
N

(
|0⟩+ e2πı[0.xn]|1⟩

)
⊗
(
|0⟩+ e2πı[0.xn−1xn]|1⟩

)
⊗ · · · ⊗

(
|0⟩+ e2πı[0.x1x2...xn]|1⟩

)
.

To obtain this state from the circuit depicted above, a swap operations of the
qubits must be performed to reverse their order. After the reversal, the n-th output
qubit will be in a superposition state of |0⟩ and e2πı [0.x1...xn]|1⟩, and similarly the
other qubits before that (take a second look at the sketch of the circuit above).

In other words, the discrete Fourier transform, an operation on n qubits, can be
factored into the tensor product of n single-qubit operations, suggesting it is easily
represented as a quantum circuit (up to an order reversal of the output). In fact, each
of those single-qubit operations can be implemented efficiently using a Hadamard
gate and controlled phase gates. The first term requires one Hadamard gate and
(n − 1) controlled phase gates, the next one requires a Hadamard gate and (n − 2)
controlled phase gate, and each following term requires one fewer controlled phase
gate. Summing up the number of gates, excluding the ones needed for the output
reversal, gives n + (n − 1) + · · · + 1 = n(n + 1)/2 = O(n2) gates, which is quadratic
polynomial in the number of qubits.

The QFT is useful in the simulation of Hamiltonian evolution governed by conju-
gate variables,

e−Ĥt/ℏ where Ĥ =
p̂

2m
+
m

2
ω2x̂2 , (41.259)

where, similar to the time-splitting spectral algorithm, we may replace differential
operators,

p̂ = F−1 x̂ F . (41.260)
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41.6.5.4 Boson sampling

A qubit is not necessarily a single (quasi-)particle, such as an atom or a photon.
More generally any system which can interfere, that is be in superposition states,
may qualify. F.ex. a laser pulse with squeezing/polarization as the degree of freedom
can be used for boson sampling [1, 578, 1063, 1432].

41.6.6 Exercises

41.6.6.1 Ex: Controlled Z-gate

Check that the CZ gate is invariant under spin exchange. This fact justifies the sym-
metry of the symbol with respect to the two coupled qubits.

Solution: Using,

Z = −σ̂z =
(
1 0

0 −1

)

and the SWAP-gate introduced in (23.130) we just need to show,

c

Z10 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 = S

c

Z01S ≡
c

Z01 .

41.6.6.2 Ex: Quantum computing code for spin-squeezing

Express spin-squeezing of 2, respectively, 3 qubits by a quantum circuit.

Solution: Check [1144]!

41.6.6.3 Ex: Two-bit SWAP gate

Represent the two-qubit SWAP gate by a succession of three CNOT gates.

Solution: From (41.217) we know
c

X01 = S
c

X10S. With,

c

X10 =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 ,

c

X01 =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumCompute03.pdf
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it is easy to show that,

S =
c

X01

c

X10

c

X01 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 ,

as illustrated in Fig. 41.35.

Figure 41.35: Swapping two qubits via three controlled NOT gates.

41.6.6.4 Ex: Three-bit SWAP gate

a. Convince yourself that the SWAP gates defined by (41.221) have the explicit matrix
form,

Sij(k, kij) ≡ 1 where





k = [0, ..., 7]

k12 = [0, 1, 4, 5, 2, 3, 6, 7]

k01 = [0, 2, 1, 3, 4, 6, 5, 7]

k02 = [0, 4, 2, 6, 1, 5, 3, 7]

,

the index k indicating the column and kij the row where the matrix has an entry.
b. Verify,

S−1 = S , S−1ij = Sij .

Solution:

41.6.6.5 Ex: Quantum gates

Verify the formulae (41.223).

Solution:

41.6.6.6 Ex: Toffoli gate

Check that the quantum circuit sketched in Fig. 41.36, which only envolves two-qubit
quantum gates realizes a Toffoli gate.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing03.pdf
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Figure 41.36: Quantum circuit realizing a Toffoli gate.

Solution: The circuit diagram represents the operation,

cc

X012 =
c

X01T0T
†
1

c

X01T1H2T2

c

X02T
†
2

c

X12T2

c

X02T
†
2

c

X12H2 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0


,

or inverting the order of the significant qubits,

cc

X210 = S01S12S01

cc

X012S01S12S01 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


.

41.6.6.7 Ex: Classical and quantum logic

a. Verify ¬(A ∨B) = ¬A ∧ ¬B and A⊕B = (¬A ∧B) ∨ (A ∧ ¬B).
b. How would you realize the classical logical operations AND, OR, and XOR on a
quantum computer?

Solution: a. Trivial by comparing the truth tables.
b. The classical logic operations AND and OR involve three bits, two at the input
and one at the output. Because the corresponding quantum logic operation must be
reversible, we must specify the state of all three qubits before and after the operation.

That is, we are looking for a unitary transform in H23 . Classically, we determine the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing04.pdf
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following truth tables,

|ψ⟩in =

|q2, q1, q0⟩

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


, |ψ⟩AND−NORout =

|q2, q1, (q2 ∧ q1)⊕ q0⟩

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 1

1 1 0


,

|ψ⟩OR−NANDout =

|q2, q1, (q2 ∨ q1)⊕ q0⟩

0 0 0

0 0 1

0 1 1

0 1 0

1 0 1

1 0 0

1 1 1

1 1 0


, |ψ⟩XOR−NXORout =

|q2, q1, (q2 ⊕ q1)⊕ q0⟩

0 0 0

0 0 1

0 1 1

0 1 0

1 0 1

1 0 0

1 1 0

1 1 1


.

The classical gates are recovered by projecting the q
(out)
0 output bit on either the

q
(in)
0 = 0 or 1 input bit. In quantum logic, we use the relations (41.223) to construct
the quantum AND (and simultaneously NOR) via the Toffoli gate,

UAND =
cc

X210 = |q2, q1, (q2 ∧ q1)⊕ q0⟩⟨q2, q1, q0| ,

or using the above defined basis,

AND −NOR

|000⟩
|001⟩

|010⟩
|011⟩

|100⟩
|101⟩

|111⟩
|110⟩


=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



|q2, q1, q0⟩

|000⟩
|001⟩
|010⟩
|011⟩
|100⟩
|101⟩
|110⟩
|111⟩


Similarly, for the quantum OR (and simultaneously NAND),

UOR = X2X1X0

cc

X012X0X1 = |q2, q1, (q2 ∨ q1)⊕ q0⟩⟨q2, q1, q0| ,



41.6. QUANTUM GATES 2403

or using the above defined basis,

OR−NAND

|000⟩
|001⟩

|011⟩
|010⟩

|101⟩
|100⟩

|111⟩
|110⟩


=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



|q2, q1, q0⟩

|000⟩
|001⟩
|010⟩
|011⟩
|100⟩
|101⟩
|110⟩
|111⟩


Similarly, for the quantum XOR (and simultaneously NXOR),

UXOR =
c

X12

c

X02 = |q2, q1, (q2 ⊕ q1)⊕ q0⟩⟨q2, q1, q0| ,

or using the above defined basis,

XOR−NXOR

|000⟩
|001⟩

|011⟩
|010⟩

|101⟩
|100⟩

|110⟩
|111⟩


=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



|q2, q1, q0⟩

|000⟩
|001⟩
|010⟩
|011⟩
|100⟩
|101⟩
|110⟩
|111⟩



41.6.6.8 Ex: Quantum composer

Show that the following diagrams describe identical unitary operations:

Solution: The diagrams can easily be verified after having translated them into a
matricial language as,
a.

c

X01 = (I⊗H)
c

Z01(I⊗H) .

b.

(H ⊗H)
c

X01(H ⊗H) =
c

X10 .

c.

(
cc

U012)
2 = (I⊗ I⊗

c

U12)(
c

X01 ⊗ I)(I⊗ I⊗ (
c

U12)
†)(

c

X01 ⊗ I)(I⊗ I⊗
c

U12) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing05.pdf
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Figure 41.37:

41.6.6.9 Ex: Classical addition of two qubits

Design a quantum algorithm for the classical addition of up to 8 qubits.

Solution: In the binary system the operation is given by the equation,

7∑

k=0

qk = 4p2 + 2p1 + p0 .

Using just XOR gates we find the scheme exhibited in Fig.41.38.

Figure 41.38: Quantum algorithm simulating the classical sum of up to 7 qubits (black lines)
or up to 3 qubits (red lines).

41.6.6.10 Ex: CARL simulation on a quantum computer

Try to recast the so-called CARL Hamiltonian,

Ĥ = U0(â
†
+â−e

−ıkr̂ + â+â
†
−e

ıkr̂)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing07.pdf
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such that it can be simulated by a sequence of quantum gates.

Solution: We first truncate the admitted numbers of photons to some value and
use the Holstein-Primakoff transformation. We must define a linear multi-qubit gate,
each qubit standing for a photon. The motion is described as a 1D lattice in momen-
tum space.

41.6.6.11 Ex: Quantum Fourier transform on a quantum computer

Write down the QF transformation matrix for the case of N = 4 = 22 and phase
ω = ı.

Solution: The matrix reads,

F4 = 1
2




1 1 1 1

1 ı −1 −ı
1 −1 1 −1
1 −ı −1 ı


 .

41.6.6.12 Ex: Three entangled qubits

a. Imagine a three-qubit quantum gate or a sequence of gates generating from the
ground state the three partite states [400]:

|GHZ⟩ ≡ 1√
2
(|000⟩+ |111⟩ and |W ⟩ ≡ 1√

3
(|001⟩+ |010⟩+ |100⟩) .

b. Show how the procedure for the generation of the |GHZ⟩ state can be easily ex-
tended to N entangled particles.

Solution: a. In extension of the calculation of Exc. 41.5.4.1 it is easy to show that

c

X12

c

X01(H ⊗ I⊗ I)



1

0

0

0

0

0

0

0


= 1√

2



1

0

0

0

0

0

0

1



https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing09.pdf
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generates a GHZ state. The W state is obtained via

X0

c

X01

c

X12

c

H01U3(arccos(− 1
3
), 0, 0)



1

0

0

0

0

0

0

0


= 1√

3



0

1

1

0

1

0

0

0


.

b. We just have to continue the protocol like,

c

XN−1 N

c

XN−2 N−1...
c

X01(H ⊗ I⊗ I) .

Figure 41.39: Quantum circuit generating (a) a GHZ state and (b) a W state.

41.6.6.13 Ex: Scattering circuit

a. Consider the controlled U gate given by,

c

U10 = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗ U ,

where U is an arbitrary unitary operation, and the quantum circuit given by,

M = [H ⊗ I]
c

U10[H ⊗ I]

and depicted in Fig. 41.33. Starting from an initial state |0⟩⟨0| ⊗ ρ̂0, show, that a
measurement of the first qubit |q1⟩ of the final state,

ρ̂f =M [|0⟩⟨0| ⊗ ρ̂0]M†

yields,
⟨σ̂z1⟩ = Re [Tr0 ρ̂0U ] and ⟨σ̂y1 ⟩ = Im [Tr0 ρ̂0U ] .

b. Calculate ⟨⃗̂σ1⟩ for the case that U is a one-qubit phase gate given by (41.208).

c. Calculate ⟨⃗̂σ1⟩ for the case that U = X is a one-qubit NOT gate given by (41.210).

Solution: a. The Hamamard gates applied to qubits q1 and q0 are, respectively [686],

H1 = H ⊗ I = 1√
2

(
I I
I −I

)
, H0 = I⊗H = 1√

2

(
H 0

0 H

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing10.pdf
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The controlled U gate is given by,

c

U10 = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗ U =

(
I 0

0 U

)
,

so that the quantum circuit can be written as,

M = [H ⊗ I]
c

U10[H ⊗ I] = 1
2

(
I I
I −I

)(
I 0

0 U

)(
I I
I −I

)
= 1

2

(
I+ U I− U
I− U I+ U

)
.

Starting from an initial state

|0⟩⟨0| ⊗ ρ̂0 =

(
ρ̂0 0

0 0

)
,

we see, that the final state becomes,

ρ̂f =M [|0⟩⟨0|⊗ρ̂0]M† = 1
4

(
ρ̂0 + Uρ0U

† + (Uρ̂0 + ρ̂0U
†) ρ̂0 − Uρ̂0U† + (Uρ̂0 − ρ̂0U†)

ρ̂0 − Uρ̂0U† − (Uρ̂0 − ρ̂0U†) ρ̂0 + Uρ̂0U
† − (Uρ̂0 + ρ̂0U

†)

)
.

Tracing over the second qubit |q0⟩ yields the reduced density matrix of the probe qubit
q1,

ρ̂red = Tr0 ρ̂f = 1
2

(
1 + 1

2Tr0 (Uρ̂0 + ρ̂0U
†) 1

2Tr0 (Uρ̂0 − ρ̂0U†)
− 1

2Tr0 (Uρ̂0 − ρ̂0U†) 1− 1
2Tr0 (Uρ̂0 + ρ̂0U

†)

)

= 1
2

(
1 +Re [Tr0 Uρ̂0] ıIm [Tr0 Uρ̂0]

−ıIm [Tr0 Uρ̂0] 1−Re [Tr0 Uρ̂0]

)
.

Finally, we get for the observables of the probe qubit,

⟨σ̂x1 ⟩ = ⟨0|ρ̂red|1⟩+ ⟨1|ρ̂red|0⟩ = 0

⟨σ̂y1 ⟩ = ı⟨0|ρ̂red|1⟩ − ı⟨1|ρ̂red|0⟩ = −Im [Tr0 ρ̂0U ]

⟨σ̂z1⟩ = ⟨0|ρ̂red|0⟩ − ⟨1|ρ̂red|1⟩ = Re [Tr0 ρ̂0U ] .

b. If U is given by,

U =

(
1 0

0 eıφ

)
,

we find,

⟨⃗̂σ1⟩ =




0

Im (ρ00 + ρ11e
ıϕ)

Re (ρ00 + ρ11e
ıϕ)


 =




0

ρ11 sinϕ

ρ00 + ρ11 cosϕ


 .

c. If U = X is the inversion of a qubit, we find,

⟨⃗̂σ1⟩ =




0

−Im (ρ01 + ρ10)

Re (ρ01 + ρ10)


 =




0

0

ρ01 + ρ10


 .
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41.6.6.14 Ex: Heisenberg-limited quantum sensing

This exercise aims at showing that entangled qubits allow for phase measurements
beyond the standard quantum limit. Proceed as follows:
a. Express standard Ramsey interferometry for a single qubit as a sequence of quantum
gates and calculate the uncertainty of the final Bloch vector component ∆Ŝz/||Ŝz||.
b. Repeat (a) with a product state of two qubits.
c. Plot the relative uncertainty of the inversion (∆Ŝ2

z/⟨Ŝ2
z ⟩)1/2 after the Ramsey cycle

as a function of the precession phase for the cases (a) and (b), as well as the spin
squeezing parameter

√
N⟨∆Ŝy⟩/|⟨Ŝz⟩| [1380, 343].

d. Repeat (b) with two entangled qubits and interpret your observations.

Figure 41.40: Scheme for Heisenberg-limited quantum sensing.

Solution: a. Using the definitions of the Hadamard gate and the phase shift gate,
Ramsey interferometry with a single qubit,

H = 1√
2

(
1 1

1 −1

)
, U =

(
eıφ/2 0

0 e−ıφ/2

)
,

we easily see, with M ≡ HUH,

ρ̂f =M |0⟩⟨0|M† =
(

cos2 φ2 −ı cos φ2 sin φ
2

ı cos φ2 sin φ
2 sin2 φ2

)
.

This allows us to calculate,

⟨Ŝ⟩ = 1
2 ⟨⃗̂σ⟩ = 1

2Tr ρ̂f



σ̂x

σ̂y

σ̂z


 = 1

2




0

sinφ

cosφ




⟨Ŝ2
α⟩ = 1

4Tr ρ̂f σ̂
2
α = 1

4 for α = x, y, z

∆Ŝ2
α = 1

4





1 for α = x

cos2 φ for α = y

sin2 φ for α = z

,

so that ∥⟨S⟩∥ = 1
2 and ⟨Ŝ2

x⟩ + ⟨Ŝ2
y⟩ + ⟨Ŝ2

z ⟩ = 3
4 = S(S + 1). The relative uncertainty

of the inversion and the spin squeezing parameter are, respectively,
√

∆Ŝ2
z

⟨Ŝ2
z ⟩

= sinφ and

√
N⟨∆Ŝy⟩
|⟨Ŝz⟩|

= 1 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Entanglement_QuantumComputing11.pdf
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b. For two qubits, the same calculation with M ≡ (H ⊗ H)(U ⊗ U)(H ⊗ H) and
ρ̂f =M |0⟩⟨0|M† allows us to calculate (with the help of MAPLE),

⟨Ŝ⟩ = 1
2 ⟨⃗̂σ ⊗ I+ I⊗ ⃗̂σ⟩ = 1

2Tr ρ̂f



σ̂x

σ̂y

σ̂z


⊗ I+ 1

2Tr ρ̂f I⊗



σ̂x

σ̂y

σ̂z


 =




0

sinφ

cosφ




⟨Ŝ2
α⟩ = 1

4Tr ρ̂f [σ̂α ⊗ I+ I⊗ σ̂α]2 = 1
2





1 for α = x

2− cos2 φ for α = y

1 + cos2 φ for α = z

∆Ŝ2
α = 1

2





1 for α = x

cos2 φ for α = y

sin2 φ for α = z

,

so that ∥⟨S⟩∥ = 1 and ⟨Ŝ2
x⟩+ ⟨Ŝ2

y⟩+ ⟨Ŝ2
z ⟩ = 2 = S(S+1). The relative uncertainty of

the inversion is,

√
∆Ŝ2

z

⟨Ŝ2
z ⟩

=
sinφ√

1 + cos2 φ
and

√
N⟨∆Ŝy⟩
|⟨Ŝz⟩|

= 1 .

c. Fig. 41.41(a) shows the relative uncertainty of the inversion (dotted) for the cases
(a) and (b), as well as numerical calculation for the cases of up to 4 qubits.

0 0.5 1

ϕ/π

0

0.5

1

√
〈S

2 z
〉−

〈S
z
〉2

〈S
2 z
〉

(a)

0 0.5 1

ϕ/π

0

0.5

1

1.5

2

√ N
〈Δ

S
y
〉

|〈S
z
〉|

(b)

Figure 41.41: (code) (a) Relative uncertainty of the z-component as a function of the preces-

sion angle φ for various numbers of non-entangled qubits analytically (dots) and numerically

(solid). (b) Metrology squeezing parameter.

d. For two entangled qubits, we replace the two-qubit Hadamard gate H ⊗H, corre-

sponding to a Ramsey pulse, by the entangling gate (H1 ⊗ I)
c

X10(H1 ⊗ I), that is,

M = (H1 ⊗ I)
c

X10(H1 ⊗ I) (U ⊗ U) (H1 ⊗ I)
c

X10(H1 ⊗ I) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_QuantumSensingBits.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_QuantumSensingBits.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Entanglement_QuantumSensingBits.m
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We again calculate ρ̂f =M |0⟩⟨0|M† and obtain,

⟨Ŝ⟩ = 1
2 ⟨⃗̂σ ⊗ I+ I⊗ ⃗̂σ⟩ = 1

2Tr ρ̂f



σ̂x

σ̂y

σ̂z


⊗ I+ 1

2Tr ρ̂f I⊗



σ̂x

σ̂y

σ̂z


 =




0

sinφ cosφ

cosφ




⟨Ŝ2
α⟩ = 1

4Tr ρ̂f [σ̂α ⊗ I+ I⊗ σ̂α]2 = 1
2





2− cos2 φ for α = x

1 for α = y

1 + cos2 φ for α = z

∆Ŝ2
α = 1

2





2− cos2 φ for α = x

1− 2 sin2 φ cos2 φ for α = y

1− cos2 φ for α = z

.

The relative uncertainty of the inversion is,
√

∆Ŝ2
z

⟨Ŝ2
z ⟩

= sinφ and

√
N⟨∆Ŝy⟩
|⟨Ŝz⟩|

=

√
1− 2 cos2 ϕ sin2 ϕ

| cosϕ| .

In Fig. 41.41(b) we observe a reduce of the spin squeezing parameter below the classical
limit. For example, for φ = π/8 we get 0.94.
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Chapter 42

Atomic motion in optical
cavities

In the preceding chapter we concentrated on the dynamics of the field modes of
laser-pumped cavities. We devoted a particular attention to the role of scatterers,
e.g. atoms, located in the mode volume and coupling the dynamics of counterprop-
agating modes. We assumed the atoms to be fixed in space, or at most subject to
an external force constraining their motion. We have also seen that the coupling of
counterpropagating modes critically depends on the position of the atom. Now, the
cavity fields are expected to exert light forces on the atoms eventually leading to their
displacement. As we will see in the following, this fact can have enormous impact on
the coupling dynamics and even induce macroscopic instabilities.

We devote Sec. 42.1 to the derivation of the complete equations of motion for the
case of a single atom, allowing for all degrees of freedom to be treated as quantized:
the atomic excitation, the motion of its center of mass, and the radiation field in
the cavity. We will provide a simple recipe for finding the suitable equations of
motion depending on which degree of freedom s to be treated as quantized and which
dissipation process to be taken into account. We will also show how and under which
circumstances the atomic excitation may be adiabatically eliminated.

In Sec. 42.2 we generalize the equations of motion of many atoms, but treating all
degrees of freedom as classical. This leads us to the paradigmatic Collective Atomic
Recoil Laser (CARL), a self-organization phenomenon whose relationship to other
such instabilities will be discussed in Sec. 42.3.

Finally, in Secs. 42.4 and 42.5 we will treat the light field, respectively, the atomic
motion quantum mechanically and show in which sense the obtained dynamics are
different.

42.1 Cavity interacting with a single atom

Here, we consider atoms interacting with the modes of an optical cavity pumped by
lasers. As we saw in the previous chapter, the density of the modes in a cavity is
concentrated around the optical axis, such that a scatterer located within the mode
emits preferentially within the cavity, where the light is recycled. Therefore, we can
in many situations treat the system as one-dimensional.

In free space, as discussed in Chp. 38, the force of light has two components: the
radiation pressure, which scatters photons isotropically into space, and the dipole

2415
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Figure 42.1: Hamiltonian in quantum optics.

force, which can be interpreted in terms of a redistribution of photons between light
modes. In cavities, where the isotropic scattering is much reduced, radiative pressure
can often be neglected. In contrast, if light is tuned away from atomic resonances, the
atom will feel a dipole force originating from the backscattering of photons between
counterpropagating modes.

42.1.1 Linear and ring cavities

We must distinguish two types of cavities with very different behaviors: The linear
cavity or (Fabry-Pérot etalon), where counterpropagating modes form a single mode,
and the ring cavity, where counterpropagating modes have independent photon bud-
gets.

For a linear cavity, boundary conditions imposed by the surfaces of the cavity
mirrors determine the possible spatial mode functions, which are necessarily standing
waves. The amplitudes of the electric field are in second quantization (35.8),

Ê(z, t) = Ê+(z, t)e−ıωt + Ê−(z, t)eıωt (42.1)

with Ê+(z, t) = Ê1â(t)eıkz = (Ê−(z, t))† .

with [â, â†] = 1. With this we obtain, for a single atom coupled to the mode of
the cavity pumped by a laser, within the dipolar approximation and the RWA 1, the
following relevant contributions to the Hamiltonian (ℏ = 1),

Ĥatom = −∆aσ̂
+σ̂− + p̂2

2m (42.2)

Ĥcav = −∆câ
†â

Ĥatom:cav = gâ†σ̂−e−ıkẑ + h.c.

Ĥlaser:cav = ıηâ† + h.c. ,

neglecting the dynamics of the pump field, which is supposed to be classical, η =

δfsr⟨â†in⟩. Note that the propagator e−ıĤlaser:cavt corresponds to a coherent state

1For the transformation into the rotating frame see the derivation of Sec. 34.4.2.
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displacement operator. ∆a is the detuning between the light and the atomic resonance,
∆c between the light and cavity resonance and g is the light-atom coupling force, also
called the single-photon Rabi frequency. Neglecting the kinetic energy term p̂2/2m,
the photonic recoil e−ıkvẑ, and the pumping η we recover the Jaynes-Cummings model.
Do the Excs. 42.1.7.1 and 42.1.7.2.

For a ring cavity, we must distinguish the counterpropagating modes â±,

Ê+(z, t) = Ê1â+(t)eıkz + Ê1â−(t)e−ıkz = (Ê−(z, t))† . (42.3)

such that the total Hamiltonian Ĥ consists of the following parts 2,

Ĥatom = Ĥelectron + Ĥmotion = −∆aσ̂
+σ̂− +

p̂2

2m

Ĥcav = −∆câ
†
+â+ −∆câ

†
−â−

Ĥatom:cav = gâ†+σ̂
−e−ıkẑ + h.c.+ gâ†−σ̂

−eıkẑ + h.c.

Ĥlaser:cav = −ıη+(â+ − â†+)− ıη−(â− − â†−)

. (42.4)

We identify the degrees of freedom of the system through the quantum observables
appearing in the Hamiltonian: the counterpropagating modes of light with the am-
plitudes (â±), the internal degrees of freedom (σ̂z, σ̂±), and the spatial coordinates of
the atom (ẑ, p̂).

In contrast to linear cavities, ring cavities have the following particularities: 1. The
phase of the standing wave is free to move; 2. the counterpropagating modes of the
cavity have independent photon budgets, each backscattering event conserves mo-
mentum; 3. the backscattering acts on the phase of the standing wave. Atoms can
be trapped by the dipole force within the cavity mode volume. The dipole force
corresponds to a backscattering of photons between modes.

Figure 42.2: Scheme of an atom interacting with a ring cavity showing the relevant degrees
of freedom (x̂, p̂, â±) and the possible decay processes (κ, Γ) for the derivation of the field
equations.

2Throughout this chapter we will sometimes emphasize the motional degree of freedom in green
color, photonic states in blue, electronic excitation states in pink.
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42.1.2 Eliminating spontaneous emission and cavity decay

In fact, there are more degrees of freedom involved in the dynamics of atoms moving in
a laser-pumped ring cavity, because of the atoms may scatter light into directions other
than the cavity modes by spontaneous emission, and the cavity modes may decay by
transmission through the mirrors. Therefore, we need to treat the respective vacuum
field modes receiving the photons, âk and âω, quantum mechanically and include the
respective Hamiltonians,

Ĥatom:vacuum =
∑

k

gatom:vacuumâ
†
kσ̂
−e−ık·r̂ + h.c. (42.5)

Ĥcav:bath =
∑

ω

gcav:bathâ
†
ωâ+ + gcav:bathâ

†
ωâ− + h.c. ,

in the description of the coupled dynamics. Here, gatom:vacuum denotes the vacuum
Rabi frequency, that is, the coupling strength between the atomic dipole and the
electromagnetic vacuum into which spontaneously emitted photons may escape. On
the other hand, gcav:bath denotes the coupling strength between the cavity mode and
the spectrum of electromagnetic modes into which cavity photons can escape and
which we will from now on call heat bath to facilitate its semantic distinction from the
spontaneous vacuum. The total density operator, the Hamiltonian and the equation
of motion are, consequently,

ρ̄ = ρ̂atom ⊗ ρ̂electron ⊗ ρ̂cav ⊗ ρ̂vacuum ⊗ ρ̂bath (42.6)

H̄ = Ĥmotion + Ĥelectron + Ĥcav + Ĥatom:cav + Ĥlaser:cav + Ĥatom:vacuum + Ĥcav:bath

˙̄ρ = −ı[H̄, ρ̄] .
With the inclusion of the vacuum field modes âω and âk the number of degrees of

freedom to be treated literally explodes, and we have to find a way to eliminate them
from the equation of motion. We do this by partially tracing the density operator
over the vacuum field modes using the Weisskopf-Wigner theory,

ρ̃ ≡ Trvacuum Trbath ρ̄ = ρ̂atom ⊗ ρ̂electron ⊗ ρ̂cav . (42.7)

This allows us to reduce the Hamiltonian Ĥ = H̄ − Ĥatom:vacuum − Ĥcav:bath. The
price to pay is, that the equation of motion for this receives dissipative terms: The
Liouville equation turns into a master equation with the following form,

˙̂ρ = −ı[Ĥ, ρ̂] + Latom:vacuum + Lcav:vacuum,+ + Lcav:vacuum,−

Latom:vacuumρ̂(t) = −γ{σ̂+σ̂−ρ̂(t)− 2σ̂−ρ̂(t)σ̂+ + ρ̂(t)σ̂+σ̂−}

Lcav:bath,±ρ̂(t) = −κ{â†±â±ρ̂(t)− 2â±ρ̂(t)â
†
± + ρ̂(t)â†±â±}

, (42.8)

where Ĥ is the Hamiltonian from (42.4). We see that each degree of freedom has its
own loss mechanism. κ for the finite transmission of the resonator mirrors [283, 488] 3,
Γ for the spontaneous emission, and γfrc, when we exert a frictional force on the
atoms.

3Here, we only consider cavity decay into a zero temperature reservoir without quantum phase
fluctuations.
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42.1.2.1 The problem with spontaneous emission in cavities

The above treatment still is incomplete, if we regard ρ̂ as the atomic Bloch vector. The
reason is that we know what the dissipative Lindbladt terms Lvacuumρ̃ generated by
spontaneous emission look like for the atomic excitation ρ̂atom, but the Hamiltonian
Ĥatom:vacuum also contains the motional degree of freedom e−ık·r̂, which is intrinsically
three-dimensional. That is, the dissipative terms also need to describe, how the
motion diffuses in momentum space.

The inclusion of dissipative terms, however, is difficult, because unavoidable pho-
tonic recoil violates the supposed one-dimensionality of the atomic motion along the
optical axis. Omnidirectional photonic recoil is also incompatible with the assumption
that the momentum is quantized in multiples of 2ℏk in the direction of the optical axis.
And finally, if we consider degenerate matter waves, photonic recoil will eject atoms
from a BEC. Even if, neglecting the emission process, we only consider absorption,
we would need a quantization in multiples of 1ℏk instead of 2ℏk. In the following, in
order to keep the problem 1D, we will neglect momentum diffusion, i.e. we consider
the simplified Hamiltonian H̃ and discard motional terms from the term Lvacuumρ̂.

42.1.2.2 Quantum derivation of the CARL equations

To obtain the equations of motion we insert the Hamiltonian (42.4) into the equations

for the field operators, for which the following commutation rules hold, [â±, â
†
±] = 1

and [â±, â
†
∓] = 0 = [â±, â±],

˙̂a+ = ı[Ĥ, â+]− κâ+ (42.9)

= −ı∆c[â
†
+â+, â+] + ıge−ıkẑσ̂−[â†+, â+] + ıgeıkẑσ̂+[â+, â+] + η+[â+ − â†+, â+]− κâ+

= (−κ+ ı∆c)â+ − ıgσ̂−e−ıkx + η+ ,

and similarly for â−. For the Pauli deexcitation matrix, using the usual commutation
rules for the Pauli spin matrices (23.47), that is [σ̂+, σ̂−] = σ̂z, σ̂zσ̂

± = ±σ̂±, and
[σ̂−, σ̂−] = 0, we calculate,

˙̂σ− = ı[Ĥ, σ̂−]− γσ̂− (42.10)

= −ı∆a[σ̂
+σ̂−, σ̂−] + ıgeıkẑâ+[σ̂

+, σ−] + ıge−ıkẑâ−[σ̂
+, σ−]− γσ̂−

= (−γ + ı∆a)σ̂
− + ıgeıkẑâ+σ̂z + ıge−ıkẑâ−σ̂z .

For the Pauli inversion matrix, using the following commutation rules, [σ̂z, σ̂
+σ̂+] = 0

and [σ̂z, σ̂
±] = ±2σ̂±, we calculate,

˙̂σz = ı[Ĥ, σ̂z]− 2γ − 2γσ̂z (42.11)

= ıge−ıkẑâ†+[σ̂
−, σ̂z] + ıgeıkẑâ†−[σ̂

−, σ̂z] + ıgeıkẑâ+[σ̂
+, σ̂z] + ıge−ıkẑâ−[σ̂

+, σ̂z]− 2γσ̂z

= −2γ − 2γσ̂z + 2ıge−ıkẑâ†+σ̂
− + 2ıgeıkẑâ†−σ̂

− − 2ıgeıkẑâ+σ̂
+ − 2ıge−ıkẑâ−σ̂

+ .

Finally, we need to derive the equations governing the motion of atoms. For the
position we obtain,

˙̂z = ı[Ĥ, ẑ] = ı[ p̂
2

2m , ẑ] =
1
m p̂ . (42.12)
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In order to calculate the momentum, we need to do a small auxiliary calculation.
With the commutator [ẑ, p̂] = ı we derive,

[ẑn, p̂] = ı
δẑn

δẑ
= ınẑn−1 (42.13)

[eıkẑ, p̂] =

∞∑

n=0

(ık)n

n!
[ẑn, p̂] = −k

∞∑

n=0

(ık)n−1

(n− 1)!
ẑn−1 = −keıkẑ ,

and with this result,

˙̂p = ı[Ĥ, p̂] (42.14)

= ıgâ†+σ̂
−[e−ıkẑ, p̂] + c.c.+ ıgâ†−σ̂

−[eıkẑ, p̂] + c.c.

= −ıgkâ†+σ̂−e−ıkẑ + c.c.+ ıgkâ†−σ̂
−eıkẑ + c.c. .

The quantum Langevin equations [283] describing the dynamics of the internal and
external degrees of freedom of the atom and the field are coupled,

˙̂a± = (−κ+ ı∆c)â± − ıgσ̂−e∓ıkẑ + η±
˙̂σ− = (−γ + ı∆a)σ̂

− + ıg(eıkẑâ+ + e−ıkzâ−)σ̂z
˙̂σz = −2γσ̂z + 2ıg(e−ıkẑâ†+ + eıkẑâ†−)σ̂

− − 2ıg(eıkẑâ+ + e−ıkẑâ−)σ̂+

˙̂z = p̂/m

˙̂p = ıgℏkσ̂−(â†+e−ıkẑ − â†−eıkẑ) + c.c.

.

(42.15)
We may also verify,

˙̂n+ = ı[Ĥ, n̂+] (42.16)

= ı[−∆câ
†
+â+ + gâ†+σ̂

−e−ıkẑ + gâ+σ̂
+eıkẑ − ıη+(â+ − â†+), â†+â+]

= (η+ − ıge−ıkẑσ̂−)â†+ + (η+ + ıgσ̂+eıkẑ)â+ ,

and hence conservation of momentum,

[Ĥ, ℏk(n̂+ − n̂−)− p̂] = ℏkη+(â†+ + â+)− ℏkη−(â†− + â−) , (42.17)

in the absence of pumping, η+ = 0 = η−.

42.1.3 Adiabatic elimination of the excited state

Under certain conditions, however, the internal and external dynamics occur at very
different time scales, which allows a decoupling of the differential equations 4. When
the light fields are very detuned from atomic resonances, ∆a ≫ Γ, the internal dy-
namics of the atoms is very fast, that is, the internal state adapts very rapidly to
the boundary conditions defined by the external state and the state of the light field.

4In good cavity the limit the degrees of freedom of atomic excitation σ̂± drop out of the dynamics,
in the bad cavity limit, the fields â± drop out of the dynamics.
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Therefore, the internal state has no separate dynamics of its own, and we can adia-
batically eliminate the internal degrees of freedom. Thus, we can neglect correlations
between degrees of freedom, ⟨â±σ̂±⟩ = ⟨â±⟩⟨σ̂±⟩ etc. [1016, 481]. The adiabatic elim-
ination of the excited state comes down to treating the atom as a classical antenna.

We obtain the stationary solutions for t → ∞ in the same way as for the optical
Bloch equations [see Eq. (34.188)], assuming in Eq. (42.15),

˙̂σ− = 0 = ˙̂σz (42.18)

where ⟨σ̂−⟩ = ρ21. Introducing the position-dependent Rabi frequency of the atom in
the standing wave 5,

Ω̂(z) = 2g(eıkẑâ+ + e−ıkẑâ−) , (42.19)

we write,

0 = (−γ + ı∆a)σ̂
− + 1

2 ıΩ̂σ̂z (42.20)

0 = −2γ − 2γσ̂z + ıΩ̂†σ̂− − ıΩ̂σ̂+ .

These equations are solved by,

σ̂z(∞) =
−2(γ2 +∆2

a)

2(γ2 +∆2
a) + Ω̂†Ω̂

(42.21)

and σ̂−(∞) =
−ı(γ + ı∆a)Ω̂

2(γ2 +∆2
a) + Ω̂†Ω̂

≃ −ı(γ + ı∆a)

2∆2
a

Ω̂ .

Inserting the approximated expression for σ̂−(∞) into the equation of motion (42.15)
for the light modes,

˙̂a± = (−κ+ ı∆c)â± − ıgσ̂−(∞)e∓ıkẑ + η± (42.22)

=

(
−κ+ ı∆c −

g2γ

∆2
a

− ıg2

∆a

)
â± −

(
g2γ

∆2
a

+
ıg2

∆a

)
e∓2ıkẑâ∓ + η± ,

and for the atomic momentum,

˙̂p = ıgℏkσ̂−(∞)(â†+e
−ıkẑ − â†−eıkẑ)− ıgℏkσ̂+(∞)(â+e

ıkẑ − â−e−ıkẑ) (42.23)

=
2ℏkγg2

∆2
a

(â†+â+ − â†−â−)−
2ıℏkg2

∆a
(e2ıkẑâ+â

†
− − e−2ıkẑâ†+â−) .

Defining the light-shift U0 caused by only one photon and the scattering rate γ0 by,

U0 ≡
g2

∆a
and γ0 ≡

Γg2

∆2
a

, (42.24)

with Γ = 2γ, we finally get a set of equations, where the internal degree of freedom
of the atom has been eliminated,

˙̂a± = (−κ− γ0 + ı∆c − ıU0)â± − (γ0 + ıU0)e
∓2ıkẑâ∓ + η±

˙̂p = 2ℏkγ0(â†+â+ − â†−â−) + 2ıℏkU0(e
−2ıkẑâ†+â− − e2ıkẑâ+â†−)

. (42.25)

5Note that the factor of 2 ensure consistency with previous definitions of the Rabi frequency, such
as in (35.111). Note also, that [Ω̂, Ω̂†] = 8g2 ̸= 0, but this is negligible when the fields are large
enough to be considered as classical. On the other hand the quadratic terms Ω†Ω are negligible when
they are small compared to γ2 or ∆2

a.
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42.1.3.1 Radiation pressure and the adiabatically approximated Hamil-
tonian

The impact of radiation pressure should be considered when the pumping laser is
close to a resonance. Then γ0 ≪ U0 is no longer satisfied [481], and we get one more
term from the equation for the atomic force: ∝ ℏγ0(|α+|2 − |α−|2).

For the adiabatically approximated Hamiltonian we get immediately from (42.4)
[870],

Ĥ =
p̂2

2m
+

∑

±
(U0 −∆c)â

†
±â±

+ U0(e
−2ıkẑâ†+â− + e2ıkẑâ+â

†
−)− ı

∑

±
η±(â± − â†±)

, (42.26)

as shown in Exc. 42.1.7.3. Note that dissipative terms are (naturally) absent from this
Hamiltonian, so that it shall not be used for the description of radiation pressure. On
the other hand, all coherent terms of the equations of motion can be derived from this
Hamiltonian (42.26), and we can verify momentum conservation (42.17) and deduce
transformation properties. Solve the Exc. 42.1.7.4.

These equations, which we will call CARL equations for reasons that we will be-
come clear in Sec. 42.2, describe the coupled dynamics of atoms being accelerated by
the kick eıkẑ imparted by the photonic recoil received upon scattering a photon from
one mode into the counterpropagating one. In the same time, the backscattering an-
nihilates a photon â± in one mode and creates a photon â†∓ in the counterpropagating
mode. From now on we will exclusively use the CARL equations.

Finally, let us summarize, how the operators act on states and observables of the
coupled system, noting that the same transformation rules as for free and trapped
atoms (??) also hold for the optical lattice,

eıkẑ|z⟩ = |z⟩ , e−ıkẑ ẑeıkẑ = ẑ

eıkẑ|p⟩ = |p+ ℏk⟩ , e−ıkẑ p̂eıkẑ = p̂+ ℏk

â±|n⟩ =
√
n|n− 1⟩ , e−ıkẑĤ(ẑ, p̂)eıkẑ = Ĥ(ẑ, p̂− ℏk)

â†±|n⟩ =
√
n+ 1|n+ 1⟩ , eıap̂/ℏĤ(ẑ, p̂)e−ıap̂/ℏ = Ĥ(ẑ − a, p̂)

.

(42.27)
For ka = π the phase shift vanishes: [eıπp̂/ℏk, Ĥ(ẑ, p̂)] = 0.

The dynamics is given by the time evolutions,

e−(ı/ℏ)Ĥtẑ(0)e(ı/ℏ)Ĥt , e−(ı/ℏ)Ĥtp̂(0)e(ı/ℏ)Ĥt , e−(ı/ℏ)Ĥtn̂(0)e(ı/ℏ)Ĥt . (42.28)

In Exc. 42.1.7.5 we calculate the photon number superposition state resulting from a
kick eıkkck ẑ.

42.1.4 Adiabatic elimination of the cavity modes

We have seen in Sec. 42.1.3 how to eliminate the internal atomic degrees of freedom,
once the condition |∆a| ≫ Γ is satisfied. We may try an analogous treatment ac-
counting for the limit |∆c| ≫ κ. In this case, the cavity fields evolve on a fast time
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scale, adiabatically following the evolution of the other degrees of freedom. Hence,
we set,

˙̂a± = 0 , (42.29)

and obtain from the first Heisenberg equation (42.15),

â±(∞) =
ıgσ̂−e∓ıkẑ − η±
−κ+ ı∆c

. (42.30)

Defining,

Uc ≡
g2∆c

κ2 +∆2
c

and κc ≡
g2κ

κ2 +∆2
c

, (42.31)

we can write the position-dependent Rabi frequency (42.19) as,

Ω(z) = 2g(eıkẑâ+ + e−ıkẑâ−) = 2(κc + ıUc)

(
η+e

ıkẑ + η−e−ıkẑ

g
− 2ıσ̂−

)
(42.32)

η±=0−→ −4ı(κc + ıUc)σ̂
− ,

in the limit of no pumping η± = 0. Inserting this into the other Heisenberg equations
(42.15), we immediately get,

˙̂σ− = (−γ + ı∆a)σ̂
− + ı

2Ω(z)σ̂z
η±=0−→ (−γ + ı∆a)σ̂

− + 2(κc + ıUc)σ̂
−σ̂z , (42.33)

and
˙̂σz = −2γσ̂z + ıΩ†(z)σ̂− − ıσ̂+Ω(z)

η±=0−→ −2γσ̂z − 4κcÎ , (42.34)

as well as, ˙̂z = p̂/m and

˙̂p = ıgℏkσ̂−(e−ıkẑâ†+ − eıkẑâ†−)− ıgℏkσ̂+(eıkẑâ+ − e−ıkẑâ−)
η±=0−→ 0 . (42.35)

That is, in summary,

˙̂σ− = (−γ − 2κc + ı∆a − 2ıUc)σ̂
−

˙̂σz = −2γσ̂z − 4κcÎ
˙̂p = 0

. (42.36)

Alternatively, the coherent part of these equations can be derived by insert â±(∞)
directly in the Hamiltonian (42.4). This will be done in Exc. 42.1.7.6. The equations
(42.36) tell us that, in the absence of cavity decay and spontaneous emission, the
atomic population will not undergo nutation, but the dipole moment will rotate with
a velocity which depends on the inversion. The dynamics becomes interesting in the
presence of several atoms, as studied in 41.3.3.

42.1.5 General rules for deriving equations of motion

We have, in the previous sections, derived Heisenberg equations (42.15), respectively
(42.25) which, together with the Schrödinger equation for the system’s state |ψ(t)⟩
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or the master equation for the density operator ρ̂(t) form an over-complete set. This
section aims at providing a general recipe for choosing the right set of equations
depending on two basic criteria for the nature of the degrees of freedom involved in
the dynamics: (i) Do judge it necessary to treat the degree of freedom as quantum or
may a classical description be sufficient; and (ii) Is the degree of freedom subject to
dissipation (e.g. spontaneous emission of the electronic excitation, cavity decay of the
field mode, or collisions messing up the center-of-mass motion), or not. The procedure,
which will be applied throughout the remaining part of this chapter, leads to very
different descriptions of the system depending on the specific parameter regime.

1. The procedure is generally applicable to coupled systems: We first need to
identify all relevant degrees of freedom and set up the Hamiltonian, possibly
eliminating irrelevant degrees of freedom, e.g. via adiabatic elimination or by
tracing over them, if they contribute to dissipation. In the context of atoms
coupled to a ring cavity, we assume our system to be in some state 6,

|ψ(t)⟩ = |r⟩ ⊗ |α+⟩ ⊗ |α−⟩ ⊗ |i⟩ , (42.37)

coupling the atomic motion, the light fields and the electronic excitation, al-
though the electronic excitation |i⟩ is often eliminated adiabatically. The dis-
sipative degrees of freedom related to vacuum modes leading to spontaneous
emission and cavity decay, as well as collisions between moving atoms are traced
away, but may be considered in the master equation for the density operator
and in the Heisenberg equations, where the corresponding decay rates are added
phenomenologically.

This first item has already been solved in the previous sections and led us to
the Hamiltonian (42.4) and the corresponding Heisenberg equations (42.15),
or the adiabatically approximated Hamiltonian (42.26) and the corresponding
Heisenberg equations (42.25).

2. Now, we must decide which degrees of freedom B can be treated as classical.
Typically, those are highly excited degrees of freedom (e.g. fast velocities of
many photons in a mode). The corresponding operators can be substituted by
their expectation value. Purely classical energy terms in the Hamiltonian can
be ignored and removed. For the degrees of freedom Â we want to treat as
quantum, we chose an appropriate common basis, which can be discrete {|m⟩}
where m is a complete set of quantum numbers. It can also be continuous {|r⟩}
or a combination of both {|r,m⟩}. Now, we need to expand all operators on the
chosen basis.

3. For the quantized degrees of freedom must now decide, whether they all evolve
coherently or whether they are subject to dissipation. In the first case, perform
steps A4 to A7, in the second case, perform steps B4 to B7.

6Throughout this chapter we will denote momentum states by the Greek letters |µ⟩ or ν⟩. Photonic
states will be labeled by the Latin letters |n⟩ or |m⟩. Electronic excitation states will be labeled by
the Latin letters |i⟩ or |j⟩. Finally, expansion coefficients cν,i,n+,n− of the state or of the density
matrix elements will sometimes be emphasized in red.
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A4. In the case of coherent dynamics, we expand the state of the system |ψ(t)⟩ on
the whole basis. For example, expanded on a partially continuous basis, the
coupled atom-ring cavity state may read,

|ψ(t)⟩ =
∑

n+,n−,i

∫
d3r cn+,n−,i(r, t)|r⟩ ⊗ |n+⟩ ⊗ |n−⟩ ⊗ |i⟩ , (42.38)

where ⟨r, α+, α−, i|ψ(t)⟩ = cn+,n−,i(r, t) are the expansion coefficients depend-
ing on photon numbers n± in the counterpropagating light modes, the electronic
excitation state i, and the atomic position r treated in terms of a continuous
wavefunction in space 7. When we want to treat the atomic motion as being
quantized in discrete momentum states labeled by some integer number µ, we
adopt the notation,

|ψ(t)⟩ =
∑

ν,n+,n−,i

cν,n+,n−,i(t)|ν⟩ ⊗ |n+⟩ ⊗ |n−⟩ ⊗ |i⟩ , (42.39)

where ⟨ν, α+, α−, i|ψ(t)⟩ = cν,n+,n−,i(t) are the new expansion coefficients.

A5. Next, we write down the Schrödinger equation for the state |ψ(t)⟩, insert the
expansion on the basis, and we derive a linear set of equation of motion for the
expansion coefficients ċ{m}(r). This set governs the dynamics of the quantum
degrees of freedom.

A6. The dynamics of the classical degrees of freedom B is obtained by taking the
expectation values of the Heisenberg equations. Here, we need to take care
that the quantum degrees of freedom appearing in the Heisenberg equations are
expressed by their expansions.

A7. The coupled set of equations for the expectation values of projectors of the
system into a particular state, that is, ċ{m} (respectively, ċ{m}(r)), and of ob-
servables B really represents all we need to describe the system dynamics and
to simulate it numerically. Hack everything into your PC, pronto!

B4. In the case of dissipative dynamics, derive the master equation obeying commu-
tation rules for all quantized degrees of freedom including the Lindbladt terms
and expand every quantized degrees of freedom on the common basis, we do the
same expansions, but,

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| . (42.40)

B5. Derive the linear set of equation of motion for the matrix elements ρ̇{m},{n}.

B6. Take the expectation values Tr ρ̂B̂ of the Heisenberg equations for all degrees of
freedom to be handled classical as expanding the quantized degrees of freedom
on their basis.

B7. The coupled set of equations for ρ̇{m},{n} and Ḃ is sufficient to describe the
dynamics of the system, hack everything into your PC, pronto!

7Note that, in the absence of other quantum numbers, we rather use to write c(r) = ψ(r).
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Let us apply the procedure to the simplest case that the electronic excitation has
been adiabatically eliminated and all remaining degrees of freedom can be treated
classical. Then we do not require a Hamiltonian, nor the Schrödinger equation. We
just take the expectation value of the Heisenberg equations (42.25) for all degrees of
freedom which is easy to do, because there is no quantum state to be expanded: we
just can replace the operators by c-numbers,

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0e
∓2ıkzα∓ + η±

ṗ = 2ıℏkU0(e
−2ıkzα†+α− − e2ıkzα+α

†
−)

. (42.41)

These totally classical equations, called CARL equations, will be studied in the subse-
quent sections, while a thorough discussion of partially quantized equations of motion
is postponed to Sec. 42.4.

42.1.5.1 CARL as a beam splitter

Neglecting spontaneous emission, γ0 = 0, cavity pumping, η = 0, cavity decay, κ = 0,
and cavity detuning, ∆c = 0, the CARL equations in the adiabatic approximation
can be derived from the following Hamiltonian,

Ĥ =
p̂2

2m
+
∑

±
U0â

†
±â± + U0(e

−2ıkẑâ†+â− + e2ıkẑâ+â
†
−) , (42.42)

and read,

˙̂a± = −ıU0â± − ıU0e
∓2ıkẑâ∓ (42.43)

˙̂p = 2ıℏkU0(e
−2ıkẑâ†+â− − e2ıkẑâ+â†−) ,

or with the substitution b̂± ≡ â±eıU0t,

˙̂
b± = −ıU0e

∓2ıkẑ b̂∓ (42.44)

¨̂
b± = −U2

0 b̂± − 2kżU0e
∓2ıkẑ b̂∓ ,

we see that, if the motion weren’t a dynamic variable, ˙̂z = 0, the field amplitudes
would just perform harmonic oscillations.

On the other hand, with the substitution ĉ ≡ â+e
ıkẑ + â−e−ıkẑ 8, the complete

Hamiltonian rephrased as,

Ĥ =
p̂2

2m
+ U0ĉ

†ĉ . (42.45)

Here, we see that, if the motion described by (ẑ, p̂) weren’t a dynamic variable, our
system would simply be a harmonic oscillator vibrating with the frequency U0.

8Provided we are allowed to commute the operators ẑ and â±.
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42.1.5.2 Classical limit of the equations of motion

For atoms much hotter than the recoil limit and macroscopic light intensities we may
replace the quantum operators by complex numbers z ≡ ẑ, α± ≡ â± and ρ21 = σ̂−.
The classical equations of motion (42.41) for the coupled system of a single atom
confined at the position r = z of the dipolar potential of a ring cavity can be cast
into the form,

(
α̇+

α̇−

)
=

(
−κ− γ0 + ı(∆c − U0) −(γ0 + ıU0)e

−2ıkz

−(γ0 + ıU0)e
2ıkz −κ− γ0 + ı(∆c − U0)

)(
α+

α−

)
+

(
η+

η−

)

ṗ = 2ℏkγ0(α+α
∗
+ − α−α∗−) + 2ıℏkU0(α

∗
+α−e

−2ıkz − α+α
∗
−e

2ıkz)

.

(42.46)
Recalling that α∗±α± is the number of photons in the respective mode, we can interpret
this equation as a rate equation: The number of photons in a mode α+ changes by
photon losses at a rate κ from resonator, or by gain due to backscattering from the
counterpropagating mode, or by pumping with an external incident light field at rate
η+.

The equations (42.46) completely describe our coupled atom-cavity system. They
are totally classical and work for both, atoms and macroscopic particles.

42.1.6 Cumulant expansion for CARL

The dynamics of quantum correlations such as â†+â− or â+σ
+ can be derived from

Heisenberg equations, as well. As an example, let us consider the adiabatically elim-
inated Hamiltonian (42.26) and ignore the quantized nature of the atomic motion,

the relevant first-order field-field correlations are then â2+, â
†
+â+, â

†2
+ , â2−, â

†
−â−, â

†2
− ,

â+â−, â+â
†
−, â

†
+â−, â

†
+â
†
−. From the Heisenberg equation we get, for instance,

d

dt
â2+ = ı[Ĥ, â2+] (42.47)

= −2ı(U0 −∆c)â
2
+ + 2U0

(
e2ıkẑâ+â

†
− − e−2ıkẑâ+â−

)
− 2ıη+â+ .

This is the lowest order cumulant expansion. The expectation values form a system
of 10 linear first order differential equations [226] from which we can calculate the
steady-state of the system.

The correlation functions and spectra are obtained directly from the CARL equa-
tion for the cavity fields (42.25) using the Wiener-Khinchin theorem (35.176) and
the quantum regression theorem (35.253). With the substitutions, t → 0, B̂ → 1,
Â → dÂk/dτ , and ξi(τ)Âi(0) → ζiÂi(τ), the quantum regression theorem can be
written in the form,

d

dτ
⟨Âk(τ)⟩ =

∑

i

ζi⟨Âi(τ)⟩ =⇒ d

dτ
⟨Âk(τ)Ĉ(0)⟩ =

∑

i

ζi⟨Âi(τ)Ĉ(0)⟩ .

(42.48)
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Applied, for example, to the correlation function (42.47), we obtain from the CARL
equation (42.25), with γ0 = 0 and ∆c = 0,

d

dτ
⟨â+(τ)â+(0)⟩ = (−κ− ıU0)⟨â+(τ)â+(0)⟩ − ıU0e

−2ıkẑ⟨â−(0)â+(0)⟩+ η+⟨â+(0)⟩ .
(42.49)

Repeating this calculation for the other first-order correlations functions we obtain a
system of 10 linear first order differential equations, which can be solved via Laplace
transform.

42.1.7 Exercises

42.1.7.1 Ex: Origin of quantum correlations

Derive the Hamiltonian (42.2) from the JCM Hamiltonian (35.111) transforming it
into the co-rotating frame.

Solution: We write the JCM Hamiltonian,

Ĥ = ωcâ
†â+ ωa(σ̂

+σ̂− − 1
2 ) +

1
2Ω(âσ̂

+ + â†σ̂−)

in matrix form as,

Ĥn =

(
(n− 1)ωc

Ω
2

√
n

Ω
2

√
n nωc − ωa

)
.

Now, applying the unitary transform,

Û =

(
e−ınωt 0

0 e−ınωt

)
,

we get,

H̃ = Û†ĤÛ + ıℏ ˙̂
U†Û =

(
(n− 1)(ωc − ω) + ωa − ω Ω

2

√
n

Ω
2

√
n n(ωc − ω)

)
,

and hence, introducing the detunings ∆a ≡ ω − ωa and ∆c ≡ ω − ωc,
Ĥ = −∆câ

†â−∆a(σ̂
+σ̂− − 1

2 ) +
1
2Ω(âσ̂

+ + â†σ̂−) .

42.1.7.2 Ex: Linear pumping of a cavity mode

Study how the Hamiltonian Ĥpmp = ıη∗â−ıηâ†, describing linear pumping of a cavity
mode, fills the cavity with photons in the absence of dissipation (see also (40.2)).

Solution: We can define a displacement operator D(ηt) ≡ e−ıĤpmpt = eη
∗tâ−ηtâ† .

The

⟨0|D†(ηt)n̂D(ηt)|0⟩ = ⟨0|D†(ηt)â†D(ηt)D†(ηt)âD(ηt)|0⟩
= ⟨0|(â† + η∗t)(â+ ηt)|0⟩ = ⟨0|n̂+ η∗tâ+ ηtâ† + |ηt|2|0⟩ = |ηt|2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian01.pdf
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42.1.7.3 Ex: The adiabatically approximated Hamiltonian

a. Derive the adiabatically approximated Hamiltonian (42.26) from the total Hamil-
tonian (42.4).
b. Derive the CARL equations (42.25) directly from the adiabatically approximated
Hamiltonian.
c. Show that, in the absence of pumping, the energy stored in the light fields is con-
served separately from the mechanical energy of the atom.
d. Verify momentum conservation.

Solution: a. With the definition of the Rabi frequency (42.19) Ω̂ = 2g(eıkẑâ+ +
e−ıkẑâ−) we can rewrite the Hamiltonian (42.4) as,

Ĥ =
p̂2

2m
−∆aσ̂

+σ̂− + 1
2 Ω̂
†σ̂− + 1

2 σ̂
+Ω̂−

∑

±

[
∆câ

†
±â± + ıη±(â± − â†±)

]
,

inserting the stationary solution (42.21): σ̂−(∞) = Ω̂/2∆a and setting γ = 0, we get,

Ĥ ≃ p̂2

2m
− Ω̂†Ω̂

4∆a
−
∑

±

[
∆câ

†
±â± + ıη±(â± − â†±)

]

=
p̂2

2m
+
∑

±
(U0 −∆c)â

†
±â± + U0(e

−2ıkẑâ†+â− + e2ıkẑâ+â
†
−)− ı

∑

±
η±(â± − â†±) ,

with U0 = g2

∆a
.

b. From this we derive,

˙̂a+ = ı[Ĥ, â+] = (ı∆c − ıU0)â+ − ıU0â−e
−2ıkẑ + η+ ,

where we used, [â†+â+, â+] = −â+, [â†−â−, â+] = 0, and [â†+â−, â+] = −â− and,

˙̂p = ı[Ĥ, p̂] = 2ıU0k
(
e−2ıkẑâ†+â− − e2ıkẑâ+â†−

)
,

where we used, [eıkẑ, p̂] = −keıkẑ.
c. Using the derived Hamiltonian without pumping terms and setting for simplicity
∆c = 0 and using the commutation rules [â±, n̂±] = â± and [â†±, n̂±] = −â†± it is easy
to show,

[Ĥ, n̂+ + n̂−] = 0 ,

such that kinetic energy can only be converted into potential energy,

[Ĥ, p̂
2

2m ] = −[Ĥ, U0

(
â†+â−e

−2ıkẑ + â†−â+e
2ıkẑ
)
] = 4ωrecU0

(
â†+â−e

−2ıkẑ + â†−â+e
2ıkẑ
)
.

d. Momentum conservation,

[Ĥ, ℏk(n̂+ − n̂−)− p̂] = 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian02.pdf
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42.1.7.4 Ex: Hamiltonian after adiabatic elimination of internal states
for a linear cavity including counter-rotating terms

Repeat the adiabatic elimination of Sec. 42.1.4 for a linear cavity including counter-
rotating terms.

Solution: The Hamiltonian is,

Ĥ =
p̂2

2m
−∆aσ̂

+σ̂− −∆câ
†â+ g(â† + â)(eıkẑ + e−ıkẑ)(σ̂− + σ̂+)

=
p̂2

2m
−∆aσ̂

+σ̂− −∆câ
†â+ Ω̂(z)

2 (σ̂− + σ̂+) ,

defining,
Ω̂(z) ≡ g(â† + â) cos kẑ = Ω̂(z)† .

The Heisenberg equations yield,

σ̇− = −γσ̂− + ı[Ĥ, σ̂−] = (−γ + ı∆a)σ̂
− − ıΩ(z)

2 σ̂z

σ̇z = ı[Ĥ, σ̂z]− 2γ − 2γσ̂z = −2γ − 2γσ̂z + ıΩ(z)(σ̂+ − σ̂−) .

In steady state,

σ̂−(∞) =
ıΩ(z)

2(−γ + ı∆a)
σ̂z(∞) ≃ −Ω(z)

2∆a

σ̂z(∞) =
−2(γ2 +∆2

a)

2(γ2 +∆2
a) + Ω(z)2

≃ −1

σ̂+σ̂− =
Ω(z)2

2(γ2 +∆2
a)
≃ 0 .

Using classical light [â, â†] = 0,

Ω̂2 = g(â† + â)2 cos2 kz = 2gâ†â cos2 kz + const ,

the Hamiltonian finally becomes,

Ĥ =
p̂2

2m
−∆câ

†â− Ω(z)2

2∆a

=
p̂2

2m
−∆câ

†â− g

∆a
â†â cos2 kz + const .

42.1.7.5 Ex: Periodicity of a lattice

Assume a symmetrically pumped ring cavity in equilibrium with an atom initially
at rest. What photonic states are generated in the counterpropagating light modes,
when the atom is kicked by an external force imparting a sudden recoil of ℏkkck.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian02b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian02b.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian03.pdf
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42.1.7.6 Ex: Adiabatic elimination of the cavity modes

Derive the coherent part of the equations of motion (42.36) directly from the Hamil-
tonian (42.4) in the absence of pumping, η± = 0, and in the limit of large cavity
detunings, |∆c| ≫ κ.

Solution: The Hamiltonian becomes,

Ĥatom:field = −∆aσ̂
+σ̂− +

p̂2

2m
−
∑

±
∆câ

†
±â± − ıη±(â± − â†±) + 1

2Ω
†(z)σ̂− + 1

2 σ̂
+Ω(z)

η±=0−→ p̂2

2m
+ (2Uc −∆a)σ̂

+σ̂− .

Now, the equations of motion are,

˙̂σ− = ı[Ĥatom:field, σ̂
−] = ı(2Uc −∆a)[σ̂

+σ̂−, σ̂−] = ı(∆a − 2Uc)σ̂zσ̂
−

˙̂σz = ı[Ĥatom:field, σ̂z] = ı(2Uc −∆a)[σ̂
+σ̂−, σ̂z] = 0 ,

which coincides with the coherent part of (42.36).

42.2 CARL: The collective atomic recoil laser

The collective atomic recoil laser (CARL) was first predicted in 1994 [173] as an atomic
analog of FEL. The idea consists of a monochromatic homogeneous beam of moving
two-level atoms (all atoms have the same velocity), a strong counterpropagating pump
laser beam, and a weak copropagating probe beam tuned to the blue side of the
resonance. The lasers form a standing light wave that moves in the same direction
as the atoms. Atoms that are faster than the velocity of the standing wave are
rejected by the maxima of the dipolar potential created by the standing wave and feel
a repulsive force. Atoms that are slower than the standing wave velocity are pushed
by the dipole potential maxima and feel an accelerating force. These forces can be
interpreted as backscattering of photons from the pump wave into the probe wave.
This redistribution of energy amplifies the contrast of the stationary wave, which
in turn amplifies the backscattering efficiency, etc. Therefore, the CARL converts
kinetic energy into coherent radiation (or more precisely, into an increase of the energy
difference between probe and pump) mediated by atomic bunching. It is a self-
amplifying mechanism. The CARL signature is a transient exponential amplification
for the incident probe, which defines the frequency of the ’CARL laser’. The first
experimental realization of CARL used a ring cavity [755].

42.2.1 Classical CARL equations for many mobile atoms

The preceding sections dealt with a single atom in a ring cavity. More interesting
dynamics, however, emerge in the presence of several atoms, because their motion can
be become correlated via their simultaneous interaction with the same two counter-
propagating modes of the cavity, as illustrated in the following movie (watch movie).
A talk on CARL can be assisted at (watch talk).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_RingcavityHamiltonian04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_Optomech_Movie.avi
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/ClassicalCARL


2432 CHAPTER 42. ATOMIC MOTION IN OPTICAL CAVITIES

Figure 42.3: Collective atomic recoil laser.

To describe experiments dealing with many atoms, we have to extend the equations
of motion (42.26) to N atoms via z −→ zj and p −→ pj , where j = 1, N ,

α̇± = (−κ− ıNU0)α± − ıU0

N∑

j=1

e∓2ıkzjα∓ + η±

ṗj = −2ıℏkU0(α+α
∗
−e

2ıkzj − α−α∗+e−2ıkzj )
. (42.50)

with the kinetic and potential energies 9,

Ekin =
∑

j

p2j
2m

, Epot =
∑

j

U0|α+e
ıkzj + α−e

−ıkzj |2 . (42.51)

If the atomic density distribution is homogeneous, the phases of randomly scattered
photons destructively interfere and the quantity,

b ≡ 1
N

∑

j

e−2ıkzj , (42.52)

called bunching parameter, vanishes. That is, the impact of the scatterers on the light
modes cancels out, as we will see in Exc. 42.2.7.1 for the case of two atoms. If on
the other hand, atoms accumulate in the antinodes of the standing wave, it increases
the contrast of it can spread more efficiently collectively by Bragg scattering. The
particularity of the CARL is that during the temporal evolution the bunching process
can amplify itself leading to an exponential growth of the counterpropagating mode,
accompanied by an increasingly pronounced self-bunching.

In general, the equations can not be solved analytically, especially when the pump
varies over time. A first approach consists in iterating them numerically,

α±(t+ dt) = α±(t) + dt [−(κ+ ıNU0 − ı∆c)α± − ıNU0bα∓ + η±(t)] (42.53)

zj(t+ dt) = zj + dt 1
mpj

pj(t+ dt) = pj − dt 2ıℏkU0(α+α
∗
−e

2ıkzj − α−α∗+e−2ıkzj ) .

In Exc. 42.2.7.2 we will extend the equations (42.50) to the presence of two atomic
species, and in Exc. 42.2.7.3 we will use them to describe the response of the light
fields to an inertially moving atom supposing that is does not feel the CARL force.

9Note, that there is also a radial motion of the atom coupled to the axial movement. The coupling
happens, because the axial motion influences the number of intracavity photons of the radiation field
which, in turn, determines the depth of the dipole potential.
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42.2.1.1 Locking of the pump laser

In practice the resonant frequency of a cavity fluctuates due to ambient noise. Hence,
it is easier, experimentally, to lock the pump laser on a cavity mode, e.g. using the
Pound-Drever-Hall method. This means,

α+ =
η+
κ

. (42.54)

In the presence of atoms, however, the resonant frequency can be shifted due to the
refractive index of the atomic cloud [415]. Moreover, the shift depends on the atomic
bunching and consequently varies during the dynamics of the CARL. The way the
locking circuit works, is to continuously adjust the detuning between the laser and
the cavity ∆c (defined for the empty cavity) such as to maximize the amplitude of the
field |α+| and, hence, the transmission of the cavity filled with atoms. The dynamics
of the detuning must be incorporated by an additional equation modeling the action
of locking. Now that we know the effect, which an ideal lock should have, we can
apply the boundary condition (42.54) and eliminate the pump mode α+ from the
dynamics of the system. That is, the following equations are usually sufficient to
describe the CARL:

α̇− = (−κ+ ı∆c − ıU0)α− − ıU0e
−2ıkzα+ + η−

mz̈ = 2ıℏkU0α+(α−e−2ıkz − α∗−e2ıkz)
. (42.55)

The frequency offset of the cavity resonances caused by the atom, U0, can exceed the
width of the cavity κ. From equation (40.146) we know,

|α+(∞)|2 =
χχ∗

(χ2 + U2
0 )(χ

∗2 + U2
0 )
η2+ .

The maxima of |α+(∞)|2 as a function of ∆c give the shifted resonances of the modes.

Example 270 (Locking on transverse modes): We already mentioned that
as the CARL accelerates, the frequency of the light which is backscattered to the
probe shifts to the red until it escapes from the resonant mode. What happens
if we provide another resonant mode that can receive photons? We will show in
the following calculation, that CARL simply picks up the closest mode to dump
the photons. The starting point is generalized CARL equations to accommodate
a second reverse mode labeled β−,

α̇+ = −(κ− ı∆c)α+ − ıU0(u
∗
+u+α+ + u∗+u−α− + u∗+uββ−) + η+ (42.56)

α̇− = −(κ− ı∆c)α− − ıU0(u
∗
−u−α− + u∗−u+α+ + u∗−uββ−)

β̇− = −(κ− ı∆β)β− − ıU0(u
∗
βuββ− + u∗βu+α+ + u∗βu−α−)

mẍ = −U0∇|α+u+ + α−u− + β−uβ |2 ,
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com u± = e±ıkz and uβ = e−ıkβx. We obtain,

α̇+ = −(κ− ı∆c + ıNU0)α+ − ıU0e
−2ıkzα− − ıU1e

−ı(k+kβ)xβ− + η+ (42.57)

α̇− = −(κ− ı∆c + ıNU0)α− − ıU0e
2ıkzα+ − ıU1e

ı(k−kβ)xβ−

β̇− = −(κ− ı∆β + ıNU1)β− − ıU1e
ı(k+kβ)xα+ − ıU1e

−ı(k−kβ)xβ−

mẍ = −U0(2ıke
2ıkzα∗−α+ − 2ıke−2ıkzα∗+α−)

− U1(ı(k + kβ)e
ı(k+kβ)xβ∗−α+ − ı(k + kβ)e

−ı(k+kβ)xα∗+β−)

− U1(ı(k − kβ)eı(k−kβ)xα∗−β− − ı(k − kβ)e−ı(k−kβ)xβ∗−α−) .

Note that k− kβ ≈ 0 and k+ kβ ≈ 2k. The result of the simulation is displayed

in Fig. 42.4.
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Figure 42.4: (code) The CARL locks to other modes of the cavity.

42.2.1.2 Analytic approximations for one-sided pumping and perfect bunch-
ing

Here, we will assume for simplicity, that the atoms are perfectly bunched, zj = z and
pj = p, i.e. they have zero temperature. This means that we only need to consider a
single equation of motion for the atoms. However, their coupling to the cavity modes
is N times stronger, which means that we have to substitute U0 −→ UN ≡ NU0 in
the equation of motion for the cavity fields.

When only one atom is in the cavity or when the atoms are perfectly bunched
together, it is possible to derive analytical solutions. Particularly interesting is the
following situation: We pump the cavity from one side. The pump is supposed to
be dominant and locked to a resonance, such that we can neglect the feedback of the
system on the pump, that is, we can assume, α+ = η/κ. Using the abbreviations
χ ≡ κ+ ıU0 − ı∆c and the photon recoil shift [481],

ωrec ≡
ℏk2

2m
, (42.58)

the equations (42.26) then become,

α̇− = −χα− − ıUNα+e
2ıkz

kv̇ = 4ωrecıU0α+(α−e−2ıkz − α∗−e2ıkz)
. (42.59)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlLocking.m
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Figure 42.5: In the momentum picture the CARL acceleration process occurs as Raman-
anti-Stokes processes along the free-particle dispersion relation.

We consider the stationary case (42.26). Doing the ansatz,

α− ≡ βe2ıkx where β̇ = 0 (42.60)

we assume that the atom and the standing wave have the same velocity, that is, they
move in phase. We obtain as solution,

β =
−ıUNα+

κ+ 2ıkv
, kv̇ = 8ωrecU

2
0α

2
+

2κ

κ2 + 4k2v2
. (42.61)

If κ≪ 2kv, then the differential equation is approximately solved by,

(kv)3 = 3εκU2
0α

2
+t . (42.62)

This means that the CARL frequency, that is, the frequency difference between the
emitted probe wave and the incident light, increases temporarily. The frequency
corresponds to the double Doppler shift. As the frequency of the probe light gradually
shifts away from the cavity resonance, the probe light finally stops being amplified,
and the amplitude of the probe field decreases: CARL is only a transient phenomenon.
In fact, the behavior described by the equation (42.61) was observed in experiments
[755].

Example 271 (Universal scaling): Our formula describing CARL,

α̇− = − ıU0η+
χ

∑
j
e2ıkzj − χα− (42.63)

kv̇j = −4ωrecıU0η+

(
α−
χ∗

e−2ıkzj − α∗−
χ
e2ıkzj

)
− γfrickvj ,
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where χ = κ+ ıNU0 − ı∆c, can be rewritten in terms of a universal ’scaling’ if
we define,

τ = 4ωrecρt and γ̄ =
γfric
4ωrecρ

(42.64)

θj = 2kzj and Pj =
2kvj
4ωrecρ

A =
ı|χ|

χ∗
√
ρN

α− and χ̄ =
χ

4ωrecρ
.

We obtain,

Ȧ =
1

N

∑
j
eıθj − χ̄A (42.65)

θ̇ = Pj

Ṗj = −2(A∗e−ıθj +Aeıθj )− γ̄Pj .

provided that the universal scaling parameter ρ is set to,

ρ ≡
(
NU2

0 η
2
+

8ω2
rec|χ|2

)1/3

. (42.66)

The meaning of the ρ parameter can be gathered by rewriting it in terms of the
number of photons of the pump |α+|2 = η2+/κ

2 and the depth of the dipolar
potential Ud = U0|α+|2,

ρ3 =
N

α2
+

U2
d

8ω2
rec

. (42.67)

The ρ parameter therefore indicates the number of atoms per photon and the

ratio between the depth of the dipolar trap and the photonic recoil energy.

42.2.2 Observation of CARL in ring cavities

The first observation of CARL was achieved with a cloud of 100µK cold rubidium
atoms interacting with a high finesse ring cavity [755]. In a thermal cloud the atomic
motion prevents bunching, i.e. b = 0 so that according to Eq. (42.50) the cavity fields
do not couple to the atoms. Density fluctuations that could seed CARL dynamics are
rapidly washed out by thermal motion.

This problem can be circumvented by applying a robust pre-bunching, which can
be done by subjecting the atoms to a periodic potential, e.g. via a standing wave
formed by two counterpropagating cavity modes. The atoms then arrange themselves
into a periodic lattice, so that the bunching parameter is initially b ≃ 1. If one cavity is
then extinguished, a CARL dynamics can take place, until thermal motion succeeds
in washing out the periodic lattice. This dynamics is illustrated in the simulation
exhibited in Fig. 42.6 for the case of strontium atoms. The finite temperature of the
cloud is accounted for via an initial density and momentum distribution for the atoms
given by,

p0,j =
√
mkBT ζj and z0,j =

√
2

k

√
kBT

U0
ζj , (42.68)

where ζj is a normally distributed random variable.



42.2. CARL: THE COLLECTIVE ATOMIC RECOIL LASER 2437

0 0.2

κt

0

0.5

1

k
v c

m
/κ

(a)

0 0.2

κt

0

1

2

|α
+
+
α
−
|2

×109
(b)

0 2 4

kz/π

-0.215

-0.21

-0.205

-0.2

U
d
ip
/η

2
U
0

(c)

Figure 42.6: (code) Simulation for N = 105 strontium atoms at T = 10µK temperature

interacting via their Γ = (2π) kHz narrow intercombination line at λ = 689 nm with a ring

cavity (decay rate κ = (2π) 1.7MHz and waist w0 = 68.4µm). CARL dynamics is triggered

by switching off one of two pump lasers whose intracavity power is P = 1W. (a) Doppler

shift of the CARL-accelerated atoms, (b) interference signal between the two cavity light

modes, and (c) atomic distribution in the standing wave potential.

Example 272 (Curiosities: Atomic transport around mirrors): Displace-

ment of the atomic cloud in a unidirectionally pumped ring-cavity. The left and

right image in Fig. 42.7 are taken for different pumping directions α. The up-

per cloud shows atoms trapped in the main focus of the ring-cavity. The lower

traces stem from atoms transported from the focus passed the mirrors T1 and T2

towards the incoupling mirror located at the place where the lower traces inter-

sect. The lower trace are imaged twice, because the imaging beam is reflected

from the incoupling mirror surface, before it is sent to a photodiode.

Figure 42.7: Displacement of the atomic cloud in a unidirectionally pumped ring-cavity.
The left and right figures are taken for different pumping directions α. The upper cloud
shows atoms trapped in the main focus of the ring-cavity. The lower traces stem from atoms
transported from the focus passed the mirrors T1 and T2 towards the incoupling mirror
located at the place where the lower traces intersect. The lower trace are imaged twice,
because the imaging beam is reflected from the incoupling mirror surface, before it is sent
to a photodiode.

42.2.2.1 CARL in the presence of friction forces

A feature of CARL, as it has been detected in Fig. 42.6 is, that it does not lead to a
stationary state: the atoms are monotonically accelerated and the Doppler-shift of the
backscattered probe light increases at the same pace. After a while, the frequency of
the probe light runs out of the cavity resonance, so that the CARL dynamics starts to
be suppressed. This led to a reduction of the oscillation amplitude of the interference
signal observed in Fig. 42.6(b).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimulation.m
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In order to maintain CARL strong we can think of limiting the acceleration by a
friction force. How this works is illustrated in Fig. 42.8, where by subject the atoms
to an optical molasses switched on at time κt = 0.3. The friction can be incorporated
into the CARl equations (42.50) via an additional force,

Ffrc = −βfrcp . (42.69)

We observe that the frequency shift of the backscattered light stabilizes at a lower
value and that the oscillation amplitude of the interference signal is stronger than
without molasses [1343].
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Figure 42.8: (code) Influence of an external friction force (switched on at κt = 0.3) propor-

tional to βfrc = 3.8 · 106 s-1. Other parameters are the same as in Fig. 42.6.

Let us note that, while provide a nice intuition, the description of the impact of
an optical molasses force is incomplete, because it disregards heating effects caused
by random photon scattering processes. The temperature of the atomic cloud is given
by an equilibrium between friction and heating processes. The correct inclusion of
optical molasses in the CARL dynamics will be studied in Sec. 42.6.1.

42.2.2.2 CARL in the presence of injected probe light

It is also interesting to study the impact of a weak injected probe light on the CARL
dynamics. This light may have the same frequency as the pump light, η−/|η−| =
η+/|η+|. This is for example the case, when light is backscattered from imperfection
of the cavity mirror surfaces. Or may have a different frequency (provided the probe
frequency is resonant to a cavity mode),

η− = eı∆νt . (42.70)

The injected light fields η+ and η− create a standing light wave potential, in which
the atoms move as being subject to an array of hurdles. The CARL force is too weak,
the atoms will get stuck. We study this in Exc. 42.2.7.4. In Exc. 42.2.7.5 we study
CARL dynamics for the case that the atoms are subject to an additional harmonic
potential.

42.2.2.3 Impact of radiation pressure on CARL

CARL is a coherent force resulting from a coupling of only two counterpropagating
modes of the cavity. As such, it can be derived from a potential. However, photons

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimMolasses.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimMolasses.m
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may also be scattered out of the cavity and get lost for the system. These processes
give rise to an additional radiation pressure force, which has been given in Eq. (42.46),

Frp = 2ℏkγ0(α+α
∗
− − α−α∗+) . (42.71)

But this force is weak when the laser is tuned far enough from the atomic resonance.

Fig. 42.9 shows a simulation of the impact of radiation pressure for the same
system as in Fig. 42.6. For clarity the radiation pressure force has been exaggerated
by a factor of 100.
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Figure 42.9: (code) Influence of radiation pressure on CARL.

42.2.3 CARL without cavity, propagation effects

Propagation effects are neglected in most treatments. An exception is [1439], who
emphasize the important role of light intensity variations along the volume filled by
the atomic cloud, within the SVEA, but ignoring interactions and external potentials.
The approximation consists in setting E⃗(r) = E⃗ , i.e. assuming a uniform coupling
strength g = Ω1Ω2

ℏ∆a
.

We assume the pump field detuning from the atomic resonance is large enough
to neglect radiation pressure and to adiabatically eliminate the internal degrees of

freedom. With the single-photon light shift U0 = g2

∆a
, the atomic positions zn, the

probe light field amplitude (scaled to the single-photon field amplitude) α− and the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimRadPressure.m
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pump field α+ taken as real 10,

∂2Rn
∂T 2

=
2ℏk
m

ıU0α+

(
α−e

−2ıkRn − α∗−e2ıkRn
)

∂α−
∂T

+ c
∂α−
∂Z

= −ıU0α+

∑

n

e2ıkRn .

In scaled units rn = 2kRn and pn = Pn/ℏk and t = ωrT and z = ωrZ/c where
ωr = 2ℏk2/m,

∂rn
∂t

= pn

∂pn
∂t

=
2ıU0α+

ωr

(
α−e

−ırn − α∗−eırn
)

∂α−
∂t

+
∂α−
∂z

= − ıU0α+

ωr

∑

n

eirn .

Introducing the change of variables τ = (t − z)√z and rn(t) = r̃n(τ) and pn(t) =√
zp̃n(τ) and α−(t, z) = zα̃−(τ), and using,

τ

2

∂α̃−(τ)
∂τ

+ α̃−(τ) =

(√
z +

t

2
√
z
− 3
√
z

2

)
z
∂α̃−(τ)
∂τ

+ α̃−(τ)

=

(
∂τ

∂t
+
∂τ

∂z

)
z
∂α̃−(τ)
∂τ

+ α̃−(τ)

= z
∂α̃−(τ)
∂t

+ z
∂α̃−(τ)
∂z

+ α̃−(τ) =
∂α−(t, z)

∂t
+
∂α−(t, z)

∂z
.

10Here is a comment that Wolfgang Ketterle made on our papers [1217, 1218]:

Regarding optical stimulation vs. atomic stimulation: There are two regimes, depend-
ing whether the atomic or optical coherences last longer. Indeed, you write: This
implies that scattered photons have left the interaction volume before subsequent pho-
tons are scattered. In other terms the coherence time of the light modes is too small for
the build-up of an optical interference pattern. Therefore the atomic density grating
occurring in SRyS is not formed optical dipole forces but arises from the matter wave in-
terference between different momentum states. This explains, why it is important that
the thermal energy of the atoms be smaller than the recoil energy kBT < 2ℏ22k2/m.
Otherwise, the Doppler broadening leads to decoherence of the momentum states and
consequently to a reduction of the contrast of the matter wave grating. For CARL
the situation is reversed. CARL has been observed with temperatures much higher
than the recoil temperature, i.e. in a regime where interferences between atoms in
Raman superpositions of momentum states are smeared out by Doppler broadening.
Here, the optical cavity plays a crucial role, because it stores the scattered light for
such long times, that the atoms experience the force of the periodic dipole potential
emerging from the interference of the probe with the pump mode. In our experiment,
c/2L = 20 kHz, so that the lifetime is 7 orders of magnitude larger than without cav-
ity. The gain can be varied over wide ranges, G = 103 − 109 s-1. I disagree that you
can really distinguish between optical dipole forces scattering atoms or matter wave
gratings scattering light. This has confused us in earlier work, but in our 2003 Science
paper (Schneble et al.) we clearly showed that even the extreme case of SRyS where
the photon leaves immediately, can be described as atoms being Bragg scattered by
the photons on their way out, in other words, there is a dipole force description even
in this case.
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it is easy to show,

∂r̃n
∂τ

= p̃n

∂p̃n
∂τ

=
2ıU0α+

ωr

(
α̃−e

−ır̃n − α̃∗−eır̃n
)

τ

2

∂α̃−
∂τ

= −α̃− −
ıNU0α+

ωr
b .

In Exc. 42.2.7.6 we try a numerical approach.

42.2.4 Optical instability in ring cavities

We have until now concentrated on the regime of weak coupling, NU0 < 1. If the
pump laser is tuned closer to resonance, or if the number of atoms is increased, so
that NU0 > 1, we observe instabilities in the coupled atom-field dynamics, which
critically depend on the pump intensities [942]. Imagine a sample of atoms trapped
in an optical lattice formed by a symmetrically pumped ring cavity, η+ = η−. The
system is stationary, the atoms are confined at the antinodes of the standing wave,
the light fields are equal in strength, α+ = α−. At time t = 0 we suddenly reduce
the pump rate η− of the non-stabilized mode by only a few percent. The response
of the system observed in experiment [942] is to completely break down the field α−.
The disappearance of the standing wave ejects most atoms and reduces NU0, until
the coupling gets so weak that the dynamics is essentially governed by the injected
fields. The system recovers a stationary state, with much less atoms.
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Figure 42.10: (code) Dynamics simulated with equations (42.46). At time κt = 0 the pump

rate η− is reduced by 1%. After a certain time that depends on NU0, the standing wave

breaks down ejecting atoms from the mode volume. Here, we simulate this via an artificial

linear trap loss process setting in at time κt = 15. As a result of the diminishing NU0 the

standing wave recovers.

The physical explanation for the instability is reminiscent to the CARL behavior
described in previous sections. Because atom-field coupling is strong, a small imbal-
ance of the injected beam intensities is sufficient to displace the atoms to a location,
where the light which they scatter into the reverse direction interferes destructively

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_BiSimulate.m
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with the injected light. A simple argument explains, why the standing wave is at-
tracted towards a position where it gets unstable. We treat the imbalance η+ > η−
as if it was due to a scatterer fixed in space inside the mode volume sitting on an
edge of the standing wave (corresponding to a π/4 phase shift), such that it only
scatters light from α+ into α−, but not the other way round. Whether the phase of
the standing wave adjusts itself to that of pump field or such that the scatterer sits at
the bottom of the potential well depends on the ratio of the coupling to the external
field (given by κ) and to the scatterer (given by U0). If U0 is stronger, the field is
pulled towards the scatterer dragging along the atoms which are free to move. The
stationary situation is therefore a displacement of the standing wave and the atoms
by λ/4, which is just the position where the cavity field α− and the injected field

α
(in)
− are out of phase. The injected light is not transmitted through the cavity any

more.
Note that the instability occurs in a plane wave situation, there is no need to

consider the transversal motion. Furthermore, it is a single-atom effect, since we
assume perfect bunching. We may therefore consider a single atom strongly coupled to
the cavity and use the set of equations (42.46). In the undepleted pump approximation
we assume α̇+ = 0, and if the atom adiabatically follows the dynamics of the potential
valley, ẍ = 0, so that,

0 = −χα+ − ıU0

√
α+α∗−
α∗+α−

α− + η+ , (42.72)

α̇− = −χα− − ıU0

√
α∗+α−
α+α∗−

α+ + η− .

The first equation yields,

α+ =
η+

χ+ ıU0
|α−|
|α+|

, (42.73)

|α+| ≈
η+
χ

(
1− U2

0

2η2+
|α−|2

)
.

Plugging this result into the second equation and assuming the laser on resonance,
∆c = NU0, so that we may replace χ by κ, we get,

α̇− ≈ −κα− −
ıU0η+
κ

α−
|α−|

+
ıU3

0

2κη+
|α−|α− + η− . (42.74)

This equation describes optical bistability.

42.2.5 Phononic coupling of atoms mediated by a ring cavity

Phonons can be understood as vibrational excitations of quantum particles (atoms)
in quantized traps. When atoms are interconnected in vibrational lattices, phonons
can be transferred and shared between atoms 11. Due to the particularity of the

11This is similar to the situation in micromasers, where several atoms can share a single photon.
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ring cavity of conserving the photonic momentum at each backscattering event, the
photonic momentum can be understood as a phononic excitation, propagating in one
dimension along the optical axis of the cavity.

We now consider a symmetrically pumped ring cavity [482]. The atoms are very
cold and deep in the Lamb-Dicke regime. Using blue-detuned light the atoms will
be trapped at the nodes of the standing wave, kzj = π/2 + kZj , where Zj are small
displacements. Hence, we may expand,

e∓2ıkzj ≃ −(1∓ 2ıkZj) . (42.75)

With the abbreviation χ ≡ κ − ı(∆c − NU0) and defining the center-of-mass of the
small displacements, Zcm = 1

N

∑
j Zj , the equation for the two field modes are,

α̇± ≃ −χα± + ıNU0(∓2ıkZcm)α∓ + η . (42.76)

Neglecting the impact of the atom on the amplitudes of the fields, we may derive the
steady-state solution,

α± = η
χ+ ıNU0(1∓ 2ıkZcm)

χ2 +N2U2
0

. (42.77)

As shown in (42.28) the normalized field intensity can be written as,

1
2ε0cE2

1
I(z, t) = |α+|2 + |α−|2 + 2|α+||α−| cos(2kz + 2θ) , (42.78)

provided the field amplitudes are expressed by,

α± = |α±|e±ıθ such that α+α
∗
− = |α+||α−|e2ıθ and tan 2θ =

Im α+α
∗
−

Re α+α∗−
.

(42.79)
Now,

tan 2θ =
Im [χ+ ıNU0(1− 2ıkZcm)][χ∗ − ıNU0(1− 2ıkZcm)]

Re [χ+ ıNU0(1− 2ıkZcm)][χ∗ − ıNU0(1− 2ıkZcm)]
(42.80)

= 4NU0kZcm
−∆c + 2NU0

−κ2 −∆2
c + 4∆cNU0 − 4N2U2

0 + 4N2U2
0 (kZcm)2

≃ 4NU0(∆c − 2NU0)

κ2 + (∆c − 2NU0)2
kZcm .

An individual atom in this optical potential feels the dipolar force,

mz̈j = [−ℏU0∂zI]z=zj = 4ℏkU0|α+||α−| sin(2kzj + 2θ) (42.81)

= 4ℏkU0η
2 |(χ+ iNU0)

2 − 4N2U2
0 (kZcm)2|

|χ2 +N2U2
0 |2

sin

(
2kzj +

2NU0(∆c − 2NU0)

κ2 + (∆c − 2NU0)2
2kZcm

)

≃ 4ℏkU0η
2

κ2 +∆2
c

sin

(
2kzj +

2NU0(∆c − 2NU0)

κ2 + (∆c − 2NU0)2
2kZcm

)
≡ m

2k
ω2
0 sin(2kzj − 2µjkZcm) ,

where,

mω2
0 ≡

8ℏk2U0η
2

κ2 + 4U2
0

and µj ≡
2NU0|2NU0 −∆c|
κ2 + (2NU0 −∆c)2

. (42.82)
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Expanding this equation around the nodes we readily obtain,

kZ̈j + ω2
0µj ≃ µjkZcm =

µj
N

∑

j

kZj , (42.83)

which describes the force on a single atom. Note that the harmonic force, ω2
0kZj ,

on the atom is continuously fed by the center-of-mass force, ω2
0µjkZcm. The above

equation can be rewritten as,




kZ̈1

kŻ1

kZ̈2

kŻ2

.




=




0 −ω2
0(1− µj

N ) 0 −ω2
0
µj

N .

1 0 0 0 .

0 −ω2
0
µj

N 0 −ω2
0(1− µj

N ) .

0 0 1 0 .

. . . . .







kŻ1

kZ1

kŻ2

kZ2

.




. (42.84)

The eigenvalues of the matrix are e = ıω0, ıω0

√
1− µj . Therefore, we expect, in

addition to the secular frequency ω0, a second oscillation frequency,

ωcm = ω0

√
1− µj . (42.85)

We find splitting in the strong coupling regime, g > Γ, but we consider the weak
coupling regime, g < Γ, to implement the phononic coupling.

Example 273 (Two-coupled atoms): Here we rewrite the field equations for
two atoms in center-of-mass coordinates,

Z =
z1 + z2

2
and z = z2 − z1 ,

finding,

α̇± = (−κ+ ı∆c − 2ıU0)α± − 2ıU0α∓e
∓2ıkZ cos kz + η .

42.2.5.1 Probing the phonon spectrum

To probe the phonon spectrum, we can measure (or simulate) the oscillation of a single
atom zj(t) in the presence of several atoms. The Fourier spectrum of the oscillation
should reveal the frequency components of the center-of-mass motion Z(t) and the
relative motion.

An experimental method for observing normal modes consists in parametrically
exciting the atomic motion at a modulation frequency ωϕ and watch out for a reso-
nant enhancement of the vibration amplitude near the secular frequency ω and the
collective frequency ωcm both defined in (42.82). In practice, the atomic vibration
can be excited by an external force, for example, a Bragg spectroscopic setup as it is
used for driving recoil-induced resonances (RIR),

ṗj = 2ıℏkU0(α
∗
+α−e

−2ıkzj − α+α
∗
−e

2ıkzj ) + Frir sinωϕt . (42.86)
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Alternatively, we may shake the intracavity standing wave by modulating the phase
of the pump field,

η±(t) = ηe±ıϕ0 sinωϕt . (42.87)

Fig. 42.11 shows typical resonance curves obtained by simulating the CARL equa-
tions (42.50) together with the modulation term (42.87). Being shaken for a while, the
atoms suffer parametric heating visible as a noticeable increase of their kinetic energy,
as seen in Fig. 42.11(a). The atomic motion, in turn, acts back on the intracavity
field fields leading to a modulated photon imbalance between both.
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Figure 42.11: (code) Response of the cavity field to a phase modulation of the pump light.

(a) Kinetic energy, (b) photon imbalance, and (c) total photon number. The simulation

assumes N = 106 strontium atoms initially at T = 1µK driven on the λ = 689 nm line and

κ/2π = 3.4MHz, ∆c = 2U0, η = 104κ, NU0/κ = −.02, ϕ0 = 0.01. The calculated secular

frequencies are ω0 = 0.35κ and ω0

√
1− µN = 0.32κ.

Note, that the phase modulation frequency should not exceed the cavity decay
time, ωϕ < κ. Otherwise, even in the absence of atoms, we expect a low-pass be-
havior as discussed in Sec. 40.1.2, impeding that the applied phase modulation be
transformed into an efficient shaking of the phase θ of the intracavity standing wave.

42.2.6 Doppler limit of cavity cooling

The interaction with an optical cavity can reduce the atomic movement. In the case
of individual atoms, ... See also (watch talk).

Figure 42.12: The principle of cavity cooling.

For blue detuning and strong coupling [482], the cavity backaction produces a
friction force, which can be explained as follows. The field reacts to the atomic
displacement with a small time-lag due to κ, which when designed properly produces a
stronger deceleration when the atom moves uphill, then an acceleration when it moves

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PhononResonance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/CavityCooling
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downhill. The cavity backaction thus provides a feedback mechanism to influence the
atomic motion. In equilibrium with diffusion, the final temperature is given by,

(
∂E

∂t

)

cool

= Fv = −mβfricv2 (42.88)

(
∂E

∂t

)

heat

=
ℏ2k2

2m
2R = ℏεR = ℏε

8U2
0 η

2

κ(κ2 + 4U2
0 )

= ℏω2
0

U0

κ
.

For strong coupling, the diffusion rate, R = 2η
2

κ = 2κn, has a simple interpreta-

tion as the rate of photon losses by cavity decay. For weak coupling, R = 8U2
0
η2

κ3 =

2κn
(
2U0

κ

)2
, the diffusion occurs by redistribution between the cavity modes. In equi-

librium,

kBT = mv2 =
ℏεR
βfric

= −ℏU0

(
1 +

κ2

4U2
0

)
, (42.89)

which is roughly on the same order as the Vuletic cooling. For example with the
cavity described above and ∆λ = 0.7 nm, so that ∆a = c

λ2∆λ = 2π × 345 GHz, we
have U0 = 2.8× 10−6κ. With 106 atoms, we expect T ≈ 2.7 µK.

0 5

κt

0

10

20

30

40

r c
m

0 5

κt

0

10

20

30

40

p c
m

0 5

κt

0.9

0.95

1

b

0 5

κt

0

5

10

15

|α
+
+
α
−
|2

×109

Figure 42.13: (code) Cavity cooling for various detunings.

A more rigorous treatment [482] reveals the dependence of the friction and the
diffusion on the detuning,

β
(∆c)
fric =

32εη2U2
0κ(∆c − U0)(κ

2 − 2∆cU0 +∆2
c)

(κ2 +∆2
c)

2[κ2 + (2U0 −∆c)2]2
, (42.90)

(
∂E

∂t

)(∆c)

heat

= ℏε
8κU2

0 η
2

(κ2 +∆2
c)[κ

2 + (2U0 −∆c)2]
,

kBT
(∆c) =

ℏ(κ2 +∆2
c)[κ

2 + (2U0 −∆c)
2]

4(∆c − U0)[κ2 −∆c(2U0 −∆c)]
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CavityCooling.m
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Figure 42.14: Cavity-cooling.

When the energy dissipation is made by the cavity rather than internal degrees of
freedom [1349]. The cooling limit for cavity-cooling is than,

kBT =
1

2
ℏκ
(
1 +

k2w2

6Q

)
. (42.91)

For a typical ring-cavity T ≈ 5 µK. The cooling power is,

P = ℏκ.... (42.92)

It depends a lot on the Doppler-shift of the moving atom. The capture range is limited
to kv < κ.

42.2.6.1 Dissipation in cavities

We showed above that the center-of-mass motion of the atomic ensemble interacting
with a symmetrically pumped ring cavity is rapidly damped. But this is not true for
the motion of the individual atoms, that is, the temperature of the set is not easily
reduced. To see this we look at the CARL equation (42.26) for the dipole force,

mz̈j = 2ıℏkU0(α
∗
+α−e

−2ıkzj − α+α
∗
−e

2ıkzj ) , (42.93)

and we consider two atoms initially located in the positions z1,2 = ±z0. We notice
that the force on the relative motion is zero,

mz̈1 −mz̈2 = 0 . (42.94)

That is, the number of photons backscattered by each atom is compensated, such
that the light field does not take notice of the motion of the two atoms and therefore
can not dissipate its energy.

The first order fluctuations of the positions are ⟨z⟩ = 0, but second order fluctua-
tions, i.e. the temperature ∼ ⟨z2⟩, can eventually interact with the light field. Other
ideas are needed to lower the temperature.

42.2.6.2 Sideband cooling in cavities

In a ring-cavity the coupling of the counter-propagating modes results in a Stark-
splitting by 2U0 into two modes. The mode at ∆c = 2U0 < 0 supports atoms, the one
at ∆c = 0 is empty. Since κ < ωz, for 2U0 ≈ ωz we can do cavity sideband-cooling.
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Furthermore, bunching of the atoms into the nodes modifies
∑
k U0e

−2ıkzk , which can
result in self-locking. Also the laser locks automatically to the red-shifted atom-filled
mode [415].

The transition can be decomposed into a spontaneous Raman transition (cav-
ity field driven excitation followed by spontaneous emission into free space modes)
and a stimulated Raman transition (cavity field driven excitation followed by cavity-
stimulated emission). Let Γ̃free = k3d2/6πε0ℏ be the free-space scattering rate. The

scattering into a cavity mode is enhanced by ηc = Γ̃cav/Γ̃free = 12F/πk2w2 [1349].
The transition between vibrational sidebands must be weighted by ηLD = εrecoil/ωvib.
If the emission takes place on a sideband which is not resonant to a cavity mode, the
transition rate is reduced by the factor ξ = (1 + (2ωvib/κ)

2)−1. Thus ...

42.2.7 Exercises

42.2.7.1 Ex: Anticorrelated atoms

Study the CARL equations (42.50) for the case of two fixed atoms sitting at positions
kz1 = kz2 − π.

Solution: For two atoms the CARL equations become,

α̇± = −κα± − ıU0e
∓2ıkz1α− − ıU0e

∓2ıkz2α∓ + η± .

Inserting the positions,

α̇± = −κα± + η± ,

we find that the equations decouple, such that the impact of the atoms on the light
modes vanishes.

42.2.7.2 Ex: Coupled motion of Rb and Cs atoms in a ring-cavity

Find out by simulation of the classical CARL equation, whether the motion of a Rb
atom and a Cs atom can be coupled to the same mode of a ring cavity.

Solution: a. For a single Rb and a single Cs atom the result is shown in the fol-
lowing movie (watch movie).
b. For a rubidium and cesium cloud the result is shown in the following movie (watch
movie). We how the rubidium cloud accelerates the initially resting cesium cloud.

42.2.7.3 Ex: Inertially moving atom in a ring-cavity

Illustrate by simulation of the classical CARL equation, how an inertially moving sin-
gle atom pushes the wave formed by two counterpropagating modes of a ring cavity.

Solution: The result is shown in the following movie (watch movie).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveAtom00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveAtom01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_CouplingRbCs_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_CouplingRbCs2_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_CouplingRbCs2_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveAtom02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_CouplingInertialAtom_Movie.mp4
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42.2.7.4 Ex: CARL in a harmonic potential

Extend the CARL dynamics by an additional harmonic potential for the atoms and
study the steady state gain as a function of cavity detuning ∆c.

Solution: Assuming a real and constant pump α+ and using the abbreviation θj ≡
2kxj, the fundamental equations of the CARL are [173],

α̇− = (−κ+ ı∆c − ıNU0)α− − ıU0α+

∑

j

e−ıθj

θ̈j = 8ıωrecU0α+(α−e
−ıθj − α∗−eıθj )− ν2θj .

Integrating the equation for the field,

α− = α0− + e(−κ+ı∆c−ıNU0)tıU0α+

∫ t

0

dτe(κ−ı∆c+ıNU0)τ
∑

j

e−ıθj(τ) .

Now we make the ansatz of a sinusoidal motion, θj(t) = θj0 cos(νt + ϕj0), and use
the expansion eıξ0 sinφ =

∑
n Jn(ξ0)eınφ,

α− ≃ e(−κ−ıU0+ı∆c)tıNU0α+

∫ t

0

dτe(κ+ıNU0−ı∆c)τ
N∑

j=1

e−ıθj0 cos(ντ+ϕj0)

= e(−κ−ıU0+ı∆c)tıNU0α+

∫ t

0

dτe(κ+ıNU0−ı∆c)τ
N∑

j=1

∞∑

n=−∞
Jn(θj0)eın(ντ+ϕj0−π/2)

= e(−κ−ıU0+ı∆c)tıNU0α+

N∑

j=1

∞∑

n=−∞
Jn(θj0)e−ın(ϕj0−π/2)

∫ t

0

dτ ′e(κ+ıU0−ı∆c−ınν)t′

= ıNU0α+

N∑

j=1

∞∑

n=−∞
Jn(θj0)e−ın(ϕj0−π/2+νt) 1− e(−κ−ıNU0+ı∆c+inν)t

κ+ ıNU0 − ı∆c − ınν

t→∞−→
∞∑

n=−∞

N∑

j=1

Jn(θj0)
ıNU0α+e

−ın(ϕj0−π/2+νt)

κ+ ıNU0 − ı∆c − ınν
.

We find [1406] that, unlike the original CARL, the system evolves to a steady state and
continuously emits light. As shown in Fig. 42.15, the probe is strongly amplified when
its detuning coincides with multiples of the secular frequency of harmonic potential.
This effect is due to a collective response of the atomic motion to the incident pumping
beam, inducing a synchronization of its oscillations in the potential.

42.2.7.5 Ex: Impact of potential barriers on CARL

Illustrate by simulation of the classical CARL equations how (a) mirror backscatter-
ing and (b) an external harmonic trapping potential influence the dynamics of an
atom interacting with two counterpropagating modes of a ring cavity.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom04.pdf
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Figure 42.15: (code) Gain spectrum of the CARL confined to a harmonic potential.
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Figure 42.16: (code) Influence of mirror backscattering on CARL.

Solution: a. The result is shown in Fig. 42.16.
b. The result is shown in Fig. 42.17.

42.2.7.6 Ex: CARL without cavity

Discuss whether CARL can be observed without a ring-cavity.

Solution: a. The result is shown in Fig. 42.18.

42.2.7.7 Ex: Cavity cooling in a ring cavity

Study cavity cooling in a ring cavity as a function of (a) friction and (b) detuning.

Solution: a. The result is shown in Fig. 42.19. b. The result is shown in Fig. 42.20.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_HarmonicCarl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimMirrorBackscatter.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom06.pdf
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Figure 42.17: (code) Atoms in a harmonic trap irradiated by a pump laser, universally scaled

version.
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Figure 42.18: (code) One-sided switch-off experiments with/out cavity.

42.2.7.8 Ex: Motion of atoms in a ring-cavity including internal states

Motion of atoms in a ring-cavity, including internal states.

Solution: The result is shown in Fig. 42.21.

42.3 Phenomena related to CARL

The collective atomic recoil laser (CARL) unifies the principles of the FEL and LWI.
Assume two-level atoms in their ground state moving against the pump beam k2.
An (at first) weak probe beam k1 which is blue detuned with respect to k2 builds
a together with k2 a standing wave fraction moving in direction v. This fraction
gives rise to a moving dipole potential V (r) and a light force on the atoms. If the
moving standing wave is slower than the atoms (and the light frequency detuning
from the atomic resonance is suitable), the atoms fall into the potential valleys by
rescattering photons from the pump into the probe wave. This way they amplify the
probe (they push the ponderomotive wave like the FEL), deepen the light potential
valleys, are therefore further focused, etc.. We get a self-amplifying avalanche and
feedback. In this process, the kinetic energy of the atoms is transformed into laser
light. Or to resume: Collective recoil with self-bundeling produced by cooperative

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimHarmTrap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimHarmTrap.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CarlSimWithoutcavity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlMoveItAtom07.pdf


2452 CHAPTER 42. ATOMIC MOTION IN OPTICAL CAVITIES

0 5

κt

-10

0

10

20
r c

m

0 5

κt

-40

-20

0

20

40

p c
m

0 5

κt

0.7

0.8

0.9

1

b

0 5

κt

0

5

10

15

|α
+
+
α
−
|2

×109

Figure 42.19: (code) Cavity cooling in a ring cavity as a function of friction.
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Figure 42.20: (code) Cavity cooling in a ring cavity for various detunings.

Compton-scattering generates coherent laser light [173].
The following notes first discuss the basic equations of motion in the limit of very

far detuning, where the internal dynamics can be adiabatically eliminated. Then we
turn our attention to some characteristic features of CARL.

42.3.1 Doppleron resonances

According to Stenholm [1262] the Raman type alternating absorption and emission
can be interpreted as emission and absorption of dopplerons, the following conditions
are equivalent,

ω0 = (l + 1)(ω + k · v)− l(ω − k · v) . (42.95)

The Hamiltonian is,

Ĥ = ℏ∆σ+σ− + kvb†b+ g/2(σ+ + σ−)(b† + b) , (42.96)

where Ω ≈ √ng and b± denotes absorption out of the wave ω ± kv or emission into
the wave ω ∓ k · v. Doppleron resonances can be observed experimentally.

In the experiment we sometimes observe subharmonics. The question arises whether
these could be interpreted as higher-order photon scattering processes. There are

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CavityCoolingStudyFric.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CavityCoolingStudyDetuning.m
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Figure 42.21: (code) Close to resonance.

two possibilities: Multiple scattering with real intermediate states or Doppleron-
resonances.

Doppleron resonances are velocity-tuned resonances. The detuning of the inter-
mediate state from the dispersion relation follows from,

d1 = ωpp − ωpr −
(p+ 2ℏk)2

2m
+

p2

2m
(42.97)

2(ωpp − ωpr) =
(p+ 4ℏk)2

2m
− p2

2m
.

By eliminating ωpp−ωpr we find d1 = 2ℏε. For our parameter regime ωpr ≫ ε. Single
photon ωpr = ωpp−kv, Doppleron ωpr =

1
2ωpr higher orders ωpr = 2ωpp−kv−ε1−ε2.

Figure 42.22: Scheme of Doppleron resonances.

42.3.2 Recoil-induced resonances

The recoil-induced resonances (RIR) can be explained in two complementary pictures
[305]. In the Raman picture, an atomic transition stimulates Raman transitions
between momentum states of the free atom without influencing the atomic excitation
(the atom remains in a dark state) ρatom ⊗ |p⟩⟨p + 2ℏk|. Absorption ∆ > 0 or
amplification ∆ > 0 of the probe field ks by the pump field kp is a result of the
population imbalance. However, it is not an excitation imbalance (compare LWI)
ρatom ⊗ |p + 2ℏk⟩⟨p + 2ℏk| − ρatom ⊗ |p⟩⟨p|. In the Rayleigh picture the RIRs are
an effect of coherent backward Bragg scattering of the probe wave at the phase-lag

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_PolaronCoupling.m
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between the induced light-shift grating and the atomic density grating resulting from
the periodic optical potential.

42.3.2.1 RIR-spectroscopy

Two laser beams 1 and 2 having each two different frequencies ω−∆ω/2 and ω+∆ω/2
are irradiated from two different directions enclosing a small angle θ into the atomic
trap,

E(r, t) = E1 + E2 (42.98)

= E(0)
[
cos
(
k1 · r− (ω − 1

2∆ω)t
)
+ cos(k2 · r−

(
ω + 1

2∆ω)t
)]

≈ 2E(0) cos (K · r− ωt) cos
(
1
2q · r− 1

2∆ωt
)
,

where q ≡ k2 − k1 and k ≡ 1
2 (k2 + k1). The cycle-averaged intensities are Ii(t) =

2ε0c|Ei|2 = 4ε0cE(0) cos
(
1
2q · r− 1

2∆ωt
)
. Atoms coherently interacting with the light

fields (which are tuned far from any atomic resonance) can redistribute the photons
between the optical modes in a nearly-degenerate four-wave mixing process (4WM)

thus modifying the amplitudes E(0)i so that a signal occurs.

Figure 42.23: Principle scheme for RIR spectroscopy.

From symmetry considerations, it is easy to see that a homogeneous density dis-
tribution (along q) of the motionless atoms does not give rise to a signal, neither. So
let us assume that the atoms be bunched inside an optical grating according to some
periodic distribution n(z) = n0 sin

2 kλz, but disregard their kinetics. The signals then
generalize to,

E1(z, t) = E1 + βn(z)χ(3)(E1 + E2)E1E2E1 + βn(z)χ(3)(E1 + E2)E1E2E1 (42.99)

= E1 + βn(z)χ(3)
(
2E(0) cos

(
1
2qz − 1

2∆ωt
))
E1E2E1
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and analogous for E2(z, t). Or following Lambert-Beer [748],

I1(x, z, t) = |E1|2 exp
(
2ı
π

λ

∫
χ(3)

(
2E(0) cos

(
1
2qz − 1

2∆ωt
))
dy

)
(42.100)

= |E1|2 exp
(
2ı
π

λ

∫
n(x, y, z)...dy

)

= |E1|2 exp
(
2ı
π

λ
n0 sin

2 kλz

∫
...dy

)

I1(t) =

∫
I1(x, z, t)dxdz .

Regarding the momentum transfer, the 4WM process can be interpreted as Bragg
scattering af the atoms at one of the two counterpropagating standing waves. We
develop the theory if Bragg scattering in Sec. 47.2.

42.3.2.2 Temperature measurements via RIR

Temperature measurement are usually carried out by the time-of-flight method fol-
lowed by absorption imaging. Alternatively, one can perform spectroscopy of RIR
resonances. In the latter case, we detect intensity variations in a probe laser beam,
i.e. the polarisation of the sample under the influence of all irradiated laser beams. In
the example 200, we have seen that α ∝ Im χ ∝ Im P ∝ Im ρ12. It is thus sufficient
to calculate the atomic coherences, if necessary including the motional states of the
atoms. Calculated by [559]

W (t) =
π

2

Ω1Ω2

∆

√
mv

kBT

[
∂

∂v
e−mv

2/2kBT

]

v=∆ω(t)/q

. (42.101)

42.3.2.3 RIR-spectroscopy on trapped atoms

In the case of free particles, the Raman beams interact for every detuning with a
different velocity class of atoms. The atoms are almost not disturbed. In the case of
trapped atoms, a coherence can be excited, and since the atoms periodically change
their velocity, be read out or reexcited at a later time. The same atom can thus
interact with the Raman beams at different times/detunings. If the trap is a standing
wave, the situation is complicated by the fact that there are two overlapping gratings:
The standing wave and the Raman grating. However, if the trap is much deeper than
the Raman grating the atoms can be considered as localized.

The signature of atomic oscillation is a modulation in the RIR signal with the
periodicity of the secular frequency [747, 1067].

Let us consider a standing-wave dipole-trap with ωz = 2π × 700 kHz, ωr = 2π ×
1 kHz and Udip = h×30MHz = 4000×2ε = 45ωz = 2100ωz. The 100µK cold atoms
are therefore deep inside at the bottom of trap. This implies that the atomic energy
levels are sharp and equally distant, and that the transitions are degenerate upon
coupling by Raman-beams. If we apply a scan of ±2π × 300 kHz, we will not excite
the longitudinal motion. But the radial motion can be excited. As seen earlier the
absorption signal is α ∝ Im ρ12. What happens to the coherence, if the radiation is
swept across a resonance depends on the scanning speed. If the scan is slow, we expect
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α ∝ Im ρ12(∞). We should be able to resolve the resonances [559, 561, 560] as peaks
at ±ωr,±2ωr, ... In contrast, if the scan is fast, as long as ∆c is far from resonance,
the population of the excited level ρ22 is just too small and nothing happens. When
∆c passes through 0, the coherence ρ12 is excited, and can now be driven by the laser
even when ∆c is tuned far away. The coherence precesses faster and faster.

Let us compare to the situation of a laser swept across an electric dipole reso-
nance. In analogy to the cavity response in reflection to a laser scanned across an
eigenfrequency, we might expect a ringing coming from interference of the radiating
electric dipole (which has been induced while the laser was close to resonance) with
the original laser frequency. The radiated electric field is proportional to the excited
state population. If we allow for a change of the input field, for example ∆c(t), the
Bloch-equations must be numerically integrated,

ρ(t+ dt) = ρ(t) + dt Mρ(t) . (42.102)

It is already clear that we should expect a ringing with exactly the time-dependent
frequency ∆c(t). Fig. 42.24 shows

-100 0 100
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-0.02
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0.04
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12

Figure 42.24: (code) Time-evolution of the atomic coherence as the driving laser frequency

is swept across resonance. The parameters are Γ = 2π × 8 kHz, Ω = 0.2Γ, ∆ = −50Γ..50Γ
and t = −150..150µs.

This simple mathematical model only assumes a resonance with a given width
and a frequency-scanned oscillator. The physical nature of the resonance and the
level splitting are not specified and the formalism should be applicable to a variety of
situations. A ringing is, in fact, observed for RIR scans, if the scanning speed is too
fast, in particular for atoms trapped in optical lattices. Ringing can also be generated
in classical harmonic oscillators and laser-driven two-level systems as we will see in
Exc. 50.1.10.5.

42.3.2.4 RIR versus CARL

The dynamics is characterized by backaction of the atomic motion onto the cavity
field. In this respect there is a connection to RIR resonances in the limit investigated
by [748]. While normal RIR is the action of the atomic motion on light fields, they
demonstrate that in the same time the Raman-lattice influences the atomic motion.
The coherence is limited by the time the photon spends in the sample (similar to
the limitation of superradiant Rayleigh scattering, without photonic recycling by a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirRinging.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirRinging.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirRinging.m
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ring-cavity). Real backaction in the sense of coherent interdependence of the photonic
and the kinetic degrees of freedom requires recycling of the photons.

42.3.3 FEL: the free electron laser

Normal lasers work by an inversion in the internal degrees of freedom, that is, bound
electrons are excited to energetically higher orbitals, from where they can decay by
emitting monochromatic light of well-defined frequency. Because, the free electron
laser (FEL) works with beams of free electrons, they are tunable over wide frequency
ranges. They have much higher efficiencies above 65%.

The principle is the following: Relativistic electrons are guided through an un-
dulator, which is a device producing a magnetic field with periodically alternating
polarization. Here, the electrons are subjected to a Lorentz force, F = −ev × B,
forcing the electrons to oscillate with the periodicity of the undulator field. This cor-
responds to a dipole moment interacting with the incident light field. The transverse
velocity of the electrons within the magnetic field of an incident light produces a
Lorentz force in the axial direction called ponderomotive force. This force accelerates
the electrons when they are a bit slower than the ponderomotive wave. Otherwise the
electrons are decelerated. In the second case, the energy of the electrons is transmitted
to the light field, which leads to a bunching of the atoms. Because it is a parametric
process, there is a continuous energy flow between the field and the motion of the e−

(analogous to parametric Raman cooling). Thus, the FEL converts the kinetic energy
of the electron beam into laser radiation. The inversion in a FEL can be interpreted
as a relative displacement of the probability distributions for absorption and emission
of photons in momentum space,

Wabs(∆) = sinc 2 1
2 (∆ + ε/2) (42.103)

Wabs(∆) = sinc2 1
2 (∆− ε/2) ,

where ε = ℏk2/2me. The gain is a convolution of the difference of the above distri-
bution with the momentum distribution of the electrons [1177].

Figure 42.25: Free electron laser.

There various kinds of FELs. In stimulated Compton FELs, described by the
shown Feyman graphs, the electrons are scattered by virtual (momentum transfer
without energy transfer) photons of the wiggler. In Bremsstrahlungs FEL, the elec-
trons are scattered at a static field. Virtual photons of the static field are scattered
at the electrons, who then emit Bremsstrahlung an change their propagation direc-
tion. In Raman FELs very dense electron beams produce charge density oscillations,
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which provides an additional effect. Free Electron Lasers already have a wide range
of application ranging from biology and medicine to lithography and material science.

42.3.4 CARL in an ion storage ring

Bonifacio et al. [174] suggested to study collective atomic recoil lasing (CARL) with
relativistic atoms. They found that using very fast atoms it should, in principle, be
possible to get large CARL frequency shifts and much higher power enhancement
factors than observed in free-electron lasers (FEL). Relativistic atomic velocities can
be achieved in heavy ion accelerators such as the GSI heavy ion accelerator in Darm-
stadt and TSR ion storage ring in Heidelberg. Therefore the question arises, if CARL
could be an alternative way to produce very energetic and intense UV radiation in
concurrence to the FEL. In fact, CARL-based systems may prove more powerful and
versatile as their electronic counterparts: Cooling techniques based on electron beams
or on hybrid optical-radiofrequency friction forces are able to cool the ionic beams
down to mK temperatures.

The CARL which has been predicted ten years ago by Bonifacio et al. [173], has
recently been observed with cold atoms stored in a high-finesse ring cavity [755, 1343].
This proof of principle, now may motivate a deeper study of the figure of merit of a
relativistic CARL. This short note, however, shows that a relativistic CARL is still,
in my opinion, far from being realizable.

42.3.4.1 Typical heavy ion accelerator data

In his paper Bonifacio [175] suggests a 133Cs beam with E = mv2 = 100MeV /u.
This corresponds to a velocity of βr = c−1

√
2× 133E/m = 0.46 and γr = 1.13.

The frequency is upshifted by ωpr/ωpp = 2.4 (from 1330 nm passing 856 nm towards
549 nm). Now 133Cs is neutral, however various ionic species have been accelerated,
such as 9Be+ or 7Li+. Bonifacio also assumes a beam density of 1017 m-3 correspond-
ing to a ion current of I = 20A and a radius of 1mm. This current seems excessively
high for state-of-the-art technologies. For comparision the following table resumes a
few typical heavy ion accelerator data.
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Exper. at TSR Exper. at GSI Bonifacio’s proposal

Ion species 9Be+ 7Li+ 133Cs

Cooling resonance D2 @ 313 nm D2 @ 856 nm

Hyperfine splitting 1.3GHz

Ion energy E = mv2 7.3MeV 100MeV/u

Ion velocity in βr 0.042 0.46

Ion number N 107

Circumference l 55.4m

Ion distance d = l/N 5.54µm

Beam diameter σ 0.4mm 1mm

Density n = N/σ2l 5× 108 m-3 1017 m-3

Revolution time trev = l/cβr 4.4µs

Ion current I = Ne−/trev 0.36µA 1mA 20A

Ion current density
10A/cm

2
of

50 ns duration

Beam temperatures optical cooling e− beam cooling

Pump laser wavelength 300 nm 1330 nm

Pump laser power 50000W

42.3.4.2 Questions and suggestions

1. The low ion beam densities may constitute a major problem to relativistic CARL.
The 20A assumed in [175] are far from being realistic, i.e. about 7 orders of magnitude
too high. For comparison: Typical electron beam densities are n = 107 cm-3.

2. The assumed pump power is very high. Cavity-enhancement of the pump power
could be envisaged. Ppump = 100W seem more realistic. However, at high laser
intensities higher-order nonlinear processes may happen, like multiphoton ionization.

3. The ions are passing multiple times through the interaction region. At every
corner of the storage ring the quadrupole magnets induce heating by micromotion.
The heating has higher-order Fourier components, and thus leads to complicated non-
thermal velocity distribution. This means the ions do not stay bunched very well, at
least not in momentum space. Therefore the atoms run out of phase with the pump
laser after a round-trip. The question is how strong this diffusion process is compared
to the CARL force.

4. Ion beams are cooled either by electron beams or optically. Electron beams exert
friction forces and could be used for viscous CARL. Optical cooling is achieved by
balancing the acceleration force of a copropagating laser with the counterforce exerted
by an electric rf-field synchronized with the ion revolution frequency. This method
might also provide optical molasses for viscous CARL [?]. According to Matthias
Weidemüller only the electron beam cooling works, today. But it is connected with a
strong diffusion force working against the CARL force. Fortunately, the electron beam
forces only act in momentum space, i.e. one scattered electron does not noticeably
modify an ion’s trajectory.
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5. Intrabeam scattering (IBS) by Coulomb-repulsion is a dominant heating pro-
cess. Optical cooling seems to lead to a sudden Coulomb ordering, in which case
IBS disappears. There is one successful crystallization experiment in a miniature
non-relativistic storage ring. The ions have macroscopic distances. In a relativistic
storage ring the distance would be on the order of centimeters, which is very long
compared to the CARL laser wavelength. A problem which may occur is that crys-
tallization due to Coulomb forces may perturb CARL bunching.

6. Pulsed operation may be possible. This depends on the time-scale for bunching.
7. In [175] neither the pump nor the probe laser are recycled, but the ions are.

Imagine however, we could build a 10m long high finesse ring cavity. Free spectral
range δ = 30MHz. Waist w0 = 500mm. Cavity mode volume Vmde =

π
2Lw

2
0 = 4 cm3.

Single-photon Rabi frequency g = (2π)2.3 kHz.

42.3.4.3 Method

Talking to Matthias Weidemüller he seemed pretty reserved about the feasibility of
the project at TSR. Perhaps at GSI.

Assume an atomic beam moving at βr = v/c with γr =
√
1− β2

r

−1
irradiated by

a laser beam k with a frequency ω in the lab frame. In the atomic rest frame the
frequency is Doppler-shifted towards,

ω′ = ω

√
1− βr
1 + βr

=
ω

γr(1 + βr)
, (42.104)

such that ω′ ≶ ω if kv ≷ 0. Now consider two laser beams ωpp and ωpr. In the moving
frame defined by ω′ ≡ ω′pr = ω′pp,

ω′ = γrωpp(1 + βr) = γrωpr(1− βr) . (42.105)

Assume there is an atomic resonance ω′0 ≈ ω′. Then the pump is red-detuned from
the resonance by the same amount the probe is blue-detuned:

ωpr
ω′0

=
ω′0
ωpp

. (42.106)

Furthermore the atomic rest energy is,

E′ = γrmc
2 . (42.107)

The recoil energy in the rest frame is,

ω′rec =
2ℏk′2

m
=

2ℏω′20
mc2

=
2ℏωppωpr
mc2

. (42.108)

42.3.4.4 Radiated power

The CARL equations are to be formulated in the rest frame [175]. The parameters
which are adjusted in the lab frame have to be Lorentz-transformed properly, before
being used in the CARL formalism. The coupling parameter in the moving frame is,

g′ =
dE1
ℏ

= d

√
ω′

ℏε0V ′
, (42.109)
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where E1 =
√

ℏω/2ε0Vmode ≈ 3.6V/m. Therefore the dipole moment is just like

ours d ≈
√
3πε0ℏΓ/k3 ≈ 2.5× 1029 J/V. Because length is relativistically contracted,√

V ′/V = γr, in the lab frame,

g = γ−1/2r g′ = d

√
ω′

2ℏε0γ2rV
. (42.110)

Bonifacio’s treatment yields the FEL parameter,

ρ =
1

1 + βr

(
g2NS2

0

8γ2rqω
2
pp

)1/3

, (42.111)

where S0 <
1
4 . The FEL and CARL parameter are related by the energy ratio,

q =
ρc
ρ

=
Eatom
Ephoton

=
γrmc

2

ℏωpr
. (42.112)

Using N = nV the FEL parameter can also be written,

ρ =
γrωpp
ω′

(
d2ω′

ℏε0γ2rV
NS2

0

8γ2rω
2
pp

ℏωpr
γrmc2

)1/3

=

(
d2nS2

0

8γrε0mc2

)1/3

. (42.113)

The CARL parameter is also,

ρc =
1

1 + βr

(
g2NS2

0

4γ2rω
2
pp

q2
)1/3

=
1

1 + βr

(
g2NS2

0

ω′2rec

)1/3

, (42.114)

which for βr → 0 becomes the non-relativistic CARL parameter. The energy flux
density is found to be ,

upp,pr = |App,pr|2(1∓ β2
r )ρcℏωpp,prnc . (42.115)

The power is,

Pin,out = V upr
1

vtrev
= |Apr|2(1∓ β2

r )ρc
ℏωpr
e

Ne

trev

c

v
. (42.116)

Assuming saturation |Apr| ≈ 1,,

Pin,out(W) ≈ 1∓ β2
r

βr
ρcEphoton(eV)ı(A) . (42.117)

with I = Ne−/trev and at saturation |Apr|2 ≈ 1. The gain length is,

lg ≈
cβrγr

2
√
3ρω′0

. (42.118)
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42.3.5 Matter wave superradiance

There is a close relationship between CARL and the phenomenon of matter wave
superradiance (or superradiant Rayleigh scattering) [170, 1136], which will be discussed
in the following sections.

In 1999 the group of W. Ketterle at the MIT made a surprising observation, when
it illuminated an elongated Bose-Einstein condensate with a short linearly polarized
laser pulse traversing the condensate perpendicularly to the long axis [649]. Instead
of producing radiation with a dipole pattern, as we might expect for a polarized
atomic cloud undergoing Rayleigh scattering, they observed emission of directional
light bursts along the symmetry axis of the condensate. They also observed that some
of the atoms were accelerated at angles of 45◦. And these atoms could emit other
generations of atoms at angles of 45◦.

������0 0

Figure 42.26: (code) Flight-of-time measurement of the atomic momentum distribution after

matter wave superradiance.

The phenomenon was explained as follows. Let us imagine a first photon scattered
by an atom into the direction of the long axis of the condensate. This atom will be
accelerated by the photonic recoil in a direction of 135◦ with respect to the direction
of the photon, and it will interfere with the rest of the condensate thus generating
a standing matter wave of oriented in such a way, that the following photons are
scattered into the same direction as the first one via Bragg scattering. This reinforces
the contrast of the matter wave, etc.. We obtain an exponential gain of photons in
the mode defined by the first scattered photon, as well as of the mode receiving the
scattered matter wave. As the path of the gain is longer along the long axis of the
condensate, this mode is favored. That is, the condensate can be considered as a
cavity embracing the solid angle Ωsol.

The Rayleigh scattering rate for a single atom is,

R1 = sin2 θσ(∆a)
I

ℏω
3Ωsol
8π

, (42.119)

where θis the angle between the polarization of the incident laser (intensity I) and the

direction into which the light is scattered. The cross-section is σ(∆a) = σ0
Γ2

4∆2+2Ω2+Γ2 ,

where σ0 = 3λ
2

2π . Now, for the set of atoms, the superradiant scattering rate is not
only amplified by the number of condensed atoms, N , but also by the number of
atoms, Nr, already being in the mode receiving scattered atoms,

Rsr = R1N
Nr + 1

2
. (42.120)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_KetterleRadiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_KetterleRadiance.m
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This is the superradiance matter wave.

42.3.5.1 Ketterle and Dicke superradiance: The Dicke picture of CARL

At first glance there seems to be a paradox: On one hand, the collectiveness of the
CARL lies in the motion, not in the scattering properties: Light is localized during
the scattering process. On the other hand, superradiance means that atoms feel the
scattering of photons by other atoms, i.e. radiatively. The relationship between Dicke
superradiance and Ketterle superradiance gets clear, when we see that the momentum
exchange in CARL corresponds to the same dipole-dipole force, which is at the origin
of electrostriction.

The role of atoms and photons is inversed in the new understanding of cavity
CARL and Ketterle superradiance: In CARL subsequent scattering processes are
correlated via optical modes, in SR via atom motional coherences.

Note that quantum degeneracy is not essential [713]. The only property of BECs
which is exploited in Ketterle’s superradiance experiment is the large coherence length:
Every atom is delocalized over the complete BEC. This helps! To see new effects due to
quantum degeneracy, one must look at higher-order correlations, interaction-induced
effects, the influence of the phonon field superimposed on the BEC.

For Ketterle’s superradiant Rayleigh scattering the coherence is excited between
two atomic momentum states. The correlation happens between successive scattering
events, as long as atom is inside the condensate. In Dicke’s idea (if atoms are closer
than λ) the coherence is excited between a ground and excited electronic state. The
correlation occurs between successively emitted photons, i.e. if the photons coupled
to the same radiation mode. The superradiant lifetime is limited by natural decay.

What is the analogy between CARL (or Ketterle superradiance) and Dicke super-
radiance, exactly. Consider an ensemble of non-interacting atoms that can exist in
only two sharp momentum states, |k0⟩ and |k1⟩ = |k0 + 2q⟩, where q = 2π/λ. They
interact with two counterpropagating quantized light modes, â0 and â1. We write the
scattering process as Ψ̂†1Ψ̂0 = |k0 + 2q⟩⟨k0| = e−2iqr̂. The Hamiltonian is then,

Ĥ =
k20
2m

Ψ̂†0Ψ̂0+
k21
2m

Ψ̂†1Ψ̂1+ω0â
†
0â0+ω1â

†
1â1+Uâ

†
1â0Ψ̂

†
1Ψ̂0+Uâ

†
0â1Ψ̂

†
0Ψ̂1 . (42.121)

The important issue are the parametric terms â†1Ψ̂
†
1. For superradiance it is essential

that the provenience of the emitted photons be undefined. For Dicke superradiance,
photons are emitted through synchronized relaxation of the internal atomic coherence.
For CARL, photons are scattered through synchronized relaxation of the motional
atomic coherence. The CARL Dicke states are labeled by |S,M⟩, where 2S is the
total number of atoms and 2M the number of atoms in momentum state |k1⟩ minus

the number of atoms in momentum state |k0⟩. Define Ŝ− ≡ Ψ̂†0Ψ̂1, and we get the
usual SU(2) spin algebra,

⟨S,M − 1|Ŝ−|S,M⟩ =
√
S(S + 1)−M(M + 1) . (42.122)

the Hamiltonian

H =
k20
2m

(S− 1
2 Ŝz)+

k21
2m

(S+ 1
2 Ŝz)+ω0â

†
0â0+ω1â

†
1â1+Uâ

†
1â0Ŝ++Uâ

†
0â1Ŝ− . (42.123)
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42.3.5.2 Superfluorescence as bosonic stimulation

There are two ways to understand SF. According to [366] it is cooperative spontaneous
emission with interference of the radiation patterns. Alternatively, we may imagine
that the first spontaneously scattered photon stimulates the other to emit. The
scattering rate for every atom is Bose-enhanced by the presence of N other atoms by
a factor N + 1. The scattering rate for the total cloud is therefore W ∼ N(N + 1) ≈
N2. SR is [Dicke] the exponentially accelerated decay of the initial state (oscillating
macroscopic dipole moment)2, or [Ketterle] (contrast of interference pattern)2 [172,
175].

In general, bosonic stimulation may take place by any mode taking part in the
coherent scattering process, i.e. matter-wave momentum sidemodes or optical modes,
as discussed by [1239, 1166].

Also interpretable as Bragg scattering of matter waves assisted by spontaneously
scattered photons. The photons allow for momentum conservation and irreversibilty
of the gain. Spontaneous emission is not a single-atom process, but a collective
porcess, leaving atoms in a coherent superposition of ground and excited state [1216,
549].

42.3.5.3 Superfluorescence versus superradiance

It is interesting to look at Vuletic’s experiment. Atoms located inside the cavity mode
volume scatter light into the resonator modes. This is spontaneous emission, however
modified by the mode structure of the available phase space. However, he observed
higher scattering rates as expected. This is probably due to bosonic stimulation of
the scattering process by photons which are already in the cavity. This stimulation
can only be efficient, if the scattered photons are in the same mode as the stimulating
ones. For Vuletic, this is satisfied because he has a large κ. In contrast we have the
choice: If kv ≪ κ, we may also observe SR. If kv ≫ κ, only CARL. Note that Γ does
not play a role, because spontaneous decay is inhibited in the cavity.

Without any symmetry breaking features, superradiance occurs in a random di-
rection determined by the first scattered photon. In the presence of a cavity super-
radiance occurs in the direction of the cavity mode. If there are concurrent effects
wanting to determine the direction, this only reduces the efficiency. This means for
Vuletic’s experiment that, since the superradiant pulse must be at 90◦, the atoms
must be arranged in periods such that the scattered photons interfere constructively.
The spatial ordering proposed by Ritsch to explain Vuletic’s observation corresponds
to Inouye’s BEC matter-wave grating.

If the scattered photons are in phase with the cavity, they can stimulate all the
atoms having the same phase as the scattering ones +n2π.

It is all dynamical: Before the bunching is complete |α−|2 ≲ N2. At the SR-peak,
|α−|2 ∝ N2.

42.3.5.4 Steady-state superradiance in a viscous CARL

Bonifacio points out [1106] the interesting fact that in the regime, where the CARL
frequency does not leave the cavity resonance, the scattering amplitude is proportional
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to the square of the numbers of scatterers. This behavior is typical for superradiance.
The new thing is that our CARL would be a continuously superradiating system.

Consider spontaneous emission in an inverted gas. If the density is low, n−1/3 ≫ λ,
an emitted photon will leave the gas without being interacting with other photons.
Otherwise, stimulated emission will occur and eventually give rise to a superradiant
burst. What really counts is the optical density, if the emitted photon is off-resonant,
it can not stimulate other atoms. What also helps is recycling of the light in a cavity:
CARL is a good example, but the photons can only be rescattered if the recoiled
atoms stay on resonance, kv ≪ κ.

42.3.5.5 Equivalence of light and matter waves in 4WM

The exponential gain is due to a feedback. With two coupled momentum modes the
matter wave is described by, ψ ∝ e(n+2)ıqz+enıqz. The modes of light are, α± = eık±z.
Hence,

⟨ψ2|light|ψ1⟩ = ⟨e(n+2)ıqz|α∗+α−|enıqz⟩ = ⟨e(n+2)ıqz|eı(k+−k−)z|enıqz⟩ (42.124)

and,

⟨α2|matter|α1⟩ = ⟨eık+z|ψ∗ψ|enık−z⟩ = ⟨eık+z|e(n+2)ıqz−nıqz|enık−z⟩ . (42.125)

42.3.5.6 Symmetry breaking due to superradiance

For scattering between counterpropagating waves, SR is not based on bunching [1103].
Superradiance can be described classically if kBT > ℏε, but kBT must be small enough
to prevent SF to be destroyed by Doppler broadening.

The scattered power is∝ N2, the scattering time is∝ τ/N or∝ 1/kv, the scattered
energy is ∝ N2 × τ/N . Without recoil SF is symmetrical about ∆a. With recoil it’s
asymmetric.

Without cavity 1. SF frequency is at ωa, 2. no recoil-induced asymmetry, need
cavity to see recoil effects on SF.

42.3.5.7 Different regimes

The relative size of kv and ερ should delimit the classical from the quantum CARL
regime.

good cavity (κ≪ kv or ερ) bad cavity (κ≫ kv)

cold cloud CARL, collective motion SR, collective gain

warm cloud CARL & threshold non-collective RIR

The CARL equations in our regime read [755],

β =
−iNU0η+
κ (κ+ 2ıkv)

and kv̇ =
−8εNU2

0 η
2
+

κ(κ2 + 4k2v2)
− γfrckv . (42.126)

Our solution for this equation for κ≪ kv is,

|β|2 =
N4/3U0η+γfrc

8κ2ε
∼ N4/3 and kv =

(
εNU2

0 η
2
+

κγfrc

)1/3

∼ N1/3 . (42.127)
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In contrast for κ≫ kv we get from Eq. (42.126),

|β|2 =
N2U2

0 η
2
+

4κ4
∼ N2 and kv =

−2εNU2
0 η

2
+

γfrcκ3
∼ N . (42.128)

This means we are actually in the CARL regime. If we could increase the friction
such that the laser frequency would stay within the cavity resonance, we would be in
the superradiant regime. Actually, the lowest frequency ever reached with molasses
is 2kv ≈ 2π × 100 kHz, which is a factor of 5 larger than the cavity linewidth. We
could try to reach the superradiant regime by lowering the finesse of the cavity. Then
however we also should increase U0, i.e. reduce the detuning ∆a, to keep staying
in the coherent coupling regime. In conclusion this seems to be feasible. A major
problem would however be the actual poor repeatability, i.e. shot-to-shot noise, which
somewhat reduces our confidence into absolute atom number measurements.
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Figure 42.27: CARL and consorts.

42.3.6 Superradiance and CARL for ultracold atoms

Piovella has classified the various regimes of CARL and superradiance in the classical
and the superradiant regimes. Let L be the length of the condensate or, if present,
of the cavity. w is the waist and F is the finesse. We use the following definitions for
the cavity decay width κ = πc/LF the recoil shift ωr = ℏk2/2m, the dipole moment
d =

√
3πε0ℏΓ/k3 = 2.5×10−29 Asm and the volume of the condensate V = πLw2. If
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there is a ring cavity, V denotes the cavity mode volume. Furthermore we introduce
the one-photon field strength E1 =

√
ℏωp/2ε0V , the coupling constant Ω1 = dE1/ℏ,

the Rabi frequency ΩI = Ω1|α±| and the one-photon light shift U1 = Ω2
1/∆a, where

∆a is the atom-field detuning. We have I/Is = 2Ω2/Γ2, with Is = 2.5 mW/cm2.
The CARL parameter is now,

ρ =

(
ΩI
2∆a

)2/3(
ωpd

2N

V ℏε0ω2
r

)1/3

=

(
NU2

1 |α±|2
2ω2

r

)1/3

, (42.129)

where |α±|2 is the number of photons in the cavity. Alternatively, define the coupling
constant,

g =
ΩI
2∆a

(
ωpd

2

2V ℏε0

)1/2

=
ΩıΩ1

2∆a
= 1

2U1|α| =
Ud
2|α| . (42.130)

Remember,

rβ = − k

πw2
0

Re (αpol)

ε0
=

Ud
P/ℏω

. (42.131)

The superradiant gain is,

Gsr =
2g2N

κ
=
NU2

1 |α|2
2κ

. (42.132)

Note that Gsr is exactly the width of the power broadened Rabi type coupling between
the counterpropagating cavity modes. Therefore,

ρ3ω2
rGsrκ

1
2NU

2
1 |α|2 . (42.133)

We compare the Ketterle superradiance situation with our classical and our BEC ring
cavity data. Early experiments [649, 1166] had been performed with 23Na, but they
were repeated with 87Rb so that we concentrate on this latter case.
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experiment
superradiant

Kapitza-Dirac

superradiant

Bragg

thermal cavity

CARL

BEC cavity

maxi(mini)

linewidth Γ 6MHz

recoil shift ωr 3.8 kHz

atom number N 105 106 105

mode diameter w 15µm 130µm 108(70)µm

mode length L 200µm 8.5 cm 8.7(3.4) cm

mode volume V 1.4 · 10−4 mm3 4.5mm3 3.2mm3

one-photon field E1 320V/m 1.8V/m 2.1V/m

one-photon Rabi Ω1 12.1MHz 68 kHz 81 kHz

finesse F 1 80000 160000

field decay rate κ 120GHz 22 kHz 10 kHz

intensity I 63mW/cm2 1000W/cm2 100mW/cm2

Rabi frequency ΩI 26.2MHz 3.3GHz 33MHz

photon number |α| 2.2 49000 408

detuning ∆a 420MHz 4.4GHz 1THz 100GHz

CARL parameter ρ 1263 264 5.6 1.4

ωrρ 30MHz 6.2MHz 133 kHz 32 kHz

coupling constant g 380Hz 36 kHz 112Hz 13 kHz

bandwidth g2N
κ

120 kHz 1.1 kHz 57 kHz 1.8 kHz

coupling strength NU1
κ

0.3 0.03 0.02 0.06

gain G
2g
√
ωrN/κ

43 kHz

2g2N/κ

2.2 kHz

2g
√
ωrN/κ

29 kHz

2g2N/κ

3.5 kHz

CQED ? Γ, κ ≮ Ω1 =⇒ not CQED

recycling ? g2N/κ≪ κ =⇒ superradiant
g2N/κ > κ

=⇒ good cavity

g2N/κ < κ

=⇒ bad cavity

CARL regime ?
g2N/κ≫ ωr

=⇒ semiclassical

g2N/κ ≲ ωr

=⇒ quantum

g2N/κ≫ ωr

=⇒ semiclassical

g2N/κ ≲ ωr

=⇒ quantum

recycling ? ωrρ≪ κ ωrρ≪ κ ωrρ > κ ωrρ > κ

CARL regime ?
ρ≫ 1 =⇒

semiclassical

ρ≫ 1 =⇒
semiclassical?

ρ ≳ 1 =⇒
semiclassical

ρ ≲ 1 =⇒
quantum?

Robb [1105] has given a new interpretation to the observations by Schneble [1166].

regimes bad cavity κ≪ G good cavity κ≫ G

semiclass. ωr < G MW superradiance

{
Kapitza-Dirac τ−1 > ωr

Bragg τ−1 < ωr
CARL

quantum ωr > G MW superradiance

{
Kapitza-Dirac τ−1 > ωr

Bragg τ−1 < ωr
?

The temperature is an essential parameter. We do not need BEC, but we want
kBT/ℏ < κ, ωr, g

2N/κ,Γ, ... Therefore T ≪ 480 nK.
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42.3.6.1 Raman superradiance

The SR gain can be either linear in the atom number N (single-atom or RIR gain)
or non-linear (collective or CARL gain). Instabilities only occur in the collective gain
regime. For a collective gain the SR mode decay rate κ and the thermal (or other type
of inhomogeneous) broadening κR must be small compared to g2N/κ. For Rayleigh
SR the transition between the two regimes is studied by [650]. For Raman SR atom
number threshold Nthr is too high, so that the experiments [1165, 1412, 1413] are in
the linear gain regime .

Figure 42.28: Configurations for Rayleigh and Raman CARL.

42.3.6.2 CARL

The claim [1038] is basically that CARL and superradiant Rayleigh scattering is the
same process in different regimes. Both rely on collective gain, in contrast to recoil-
induced resonances. Experimental signatures [649, 755] are a collective instability
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resulting in bunching and directional SR light bursts. Both processes are described
by the same equations (42.182). Those equations contain two free parameters: The
decay rate of the optical field κc and the collective coupling strength ρ.

The decay rate of our ring cavity is κc = (2π) 22 kHz, the recoil shift is ωr =
(2π) 14 kHz. Typical values for our experiments are P = 1 W, ∆a = −(2π) 1 THz
and N = 105. From this we derive η2 = P/(ℏωδfsr) ≈ 109 and U0 = g21/∆a =
3Γδfsr/k

2w2∆a ≈ (2π) 340 Hz. The ρ parameter measures number round trips a
photon must perform before it acquires enough Doppler shift to run out of cavity
resonance,

ρ3 =
2NU2

0 η
2

ω2
r

=
2NU2

d

ηω2
r

≈ 43 (42.134)

with Ud = U0α
2
+. For our typical conditions ρ ≫ 1 and thus κ = κc/ρωr ≪ 1.

Hence, we are in the semiclassical good-cavity regime with the gain G = 1
2ωrρ

√
3 ≈

(2π) 50 kHz. By reducing the collective coupling NU2
0 η

2, we may be able to reach the
quantum regime ρ < 1. However, since κc > ωr the quantum regime is only accessible
in the superradiant limit, κ > 1. Let us assume we could reach ρ = 0.8. Then the

gain would be GSR−QT = 1
2
ωrρ

2

κ ≈ (2π) 5 kHz. To reach the quantum good-cavity
regime a better finesse of the cavity would be necessary; e.g. with the original finesse
F = 300000 we would have κc = 0.4ωr. The κ - ρ phase diagram according to the
above estimations is shown in Fig. 42.29.
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Figure 42.29: (code) Regimes of CARL. The range accessible to our experiment is denoted

by the dotted line.

42.3.6.3 Cavity-enhanced superradiance

A few years ago, Ketterle and coworkers have demonstrated superradiant Rayleigh
scattering from a Bose-Einstein condensate [649]. A short laser pulse shone into a
BEC gave rise to motional sidemodes coupled out of the condensate, while at the
same time a superradiant light pulse is emitted into the long axis of the condensate
(see Fig. 42.31, left drawing). Various pictures have been stressed to explain the
observations, and the close analogy to CARL has been pointed out.

In Ketterle’s superradiance experiment, one may associate the part of the BEC
that corresponds to atoms which have scattered a photon with an atom number

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlRegimes.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlRegimes.m
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Figure 42.30: Scheme of CARL. The range accessible to our experiment is denoted by the
dotted line.

Nr. The remaining part consists of N atoms. The density is modulated by inter-
ference between the two parts of the wave function, and the number of atoms that
form the density modulation is Nmod ∝

√
NNr. As for usual Bragg scattering or

Dicke superradiance the number of photons n scattered at the density modulation is
n ∝ N2

mod ∝ Nr. Since every scattered photon generates a recoiling atom, the number

of recoiling atoms increases like Ṅr ∝ n, and we get Ṅr = GNr, i.e. an exponential
increase of recoiling atoms with a gain factor G. This increase is mirrored by an iden-
tical increase of the number of scattered photons, which results in a gain mechanism
for the scattered light mode. The incident and the scattered light mode are coherently
coupled, just like in the case of CARL, so that in principle the scattered photons can
be scattered back into the incident mode. Let U0 be the Rabi frequency of the coher-
ent mode coupling, i.e. the rate at which photons are exchanged between the modes.
The collective Rabi frequency involving N atoms and n photons is then U0

√
Nn. The

superradiant gain corresponds to the transition rate associated with the coupling,
which according to Fermi’s golden rule is given by G = U2

0Nn ρ(ω).
12 Approximat-

ing the density-of-states in the vicinity of the cavity resonance by ρ(ω) ≈ κ−1, where
κ is the rate at which the scattered light mode decays, we see that the gain can be
given the meaning of a CARL bandwidth, i.e. the width of the spectral range where
the light scattering is exponentially amplified [?]. The prediction is to be tested.

The important point is now, that the various regimes in which CARL and su-
perradiance may occur are characterized by the size of the CARL gain bandwidth
as compared to the decay width κ and the recoil frequency ωr. On one hand, we
may distinguish the semiclassical regime, where the gain bandwidth is large enough
to amplify many adjacent momentum states of the quantized motion, G ≫ ωr from
the quantum regime, where only one momentum state can be amplified at a time,
G≪ ωr. In this quantum regime the CARL interaction only couples two momentum
states of the atomic motion.

12The gain bandwidth can also be understood as the power broadening of the cavity linewidth
due to the collective coupling. In our CARL experiments the power broadening exceeds the cavity
linewidth by more than an order of magnitude, which explains why CARL works even at very large
pump-probe detunings.
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In addition one has to distinguish between situations called the good and the bad-
cavity limits. We find that conventional superradiant Rayleigh scattering from a BEC
corresponds to the bad-cavity limit,13 where the decay rate κ is much broader than
the gain bandwidth. In fact, the decay width is calculated as κ = c/2L, where L is
the size of the condensate along the axis into which the light is scattered. The time
the scattered photons spend inside the BEC corresponds to the lifetime of a cavity.
The bad-cavity limit is the regime studied by [1166]. By varying the gain bandwidth,
they have been able to implement the semiclassical regime, as well as the quantum
regime.14 The various regimes of CARL are summarized in Fig. 42.31.

In contrast, our thermal CARL experiment was done in the semiclassical good-
cavity limit. The field decay rate coincided with the linewidth of our ring cavity
and was 7 orders of magnitude smaller than in the superradiance experiments. The
most interesting regime can be identified by the requirement that the superradiant
gain bandwidth G and the cavity field decay width κ both be smaller than the recoil
shift ωr. In terms of the parameter ρ ≡ 3

√
Gκ/ω2

r , which has been introduced by
Bonifacio and coworkers as a universal scaling parameter for the equations of motion
of the CARL system, it means that ρ < 1 [1106]. In this case only a single amplified
momentum sideband couples to the atomic cloud. The result is a Rabi-type oscillation
between the initial and the final momentum state.

Obviously for this scheme to work, the temperature of the atomic cloud must
be lower than the recoil limit. By choosing appropriate parameters for our classical
CARL setup we could in principle reach the quantum good-cavity regime. However,
the interesting new features expected for this limit are blurred due to the high tem-
perature. A major goal of our future research will be to study CARL with ultra-cold
atoms in the yet unknown regime where ρ < 1. Our hope is to better understand
the intricate relationship between CARL and superradiance in a regime, where the
coupling between radiative and matter-wave modes is completely coherent, and for
which the prospect of a robust quantum entanglement of the modes has been pointed
out.

In the original superradiance experiments [649, 1166], the pulsed pump light drove
a transient dynamics. The cavity in our proposed experiment will allow for much
longer interaction times, and continuous superradiance will take place over a time
scale at which dissipative effects due to cavity cooling will become effective.

Let us now turn to the superradiant gain experiment [649]. According to Ketterle
the superradiant gain can be expressed as,

G = RN
Φs
8π/3

, (42.135)

where R = ΓΩ2/(4∆2 + 2Ω2 + Γ2) is the single-atom Rayleigh scattering rate, with
Γ being the linewidth of the atomic resonance, ∆ the detuning, and Ω the Rabi

13Note that while the atom-field coupling constant is larger than the cavity decay width, it is much
smaller than the spontaneous emission decay width of the atomic transition, so that we are still far
from the cavity QED regime and may regard the light fields in our cavity as being classical.

14Let us add here that Schneble et al.[1166] gave a divergent interpretation of their observations:
The bad-cavity limit was interpreted as Kapitza-Dirac scattering and the good-cavity limit as Bragg
scattering scattering. As stated by Robb et al. [?] the different interpretations imply different
dynamics which may be tested by experiment.
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Figure 42.31: The idea of the superradiance experiment.

frequency generated by the incident laser beam. Φs ≃ λ2/π4w2 is the scattering solid
angle, with w being the waist of the condensate. Hence, far from resonance,

G =
Ω2

∆2
N

3Γ

2k2w2
. (42.136)

In Ketterle’s experiments (∆ ≃ 100Γ, w = 15 µm, N = 105, Ω ≃ 10Γ) the gain is on
the order of G ≃ 170000 kHz.

Interpreting the BEC as a cavity with finesse F = 1, i.e. κcF/π = δfsr = c/L, we
obtain,

G =
Ω2

2∆2

πN

κc

3Γδfsr
k2w2

=
Ω2

2∆

N

κc

Ω1s

2
2∆ , (42.137)

where Ω1s = 3Γδfsr/k
2w2 is the one-photon Rabi frequency inside the BEC cavity.

When the BEC is inside an optical cavity, the mode volumes for Ω and Ω1s are
equal, so that Ω2 = nΩ2

1s and,

G ≃ nN0U
2
0

κc
= 1

2

ωrρ
2

κ
. (42.138)

This is exactly the gain calculated from the above theory for the superradiant quantum
regime.

Replace Γ by Γsc. For BEC decoherence is slow, so that modest gain suffices,
atoms delocalized over BEC volume. At higher temperatures fast decoherence, but in
cavity gain is larger, BEC coherence volume replaced by cavity volume, collectiveness
transmitted differently.

Robb defines the ’gain rate’,

g =
U0

2
|α| = Ω

2∆

√
ωd2

2ℏε0V
=

Ω

2∆

dE1s

ℏ
=

Ω

2∆
Ω1s (42.139)

and the superradiant gain,

G =
2g2N

κ
=

Ω2

2∆

N

κ

Ω2
1s

∆
. (42.140)
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Figure 42.32: Illustration of vicious circle of the CARL.

Note that g2/κ is power broadening due to mode coupling. Typically, g = 0.1κ, so
that g2/κ = 0.01κ≪ ωr,

G =
NU2

0n

2κ
. (42.141)

Decoherence of superradiance decreases with the delocalization of the atoms, but
it does not depend on their degeneracy with other atoms. Quantum degeneracy could
be interpreted as a phase-synchronized delocalization of many atoms.

Why does CARL work with (relatively) hot atoms? Thermal de Broglie wavelength
at T = 1 µK λdB =

√
2πℏ2/mkBT ≈ 200 nm. Size of our thermal cloud r̄ =

ω−1r
√
kBT/m ≈ 30 µm and z̄ ≈ 8 µm. Thomas-Fermi radii of our condensed cloud

is not much different.

Note that alternative models have been stressed to describe for the various regimes
of superradiant Rayleigh scattering, e.g. accounting for propagation effects (next sec-
tion) [1439] and Kapitza-Dirac scattering. Superradiant pulse width τsr ≃ 200 µs.
Fourier width of gain profile G = τ−1sr ≃ 5000 s−1.

42.3.6.4 Propagation effects

[1438] and [1439] developed a useful treatment for describing the Ketterle superradi-
ance in the Raman-Nath (short strong pulse, R ≈ ωr, G≫ ωr) as well as in the (long
weak pulse, R≪ ωr, G≪ ωr) Bragg regime.

It is however unclear whether this treatment can be extended to account for the
presence of a ring cavity. The ring cavity does more than increasing the BEC-light
interaction time, L→∞. In fact, propagation effects introduce a spatial dependence
of the intensity of the end-fire modes along the condensate axis. The self-injection
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Figure 42.33: (code) Ketterle superradiance [1438].

due to photonic recycling by the ring cavity necessitates a self-organization of the
spatial longitudinal mode profile.

42.3.7 Exercises

42.3.7.1 Ex: Good and bad cavity regime

What are the characteristics distinguishing the good from the bad cavity limit.

Solution:

42.3.7.2 Ex: Ringing in resonant systems

In this exercise we study ringing in (a) an excited classical harmonic oscillator and
(b) in a laser-driven two-level system.

Solution: The results are shown in Figs. 42.34.
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Figure 42.34: (code) Ringing in (a) an excited classical harmonic oscillator and (b) in a

laser-driven two-level system.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCavitySuperradiance.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlConsorts01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CarlConsorts02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirConvolution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_RirConvolution.m
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42.4 Quantization of the atomic motion in cavities

At the beginning of this chapter we set up the complete Hamiltonian of the coupled
atom-cavity system. Then tracing over dissipative degrees of freedom, we derived the
master equation or derived the Heisenberg equations for the operators appearing in
the remaining Hamiltonian quantum mechanically. But then for CARL we restricted
to a classical treatment of the motion, as well as of the cavity modes.

Resuming the discussion started in Sec. 42.1.5 we will, in the remaining sections of
this chapter, analyze effects due to the quantization of degrees of freedom represented
by operators. The present section will (i) on a quantum description of the motion
(with and without adiabatic elimination of the internal atomic dynamics and (ii) on
issues arising from the presence of many atoms.

42.4.1 Quantum description of the motion

Concretely, let us analyze again the situation of a single atom interacting with a
ring cavity. We assume validity of the adiabatic elimination of the internal atomic
excitation and want to treat the light fields as classical. In contrast, the atomic motion
is considered as quantum:

|ψ⟩ = |z⟩motion ⊗ |α+⟩ ⊗ |α−⟩
classical

⊗ |i⟩electron
adiab.elim.

→ |z⟩ . (42.142)

Since the motion, being the only quantum degree of freedom, is not subject to dissi-
pation, we may use the Schrödinger equation in addition to Heisenberg equations for
the light fields. Then, following the procedure outlined in Sec. 42.1.5, with z being
the only quantum number, we find that the system is completely described by the
dynamics of the expansion coefficients,

ıℏ
d

dt
⟨z|ψ(t)⟩ = ⟨z|Ĥ|ψ(t)⟩ (42.143)

α̇± = ⟨z| ıℏ [Ĥ, â±]− κâ±|z⟩ .

Plugging in the Hamiltonian (42.26), we obtain the Schrödinger equation for the
particle’s motional wavefunction 15,

ıℏ
d

dt
⟨z|ψ(t)⟩ = p2

2m
⟨z|ψ(t)⟩+ U0⟨z|â†+â−e−2ıkẑ + â+â

†
−e

2ıkẑ|ψ(t)⟩ , (42.144)

and the Heisenberg equations for the light fields,

α̇± = ⟨z|(−κ+ ı∆c − ıU0)â± + ıU0e
∓2ıkẑâ∓ + η±|z⟩ (42.145)

= (−κ+ ı∆c − ıU0)α±+ıU0α∓⟨z|
∫
dz|ψ(t)⟩⟨ψ(t)|e∓2ıkẑ|z⟩+ η±

= (−κ+ ı∆c − ıU0)α± + ıU0α∓

∫
dz|ψ(z, t)|2e∓2ıkz + η± .

15Terms of the Hamiltonian (42.26) which do not depend on z or p have been ignored, as they can
be removed form the Schrödinger equation by a simple unitary transformation. Note that this can
be done even though these terms depend on the field amplitudes α±.
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In summary,

ψ̇(z) =
ıℏ
2m

d2

dz2
ψ(z)− ıU0

(
α†+α−e

−2ıkz + α+α−†e2ıkz
)
ψ(z)

α̇± = (−κ+ ı∆c − ıU0)α± + ıU0α∓

∫
dz|ψ(z)|2e∓2ıkz + η±

. (42.146)

These are the new CARL equations that should be used in cases when the particle is
slower than the recoil velocity, in which its motion must be described as a propagating
matter wave. Note, that under this form, the equations can easily be generalized to
apply to macroscopic wavefunctions such as a Bose-Einstein condensate.

The expectation value of the particle’s position is then calculated via,

z(t) = ⟨ψ(0)|ẑ(t)|ψ(0)⟩ = ⟨ψ(0)e−ıĤt|ẑ|eıĤtψ(0)⟩ (42.147)

= ⟨ψ(t)|ẑ|ψ(t)⟩ =
∫
⟨ψ(t)|z⟩⟨z|ẑ|z′⟩⟨z′|ψ(t)⟩dzdz′ =

∫
z|ψ(t, z)|2dz .

We can verify that the expectation value of the particle’s position satisfies the classical
equation of motion,

mz̈ = ⟨ψ(t)|m¨̂z|ψ(t)⟩ = 2ıℏkU0

(
â†+â−⟨ψ(t)|e−2ıkẑ|ψ(t)⟩ − â+â†−⟨ψ(t)|e2ıkẑ|ψ(t)⟩

)

= 2ıℏkU0

(
â†+â−e

−2ık⟨ψ(t)|ẑ|ψ(t)⟩ − â+â†−e2ık⟨ψ(t)|ẑ|ψ(t)⟩
)

(42.148)

= 2ıℏkU0

(
â†+â−e

−2ıkz − â+â†−e2ıkz
)
.

42.4.1.1 About the origin of quantized motion

The quantization of the light field into photons is, as discussed in Chp. 35, an intrinsic
property of light. In contrast, the quantization of atomic motion is less obvious,
because the atoms are not confined in a trapping potential. The reason for it lies in
the monochromaticity of the driving laser fields and the one-dimensional geometry of
the system, which allow us to write the recoil operator (??) or (??) as,

e2ıkẑ =

∫
|p+ 2ℏk⟩⟨p|dp . (42.149)

Inserting it into the interaction part of the CARL Hamiltonian,

Ĥint = U0(e
−2ıkẑâ†+â− + e2ıkẑâ+â

†
−) , (42.150)

the Schrödinger equation for the expanded wavefunction

|ψ⟩ =
∫
c(p)|p⟩dp (42.151)

yields,

ıℏ
d

dt
⟨p|ψ⟩ = U0â

†
+â−⟨p|e−2ıkẑ|ψ⟩+ U0â+â

†
−⟨p|e2ıkẑ|ψ⟩ (42.152)

= ıℏ
d

dt
c(p) = U0[â

†
+â−c(p+ 2ℏk) + â+â

†
−c(p− 2ℏk)] .
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That is, if the initial momentum distribution is narrow, ∆p ≪ 2ℏk, and if CARL-
induced recoil due to backscattering of photons between counterpropagating modes
is the only force acting on the atoms, the momentum of the atoms can only adopt
discrete values in units of 2ℏk, as if the atomic velocity were quantized. That is, the
quantization of the field is, in some way, imprinted on the distribution of the atomic
moment, so that we may as well use a discrete notation,

|ψ⟩ =
∑

ν

cν |ν⟩ , (42.153)

such that 16,

ıℏ
d

dt
cν = U0â

†
+â−cν+1 + U0â+â

†
−cν−1 . (42.154)

Example 274 (Analogy to the Bose-Hubbard Hamiltonian): Interestingly
the CARL Hamiltonian with quantized motion (42.150) has, in momentum
space, a similar shape as the 1D Bose-Hubbard Hamiltonian in position space,

Ĥ =
∑
ν

ℏωrecν2 + U0

∑
ν

(
|ν − 1⟩⟨ν|â†+â− + |ν − 1⟩⟨ν|â+â†−

)
= ℏωrec

∑
ν

ν2 + U0â
†
+â−

∑
ν

Â†ν−1Âν + U0â+â
†
−

∑
ν

Â†ν+1Âν .

Now, it is important to understand that the statement that photonic recoil is
quantized does not mean that the dipolar optical force can only be transmitted in units
of 2ℏk, as if the force needed to accumulate a certain amount of energy before it
makes a sudden transition to a different momentum state. Rather, the probability to
find an initially resting atom subject to a force in the momentum state 2ℏk gradually
increases with time. The atom gradually evolves into a coherent superposition of
states |0⟩+ |2ℏk⟩+ |4ℏk⟩+ .., and only when we measure the momentum distribution
will it have to decide in which state it ended up. The expectation value of the center-
of-mass momentum linearly, as long as the force is constant. A slide show on the
quantized CARL can be viewed at (watch talk).

42.4.2 Discretization of the momentum states

We will now assume that, for the physical reasons described above, the motional
state of the atom can only exist with momenta corresponding to multiples of twice
the photonic recoil.

16Note that, instead of expanding the state |ψ⟩, we could expand the motional wavefunction into
plane waves,

⟨z|ψ̃⟩ = ψ̃(z) = 1√
2π

∑
n

cn(t)e
2ınkz normalized as

∫
dz|ψ̃(z)|2 = 1 =

∑
n

|cn(t)|2 .

Insertion of this expansion into the quantized CARL equations (42.146) yields the same results.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BECCarl
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42.4.2.1 Schrödinger equation approach

We basically repeat the treatment of Sec. 42.4.1, but now expanding the motion on a
discrete basis of momenta labeled by an integer number ν,

|ψ⟩ = |ν⟩motion ⊗ |α+⟩ ⊗ |α−⟩
classical

⊗ |i⟩electron
adiab.elim.

→ |ν⟩ . (42.155)

Applying the recipe detailed at the beginning of Sec. 42.4, we write down the same
Schrödinger equation as in (42.144) 17, but now projecting on ⟨ν| rather than on ⟨z|
and inserting the expansion (42.153) and,

e2ıkẑ =
∑

ν

|ν + 1⟩⟨ν| and p̂ =
∑

ν

ν2ℏk|ν⟩⟨ν| . (42.156)

We get,

⟨ν|ıℏ d
dt

∑

ν′′

cν′′ |ν′′⟩ = ⟨ν|
∑

ν′

(ν′2ℏk)2

2m
|ν′⟩⟨ν′| (42.157)

+ U0

(∑

ν′

|ν′ − 1⟩⟨ν′|â†+â− +
∑

ν′

|ν′ + 1⟩⟨ν′|â+â†−

)
.

And from the Heisenberg equation (42.15) for light modes,

⟨ψ| ˙̂a±|ψ⟩ = ⟨ψ|(−κ+ ı∆c − ıU0)â± − ıU0e
∓ı2kẑâ∓ + η±|ψ⟩ , (42.158)

we get,

∑

ν′,ν′′

⟨ν′|c∗ν ˙̂a±cν′′ |ν′′⟩ =
∑

ν,ν′,ν′′

⟨ν′|c∗ν′ [(−κ+ ı∆c − ıU0)â± − ıU0|ν ∓ 1⟩⟨ν|â∓ + η±] cν′′ |ν′′⟩ .

(42.159)
Finally,

ċν = −4ıωrecν2cν − ıU0

(
α∗+α−cν+1 + α+α

∗
−cν−1

)

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0α∓
∑

ν

c∗ν∓1cν + η±
. (42.160)

In Exc. 42.4.7.1 and 42.4.7.2 we study the equations (42.160) in the presence of a
constant external force.

42.4.2.2 Master equation approach

As in the situation under study the motion is the only quantum degree of freedom
and not subject to dissipation, a master equation approach is useless, and we will
show it here only for completeness.

17Here again, as done in Sec. 42.4.1, we ignore terms of the Hamiltonian (42.26) which do not
depend on z or p.



2480 CHAPTER 42. ATOMIC MOTION IN OPTICAL CAVITIES

In 42.4.7.3 we show a derivation obtained by directly inserting the adiabatically
simplified Hamiltonian (42.26) into the Liouville equation (42.8). The result is,

ρ̇µ,ν = ı(ν − µ) [(ν + µ)ωrec −∆c] ρµ,ν

+ıU0

[
α∗+α−(ρµ,ν−1 − ρµ+1,ν) + α∗−α+(ρµ,ν+1 − ρµ−1,ν)

]

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0α∓
∑

ν

ρν,ν∓1 + η±

. (42.161)

42.4.3 Quantization of the atomic motion without adiabatic
elimination

So far we have discussed the quantization of the atomic motion in the CARL equa-
tions, which were obtained by adiabatic elimination of the electronically excited state.
In the following, we will quantize the motion directly in the equations of motion
(42.15) for the observables and in the Liouville equation for the density operator. We
quantize the atomic motion along the optical z-axis simply by assuming that, in this
direction, the momentum only exists in multiples of ℏk, and organize up the Hilbert
space like this,

|ψ⟩ = |ν⟩motion ⊗ |i⟩electron ⊗ |n⟩+ ⊗ |n⟩−
classical

→ |ν, i⟩ , (42.162)

that is, skipping the quantum number counting the photons, we will treat the light
fields classically, â± = α±,

p̂ =
∑

ν

νℏk|νℏk⟩⟨νℏk| ⊗ I

e−ıkẑ =
∑

ν

|νℏk − ℏk⟩⟨νℏk| ⊗ I

σ̂+ = I⊗ |2⟩⟨1|

ρ̂ = |ψ⟩⟨ψ| =
∑

µ,ν,i,j

c∗µ,icν,j |µ⟩⟨ν| ⊗ |i⟩⟨j|

, (42.163)

where in the last equation we defined cν,j = ⟨p, j|ψ(t)⟩ = ⟨νℏk, j|ψ(t)⟩ = ⟨ν, j|ψ(t)⟩,
such that,

ρµ,ν;i,j ≡ ⟨µ, i|ρ̂|ν, j⟩ = c∗µ,icν,j . (42.164)
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Adopting the short notation |ν⟩ ≡ |νℏk⟩ we can write the state of the system,

|ψ(t)⟩ =
∑

ν

cν,1|νℏk, 1⟩+ cν,2|νℏk, 2⟩ (42.165)

⟨ψ(t)|p̂|ψ(t)⟩ = ℏk
∑

ν

ν(|cν,1|2 + |cν,2|2)

⟨ψ(t)|e±ıkẑ|ψ(t)⟩ =
∑

ν

(c∗ν±1,1cν,1 + c∗ν±1,2cν,2)

⟨ψ(t)|â|ψ(t)⟩ = α
∑

ν

(|cν,1|2 + |cν,2|2) = α

⟨ψ(t)|σ̂−|ψ(t)⟩ =
∑

ν

c∗ν,1cν,2

⟨ψ(t)|σ̂z|ψ(t)⟩ =
∑

ν

(|cν,2|2 − |cν,1|2) .

Figure 42.35: Illustration of the quantized motion.

To describe the dynamics of the system we could use the Schrödinger equation,
but the Hamiltonian (42.4) does not contain spontaneous emission nor cavity decay.
So, let us employ the equations of motion (42.15), which were derived from a master
equation. The equation of motion for the field yields,

α̇± = ⟨ψ(t)| ˙̂a±|ψ(t)⟩ = ⟨ψ(t)|(−κ+ ı∆c)â± − ıgσ̂−e∓ıkẑ + η±|ψ(t)⟩ (42.166)

= (−κ+ ı∆c)α± + η± − ıg
∑

ν

c∗ν∓1,1cν,2

= (−κ+ ı∆c)α± + η± − ıg
∑

ν

ρν∓1,ν;1,2 .

For the atomic motion we get,

ẋ = ⟨ψ(t)| ˙̂x|ψ(t)⟩ = 1

m
⟨ψ(t)|p̂|ψ(t)⟩ = νℏk

m
, (42.167)
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and

ṗ = ⟨ψ(t)| ˙̂p|ψ(t)⟩ (42.168)

= ⟨ψ(t)|ıgℏkσ̂−
(
â†+e

−ıkẑ − â†−eıkẑ
)
− ıgℏkσ̂+

(
â+e

ıkẑ − â−e−ıkẑ
)
|ψ(t)⟩

=
∑

ν

ıgℏk
(
α∗+c

∗
ν−1,1cν,2 − α∗−c∗ν+1,1cν,2 − α+cν+1,1c

∗
ν,2 + α−cν−1,1c

∗
ν,2

)

=
∑

ν

ıgℏk(α∗+ρν−1,ν;1,2 − α∗−ρν+1,ν;1,2 − α+ρν,ν+1;2,1 − α−ρν,ν−1;2,1) .

42.4.3.1 Maxwell-Bloch equations without adiabatic elimination

Analogously to the treatment in Sec. 34.4.1, we will now derive the master equation
without adiabatic elimination of the excited state (in this case called Maxwell-Bloch
equations from the Liouville equation [first line of Eq. (42.8)] using the Hamiltonian
(42.4). The coherent part is,

ρ̇µ,ν;i,j ≡ ⟨µ, i| ˙̂ρ|ν, j⟩ = −ı⟨µ, i|[Ĥ, ρ̂]|ν, j⟩ (42.169)

= −ı
∑
p,u

⟨µ, i|Ĥ|p, u⟩ρp,ν;u,j + ı
∑
p,u

ρµ,q;i,v⟨p, u|Ĥ|ν, j⟩

= −ı
[
(µℏk)2

2m
−∆aδi2 −∆c(|α+|2 + |α−|2)− ıη+(α+ − α∗+)− ıη−(α− − α∗−)

]
ρµ,ν;i,j

− ıg [α∗+δi1ρµ+1,ν;2,j + α+δi2ρµ−1,ν;1,j + α∗−δi1ρµ−1,ν;2,j + α−δi2ρµ+1,ν;1,j ]

+ ı

[
(νℏk)2

2m
−∆aδj2 −∆c

(
|α+|2 + |α−|2

)
− ıη+(α+ − α∗+)− ıη−(α− − α∗−)

]
ρµ,ν;i,j

+ ıg [α∗+δj2ρµ,ν−1;i,1 + α+δj1ρµ,ν+1;i,2 + α∗−δj2ρµ,ν+1;i,1 + α−δj1ρµ,ν−1;i,2]

=

[
ı
(ν2 − µ2)(ℏk)2

2m
+ ı∆a(δi2 − δj2)

]
ρµ,ν;i,j

+ ıg [α∗+ (δj2ρµ,ν−1;i,1 − δi1ρµ+1,ν;2,j) + α+ (δj1ρµ,ν+1;i,2 − δi2ρµ−1,ν;1,j)

+ (α∗−δj2ρµ,ν+1;i,1 − δi1ρµ−1,ν;2,j) + α− (δj1ρµ,ν−1;i,2 − δi2ρµ+1,ν;1,j)] .

The incoherent part comprises the spontaneous decay [second line of Eq. (42.8)],

⟨µ, i|Latom−vacρ̂|ν, j⟩ = −γ⟨µ, i|
[
σ̂+σ̂−ρ̂− 2σ̂−ρ̂σ̂+ + ρ̂σ̂+σ̂−

]
|ν, j⟩ (42.170)

= −γ
∑
p,u

⟨µ, i|σ̂+σ̂−|p, u⟩ρp,ν;u,j + 2γ
∑
p,u,q,v

⟨µ, i|σ̂−|p, u⟩ρp,q;u,v⟨q, v|σ̂+|ν, j⟩.

− γ
∑
p,u

ρµ,p;i,u⟨p, u|σ̂+σ̂−|ν, j⟩

= −γ [δi2ρµ,ν;i,j − 2δi1δj1ρµ,ν;2,2 + δj2ρµ,ν;i,j ]

and the cavity decay [third line of Eq. (42.8)],

⟨µ, i|Lcavity−vac,±ρ̂|ν, j⟩ = −κ⟨µ, i|â†±â±ρ̂− 2â±ρ̂â
†
± + ρ̂â†±â±|ν, j⟩ = 0 . (42.171)
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Finally, using the definition of the recoil shift ωrec = ℏk2/2m we get,

ρ̇µ,ν;1,1 = ı(ν2 − µ2)ωrecρµ,ν;1,1 + 2γρµ,ν;2,2

+ ıℏg [−α∗+ρµ+1,ν;2,1 + α+ρµ,ν+1;1,2 − α∗−ρµ−1,ν;2,1 + α−ρµ,ν−1;2,1]

ρ̇µ,ν;1,2 =
[
ı(ν2 − µ2)ωrec − ıℏ∆a

]
ρµ,ν;1,2 − γρµ,ν;1,2

+ ıℏg [α∗+ρµ,ν−1;1,1 − α∗+ρµ+1,ν;2,2 + α∗−ρµ,ν+1;1,1 − α∗−ρµ−1,ν;2,2]

ρ̇µ,ν;2,1 =
[
ı(ν2 − µ2)ωrec + ıℏ∆a

]
ρµ,ν;2,1 − γρµ,ν;2,1

− ıℏg [α+ρµ−1,ν;1,1 − α+ρµ,ν+1;2,2 + α−ρµ+1,ν;1,1 − α−ρµ,ν−1;2,2]

ρ̇µ,ν;2,2 = ı(ν2 − µ2)ωrecρµ,ν;2,2 − 2γρµ,ν;2,2

+ ıℏg [α∗+ρµ,ν−1;2,1 − α+ρµ−1,ν;1,2 + α∗−ρµ,ν+1;2,1 − α−ρµ+1,ν;1,2]

α̇± = (−κ+ ı∆c − ıU0)α± + η± − ıg
∑
ν

ρν∓1,ν;1,2

.

(42.172)

We note ρ̂µ,ν;2,1 = ρ̂∗ν,µ;1,2.
The equations (42.172) form a set a equations to describe the quantized CARL

without adiabatic elimination. And as shown in the derivation of the CARL equations
(42.25), they contain radiation pressure. In Exc. 42.4.7.4 we study the quantized
CARL Maxwell-Bloch equations without adiabatic elimination of the excited state
for a three-level system.

42.4.4 Quantized motion with many particles

The Hamiltonian (42.144) holds for a single atom. If clouds of thermal atoms are
considered, we may switch to a classical description of the motion, as done in (42.46).
In the case of very cold (below the recoil limit) but still independent atoms, we may
assume that they all are coherently distributed over the same momentum states. We
may then apply a unique momentum state expansion for all atoms, as shown in the
subsequent section.

If on the other hand quantum statistics play a role, then we need to replace
the wavefunction in the Schrödinger equation (42.144) by field operators, as done in
Sec. 47.5. In the following sections, we will restrict to single atoms that can be in
a coherent superposition of momentum states or many atoms in a matter wave that
can be treated as a c-number, e.g. a Bose-condensate without fluctuations.

42.4.4.1 Modal expansion of the motion of many independent atoms in
the adiabatic approximation for one-sided pumping

Our starting point is the quantum version of the CARL equations (42.25), where we
neglect spontaneous emission, γ0 = 0. Setting α+ = η+/κ and η− = 0 we get,

˙̂a− = (−κ+ ı∆c − ıU0)â− − ıU0
η+
κ e
−2ıkẑj

m¨̂zj = 2ıℏkU0(â
†
+â−e

−2ıkẑj − â+â†−e2ıkẑj )
, (42.173)
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where the index j runs over all atoms. For this case, the total momentum is a constant
of motion for N atoms is,

[Ĥ, 2ℏkâ†−â−+
N∑

j=1

p̂j ] = 0 . (42.174)

where the Hamiltonian is obtained from (42.26) by eliminating the mode α+ and
summing over all atoms,

Ĥ =
∑

j

[
p̂2j
2m

+
η+
κ
U0

(
e−2ıkẑj â− + e2ıkẑj â†−

)]
+ (U0 −∆c)â

†
−â− . (42.175)

To treat the motion as being quantized we define a base |ν⟩j ,

p̂j |ν⟩j = 2ℏkν|ν⟩j and |ψ(zj)⟩ =
∑

ν

cj,ν |ν⟩j , (42.176)

and calculate the expected value of the equations (42.173) regarding the atomic mo-
tion,

dâ−
dt

= (−κ− ı∆c)â− − ıU0
η+
κ

∑

j

⟨ψ(zj)|e−2ıkẑj |ψ(zj)⟩ (42.177)

= (−κ+ ı∆c − ıU0)â− − ıU0
η+
κ

∑

j,µ,ν

c∗j,µcj,νj⟨µ|e−2ıkzj |ν⟩j

= (−κ+ ı∆c − ıU0)â− − ıU0
η+
κ

∑

j,ν

c∗j,νcj,ν+1 .

We do not use the second equation (42.173), but instead we use the Schrödinger

equation ıℏd|ψ(zj⟩dt = Ĥ|ψ(zj)⟩, which yields,

ıℏ
∑

ν

dcj,ν
dt
|ν⟩j =

∑

ν

1

2m
p2jcj,ν |ν⟩j + ℏ∆câ

†
−â−

∑

ν

cj(ν)|ν⟩j (42.178)

+ ℏU0η
∑

ν

(â†−e
−2ıkzj + â−e

2ıkzj )cj,ν |ν⟩j .

Projecting on j⟨µ|, we obtain [278],

ċj,µ = −4ıωrecµ2cj,µ − ı∆câ
†
−â−cj,µ − ıU0η[â

†
−cj,µ+1 + a−cj,µ−1]

˙̂a− = −(κ+ ı∆c)â+NU0η
∑

ν

c∗j,νcj,ν+1

, (42.179)

where we took the expectation value of Eq. (42.177). The equations (42.179) can be
used for numerical simulations [1102].
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Figure 42.36: Probe light and ’bunching’ when the temperature is raised.

42.4.4.2 Equations for the density matrix

The equations (42.179) allow to calculate the derivatives of the density matrix given
by,

ϱµ,ν ≡ e−ı(µ−ν)∆ct 1
N

∑

j

c∗j (µ)cj(ν) , (42.180)

yielding,

dϱµ,ν
dt

= e−ı(µ−ν)∆atN−1
∑

j

(
ċ∗j,µcj,ν + c∗j,µċj,ν −∆cc

∗
j,µcj,ν ı(µ− ν)

)
(42.181)

= e−ı(µ−ν)∆atN−1
∑

j

[ıωr(µ
2 − ν2)−∆cı(µ− ν)]c∗j,µcj,ν+

+ ıU0η
[
ac∗j,µ+1cj,ν − ac∗j,µcj,ν−1 + â†c∗j,µ−1cj,ν − â†c∗j,µcj,ν+1

]
.

Introducing ã ≡ aeı∆ct we finally obtain,

dϱµ,ν
dt

= ı(µ− ν)[ωr(µ+ ν)−∆c]ϱµ,ν

+ ıU0η
[
ã(ϱµ+1,ν − ϱµ,ν−1) + ã†(ϱµ−1,ν − ϱµ,ν+1)

]

dã

dt
= −κã− ıNU0η

∑

ν

ϱν,ν+1

. (42.182)

These are the CARL equations for the density matrix. In 42.4.7.3 we show an alterna-
tive derivation obtained by directly inserting the adiabatically simplified Hamiltonian
(42.26) into the Liouville equation (42.8).

We note, that
∑
ν ϱν,ν+1 is the ’bunching’ and that ϱ∗µ,ν = ϱν,µ. The average

moment is given by ⟨p⟩ =∑ν νϱν,ν . In the Figs. 42.37 and 42.38 we show simulations
in the semi-classical regimes ρ ≫ 1 in the ’bad-cavity’ limit, κ > 1, and the ’good-
cavity’ limit κ≪ 1.

Here are some movies illustrating the quantum CARL dynamics, simulated using
the momentum state expansion (watch movie) and (watch movie). The following
dynamics were calculated via direct integration of the Schrödinger equation with-
out momentum state expansion: Bloch oscillations (watch movie), CARL dynamics
(watch movie), and joint Bloch and CARL dynamics (watch movie). See also (watch
talk).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_QuantumCarlSimulation1_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_QuantumCarlSimulation2_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_AndreBloch.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_AndreCarl.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Carl_AndreBlochPlusCarl.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumSensing
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/QuantumSensing
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Figure 42.37: (code) Simulation of the CARL equation (42.179) in the superradiant, semi-

classical, ’bad-cavity’ regime for κc = 4, ρ = 4, ∆c = 0.
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Figure 42.38: (code) Simulation of the CARL equation (42.179) in the superradiant, semi-

classical, ’good-cavity’ regime for κc = 0.02, ρ = 4, ∆c = 0.

42.4.5 Approximation for a bimodal momentum distribution

We observe that in the quantum regime the momentum distribution of the matter
wave is bimodal, that is, only two momentum states are simultaneously populated.
This justifies a simplification of the equations (42.182), assuming that at a given time,
atoms must either be in a specific state |µ⟩j or in a superposition of this state is an
adjacent state |µ− 1⟩j . Hence,

dϱµ,µ
dt

= −ıU0η(ãϱµ,µ−1 − ã†ϱµ−1,µ) = −
dϱµ−1,µ−1

dt
(42.183)

dϱµ−1,µ
dt

= −ı[(2µ− 1)ωr −∆c]ϱµ−1,µ + ıU0ηã(ϱµ,µ − ϱµ−1,µ−1)
dã

dt
= −ıNUµηϱµ−1,µ − κcã .

Introducing the coherence Sµ = ϱµ−1,µ and the inversion Wµ = ϱµ,µ − ϱµ−1,µ−1 and
postulating the normalization 1 = ϱµ,µ + ϱµ−1,µ−1,

dWµ

dt
= −2ıU0η(ãS

∗
µ − ã†Sµ) (42.184)

dSµ
dt

= −ı[(2µ− 1)ωr −∆c]Sµ + ıU0ηñaWµ

dã

dt
= −ıNU0ηSµ − κcã .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation1.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation1.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation2.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlSimulation2.m


42.4. QUANTIZATION OF THE ATOMIC MOTION IN CAVITIES 2487

42.4.5.1 Linearization and stability analysis

We assume that the atoms are initially ’bunched’ in a specific state |µ⟩j . Only adjacent
momentum states are coupled,

dϱµ+1,µ

dt
= ı[ωr(2µ+ 1)−∆c]ϱµ+1,µ + ıU0ηã

†(ϱµ,µ − ϱµ+1,µ+1) (42.185)

dϱµ−1,µ
dt

= −ı[ωr(2µ− 1)−∆c]ϱµ−1,µ + ıU0ηã(ϱµ,µ − ϱµ−1,µ−1)
dã

dt
= −ıNU0η(ϱµ,µ+1 + ϱµ−1,µ)− κcã .

Conjugate the upper equation and build the sum and difference, Bµ ≡ ϱµ,µ+1+ϱµ−1,µ
and Dµ ≡ ϱµ,µ+1 − ϱµ−1,µ,

dBµ
dt

= ı(∆c − 2µωr)Bµ − ıωµDµ + ıU0ηã(ϱµ+1,µ+1 − ϱµ−1,µ−1) (42.186)

dDµ

dt
= ı(∆c − 2µωr)Dµ − ıωrBµ − 2ıU0ηã+ ıU0ηã(ϱµ+1,µ+1 − 2ϱµ,µ + ϱµ−1,µ−1)

dã

dt
= −ıNU0ηBµ − κcã .

Use ϱµ,µ ≃ 1 and abbreviate δµ ≡ 2rωµ −∆c,

dBµ
dt

= −ıδµBµ − ıωrDµ (42.187)

dDµ

dt
= −ıωrBµ − ıδrDµ − 2ıU0ηã

dã

dt
= −ıNU0ηBµ − κcã .

Seeking solution proportional to x ≡ x̄eı(λ−δµ)t,

ıλB̄µ = −ıωµD̄µ (42.188)

ıλD̄µ = −ıωµB̄µ − 2ıUµηā

ı(λ− δµ)ā = −ıNU0ηB̄µ − κcā .

Abbreviating Λm ≡ δm + ıκc, the characteristic equation is,

det




λ ωr 0

ωr λ 2U0η

NU0η 0 λ− Λµ


 = λ3 −Λµλ

2 − ω2
rλ+ ω2

rΛµ + 2NU2
0 η

2ωr = 0 . (42.189)

The gain is given by the imaginary part of λ. We have exponential amplification if
Im λ < 0. Hence, we search for solution with the lowest imaginary value.
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Figure 42.39: (code) Gain dependence on ρ and κ.

42.4.5.2 Universal scaling

To simplify the formulae simplify, we rescale them. We start from Eq. (42.182) and
use the substitution for universal scaling,

θj ≡ 2kzj and p̄j ≡ 2kvj/ρωr (42.190)

τ ≡ ρωrt and κ ≡ κc/ωrρ
λ̄ ≡ λ/ωrρ and δ̄µ ≡ δµ/ωrρ = 2µ/ρ+∆c/ωrρ

Ā ≡ (2/Nρ)1/2ā and ηUµ ≡
√
ρ3ω2

r/2N .

This reproduces the Bonifacio notation,

λ̄B̄µ + ρ−1D̄µ = 0 (42.191)

λ̄D̄µ + ρ−1B̄µ + ρĀ = 0

(λ̄− δ̄µ − ıκ)Ā+ B̄µ = 0 .

Skipping the bars, the characteristic equation reads,

det




λ ρ−1 0

ρ−1 λ ρ

1 0 λ− δµ − ıκ


 = (λ− δµ − ıκ)(λ2 − ρ−2) + 1 = 0 . (42.192)

Let us first discuss the semiclassical limit, ρ ≫ 1. In the good-cavity regime,
κ ≃ 0, we may neglect the recoil shift, 2mωr → 0, so that Λ = ∆c. The gain is largest

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlGain.m
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when ∆c → 0. The characteristic equation reduces to λ3 = −1, yielding the solutions
λ = 1, 12 (1± ı

√
3). Hence, the gain G = −Im λ, is

G = 1
2ωrρ

√
3 (42.193)

∆ωG ≃ ωrρ≫ κc, ωr .

The gain bandwidth ∆ωG being much larger than the recoil frequency, the Bragg con-
dition for scattering between different momentum states is approximately fulfilled for
a large number of initial momenta. I.e. although the momentum transfer is quantized,
∆c = nωr, the atoms can be accelerated to high velocities. From Eq. (42.186)(a) we
see |D̄µ/B̄µ| = ρ|λ̄| ≫ 1, i.e. ϱµ,µ+1 ≃ ϱµ−1,µ.

In the superradiant regime, κ > 1, of the semiclassical limit the characteristic
equation reduces to λ2 = −ı/κ, i.e. λ = ±(1− ı)/

√
2κ.18 Hence, the gain is,

G = 1
2ωrρ

√
2/κ (42.194)

∆ωG ≃ κc = ωrρκ≫ ωr .

In fact, the relative gain bandwidth is on the order of ∆ωG/ωr ≃ ρ ∝
(
nNU2

0

)1/3
.

Since recoil can be neglected we can have absorption or emission. The gain results
from the difference bewteen the average rates of both.

Now we turn to the quantum limit, ρ < 1. In the good-cavity regime, κ ≃ 0,
λ = ρ−1 + 1

2 (δm − ρ−1)− 1
2

√
(δm − ρ−1)2 − 2ρ. Hence, the gain is,

G = 1
2ωrρIm

√
(δm − ρ−1)2 − 2ρ ≃ 1

2ωrρ
√
2ρ (42.195)

∆ωG = ωrρ
3/2 < ωr .

In fact, the relative gain bandwidth is on the order of ∆ωG/ωr ≃ ρ3/2 ∝
√
nNU2

0 .
Here recoil plays a role so that we have emission without absorption. Gain re-
sults exclusively from emission. From Eq. ((42.186)a) we see |D̄m/B̄m| = ρ|λ̄| ≃ 1,
i.e. ϱm,m+1 ≪ ϱm−1,m.

In the superradiant regime, κ > 1, of the quantum limit, λ = ρ−1+ ρ
2 [(δm−ρ−1)+

ıκ]−1. Hence,

G = 1
2ωrρ

ρκ

(δm − ρ−1)2 + κ2
≃ 1

2

ωrρ
2

κ
(42.196)

∆ωG = κc > ωrρ .

The various regimes may be summarized in the following phase diagram. We
will see later, that each region produces qualitatively different solutions of the full
(non-linearized) equations.

18The assertion Re λ ≪ κ used to simplify the characteristic equation is compatible with the
solution.
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Figure 42.40: (code) Analytical approximations of the characteristic equation for the various

regimes in the good-cavity limit κ = 0.03 (a) and the superradiant limit κ = 2 (b).

42.4.6 Simulation of random quantum trajectories

Spontaneous emission can induce a random walk of the atoms, which be accounted for
by a proper master equation. We write the master equation for the density operator
of a dissipative system, as shown in (41.74) [233, 1431],

˙̂ρ = ı[ρ̂, Ĥ]− 1
2

∑

µ

{ρ̂, L̂†µL̂µ}+
∑

µ

L̂µρ̂L̂
†
µ . (42.197)

The first term describes the coherent part, the second part dissipation, and the third
quantum jumps. The dissipative operators L̂µ appearing in the Lindblad terms model
the impact of the environment. An alternative to solving the master equation consists
in simulating single trajectories of the system with a Schrödinger equation, accounting
for dissipation by a non-Hermitian effective Hamiltonian and for quantum fluctuations
by a stochastic noise term.

As an example, let us consider the Hamiltonian for an atom interacting with a
standing wave potential,

Ĥ =
p̂2

2m
+ U cos kx̂ , (42.198)

where p̂ = ℏqν̂ = −ıℏd/dx. We define a momentum basis |ϕ(τ0)⟩ =
∑
ν cν |ν⟩ with∑

ν |cν |2 = 1. In this basis, the momentum and the position operator can be expanded
as usual,

p̂ = ℏq
∞∑

ν=−∞
ν|ν⟩⟨ν| and cos kx̂ = 1

2

∞∑

ν=−∞
(|ν + 1⟩⟨ν|+ |ν − 1⟩⟨ν|) , (42.199)

where ℏq is the momentum transferred upon a kick. The expectation value for the
momentum and the position are then,

⟨p̂⟩ =
∑

ν

ℏqν|cν |2 and ⟨cos kx̂⟩ = 1
2

∑

ν

(c∗νcν−1 + c∗νcν+1) . (42.200)

The Lindblad operators describe deceleration of the rotor. With µ = ±, we get,

L̂± = g

∞∑

ν=0

√
ν + 1| ± ν⟩⟨±ν ± 1| , (42.201)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlAnalytic.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlAnalytic.m
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such that,

L̂†±L̂± = g2
∞∑

ν=0

ν| ± ν⟩⟨±ν| and L̂†+L̂+ + L̂†−L̂− = g2
∞∑

ν=−∞
|ν| |ν⟩⟨ν| . (42.202)

Now, as we have seen in Sec. 34.5.3, we may treat the first part of the Lindblad terms
in (42.197) as the dissipative part of an an effective Hamiltonian,

Ĥeff = Ĥ − ı
2

∑

µ

L̂†µL̂± . (42.203)

That is, we can attempt a quantum Monte Carlo wavefunction simulation of an ef-
fective Schrödinger equation.

We define the quantity dp± ≡ ⟨ϕ(τ0)|L̂†±L̂±|ϕ(τ0)⟩dτ ,

dp+
dτ

= g2
∑

ν

|cν |2 and
dp−
dτ

= g2
∑

ν

|c−ν |2 . (42.204)

To perform simulations, we start with |ϕ(τ0)⟩. After a time dτ , we generate a uniform
random number ζ. After infinitesimal time, we compare the random number to the
accumulated probability. If ζ > dpµ, we say that a quantum jump occurred. The new
wavefunction is,

|ϕ(τ0)⟩ →
L̂±|ϕ(τ0)⟩
∥L̂±|ϕ(τ0)⟩∥

=

∑
ν≥0
√
ν + 1c±ν±1|ν⟩√∑
ν≥0 ν|c±ν |2

. (42.205)

If in contrast, ζ < 1−∑µ dpµ, then the system continues to evolve slowly. However,
dissipation losses have to be compensated by renormalization,

|ϕ(τ0)⟩ →
(1− ı

ℏĤeffdt)|ϕ(τ0)⟩√
1−∑k dpk

, (42.206)

where the evolution is

(|ϕ(dt)⟩ = 1− ıĤeffdt/ℏ)|ϕ(τ0)⟩ (42.207)

=

(
1− ı

ℏdt
p̂2

2m
− ı

ℏdtU cos kx̂− 1
2ℏdt

∑

±
L̂†±L̂±

)∑

ν

cν |ν⟩

=
∑

ν

cν |ν⟩ − ı
ℏdt

1
2

∑

ν

cνℏ2ν2|ν⟩ − ı
ℏdt

1
2

∑

ν

cνU(|ν + 1⟩+ |ν − 1⟩)

− g2

2ℏ
dt
∑

ν≥0
ν(cν |ν⟩+ c−ν | − ν⟩)

= |ϕ(τ0)⟩ −
ı

2ℏ
dt
∑

ν

cν
[
ν(ℏ2ν − ıg2)|ν⟩+ U |ν + 1⟩+ U |ν − 1⟩

]
.

With this we can now follow the evolution of observables, such as ⟨ϕ(t)|ν⟩⟨ν|ϕ(t)⟩,
⟨ϕ(t)|p̂|ϕ(t)⟩, and ⟨ϕ(t)| cos kx̂|ϕ(t)⟩, in time.
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42.4.7 Exercises

42.4.7.1 Ex: Quantized CARL equations in the presence of a constant
external force

a. Generalize the quantized CARL equations (42.146), respectively, (42.160) for the
presence of a constant external force.
b. Now, we consider a unidirectionally pumped ring cavity, with the pump laser locked
to a cavity mode, in the presence of an external periodic potential. Show that this
system is equivalent to CARL in a ring cavity pumped from both sides.

Solution: a. The procedure is analogous to [1138] when we remove the external
potential, but consider the dynamics of both counterpropagating modes. We simply
add the external potential to the equations of motion (42.146),

ıℏ
d

dt
ψ(z) = − ℏ2

2m

d2

dz2
ψ(z) + ℏU0

(
α∗+α−e

−2ıkz + α+α−∗e2ıkz
)
ψ(z)−mazψ(z)

α̇± = (−κ+ ı∆c − ıU0)α± + ıU0α∓

∫
dz|ψ(z)|2e∓2ıkz + η±

.

With the unitary transformation ψ = ψ̃eımazt/ℏ the Schrödinger equation simplifies
to,

˙̃
ψ(z) =

ıℏ
2m

(
d

dz
+
ımat

ℏ

)2

ψ̃(z)− ıU0

(
α†+α−e

−2ıkz + α+α−†e2ıkz
)
ψ̃(z) ,

and with the mode expansion ψ̃ = 1√
2π

∑
ν cν(t)e

2ıνkz, we obtain,

ċν = −4ıωrec(ν + νblot)
2cν − ıU0

(
α∗+α−cν+1 + α+α

∗
−cν−1

)

α̇± = (−κ+ ı∆c − ıU0)α± − ıU0α∓
∑

ν

c∗ν∓1cν + η±
,

where,

νblo ≡
ma

2ℏk
is the so-called Bloch oscillation frequency. A simulation of such Bloch oscillations is
exhibited in Figs. 42.41. See also Fig. 26.5.
b. The starting point is [1138],

ıℏ
d

dt
ψ = − ℏ2

2m

d2

dz2
ψ + ℏU0(α

∗
+α−e

2ıkz + α+α
∗
−e
−2ıkz)ψ −mazψ +

ℏW0

2
sin(2kz + ϕ)ψ

α+ =
η+
κ

α̇− = −κα− +NU0α+

∫
|ψ|2e−2ıkzdz ,

where we used that the laser is locked to a cavity mode, ∆c = U0. Introducing
α̃− − α− = α0 ≡ e2ıϕW0/4U0 and ψ = ψ̃eımazt/ℏ, we simplify the first and third

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL01.pdf
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Figure 42.41: (code) Simulation of the coupled atom-ring cavity dynamics for symmetric

pumping and in the presence of gravity. (a) Momentum state populations |cν |2, (b) photon
numbers |α±|2 in the counterpropagating cavity modes, and (c) Spectrum of the cavity

modes. The parameters are N = 20000, ωrec = (2π) 4.8 kHz, νblo = 0.05ωrec, κ = 90ωrec,

U0 = −0.00035ωrec, and η± = 4500ωrec.

equation to,

ıℏ
d

dt
ψ̃ = − ℏ2

2m

d2

dz2
ψ̃ + ℏU0(α

∗
+α̃−e

2ıkz + α+α̃
∗
−e
−2ıkz)ψ̃

˙̃α− = −κ(α̃− − α0) +NU0α+

∫
|ψ̃|2e−2ıkzdz .

With the definition η− ≡ κα0, the last equation can be simplified to,

˙̃α− = −κα̃− +NU0α+

∫
|ψ̃|2e−2ıkzdz + η− .

The expansion into momentum states demonstrated in part (a) yields the final set of
equations,

ċν = −4ıωrec(ν + νblot)
2cν − ıU0

η+
κ

(
α̃−cν+1 + α̃∗−cν−1

)

˙̃α− = −κα̃− + ıU0
η+
κ

∑

ν

c∗νcν±1 + η− ,

where the ration between the Bloch and CARL coupling strength is given by,

W0

U0
=
η−e−2ıϕ

κ
.

A simulation of these equations yields very similar results to the ones exhibited in
Fig. 42.41, except that the cavity mode α+ now is fixed.

42.4.7.2 Ex: Competition between CARL and Bloch oscillations

Reproduce the simulations of [1138].

Solution: The result is exhibited in Fig. ??.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlExternalForce.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlExternalForce.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlExternalForce.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlExternalForce.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlExternalForce.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL02.pdf
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42.4.7.3 Ex: Alternative derivation of the Maxwell-Bloch with adiabatic
elimination

Derive the directly from the Liouville equation (42.8) using the Hamiltonian (42.26)
in adiabatic elimination.

Solution: Inserting the Hamiltonian into the Liouville equation we get,

⟨µ| ˙̂ρ|ν⟩ = −ı⟨µ|[Ĥ, ρ̂]|ν⟩
= −ı

∑
q

⟨µ|Ĥ|q⟩ρq,ν + ı
∑
q

ρµ,q⟨q|Ĥ|ν⟩

= −ı
[
(µℏk)2

2m
+ (U0 −∆c)(|α+|2 + |α−|2)− ıη+(α+ − α∗+)− ıη−(α− − α∗−)

]
ρµ,ν

− ıU0

∑
q

(
α∗+α−⟨µ|e−2ıkẑ|q⟩+ α∗−α+⟨µ|e2ıkẑ|q⟩

)
ρq,ν

+ ı

[
(νℏk)2

2m
+ (U0 −∆c)(|α+|2 + |α−|2)− ıη+(α+ − α∗+ − ıη−(α− − α∗−)

]
ρµ,ν

+ ıU0

∑
q

(
α∗+α−⟨q|e−2ıkẑ|ν⟩+ α∗−α+⟨q|e2ıkẑ|ν⟩

)
ρµ,q

= ı(ν2 − µ2)ωrecρµ,ν + 2ıU0 [α
∗
+α− (ρµ,ν−1 − ρµ+1,ν) + α∗−α+(ρµ,ν+1 − ρµ−1,ν)] .

Transforming ρ̃µ,ν ≡ eı(µ−ν)∆ctρµ,ν ,

⟨µ| ˙̃ρ|ν⟩ = ⟨µ| ˙̂ρ|ν⟩+ ı(µ− ν)∆c⟨µ|ρ̂|ν⟩
= ı(ν − µ) [(ν + µ)ωrec −∆c] ρµ,ν

+ ıU0 [α
∗
+α−(ρµ,ν−1 − ρµ+1,ν) + α∗−α+(ρµ,ν+1 − ρµ−1,ν)] .

The incoherent part is,

⟨µ|Latom−vac|ν⟩ = 0 = ⟨µ|Lcavity−vac,± |ν⟩ .

42.4.7.4 Ex: Maxwell-Bloch equations without adiabatic elimination

Derive the Maxwell-Bloch equations for a three-level system coupled to a ring cavity
without adiabatic elimination, but with quantized motion.

Solution: We start from (42.15), generalize for three electronic levels, consider clas-
sical fields â = α, convert to matter wave description, and perform modal expansion,

ρ̂motion ⊗ ρ̂atom = |µ⟩⟨ν| ⊗ |ı⟩⟨j| with µ, ν ∈ Z and i, j = 1, 2, 3 .

Expand,

|ψ(z, t)⟩ = 1√
2π

∑

ν

cν(t)e
2ıνkz|ı⟩ = 1√

2π

∑

ν,i

cν,i(t)e
2ıνkz|ν, ı⟩ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL04.pdf
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The only quantized degrees of freedom subject to dissipation is the atomic excitation
(via spontaneous emission Γ). The optical field modes, which are also dissipated (via
cavity decay κ), are treated classically. And the atomic motion is not damped. Hence,
it should be sufficient to treat the atomic excitation by Bloch equations and the atomic
motion by a Schrödinger equation,

42.4.7.5 Ex: Linearized quantum CARL

Analyze the quantum CARL according to [1038].

Solution: The result is shown in Fig. 42.42.
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Figure 42.42: (code) Quantum CARL according to [1038].

42.5 Quantized light interacting with atoms moving
in cavities

Cavity QED has been studied extensively in the context of the Jaynes-Cummings
model in Sec. 35.4 and of cooperative scattering in Sec. 40.2, however, without ad-
dressing the issue of atomic motion which, via photonic recoil, inevitably influences
the dynamics. We also started a discussion on the role of photonic recoil in Sec. 38.3,
which will be continued in the following sections in the context of ring cavities,

ċn+,n−,i =
d

dt
⟨r, α+, α−, i|ψ(t)⟩ = ⟨r, α+, α−, i|

−ı
ℏ
Ĥ|ψ(t)⟩ (42.208)

α̇± = ⟨ψ(t)|ȧ±|ψ(t)⟩ = ⟨ψ(t)| ıℏ [Ĥ, â±]− κâ±|ψ(t)⟩ .

Concretely, we will be using the Hamiltonian (42.26), obtained after adiabatic
elimination of the excited state.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_QuantizedCARL05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_QuantumCarlPiovella.m
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42.5.1 QED in ring cavities

Macroscopic high-finesse ring cavities interacting with a cloud of cold atoms allowed
to enter the regime of strong collective coupling. However, new interesting aspects
arise from the regime of strong coupling on the level of individual atoms.

Todays research projects on cold atoms in cavities are essential divided into two
classes, each class realizing an opposite regime: Cavity quantum electrodynamics
(CQED) experiments as they are done by the groups of Rempe [758] and Kimble use
microcavities having mode volumes so small that few photons give rise to macroscopic
field strength. In such cavities the atom-field coupling is made to exceed all other
decay rates. The other regime is that of cavity-cooling mainly investigated by Vuletic
at the MIT and, in the case of ring cavities, of the collective atomic recoil laser
(CARL) realized in the Tübingen research group. In this second regime the cavities
are so large that the light fields can be considered as classical.

An interesting question is, whether the two regimes can be married to realize a
system, where collective effects and entanglement between optical and atomic modes
can be observed. The central idea is not to increase the coupling strength by reducing
the mode volume, but to reduce the decay rates, in particular the natural linewidth
of the atomic transition by choosing an atomic species that can be laser-cooled on a
narrow intercombination line.

Example 275 (CQED by reducing the ring cavity mode volume): Tech-

nically a ring cavity design with (w,L, F ) = (30µm, 4 cm, 200000) is feasible.

This is enough to get below the critical atom number, but this is not sufficient

to get into the CQED regime. Reducing Γ seems unavoidable.

The isotope 88Sr posses a narrow transition which can be used for optical cooling.

The following table compares the various systems, i.e. a CQED example taken

from Rempe, the macroscopic ring cavity with rubidium used in our Tübingen

CARL experiments and a cavity tuned close to the strontium intercombination

line.

experiment Rempe, Rb Tübingen, Rb São Carlos, Sr

Γ (2π)6 MHz (2π)6MHz (2π)7.6 kHz

F 440000 80000 200000

κ (2π)0.7MHz (2π)22 kHz (2π)19 kHz

w 29µm 100µm 30µm

L 500µm 8.5 cm 4 cm

g (2π)4MHz (2π)88 kHz (2π)13 kHz

Ncrit 0.5 34 1.6

nsat 1.1 2312 0.16

With N = 104 the cooperativity parameter N/Ncrit is in all cases well above 1.

42.5.2 Description of quantized light fields in cavities

In order to calculate the evolution of photon distributions in the counter-propagating
modes â± of a ring cavity, we develop CARL in a Fock basis. For simplicity, we first
consider the motion of a single atom as classical and fixed (i.e. not as a degree of
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freedom), and we apply the adiabatic approximation. I.e. we have only two quantized
degrees of freedom, which we organize like,

|ψ⟩ = |ν⟩motion
classical

⊗ |i⟩electron
adiab.elim.

⊗ |n⟩+ ⊗ |n⟩− → |n+, n−⟩ , (42.209)

Expanding the fields into Fock states,

|ψ⟩ =
∑

n+,n−

cn+,n− |n+, n−⟩ , (42.210)

the field operators and the density matrix read,

â+ =
∑

n+

√
n+|n+ − 1⟩⟨n+| ⊗ I =

∑

n+,n−

√
n+|n+ − 1, n−⟩⟨n+, n−| (42.211)

â− = I⊗
∑

n−

√
n−|n− − 1⟩⟨n−| =

∑

n+,n−

√
n+|n+ − 1, n−⟩⟨n+, n−|

ρ̂ = |ψ⟩⟨ψ| =
∑

m+,m−,n+,n−

c∗m+,m−
cn+,n− |m+,m−⟩⟨n+, n−| .

Figure 42.43: (a) Bragg scattering at a 1D optical lattice. (b) Same as in (a), but now the
optical lattice is generated by the mode of an optical ring cavity.

Note that the master equation using the Lindbladt operator traces over the reser-
voir. Hence, the master equation only treats the cavity modes, but does not al-
low predictions on the quantum behavior of outcoupled fields. In order to describe
e.g. quantum correlations in output field, one needs an input-output theory [283, 488].

In the case of classical motion quantum light fields,

ċn+,n− = ı(∆c − U0)(n+ + n−) cn+,n−

− ıU0

(
e−2ıkz

√
n+(n− + 1) cn+−1,n−+1 − e2ıkz

√
(n+ + 1)n− cn++1,n−−1

)

− η+
(√
n+ + 1 cn++1,n− −

√
n+ cn+−1,n−

)

− η−
(√
n− + 1 cn+,n−+1 −√n− cn+,n−−1

)

ż = 2ıℏkU0

∑

n+,n−

(
e−2ıkz

√
(n+ + 1)n− c

∗
n++1,n−−1cn+,n−

− e2ıkz
√
n+(n− + 1) c∗n+−1,n−+1cn+,n−

)

.

(42.212)
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42.5.3 Photon backscattering for fixed atomic position

To tackle the problem of quantized light field we first assume an atom fixed in space,
that is, we completely disregard the motional degree of freedom by setting p̂ = 0 and
restricting to the Hamiltonian,

Ĥ =
∑

±
ω±â

†
±â± − ıη±(â± − â†±) + U0(â

†
+â−e

−2ıkẑ + â†−â+e
2ıkẑ) . (42.213)

In Exc. 42.5.7.1 we show how to cast the Hamiltonian into a matrix form using an
appropriate basis already used in the discussion of the beam splitter in the photon
representation in Sec. 35.8.1.

In Exc. 42.5.7.2(a) we derive the equations of motion for the components cn+,n− of
the state vector from the Schrödinger equation cavity decay. In Exc. 42.5.7.3(a) we de-
rive the equations of motion for the components ρm+,n+;m−n− = ⟨m+,m−|ρ̂|n+, n−⟩
of the density operator. Simulations performed based on these equations of motion
are shown in Fig. 42.44).

The simulations reveal a number of interesting facts:

• The field amplitudes |α±|2 execute oscillations due to CARL coupling, but with
preserved Poissonian shape of the photon number distributions.

• When simulations are done with initial Fock states, they eventually relax to a
Glauber state.

• The mean photon numbers and the atomic coordinates evolve in a continuous
way.
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Figure 42.44: (code) Time-evolution of CARL with one classical atom and two quantized

field modes. (a) Photon number distributions of two modes after some evolution time t. (b)

Time-evolution of the mean photon number; at time t = 10, the atom is suddenly displaced.

(c) Time-evolution of the (classical) atomic trajectory.

These observations are not surprising, once we understood the backscattering as
a linear coupling between the modes being mediated by a beam splitter Hamiltonian
of type (35.317) 19,

Ĥint = U0(â
†
+â−e

−2ıkz + â+â
†
−e

2ıkz) , (42.214)

19Which itself represents a generalized displacement operator,

Ĥint ≃ U0(α
∗
+e
−2ıkz â− + α+e

2ıkz â†−) ≡ ıℏβ∗â− − ıℏβâ†− ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDClassicForcedWave.m
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for which we found the relationship (35.318),

e−ıĤinttâ±e
ıĤintt = â± cosU0t± â∓e∓2ıkz sinU0t . (42.215)

This means, that we expect (for a fixed location z of the atom) an oscillatory behavior
of the field amplitudes |α±|2 and also of the phase (encoded in α∗+α−), but no modi-
fication of the coherent photon statistics. On the contrary, as shown in Sec. 35.8.1, a
beam splitter tends to transform sub-Poissonian states into Poissonian ones. In fact,
CARL is nothing else than a movable beam splitter.

Non-linearity may come into play, if photonic recoil is included, i.e. if the atomic
motion itself becomes a degree of freedom. This is the next step of our problem, that
needs to be solved.

42.5.4 Quantized light fields and quantized recoil

The simulations of the preceding section show that the CARL Hamiltonian (42.214),
despite the appearance of photon creation and annihilation operator, does not request
recoil to be quantized: If an arbitrary momentum kick of the atom can be absorbed
by the light fields, then an arbitrary dipole force can be transmitted to the atomic
momentum! The momentum conservation law (42.17) does not imply quantization of
photonic recoil. The question is now, how to conceal this fact with the observation of
discrete momentum sidemodes [1217]. We have seen earlier, that the quantization of
the motion is transferred from the quantized photon fields via the operator (42.149)
to the atom: An initially resting atom can only adopt motional states with momenta
equal to a multiple of 2ℏk.

We will now take the quantization of the atomic momentum for granted and study
quantized light modes coupled by recoiling atoms, we extend our Hilbert space like,

|ψ⟩ = |ν⟩motion ⊗ |i⟩electron
adiab.elim.

⊗ |n⟩+ ⊗ |n⟩− → |ν, n+, n−⟩ , (42.216)

Expanding the motion and fields 20,

|ψ⟩ =
∑

ν,n+,n−

cν,n+,n− |ν, n+, n−⟩ , (42.217)

the momentum kick operator reads,

e−2ıkẑ ⊗ I⊗ I =
∑

ν

|νℏk − 2ℏk, n+, n−⟩⟨νℏk, n+, n−| . (42.218)

since defining β ≡ ıU0
ℏ α+e2ıkz , we find,

B(βt) = e−ıĤintt/ℏ = e
β∗tâ−−βtâ

†
− .

20Note the fact, which is important for computation, that the dimension of the Hilbert space
increases a lot, that is like dim ν ·dim n+ ·dim n−, where ν, n± are the numbers of states considered.
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The equations of motions derived in Exc. 42.5.7.2 from the Schrödinger equation are
now generalized to,

ċν,n+,n− = ı(∆c − U0)(n+ + n−)cν,n+,n−

− ıU0

(√
n+(n− + 1)cν−1,n+−1,n−+1 −

√
(n+ + 1)n−cν+1,n++1,m−−1

)
− η+

(√
n+ + 1cν,n++1,n− +

√
n+cν,n+−1,n−

)
− η−

(√
n− + 1cν,n+,n−+1 +

√
n−cν,n+,n−−1

)
.

(42.219)

Note that the general shape of fully quantized Schrödinger equations looks like,

ċν′,n′
+,n

′
−
=




. . .
...

· · · B{ν′,n′
+,n

′
−};{ν,n+,n−} · · ·
...

. . .


 cν,n+,n− (42.220)

and for fully quantized master equations,

ρ̇{µ′,m′
+,m

′
−};{ν′,n′

+,n
′
−} (42.221)

=




. . .
...

· · · L{µ′,m′
+,m

′
−;ν′,n′

+,n
′
−};{µ,m+,m−;ν,n+,n−} · · ·
...

. . .


 ρ{µ,m+,m−};{ν,n+,n−} .

However, the mere inclusion of a third degree of freedom coupled to the other two
degrees in the same linear fashion will modify the behavior of the system, which will
continue to oscillate as it did before, now just involving the atomic motion in this
dynamics. This behavior can only change, when we additionally consider the force
equation,

˙̂p = 2ℏkU0(â
†
+â−e

−2ıkz − â+â†−e2ıkz) , (42.222)

which will lead to feedback. Inserting the expansion (42.217),

ċν,n+,n− = 2ℏkU0

(
cν,n+,n−

√
n+(n− + 1)− cν,n+,n−

√
n+(n− + 1)

)
. (42.223)

Note that, in contrast to CARL equations, the fully quantized equations (42.219)
are linear. That is, it is the ’classization’ 21 of the degrees of freedom which intro-
duces the non-linearities, which are typical for CARL, e.g. the feedback introduced by
classical light fields. The process of ’classization’ corresponds to tracing over degrees
of freedom, which we want to treat classically and thus remove from the Hamiltonian.

42.5.4.1 Calculation of observables

Once the time evolution of the coefficients cν,n+,n−(t) has been determined by solving
the differential equation (42.219) we can calculate the observables in the following

21As opposed to the term quantization.
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way. The probability distribution for photon numbers in the mode α+ is given by,

Pn+
(t) = ⟨ψ(t)|I⊗ |n+⟩⟨n+| ⊗ I|ψ(t)⟩ (42.224)

=
∑

ν,n−

⟨ν, n+, n−|ν, n+, n−⟩ =
∑

ν,n−

|cν,n+,n−(t)|2 ,

the mean photon number by,

⟨n̂+(t)⟩ = |α+(t)|2 =
∑

n+

n+Pn+
(t) =

∑

ν,n+,n−

n+|cν,n+,n−(t)|2 , (42.225)

and similarly for α−. The probability distribution for momentum states is given by,

Pν(t) =
∑

n+,n−

|cν,n+,n−(t)|2 , (42.226)

the mean momentum by,

⟨p̂(t)⟩ =
∑

ν,n+,n−

νℏk|cν,n+,n−(t)|2 , (42.227)

the mechanical kinetic energy by,

Ekin(t) =
⟨p̂2⟩
2m

=
∑

ν,n+,n−

(νℏk)2

2m
|cν,n+,n−(t)|2 (42.228)

=
∑

ν,n+,n−

ν2ℏωrec|cν,n+,n−(t)|2 ,

and the potential energy by,

Epot(t) = ℏU0⟨e−2ıkẑâ†+â− + e2ıkẑâ+â
†
−⟩ (42.229)

= ℏU0

∑

ν,n+,n−

(
c∗ν+1,n++1,n−−1cν,n+,n−

√
(n+ + 1)n−

+c∗ν−1,n+−1,n−+1cν,n+,n−

√
n+(n− + 1)

)
.

With this we can check conservation of the total photon number,

⟨n̂+(t)⟩+ ⟨n̂−(t)⟩ = const , (42.230)

of the mechanical energy,

Ekin(t) + Epot(t) = const , (42.231)

and of total linear momentum,

ℏk[⟨n̂+(t)⟩ − ⟨n̂−(t)⟩]− ⟨p̂(t)⟩ = const . (42.232)
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42.5.4.2 Master equation for CQED with atomic recoil in the adiabatic
approximation

Using the Hamiltonian (42.26) or (42.144), the expansion of the recoil operator
(42.149), the expansion of the photon field operators (42.211), and the matrix repre-
sentation of the density operator (34.105), that is,

ρ̂ =
∑

µ,ν;m+,n+;m−,n−

|µ,m+,m−⟩ρµ,ν;m+,n+;m−,n−⟨ν, n+, n−| , (42.233)

the master equation (42.8) becomes,

⟨µ,m+,m−| ˙̂ρ|ν, n+, n−⟩ = −ı⟨µ,m+,m−|[Ĥ, ρ̂]|ν, n+, n−⟩+ Lcavity−vac,±ρ̂ ,

(42.234)
with the coherent contributions,

⟨µ,m+,m−|[ p̂
2

2m
, ρ̂]|ν, n+, n−⟩ = ωrec(µ

2 − ν2)ρµ,ν;m+,n+;m−,n− (42.235)

⟨µ,m+,m−|[(U0 −∆c)â
†
±â±, ρ̂]|ν, n+, n−⟩ = (U0 −∆c)n±ρµ,ν;m+,n+;m−,n−

⟨µ,m+,m−|[−ıη+(â+ − â†+), ρ̂]|ν, n+, n−⟩

= −ıη+
(√

m+ρµ,ν;m+−1,n+;m−,n− −
√
m+ + 1ρµ,ν;m++1,n+;m−,n−

+
√
n+ρµ,ν;m+,n+−1;m−,n− −

√
n+ + 1ρµ,ν;m+,n++1;m−,n−

)
⟨µ,m+,m−|[−ıη−(â− − â†−), ρ̂]|ν, n+, n−⟩

= −ıη−
(√

m−ρµ,ν;m+,n+;m−−′,n− −
√
m− + 1ρµ,ν;m+,n+;m−+1,n−

+
√
n−ρµ,ν;m+,n+;m−,n−−1 −

√
n− + 1ρµ,ν;m+,n+;m−,n−+1

)
⟨µ,m+,m−|[U0e

−2ıkẑ â†+â−, ρ̂]|ν, n+, n−⟩

= U0

(√
m+(m− + 1)ρµ+1,ν;m+−1,n+;m−+1,n− +

√
(m+ + 1)m−ρµ−1,ν;m++1,n+;m−−1,n−

)
⟨µ,m+,m−|[U0e

2ıkẑ â+â
†
−, ρ̂]|ν, n+, n−⟩

= U0

(√
(n+ + 1)n−ρµ,ν−1;m+,n++1m−,n−−1 +

√
n+(n− + 1)ρµ,ν+1;m+,n+−1;m−,n−+1

)
,

and the incoherent contributions,

⟨µ,m+,m−| − κ[â†+â+ρ̂− 2â+ρ̂â
†
+ + ρ̂â†+â+]|ν, n+, n−⟩ (42.236)

= −κ
(
m+ρµ,ν;m+,n+;m−,n− + n+ρµ,ν;m+,n+;m−,n−

−2
√

(m+ + 1)(n+ + 1)ρµ,ν;m++1,n++1;m−,n−

)
⟨µ,m+,m−| − κ[â†−â−ρ̂− 2â−ρ̂â

†
− + ρ̂â†−â−]|ν, n+, n−⟩

= −κ
(
m−ρµ,ν;m+,n+;m−,n− + n−ρµ,ν;m+,n+;m−,n−

−2
√

(m− + 1)(n− + 1)ρµ,ν;m+,n+;m−+1,n−+1

)
.

42.5.5 Kicking and forcing an atom in a ring cavity

The question we want to elucidate here is, how a coupled atom-ring cavity system re-
acts to a kick transferring an arbitrary amount of momentum to the atom. We studied
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Figure 42.45: (code) Time-evolution of CARL with one classical atom and two quantized

field modes. (a) Photon number distributions of two modes after some evolution time t. (b)

Time-evolution of the mean photon number; at time t = 10, the atom is suddenly displaced.

(c) Time-evolution of the (classical) atomic trajectory.

a similar question when studying the kicking of a harmonic oscillator in Sec. 24.6.2,
however, the situation is quite different now because, in contrast to the harmonic
oscillator, the motion of an atom subject to CARL dynamics is not localized and,
hence, not quantized. That is, an arbitrarily kicked atom is not bound to join one of
those momentum states it would populate when kicked by photonic recoil. Hence, a
momentum state expansion like (42.153) is not appropriate, so that we have to go a
step back and consider the Hamiltonian (42.26) again. See also (watch talk).

42.5.5.1 Kicking

Let us first describe the kick as an incoherent disruptive one time event transforming
operators, the Hamiltonian and the system’s state like,

Â −→ e−ıqẑÂeıqẑ , |ψ⟩ −→ eıqẑ|ψ⟩ (42.237)

and in particular,

Ĥ −→ e−ıqẑĤeıqẑ = Ĥ(ẑ, p̂−ℏq) , ⟨p|ψ⟩ −→ ⟨p|eıqẑ|ψ⟩ = ⟨p−ℏq|ψ⟩ . (42.238)
The Schrödinger equation tells us the system’s evolution after the kick,

ıℏ
d

dt
⟨p|ψ⟩ = p2

2m
⟨p|ψ⟩+ U0

(
⟨p|e−2ıkẑ|ψ⟩â†+â− + ⟨p|e2ıkẑ|ψ⟩â+â†−

)
. (42.239)

We remind that this equations contains CARL feedback via the simultaneous presence
of ẑ and p̂. If we want to disregard the CARL force (assuming, for example, that the
motion is totally imposed by an external force, as done in Sec. 40.2.8 in order to focus
on the behavior of the light fields), we must not project the Schrödinger equation on
⟨p| but treat the motional degree of freedom as classical.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CQEDQuantMobileWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/CQEDCarl
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42.5.5.2 Forcing

Let us now describe the kick as a force F (t) = mgθ(t) being switched on at a given
time, but being constant afterward,

Ĥ =
p̂2

2m
+ U0

(
e−2ıkẑâ†+â− + e2ıkẑâ+â

†
−
)
+mgẑ . (42.240)

We note that with (23.167) the Hamiltonian transformed into the accelerated frame
reads,

Ĥ −→ e−ımgẑt/ℏĤeımgẑt/ℏ + ıℏ
(
d

dt
eımgẑt/ℏ

)†
eımgẑt/ℏ = Ĥ(ẑ, p̂−mgt)−mgẑ

=
(p̂−mgt)2

2m
+ U0

(
e−2ıkẑâ†+â− + e2ıkẑâ+â

†
−
)
. (42.241)

The Schrödinger equation for the transformed wavefunction |ψ⟩ = |ψ̃⟩eımgẑt/ℏ, which
tells us the system’s evolution during the force,

ıℏ
d

dt
⟨p|ψ̃⟩ = (p−mgt)2

2m
⟨p|ψ̃⟩+ U0

(
⟨p|e−2ıkẑ|ψ̃⟩â†+â− + ⟨p|e2ıkẑ|ψ̃⟩â+â†−

)
,

(42.242)
has a similar shape to Eq. (42.239).

42.5.5.3 Vibrating

Another option might be to additionally confine the atom in a harmonic potential
[1406],

Ĥ =
p̂2

2m
+ U0

(
e−2ıkẑâ†+â− + e2ıkẑâ+â

†
−
)
+
m

2
ω2ẑ2 (42.243)

= ℏω(Â†Â+ 1
2 ) + U0

[
D†(α)â†+â− +D(α)â+â

†
−
]
,

where D(α) ≡ eαÂ†−α∗Â with α ≡ 2ıkaho√
2

.

42.5.5.4 Quantized equations of motion

In both cases, ’kicking’ and ’forcing’, we may discretize momentum space, although
in the latter case we need to transform back into the lab frame after having solved
the Schrödinger equation (42.219).

42.5.6 Quantum correlations

Superradiant or CARL scattering exist due to a correlation of subsequent scattering
events. In the quantum regime, the emergence of quantum correlations, such as
entanglement and squeezing is to be expected as a consequence of CARL dynamics
[918, 1036, 1061, 1050, 1051, 1325, 279, 280, 281]. The advantage of doing CARL
with BECs is the possibility to exploit the instability in the good-cavity regime to
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parametrically amplify optical and matter waves, manipulate matter wave coherence
properties and generate entanglement.

For the description of the dynamics of the fields, i.e. the momentum sidemodes
and the cavity modes, a first-quantized treatment of the atomic motion [1038] would
be sufficient. All information can be extracted from a numerical simulation of the
quantum CARL equations. However, here we are also interested in quantum corre-
lations. Hence, in a first-quantized treatment of the atomic motion, the coefficients
ĉn must be treated as field operators. Alternatively, we derive the basic equations
rigorously from a second-quantized treatment.

42.5.6.1 Generation of squeezing and entanglement via CARL

An experiment by [1069] produces squeezing in transmission of a cavity resonantly
interacting with single atoms. The effect was induced by vacuum Rabi-splitting. In
our case we have a ring cavity, we operate far from equilibrium, we have classical
Stark splitting. Hence, we may expect squeezing and entanglement from the CARL
dynamics.

Figure 42.46: Production and detection of squeezing.

Differences between entanglement and correlation (correlations involve time or
space coordinates g(τ), particles correlate across space and time, coherence).

Bragg scattering of light at an atomic grating (or simply the splitting of light at a
beam splitter) is an irreversible process (see Sec. 35.8). CARL can be interpreted in
terms of Bragg scattering of light at an atomic grating, which is generated itself by
the Bragg scattering. Hence, the scattering of early photons influences the scattering
of late photons, i.e. the scattering processes get correlated, the dynamics gets a his-
tory. The correlation between subsequent scattering processes is what preserves the
coherence in CARL and superradiant Rayleigh scattering.

It is now interesting to ask how this classical correlations will behave in the quan-
tum regime, i.e. upon 1. quantization of the motion of individual atoms and upon
2. quantization of atomic particle field. Following [918, 917, 920, 919, 1036, 1037,
1050, 1051], non-classical correlations such as entanglement of matter wave modes,
and entanglement between matter-wave and optical modes is expected.
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42.5.6.2 Quantum non demolition measurements with CARL

According to [1051], a ring cavity could lend itself to quantum non demolition mea-
surements. They consider our ring cavity being pumped from both sides through an
incoupling mirror. A so-called pump mode is injected with a p-polarized light field,
and a probe mode with a s-polarized light field. The light of the probe mode leaking
through a mirror gives information about the atoms (e.g. via the refraction index).
The counterpropagating pump light gives access to higher-order moments of the atom
distribution.

The problem is that the effect is based on photon exchange between the modes,
and those are orthogonally polarized. Even more problematic is that, in practice,
the modes have different frequencies. Other work on this subject has been done by
[70, 409, 870, 872, 250].

42.5.7 Exercises

42.5.7.1 Ex: Analogy between CARL and two-atom Dicke states

a. Write the Hamiltonian (42.213) in matrix form using the basis,

ψk = {|0, 0⟩, |0, 1⟩, |1, 0⟩, |0, 2⟩, |1, 1⟩, |2, 0⟩, ...} .

b. Now restrict to the finite number of states ψk = {|0, 0⟩, |0, 1⟩, |1, 0⟩, |1, 1⟩} and dis-
cuss the analogy between CARL and two-atom Dicke states.

Solution: a. The Hamiltonian becomes,

Ĥ =




0 −ıη− −ıη+ 0 0 0

ıη− ω− U −
√
2ıη− −ıη+ 0

ıη+ U ω+ 0 −ıη− −
√
2ıη+

0
√
2ıη− 0 2ω−

√
2U 0

0 ıη+ ıη−
√
2U ω+ + ω−

√
2U

0 0
√
2ıη+ 0

√
2U 2ω+

. . .




.

b. The analogy with the two-atom Dicke Hamiltonian becomes apparent, when we
restrict ourselves to the finite basis ψk = {|0, 0⟩, |0, 1⟩, |1, 0⟩, |1, 1⟩},

Ĥ =




0 −ıη− −ıη+ 0

ıη− ω− U −ıη+
ıη+ U ω+ −ıη−
0 ıη+ ıη− ω+ + ω−


 .

This however presupposes that coupling U and pumping η± to higher photons number
states is inhibited.
Assume one photon is pumped into mode a1. The state is then |ψ⟩ = (0010). This
can be written |ψ⟩ = 1√

2
[(0010) + (0100)] + 1√

2
[(0010) − (0100)]. The superposition

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL0m1.pdf
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state 1√
2
[(0010) + (0100)] decays, but not by loss of energy, but through phase noise.

How to detect state 1√
2
[(0010)− (0100)] of the cavity?

Interestingly, in the absence of pumping (and dissipation), the Hamiltonian takes the
form of the Dicke Hamiltonian, where the two coupled systems are the two modes of
the ring cavity. We indeed find that the singlet and triplet states |0, 1⟩±|1, 0⟩ decouple.
In analogy to Dicke states, if the modes couple to the same vacuum radiation field,
there might be sub- or superradiance, or collective quantum jumps. This could be
done by combining the two output ports of the ring cavity on a beam splitter. The
vacuum fluctuations entering through the beam splitter ports couple simultaneously to
both modes.
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Figure 42.47: (code) Simulation of the above Hamiltonian with initial 2 photons in one mode

and no pumping.

42.5.7.2 Ex: Cavity QED with Schrödinger equation

Assume a symmetrically pumped ring cavity in equilibrium with an atom at a fixed
position.
a. Derive the equations of motion for the components for the probability amplitudes
in a Fock state basis.
b. Express the possible initial states |α+, α−⟩, |α+, n−⟩, and |n+, n−⟩ in the Fock
state basis. How to calculate the photon distribution pn+ , the amplitudes of field
modes α±, and the atom’s position and momentum at later times of the evolution?

Solution: a. If for simplicity we assume totally isolated cavity modes, κ = 0, we

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_Correlations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_Correlations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL00.pdf
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can use the Schrödinger equation,

ıℏ d
dt
|ψ⟩ = −Ĥ|ψ⟩ = ıℏ d

dt

∑
n+,n−

cn+,n− |n+, n−⟩

=

(∑
±

(U0 −∆c)â
†
±â± + U0

(
e−2ıkzâ†+â− + e2ıkzâ+â

†
−

)
− ı
∑
±

η±(â± − â†±)
) ∑
n+,n−

cn+,n− |n+, n−⟩

=
∑
n+,n−

cn+,n− [(U0 −∆c)(n+ + n−)|n+, n−⟩

+U0e
−2ıkzcn+,n−

√
(n+ + 1)n−|n+ + 1, n− − 1⟩+ U0e

2ıkzcn+,n−

√
n+(n− + 1)|n+ − 1, n− + 1⟩

−ıη+
√
n+|n+ − 1, n−⟩+ ıη+

√
n+ + 1|n+ + 1, n−⟩ − ıη−

√
n−|n+, n− − 1⟩+ ıη−

√
n− + 1|n+, n− + 1⟩

]
.

Projecting the Schrödinger equation onto the state ⟨m+,m−| we get,

ċm+,m− = ı(∆c − U0)(m+ +m−)cm+,m−

− ıU0e
−2ıkzcm+−1,m−+1

√
m+(m− + 1)− ıU0e

2ıkzcm++1,m−−1

√
(m+ + 1)m−

− η+cm++1,m−

√
m+ + 1 + η+cm+−1,m−

√
m+ − η−cm+,m−+1

√
m− + 1 + η−cm+,m−−1

√
m− .

The motion, which is assumed to be classical, is modeled by,

z̈ = ⟨ψ|¨̂z|ψ⟩ = 2ıℏkU0

(
⟨ψ|e−2ıkzâ†+â−|ψ⟩ − ⟨ψ|e2ıkzâ+â†−|ψ >

)

= 2ıℏkU0

∑

n+,n−

(
e−2ıkz

√
(n+ + 1)n−c

∗
n++1,n−−1cn+,n−

−e2ıkz
√
n+(n− + 1)c∗n+−1,n−+1cn+,n−

)
.

b. Simulations of the above set of differential equations will be started from initially
coherent states,

|α+, α−⟩ = e−|α+|2/2−|α−|2/2
∑

n+,n−

α
n+

+ , α
n−
−√

n+!n−!
|n+, n−⟩ .

The other states, |n+, n−⟩ and |α+, n−⟩ are trivial. At later times t the photon dis-
tributions can be extracted from the wavefunction via,

pn+
(t) =

∑

n−

⟨n+, n−|ψ(t)⟩ =
∑

n−

cn+,n−(t) .

The amplitudes of field modes follow from,

α±(t) =
∑

n±

n±pn±(t) .

Finally, the position and momentum follow directly from the differential equation.
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42.5.7.3 Ex: Cavity QED with density matrix

Assume a symmetrically pumped ring cavity in equilibrium with an atom at a fixed
position.
a. Derive the equations of motion for the components of the density operator.
b. Write down the density operator describing two decoupled Glauber states? How
to retrieve the Fock state populations from the density operator?
c. Now, assume that the atom can move. What will be the evolution of the motional
state?

Solution: a. The evolution of the density matrix ρm+,n+;m−n− = ⟨m+,m−|ρ̂|n+, n−⟩
is derived from the master equation (42.8) in the adiabatic approximation inserting
the Hamiltonian (42.26),

Ĥ =
∑
±

(U0 −∆c)â
†
±â± + U0(e

−2ıkzâ†+â− + e2ıkzâ+â
†
−)− ı

∑
±

η±(â± − â†±),
∑
m,n

c∗mcn|m⟩⟨n|

= (U0 −∆c)
∑
n+,n−

(n+ + n−)|n+, n−⟩⟨n+, n−|

+ U0

∑
n+,n−

(
e−2ıkz

√
(n+ + 1)n−|n+ + 1, n− − 1⟩⟨n+, n−|

+e2ıkz
√
n+(n− + 1)|n+ − 1, n− + 1⟩⟨n+, n−|

)
− ıη+

∑
n+,n−

(√
n+|n+ − 1, n−⟩⟨n+, n−| −

√
n+ + 1|n+ + 1, n−⟩⟨n+, n−|

)
− ıη−

∑
n+,n−

(√
n−|n+, n− − 1⟩⟨n+, n−| −

√
n− + 1|n+, n− + 1⟩⟨n+, n−|

)
.

We get for the coherent evolution,

˙̂ρm+,n+;m−n− ≡ ⟨m+,m−|ρ̇|n+, n−⟩ = −ı⟨m+,m−|[Ĥ, ρ̂]|n+, n−⟩
= −ı

∑

p+,p−

⟨m+,m−|Ĥ|p+, p−⟩ρ̂p+,n+;p−,n− + ı
∑

p+,p−

ρ̂m+,p+;m−,p−⟨p+, p−|Ĥ|n+, n−⟩ ,

giving,

˙̂ρm+,n+;m−n− = −ı(U0 −∆c)(m+ +m− − n+ − n−)ρ̂m+,m+;n−,n−

− ıU0e
−2ıkz√m+(m− + 1)ρ̂m+−1,n+;m−+1,n− − ıU0e

2ıkz
√

(m+ + 1)m−ρ̂m++1,n+;m−−1,n−

+ ıU0e
−2ıkz√(n+ + 1)n−ρ̂m+,n++1;m−,n−−1 + ıU0e

2ıkz
√
n+(n− + 1)ρ̂m+,n+−1;m−,n−+1

− η+
√
m+ + 1ρ̂m++1,n+;m−,n− + η+

√
m+ρ̂m+−1,n+;m−,n−

+ η+
√
n+ρ̂m+,n+−1;m−,n− − η+

√
n+ + 1ρ̂m+,n++1;m−,n−

− η−
√
m− + 1ρ̂m+,n+;m−+1,n− + η−

√
m−ρ̂m+,n+;m−−1,n−

+ η−
√
n−ρ̂m+,n+;m−,n−−1 − η−

√
n− + 1ρ̂m+,n+;m−,n−+1 .

For the dissipative evolution we get,

Lcavity−vac,± = −κ{â†±â±ρ̂(t)− 2â±ρ̂(t)â
†
± + ρ̂(t)â†±â±} .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL01.pdf
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Hence,

⟨m+,m−|Lcavity−vac,±|n+, n−⟩

= −κ
∑
p+,p−

(
⟨m+,m−|â†±â±|p+, p−⟩ρp+,n+;p−,n− + ρm+,p+;m−,p−⟨p+, p−|â†±â±|n+, n−⟩

)
− 2κ

∑
p+,p−,q+,q−

⟨m+,m−|â±|p+, p−⟩ρp+,q+;p−,q−⟨q+, q−|â†±|n+, n−⟩ ,

and thus,

Lcavity−vac,+ρm+,n+;m−n− = −2κ{n+ρm+,n+;m−,n− −
√
n+(n+ + 1)ρm++1,n++1;m−,n−}

Lcavity−vac,−ρm+,n+;m−n− = −2κ{n−ρm+,n+;m−,n− −
√
n−(n− + 1)ρm+,n+;m−+1,n−+1} .

b. Simulations will be started from an initially coherent state,

ρ̂(0) = |α+⟩⟨α+| ⊗ |α−⟩⟨α−|

= e−|α+|2−|α−|2
∑

m+,n+,m−,n−

α
m+

+ α
∗n+

+ α
m−
− α

∗n−
−√

m+!n+!m−!n−!
|m+,m−⟩⟨n+, n−| ,

such that,

ρm+,n+;m−,n−(0) = ⟨m+,m−|ρ̂(0)|n+, n−⟩ = e−|α+|2−|α−|2 α
m+

+ α
∗n+

+ α
m−
− α

∗n−
−√

m+!n+!m−!n−!
.

Now, we calculate the photon distributions via,

pn+ = Tr ρ̂|n+⟩⟨n+| = ⟨n+|Trn− ρ̂|n+⟩ =
∑

n−

⟨n+, n−|ρ̂|n+, n−⟩ =
∑

n−

ρn+,n+;n−n− .

Of course, we expect that for separable coherent states,

pn+ = e−|α+|2 |α+|n+

n+!
e−|α−|2

∑

n−

|α−|n−

n−!
= e−|α+|2 |α+|2n+

n+!
.

c. We can follow the evolution of the motional degree of freedom directly in the equation
of motion of CARL,

˙̂p = 2ıℏkU0(e
−2ıkzâ†+â− − e2ıkzâ+â†−)

= 2ıℏkU0

∑
n+,n−

(
e−2ıkz

√
(n+ + 1)n−|n+ + 1, n− − 1⟩⟨n+, n−|

−e2ıkz
√

(n− + 1)n+|n+ − 1, n− + 1⟩⟨n+, n−|
)
.

giving,

⟨ψ| ˙̂p|ψ⟩ =
∑

m+,m−,n+,n−

c∗m+,m−
cn+,n−⟨m+,m−|ṗ|n+, n−⟩

= 2ıℏkU0

∑

n+,n−

(
ρn++1,n+;n−−1,n−e

−2ıkz√(n+ + 1)n− − ρn+−1,n+;n−+1,n−e
2ıkz
√
n+(n− + 1)

)
.
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42.5.7.4 Ex: Photon number and momentum conservation

a. Calculate the evolution under CARL interaction, e−ıĤcarltn̂±eıĤcarlt, of the photon
numbers in each mode and show that the total photon number is conserved.
b. Assuming conservation of total momentum calculate the evolution of the atomic
momentum.

Solution: a. The CARL Hamiltonian is,

Ĥcarl = U0(â
†
+â−e

−2ıkẑ + â+â
†
−e

2ıkẑ) .

With this we calculate,

e−ıĤcarltn̂±e
ıĤcarlt = e−ıĤcarltâ†±e

ıĤcarlte−ıĤcarltâ±e
ıĤcarlt

=
(
â†± cosU0t± â†∓e±2ıkẑ sinU0t

) (
â± cosU0t± â∓e∓2ıkẑ sinU0t

)

= â†±â± cos2 U0t+ â†∓â∓ sin2 U0t±
(
â†±â∓e

∓2ıkẑ + â†∓â±e
±2ıkẑ

)
sinU0t cosU0t ,

using the result (35.318). Hence,

e−ıĤcarlt(n̂+ + n̂−)e
ıĤcarlt = n̂+ + n̂− .

b. We also calculate,

e−ıĤcarlt(n̂+ − n̂−)eıĤcarlt

= (n̂+ − n̂−)(cos2 U0t− sin2 U0t) + 2
(
â†+â−e

−2ıkẑ + â†−â+e
2ıkẑ
)
sinU0t cosU0t

= (n̂+ − n̂−) cos 2U0t+
(
â†+â−e

−2ıkẑ + â†−â+e
2ıkẑ
)
sin 2U0t ,

so that,

e−ıĤcarltp̂eıĤcarlt = −e−ıĤcarlt(n̂+ − n̂−)eıĤcarlt .

42.5.7.5 Ex: Self-synchronization of Bloch oscillations

Study the Bloch-CARL dynamics for the case of a sinusoidally modulated CARL
pump light intensity. Choose as the modulation frequency the expected Bloch oscil-
lation frequency and a variable phase delay.

Solution:

42.6 Atomic self-organization in light fields

The CARL phenomenon introduced in the previous chapter raises a variety of ques-
tions, such as: How does it compare to an ordinary laser? Is there a phase transition?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_CqedCARL11.pdf
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Of what kind would be this transition (in the Ehrenfest or Landau classification
scheme)? What are the coherence properties (measured by correlation functions)?
How do these properties depend on the random motion (temperature) of the atoms?
These issues will be addressed in this chapter and in the later chapter within the
models of Langevin, Fokker-Planck, Vlasov, and Kuramoto.

42.6.1 The Langevin model

42.6.1.1 CARL with damping

We saw in the previous chapter that CARL is a transient phenomenon, the atoms and
the phase of the light wave being continuously accelerated. However, it is possible
to force stationary behavior by providing additional friction for the atoms. Such
friction can be carried out by an optical molasses (see Sec. 43.2.1) characterized by
a friction coefficient γfrc. The friction force can be added to the CARL equations of
motion (42.69),

α̇− = −κα− − ıU0α+

∑

m

e2ıkzm (42.244)

kv̇n = 4iωrecU0α+(α−e
−2ıkzn − α∗−e2ıkzn)− γfrckvn .

Now, the balance of forces happens at a well-defined atomic velocity, which inciden-
tally corresponds to a well-defined CARL frequency. Assuming perfect ’bunching’
e2ıkzm = e2ıkz, and balanced forces, v̇m = 0 e α− = βe2ıkz with β̇ = 0, we obtain for
κ≪ 2kv,

α− = −ıNU0α+

κ+2ıkv e2ıkz (42.245)

(kv)3 =
2ωrecκNU

2
0α

2
+

γfric
.

This result will be derived in Exc. 42.6.7.1.

Figure 42.48: Scheme of the ring cavity.

Optical molasses obviously are subject to a cooling limit coming from the ran-
dom scattering of photons. As a consequence, atoms follow a random walk in the
momentum space, which leads to the diffusion and heating of atoms and impedes the
bunching of atoms. It also turns out that a minimal grouping is required to initial-
ize CARL. Therefore, there is a threshold behavior as a function of the equilibrium
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temperature of the molasses,

α̇− = −κα− − ıU0α+

∑
m e

2ıkzm

kv̇n = 4ıωrecU0α+(α−e−2ıkzn − α∗−e2ıkzn)− γfrckvn + ξn(t)
. (42.246)

The equation corresponds to a Langevin equation, where the stochastic term ξn(t) de-
scribes white noise. We can simulate this equation by a Runge-Kutta method, where
the atoms are continually exposed to random momentum changes. For N atoms we
need to solve 2N + 2 Langevin equations to describe the dynamics of all degrees of
freedom. The Langevin equations are associated to so-called Fokker-Planck equations
[1343, 1106, 664, 1342]. These describe the temporal evolution of the atomic density
along the optical x-axis. With these equations we replace the 2N trajectories of indi-
vidual particles by a one-dimensional field P (x, t). The Vlasov equation represents a
different approach: Here we assume that the equilibrium between cooling and heating
is achieved by a continuous thermalization process described by a single rate γth

22.

42.6.1.2 Characterization of an optical molasses

Optical molasses is discussed in Sec. 43.2.1. In Exc. 43.2.5.1 we will show how, through
a linearization of the radiative pressure force, we arrive at the following approximation,

F = −γfrcv with γfrc ≃ −
√
3ℏk2s(1 + s)−3/2 , (42.247)

where s = I/Is is the saturation parameter. This formula estimates the maximum
friction force, when the lasers are tuned close to an atomic resonance 23.

A more fundamental problem is the interdependence of the molasses friction and
the CARL. In fact, because the dipole potential influences the detuning of the molasses
beams by light-shifting the D2 line, the γth coefficient depends on ∆a and η+ (the
reverse field |α−| may be neglected). The threshold equations must then be solved
in a self consistent way. It might however be possible to determine γth only slightly

above threshold, where the modification is small, γth ≈ γ(thresh)th .

42.6.1.3 Fluctuation-dissipation theorem

Trajectories of ensembles of particles subject to friction and stochastic forces can be
described by Langevin equations. The friction and the diffusion forces are related by
the fluctuation-dissipation theorem. This theorem states that, for a thermal sample
of atoms whose coordinates θn follow,

θ̈n = −γfrcθ̇n + ξn(t) , (42.248)

22Through a linearization of the CARL equations, the cavity dissipation itself is found to exert a
friction force to the atoms [590, 482]. This implies the existence of diffusion and a finite equilibrium
temperature even at if the atoms are initially at T = 0.

23We note that atomic species exhibiting a hyperfine structure in the ground state are subject
to cooling phenomena called ’polarization gradient cooling’, which can cause much higher friction
coefficients.
We also note that, when the molasses is applied to atoms confined to a potential, the atomic levels
can be displaced (e.g., by light-shift or the Zeeman effect). This causes an inhomogeneous effective
detuning of the laser beams generating the molasses.
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the Langevin force ξ(t) fluctuates stochastically with,

⟨ξn(t)⟩ = 0 and ⟨ξn(t)ξm(t+ τ)⟩ = 2γ2frcDT δmnδ(τ) . (42.249)

Here, the diffusion coefficient,

DT =
σ2

γfrc
(42.250)

is related to the width of the Maxwell-Boltzmann velocity distribution,

σ = 2k

√
kBT

m
. (42.251)

42.6.1.4 Langevin simulations

The Langevin equations of CARL can be simulated, including the random term of
the Langevin force, using the Runge-Kutta method [631]. The procedure consists in
propagating a general first order differential equation,

ẋ = f(x) + g(t) , (42.252)

subject to a deterministic force f and a stochastic noise g satisfying,

⟨g(t)⟩ = 0 and ⟨g(t)g(t′)⟩ = 2Dδ(t− t′) (42.253)

as follows,

x(dt) = x0 +
1
2dt[f(x0) + f(x̃)] + ζ(2Ddt)1/2

with x̃ ≡ x0 + f(x0)dt+ ζ(2Ddt)1/2
, (42.254)

where ζ is a random variable distributed according to a normal (Gaussian) distribution
normalized as 24,

⟨ζ⟩ = 0 and ⟨ζ2⟩ = 1 . (42.255)

42.6.1.5 Langevin simulation in the adiabatic approximation

Now, we apply this method to the CARL subject to an optical molasses. Making the
adiabatic approximation θ̈n = 0, the starting point is,

α̇− = −κα− − ıU0α+

∑

m

eıθm ≡ B(α−, θn)

θ̇n =
8iωrecU0α+

γfrc
(α−e

−ıθn − α∗−eıθn) +
ξn(t)

γfrc
≡ F (α−, θn) + ξn(t)

γfrc

.

(42.256)

24The MATLAB random number generator satisfies this requirement: ⟨ζn⟩ ≜
sum(randn(1, N))/N = 0 and ⟨ζ2n⟩ ≜ sum(randn(1, N). ∧ 2)/N = 1.
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In order to apply the Runge-Kutta method (42.254), we identify the variables and
functions,

x(t) ≡
(
α−(t)

θn(t)

)
, f(x) ≡

(
B(α−, θn)

F (α−, θn)

)
, g(t) ≡

(
0

ξn(t)/γfrc

)
, (42.257)

such that,

x̃ =

(
α̃−
θ̃n

)
=

(
α−(0)

θn(0)

)
+ dt

(
B(α−(0), θn(0))

F (α−(0), θn(0))

)
+

(
0

ζn
√
2DT dt

)
(42.258)

and

x(dt) =

(
α−(dt)

θn(dt)

)
(42.259)

=

(
α−(0)

θn(0)

)
+
dt

2

[(
B(α−(0), θn(0))

F (α−(0), θn(0))

)
+

(
B(α̃−, θ̃n)

F (α̃−, θ̃n)

)]
+

(
0

ζn
√
2DT dt

)
.

The Langevin equation can be used to simulate the temporal evolution of CARL.
Fig. 42.49 shows a simulation of the frequency and amplitude of the CARL based on
prescription (42.254).

N = 100000

κ/2π = 550 kHz

ωrec/2π = 4.5 kHz

η = 200 ns−1

U0 ≡ g21/Δa = (2π) -0.5 Hz

NU0/κ = -0.091

γfrc = 1100000 s−1

Tmol = 1000 μK
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Figure 42.49: (code) Time evolution with phase transition of the viscous CARL in the

adiabatic approximation. Shown are (a) the number of photons in the probe mode, (b) the

beat signal, (c) the bunching, (d) the phase of the standing wave and the position of the

center-of-mass of the cloud, and (e) the dipole potential calculated from (42.21) with the

atomic distribution.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderAdiab.m
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42.6.1.6 Langevin simulation of the full dynamics

Without adiabatic approximation, the starting point is,

α̇− = κα− − ıU0α+

∑

m

eıθm ≡ B(α−, θn)

θ̇n = Vn

V̇n = 8iωrecU0α+(α−e−ıθn − α∗−eıθn)− γfrcVn + ξn(t) ≡ F (α−, θn, Vn) + ξn(t)

.

(42.260)
In order to apply the Runge-Kutta method (42.254), we identify the variables and
functions,

x(t) ≡



α−(t)

θn(t)

Vn(t)


 , f(x) ≡




B(α−, θn)

Vn

F (α−, θn, Vn)


 , g(t) ≡




0

0

ξn(t)


 , (42.261)

such that,

x̃ =



α̃−
θ̃n

Ṽn


 ≡



α−(0)

θn(0)

Vn(0)


+ dt




B (α−(0), θn(0))

Vn(0)

F (α−(0), θn(0), Vn(0))


+




0

0

ζn
√
2γ2frcDT dt




(42.262)
and

x(dt) =



α−(dt)

θn(dt)

Vn(dt)


 =



α−(0)

θn(0)

Vn(0)


+

dt

2







B (α−(0), θn(0))

Vn(0)

F (α−(0), θn(0), Vn(0))


 (42.263)

+




B(α̃−, θ̃n)

Ṽn

F (α̃−, θ̃n, Ṽn)





+




0

0

ζn
√
2γ2frcDT dt


 .

42.6.1.7 Simulation of the phase transition

The simulations of the Langevin equations shown in Figs. 42.49 and 42.50 exhibit a
temporal phase transition due to a spontaneous self-organization of the atoms.

We can also, slowly varying some control parameter, study the threshold behavior.
In Fig. 42.51, for example, we first increase and then reduce linearly the injected power
α+. We clearly observe a threshold behavior, but also a hysteresis indicating a bista-
bility of the system. It is also interesting to note a separation of the CARL frequency
and the atomic center-of-mass velocity in the green and red curves of Fig. 42.51(c).

In Fig.42.52, we increase and then reduce the temperature linearly.
The following links show simulations of the Langevin equation for CARL (watch

movie) and of the Fokker-Planck equation for CARL (watch movie). Furthermore,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_Langevin.avi
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_Langevin.avi
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_Fokker.avi
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N = 100000

κ/2π = 550 kHz

ωrec/2π = 4.5 kHz

η = 200 ns−1

U0 ≡ g21/Δa = (2π) -0.5 Hz

NU0/κ = -0.091

γfrc = 1100000 s−1

Tmol = 1000 μK
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Figure 42.50: (code) Time evolution of the complete dynamics of the viscous CARL with

phase transition. Same parameters as in Fig. 42.49. Shown are (a) the number of photons

in the probe mode, (b) the beat signal, (c) the bunching, (d) the phase of the standing wave

and the position of the center-of-mass of the cloud, and (e) the dipole potential calculated

from (42.21) with the atomic distribution.

the following videos show examples of self-synchronizing systems that can be under-
stood via the Kuramoto model: Huygens pendulum clocks (watch movie), synchroniz-
ing crickets (watch movie), buzzing mosquitoes (watch movie), singing dunes (watch
movie), and the London Millenium bridge (watch movie).

42.6.2 The Fokker-Planck and the Vlasov model

The Fokker-Planck equation for a density distribution Q(r, t),

dQ

dt
+Q∇ · v = D∇2Q , (42.264)

represents a generalization of the continuity equation, since with d
dt ≡ ∂

∂t + v · ∇, we
obtain,

∂Q

∂t
= −∇ · (vQ) +D∇2Q . (42.265)

If ρ is a local density, it the continuity equation reads,

dρ

dt
+ ρ∇ · v = 0 . (42.266)

Knowing,
d

dt
≡ ∂

∂t
+ v · ∇ , (42.267)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinOrderCompl.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_HuygensPenduli.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_BiologyGrillen.wav
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_BiologyMucken.wav
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_BridgeDune.wav
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_BridgeDune.wav
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/CS_Thermodynamics_BridgeMillenium.wmv
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Figure 42.51: (code) (a) Number of atoms in the probe mode, (b) bunching and (c) velocity

of the atoms (red) and the frequency of the CARL (green), while the pumping power is

ramped.
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Figure 42.52: (code) Same as Fig. 42.51, but now the temperature is ramped.

we obtain,
∂ρ

∂t
= −∇ · (ρv) . (42.268)

The Fokker-Planck equation is just a generalization to include a diffusion process,

dρ

dt
+ ρ∇v = Dx

∂2ρ

∂x2
, (42.269)

or
∂ρ

∂t
= −∇ · (ρv) +Dx

∂2ρ

∂x2
. (42.270)

42.6.2.1 Thermalization in the Fokker-Planck equation

We now apply the Fokker-Planck equation to the density distribution (42.256) of an
atomic cloud subjected to the CARL force [1343, 1106]. As CARL is a one-dimensional
process, we can use ∇ → ∂θ and replace the velocity field v→ θ̇:

α̇− = −κα− − ıNU0α+b

∂Q

∂t
=

8ıωrecU0α+

γfrc

∂

∂θ

[
(α−e

−ıθ − α∗−eıθ)Q
]
+Dθ

∂2Q

∂θ2

. (42.271)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinThresholdPower.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinThresholdPower.m
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LangevinThresholdTemperature.m
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The position diffusion coefficient can be estimated by,

Dθ =
⟨k2v2⟩
γfrc

. (42.272)

The normalization and the ’bunching’ |b| are given by,

1 =

∫ 2π

0

Q(θ, t)dθ , b ≡
∫ 2π

0

Q(θ, t)e−ıθdθ . (42.273)

To simulate the equations (42.271) we expand the distribution function in spatial
harmonics [1106],

Q(θ, t) ≡
∑

ν

Qν(t)e
ıνθ . (42.274)

In this expansion the normalization and the bunching become,

Q0 = 1/2π , |b| = 2π|Q1| , (42.275)

and the equations (42.271) immediately yield,

α̇− = −2πıNU0α+Q1 − κα−
dQν
dt

=
8ωrecU0α+

γfrc
ν
(
α−Qν+1 + α∗−Qν−1

)
− ν2DθQν

. (42.276)

We will derive the results (42.275) and (42.276) in Exc. 42.6.7.3. Also,

kv =
d

dt
arctan

Im α−
Re α−

, (42.277)

and,

⟨θ̇⟩ ≡
∫ 2π

0

Q̇(θ, t)dθ =
∑

ν

Q̇ν(t)

∫ 2π

0

eıνθdθ (42.278)

=
∑

ν

8ωrecU0α+

γfrc
ν
(
α−Qν+1α

∗
−Qν−1

)
δν0 =

16ωrecU0α+

γfrc
Re (α−Q

∗
1) .

These equations can be easily simulated.
Matlab simulations of the Fokker-Planck equation, shown in Fig. 42.53, repro-

duce quantitatively the curves previously obtained by simulations of the Langevin
equations.

42.6.2.2 Bistability and instability of the viscous CARL

The threshold can be found by simulating the Fokker-Planck equation while varying a
control parameter (pumping power, temperature, number of atoms) sufficiently slowly,
that the system always remains in a steady state. Fig. 42.54 shows the behavior of
the CARL, while the pump power is linearly reduced and then linearly increased at
different velocities. We observe a bistability that slightly depends on the speed of the
ramp. The behavior of the mass-center velocity kvcm and the phase of the standing
wave, ϕ̇, are different [1104] 25.

25We can expect a second phase transition when the pump power exceeds a critical value, because
for NU0 > κ, the CARL becomes unstable again: It will unlock from the self-determined frequency
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N = 100000

κ/2π = 550 kHz

ωrec/2π = 4.8 kHz

η = 200 ns−1

U0 ≡ g21/Δa = (2π) -0.5 Hz

NU0/κs = -0.091

γfrc = 1200000 s−1

Tmol = 1000 μK
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Figure 42.53: (code) Temporal evolution of the complete dynamics with phase transition

of the viscous CARL. The same parameters as in Fig. 42.49. Shown are (a) the number

of photons in the probe mode, (b) the beat signal, (c) the bunching, (d) the phase of the

standing wave and the position of the center-of-mass of the cloud, and (e) the atomic density

distribution.

42.6.3 Thermalization in the Vlasov equation

The basic equations describing our ring-cavity filled with atoms are [755],

α̇− = κα− − ıU0α+

∑

m

eıθm

θ̇n = Vn

V̇n = 8ıωrecU0α+(α−e−ıθn − α∗−eıθn)− γfrc(Vn − V (0)
n )

, (42.279)

if we assume the pump mode to be stationary α+ = η+/κ
−1 and define the atomic

bunching parameter by b = 1
N

∑
j e

2ikxj . A non-zero steady-state temperature is

reached, if we allow the steady-state velocities of the atoms v
(0)
j to be different for all

atoms and distributed according to a Maxwell-Gaussian velocity distribution. The
assumption of a common steady-state velocity for all atoms obviously results in perfect
bunching and cooling to T = 0.

Let us introduce a local phase space density of the atomic cloud Q(x, p, t) as a
two-dimensional field in phase space. The time-evolution of this quantity is given by
the so-called Vlasov equation (or collisionless Boltzmann equation),

0 = ∂tQ+ v∂xQ+ F∂pQ+ γth(Q−Q0) , (42.280)

and start to oscillate strongly. However, this effect is not described by the equations used for the
simulation, which suppose an adiabatic elimination of the inertia.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerOrder.m
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Figure 42.54: (code) Bistability of CARL near the threshold when the power is ramped at

different paces.

where v and F are the center-of-mass velocity and force taken from equation (42.279)
without the friction term. According to this equation the atomic cloud tends to a sta-
tionary distribution Q0 as time goes on. Following Bonifacio et al. [176] and Javaloyes
[665, 666, 667], we replace the friction term by an additional (Vlasov) equation:

α̇− = −ıNU0α+b− κα−

θ̇ = ωrecV

V̇ = ıU0α+(α−e−ıθ − α∗−eıθ)

0 = ∂tQ+ θ̇∂θQ+ ϱ̇∂ϱQ+ γfrc(Q−Q0)

. (42.281)

The bunching parameter can now be rewritten in terms of

b =

∫ 2π

0

dθ

∫ ∞

−∞
dϱ Q(θ, ϱ, t) e2ıθ . (42.282)

The equilibrium distribution is chosen to be a homogeneous cloud with a Maxwell-
Boltzmann velocity distribution,

Q0 =
1

2π

√
σ

π
e−σϱ

2

, (42.283)

where σ ≡ ℏωrec/kBT with ωrec ≡ ℏk2/2m such that
∫ 2π

0
dθ
∫∞
−∞Q0dϱ = 1. We now

perform a linear stability analysis. We expand Q around the steady state, Q(θ, ϱ, t) =
Q0(ϱ) +Q1(θ, ϱ, t) and retain to first order,

0 = ∂tQ1 + θ̇∂θQ1 + ϱ̇∂ϱQ0 + γthQ1 . (42.284)

Now we look for a time-dependent particular solution by inserting the ansatz,

α−(t) = β−e
ıλt with β̇− = 0 (42.285)

Q1(θ, ϱ, t) = H1(ϱ)e
−2ıθeıλt + c.c. ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerBistable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerBistable.m
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where iλ ≡ λg+ iλω into the field equation (42.281)a, the first order expansion of the
Vlasov equation (42.284) (only retaining co-rotating terms) and into the expression
for bunching (42.282). This ansatz accounts for the fact that, in steady state, we
expect a fixed CARL frequency ν and a spatially modulated density distribution of
the atoms. The set of equations becomes,

qiλβ− = −κβ− − ıNU0η̃+be
−ıλt (42.286)

0 = ıλH1(ϱ)− 4ıωrecϱH1(ϱ) + ıU0η̃+β−∂ϱQ0 + γthH1(ϱ)

b =

∫ 2π

0

dθ

∫ ∞

−∞
dϱ H1(ϱ)e

ıλt .

With the definition,

Γ(σ, γth, ıλ) ≡
∫ ∞

−∞

dϱ ∂ϱQ0

ıλ− 4ıωrecϱ+ γth
(42.287)

= −
∫ ∞

−∞

dϱ 4ıωrecQ0

(ıλ− 4ıωrecϱ+ γth)2
,

the solution of the above set of equations is,

H1(ϱ) =
−ıU0η̃+β−∂ϱQ0

ıξ − 4ıωrecϱ+ γth
(42.288)

b = −eıξtıU0η̃+β−2πΓ(σ, γth, ıλ)

0 =
[
κ+ ıλ+NU2

0 η̃
2
+ 2πΓ(σ, γth, ıλ)

]
β− .

42.6.3.1 Calculation of the threshold

The bifurcation where the reverse field crosses the threshold to lasing occurs at λg = 0.
We divide the field equation in real and imaginary parts,

κ+NU2
0 η̃

2
+ 2πRe Γ(σ, γ, ıλω) = 0 (42.289)

ν +NU2
0 η̃

2
+ 2πIm Γ(σ, γ, ıλω) = 0 .

Now the condition λωRe Γ(σ, γth, ıλω) = κIm Γ(σ, γth, ıλω) leads to,

∫ ∞

−∞

dϱ ϱe−σϱ
2

(κλω − 2κεϱ+ λωγth)

(λω − 2εϱ)2 + γ2th
= 0 . (42.290)

The values λω where this integral is zero are inserted into one of the equations (42.289).
Finally,

η̃2+ =
−1

NŨ2
0 2πRe κΓ(σ, γth, ıλω)

, (42.291)

is the expression for the pump power threshold as a function of temperature σ, friction
γth, cavity damping κ and coupling constant U0. The intracavity CARL power is,

P+ = ℏωδ η̃2+ . (42.292)

λω is the associated CARL frequency, i.e. the frequency difference between probe and
pump.
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The final equations show that the threshold power drops as NU2
0 increases. To see

the dependencies of the threshold power on T and γth, we have to evaluation of the
integral (42.290). Fig. 42.55 shows a numerical evaluation of Eqs. (42.290),(42.291)
and (42.292) for finite T and γth.
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Figure 42.55: (code) Intracavity threshold power as a function of temperature and friction

coefficient. The coupling strength is set to Ũ0 = −10−7, the atom number is N = 106.

Apparently, the threshold pump power drops with vanishing friction and with
low temperatures. For typical experimental situations, T ≈ 100 µK and γth ≈ 10κ,
we expect threshold powers on the order of about P+ = 1 W, corresponding to

P
(out)
+ = 4 µW leaking out of the cavity.

42.6.4 The Kuramoto model

Ripples on a dusty street driven by cars, rapids in a river arising spontaneously or
behind an obstacle, wind blowing over a water surface spontaneously creating waves.
Imagine a photon wind blowing over an atomic sea. Just like for water waves fric-
tion hinders boundless acceleration. The analogies are wind-molasses-friction, water-
atoms, wind-acceleration-field, gravitation-dipole-force. The phenomenon is closely
related to the dissipative structure. See also (watch talk) and (watch talk).

Our system has the advantage over macroscopic systems, that the hypothesis of
uniform coupling is exactly satisfied, because the coupling medium, i.e. the light fields
are delocalized within the cavity mode. In contrast, rapids develop exclusively behind
the perturbation. There are no delay times effects and no spatial constraints due to
a finite size of the individual oscillators.

The viscous CARL system is representative for of the vast class of Kuramoto
systems [1272] introduced in Sec. ??. This can be seen most appropriately by rewriting
the CARL equations in terms of phase and amplitude of individual atoms. Another
approach is via the Fokker-Planck equation, for which there already exists a Kuramoto
equivalence.

Why is it interesting to investigate yet another coupled oscillator system? Our

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerThreshold.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_FokkerThreshold.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/KuramotoModel
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/LongrangeInteractions
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CARL is fully classical, although we deal with microscopic particle, such as atoms and
photons. However, our system bears the possibility of being transferred to quantum
situations, and thus to study the coupling of large ensembles of quantum oscillators.
Furthermore, the coupling mechanism is well understood and controlable by experi-
ment. Because the coupling goes through the standing wave fraction, it depends on
the atom number and the coupling strength independently. Furthermore, the tunable
friction force (temperature) corresponds to a variable width of the distribution of the
oscillator frequencies, which we can manipulate in-situ and on-line.

Another realization of the Kuramoto model would be atoms in a ring cavity stand-
ing wave. Cold trapped atoms have the same oscillation frequencies. And thus do
not need to synchronize. For hot atoms, however, the oscillation period depends on
their kinetic energy.

The equation for the phases of the atoms is similar to the Kuramoto model [667],

θ̇n =
K

N

∑

m

sin(θn − θm)− ξn(t) . (42.293)

The CARL equations which describes the dynamics of an ensemble of mean-
field coupled oscillators, belong to the class of Kuramoto systems [666]. The main
differences are: a Dirac-like distribution of eigenfrequencies and a mean-field self-
consistently provided by a dynamical equation. Hence, in contrast to the original
Kuramoto model, where the collective oscillation frequency is just the mean of the
individual frequencies, the CARL frequency is self-determined and depends also on
control parameters. This phenomenon is known from other systems like rhythmic ap-
plause, which only takes place by a reduction of the individual frequencies of clapping
hands, towards a resonance. For this to happen the mean-field must self-adjust while
the individual oscillators synchronize, e.g. the noise produce by the audience must
adjust to the average desire of the audience to produce a satisfying level of noise.

In [1373] is stated: ’The essence of the problem is the competition between the
intrinsic disorder (i.e. noise and diffusion) and the dynamical coupling strength. In
the Kuramoto model, the disorder enters via the distribution of natural frequencies,
while the effective coupling strength is set by the parameter combination K cosαj .’

42.6.4.1 Phase formalism of CARL

The starting point is the CARL equations (42.50). We make ansatz,

α+ ≡ α1 , α− ≡ α2 e
ıϕ , η+ ≡ η1 , η− ≡ η2 eı∆ , (42.294)

where the quantities with numeric suffixes are real, such that,

|α+ + α−|2 = α2
1 + α2

2 + 2α1α2 cosϕ . (42.295)

By this ansatz we assume that a pumping laser is locked to the mode α+ of the ring
cavity, such that the phases of the fields α+ and η+ are equal and, without loss of
generality, zero. On the other hand, the phase ϕ of the probe mode is a dynamic
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variable. Inserting the ansatz into the equations (42.50) we obtain,

α̇1 = −(κ+ ıNU0 − ı∆c)α1 − ıU0

∑

n

e−ıθn+ıϕα2 + η1 , (42.296)

α̇2 + ıϕ̇α2 = −(κ+ ıNU0 − ı∆c)α2 − ıU0

∑

n

eıθn−ıϕα1 + η2e
ı∆−ıϕ ,

θ̈n = 16ωrecU0α1α2 sin(θn − ϕ) .

The first two equations, which describe the dynamics of the fields, can be separated
into real and imaginary parts,

α̇1 = −κα1 − U0

∑

n

sin(θn − ϕ)α2 + η1 (42.297)

α̇2 = −κα2 + U0

∑

n

sin(θn − ϕ)α1 + η2 cos(ϕ−∆) ,

∆c = NU0

(
1 +N−1

∑

n

cos(θn − ϕ)
α2

α1

)
,

ϕ̇ = ∆c −NU0

(
1 +N−1

∑

n

cos(θn − ϕ)
α1

α2

)
− η2
α2

sin(ϕ−∆) .

Eliminating ∆c, we can substitute the third and fourth equations for,

ϕ̇ = U0

(
α2

α1
− α1

α2

)∑

n

cos(θn − ϕ)−
η2
α2

sin(ϕ−∆) . (42.298)

Defining the ’bunching’ parameter,

b ≡ |b|eıψ ≡ N−1
∑

n

eıθn , (42.299)

we finally obtain, in the presence of friction and dissipation,

α̇1 = −κα1 −NU0α2|b| sin(ψ − ϕ) + η1

α̇2 = −κα2 +NU0α1|b| sin(ψ − ϕ) + η2 cos(ϕ−∆)

ϕ̇ = NU0

(
α2

α1
− α1

α2

)
|b| cos(ψ − ϕ)− η2

α2
sin(ϕ−∆)

θ̈n = 16ωrecU0α1α2 sin(θn − ϕ)− γfrcθ̇n + ξn

. (42.300)

A particularly interesting case is that of unidirectional pumping, η2 = 0. Assuming
that the pump mode be not affected,α̇1 = 0, and that the probe mode be weak,
α1 ≫ α2, and making the adiabatic approximation, θ̈n = 0, of the atomic motion, we
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obtain,

α̇2 = −κα2 +NU0α1|b| sin(ψ − ϕ)

ϕ̇ ≃ −NU0α1

α2
|b| cos(ψ − ϕ)

θ̇n =
ξn
γfrc

+
16ωrecU0α1α2

γfrc
sin(θn − ϕ)

. (42.301)

We note that the equation for the phases of the atoms is similar to the Kuramoto
equation (42.293).

42.6.4.2 Relationship between CARL and Kuramoto

The viscous CARL described by the formulas (42.301) corresponds to the Kuramoto
model [1272]. Defining θn ≡ 2kxn as the position of the nth atom, we assume the
pump laser to be in resonance and write α+ ≡ η+/κ [755]. The diffusion in the
momentum space is a process that limits the temperature in optical molasses.

We start from the Langevin equations (42.256). In addition, we assume that
the standing wave propagates at a constant velocity, which is to say that for a strong
viscous damping, the system quickly finds a steady state. This condition is formulated
by dt|α−| = 0 and α̇− = iωcaα− with constant velocity ωca, which may be different
from the velocity of the center of mass kv. We note that this assumption can introduce
a considerable error, when used to describe temporal phase transitions, since, as shown
by simulations of the complete dynamics (42.260), the mode α− exhibits a transient
behavior, as well. We obtain from the first Eq. (42.256),

α− = − ıU0α+

ıωca + κ

∑

m

eıθm . (42.302)

Substituting Eq. (42.302) into the second equation (42.256),

θ̇n =
ξn
γfr

+
8ωrecNU

2
0α

2
+

γfr

1

N

∑

m

(
eıθm−ıθn

ıωca + κ
+
e−ıθm+ıθn

−ıωca + κ

)
(42.303)

=
ξn
γfr

+
16ωrecNU

2
0α

2
+

γfr(ω2
ca + κ2)

1

N

∑

m

[κ cos(θm − θn) + ωca sin(θm − θn)] .

Defining the order parameter,

b ≡ |b|eıψ ≡ 1

N

∑

m

eıθm , (42.304)

which also implies,

|b| sin(ψ − θn) =
1

N

∑

m

sin(θm − θn) , (42.305)

we can write Eq. (42.305) as,

θ̇n =
ξn
γfr

+
8εNU2

0α
2
+κ

γfr(ω2
ca + κ2)

|b|
[
cos(ψ − θn) +

ωca
κ

sin(ψ − θn)
]
. (42.306)
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In the ’good cavity’ limit, κ ≪ ω, using (2kv)3 = 8εNU2
0α

2
+κ/γfr and additionally

assuming small amplitude oscillations, ψ ≈ θn, that is, good ’bunching’,

θ̇n ≈
ξn
γfr

+
(2kv)3

ω2
ca

|b|+ (2kv)3

κωca
|b| sin(ψ − θn) . (42.307)

This shows that in the limit of perfect ’bunching’ ωca = 2kv must be satisfied. If
really κ≪ ω is valid, we can despise the cosine. Introducing the Kuramoto coupling
constant,

K ≡ 16ωrecNU
2
0α

2
+ωca

γfr(ω2
ca + κ2)

≈ 1

κ

(
16ωrecNU

2
0α

2
+κ

γfr

)2/3

= (4ωrecρ)
2

(
4

κγ2fr

)1/3

,

(42.308)
using 2ερ = (4εNU2

0α
2
+)

1/3, Eq. (42.306) is precisely the one used by the Kuramoto
model of N coupled harmonic oscillators synchronizing over time,

θ̇n ≈
ξn
γfr

+
κK

ωca
|b|+K|b| sin(ψ − θn) . (42.309)

Oscillators with ωn ≤ K|b| are locked. For a reasonable ’bunching’ this is satisfied in
the ’good cavity’ limit.

42.6.4.3 Kuramoto model with inertial effects

It is possible to incorporate inertial effects into the Kuramoto model [3]: allowing for
θ̈n ̸= 0, but still assuming dt|α−| = 0 and α̇− = iωα−, the equation (42.303) becomes,

θ̈n = −γfr θ̇n + ξn +
16ωrecNU

2
0α

2
+

ω2 + κ2
1

N

∑

m

[κ cos(θm − θn) + ω sin(θm − θn)]

(42.310)

= −γfr θ̇n + ξn +
κ

ω
K|b| cos(ψ − θn) +K|b| sin(ψ − θn) .

42.6.4.4 Fokker-Planck equation

Let us write the Kuramoto equation including stochastic noise,

θ̇n = ω +K|b| sin(ψ − θn) + ξn(t) , (42.311)

define the order parameter,
b = |b|eıψ , (42.312)

and the Langevin-force ⟨ξn(t)⟩ = 0 and ⟨ξn(t)ξm(τ)⟩ = 2Dδijδ(t− τ).
The Fokker-Planck equation associated to Eq. (42.311) reads,

∂ρ

∂t
= −∂ρ [ω +K|b| sin(ψ − θ)]

∂θ
+D

∂2ρ

∂θ2
, (42.313)

where D = σ2/γfr. Inserting ρ(θ, t) ≡
∑
ν ρν(t)e

ıνθ,

∂ρν
∂t

= −(ν2D + ıνω)ρν +
1
2νK (b∗ρν−1 − bρν+1) , (42.314)
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especially, ∫ 2π

0

ρ(θ, t)dθ = 1 =⇒ ρ0 = 1
2π , (42.315)

and we defined the bunching as |b|, where,

b ≡
∫ 2π

0

ρ(θ, t)e−iθdθ =⇒ b ≡ 2πρ1 . (42.316)

42.6.4.5 Laser-type equation for CARL

Defining the displacement of the nth atomic oscillator as,

En ≡ eıθn , (42.317)

we can rewrite the second equation (42.256) as,

Ėn =
ıξn
γfr

En −
8ωrecU0α+

γfr
(α− − α∗−E2

n) . (42.318)

Substituting α− by the integral of the first equation (42.256),

Ėn =
ıξn
γfr

En +
8ωrecıNU

2
0α

2
+

γfr

(∫
be−κ(t−t

′)dt′ + E2
n

∫
b∗e−κ(t−t

′)dt′
)
. (42.319)

In the limit e−κ(t−t
′) = κ−1δ(t − t′) we obtain an equation similar to that of an

ordinary laser,

Ėn =
ıξn
γfr

En +
8ωrecıNU

2
0α

2
+

γfrκ
(b+ b∗E2

n) (42.320)

=
ıξn
γfr

En +
8ωrecıNU

2
0α

2
+

γfrκ

(∑

m

Em +
∑

m

E∗mE
2
n

)
.

42.6.5 Thermodynamics of the CARL process

There is an analogy between the laser threshold and a second-order phase transition
[1184], p. 341 ff : ’... The usual treatment of laser behavior is a self-consistent field
theory. In the laser analysis each atom develops a radiating dipole in an electromag-
netic field due to (i.e. emitted by) all the other atoms. The radiation field produced by
an ensemble of radiating atoms is then calculated in a self-consistent fashion. (...This)
suggests the identification of the laser electric field as the variable corresponding to
the (...) order parameter and the atomic population inversion as that corresponding
to the temperature.’

Note that numerical simulations revealed that in certain regimes the CARL cor-
responds to a first-order phase transition: At high temperatures the probe to pump
power diagram shows bistability [665] and [1104].

The correspondence between CARL and a common laser is illustrated by the table
below. A number of questions arise from the analogy:
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The CARL being a laser without inversion, what is the equilibrium parameter? Is it
the temperature of the atomic cloud? How to calculate the density of states?

ferromagnet laser

control parameter external magnetic field H pump intensity S
equilibrium parameter temperature T population inversion σ

order parameter

magnetization

⟨M⟩ =
{

0

c
√

Tc−T
T

T > Tc

T < Tc

electric field

⟨E⟩ =
{

0

c
√

σc−σ
σ

σ > σc

σ < σc

probability density P (M) ∝ e−F (M)/kBT
P -representation

P (x, y) ∝ e−G(x,y)/Kσ

thermodyn. free energy F = F (T,H) G(x, y)

heat capacity C(T ) = ∂E(T )
∂T

?

CARL atoms CARL light

control parameter pump intensity η pump intensity η

equilibrium parameter temperature T ?

order parameter

bunching

b =

{
0

?

T > Tc

T < Tc

electric field

⟨α⟩ =
{

0

?

probability density ? ?

thermody. free energy ? ?

heat capacity ? ?

42.6.6 CARL as a laser

Why is CARL a laser? What is the basic difference between CARL and an AOM or
a moving Bragg mirror? CARL is essentially based on exponential self-amplification.
This self-amplification is in fact observed in our switch-off experiment [755]. But
a laser is normally understood as a steady-state system. For CARL to find to a
steady-state we have to insert friction forces.

Gordon rewrites the CARL as a common laser: He generalizes the linear stability
analysis (previous Sec.) and retains the lowest-order nonlinearity. The Fokker-Planck
equations read:

dBn
dτ

= ın(aBn−1 + a∗Bn+1)− n2DBn (42.321)

da

dτ
= B1 − κa ,

with B0 = 1 and B−n = B∗n. Linearization means Bn>1 = 0,

dB1

dτ
= ıa−DB1 (42.322)

da

dτ
= B1 − κa
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or,

d2a

dτ2
+ (κ+D)

da

dτ
+ (κD − ı)a = 0 (42.323)

d2B1

dτ2
+ (κ+D)

dB1

dτ
+ (κD − ı)B1 = 0

The determinant is,

det

(
−D − λ ı

1 −κ− λ

)
= (D + λ)(κ+ λ)− ı = 0 (42.324)

Including the lowest-order nonlinear term means Bn>2 = 0,

dB2

dτ
= 2ıaB1 − 4DB2 (42.325)

dB1

dτ
= ıa+ ıa∗B2 −DB1

da

dτ
= B1 − κa

Assuming dB2/dτ = 0,

dB1

dτ
= ıa−

( |a|2
2D

+D

)
B1 (42.326)

da

dτ
= B1 − κa

or,

d2B1

dτ2
+ (κ+D)

dB1

dτ
+ (κD − ı)B1 = − 1

2D

(
d

dτ
+ κ

)
|a|2B1 (42.327)

= −(K1|a|2 −K2|a|4)B1

d2a

dτ2
+ (κ+D)

da

dτ
+ (κD − i)a = −|a|

2

2D

(
d

dτ
+ κ

)
a

substitute a(τ) = A(τ)eλτ and Eq. (xx),

eλτ
(
d2

dτ2
+ 2λ

d

dτ
+ λ2

)
A+ eλτ

(
(κ+D)

d

dτ
+ (κ+D)λ

)
A− (λ2 +Dλ+ κλ)eλτA

(42.328)

= −|e
λτA|2
2D

(
eλτ

dA

dτ
+ λeλτA+ κeλτA

)

neglect d2A/dτ2and |A|2dA/dτ ,

eλτ2λ
dA

dτ
+ eλτ (κ+D)

dA

dτ
= −|e

λτA|2
2D

(
λeλτA+ κeλτA

)
(42.329)



42.6. ATOMIC SELF-ORGANIZATION IN LIGHT FIELDS 2531

substitute back a(τ) = A(τ)eλτ ,

da

dτ
= λa− λ+ κ

2D(2λ+ κ+D)
|a|2a (42.330)

= λa− C|a|2a

or,
d|a|2
dτ

= 2|a|2Re λ− 2|a|4Re C (42.331)

in steady-state,

0 = λa− C|a|2a . (42.332)

0 5 10

time
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0.2
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n
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Figure 42.56: (code) Laser crossing the threshold.

According to A. Politi a general laser theory exists, there is no point in repeating
this for CARL. The analogy is there and evident.

42.6.6.1 CARL as a ferromagnet

A similar treatment with a(τ) = A(τ)eλτ and B1(τ) = β(τ)eλτ and d2β/dτ2 = 0 and
|A|2dβ/dτ = 0 and βd|A|2/dτ = 0 results in,

dB1

dτ
= λB1 −

2λ+ λ∗ + κ

2D(2λ+ κ+D)
|a|2B1 (42.333)

= λB1 − C̃|a|2B1 ,

i.e. the instability comes from the field and it drives the bunching.

42.6.6.2 Out-of-equilibrium thermodynamics

Strictly speaking the above analogy is flawed. In particular the analogy between
CARL bunching and ferromagnetic ordering is not good. While the ferromagnetic
ordering occurs as a thermodynamic phase transition, the CARL bunching is driven
by a dissipative force, which triggers spatio-temporal instabilities. Therefore viscous

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_LaserEquation.m
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CARL occurs far from thermodynamic equilibrium. This may point towards an in-
terpretation of CARL bunching as a dissipative structure along the lines traced by
Prigogine, who showed that non-equilibrium may be a source of order.

On the other hand, the laser itself is a system operating far from thermal equilib-
rium, since it requires a pump to emit steady-state radiation. Perhaps a comparison
with estruturas de Bénard is better than with ferromagnets. Bénard structures oc-
cur as spontaneous breaking of translational symmetry, just like CARL. One could
say that the periodicity of CARL is predefined by the pump laser wavelength, and
thus not surprising. However, the size of the periodic structures is always fixed by
boundary conditions in a more or less complicated way. For example, the size of the
Bénard structures is fixed by the viscosity, the provided amount of heat, etc., the
wavelength of surface waves can be calculated from first principles, i.e. the Navier-
Stokes equations and the continuity equation for given boundary conditions. The
symmetry breaking resides in the exact place, where the Bénard structure develops.
It is the phase, which is broken, just like for CARL.

The Kuramoto model and the Weiss model of ferromagnetism are both mean
field theories [1200]. Despite the fundamental difference that ferromagnetism is a
thermodynamic feature and Kuramoto a nonequilibrium phenomenon, they are far-
reaching analogies. The role of temperature in ferromagnetism is played by external
noise in Kuramoto. CARL is clearly a dissipative structure: It survives only as long
as energy is fed to the system.

42.6.6.3 Finite and infinite temperature reservoirs

The phase transition is ruled by a competition of dissipation and diffusion. If the
reservoir has zero temperature γfric ̸= 0 but D = σ2/γfric = 0, i.e. we have
dissipation without diffusion. In this case, we do not expect a threshold behav-
ior. The Lindtbladt operator for coupling to a finite-temperature reservoir is some-
thing like L ≈ κ(n̄+ 1) {...emission...}+ κn̄ {...absorption...}+ η {...phase noise...},
where n̄ is the mean photon number at thermal equilibrium with a given temperature
T ∝ n̄/(n̄+1). The interpretation in terms of dissipation without diffusion is correct
according to A. Buchleitner. There are three kinds of noises: 0 temperature noise for
n̄→ 0,∞ temperature noise for n̄ ≈ n̄+1 and phase noise. Thus for T = 0 the energy
flux goes only from the system to the reservoir. At T > 0 entropy may go from the
reservoir to the system. The system reaches its cooling limit when the temperatures
of the system and the reservoir are balanced.

But how to explain Doppler cooling or cavity-cooling? The electromagnetic vac-
uum is an effective T = 0 reservoir, but the cooling is nevertheless limited by the
spontaneous decay width or the cavity linewidth, resp.. Why does coupling to a
zero-temperature reservoir not cool down to zero? Apparently, the coupling is af-
flicted by vacuum noise. This permits coupling of degrees of freedom having different
temperatures without reaching a temperature equilibrium. Examples are the limit of
cavity-cooling to the cavity decay width or simply Doppler-cooling by spontaneous
emission.

Interprete damping as scattering into continuum!
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42.6.7 Exercises

42.6.7.1 Ex: Viscous CARL

Assuming a perfect ’bunching’, e2ıkzm = e2ıkz, e α− ≡ βe2ıkz with β̇ = 0 and z̈ = 0
derive the equations (42.245).

Solution: Defining α− ≡ βe2ıkz we transform the equation (42.244)(i) in,

β̇ + 2ıkβż = −κβ − ıNU0α+ .

Assuming β̇ = 0 the solution is,

β =
−ıU0α+

κ+ 2ıkż
.

The equation (42.244)(ii) gives,

kz̈ = 4ıωrecU0α+(β − β∗)− γfrckv = 4ıωrecU0α+

(−ıU0α+

κ+ 2ıkż
− ıU0α+

κ− 2ıkż

)
− γfrckż

=
8κωrecU

2
0α

2
+

κ2 + (2kż)2
− γfrckż .

Assuming z̈ = 0 the solution is,

2kż[(2kż)2 + κ2] =
16κωrecU

2
0α

2
+

γfrc

2kż≫κ−→ (2kż)3 .

42.6.7.2 Ex: Langevin simulations

Langevin simulations

Solution: Test of Runge-Kutta method (see program Langevin OrnsteinUhlenbeckTest),
Langevin simulation without adiabatic approximation (see program Langevin CorrelationFunction),
like ’CorrelationFunction’ but with an additional harmonic trap (see program Langevin HarmonicTrap),
like ’CorrelationFunction’ but with an additional standing wave (see program Langevin StandingWave),
without adiabatic approximation one species in a standing wave (see program Langevin 1SpeciesStandingWave),
without adiabatic approximation two species in a standing wave (see program Langevin 2SpeciesStandingWave).

42.6.7.3 Ex: Fokker-Planck equations

Derive the equations (42.275) and (42.276) from (42.273) and (42.271) applying the
expansion (42.274).

Solution: For the normalization we calculate,

1 =

∫ 2π

0

Q(θ, t)dθ =
∑

ν

Qν(t)

∫ 2π

0

eıνθdθ =
∑

ν

Qν(t)2πδν0 = 2πQ0(t) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_ViscousCarl01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_FokkerCarl01.pdf
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For the ’bunching’ we calculate,

b =

∫ 2π

0

Q(θ, t)e−ıθdθ =
∑

ν

Qν(t)

∫ 2π

0

eı(ν−1)θdθ =
∑

ν

Qν(t)2πδν1 = 2πQ1(t) .

For the CARL equation,

∑

ν

∂Q

∂t
eıνθ

=
8ıωrecU0α+

γfrc

∑

ν

Qν

(
−ı(ν − 1)α−e

ı(ν−1)θ − ı(ν + 1)α∗−e
ı(ν+1)θ

)
− ν2Dθ

∑

ν

Qνe
ıνθ ,

and hence,
∂Q

∂t
=

8ωrecU0α+

γfrc
ν
(
Qν+1α− +Qν−1α

∗
−
)
− ν2DθQν .

42.6.7.4 Ex: Kuramoto simulations

Implement the Kuramoto model with pendulum clocks.

Solution: Visualization of the Kuramoto model with pendulum clocks (see FokkerKu-
ram Illustration, FokkerKuram Dissipation, FokkerKuram Shiino).

42.7 Coherent properties of CARL

In Sec. 42.6.1 we have demonstrated collective interaction of atoms with light fields
and how the application of friction via optical molasses can lead to stationary CARL
radiation at a self-determined frequency [754]. We have demonstrated that the mo-
lasses also lead to diffusion resulting in a threshold behavior and in atomic self-
organization at finite temperatures [1106, 1343]. An interesting question is whether
the temperature not only determines the collective behavior, but also the deviation
from it. The temperature being related to the amount of random walk on top of the
center-of-mass motion, we may wonder whether the viscous CARL radiation bears a
signature of the atomic temperature not only in the self-determined CARL frequency,
but also in the laser emission bandwidth. It is conceivable that the autocorrelation
functions and the emission spectrum of the CARL are influenced by the fact that
the atoms experience a random walk in momentum space due to the diffusion in the
optical molasses.

In this section, we will attempt an analytical approach, present numerical simula-
tions and discuss how to access to the informations experimentally. The Fokker-Planck
approach described in Refs. [1106, 1343] is particularly well adapted to calculating
collective variables. In contrast the simulation of the Langevin equation conveniently
gives access to the noise properties.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_.pdf
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42.7.1 Analytical derivation of the coherence

Our starting point are the Langevin equations (42.256) [1106, 1343] in the adiabatic
limit, θ̈n = 0. The Langevin noise force is uncorrelated,

⟨ξ∗n(t)ξm(t+ τ)⟩ ≡ lim
T→∞

1

T

∫ T

0

ξ∗n(t)ξm(t+ τ)dτ = 2Dθ̇δmnδ(τ) , (42.334)

where the momentum diffusion coefficient Dθ̇ = γfrσ
2 is proportional to the atoms’

equilibrium temperature, which is related to the Maxwell-Gaussian velocity spread
by σ ≡ 2k

√
kBT/m. In contrast, the trajectories of the atoms are not, because all

atoms are motionally coupled by the fields, so that the noise imparted to one atom is
sensed by all others. Therefore the relationship (42.335) certainly does not hold for
the atomic positions,

⟨θ∗n(t)θm(t+ τ)⟩ ≁ δmnδ(τ) . (42.335)

42.7.1.1 Single atom

So, let us first concentrate on a single atom coupled to the cavity fields. If its velocity
only fluctuates a little around a mean value ωca, we may write θ(t) ≡ ωcat+φ(t). The
randomized position has a Gaussian statistics leading to a Brownian motion described
by a Wiener-Levy stochastic process: ⟨φ(t)⟩ = 0 and ⟨φ(t)φ(t+ τ)⟩ = Dθ(2t+ τ −|τ |)
([1184], p. 344),

Rθ̇(τ) = ⟨[ωca + φ̇(t)][ωca + φ̇(t+ τ)]⟩ = ⟨φ̇(t)φ̇(t+ τ)⟩ = 2Dθδ(τ) , (42.336)

where Dθ = σ2/γfr is the position diffusion coefficient. Note that deterministic parts
are removed from the function in order to satisfy ⟨φ̇(t)⟩ = 0. In that case the spectral
density of fluctuations of the atomic phase is constant,

Sθ̇(f) =

∫ ∞

−∞
Rθ̇(τ)e

−2πıfτdτ = 2Dθ . (42.337)

Note that Sθ̇(f) = f2Sθ(f). The variance of the fluctuations for white noise is or,

σ2
θ̇
(τ) = ⟨φ̇(t)2⟩ = Dθ

τ
. (42.338)

Under the assumption α̇− = ıωcaα− and introducing the abbreviation α0 ≡
−ıU0α+/(κ+ ıωca), the first equation (42.256) takes the form α− = α0e

ıθ such that
the autocorrelation function of the field amplitude reads,

Rα(τ) ≡ ⟨α∗−(t)α−(t+ τ)⟩ (42.339)

= |α0|2⟨eı[θ(t+τ)−θ(t)]⟩
= |α0|2eıωcaτ ⟨eı[φ(t+τ)−φ(t)]⟩ = |α0|2eıωcaτ ⟨eıτφ̇(t)⟩ .

In the case of a Gaussian distribution for the noise amplitude with φ̇(t) = φ̇(−t), we
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have ⟨φ̇2k−1⟩/(2k − 1)! = 0 and ⟨φ̇2k⟩/ (2k)! = ⟨ 12 φ̇2⟩k/k! [326, ?, 414],

⟨eıτφ̇(t)⟩ =
∑

k

ık⟨τkφ̇(t)k⟩
k!

=
∑

k

ı2k⟨τ2kφ̇(t)2k⟩
(2k)!

(42.340)

=
∑

k

⟨− 1
2τ

2φ̇(t)2⟩k
k!

= e−
1
2 τ

2⟨φ̇(t)2⟩ .

Apparently, noise mainly affects the field’s phase and not its amplitude. Note that the
first-order coherence is just the normalized autocorrelation g(1)(τ) ≡ Rα(τ)/Rα(0),

g(1)(τ) = eıωcaτe−ω
2
caτ

2σ2
ϱ/2 (42.341)

= eıωcaτe−Dθ|τ |/2 .

The power spectral density is a Lorentzian,

Sα(ω) = |α0|2
∫ ∞

−∞
Rα(τ)e

−ıωτdτ (42.342)

=
|α0|2D2

θ

(ω − ωca)2 +D2
θ

.

The CARL emission bandwidth is thus 1
2Dθ. The above results show that the CARL

laser bandwidth increases linearly with temperature and reduces with the friction
force. In our experiment we have γfr = 5κ and σ = 10κ, so that Dθ = σ2/γfr = 20κ.
The CARL bandwidth is extremely large as compared to the CARL frequency ωca =
5κ. The reason is that we only considered a single atom. The impact of several atoms
will partially compensate and reduce the linewidth.

42.7.1.2 Many atoms, hand-waving

In order to account for the combined effect of many atoms, we reconsider the Eq. (42.256).
If α̇− = ıωcaα−, we may write it like,

α− = α0

∑

m

eıθm , (42.343)

θ̇n =
4εıU0α+α0

γfr

∑

m

(
eıθm−ıθn + e−ıθm+ıθn

)
+

ξn
γfr

.

The light mode α− appears to be a superposition of coherent waves having the same
frequencies, αm(t) = α0e

iωcat+iφm(t), but interrupted by random phase jumps. We
may thus try an analogous argumentation as for pressure broadening,

⟨α∗−(t)α−(t+ τ)⟩ = |α0|2
∫ ∑

n

e−ıωcat−ıφn(t)
∑

m

eıωcat+ıωcaτ+ıφn(t+τ)dt

= |α0|2eıωcaτ
∑

n,m

∫
eıφm(t+τ)−ıφn(t)dt = N⟨α∗n(t)αm(t+ τ)⟩δnm .

Cross-terms vanish, the autocorrelation function is just the sum of the single-atom
components. However, while we may view the noise impact of the atoms as coming
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from a single atom, the rate of the phase jumps is much higher, than for a single
atom. For one atom the probability density for encountering a coherent interval of
length τ is given by p1(τ)dτ = 1

2Dθe
−Dθ|τ |/2dτ [816]. Thus,

⟨α∗1(t)α1(t+ τ)⟩ = |α0|2eıωcaτe−Dθ|τ |/2 = |α0|2eıωcaτ

∫ ∞

τ

p1(τ
′)dτ ′ . (42.344)

For N atoms we expect a probability density for encountering a coherent intervall of
length τ ,

pN (τ)dτ = p1(τ/N)dτ =
Dθ

2
√
N
e−Dθ|τ |/2

√
Ndτ , (42.345)

such that
∫∞
0
pN (τ ′)dτ ′ = 1. However this remains to prove. Thus,

g
(1)
N (τ) = eıωcaτ

∫ ∞

τ

pN (τ ′)dτ ′ = eıωcaτ−Dθ|τ |/2
√
N . (42.346)

The second-order correlation function is,

g
(2)
N (τ) = 1 + |g(1)N (τ)|2 . (42.347)

The laser bandwidth is accordingly reduced by,

DN =
Dθ√
N

. (42.348)
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Figure 42.57: (code) First and second-order correlation functions. The solid and dotted lines

in (a) and (b) are calculated for N = 1 and N = 100, resp.. The solid and dotted lines in

(c) and (d) are calculated for T = 100µK and T = 300µK, resp..

Fig. 42.57 shows the dependencies of the correlation functions on N and T . For
N = 106 atoms the CARL bandwidth becomes βN = 0.01κ, which is already well
below any mechanical noise. The linewidth reduction with increasing atom numbers
is quantitatively supported by numerical simulations (see below).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationTheory.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationTheory.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationTheory.m
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42.7.1.3 Many atoms, formal

In order to account for the combined effect of many atoms, we reconsider the Eq. (42.256).
If α̇− = ıωcaα−, we get,

α− = − ıU0α+

κ+ ıωca

∑

m

eıθm , (42.349)

θ̇n =
4εU2

0α
2
+

γfr (κ+ ıωca)

∑
m

(
eıθm−ıθn + e−ıθm+ıθn

)
+

ξn
γfr

.

The autocorrelation is then,

Rα(τ) ≡ ⟨α∗−(t)α−(t+ τ)⟩ = U2
0α

2
+

κ2 + ω2
ca

∑

n,m

⟨eıθn(t+τ)−ıθm(t)⟩ (42.350)

= |α0|2eıωcaτ
∑

n,m
⟨eıφn(t+τ)−ıφm(t)⟩ = |α0|2eıωcaτ

∑
n,m,k

ık

k!
⟨[φn(t+ τ)− φm(t)]

k⟩

= |α0|2eıωcaτ
∑

n,m,k

ık

k!

∑k

j=0
(−1)j

(
k

j

)
⟨φn(t+ τ)jφm(t)k−j⟩ .

The main role of cavity-induced interparticle correlations is to self-consistently es-
tablish a constant center-of-mass motion ωca. We may, to first order, neglect the
possibility that the coupling correlates the noise, since the noise is imprinted from the
outside, i.e. the molasses. Therefore, ⟨φn(t+ τ)φm(t)⟩ ∝ δnm,

⟨φn(t+ τ)jφm(t)k−j⟩ =
∑

all pairs
⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2 (42.351)

=
j!

2j/2(j/2)!

(k − j)!
2(k−j)/2(k/2− j/2)! ⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2

so that,

Rα(τ) = |α0|2eıωcaτ
∑
n,m,k

ık

k!

k∑
j=0

(
k

j

)
j!

2j/2(j/2)!

(k − j)!
2(k−j)/2(k/2− j/2)! ⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2 ,

(42.352)

where j and k are even,

Rα(τ) = |α0|2eıωcaτ
∑

n,m,k

ık

2k/2(k/2)!

k∑
j=0

(
k/2

j/2

)
⟨φn(t+ τ)2⟩j/2⟨φm(t)2⟩k/2−j/2

= |α0|2eıωcaτ
∑
n,m,k

1

(k/2)!

(
−1

2
⟨φn(t+ τ)2⟩ − 1

2
⟨φm(t)2⟩

)k/2
(42.353)

= |α0|2eıωcaτ
∑
n

e−
1
2
⟨φn(t+τ)2⟩

∑
m
e−

1
2
⟨φm(t)2⟩ = |α0|2N2eıωcaτe−

1
2
⟨φn(t+τ)2⟩e−

1
2
⟨φn(t)2⟩ .
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42.7.1.4 Memory effects

Relax adiabaticity, α̇− ̸= ıωcaα−, substitute β = eκtα−,

θ̇ =
4εıU0α+

γfr

(
βe−ıθ−κt − β∗eıθ−κt

)
+

ξ

γfr
, (42.354)

β = −ıU0α+

∫ t

eıθ+κt
′
dt′ .

so that,

Rα(τ) ≡ ⟨α∗−(t)α−(t+ τ)⟩ = ⟨e−κtβ∗(t)e−κt−κτβ(t+ τ)⟩ (42.355)

= e−κτ ⟨e−2κtβ∗(t)β(t+ τ)⟩

= U2
0α

2
+e
−κτ

∫ ∫ t ∫ t+τ

eıθ(t
′′)−ıθ(t′)+κt′+κt′′−2κtdt′′dt′dt

= U2
0α

2
+e
−κτ

∫ ∫ t ∫ t+τ

eıωcat
′′−ıωcat

′+ıφ(t′′)−ıφ(t′)+κt′+κt′′−2κtdt′′dt′dt .

Using the representation of half the δ-distribution
∫ t
e(ıωca+κ)t

′
dt′ = δ1/2 = limκ→0

1
κ+ıωca

.

42.7.1.5 Schawlow-Townes limit for CARL

The ultimate limit for the spectral purity of a perfectly stable laser oscillator is the
Schawlow-Townes limit [1150]. The origin of this limitation is the discrete nature of
the light field. Similarly to quantum projection noise, which is caused by the dis-
cretisation of atomic energy levels, the optical shot-noise registered in photodetectors
arises from the discrete repartition of electromagnetic energy in photons. With a laser
power P , a cavity bandwidth κ and an interrogation time τ , the Allan variance [?]
and the linewidth of a Schawlow-Townes limited laser are given by,

σST (τ) =
1

ω/κ

1√
(P/ℏω)τ

, (42.356)

β = κ2
ℏω
P

.

In the case of CARL, using P = δℏω|α−|2 the variance is σ2
ST (τ) = κ/τωδ|α−|2 ≈

10−20 s/τ . The shot-noise which limits the CARL is not the one of the CARL light
itself, but the random momentum kicks imparted by molasses-cooled atoms. The
CARL linewidth is β = κ2/δ|α−|2 = 10−14κ.

The time-lap between two scattering events for a single atom be distributed ac-
cording to p1(τ)dτ = γe−γτdτ . What is the waiting time distribution for two atoms
[1154]? Schenzle related the waiting time distribution to the autocorrelation function
g(2)(τ).

Fig. 42.58(e-f) shows spectra of the CARL frequency obtained by Fourier-transforming
the autocorrelation function of a Langevin-simulated trajectory of the CARL fre-
quency. The width results from thermal fluctuations in the atomic motion induced
by momentum diffusion in the molasses. It is clearly visible that the width is reduced
when the atom number is increased, thus confirming Eq. (42.348).
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Figure 42.58: Simulated time-dependence of the (a) beat and the (b) intensity signals.
Calculated (c) first and second-order correlation functions. The temperature was set to
T = 100µK and the atom number to N = 40. (e-f) Spectra of the CARL laser for (e) 4 and
(f) 40 atoms. The total coupling constant NU0 has been held constant, only the number of
atoms whose trajectories are simulated is varied.

42.7.2 Measuring the coherence properties

We may also attempt to verify the predictions in experiment. Our signals are the
beams transmitted through the cavity mirrors.

42.7.2.1 Homodyne signal

Ideally in order to get the full information on the the first-order coherence, we should
record both the in-phase and the quadrature component of the field α− = Re α− +
iIm α− by homodyning it with the local oscillator α+. Thus we need to use both
ports of the beamsplitter: For the in-phase component we get,

P
(ph)
hody ∝ b†b− c†c (42.357)

= |α+
√
η + α−

√
1− η|2 − |α+

√
1− η − α−

√
η|2

= (1− 2η)(|α−|2 − |α+|2) + 4
√
η − η2α+Re α− .

For a 50% beamsplitter the offsets disappear, P
(ph)
hody ∝= 2α+Re α−, which means that

the homodyne signal is insensitive to intensity noise in the individual ports. Similarly
we obtain for the quadrature component,

P
(qu)
hody ∝ |α+

√
η + ıα−

√
1− η|2 − |α+

√
1− η − ıα−

√
η|2 (42.358)

= −2α+Im α−.
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By mounting a piezo on one of the mirrors in the homodyne loop, we can influence
which quadrature component to map. Is there a way how to get Im α− and Re α−
simultaneously?

Figure 42.59: Homodyning the counterpropagating beams.

Knowing α− we can calculate the first order coherence,

g(1)(τ) ≡ ⟨α
∗(t)α(t+ τ)⟩
⟨α∗(t)α(t)⟩ =

∫
α∗(t)α(t+ τ)dt∫

α(t)2dt
, (42.359)

the second-order coherence,

g(2)(τ) ≡ ⟨α
∗(t)α∗(t+ τ)α(t+ τ)α(t)⟩

⟨α∗(t)α(t)⟩2 (42.360)

=

∫
P−(t)P−(t+ τ)dt∫

P−(t)dt
,

and the emission spectrum (power spectral density),

F (ω) =
1

π
Re

∫
g(1)(τ)eıωτdτ . (42.361)

All these quantities can be evaluated from numerical simulations of the Langevin
equations.

Example 276 (Real Signals): What is recorded in experiment is the probe
field power Pprobe and only one quadrature component of the beat between the
probe and the pump. The probe signal is simply,

P− ∝ |α−|2 . (42.362)

So it may be used directly for the g(2)(τ) intensity correlation function (42.360)
analogous to the Hanbury-Brown-Twiss experiment.
In contrast, the beat signal is obtained in a Young type experiment,

Pbeat ∝ |α+ ± α−|2 = |α+|2 + |α−|2 ± 2α+Re α− , (42.363)

because we may assume α+ real. Obviously, the beat signal oscillates between
the limits ±2α+|α−|. Using only one port of the beamsplitter, we miss informa-
tion on the other quadrature phase. The question arises now, how to calculate
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the spectrum if only the real part of the field Re α is known. The interesting
quantity is |g(1)(τ)|, because it contains the information on the photon statistics.
This function is smooth (it does not oscillate) and should in our case describe
an exponential decay (42.341). Fortunately, from numerical calculation it seems
that |g(1)(τ)| is just the convolution of ⟨Re α(t)Re α(t+ τ)⟩/⟨Re 2α(t)⟩, so that
we may recover the informations. For the spectrum, which is calculated from
the complex quantity g(1)(τ) the question is more delicate. It comes down to
asking if,

F (ω) ∝ Re

∫
⟨Re α(t)Re α(t+ τ)⟩ eıωτdτ (42.364)

gives the correct spectrum (42.361).

42.7.2.2 Impact of finite time window

Technical noise may overrule the thermal noise just like in ordinary lasers. This
situation may change if atom numbers are low, so that we have bad statistics, or if
the collective force is strong enough to correlate the noise.
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Figure 42.60: (code) Measured trajectories (a) and (b) and correlation functions (c) and (d)

of the CARL laser. The coupling constant was NU0 = −0.1.

The spectral width may also be limited by the finite time window t ∈ [− 1
2 t0,

1
2 t0],

which is taken for computing the spectrum. Even a perfect harmonic oscillation
α−(t) = α−eıωcat will then have a finite bandwidth,

Fa−(ω) = F [α−eıωcat] ⋆ F [χ[−t0/2,t0/2](t)] (42.365)

= α−δ(ω − ωca) ⋆
√

2

π

sin 1
2ωt0

ω
= α−

√
2

π

sin 1
2 (ω − ωca)t0
(ω − ωca)

.

The spectrum Sα−(ω) = |Fa−(ω)|2 has a bandwidth of β = 5.6/t0. For example
an oscillation observed for a period 100 times longer than the cavity decay time,
t0 = 100/κ, the bandwidth will be β = 0.056κ. Simulations are based on the Langevin
equation.

42.7.3 Exercises

42.7.3.1 Ex: Autocorrelation functions

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationMeasure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/CollectiveScattering/CS_Carl_CorrelationMeasure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/CollectiveScattering/Sol_CS_Carl_.pdf


42.8. FURTHER READING 2543

Figure 42.61: Spectrum of the CARL calculated from the first-order correlation function in
Fig. 42.60(c). The coupling constant was NU0 = −0.1κ.

Solution: Waiting time distribution for two scatterers (see Autocorrelation0), Auto-
correlation function for simple signals (see Autocorrelation1), Generate white noise
as random phase jumps (see Autocorrelation2), Finite numbers of oscillations limit
the resolution (see Autocorrelation3), and Finite numbers of oscillations limit the res-
olution (see Autocorrelation4).

42.7.3.2 Ex: Signal-to-noise ratio of Bloch oscillations

You want to evaluate the stability of a noisy periodic signal. How many noisy oscil-
lations do you have to observe in order to evaluate the oscillation period with a given
S/N ratio [1403].

Solution: Study width of Fourier transform? Measure other forces, e.g. magnetic
field using 87Sr?
http://es.mathworks.com/help/signal/ug/determine-cyclic-behavior-in-data.html
http://es.mathworks.com/help/signal/ug/find-periodicity-using-autocorrelation.html
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Chapter 43

Manipulation of atomic gases

The field of atom optics deals with the motion of atoms and its control by technical
tools. At high velocities with no external forces, the atoms follow straight paths,
similar to light beams in classical optics. At low speeds, they propagate as waves,
similarly to wave optics in Maxwell’s theory of electrodynamics. The term atom optics
emphasizes the analogy and the duality in the behavior of microscopic particles.

The duality principle is one of the fundamental ideas of quantum mechanics. The
appearance of an object as a wave or as a particle depends on the situation in which
it is observed. While the wave nature of light was well established in classical physics
since a long time, Louis de Broglie was the first in 1924 to apply the duality princi-
ple also to massive particles and to predict that particles, under certain conditions,
behave like waves whose wavelengths increase as their velocity decreases. Each par-
ticle (or sample of particles) is delocalized along a distance corresponding to the ’de
Broglie wavelength’. This feature of the matter was soon discovered experimentally in
electron beams and is still used today in commercial devices, for example in electron
microscopes.

The laser was discovered in 1956. In a laser, light particles are forced to oscillate
synchronously, that is, coherently. By analogy, we can raise the question whether
a similar phenomenon can occur with massive particles, and whether it is possible
to construct an atom laser. Such a device would emit coherent matter waves just
as the laser emits coherent light. When a gas is cooled to very low temperatures,
the Broglie waves of the atoms become very long and, if the gas is sufficiently dense,
eventually overlap. If the gas consists of a single species of bosonic particles with all
atoms being in the same quantum state, their Broglie waves interfere constructively
thus and form a huge wave of coherent matter. This matter wave is described by
a single wavefunction exhibiting long range order and having a single phase. If this
wavefunction is formed inside a trap, all atoms accumulate in its ground state. Thus,
we obtain a pure quantum state of many bodies in the kinetic degree of freedom 1.
The transition of a gas from individual atoms to a degenerate mesoscopic many-body
quantum state occurs as a phase transition named Bose-Einstein condensation (BEC)
as a homage to Bose and Einstein who predicted the effect already in 1924 [181, 410].

The course begins in this chapter with a presentation of the most important exper-
imental techniques for cooling, trapping, manipulating and detecting atomic gases.
The knowledge of these techniques will allow for a better understanding of how it is
possible to generate and analyze all the effects mentioned above. Chp. 45 introduces

1In particular, for very cold atoms whose internal excitation occurs on a very different energy
scale, the corresponding degree freedom is frozen and does not influence the kinetics.

2549
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the phenomenon of Bose-Einstein condensation and the following chapters focus on
the thermodynamic, superfluid, coherent and dielectric properties of condensates.

Figure 43.1: Temperature scale.

The incomparable success of atomic optics has been rewarded with 20 nobel prices
in the last 25 years (Dehmelt, Paul, Ramsey, Cohen-Tannoudji, Chu, Phillips, Cornell,
Wieman, Ketterle, Hänsch, Glauber, Hall, Wineland, Haroche, Ahskin) plus several
indirectly related noble prices (De Gennes, Leggett, Thouless, Haldane, Kosterlitz).
For review articles on BEC see [999, 319, 297, 512, 1122, 1238], [712] or check in
internet sites http://amo.phy.gasou.edu/bec.html and http://jila.edu/bec.html.

In this chapter we review the basic techniques of Atomic Optics, emphasizing the
cooling, trapping and measurement of cold atomic gases. See also (watch talk) and
(watch talk).

43.1 The atomic motion

43.1.1 The atom as a matter wave

We have already emphasized that atomic optics deals with the motion of atoms in a
gas, that is, we are interested only in the external degrees of freedom of the atoms.
To describe the motion of a free massive particle in one dimension, we write the
Hamiltonian,

Ĥ = − ℏ2

2m

d2

dx2
. (43.1)

Therefore, the general solution of the stationary Schrödinger equation,

Ĥψ(x) = Eψ(x) , (43.2)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BECTechniques
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/AMOforLongrange
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is,

ψ(x) = Aeıkx +Be−ıkx with k =

√
2mE

ℏ2
. (43.3)

Note, that the wavefunctions eıkx are not quadratically integrable. On the other
hand, they do not represent real physical systems. In practice, we need to consider
wavepackets or specify a finite volume for the particle.

Note also that the eigenvalue spectrum of is continuous. To warrant the interpre-
tation of the wavefunction as a probability density we will require quadratic integra-
bility,

∫
|ψ|2d3r = 1. This means that the wavefunction can not be infinite in a finite

volume, but it can be infinite in an infinitely small volume.
The description of the atomic motion by a wave equation emphasizes the fact

that microscopic particles have wave properties with each atom corresponding to a
velocity-dependent de Broglie wave,

λdB =
h

p
, (43.4)

which describes the coherence length of the atom.

43.1.1.1 Characteristic velocities

The behavior of an atom described by the Schrödinger equation depends very much
on its kinetic energy. At high velocities (or short de Broglie waves), it will behave
like a classical particle with a well-defined trajectory. At low velocities (or long de
Broglie waves), it will propagate like a wave and exhibit phenomena such as diffraction
and interference. Therefore, it is important to highlight some characteristic velocity
regimes.

Most optical cooling techniques are based on the removal of kinetic energy upon
light scattering on electronic transitions. It is, therefore, interesting to compare the
kinetic energy (or temperature) of an ensemble of atoms with the width Γ of the
transition. The Doppler limit is given by (see Exc. 43.1.4.1),

kBTD =
ℏ
2
Γ . (43.5)

We can also compare the kinetic energy with the energy transferred to an atom by
the absorption of a single photon. The photonic recoil energy is given by,

kBTrec =
ℏ2k2

2m
. (43.6)

Atomic clouds with temperatures around T ≃ TD = 10..1000µK are called cold.
Clouds with temperatures around and below T ≲ Trec = 0.1..10µK are called ultra-
cold.

In most atomic optical experiments we do not work with individual atoms (or
ions), but with relatively dilute ensembles of atoms, called clouds. In general, clouds
can not be described by a single wavefunction. Either we describe every atom by a
separate and independent wavefunction (which only works when the atoms do not
interact), or we describe the cloud by probability distributions (such as the ’density
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matrix’). Let us now consider a thermal cloud. The Maxwell-Boltzmann distribution
of velocities is,

g(v) =

√
m

2πkBT

3

e−mv2/2kBT . (43.7)

This distribution is normalized,
∫
g(v)d3v =

∫∞
0

4πv2g(v)dv = 1. Average velocity is
now

v̄ =

∫
vg(v)dv =

√
kBT

m
. (43.8)
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Figure 43.2: (code) Maxwell-Boltzmann distribution.

We define the thermal de Broglie wavelength of an atomic ensemble as,

λtherm ≡
h

mv̄
=

√
2πℏ2
mkBT

. (43.9)

It represents an average over the de Broglie wavelengths of all atoms of the sample.
When a dense gas is sufficiently dense, so that this quantity exceeds the average
distance between atoms,

ρ ≡ nλ3therm > 1 , (43.10)

where n is the atomic density, we enter a new regime, where the Maxwell-Boltzmann
law ceases to be valid. Since λtherm ∝ T−1/2, this regime corresponds to low tempera-
tures. The quantity ρ is called phase space density. A phase space density approaching
1 means an increased probability of finding more than one atom per elementary phase
space cell. We then enter the regime of quantum degeneracy, where the Boltzmann
statistics must be replaced by the Bose-Einstein statistics, in the case of bosons, or
the Fermi-Dirac statistics, in the case of fermions. We will deepen the discussion of
quantum statistics of ideal gases in Chp. 44. From the condition nλ3therm ≃ 1, we
obtain

kBTc =
1

m

(
2πℏ
λtherm

)2

=
(2πℏ)2n2/3

m
. (43.11)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_MaxwellBoltzmann.m
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43.1.2 Localized atoms

To avoid perturbative influence of the environment on the atoms, they are often
trapped in potentials, which suspend them in a volume distant from massive walls.
The Hamiltonian of a trapped atoms is,

Ĥ = − ℏ2

2m

d2

dx2
+ U(x) . (43.12)

As the wavefunction is now localized, the spectrum of possible energies organizes into
discrete levels, and the atoms are allocated in populations of these levels.

Often, a 3D potential can be written in the form,

U(x, y, z) = Ux(x) + Uy(y) + Uz(z) . (43.13)

This is the case, for example, of a rectangular well characterized by Ux(x) = Uy(y) =
Uz(z) = U0/3 inside the well. The relationship (43.13) also holds for a harmonic
potential,

U(r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (43.14)

In these cases, a product ansatz for the wavefunction is generally useful,

ψ(r) = ψx(x)ψy(y)ψz(z) , (43.15)

since its insertion into the Schrödinger equation,

[
− ℏ2

2m

(
d2

dx2
+

d2

dy2
+

d2

dz2

)
+ Ux(x) + Uy(y) + Uz(z)

]
ψx(x)ψy(y)ψz(z) (43.16)

= Eψx(x)ψy(y)ψz(z) ,

separates it into three independent one-dimensional equations,

− ℏ2

2m

ψ′′x(x)
ψx(x)

+ Ux(x) = const. ≡ Ex , (43.17)

and similarly for y and z. Since E = Ex + Ey + Ez, we can have the same energy
for different combinations of Ex, Ey and Ez. That is, multidimensional systems are
often degenerate.

43.1.3 Density-of-states of a trapping potential

The way an atomic cloud accommodates itself inside a trapping potential is gov-
erned by the density of available states. To calculate this density, we consider the

Hamiltonian H(r,p) = ℏ2k2

2m + U(r). For a cylindrical harmonic oscillator we write,

U(r) =
m

2
ω2
rr

2 +
m

2
ω2
zz

2 where r2 = x2 + y2 , (43.18)

or U(x) = m
2 ω

2
rρ

2, where ρ2 = x2 + y2 + λ2z2 with λ = ωz/ωr. We define ω̄ =

(ω2
rωz)

1/3 = λ1/3ωr. The single-particle levels of this Hamiltonian are, ϵnxnynz
=

ℏωxnx + ℏωyny + ℏωznz, where the nj are integer numbers.
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Figure 43.3: (code) (a) The figure shows two dimensions of a Ioffe-Pritchard type magnetic

trapping potential (characterized by being approximately linear at large distances from the

center and harmonic near the center). (b) Harmonic approximation (most experimentally

feasible potentials are approximately harmonic near the center). (c) One-dimensional cut

through the potential of (a,b). (d) Density of states for a harmonic (dotted line) and a

Ioffe-Pritchard type potential (solid line).

We now introduce the density of states η(ϵ) for an arbitrary potential via,

∫
η(ϵ)dϵ ≡ 1

(2π)3

∫
d3rd3k =

(2m)3/2

(2π)2ℏ3

∫
d3r

∫
dϵ
√
ϵ− U(r) . (43.19)

For the cylindrical harmonic trap defined in (43.18), we find with a little help from
Dr. Bronstein [201],

η(ϵ) =
(2m)3/2

(2π)2ℏ3

∫
d3r

√
ϵ− m

2
ω2
rρ

2 (43.20)

=
1

(2π)2
8ϵ2

(ℏω̄)3

∫ 1

−1
dx̃

∫ √1−x̃2

−
√
1−x̃2

dỹ

∫ √1−x̃2−ỹ2

−
√

1−x̃2−ỹ2
dz̃
√
1− x̃2 − ỹ2 − z̃2 .

The resolution of the integral gives,

η(ϵ) =
ϵ2

2(ℏω̄)3
(harmonic potential) . (43.21)

Another example is the box potential. In this case we can simply obtain,

η(ϵ) =
(2m)3/2

(2π)2ℏ3

∫

V

d3r
√
ϵ =

(2m)3/2

(2π)2ℏ3
V
√
ϵ (box potential) . (43.22)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IoffePotential.m
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A generalization is discussed in the Exc. 43.1.4.2.

43.1.4 Exercises

43.1.4.1 Ex: Fundamental temperature limits

Calculate the Doppler limit, the recoil limit, and the threshold to quantum degen-
eracy for an atomic cloud of density n = 1014 cm−3 for the sodium D2 transition
(λ = 590 nm, Γ/2π = 10MHz) and the rubidium D2 transition (λ = 780 nm,
Γ/2π = 6MHz).

Solution: For sodium TD = 240µK, Trec = 1.2µK, and Tc = 220 nK. For ru-
bidium TD = 144µK, ER = 180 nK, and Tc = 830 nK.

43.1.4.2 Ex: Density of states for non-harmonic potentials

Calculate the density of states for non-harmonic potentials, Ĥ = ℏ2k2

2m +
∣∣ x
2x̄

∣∣p+
∣∣∣ y2ȳ
∣∣∣
l

+
∣∣ z
2z̄

∣∣q using Ref. [72]. Apply the result to a quadrupolar potential.

Solution: This reference found the following solution,

η(ϵ) =
(2m)3/2

(2π)2ℏ3
8x̄ȳz̄F (p, l, q)ε1/p+1/q+1/l+1/2

F (p, l, q) =

∫ 1

−1
(1− x̃p)1/2+1/q+1/ldx̃

∫ 1

−1
(1− x̃l)1/2+1/qdỹ

∫ 1

−1
(1− x̃q)1/2dz̃ .

For example, for a quadrupole trap,

F (p, l, q) =
210

105

√
2

g(ϵ) =
213

105

m3/2

π2ℏ3
x̄ȳz̄ϵ7/2 .

43.2 Optical cooling

As discussed in Sec. 38.2, the force exerted by a light field on an atom can be of
two types: a dissipative force arising called radiation pressure, which is often used for
optical cooling purposes, and a conservative dipolar force which often serves for the
engineering of optical trapping potentials. Both applications of optical forces will be
detailed in the following sections.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_LimiteRecuo.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_DensidadeEstadosnaoharmonicos.pdf
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43.2.1 Optical molasses

In the Doppler cooling model, we treat the phenomenology of optical forces quantita-
tively by considering the amplitude, phase and frequency of a classical field interacting
with the dipole of an atomic transition in a two-level atom. From Eq. (38.25) and
previous definitions of Ω and Ωsat, and with the intensity I ∝ E2, we can write the
saturation parameter,

s =
I

Isat
=

Ω2

Ω2
sat

=
Ω2

Γ2/2
, (43.23)

and

Frp =
ℏkΓ
2

s

(2∆/Γ)2 + 1 + s
. (43.24)

Now, if we consider an atom propagating in ∓z direction with the velocity vz coun-
terpropagating to a light wave detuned by ∆ from the resonance, the total detuning
will be

∆ −→ ∆∓ kvz . (43.25)

where the term kvz is the Doppler shift. The force F± acting on the atom will be in
the direction opposite to the motion,

F± = ±ℏkΓ
2

s

(2(∆∓ kvz)/Γ)2 + 1 + s
. (43.26)

Supposing now, that we have two light fields propagating in directions ±z, the total
force will be F = F+ + F−. If kvz is small compared to Γ and ∆, we find through a
Taylor expansion,

Fz ≃ 4ℏks
kvz(2∆/Γ)

[1 + s+ (2∆/Γ)2]2
. (43.27)

This expression shows that, if the detuning ∆ is negative (that is, on the red side of
the resonance), then the cooling force will oppose the motion and be proportional to
the atomic velocity. Fig. 43.4 shows this decelerating dissipative force as a function
of vz at a detuning ∆ = −Γ with I = Isat/2. The one-dimensional motion of the
atom is thus behaving like being subject to a friction force which is proportional to
the atomic velocity,

Fz ≃ αdvz with αd = s
−4k2(2∆/Γ)

1 + s+ (2∆/Γ)2
. (43.28)

The proportionality factor, is just the friction coefficient.
However, the atom will not cool down indefinitely. At some point, the Doppler

cooling rate will be balanced by the heating rate coming from the momentum fluc-
tuations of the atom absorbing and remitting photons. The Doppler cooling limit is
given by,

kBT = ℏ
Γ

2
, (43.29)

as we will see in Exc. 43.2.5.1. This limit is generally, for alkaline atoms, on the
order of dozens of micro-Kelvin. In the early years of cooling and trapping, the
Doppler limit was thought to be a real physical barrier. But in 1988, several groups
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have shown that, in fact, atoms could be cooled well below the Doppler limit. The
effect arises in atoms, whose ground state exhibits a hyperfine structure. We will
show simplified one-dimensional models for sub-Doppler cooling in the next section.
Resolve the Exc. 43.2.5.2.

-20 -10 0 10 20

vz (m/s)

-0.4

-0.2

0

0.2

0.4

F
(h̄
k
Γ
)

Figure 43.4: (code) Doppler force due to one-dimensional radiative pressure as a function of

atomic velocity along the z-axis for red detuning ∆ = −Γ at a light intensity of I = 2Isat.

The solid line shows the exact expression for the restoring force [Eq (43.26)]. The broken line

shows the approximate linear expression of the velocity dependence according to Eq. (43.27).

43.2.2 Sub-Doppler cooling

It turns out that atoms with a hyperfine structure in the ground state can be cooled
below the Doppler limit (43.5). To explain this unexpected observation, models in-
volving a slow motion of the atoms in polarization gradients of a standing light wave
have been invoked. The phenomenon is now known as polarization gradient cooling.

Two principal mechanisms for cooling atoms to temperatures below the Doppler
limit are based on spatial polarization gradients. These two mechanisms, however,
invoke very different physical processes and are distinct by the spatial dependence of
the light polarization. A key point is that these sub-Doppler mechanisms only work
on atoms with multiple ground state levels. Two parameters, the friction coefficient
and the capture velocity, determine the importance of these cooling processes. In this
section we compare the expressions for these quantities in the sub-Doppler regime to
those found by the conventional one-dimensional Doppler cooling model for optical
molasses.

43.2.2.1 Lin ⊥ lin molasses

In the first case, two counterpropagating light waves with orthogonal linear polar-
izations form a standing wave. This configuration is familiarly called lin-perp-lin.
Fig. 43.5 illustrates the change of polarization every period of λ/8 from linear to cir-
cular to linear again, but rotated by 90◦, and so on [323]. Along the same distance,
the light-atom coupling produces a periodic energy shift (light-shift) of the ground
state Zeeman levels. To illustrate the cooling mechanism, we assume the simplest
case, a transition Jg =

1
2 −→ Je =

3
2 . As shown in Fig. 43.5 an atom moving through

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_DopplerCooling.m


2558 CHAPTER 43. MANIPULATION OF ATOMIC GASES

Figure 43.5: The upper line shows, how the polarization changes as a function of position (in
units of a wavelength) for the ’lin-perp-lin’ standing wave configuration. The figure below
shows a simplified picture of the Sisyphus cooling mechanism for an atom with two levels,
Jg ↔ Je.

the region z ≃ λ/8, where the polarization is σ−, will see its population pumped
to Jg = − 1

2 . In addition, the Clebsch-Gordan coefficients that control the dipolar
coupling of the Je = 3

2 require that the Jg = − 1
2 couples to σ− with a force three

times larger than the Jg = + 1
2 does. The difference of the coupling forces leads to

the light-shift between the two fundamental states shown in Fig. 43.5. As the atom
continues to move toward +z, the relative coupling forces are reversed near 3λ/8,
where the polarization is essentially σ+. Thus, the relative energy levels of the two
hyperfine fundamental states oscillate ’out of phase’ when the atom moves through
the standing wave.

The fundamental idea is that the optical pumping rate, which always redistributes
population to the lower hyperfine level, delays the light-shift of the atom moving
through the field. The result is a ’Sisyphus effect’, where the atom spends most
of its time in sub-levels climbing a potential hill and thus converting kinetic energy
into potential energy. This accumulated potential energy is subsequently dissipated
by spontaneous emission to the electromagnetic modes of the vacuum. Simultane-
ously, the spontaneous emission transfers the population back to the lower one of
two ground state levels. The lower diagram of Fig. 43.5 illustrates the phase delay
of optical pumping. For this cooling mechanism to work, the optical pumping time,
which is controlled by the intensity of the light, must be sufficiently slow to give the
atom enough time to climb a noticeable part of the light-shift potential. This time
essentially depends on the speed of the atom. As the atom is moving slowly, having
previously been cooled by the Doppler mechanism, the light field must be weak in or-
der to decrease the optical pumping rate. Interestingly, this physical picture combines
the conservative dipole optical force, whose spatial integral gives rise to the mounts
and valleys of the potential on which the atom moves, and the irreversible dissipation
of energy by spontaneous emission, which is necessary for any type of cooling.

We can obtain simple expressions for the friction coefficient and the capture ve-
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locity after some definitions. As in the Doppler cooling model we define the friction
coefficient αlpl as the proportionality constant between the force F and the atomic
velocity v,

F = −αlplv . (43.30)

We assume that the light field is tuned to the red of the transition Jg - Je,

∆ = ω − ω0 , (43.31)

and we denote the light-shifts of the levels Jg = ± 1
2 as ∆±, respectively. At the

position z = λ/8, we find ∆− = 3∆+ and at z = 3λ/8, ∆+ = 3∆−. As the applied
field is tuned to red, all ∆± have negative values. Now, for the cooling mechanism to
be efficient, the optical pumping time τp should be similar to the time needed for an

atom with velocity v to move from the bottom to the top of the potential, λ/4v ,

τp =
λ/4

v
(43.32)

or
Γ′ ≃ kv , (43.33)

where Γ′ = 1/τp and λ/4 ≃ 1/k. Now, the energyW dissipated during a cycle of esca-
lation and spontaneous emission is essentially the average energy difference between
the light-shifted ground states, ∆ls ≡ ∆+ +∆−, that is W ≃ −ℏ∆ls. Therefore, the
rate for energy dissipation is,

dW

dt
= Γ′ℏ∆ls . (43.34)

At the same time, every temporal energy change of a system can always be expressed
as dW

dt = F · v. Therefore, in this one-dimensional model, considering Eq. (43.31), we
can write,

dW

dt
= −αlplv2 = −Γ′ℏ∆ls , (43.35)

such that with (43.33),

αlpl = −
Γ′ℏ∆ls

v2
≃ −kvℏ∆ls

v2
≃ −ℏk2∆ls

Γ′
. (43.36)

Note that since ∆ < 0, αlpl is a positive quantity. Also note, that for large detunings,
(∆≫ Γ) Eq. (38.24) gives,

U

ℏ
=

∆ls

4
=

Ω2

4∆
. (43.37)

It is also true that for light-shifts, which are large compared to the natural width
of ground state (∆ls ≫ Γ′), and for large red detunings (∆ ≳ 4Γ),

Γ

Γ′
≃ ∆2

4Ω2 .
(43.38)

Therefore, the sub-Doppler friction coefficient can also be written,

αlpl = −
ℏk2∆
4Γ

(43.39)
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Eq. (43.39) makes two remarkable predictions: Firstly, in the ’lin-perp-lin’ configura-
tion the sub-Doppler friction coefficient can be a large number in comparison to αd.
Note that from Eq. (43.28), with I ≲ Isat and ∆≫ Γ,

αd ≃ ℏk2
(
Γ

∆

)3

, (43.40)

and
αlpl
αd
≃
(
∆

Γ

)4

. (43.41)

Secondly, αlpl is independent of the intensity of the applied field. This last result is
different from the friction coefficient, which is proportional to the field intensity up
to until saturation (see Eq. (43.28)). However, although αlpl seems impressive, the
range of atomic velocities where it can operate is constrained by the condition,

Γ′ ≃ kv . (43.42)

The ratio of the capture velocities for sub-Doppler versus Doppler cooling is therefore
only,

vlpl
vd
≃ 4∆ls

∆
. (43.43)

Fig. 43.6 graphically illustrates the comparison between the Doppler and the ’lin-
perp-lin’ sub-Doppler cooling mechanisms. The dramatic difference of the capture
ranges is evident. Note also that the slopes of the curves give the friction coefficients
and that, within the capture range, the slope is much steeper for the sub-Doppler
mechanism.
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Figure 43.6: (code) Comparison of slopes, amplitudes, and capture ranges for Doppler and

Sisyphus cooling.

43.2.2.2 σ+-σ− molasses

The second mechanism operates with two counterpropagating light beams, which are
circularly polarized in opposite directions. When the two counterpropagating beams
have the same amplitude, the resulting polarization is always linear and orthogonal

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_PolGradSisyphus.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_PolGradSisyphus.m
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to the propagation axis, but the tip of the polarization vector traces a helix with a
periodicity of λ [see Fig. 43.7(b)]. The physics of this sub-Doppler mechanism does
not involve hill-climbing nor spontaneous emission, but an imbalance of the photon
scattering rates by the two counterpropagating light waves as the atom moves along
the z-axis. This imbalance leads to a velocity-dependent force counteracting the
atomic displacement. The essential factor leading to the different scattering rates
is the creation of a population orientation along the z-axis between the sub-levels
of the atomic ground state. The more populated sub-levels scatter more photons.
Now, considering the energy level diagram (see Fig. 43.5) and the symmetry of the
Clebsch-Gordan coefficients, it is evident that transitions Jg = 1

2 ↔ Je =
3
2 coupled

by linearly polarized light can not produce an orientation of the population in the
ground state. In fact, the simplest system exhibiting this effect is Jg = 1 ↔ Je = 2.
A measure for this orientation is the magnitude of the matrix element ⟨Jz⟩ between
the sublevels Jgz = ±1. For an atom at rest at the position z = 0 interacting with the
light polarized along the y-direction, the light-shifts ∆0 and ∆± of the three sub-levels
of the ground state would be,

∆+1 = ∆−1 = 3
4∆0 , (43.44)

and the stationary populations would be 4/17, 4/17 e 9/17, respectively. Obviously,
linearly polarized light does not produce a stationary orientation, ⟨Jz⟩s = 0. But when
the atom begins to move along the z-axis with velocity v, it sees a linear polarization
precessing about the axis of propagation at an angle φ = kz = −kvt. This precession
gives rise to a new term in the Hamiltonian, V = kvJz. Furthermore, when we
transform to a rotating coordinate system, the eigenfunctions of the Hamiltonian of
the atom moving in this new ’inertial’ system become linear combinations of the basis
functions of the resting atom. The expectation value of the stationary orientation
operator Jz, is now zero in the inertial system [323],

⟨Jz⟩ =
40

17

ℏkv
∆0

= ℏ(Π+ −Π−) . (43.45)

Note that, as the expectation value of the orientation is nonzero only when the
atom moves. In Eq. (43.45) we denote the populations of the sub-levels |± > as
Π±, and we interpret nonzero matrix elements as a direct measure of the population
difference between the ground state levels |± >. Note that, since ∆0 is negative (red
tuning), the Eq. (43.45) tells us, that the population Π− is larger than Π+. Now, when
an atom traveling in +z direction is exposed to two light waves with polarizations
σ∓ propagating in the ∓z directions, the preponderance of population in the state
|−⟩ will result in a higher scattering rate from the wave propagating in −z direction.
Therefore, the atom will be subject to a total force opposite to its movement and
proportional to its velocity. The differential scattering rate is,

40

17

kv

∆0
Γ′ . (43.46)

With a quantized momentum of ℏk transferred at each scattering event, the total
force is,

F =
40

17

ℏk2vΓ′

∆0
. (43.47)
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Figure 43.7: Polarization as a function of position (in units of a wavelength) for the σ+-σ−

standing wave configuration.

The friction coefficient αcp is,

αcp = −
40

17
ℏk2

Γ′

∆0
, (43.48)

which is a positive quantity, since ∆0 is negative for red detuning. Comparing αcp
with αlpl we see, that αcp must be much smaller, because we always assumed that
the light shifts ∆ are much larger than the linewidths Γ′. However, the heating rate
due to fluctuations of the recoil is also much lower. Thus, the minimum temperatures
that can be reached with the two sub-Doppler mechanisms are comparable.

Although the Doppler cooling mechanism also depends on an imbalance of scat-
tering from counterpropagating light waves, in this case the imbalance comes from
the fact that the Doppler shift experienced by the moving atoms leads to different
probabilities for photon scattering. For the sub-Doppler mechanism the scattering
probabilities from the two light waves are the same, but the ground state populations
are not. The state with the largest population suffers the highest scattering rate.

43.2.3 Raman cooling

43.2.3.1 Optical cooling of confined particles

It is also possible to cool ions confined in a trap [1381]. The direction of their motion
and their velocity change periodically with the secular frequencies ζr und ζz. For
optical cooling it is sufficient to irradiate a single red-detuned running-wave light
field: In a real ion trap the cylindrical symmetry cannot be realized with absolute
precision so that we get different secular frequencies ζx ̸= ζy ̸= ζz and a coupling of
the degrees of freedom for all directions of space. The cooling of the ionic motion in
a single direction results in a cooling of the motion in the other directions.

In the rest system of an ion oscillating in a harmonic trap the Doppler-shift of the
laser frequency changes periodically: v(t) = v0 cos ζr,zt. The ion absorbs therefore in
its rest system the light on a withb of sidebands whose distance and strength depend
on the oscillation frequency and amplitude. The absorption profile of a transition
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in such a harmonically vibrating ion follows as a convolution of the Lorentz profile
LΓ, describing the naturally broadened resonance, with a function S, describing the
splitting of the absorption profile into sidebands [655]:

A(∆) = (LΓ ⋆ S)(∆) , S(∆) =
∑

n

Jn(k · v0/ζr,z)
2δ(∆− nζr,z) . (43.49)

Jn denotes the Bessel function of nth order. In essence, the system is governed by
three time-constants: The natural decay width of the cooling transition Γ is a measure
for the inneratomic time scale, since it determines the average duration of absorption-
emissions cycles. The secular frequencies ζr,z determine the time scales for changes
in the external degrees of freedom, i.e. for changes of the ion’s location and velocity.
The Doppler-shift kv0 of the resonance frequency in the return point of the ion motion
finally, is a measure for the kinetic energy of the ion.

The relative importance of these three characteristic frequencies reveal the state
of the ion in the trap. The modulation index kv0/ζr,z decides on the height and the
number of sidebands in the excitation spectrum. The better the ion has been cooled,
the smaller the modulation index and the smaller the height and number of sidebands.
The kinetic energy of the ion is,

Ekin =
1

2
mv20 =

1

2
mζ2r,zx

2
0 . (43.50)

The modulation index kv0/ζr,z = kx0 = 2πx0/λ is also called Lamb-Dicke parameter.
By cooling the Lamb-Dicke parameter is so much reduced and the ion is so well
localized that its motional sidebands are smaller than the wavelength of the exciting
light. It then is in the so-called Lamb-Dicke regime x0 ≪ λ [?] and has so small
motional sidebands that they do not contribute to the line shape and do not influence
the line width. Therefore the linear Doppler effect vanishes.

The quantity ζr,z/Γ defines the resolution of the sidebands. If the resolution is
poor, we talk about weak confinement, else about strong confinement. Therefore the
same ion can be weakly confined with respect to an allowed transition and strongly
confined with respect to a forbidden transition. The cooling processes in the two cases
of strong and weak trapping must be described differently. At weak confinement the
oscillation frequency ζr,z is so slow that many absorption-emission cycles with the time
constant Γ−1 can occur during one oscillation period. Cooling process and cooling
limit are approximately the same as for free particles and are described by Doppler
cooling.

43.2.3.2 Raman sideband cooling

In the case of strong confinement for the description of the cooling process we must
consider the quantization of the motional energy in the harmonic potential. The two
levels coupled by the narrow transition split into vibrational sublevels |nr,z⟩, which
are populated in thermal equilibrium according to the Bose-Einstein distribution and
have the kinetic energies Ekin,

nr,z =
1

eℏζr,z/kBT − 1
and Ekin = ℏζr,z(nr,z + 1

2 ) . (43.51)
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To perform the so-called optical cooling sideband cooling [1381] the laser is tuned to
the first lower sideband. The laser light is then scattered in a Raman-Anti-Stokes
process at the excited electronic state with a vibrational quantumnumber lower by 1
|e, nr,z − 1⟩. The subsequent spontaneous decay occurs most probably to the same
vibrational substate of the ground state |g, nr,z−1⟩. The net effect of such a scattering
process therefore is a transition to the next lower vibrational quantum number. The
zero point energy of the ion in the trapping potential cannot be underscored by
cooling, Ekin >

1
2ℏζr,z (for the Yb+ ion it is Ekin > 2 neV). However, the uncertainty

of the kinetic energy, and the temperature T given by (43.51) have no lower limit
[367].

At every absorption process, free particles carry away the momentum of the pho-
tons ℏk. The recoil of a free Yb+ ion corresponds to the frequency shift ε/2π =
5.3 kHz. On a narrow transition, it yields a resonance at the frequency ε. For trapped
ions, this is not the case, because the momentum is absorbed by the whole trap (see
analogy to the Mößbauer effect).

43.2.3.3 Stimulated Raman sideband cooling

We may use two lasers detuned far from resonance to couple two vibrational states.
However, additional dissipation by optical pumping is still required.

Numerous schemes have been tested to cool neutral atoms in optical lattices. For
the schemes to work, the ion should be already in the Lamb-Dicke regime. Otherwise,
transitions with transfer of higher vibrational quantum numbers nr,z are possible
during spontaneous emission. The Lamb-Dicke limit is set by kr < 1, or,

⟨n⟩ = mωtrap
2ℏk2

. (43.52)

This means that higher trap frequencies ease the required temperature at which side-
band cooling can start to work.

43.2.4 Adiabatic cooling of an optical lattice

Adiabatic cooling by [701] in 1D. Defining the lattice constant Q0, the Boltzmann
factor fB ≡ e−ℏω/kBT , the initial thermal population πn = (1 − fB)fnB , the recoil

energy Erec ≡ ℏ2k2

2m ,

kBT

2
=
∑

n

πn
ℏQ0

∫

(n+1)thBloch band

p2

2m
dp = 2

∑

n

πn
ℏQ0

∫ (n+1)ℏQ0/2

nℏQ0/2

p2

2m
dp (43.53)

= 2Erec

(
Q0

k

)2 ∞∑

n=0

πn
3n2 + 3n+ 1

24
= Erec

(
Q0

k

)2
1 + 4fB + f2B
12(1− fB)2

. (43.54)

Furthermore,

fB =
n̄

1 + n̄
⇐⇒ n̄ =

fB
1− fB

.
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43.2.5 Exercises

43.2.5.1 Ex: Optical molasses

Optical molasses are created (in one dimension) by two beams counterpropaganting
lasers tuned to red of an atomic transition. Each of the laser beams exerts on the
atoms the radiative pressure force F± = ℏk Γ

2
s

[2(∆±kv)/Γ]2+1+s
. ∆ is the detuning of

the laser, ν is the velocity of an atom.
a. Show that for small velocities (|kv| ≪ Γ and ∆ ≤ Γ) the optical molasses can be
understood as a friction force and calculate the friction coefficient.
b. Heating processes caused by spontaneous emission limit the minimum temperature
that can be reached in optical molasses. Calculate the laser tuning, where the tem-
perature reaches its minimum value and specify the cooling limit.
Help: Suppose a one-dimensional molasses and assume, that the spontaneous emis-
sion only happens along this dimension. The heating rate follows from the scat-

tering rate R through
(
dE
dt

)
heat

= d
dt
⟨p2⟩
2m = ℏ2k2

2m 2R, the cooling rate follows from(
dE
dt

)
cool

= Fv.

Solution: The force exerted on an atom is,

F = F+ − F− = ℏkΓs

(
1

[2(∆ + kv)/Γ]
2
+ 1 + s

− 1

[2(∆− kv)/Γ]2 + 1 + s

)

= ℏkΓ
s

2

−16∆kv/Γ2

[(2∆/Γ)2 + (2kv/Γ)2 + 1 + s]
2 − (4∆kv/Γ)2

A first order Taylor expansion gives,

F (ν) = F (0) + v
∂

∂ν
F (0)

= 0 + v


ℏkΓ

s

2

−16∆k
Γ2

[((
2∆

Γ

)2
+
(
2kvΓ

)2
+ 1 + s

)2
−
(
4 δkvΓ

)2
]
+ 16∆kv

Γ2
∂
∂zdenominator(ν)

[((
2∆

Γ

)2
+
(
2kvΓ

)2
+ 1 + s

)2
−
(
4∆kv

Γ

)2
]




ν=0

= −αdv

when

αd = 4ℏk2s
2∆/Γ

[(2∆/Γ)2 + 1 + s]
2 .

We find the maximums of the coefficient of friction for 0 = dαd/d∆ at the detunings

∆m = ±Γ
√

1+s
12 :

αd(∆m) =
√
3ℏk2s(1 + s)−3/2

s≪1−→
√
3ℏk2s .

b. The stationary temperature is reached when the cooling and heating rates are bal-
anced

(
dE
dt

)
heat

= −
(
dE
dt

)
cool

. The cooling rate corresponds to the dissipated power,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_OpticalMolasses01.pdf
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(
dE
dt

)
cool

= Fv ≈ −αdv2. The heating rate is
(
dE
dt

)
heat

= d
dt
⟨p2⟩
2m = ℏ2k2

2m 2R, where

R = F++F−
ℏk = Γ I/Is

(2∆
Γ )

2
+1+ I

Is

is the scattering rate. Equalization gives,

kBTmi = mv2mi =
m
(
dE
dt

)
cool

αd
=
m
(
dE
dt

)
heat

αd
=
mℏ2k2

2m 2R

αd

=
mℏ2k2

2m 2Γ s
[(2∆/Γ)2+1+s]2

4ℏk2s 2∆/Γ

[(2∆/Γ)2+1+s]2

= ℏΓ
(2∆/Γ)2 + 1 + s

8∆/Γ
≈ ℏΓ

4

(
2∆

Γ
+

Γ

2∆

)
.

This expression is minimized by ∆ = 1
2Γ, and we obtain kBTmi ≈ 1

2ℏΓ.

43.2.5.2 Ex: Atomic fountain

In atomic fountains atoms are accelerated upward by a ’moving optical molasses’.
After the molasses has been switched off, they perform a ballistic flight in the Earth
gravitational field. The moving molasses is generated by two pairs of counterpropa-
gating laser beams intersecting at right angle and oriented both at an angle of 45◦

with respect to gravity. The upgoing beams are tuned to the blue, and the counter-
propagating downgoing beams have the same detuning to the red side of the atomic
resonance (λ = 780 nm). Supposing that the resonator is close to the position of
the molasses and has with negligible length, what should be the detuning in order to
achieve 1 s time period between the two passages of the atoms through the microwave
resonator?

Solution: The Doppler shift is ∆ = kv = kv cos 45◦ = 2πν
λ
√
2
. Ballistic flight is

described by s(t) = − g2 t2 + ν(0)t, where s(t1 = 1 s) = 0. So we have...

43.3 Optical and magneto-optical traps

43.3.1 The magneto-optical trap

An apparently fatal obstacle to the confinement of particles by optical forces is Earn-
shaw’s optical theorem. This theorem states that, if a force is proportional to the light
intensity, its divergence must be zero because the divergence of the Poynting vector
expressing the directional flux of intensity is zero inside a volume without sources nor
sinks of radiation. The absence of divergence precludes the possibility of a restoring
force to the interior at all places of a closed surface [52]. However, Earnshaw’s optical
theorem can be bypassed by a clever trick. The internal degrees of freedom of the
atom (i.e., its electronic energy levels) can change the proportionality between the
force and the Poynting vector in a position-dependent manner, such that the opti-
cal Earnshaw’s theorem does not apply. Spatial confinement is then possible using
the radiative pressure force generated by counterpropagating light beams. The most
common trap configuration is based on a radial magnetic field gradient produced by
a quadrupolar field and three pairs of counterpropagating circularly polarized laser

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ChafarizAtomico.pdf


43.3. OPTICAL AND MAGNETO-OPTICAL TRAPS 2567

beams tuned to the red of an atomic transition and intersecting at right angles at
the point where the field is zero. This magneto-optical trap (MOT) uses the position-
dependent Zeeman shift of the electronic levels as the atom moves in the radially
increasing magnetic field. The use of circularly polarized light which is red-detuned
by about Γ results in a spatially varying transition probability, whose effect is to
produce a restoring force that pulls the atom back to the origin. To understand bet-

Figure 43.8: Left: Diagram of the energy level shift in an MOT, when an atom moves out of
the center of the trap. A restoring force is observed around the indicated resonance positions.
Right: Scheme of a typical MOT set up showing the six laser beams and the current-carrying
coils in anti-Helmholtz configuration producing the quadrupolar magnetic field.

ter how the trapping scheme works, we consider a two-level atom with a transition
J = 0→ J = 1 moving along the z-direction. We apply a magnetic field B(z) growing
linearly with the distance from the origin. The Zeeman shifts of the electronic levels
depend on the position,

∆B =
µBgFmF

ℏ
dB
dz
z ≡ ∂zωzeem , (43.55)

see Fig. 43.8. We also apply counterpropagating laser beams along the directions
±z with circular polarizations of opposite signs and tuned to the red of the atomic
transition. It is clear from Fig. 43.8 that an atom moving in ±z direction will scatter
σ∓ type photons at a faster rate than σ± type photons, because the Zeeman effect
will pull the ∆mJ = ∓1 transition closer to the laser frequency. The expression for
the radiation pressure force extends Eq. (43.26) to include the Doppler effect kvz and
the Zeeman effect,

F±z = −
ℏk
2
Γ

2Ω2

4(∆± kvz ± z∂ωzeem)2 + 2Ω2 + Γ2
. (43.56)

The atom will, therefore, feel a restoring force which pushes it back to the origin.
If the laser beams are red-detuned by an amount ∆ = −Γ, the Doppler shift of the
atomic motion introduces velocity-depending term to the restoring force, such that
for small displacements and velocities the total restoring force can be expressed by
the sum of a term which is linear in the velocity and a term which is linear in the
displacement,

FMOT = F1z + F2z = −αż − κz , (43.57)
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as we will study in Exc. 43.3.3.1. From Eq. (43.57) we can derive the equation of
motion of a damped harmonic oscillator with mass m,

z̈ +
2α

m
ż +

κ

m
z = 0 . (43.58)

The damping constant α and the spring constant κ can be written compactly in terms
of atomic parameters and the field as,

κ =
16ℏkΓΩ2∆∂zωzeem
4∆2 + 2 · 6Ω2 + Γ2

. (43.59)

and

α = κ
k

∂zωzeem
. (43.60)

Typical conditions for MOT are Ω = Γ/2, ∆ = −Γ. For typical MOTs,

α ≃ 2 · 10−22 Ns/m and κ ≃ 3.7 · 10−19 N/m . (43.61)

We can also estimate the curvature of the MOT,

ω =

√
κ

m
≃ (2π) 200Hz . (43.62)

Solve Exc. 43.3.3.2.

MOTs are realized with current-carrying coils in anti-Helmholtz configuration
which generates a quadrupolar geometry potential. Near the center, the magnetic
field and its absolute value are well approximated by,

B⃗ = q




x

y

−2z


 and |B⃗| = qB

√
r2 + 4z2 , (43.63)

with r2 = x2 + y2 and the gradient q ≡ ∂rB is a constant, which depends only on
the geometry of the coils and the current in them. Thus, the extension of the above
results to three dimensions is simple if we consider the fact that the gradient of the
quadrupolar field in the z-direction is twice the gradient in the radial directions x and
y, such that κz = 2κx = 2κy.The damping term, which proportional to the velocity,
implies that the kinetic energy E is dissipated from the atom (or a cloud of atoms)
as,

E/E0 = e−2αt/m , (43.64)

where m is the atomic mass and E0 the kinetic energy at the beginning of the cooling
process. Therefore, the dissipative force term cools the atomic cloud and, at the same
time, combines with the position-dependent term to confine it. The time constant for
the damping,

τ =
m

2α
(43.65)

is typically dozens of microseconds. It is important to keep in mind that a MOT is
anisotropic, since the restoring force is proportional to the anisotropic field gradients.
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Figure 43.9: Picture of a strontium MOT operated at 461 nm. The atomic cloud, which
consists of about 106 atoms at 5mK temperature is visible as a diffuse spot located inside a
three-mirror ring cavity.

Because of its dissipative non-conservative nature, it is is more accurate to characterize
a MOT by the maximum capture rate, rather than by a ’potential depth’.

In early experiments MOTs were loaded from a decelerated atomic beam. Later it
was shown, that the low-velocity tail of the Maxwell-Boltzmann distribution provides
a sufficient amount of atoms that can be captured by a MOT, so that it can be
loaded directly from an atomic vapor at room temperature. Now many groups in the
world use these assemblies for applications ranging from precision spectroscopy to the
optical control of reactive collisions; the MOT has become the working horse of atom
optics.

43.3.1.1 Density in a MOT

A typical MOT captures up to a billion atoms in a volume of a few 1mm3 resulting in
densities of ∼ 1010 cm-3. Although a MOT works as a versatile and robust ’reaction
cell’ for many applications, the frequencies of the light beams must be tuned close
to atomic transitions, which bears the disadvantage that a considerable fraction of
atoms remains in excited states. This fact is at the origin of two processes limiting the
density of a MOT: (1) losses of trapped atoms by collisions and (2) repulsive forces
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between the atoms caused by reabsorption of photons scattered within the cloud.
Collisional losses arise from two sources: (i) hot atoms of the residual gas inside the
chamber can elastically collide with cold atoms and kick them out of the MOT, and
(ii) cold atoms in excited states can undergo inelastic binary collisions. ’Photon-
induced repulsion’ or radiation trapping arises when a trapped atom spontaneously
emits a photon, which is then reabsorbed by other atoms. If the optical density of the
cloud is high, it can take a long time for the photon to find its way out 2. Since any
photon exchange between two atoms will increase their relative momentum by 2ℏk,
this leads to a repulsive force, which is proportional to the absorption cross section
for the incident light beam. When this repulsive force balances the confining force
exerted by the MOT, any increase in the number of trapped atoms augments its size,
but its density.

43.3.1.2 Dark SPOT

In order to overcome the ’radiation trapping’ effect, the atoms can be optically
pumped into a ’dark’ hyperfine level of the ground state that does not interact with
the MOT light. In a conventional MOT one usually employs an auxiliary light beam
called ’repumper’, copropagating with the MOT beams, but tuned to another transi-
tion between hyperfine levels of the ground and excited states. The repumper recycles
the population leaking out of the (not perfectly) cyclic MOT transition. As an exam-
ple, Fig. 43.10 shows the MOT and repumper transitions for sodium.

In contrast to this conventional MOT, the scheme known as the dark spontaneous
force optical trap (dark SPOT), passes the repumping beam through a glass plate the
center of which is obstructed by a small circular disk. The shadow of this disk is
projected into the center of the trap in such a way that the atoms in the center are
not repumped back into the cyclic transition, but spend most of their time (∼ 99%) in
’dark’ hyperfine levels. While the cooling and confinement force continue to operate
on the periphery of MOT, its center does not feel any radiation pressure. Dark SPOTs
are able to increase the density of a trapped cloud by almost two orders of magnitude.
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Figure 6.7: Hyperfine structure in sodium atom showing the usual cooling,
pumping, and repumping transitions.

red of resonance. The obvious advantage of large detunings is the suppression
of photon absorption. Note from Eq. 6.2 that the spontaneous force, involving
absorption and reemission, falls off as the square of the detuning while Eq. 6.8
shows that the potential derived from dipole force falls off only as the detuning
itself. At large detunings and high field gradients (tight focus) Eq. 6.8 becomes

U ' ~ |Ω0|2
4∆ω

, (6.39)

which shows that the potential becomes directly proportional to light intensity
and inversely proportional to detuning. Therefore at far detuning but high
intensity the depth of the FORT can be maintained but most of the atoms
will not absorb photons. The important advantages of FORTs compared to
MOTs are: (1) high density (∼ 1012 cm−3) and (2) a well-defined polarization
axis along which atoms can be aligned or oriented (spin polarized). The main
disadvantage is the small number of trapped atoms due to small FORT volume.
The best number achieved is about 104 atoms.

6.4.5 Magnetic traps

Pure magnetic traps have also been used to study cold collisions, and they are
critical for the study of dilute gas-phase Bose-Einstein condensates (BECs) in
which collisions figure importantly. We anticipate therefore that magnetic traps

Figure 43.10: Hyperfine structure in sodium atoms showing the usual cooling, pumping, and
repumping transitions.

2E.g. a photon at the center of the sun will take thousands of years to get out.
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43.3.2 Optical dipole traps

When temporal variations are to be applied to a confinement potential, magnetic
fields are not the best choice, because they are slow and of limited spatial resolution.
On the other side, laser beams can be varied quickly and in localized well. The dipole
force exerted by a far-detuned laser beam can be derived from the gradient of the
Rabi frequency F = −∇(d · E⃗). Hence, it can be derived from an optical potential,
which can be used for trapping. The force may be attractive (toward the intensity
maximum) or repulsive.

Compared to MOTs, optical traps (far off-resonance optical trap, FORT) are tuned
far away from resonances, where the population in excited states is insignificant and
spontaneous forces are absent. Note from Eq. (38.22), that spontaneous forces fall off
with the square of the detuning while the potential derived from the dipolar force only
decreases linearly with the detuning. The off-resonant optical density is negligible,
so that radiation trapping is not an issue. The most simple FORT consists of a
single focussed, linearly polarized gaussian laser beam tuned far to the red of an
atomic resonance. For large detunings and strong field gradients the Eqs. (38.24) and
Eqs. (38.25) become [547],

U(r) ≃ ℏΩ(r)2

4∆
=

3πc2

2ω3
0

Γ

∆
I(r) and ℏγsct(r) ≃ σa(∆)

I(r)

ω
=

3πc2

2ω3
0

(
Γ

∆

)2

I(r) ,

(43.66)
using the Rabi frequency ℏΩ = d12E , the dipole moment d12 =

√
3πε0ℏΓ/k3, and the

intensity I = ε0
2 c|E|2. This shows that the potential becomes directly proportional

to the light intensity and inversely proportional to the detuning. Therefore, at large
detuning but very high intensity, the depth of the FORT can be maintained, although
the atoms do not absorb photons. Important advantages of FORTs as compared to
MOTs are: (1) high densities (∼ 1012 cm-3) and (2) a well-defined polarization axis
along which the atoms can be aligned or oriented (polarization of the spins).

Since lasers beams can easily be manipulated in position, intensity, and frequency,
they can realize a large wide variety of possible geometries. For example, with a
focused laser beam, one may influence the local density of a condensate and stir
it around by moving the position of the laser beam. Strongly focused laser beams
are often used for transporting or manipulating microscopic objects in arrangements
called optical tweezers. And with standing light waves, it is possible to form periodic
optical lattices in one, two or three dimensions (see Sec. 46.4.2).

43.3.2.1 Spin relaxation

When the atomic ground state has a hyperfine structure, another relaxation mecha-
nism can be observed: Near-resonance Raman scattering can induce transitions be-
tween hyperfine states causing a population redistribution of between Zeeman sub-
states called spin relaxation. In magnetic traps, this can lead to losses, because not
all Zeeman substates are trapped.

The rate of an arbitrary scattering process starting from an initial state |F,m⟩
through several possible excited states |F ′j ,m′j⟩ to a final state |F ′′m′′⟩ is, according
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to the formula of Kramers-Heisenberg [895],

γFm→F ′m′ ∝

∣∣∣∣∣∣
∑

j

α
(F ′

jm
′
j)

Fm→F ′m′

∆F ′
jm

′
j

∣∣∣∣∣∣

2

. (43.67)

Far from resonance the scattering decreases as ∆2 for Rayleigh scattering, Fm =
F ′m′. Raman scattering, Fm ̸= F ′m′, is further suppressed by destructive interfer-
ence of the different scattering paths.

In the case of rubidium, we calculate,

γspin =
3c2ω4

8π

70

81
Γ2

∣∣∣∣∣

(
1

ωD1

)3
1

∆D1
−
(

1

ωD2

)3
1

∆D2

∣∣∣∣∣

2
I0
ℏω

. (43.68)

43.3.2.2 Potential of a Gaussian beam

The far-off resonance optical trap (FORT) is an example of an optical trap based on
dipole forces [547]. The intensity distribution of a gaussian beam with a diameter of
w0 at its waist is 3,

I(r) =
2P

πw2
0

e(−2x
2−2y2)/w2

0e−z
2/z2R , (43.69)

where P is the total power of the beam and zR ≡ πw2
0/λ the Rayleigh length at a

given wavelength λ. The dipolar potential is given by (43.66). Using the potential
depth,

U0 ≡
3πc2

2ω3
0

Γ

∆

2P

πw2
0

, (43.70)

which is U0 < 0 for red-detuned light, we can approach the potential near its center,
that is, near the optical axis, r ≪ 1

2w0, and within the range of the Rayleigh length,
z ≪ πw2

0/λ, by a harmonic potential 4,

U(r) ≃ U0e
(−2x2−2y2)/w2

0e−z
2/z2R ≃ U0

(
1− 2x2 + 2y2

w2
0

− z2

z2R

)
(43.71)

≡ U0 +
m

2
ω2
rr

2 +
m

2
ω2
zz

2 ≡ kBT
(
U0

kBT
+

r2

2r̄2
+

z2

2z̄2

)
.

This leads to the equivalences,

ωr = 2
w0

√
U0

m , ωz = 1
zR

√
2U0

m

r̄ = w0

2

√
kBT
U0

, z̄ = zR

√
kBT
2U0

. (43.72)

Solve Excs. 43.3.3.3 and 43.3.3.4.
3See script on Electrodynamics (2023).
4The diameter of a Gaussian beam can be characterized in several ways,

r̄1/
√
e-radius =

r̄1/e2-radius√
2

=
√
2 r̄1/e2-radius =

r̄1/2-radius

2 ln 2
,

and r̄-rms ≡ r̄1/
√
e-diam and r̄-hwhm ≡ r̄1/2-diam and r̄-diam = 2r̄-radius.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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Example 277 (Dipole trap for rubidium): The formulas (43.66) hold for a
two-level system. In case of the D1- and D2-lines of rubidium, we must consider
all contributions weighted by the respective detunings,

U0 ≡ σ0
ℏΓ
4

(
1

∆D1
+
gD2/gD1

∆D2

)
I0
ℏω
≃ 3ℏπc2

2ω2

Γ

∆

I0
ℏω

,

where gD2/gD1 = 2.
Similarly, the spontaneous emission rate is,

γsct ≃ πc2Γ2

2ω2

(
1

∆2
D1

+
gD2/gD1

∆2
D2

)
I0
ℏω

.

The spontaneous emission rate decays faster with detuning than the potential
depth. Thus, heating can be avoided by working at large detunings and provid-
ing higher laser intensities. Defining the recoil temperature by,

Trec =
ℏ2k2

kBm
,

the heating rate is [547],

Ṫ =
1

3
Trecγsct =

ℏ2k2

3mkB
γsct .
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Figure 43.11: (code) (left) Dipole potential created by a Gaussian beam. (right) Dipole

potential created by a stationary light wave.

43.3.2.3 Trapping in standing light waves

If both counterpropagating modes are pumped at different powers, P±, the intensity
distribution is,

I(r) =
2

πw2
0

e(−2x
2−2y2)/w2

0e−z
2/z2R

∣∣∣
√
P+e

ıkz +
√
P−e

−ıkz
∣∣∣
2

. (43.73)

Defining the contrast of the standing wave as,

Csw ≡
4
√
P+P−

(
√
P+ +

√
P−)2

, (43.74)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Dipoletraps.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Dipoletraps.m
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we can express the potential depth by,

U0 =
3πc2

2ω3
0

Γ

∆

2(
√
P+ +

√
P−)2

πw2
0

=
3πc2

2ω3
0

Γ

∆

8(
√
P+P−)2

πw2
0Csw

. (43.75)

Therefore, within the Rayleigh length, the potential is,

U(r) ≃ U0e
(−2x2−2y2)/w2

0e−z
2/z2R

P+ + P− + 2
√
P+P− cos kz

P+ + P− + 2
√
P+P−

(43.76)

≃ CswU0e
−2ρ2/w2

0
P+ + P− + 2

√
P+P− cos kz

4
√
P+P−

.

Neglecting terms containing higher powers of the coordinates than squared, we can
also write,

U(r) ≃ U0

(
1− 2x2

w2
0

− 2y2

w2
0

−
√
P+P−

(
√
P+ +

√
P−)2

k2z2 + ...

)
. (43.77)

This leads to the identities,

ωr = 2
w0

√
U0

m , ωz = 1
zR

√
2U0

m , ωlat = k
√

CswU0

2m

r̄ = w0

2

√
kBT
U0

, z̄ =
√
2
k

√
kBT
U0

.

(43.78)
Solve the Excs. 43.3.3.5, 43.3.3.6, and 43.3.3.7.

43.3.3 Exercises

43.3.3.1 Ex: Linearization of the MOT

Derive the friction coefficient and the spring constant for a MOT.

Solution: We use the following expressions,

σ(∆) =
σ0Γ

2

4∆2 + 2Ω2 + Γ2
and σ0 = 3

λ2

2π
and Ω2 = Γσ0

I

ℏω
and

I

Is
=

2Ω2

Γ2
.

For strong/weak saturation,

I

ℏω
σ(∆)

{
Ω≫∆,Γ−→ Γ

2
Γ≫Ω,Γ−→ Ω2

Γ

.

The scattering force is,

F =
I

ℏω
σ(∆)ℏk =

ℏkΓΩ2

4∆2 + 2Ω2 + Γ2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_LinearizacaoMot.pdf
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The trapping force in a MOT in z-direction (and analogously in x and y-direction) is
Fs = F+

z + F−z with,

F±z ≡
ℏkΓΩ2e−2

x2

w2−2
y2

w2

4[∆± kvz ± µBgFmF
ℏ ∂zB z]2 + 2Ω2[2e−2

y2

w2

2

−2
z2

w2 + 2e−2
y2

w2−2
z2

w2 + 2e−2
x2

w2−2
y2

w2

2

] + Γ2

.

In the trap center, x = y = z = 0, defining ∂zωzee ≡ (µBgFmF /ℏ) ∂zB,

F±z ≡
ℏkΓΩ2

4[∆± kvz ± ∂zωzee z]2 + 12Ω2 + Γ2
.

Now, we linearize for small Ω,

Fz(z, vz) = F (0, 0) + z
∂

∂z
F (0, 0) + vz

∂

∂vz
F (0, 0) + ...

= 0 + z
16ℏkΓΩ2∆ ∂zωzee
(4∆2 + 12Ω2 + Γ2)2

+ vz
16ℏkΓΩ2∆ k

(4∆2 + 12Ω2 + Γ2)2
+ o(z3) ,

such that,
Fz(z, vz) = −κz − αvz

with

κ ≡ 16ℏkΓΩ2∆ ∂zωzee
(4∆2 + 12Ω2 + Γ2)2

and α ≡ κ k

∂zωzee
and ω =

√
κ

m
.

Using typical parameters for a Na MOT Γ = (2π) 9.89MHz, λ = 589 nm, w0 =
0.64 cm, ∂zB = 2∂xB = 20G/cm, Is = 6mW/cm2, and I = 60mW/cm2, we find,

κ = 3.7 · 10−19 N/m

α = 2.2 · 10−22 Ns/m

ω = (2π) 500Hz .

43.3.3.2 Ex: Design of a Zeeman slower

In this exercise we will design a ’decreasing field Zeeman slower’ for strontium (see
also Exc. 34.6.7.3).
a. Calculate the mean velocity of atoms in a strontium gas heated to 500◦ C. What
is the Doppler shift for an atom moving at this velocity at the cooling transition at
λ = 461 nm (linewidth 30.5MHz)?
b. Assuming you want to decelerate a fraction of 20% of the atoms flying in a

particular direction, to what frequency should a counterpropagating laser (intensity
I = 20mW/cm2) be tuned in order to slow down the atoms?
c. Suppose the strontium atoms were always in resonance with the counterpropagat-
ing laser light while being decelerated. What would be the evolution of their Doppler
shift along their trajectory (supposed to be on a straight line antiparallel to the laser

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_DesignZeeman01.pdf
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Figure 43.12: Design of a Zeeman slower.

beam).
d. In order to maintain the laser always in resonance we need to compensate for the
diminishing Doppler shift along the atomic trajectory. This can be done exploiting
the Zeeman shift induced by a magnetic field. We will now design a magnetic field
generating an appropriate Zeeman shift. For simplicity, let us assume 5 identical ra-
dial solenoids distributed over L = 30 cm as sketched in Fig. 43.12, the only adjustable
parameters being the currents in all solenoids, which need to be optimized such as to
compensate the Doppler shift along the atom’s trajectory.
e. Simulate the 1D trajectory of an atom cooled by the Zeeman slower.

Solution: The results are shown in Fig. 43.13.
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Figure 43.13: Magnetic field in a Zeeman slower.

43.3.3.3 Ex: Dipole trap near an intercombination line

a. Strontium has a strong transition (Γ461 = (2π) 30.5 kHz) at 461 nm and a weak
intercombination resonance (Γ689 = (2π) 7.6 kHz) at 689 nm. A Gaussian laser
beam with the power P = 10mW focused to a waist of w0 = 100µm is tuned
∆689 = −(2π) 10GHz below the intercombination transition. Calculate the potential
depth and the vibration frequencies for atoms trapped by this laser beam considering
both resonances. What is the scattering rate on the two transitions.
b. Supposes that the trapped atomic cloud consists of N = 108 atoms at the temper-
ature T = 10µK. Calculate the atomic density n0 in the center of the cloud.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar01.pdf
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Solution: a. Based on the formula (43.70) we find for the potential depth,

U0,k =
3πc2Γk
2ω3

0∆k
I0 ,

with k = 461 ou k = 689, such that,

U0,461

U0,689
=

Γ461∆689

Γ689∆461
.

The scattering rate is,

γsct =

(
Γ461∆689

Γ689∆461

)2

.

43.3.3.4 Ex: Dipole trap with a focused beam

a. Calculate the vibration frequencies of 87Rb atoms confined in an optical trap con-
sisting of a focused laser beam with the power P = 10W and the beam diameter
w0 = 100µm. The laser beam is tuned 5 nm to the red side of the rubidium D1
resonance located at λ = 795 nm.
b. Assume that the trapped atomic cloud consists of N = 108 atoms at the tempera-
ture T = 100µK. Calculate the atomic density n0 in the center of the cloud.
c. The cross section for elastic collisions is σ = 10−12 cm2. How many times do atoms
meet on average?

Solution: a. The intensity of the beam is,

I(r, z) =
2P

πw(z)2
e−2r

2/w(z)2 with w(z) = w0

√
1 +

(
z

zR

)2

and zR =
πw2

0

λ
,

and I0 = 2P
πw2

0
= 64000W/cm2. For rubidium we have Γ = (2π) 6MHz. For ∆ =

−2π c
λ2∆λ = −2π × 2300GHz we expect an optical potential of,

U0 =
3πc2Γ

2ω3
0∆

I0 = h× 82MHz = 4mK .

If we approach the intensity profile harmonically, we obtain the secular radial fre-

quency, ωr =
√

2U0

m

√
2

w0
= 2π × 2 kHz, e axial, ωz =

√
2U0

m
1
zR

= 2π × 35 Hz.

b. At the specified temperature the cloud size is given by kBT = mω2
rr

2. Hence,

r̄ =

√
kBT

2U0

w0√
2
= 8µm and z̄ =

√
kBT

2U0
zR = 2.8mm .

The atomic density follows from the normalization condition,

n0 =
N

(2π)3/2r̄2z̄
= 3.5× 1013 cm-3 .

c. The collision rate is given by γcoll = σv̄n0 = 3.5 s-1 with v̄ =
√

kBT
m .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar02.pdf
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43.3.3.5 Ex: Optical lattice

A laser beam with wavelength λdip = 1064 nm, power P = 2W, and diameter
w0 = 50µm is subdivided into three retroreflected beams intersecting at right angles.
With this configuration we form a cubic optical lattice for strontium atoms, whose
relevant transition lies at λSr = 461 nm and has a decay width of ΓSr = (2π) 32MHz.
Calculate the potential depth and the secular frequencies.

Solution: The dipolar potential is,

Ud(r) =
3πc2Γ461

2ω3
461

1

ωd − ω461
I(r) ,

with a maximum intensity,

I0 =
2P

πw2
0

.

We expect a potential depth of,

U0 =
3πc2Γ461

2ω3
461

1

ωd − ω461
I0 ≃ kB · 20 µK ,

for the given parameters and a single laser beam. For superposed laser beams, the
effective intensity is the sum of all. Thus, as the laser is divided into three parts
before being superposed and retroreflected, we have twice the effective intensity and
twice the potential depth.
The secular frequencies depend on the geometry of the beam. Expanding the spatial
distribution of a single focused beam,

I(r, z) =
2P

πw2
0

e−2r
2/w(z)2 with w(z) =

√
1−

(
z

zR

)2

,

near the position r = z = 0, we obtain,

ωr =

√
2U0

m

√
2

w0
≃ (2π) 276Hz and ωz =

√
2U0

m

1

zR
≃ (2π) 0.57Hz ,

with zR = πw2
0/λ. For an optical lattice with lattice constant λ/2, we expand,

I(z) = cos
kz

2
,

and obtain,

ωz =

√
2
2U0

m
k ≃ (2π) 188 kHz .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar03.pdf
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43.3.3.6 Ex: Minimum optical lattice depth

Estimate the minimum required intensity of two counterpropagating laser beams
tuned 7GHz to the red of the strontium intercombination transition at 689 nm nec-
essary to sustain an optical lattice exhibiting a single vibrational level.

Solution: Approximating a lattice antinode by a harmonic potential, the condition
for having a bound state is,

U0 >
ℏωlat
2

using the results of Sec. 43.3.2,

U0 =
3πc2

2ω3
0

Γ

∆
4I and ωlat = k

√
U0

2m
.

Hence,

U0 >
ℏ2k2

8m
=
Erec
4

,

that is,

I >
ω3
0Erec
24πc2

∆

Γ
≈ 1.6W/cm

2
.

43.3.3.7 Ex: Ring shaped optical potential

An interesting system is the 1D array of annular optical potentials realized in a
standing wave formed by red-detuned Gaussian beam and a counterpropagating blue-
detuned doonat-mode. In general, the tight longitudinal confinement freezes out the
axial motion by quantum confinement. It can be readily shown [1388] that in the
far-off resonance case and if the potential is approximate by a harmonic potential
around its minimum the eigenenergy spectrum is given by,

Epq = U0 + ℏω(q + 1
2 ) +

ℏ2p2

2mR2
0

.

It thus reproduces the ro-vibrational spectrum of a 2D artificial molecule and gives
rise to two normal motions. In its ground state, we have the atom optical analog
of a 2D rigid rotator. Gravity plays formally the same role as static electric fields
for molecules. Such systems might be interesting for investigating the selection rules
for transitions between ro-vibrational states involving conservation of total angular
momentum of light and atoms and yield insight into the concept of orbital angular
momentum of light fields.

Solution:

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaDipolar04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaRinglattice.pdf
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43.3.3.8 Ex: Time-averaged trap

For sufficiently fast periodic displacements of a far-detuned laser beam it is possible to
engineer effective more complicated trapping potential. What are the conditions for
modulation speed? Simulate the effective trapping potential generated by a vibrating
laser beam.

Solution: The result is shown in Fig. 43.14.
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Figure 43.14: Effective potential in radial direction of a shaking dipole trap.

43.4 Magnetic traps

Purely magnetic traps are widely used in atom optics, where they served, e.g., for the
first realizations of Bose-Einstein condensation (BEC). The most important feature
that distinguishes magnetic traps is, that they do not need light to confine atoms.
Hence, they are free of heating effects caused by photonic absorption, which turned out
to be necessary condition for reaching BEC. Magnetic traps rely on the interaction
of atomic spins with magnetic fields and gradients designed to contain the atoms.
Depending on the sign of U and F, atoms in states whose energy increases or decreases
with the magnetic field are called ’low-field seekers’ or ’high-field seekers’, respectively.
One might think, that it should be possible to trap atoms in any of these states,
generating either a magnetic field minimum or a maximum. Unfortunately, only low-
field seekers can be trapped in static magnetic fields, because in free space magnetic
fields can not form maxima. Even though low-field seekers are not in the energetically
lowest hyperfine levels, they can still be trapped because the rate of spontaneous
emission through the magnetic dipole is ∼ 10−10 s-1, and hence completely negligible.
However, spin changing collisions can induce losses and limit the maximum densities.
Solve Exc. 43.4.6.1.

The most basic static magnetic trap for neutral atoms is generated by a pair of
current-carrying coils in anti-Helmholtz configuration (similar to the geometry used
for a MOT), producing an axially symmetric qudrupolar magnetic field. Since this
field configuration always has a central point, where the magnetic field disappears,
non-adiabatic Majorana transitions can occur when the atom passes through the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaShaking.pdf
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zero point. The transitions transfers population from a low-field seeking state to a
high-field seeker, which consecutively is expelled from the trap. This problem can
be overcome by using a different magnetic field geometries. One example is the so-
called magnetic bottle also called the Ioffe-Pritchard trap, where the minimum field
amplitude has a finite value different from zero. Other methods to eliminate the
zero-field point are time-varying potentials, such as the time-orbiting potential (TOP)
trap, or the application of an ’optical plug’, which consist in an intense dipolar optical
laser beam, tuned to the blue of an atomic transition, focused into the center of a
quadrupole trap where the magnetic field is zero, and repelling the atoms from this
area.

43.4.1 Quadrupolar traps and Majorana spin-flips

The most basic static magnetic trap for neutral atoms is generated by a pair of
current-carrying coils in anti-Helmholtz configuration producing an axially symmetric
quadrupolar magnetic field, as shown in Fig. 43.15.

Figure 43.15: (a) Quadrupolar magnetic trap generated by a pair of current-carrying wires
in anti-Helmholtz configuration. (b) Ground state energy levels of 23Na, 2S1/2, F = 1 as a
function of axial distance from the trap center. (c) Illustration of Majorana spin-flips: The
red atom passes through the hole, while the green one moves adiabatically avoiding the hole.

Close to the trap center an expansion of the magnetic field generated by anti-
Helmholtz coils yields,

B⃗ =




x

y

−2z


 ∂rB , (43.79)

where the field gradient ∂rB along radial direction r2 ≡ x2 + y2 in the trap center
depends on the applied current and the geometry of the coils. However, the 1:2 aspect
ratio is generic for all quadrupolar potentials, as we will see in Exc. 43.4.6.2. We easily
verify that,

∇ · B⃗ = 0 but ∇|B⃗| = ∂rB√
r2 + 4z2



x

y

4z


 . (43.80)

Thus, the quadrupolar magnetic potential is linear in the spatial coordinates,

U(r) = −|µ⃗||B⃗| = µBgJmJ ∂rB
√
r2 + 4z2 , (43.81)
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where 2∂rB = ∂zB.
To calculate the rms-radius r̄ of a cloud of temperature T confined to this potential,

we set,
kBT ≡ U(r̄, 0) = µB r̄∂rB , (43.82)

and obtain the density distribution,

n(r) = n0e
−U(r)/kBT = n0e

−
√
r2+4z2/r̄ . (43.83)

Normalization requires,

N =

∫

R3

n(r) d3r = n0

∫ ∞

−∞

∫ ∞

0

e−
√
r2+4z2/r̄2πr drdz (43.84)

= n02πr̄
2

∫ ∞

−∞

∫ ∞

2|z|/r̄
ξe−ξdξdz = n02πr̄

2

∫ ∞

−∞
e−

2|z|
r̄

(
1 + 2|z|

r̄

)
dz

= n02πr̄
3

∫ ∞

0

e−ζ(1 + ζ) dζ = n04πr̄
3 .

Therefore, the effective volume is, Veff = 4πr̄3. In application example is discussed
in Exc. 43.4.6.3.

43.4.1.1 Majorana spin-flips

The quadrupolar trap is the simplest one that can be technically realized. Unfor-
tunately, this trap is not stable because of the phenomenon of Majorana spin-flips,
which expel atoms from the trapped cloud. Since this field configuration always has
a central point, where the magnetic field disappears, non-adiabatic Majorana transi-
tions can occur when the atom passes through the zero point [see Fig. 43.15(c)]. The
disappearance of the field leaves the atoms disoriented, that is, ready to reorient their
spins. The transitions transfer population from a low-field seeking state to a high-field
seeker, which consecutively is expelled from the trap. This problem is particularly
severe for hydrogen, where it can induce a so-called relaxation explosion [618].

From (43.82) we get the rms-radius,

r̄ =
kBT

µB∂rB
. (43.85)

The average velocity of an atom is,

v̄ =

√
kBT

m
. (43.86)

In order for the atomic motion in the magnetic potential to be adiabatic [so that
Eq. (43.81) applies], the local Larmor frequency,

ωLarmor(r) =
µB
ℏ
√
r2 + 4z2∂rB (43.87)

must be faster, than any change the atom might experience due to its motion with
velocity v. I.e. we need [1018],

ωLarmor(r) >
v · ∇|B⃗|
|B⃗|

. (43.88)



43.4. MAGNETIC TRAPS 2583

For a quadrupolar trap, this can not be satisfied within a certain volume located at the
trap center, since the expression (43.88) divergence near the center. This ellipsoidal
volume is delimited by rsf given by the condition,

ωLarmor(rsf ) ≡
v · ∇|B⃗|
|B⃗|

. (43.89)

For our quadrupole trap,

v · ∇|B⃗|
|B⃗|

=
v · ∂rB√

r2sf+4z2sf

∂rB
√
r2sf + 4z2sf



xsf

ysf

4zsf


 =

xsfvx + ysfvy + 4zsfvz
r2sf + 4z2sf

. (43.90)

Considering for simplicity only radial motion, v = vêr, then by equating (43.87) and
(43.89),

µB
ℏ
rsf∂rB = ωLarmor(rsf ) =

v

rsf
, (43.91)

that is, the spin-flip volume is on the order of,

rsf =

√
ℏv

µB∂rB
. (43.92)

Let us now estimate the spin relaxation rate from the flow of atoms through the
volume,

1

τsf
= N

r3sf
Veff

v̄

rsf
, (43.93)

where r3sf/Veff is simply the fraction of the cloud’s volume overlapping with the
spin-flip volume. Then,

1

τsf
=

N

4πr̄3
r2sf v̄ =

N

4π
(

kBT
µB∂rB

)3
ℏv̄

µB∂rB
v̄ (43.94)

=
Nℏ

4π(kBT )3
(µB∂rB)2

kBT

m
=
Nℏ(µB∂rB)2
4πm(kBT )2

.

That is, the problem gets worse when the cloud is cooled to low temperatures.

43.4.2 Magnetic Ioffe-type traps

The spin-flip problem can be overcome by using a different magnetic field geome-
tries. One example is the so-called magnetic bottle, also called the Ioffe-Pritchard
trap illustrated in Fig. 43.16(a), where the minimum field amplitude has a finite value
different from zero. Other methods to eliminate the zero-field point are time-varying
potentials, such as the time-orbiting potential (TOP) trap illustrated in Fig. 43.16(b)
and discussed in Exc. 43.4.6.4 [417, 580], or the application of an ’optical plug’, which
consist in an intense dipolar optical laser beam, tuned to the blue of an atomic transi-
tion, focused into the center of a quadrupole trap where the magnetic field is zero, and
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Figure 43.16: (a) Magnetic trap in Ioffe-Pritchard configuration. (b) Time-Orbiting Poten-
tial (TOP) trap. (c) Death-circle in a TOP trap.

repelling the atoms from this area (see Fig. 43.24). The advantage of Ioffe-Pritchard-
type traps is that they are always harmonic sufficiently close to the trap center, which
simplifies the theoretical treatment in many respects, as shown in Exc. 43.4.6.5.

Close to the trap center Ioffe-Pritchard-type traps are described by,

U(r) = µBgFmF

√
B20 + (r∂rB)2 + (z∂zB)2 , (43.95)

and this magnetic trapping potential can be harmonically approximated by,

U(r) ≃ µBgFmF

(
B0 +

(r∂rB)2
2B0

+
(z∂zB)2
2B0

)
(43.96)

≡ const+ m

2
ω2
rr

2 +
m

2
ω2
zz

2 ≡ kBT
(
const+

r2

2r̄2
+

z2

2z̄2

)
,

where the rms-radius r̄ = ω−1r
√
kBT/m follow from the normalization of the density

n(r) = n0e
−U(r)/kBT to the number of atoms,

N =

∫
n(r)d3r = n0

∫ ∞

0

e−r
2/2r̄22πdr

∫ ∞

−∞
e−z

2/2z̄2dz = n0(2π)
3/2r̄2z̄ ≡ n0Veff .

(43.97)
The trap frequencies can be calculated as,

ωr,z =

√
µB(∂rBr,z)2

mB0
. (43.98)

The Earth’s gravitational field deforms the trapping potential and, in the case of a
harmonic potential, causes a gravitational sag without changing the secular frequen-
cies of the potential. Assuming the potential to be given by,

U =
m

2
ω2
rr

2 +
m

2
ω2
zz

2 −mgz = m

2
ω2
rr

2 +
m

2
ω2
z(z − g/ω2

z)
2 − m

2
g2/ω2

z , (43.99)

the atoms sag to a height of g/ω2
z . In time-dependent traps, gravity causes a more

complex behavior [573]. Important works have been done by [261, 1030, 421, 554, 5,
327, 776, 781, 357]. We study the impact of gravitation in Exc. 43.4.6.6.
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Figure 43.17: Creation of a repulsive hole by light tuned to the blue of an atomic transition.

43.4.2.1 Characterization of Ioffe-type traps

The ’time-of-flight’ density distribution is,

rToF =
√
r̄2 + v̄2t2ToF =

√
kBT

m

√
1

ω2
r

+ t2ToF ≃ tToF
√
kBT

m
. (43.100)

The phase space density is,

ρ = n0λ
3
dB =

N

(2π)3/2r̄2z̄

(
2πℏ2

mkBT

)3/2

= Nω2
rωz

(
ℏ

kBT

)3

= ζ(3)

(
Tc
T

)3

.

(43.101)
where ζ(3) = 1.202 is,

kBTc = ℏ
(
Nω2

rωz
ζ(3)

)1/3

(43.102)

is the critical temperature. The maximum collision rate is,

γcoll = n0σv̄ = n04πa
2
s

√
kBT

m
. (43.103)

The average collision rate can be obtained from,

γ̄collN =
1

N

∫
γcoll(r)n(r)d

3r =

∫
σv̄n2(r)d3r∫
n(r)d3r

. (43.104)

43.4.3 Radiative coupling and evaporative cooling

As we saw in the last section, optical cooling becomes ineffective when the density of
the gas is high. Hence, we need another dissipation mechanism to cool trapped atoms.
A method called evaporation has been proposed by Hess [616] for spin-polarized hy-
drogen (H↑) and was observed by Masuhara et al. [855]. Later, evaporation was used
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Figure 43.18: The basic idea of evaporation consists in removing hot particles from the
sample.

on alkali metals [5, 1018, 330]. A detailed review of the subject was published by
Ketterle and van Druten [711].

Another collision-based cooling mechanism is sympathetic cooling. The technique
was originally used in ion traps. Later it was applied to neutral atoms confined in
magnetic traps. The idea is to get the cloud under study into thermal contact with a
cold buffer gas. In some cases, the buffer gas may be optically or evaporatively cooled.
Sympathetic cooling has been used in magnetic traps to create double condensates
[939] and to cool fermions until the regime of quantum degeneracy [347].

43.4.4 Evaporative cooling

Evaporation always occurs when energetic particles abandon a system with finite
bonding energy, removing more than their share of average energy per particle. Here,
we consider the case of a finite-sized trapping potential, that is, the potential has an
edge or a beak through which hot atoms, with sufficient kinetic energy to reach that
region, may leave the trap. In the ideal case, this will lead to a complete truncation
of the hot tail of the equilibrium Maxwell-Boltzmann velocity distribution. If the
remaining system finds back to thermal equilibrium, it will do at a lower temperature.
The redistribution of kinetic energy between atoms leading to thermalization occurs
through elastic collisions.

43.4.4.1 Truncating the Boltzmann distribution

Let us first explain how the truncation leads to colder temperatures.
The objective is to calculate the Boltzmann distribution in a particular trap for

a given atom number N and temperature T . The first step is to obtain the density-
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Figure 43.19: Principle of (a) rethermalization due to elastic collisions and (b) evaporation.

of-states. For an isotropic harmonic trap ε = p2

2m + V (r) with V (r) = m
2 ω

2r2, it
is,

η(ε)dε =
1

(2π)3

∫

V

d3rd3k =
2π(2m)3/2

h3

∫

V

√
ε− V (r)d3rdε =

ε2dε

2(ℏω)3
. (43.105)

The atom density is,
n(ε) = e(µ−ε)/kBT = Ze−ε/kBT . (43.106)

From these expression we obtain the atom number,

N =

∫ ∞

0

n(ε)η(ε)dε =

∫ ∞

0

e(µ−ε)/kBT
ε2

2(ℏω)3
dε = Z

(kBT )
3

(ℏω)3
, (43.107)

which we may now use to calibrate the fugacity via

Z = N
(ℏω)3

(kBT )3
, (43.108)

which finally allows us to calculate the total energy,

E =

∫ ∞

0

εn(ε)η(ε)dε =

∫ ∞

0

εe(µ−ε)/kBT
ε2

2(ℏω)3
dε = 3Z

(kBT )
4

(ℏω)3
= 3NkBT .

(43.109)
The evaporation consists in truncating the distribution function n(ε) at some

energy ℏωrf . We get with β ≡ (kBT )
−1,

Ñ =

∫ ℏωrf

0

n(ε)η(ε)dε = N

(
1− 2 + 2βℏωrf + (βℏωrf )2

2eβℏωrf

)
(43.110)

and

Ẽ =

∫ ℏωrf

0

εn(ε)η(ε)dε = E

(
1− 6 + 6βℏωrf + 3(βℏωrf )2 + (βℏωrf )3

6eβℏωrf

)
. (43.111)

As the truncation removes the hottest atoms from the cloud, we loose atom number
and energy. Assuming the existence of some rethermalization mechanism, we may
now use the new values for N and T to calculate the new equilibrium Boltzmann
distribution starting all over from Eq. (43.106),

N ←− Ñ and T ←− Ẽ

3NkB
(43.112)
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Repeating this over and over the temperature will gradually reduce. The cooling
process can be speed up by readjusting the truncation frequency to the actual tem-
perature. This is called forced evaporation (see Fig. 43.20).

Figure 43.20: (code) (a) Forced evaporation by truncating the Boltzmann distribution over

and over again. (b) Evolution of the temperature and (c) of the phase space density with

number of remaining atoms.

43.4.4.2 Rethermalization

As already mentioned, rethermalization occurs due to elastic collisions. It needs
more or less three collisions per atom to rethermalize a cloud [914, 1394], so that the
collision rate determines the speed of the evaporation process. A large collision rate is
desirable to keep the evaporation process faster than trap loss processes. Evaporation
ramps between several seconds and a minute are typical.

The maximum rate of elastic collisions between trapped atoms (in the trap center)
is,

γcoll = n0σelv̄
√
2 ∝ ρ3N2/3 , (43.113)

where n0 is the peak density,
σel = 8πa2s , (43.114)

is the cross-section for elastic collisions and, v̄ being the average thermal velocity of
the cloud,

√
2v̄ is the average relative velocity between two of its atoms [710]. This

formula gives the average collision rate at the center of the cloud, where the density
is highest. To calculate the total collision rate, we need to integrate over the entire
volume of the cloud,

γ̄coll =
1
N

∫
γcoll(r)n(r)d

3r =

∫
σelv̄n

2(r)d3r∫
n(r)d3r

. (43.115)

For harmonic potential we find an average rate reduced by 2
√
2, for linear potentials

by 8. We verify this in Exc. 43.4.6.7. Finally, the rate for collision events is two times
smaller, as it involves two atoms at a time.

Obviously, the evaporation process slows down when the cloud cools more, unless
the edge of the potential is lowered, such that the hotter atoms of the colder cloud can

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Evaporation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Evaporation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_Evaporation.m
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be evaporated. By continually lowering the edge of the potential, while the atomic
cloud keeps on rethermalizing (this procedure is called forced evaporation) very low
temperatures in the nano-Kelvin regime can be achieved, and the phase space density
can be increased by many orders of magnitude (between a MOT and a BEC there are
6 orders of magnitude) up to the threshold of Bose-Einstein condensation. Of course,
this is only possible by sacrificing many hot atoms. Even with a well optimized
evaporation ramp (i.e., a controlled lowering of the potential edge), usually only some
0.1% of the atoms reach the condensation phase after about 500 collisions per atom.

Two aspects should be mentioned regarding the optimization of the evaporation
ramp. The first aspect is, that elastic collisions with atoms from the residual back-
ground vapor of the vacuum chamber limit the lifetime of the trap. Therefore, the
evaporation must be sufficiently fast, which requires either a high rate of elastic col-
lisions or a good vacuum. A compromise must be found between a slow but efficient
evaporative cooling and a minimization of the losses, which come into play when the
evaporation takes too long. The second aspect is, that the dimensionality of the evap-
oration surface determines the effectiveness of the cooling. In the first demonstration
of evaporation, H↑ atoms of a hot cloud were ejected over a saddle point. The saddle
was located a small region away from the trap center, and only atoms with sufficient
kinetic energy along a certain direction, Ez > Uedge, could leave the trap. In such
cases, evaporation is called one-dimensional. Even though ergodic redistribution due
to anharmonicities of the potential will drive, sooner or later, all the atoms to this
region, this effect becomes less pronounced when the cloud cools down, because the
atoms accumulate at the bottom of the approximately harmonic (and therefore sep-
arable) potential. This fact has inhibited efficient evaporation of H↑ below 120 µK
[466].

A second evaporative technique has been demonstrated in traps called time-orbiting
potential (TOP) [1018]. It is a feature of TOP traps to display a spatial region called
a ’death-circle’, where passing atoms are ejected from the trap. This fatal circle can
act as a 2-dimensional evaporation surface, provided the radius of the circle is large
enough [580]. However, under the influence of gravity the dimensionality is further
reduced to 1D [710].

The most successful evaporation technique implemented so far is based on a radia-
tive coupling of confined and free states. We discuss this technique in the following
sections. Publications on evaporative cooling are [819, 892, 1018, 1058, 127, 882, 914,
420, 425, 602, 948, 616, 855, 330, 711, 1393, 582, 848, 387, 618]. See ([297], Sec. 3.1.4)
for an overview.

43.4.4.3 Adiabatic decompression

The condition for adiabatic decompression of a trapping potential is,

|ω̇trap|
ωtrap

≪ ωtrap . (43.116)

The population of the quantized levels should not change under adiabatic decom-
pression, eℏωi/kBTi = eℏωf/kBTf , and the phase space density remains unchanged,
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niλdB,i = nfλdB,f . If this is true, then the temperature and density change as,

ωf
ωi

=
Tf
Ti

=

(
nf
ni

)3/2

. (43.117)

Solve Exc. 43.4.6.8.

43.4.4.4 Radiative coupling of internal state

The most successful evaporation technique implemented so far is based on a radia-
tive coupling of confined and free states. We discuss this technique in the following
sections. See ([297], Sec. 3.1.4) for an overview.

Figure 43.21: Illustration of evap-
orative truncation.

The radiative coupling technique originates
from an idea proposed by Pritchard et al. [582],
who have already had some experience with ra-
diofrequency spectroscopy in magnetically trapped
neutral atoms [848, 602]. The spatial dependence
of the Zeeman splitting is an intrinsic feature of
magnetic traps. Irradiation of a radio wave at a
certain frequency couples trapped and untrapped
Zeeman substates at a well-defined distance from
the trap center. This gives rise to a 3D evapora-
tion surface, where the passing atoms can undergo
Landau-Zener transitions and be expelled from the
trap. The technical advantages of this technique
are substantial: The magnetic trapping potential does not have to be manipulated,
for example, by the creation of a nozzle, and the potential edges can be easily con-
trolled by the radiofrequency. If evaporation is forced via a continuous reduction
of the radiofrequency and if the evaporation ramp is optimized, the density will in-
crease as well as the collision rate. Rethermalization will accelerate and initiate a
self-accelerated evaporation process (run-away evaporation). Rf-evaporation was first
demonstrated by Ketterle and colleagues [330]. Solve Exc. 43.4.6.9.

43.4.4.5 Adiabatic and diabatic limits of rf-induced evaporation

Rf-induced evaporation can be described within the formalism of the dressed atom
[277], where the different statesmF of an atom with spin F are coupled to an rf-field 5,
which we assume to be linearly polarized:

B(t) = Bêrf cosωt . (43.118)

The element of the coupling matrix between the levels, |F,mF ⟩ and |F,mF ± 1⟩ is,

Ω =
µBg

4ℏ

∣∣∣B⃗rf × êB

∣∣∣
√
F (F + 1)−mF (mF + 1) , (43.119)

where g is the atomic g-factor and êB the orientation of the local static magnetic
field.

5Alternatively, a microwave frequency may be used to couple different hyperfine levels.



43.4. MAGNETIC TRAPS 2591

The adiabatic potentials U(r) are obtained through the eigenvalues of the atomic
states dressed by the local magnetic field B(r). In the dressed atom picture, we
consider the total energy of the atom plus the field of N radiofrequency photons.
Without coupling, this simply means that Nℏω is added to the atomic Zeeman ener-
gies, resulting in a Zeeman pattern being vertically shifted by Nℏω for N = 0,±1, ...
At positions where the rf-field is in resonance, curves with ∆N = 1 intersect. Here,
the coupling develops an avoided crossing, which determines the pattern of adiabatic
energy levels [see Fig. 43.22(b)].
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Figure 43.22: (code) (Left) Potentials due to the Zeeman structure of an atom in the ground

state with F = 1. (Right) Adiabatic potentials resulting from the coupling of Zeeman

levels via radiofrequency radiation being resonant with the difference of Zeeman levels at the

position 0.7.

A slowly moving atom remains on the curve of an adiabatic potential. As an
example, let us assume an atom in the hyperfine state |F, F ⟩ moving away from the
center of the trap. When it comes close to resonance, the rf-field blends this state
with other mF -states, from the |F, F − 1⟩ down to the |F,−F ⟩ state, which changes
the slope of the potential curve. Beyond the resonance point, the atomic state is
adiabatically transformed into an untrapped high-field seeking state, and the atom
is repelled from the trap. Thus, while passing the avoided crossing, the atom has
emitted 2F rf-photons in a stimulated manner and inverted the orientation of both
the electron and the nuclear spin.

In this way the radiofrequency generates an adiabatic potential surface with a
depth of approximately |mF |ℏ(ω − ω0), where ω0 is the resonant rf-frequency at the
center of the trap. The evaporation process corresponds, then, to the removal of the
most energetic atoms out of the trap.

For this adiabatic picture to be valid, an adiabaticity condition must be fulfilled.
This condition requires that the energy difference at the avoided crossover be larger
than the energy uncertainty related to the limited time that an atom with velocity v
spends in the resonance region. For a two-level system coupled by a matrix element
V12 and an atom moving with velocity v along the z-axis, the transition probability
P between the adiabatic curves is given by the Landau-Zener formula [1114],

P = 1− e−ξ with ξ =
2π|V12|2

ℏgµB∂zBv
. (43.120)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_AdiabaticPotentials.m
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The Landau-Zener theory is strictly valid only for a two-level system, which we use
here only for a qualitative discussion of two following limiting cases.

For a weak rf-field, ξ ≪ 1, P is much smaller than 1, i.e., the atoms remain pre-
dominantly on the diabatic surface shown in Fig. 43.22(a). The probability for a spin
flip transition is, P ≈ t, which describes the diabatic limit of rf-induced evapora-
tive cooling: The atomic energy levels are almost unperturbed, the atoms often spill
across the resonance surface, and only after 1/P oscillations, they spin-flip from the
hyperfine state |F, F ⟩ to the |F, F − 1⟩.

The adiabatic limit is clearly the ideal situation for evaporative cooling. However,
the evaporation process in a trap (with oscillation time Tosc) saturates at a lower
rf-power. The condition for saturation is P ≈ Tosc/τel, where τel is the average time
between two collisions. This means that an energetic atom is evaporated before it
collides again.

Only the component of the magnetic field of the rf-radiation which is perpendic-
ular to the magnetic trapping field induces spin-flips. In certain geometries of the
confinement potential, for example the quadrupole trap, the magnetic field covers the
entire solid angle. Consequently, there are two points where the trapping field and
the rf-field are parallel and the elements of the transition matrix consequently zero.
Within an area around these points, the coupling is diabatic. In practice however, the
rf-transition can be sufficiently saturated that this area is small and does not strongly
affect the evaporation efficiency.

Note also that gravitation deforms the equipotential surfaces of the confinement
potential, which can reduce the evaporation efficiency [710]. Solve Exc. 43.4.6.10.

Figure 43.23: Effective potential due to a rapid modulation of the trap’s location.

Figure 43.24: Creation of a repulsive hole by light tuned to the blue of an atomic transition.
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43.4.5 Sympathetic cooling

The efficiency of evaporative cooling depends on the rate of interatomic collisions.
However, there are atomic species with unfavorable, that is, small or even nega-
tive scattering lengths. Also, while at low temperatures only s-wave collisions occur
(higher partial waves being frozen behind the centrifugal barrier), such collisions are
prohibited for fermionic gases. Fermions or species with unfavorable scattering lengths
can not be cooled by evaporation. There is, however, another technique called sym-
pathetic cooling by thermal contact with another species. The additional species is, in
general, actively cooled (e.g., by evaporation), while the species of interest is passively
cooled via elastic collisions with atoms of the additional species. Of course, for this
scheme to work the interspecies scattering length and the mass ratio must be adequate
to ensure adequate thermal coupling.

Following [935] the transfer of kinetic energy between two colliding atoms is re-
duced by a factor depending on the their mass difference,

ξ =
4m1m2

(m1 +m2)2
. (43.121)

Around 3/ξ collisions per atom on average are required for complete thermalization
of a gas. For example, for the Rb-Li mixture, we have 3/ξ = 12.4. The collision rate
is,

Γcoll = σ12v̄

∫
n1(r)n2(r)d

3r , (43.122)

where the average thermal velocity is,

v̄ =

√
8kB
π

(
T1
m1

+
T2
m2

)
. (43.123)

The instantaneous temperature is calculated by,

γtherm = − 1

∆T

d∆T

dt
, (43.124)

or via simulations: ∆T (t+ dt) = ∆T (t)−∆T (t)γthermdt. Following [346] the rether-
malization rate is connected to the collision rate via,

γtherm =
ξ

3

(
∆E1→2

N1kB∆T
+

∆E2→1

N2kB∆T

)
=
ξ

3

(
Γcoll
N1

+
Γcoll
N2

)
. (43.125)

Analytic solutions can be derived for harmonic traps. This will be studied in
Excs. 43.4.6.11 and Exc. 43.4.6.12.

43.4.6 Exercises

43.4.6.1 Ex: Lack of trapping potentials for strong field seekers

Show that it is not possible to create magnetic trapping potentials for atoms in low-
field seeking Zeeman states.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_BuscadorCampoforte.pdf
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Solution: Consider the potential,

U(r) = −α|B⃗|2 = −α(B2x + B2y + B2z) .
Now we calculate,

∇2|B⃗|2 = 2(|∇Bx|2 + |∇By|2 + |∇Bz|2 + Bx∇2Bx + By∇2By + Bz∇2Bz) .
Using

∇2B⃗ = ∇(∇ · B⃗) = ∇× (∇× B⃗) ,
and knowing, that in magnetostatics ∇ · B⃗ = 0 = ∇× B⃗, we find,

∇2|B⃗|2 = 2(|∇Bx|2 + |∇By|2 + |∇Bz|2) > 0 .

The same argument holds for the trapping potential,

U(r) = −α|B⃗| = −α
√
B2x + B2y + B2z .

43.4.6.2 Ex: Quadrupolar potential

Show that for a quadrupolar trap always holds 2∂rBqua = ∂zBqua.

Solution: Maxwell’s fourth equation gives,

0 = ∇ · B⃗ =
∂B⃗
∂x

+
∂B⃗
∂y

+
∂B⃗
∂z

= 2
∂B⃗
∂r

+
∂B⃗
∂z

.

43.4.6.3 Ex: Magnetic quadrupole trap

a. Consider 87Rb atoms confined in a magnetic trap with B⃗(x, y, z) = x y −2z ×
200G/cm. The atoms are in the state |F = 1,mF = −1⟩ with the g-factor gF = 1/2.
Check whether it is reasonable to assume constant vibration frequencies for such traps.
b. Assume that the trapped atomic cloud consists of N = 108 atoms at temperature
T = 100K. Calculate the atomic density n0 at the center of the cloud.
c. The cross section for elastic collisions is σ = 10−12 cm2. How many times do atoms
meet in the middle of the trap?

Solution: a. There are no oscillation frequencies in quadrupolar potentials.
b. We showed in class that the maximum atomic density in a quadrupolar trap is,

n0 =
N

(2π)3/2r̄2z̄
,

hence, we find n0 = 3.5× 1013 cm−3.

c. The collision rate is given by γcoll = σv̄n0 = 3.5 s-1 with v̄ =
√

kBT
m .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_PotencialQuadrupolar.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaQuadrupolar.pdf
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43.4.6.4 Ex: TOP trap

The TOP trap (time-orbiting potential) was the first design to allow for Bose-Einstein
condensation in 1995. It consists of the superposition of a quadrupolar magnetic field,
with the radial and axial gradients 2∂rBqua = ∂zBqua), and a homogeneous magnetic
field Btop rotating in the symmetry plane of the quadrupole field. Atoms which oscil-
late with an amplitude beyond a given radius rd, called the ’circle of death’, undergo
Majorana transitions and are expelled from the trap.
a. Calculate the radius of the death circle.
b. Plot the time-averaged ’effective’ trapping potential.

Solution: a. The death circle radius is,

rdeath =
Br,top
∂rBr,qua

.

The potential can be expressed as,

U(r) = −µ · Btop −
µ(∂rBqua)2

4Btop(r2 + 8z2)
,

the density with,

n(r) = n0e
−(r2+8z2)/2r̄ ,

and the actual volume as,

Veff ≡
N

n0
= π3/2r̄3 .

b. The result is shown in Fig. 43.25.
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Figure 43.25: (code) Effective potential in radial direction of a shaking dipole trap.

43.4.6.5 Ex: Harmonic trap

Calculate the vibration frequencies of 87Rb atoms trapped in a harmonic trap, when
the atoms are in the |F = 1,mF = −1⟩ hyperfine level of the ground state.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaTop.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_MagnTrapTOP.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_ArmadilhaHarmonica.pdf
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Solution: The potential is,

U(r) = −µBgFmF |B⃗| =
m

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) = kBT

(
x2

2x̄2
+

y2

2ȳ2
+

z2

2z̄2

)
,

and the density,
n(r) = n0e

−U(r)/kBT .

Normalization requires,

N =

∫
n(r)d3r = n0(2π)

3/2x̄ȳz̄ ≡ n0Veff .

The expressions for the potential give,

x̄ =

√
kBT

mω2
x

,

etc.. If we know the magnetic field through its curvatures, Bj”, that is, |B⃗| = B”xx2+
B”yy2 + B”zz2, we can calculate the frequencies:

ωx =

√
2µBgFmF

m
.

etc..

43.4.6.6 Ex: Gravitational sag in a trap

Consider (a) a quadrupolar trap and (b) an isotropic harmonic trap. What is the
gradient, respectively the curvature of the trapping potential required to suspend a
cloud of rubidium subject to gravitation? What is the sag of the cloud in the potential
due to gravitation?

Solution: a. The potential of a quadrupolar trap subject to gravitation can be written,

U(r, z) = µ∂rB
√
r2 + 4z2 +mgz .

We let r = 0,
U(0, z) = 2µ∂rB|z|+mgz .

The minimum of this potential stays at the same place z = 0, but the slope changes.
For 2µ∂rB < mg, the trap becomes unstable.
b. The potential of an isotropic harmonic trap subject to gravitation can be written,

U(r, z) = m
2 ω

2
rr

2 + m
2 ω

2
zz

2 +mgz .

We let r = 0. The position of the minimum is given by,

0 = ∂zU(0, z) = mω2
zz +mg .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_InclinacaoGravitacional.pdf
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The minimum of this potential is lower by z = g/ω2
z , but for any ωz, there is always

a place, where the trap is stable. We can rewrite the potential as

U(r, z) =
m

2
ω2
rr

2 +
m

2
ω2
z

(
z +

g

ω2
z

)2

+ const. .
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Figure 43.26: (code) Gravitational sag in a quadrupole and in a harmonic trap.

43.4.6.7 Ex: Mean collision rate

Assuming that the peak collision rate γcoll is known, calculate the average collision
rate (a) in a quadrupolar and (b) in a harmonic trap.

Solution: a. As shown in Eq. (43.83) and (43.97) the density of an atomic cloud
confined in a quadrupole trap is,

n(r) = n0e
−
√
r2+4z2/r̄

with n0 =
N

4πr̄3
and r̄ =

kBT

µBgJmJ∂rB
and N =

∫
n(r)d3r .

Hence,

γ̄coll =
1

N

∫
σelv̄n

2(r)d3r =
σelv̄

N

∫ [
N

4πr̄3
e−
√
r2+4z2/r̄

]2
d3r

=
σelv̄

N

N

4πr̄3
1

8

∫
N

4πr̄3
e−
√

(2r)2+4(2z)2/r̄d3(2r) =
σelv̄

N

N

4πr̄3
1

8
N =

γcoll
8

.

b. The density of an atomic cloud confined in a quadrupole trap is,

n(r) = n0e
−r2/2r̄2

with n0 =
N

(2π)3/2r̄3
and r̄ =

√
kBT

2µBgJmJ
and N =

∫
n(r)d3r .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_GravitationMagnetic.m
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Hence,

γ̄coll =
1

N

∫
σelv̄n

2(r)d3r =
σelv̄

N

∫ [
N

(2π)3/2r̄3
e−r

2/2r̄2
]2
d3r

=
σelv̄

N

N

(2π)3/2r̄3
1

23/2

∫
N

(2π)3/2r̄3
e−(
√
2r)2/2r̄2d3(

√
2r) =

σelv̄

N

N

4πr̄3
1

23/2
N =

γcoll
23/2

.

43.4.6.8 Ex: Adiabatic compression

How does temperature change upon adiabatic compression of (a) a quadrupole trap
and (b) a harmonic trap. How do density, phase space density, and elastic collision rate
vary. Help: Define the compression for quadrupole trap as η ≡ ∂rBr,final/∂rBr,initial
and for harmonic trap as η ≡ ωr,final/ωr,initial.

Solution: a. We have already shown in a previous exercise that the e−1 radius r̄
of a cloud in a quadrupole trap is,

r̄ ≡ kBT

µBgFmF∂rB
and the density,

n0 =
N

(2π)3/2r̄2z̄
.

As the phase space density can not change when we make adiabatic variations, ρ =
n0λ

3
therm = const, the density changes with the temperature as n0 ∝ λ−3therm ∝ T 3/2.

We also know v̄ =
√
kBT/m, such that the collision rate is γ = σv̄n0 ∝

√
TT 3/2.

Thus, the density and temperature change with the pressure as,

η =
∂rBr,final
∂rBr,initial

=
Tf r̄i
Tir̄f

=
Tfn

1/3
f

Tin
1/3
i

=
T

3/2
f

T
3/2
i

=
nf
ni

=
γ
3/4
f

γ
3/4
i

.

b. We have already shown in a previous exercise that the rms-radius r̄ of a harmoni-
cally trapped cloud is,

r̄ ≡
√
kBT

mω2
,

and the maximum density

n0 =
N

(2π)3/2x̄ȳz̄ .

With the same argument of (a) we find now,

η =
ωr,final
ωr,initial

=
T

1/2
f r̄i

T
1/2
i r̄f

=
T

1/2
f n

1/3
i

T
1/2
i n

1/3
f

=
Tf
Ti

=
n
2/3
f

n
2/3
i

=
γ
1/2
f

γ
1/2
i

.
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43.4.6.9 Ex: RF-antenna for radiative coupling

Calculate the Rabi frequency that can be generated by an rf-antenna consisting of
a single square loop with side length L = 2 cm on a cloud of trapped 87Rb atoms
located in the center of the loop on transitions between magnetic sublevels of the
F = 1 ground state hyperfine structure. Assume the antenna to carry an ac-current
with I = 1A amplitude.

Solution: The first step is to calculate the magnetic field generated at the position
of the cloud (assumed to be small). At rf-frequencies we can treat the magnetic field
as being quasi static, i.e. we apply the the Biot-Savart law. The result of a numerical
integration is shown in Fig. 43.27. We see that 1A of current amplitude in the square
loop generates a magnetic field of 0.28G amplitude.
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Figure 43.27: (code) RF-antenna for radiative coupling.

43.4.6.10 Ex: Landau-Zener transitions

Consider a rubidium-88 cloud in its ground state 2S1/2, F = 1,mF = −1 confined in
an isotropic quadrupolar potential with the gradient 200G/cm. To initiate an efficient
radiofrequency evaporation, you want atoms crossing the region where the radiofre-
quency couples the Zeeman states to make a transition to the untrapped Zeeman
state mF = 0 with 95% probability. What is the amplitude of the required magnetic
field.

Solution: When the sum of the kinetic and the potential energy of the atom is larger
than ℏωrf , the atom can climb the potential up to the distance R from the center,
where the Zeeman states suffer an avoided crossing. They follow the adiabatic path
with the Landau-Zener transition probability,

PLZ = 1− e−2πΩ2/
∂∆
∂R v ,

where the (co-rotating part of the) Rabi frequency is,

Ω = ⟨1, 0|d|1,−1⟩ B⃗rf
2ℏ
≈ µBBrf

6ℏ
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_RFAntenna01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_MagnTrapRFAntenna.m
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and the energy splitting along the radial axis (here we have B⃗rf ⊥ B⃗trap) is,

∆ =
µBBtrap

2ℏ
,

with ∂rBtrap = 200G/cm. The excess energy of atoms of 100µK temperature is,

v =

√
2Eexc
m

,

with Eexc = 1
2kBT . Using these relationships we need, in order to obtain efficient

cooling (PLZ > 95%), to fulfill,

Brf >
6ℏ
µB

√
∂R∆v

2π
ln(1− PLZ) ≈ 0.052G .

43.4.6.11 Ex: Damping in mixtures of species

From Eq. (43.125) derive the interspecies thermalization rate for harmonic potentials.

Solution: With the potential Vj(r) =
1
2mjω

2
rjr

2+ 1
2mjω

2
zjr

2 = kBTj
(
r2/2r̄2j + z2/2z̄2j

)

the densities are nj(r) = n0je
−r2/2r̄2j−z2/2z̄2j , and the integral is [927],

Γcoll = σ12v̄n01n02

∫
e−r

2/2r̄21−z2/2z̄21−r2/2r̄22−z2/2z̄22 d3r

=
σ12v̄n01n02(2π)

3/2

√
(x̄−21 + x̄−22 )(ȳ−21 + ȳ−22 )(z̄−21 + z̄−22 )

=
σ12v̄N1N2

(2π)3/2
√

(x̄21 + x̄22)(ȳ
2
1 + ȳ22)(z̄

2
1 + z̄22)

,

letting N = n0(2π)
3/2x̄ȳz̄. Defining m2ω

2
2 = β2m1ω

2
1,

Γcoll =
(m1ω

2
1)

3/2σ12v̄N1N2

(2πkB)
3/2

(T1 + T2β−2)3/2
.

Once more, according to [346], the rethermalization rate is,

γtherm =
ξ(N1 +N2)(m1ω

2
1)

3/2σ12
√
T1/m1 + T2/m2

3π2kB(T1 + T2β−2)3/2
.

For an anisotropic trap, we take the geometric mean of the trap frequencies, ω1 =√
ω1xω1yω1z. The scattering length then follows from,

|a12| =
√
σ12/4π .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_AmortecimentoMisturas01.pdf
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43.4.6.12 Ex: Damping in mixtures of species

Describe the damping in mixtures of species, and show how to use a measurement of
the damping time for a determination of the interspecies the scattering length.

Solution: The damping is described by two differential equations [439],

z̈1 = −ω2
1z1 −

4

3

m2

m

N2

N
γtherm(ż1 − ż2)

z̈2 = −ω2
2z2 −

4

3

m1

m

N1

N
γtherm(ż2 − ż1) ,

or in matrix form,




ẏ1

ż1

ẏ2

ż2


 =




− 4
3
m2

m
N2

N Γ −ω2
1

4
3
m2

m
N2

N Γ 0

1 0 0 0
4
3
m1

m
N1

N 0 − 4
3
m1

m
N1

N Γ −ω2
2

0 0 1 0







y1

z1

y2

z2


 ,

where γtherm = n12σ12v with n12 =
(

1
N1

+ 1
N2

) ∫
n1n2d

3r. Hence,

γtherm =

(
1

N1
+

1

N2

)
Γcoll .

43.5 Other traps

43.5.1 Ion traps

The electric charge of ions allow for their efficient manipulation and control by elec-
tric and magnetic fields exploiting the Coulomb-Lorentz force. In fact, the control
is so good, that it is possible to isolate and store individual ions or even arrays of
quantum entangled ions and to perform coherent operations on them, which quali-
fies them as quantum registers. Two different types of traps have been investigated.
In Penning traps [1014], electrically charged particles are subjected to a radially at-
tractive quadrupolar electrostatic field superimposed to an axial magnetostatic field
forcing the particles into closed circular orbitals 6. In the so-called radiofrequency
trap or Paul trap –Wolfgang Paul received the Nobel Prize in 1989 together with
Hans Dehmelt and Norman Ramsey– charged particles subjected to an alternating
electric field with quadrupolar symmetry. Hyperboloidal electrode configurations pro-
duce saddle-shaped potentials, as shown in Fig. 43.29, which are, at any instant of
time, parabolically repulsive in the one direction (axial or radial) and parabolically
attractive in the other (radial or axial). The alternating electric field causes a pe-
riodic reorientation of the Coulomb force, which leads to a time-averaged parabolic

6Note that purely electrostatic fields do not lend themselves to trapping, since the necessary
condition for the existence of minima in a potential, ∂i∂jϕ < 0, does not obey the Laplace equation.
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quasi-potential Φ(r, t). In this potential the particles perform harmonic oscillations at
characteristic frequencies, which are independent of the oscillation amplitude [1001]:

Φ(r, z) = Φ0(t)(r
2 − 2z2) , r2 = x2 + y2 , (43.126)

where the polarity is alternated at a radiofrequency Ωa,

Φ0(t) = Φdc +Φac cos(Ωat) . (43.127)

Φdc denotes the amplitude of the dc part of the voltage, Φac the amplitude of the ac
part. The potential Φ(r, z, t) exerts, in the temporal average, a central force on the
ion, if the radiofrequency field satisfies specific conditions.

Figure 43.28: Geometry of the Paul trap.

43.5.1.1 Evaluation of the stability diagram

Paul traps do not have to have perfect quadrupolar geometry. To determine the
secular frequencies of the pseudo-potential for an arbitrary geometry, we expand the
potential around the position r0 of the potential minimum, which depends on the
geometry of the electrodes and the applied voltages,

Φ(r) = Φa + (r− r0)∇Φ(r0) + 1
2 [(r− r0)∇]2Φ(r0) + ... (43.128)

≡ Φa[1 + br(r − r0)2 + bz(z − z0)2] .

In the last step, we assume that the potential has an almost cylindrical shape. For
a given geometry, the curvatures bz,r can be extracted from numerical simulations.
From the continuity equation, we find bz = −2br. The polarity of the electrodes is
modulated with frequency Ω,

Φ(r, t) = Φ(r)(ζ − cosΩt) . (43.129)

The equations of motion are derived from mr̈ = −e∇ϕ(r, t),

mr̈j + 2eΦabj(ζ − cosΩt)rj = 0 . (43.130)

Introducing the parameters a and q,

az =
8eϕabzζ

mΩ2
= −2ar and qz =

4eΦabz
mΩ2

= −2qr , (43.131)
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Figure 43.29: (code) Two-dimensional illustration of time-dependent potential: at each

instant of time the potential has the form of a saddle. The potential rotates around the

vertical axis at an appropriate pace.

we arrive at the so-called Mathieu equation [869, 446],

r̈j +
1
4Ω

2(aj − 2qjζ cosΩt)rj = 0 . (43.132)

These equations predict stable orbits, provided that the parameters a and q are within
the so-called stability diagram shown in Fig. 43.30.

According to these equations, the ion goes through oscillatory motions that are
defined by the trap parameters ai and qi. For the motion of the ion to be finite, its
oscillation amplitude may not exceed the boundaries defined by the electrodes. This
condition imposes an allowed regime for the trap parameters called stability diagram
[869].
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Figure 43.30: (code) Stability diagram.

In the limit |ai|, qi ≪ 1 the ion travels only a short distance s ≪ r0 during one
modulation period Ωa. Then the ion undergoes a slow periodic motion called macro-
motion within the trapping potential with the secular frequency ζi. This motion is
modulated by a rapid oscillation called micromotion, which is excited by the modula-
tion field Ωa. Without dc voltage applied between the ring and the endcaps, ai = 0,
the motion of the ion is described by the following simple equation:

ri(t) = r0i
(
1− 1

2qi cosΩat
)
cos ζit , ζi =

1√
8
qiΩa , i = r, z . (43.133)
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The orbit of the ion is confined to the inner region of the trap, if its kinetic energy is
less than mζ2r r

2
0 +Mζ2z z

2
0 . Since the trap is, at any instant of time, focusing in some

directions and defocusing others, it is not a conservative potential. The oscillatory
motion (disregarding micromotion) of the ion, however suggests a model, where the
trap is described by a pseudo-potential [446, ?] whose depth is,

Dz =
qz
8 eVac = 2Dr if ai = 0 . (43.134)
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Figure 43.31: (code) Simulated micro- and macromotion of an ion.

Other geometries, deviating from the perfect quadrupole, are possible for the elec-
trodes. These traps are also well described by equation (43.126), as long as the ion
is near the trap center. For example, higher order multipolar traps have been used
for trapping ion clouds [1357], as well as Paul-Straubl traps [1167] and storage rings
[1350]. Particularly important for the storage of arrays of cooled ions with applications
in quantum computing is the linear Paul trap [1055, 452, 1054], where immobilized
ions are aligned on a linear chain. The advantage of the linear trap, as compared to
other traps designed for many ions, is the easier optical access to individual ions by
focused laser beams and the possibility of canceling the micromotion.

43.5.2 Micromotion

The motion of an ion in a Paul trap is a superposition of two vibrations with the
respective oscillation frequencies Ωa (modulation frequency) and ζr,z (secular fre-
quencies for radial and axial direction vibrations). For an ion in thermal equilibrium
(i.e., without active cooling), the mean kinetic energies of the micro- and macromotion
are equal [150].

The macromotion can be reduced by cooling, in contrast to the micromotion,
which is constantly excited by the modulation of the applied electric field [267]. On
the other hand, the amplitude of the micromotion decreases with the distance of the
ion from the trap center and, in the minimum of the pseudo potential, disappears
completely. Therefore, to suppress the micromotion, it is imperative to cool the
macromotion and push the ion to the trap center, if necessary, using additional static
electric fields. Since the frequency of the micromotion is much higher than that of the
macromotion, the dynamic sidebands can be resolved on a sufficiently narrow optical
transition. When the modulation frequency Ωa is very high, the secular frequencies
of the macromotion are also high, so that even large optical transitions are able to
resolve the macromotional sidebands. This is called the strong coupling regime.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsPaulTrapSimul.m
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Because of Coulomb repulsion, only a single atom can be at the center of a Paul
trap, such that it is difficult to zero micromovement. One solution is to use a linear
trap, where the center is smeared out over a straight line. Solve Exc. 43.5.4.1.

Example 278 (Numerical calculation of the electric field created by a
charged surface): To calculate the trapping potential for a charged particle
held on top of a planar microtrap structure, we proceed as follows. The energy
of a charge in an electric field is H = −eΦ. The electrostatic potential is given
by Coulomb’s law,

Φ(r) =
1

4πϵ0

∑
n

∫
Vn

ρ(r′)

|r− r′|dV
′− 1

4π

∑
n

∫
Sn

Φn
r− r′

|r− r′|3 df
′+

1

4π

∑
n

∫
Sn

E⃗(r′)
|r− r′| ·df

′ ,

where ϕn is the voltage applied to the n-th boundary. In practice, electric fields
are generated by electrodes set to specific voltages. Using the Dirichlet boundary
conditions, we only retain the second term. Furthermore, to account for the
planar geometry of the chip electrodes, we only consider surface boundaries in
the y′ = 0 plane,

Φ(r) = − 1

4π

∑
n

Φn

∫
Sn

ydx′dz′√
(x− x′)2 + y2 + (z − z′)23

.

This implies that the field lines cross the chip surface orthogonally, which in
reality is only true if the chip electrodes cover the whole area. Therefore, we
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�rf

�4

10 m�

Figure 43.32: Possible design for a microchip ion trap. Φn are static potentials except for
Φ0, which is alternates sign with radio frequency.

only consider small gaps between the electrodes. We digitize the integral by
dividing every electrode Φn into a number of identical surface elements ∆fm,

Φ(r) = − 1

4π

∑
n,m

Φn
y∆fm√

(x− xm)2 + y2 + (z − zm)2
3 .

This formula can easily be evaluated numerically. A concrete example for a

microchip ion trap is shown in Fig. 43.32.

Example 279 (Numerical calculation of the magnetic field created by a
current wire): Current-carrying wires may exert Lorentz forces on the ions.
The magnetostatic field is given by the Biot-Savart law,

B⃗(r) = µ0

4π

∫
V

(r− r′)× j

|r− r′|3 dV ′ .
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Figure 43.33: (code) Two-dimensional cuts through the electric potential generated by the

microchip shown in Fig. 43.32 for Φrf = 100 V and Φj = 0.

In practice magnetic fields are created by current-carrying wires. Those can be
parametrized by one-dimensional currents, j =Iδ2ds, so that,

B⃗(r) = µ0I

4π

∫
C

ds′ × (r− r′)

|r− r′|3

|B⃗(r)| = µ0I

4π

∑
n

√
ds2y,n(z − zn)2 + ds2z,n(x− xn)2 + ds2x,n(y − yn)2√

(x− xn)2 + (y − yn)2 + (z − zn)23
.

can immediately be numerically solved.

43.5.2.1 Electronic detection of ions

The presence of ions in the trap can be probed through the damping that they induce
a coupled electronic resonance circuit [1356, 1362].

43.5.3 QUEST

Homonuclear atoms and dimers do not have a permanent electrical dipole moment,
but they may have a permanent magnetic dipole moment. Therefore, homonuclear
dimers must be confined by magnetic field gradients, or else an electric dipole moment
must be induced by an oscillating electromagnetic field. In the optical regime, this
was demonstrated with the quasi-electrostatic trap (QUEST).

In contrast, heteronuclear dimers are polar molecules with a permanent electric
dipole moment, which can be quite large if the molecules are deeply bound. According
to Earnshaw’s theorem, there is no static magnetic field maximum in free space. Thus,
no ’high-field seeking’ state can be trapped. In principle, QUEST-type dipolar optical

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsBecCalcs.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_IonsBecCalcs.m


43.5. OTHER TRAPS 2607

�

rf

Figure 43.34: Resonance circuit for electronic ion detection. The trap is operated by a
radiofrequency, while a DC voltage is scanned across the stability diagram. Simultaneously,
an oscillating field is tuned near one of the trap’s secular frequencies. When the stability
point is such, that the secular frequency coincides with the frequency of the oscillating field,
the motion of the ions is parametrically excited and the resonance circuit is damped. This
damping is detected by a narrow-band amplifier.

traps can also be used for heteronuclear dimers. The problem is, however, that in
contrast to homonuclear molecules, transitions between the vibrational ground state
levels are possible. Thus, the light generating the QUEST also induces transitions
leading to a redistribution of the population over all vibrational states.

Very far from resonance,

Udip(r) = −αstat
I(r)

2ε0c
. (43.135)

Loosely bound homonuclear molecules are subject to the sum of the restoring forces
exerted by magnetic traps on the individual atoms, µm = 2µa and dm = 2da. This is
also true for heteronuclear molecules as long as the trapping potential is much weaker
than the binding energy.

Example 280 (Permanent electric dipole moment of LiRb ): The inter-
action energy of two dipoles is,

Ĥint =
1

4πε0

p1 · p2 − 3(p1 · r̂)(p2 · r̂)
r3

.

Thus, two identical dipoles with 1Debye = 10−27/2.998Cm = 10−19/cCm2 / s =
39.36 eaB parallel oriented at a distance r = 1µm have the energy,

Ĥint =
1

4πε0

p2

r3
≈ h× 1.5MHz ≈ kB × 73µK .

For example, LiRb has an electrical dipole moment of between -2 and -4.2 Debye

depending on the vibrational state of the molecule.

43.5.4 Exercises

43.5.4.1 Ex: Coulomb repulsion in linear Paul trap

Coulombian repulsion prevents that two ions confined in a linear Paul trap be si-
multaneously in the ground state. Determine the spatial extent of the ground state

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_PaulTrap.pdf
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and the depth of the potential in the pseudo-potential approximation. What is the
equilibrium distance of the ions?

Solution: The size of the ground state is,

atrap =

√
ℏ

mωtrap
.

The Coulomb repulsion balances the potential energy. For two ions the equilibrium
distance is,

dCoul =

√
e2

πε0mω2
trap

.

Therefore two ions can share the ground state if atrap > dCoul. For this to happen, we
find ωtrap > 2π×1021 Hz! Also we didn’t account for micromotional heating which also
will occur. Then how about linear ion traps? Obviously, in the experiments carried
out thus far the ions settle down in chains and are well localized and distinguishable,
i.e. not condensed in an ionic condensate. And the reason for that is certainly not
fermionic statistics. The ions are apparently not in the longitudinal ground state of
the linear trap, but just in the transversal.

43.5.4.2 Ex: Motion of ions in a surface Paul trap

Programs on the motion of ions in a surface Paul trap.

Solution: IonBecCalcs1: Coulomb potential of point charges.
IonBecCalcs2: Dirichlet boundary problem, ion surface trap chip design.
IonBecCalcs3: Dirichlet boundary problem, ion surface trap chip design, improved
chip design, calculates curvatures.
IonBecCalcs4: Dirichlet boundary problem, ion surface trap chip design, improved
chip design, generates potentials and force fields.
IonBecCalcs5: Dirichlet boundary problem, ion surface trap chip design, planar waveg-
uide, mass spectrometer.
IonBecSimul1: Motion of a single ion in a Paul trap [237].
IonBecSimul2: Motion of a single ion in a chip trap.

43.6 Analysing techniques

To analyze the kinetic state of an atomic gas and, for example, to identify the presence
of a Bose-Einstein condensate, it is necessary to measure its spatial or momentum
distributions. However, the only way to gather information from the atoms is to throw
some kind of particles into them and to detect, where these particles are scattered.
The most suitable particle to penetrate an ultra-high vacuum chamber surely is the
photon. Therefore, apart from few exceptions where electron beams are used, all
information on ultra-cold gases has been obtained so far through their reactions to
incident laser beams [626, 238, 34, 670, 534].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_.pdf
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43.6.1 Time-of-flight imaging

The most common imaging techniques measure the absorption of a laser beam by an
atomic cloud after a time-of-flight or the dispersion of a laser beam induced by trapped
cloud. The amplitude E0 of a light wave traversing an atomic cloud of diameter L
and characterized by the refractive index η is modified by a factor eıωLη/c. For an
inhomogeneous cloud, we have,

E = E0eıωL/c exp
(
ı
ω

c

∫ ∞

−∞
(η(r)− 1)dz

)
. (43.136)

We can approximate the refractive index by the atomic susceptibility,

η =
√
1 + χ ≃ 1 +

χ

2
with χ = − 4πn(r)

k3(2∆/Γ + ı)
. (43.137)

where n(r) is the density distribution of the cloud. The imaginary part of the suscep-
tibility is related to the absorption coefficient α and the real part to the dispersion
coefficient δ,

Im χ =
α

ω/c
and Re χ =

2δ

ω/c
. (43.138)

Now, the absorption and dispersion coefficients can be related to the optical cross-
section σ(∆) defined in (22.102) [816], where ∆ is the detuning of light frequency from
an atomic resonance, whose linewidth is Γ. This result is called the optical theorem,

α = nσ(∆) and δ = nσ(∆)
∆

Γ
, (43.139)

Finally, we obtain the Lambert-Beer law,

E = E0eıωL/c exp
[
ıσ(∆)

(
ı

2
− ∆

Γ

)∫ ∞

−∞
n(r)dz

]
≡ E0eıωL/ce−b/2eıφ . (43.140)

For the intensity, I ∝ |E|2, we get,

I

I0
= exp

[
−σ(∆)

∫ ∞

−∞
n(r)dz

]
≡ e−b . (43.141)

The absorption b describes the loss of intensity for the laser beam due to scattering
by the (disordered) atoms. It is strong near resonance, but diminished quadratically
with the detuning ∆. The scattering is necessarily accompanied by radiation pressure
accelerating and heating the atoms. The dispersion φ describes the refraction of the
laser beam by the atomic density distribution (which for this purpose can be consid-
ered as continuous) [298, 458]. It disappears in resonance and diminishes slowly with
increased detuning (∝ ∆). It is connected to the dipole force and, thus, does not heat
the atomic cloud. The coefficient φ describes the phase shift of the electromagnetic
wave transmitted through the atomic cloud.
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Figure 43.35: Sequence of a typical time-of-flight experiment: As soon as the trapping
potential is suddenly switched off, the atomic cloud ballistically expands for 18 ms, before
it is illuminated by a short resonant laser pulse. The shadow printed by the cloud onto the
beam is photographed by a CCD camera.

43.6.2 Absorption imaging

Let us now detail the experimental process of absorption imaging (see Fig. 43.36):
The trap confining the atomic cloud is suddenly turned off, thus letting the atoms,
accelerated by the Earth’s gravitation, fall for a flight time of a few ms. Then a pulse
of a resonant laser light, whose diameter is much larger than the size of the cloud,
is irradiated. The local attenuation of the beam intensity I ∼ |E|2 can be related
through the absorption b (also called optical density or optical depth) to the atomic
density via,

− ln
I(x, y)

I0
= b(x, y) = σ(∆)

∫
n(r)dz . (43.142)

The shadow printed by the atomic cloud on the transverse profile of the laser beam
is recorded by a CCD camera.

We have already noted that the absorption is accompanied by radiative pressure.
After some scattering events, due to the photonic recoil, the atoms have accumulated
a sufficiently large velocity, and therefore a sufficiently large Doppler shift, to be
out of resonance with the laser beam. Subsequent photons are no longer scattered
by the atoms and only contribute to increase the illumination of the CCD camera
without carrying any information about the presence of atoms. Consequently, it is
advantageous to use very short laser pulses. In addition, the intensity of the laser beam
should not saturate the transition in order to guarantee an optical cross-section, which
is independent of the intensity, and hence to guarantee the validity of the Lambert-
Beer law. Finally, the laser frequency must be tuned perfectly to resonance, ∆ = 0.
Otherwise, the interaction between the laser beam and the atomic cloud becomes



43.6. ANALYSING TECHNIQUES 2611

partially dispersive, which leads to a focusing or defocusing of the laser beam by
refraction and a distortion of the image making it impossible to estimate the size of
the cloud.

Figure 43.36: Absorption images after a time-of-flight allow to identify the presence of a Bose-
condensate through its characteristic momentum distribution. Shown are images (a,b) above,
(c,d) slightly below, and (e,f) well below the critical temperature for a Bose-Einstein phase
transition (figures [580]).

Fig. 43.36 shows examples of absorption images of an atomic cloud taken at differ-
ent stages of the evaporation process. Fig. 43.36(a,b) was taken at a temperature of
320 nK; the cloud is large and isotropic and therefore purely thermal. At 250 nK [see
Fig. 43.36(c,d)] an elliptically shaped part appears in the center of the thermal cloud.
And at 180 nK [see Fig. 43.36(e,f)] the thermal cloud almost completely disappeared
for the benefit of the condensate. A quantitative evaluation of the condensed fraction
is given in Sec. 44.1.4. Solve the Excs. 43.6.6.2 and 43.6.6.1.

43.6.3 Dispersive imaging

The absorption imaging technique is destructive, because of the involved ballistic ex-
pansion and also because of the radiative pressure exerted by the resonant imaging
beam, which accelerates and heats the atomic cloud. That is, the measurement pro-
cess messes up the distributions of the cloud, such that a second image taken after
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the first one will give different results. However, there is a non-destructive imaging
technique called dispersive imaging or phase contrast imaging. In this technique, the
laser light is tuned sufficiently far from resonance, |∆| ≫ Γ, for spontaneous emission
and heating induced by random photonic recoil to be negligible [34]. This permits to
take a series of consecutive images and create a movie of the temporal evolution of
the cloud. Another advantage of this technique is the low off-resonant optical den-
sity, which allows to take pictures of very dense clouds in situ, that is, while they are
confined in a trap.

Figure 43.37: Scheme for dispersive images.

The physical quantity which is measured by this method is the local phase shift of
the wavefront of the probe laser. Wavefront distortions are difficult to measure. To
transform the phase profile into an intensity profile, a method known from classical
optics called Schlieren method is used. It is based on the interference of the probe
beam with its distorted wavefront and a reference plane wave. In practice, there
are several possibilities. For dark-ground imaging, the part of the incident beam
not having interacted with the atoms is blocked behind the interaction zone (see
Fig. 43.37)

Īdg =
1
2 |E − E0|2 = I0

∣∣∣e−b/2+ıφ − 1
∣∣∣
2

(43.143)

b→0−→ I0φ
2 = I0b

∆2

Γ2
.

The intensity signal Īdg is quadratic in optical density b.
For phase contrast imaging, the part of the beam not having interacted with the

atoms receives a phase shift of λ/4 with respect to the part of the beam having
interacted with the atoms:

Īpc =
1
2 |E − E0 + E0e±ıπ/2|2 = I0

∣∣∣e−b/2+ıφ − 1 + e±ıπ/2
∣∣∣
2

(43.144)

b→0−→ I0(±1 + φ)2 ≃ I0
(
1± b∆

Γ

)
.

The intensity Īpc is linear in b and, consequently, more sensitive to weak signals.
Finally, a third technique, called polarization contrast imaging, detects the local bire-
fringence of the atomic cloud [188, 1125].

The imaging techniques shown so far only allow to visualize the instantaneous
density distribution of the atomic cloud n(r). If we are interested in other quantities,
we have to conceive the experiment in such a way, that the desired information leaves
its signatures in the density distribution. For example, to measure the excitation



43.6. ANALYSING TECHNIQUES 2613

frequencies of a condensate, which can perturb its shape and observe the subsequent
time evolution of n(r, t) via dispersive imaging [674, 883, 35, 712].

43.6.4 Reconstruction of column-integrated absorption images

Assume cylindrical symmetry n(r) = n(r, z), with r =
√
x2 + y2. Absorption images

are column-integrated, i.e. they are taken by integration along the x-axis,

I(y, z)

I0(y, z)
= e−σ

∫
n(r,z)dx = e−σf(y,z) . (43.145)

The radial density can be recovered by tomography [342, 389, 993],

n(r, z) =
1

(2π)2

∫
(Fyf)(κy, z)J0(κyr)dκy . (43.146)

This is called image reconstruction or Fourier reconstruction or inverse Abel transform
and will we studied in Exc. 43.6.6.3.

43.6.5 Condensable atomic species

Early work on BEC has been done by [1149, 93, 149, 248, 802]. Proposals for atomic
gases withe from [592, 1275, 1269]. An appropriate BEC candidate must fulfill a few
conditions: The transition wavelengths must be accessible by laser light, the level
scheme should exhibit a closed cycling transition for laser cooling and have a rea-
sonable pressure in gas phase. Furthermore, it is desirable to have a large HFS,
metastable electronic state, no trapping state, large positive scattering length, Fesh-
bach resonances. For sympathetic cooling it may be nice to have several isotopes of
the same element.

The most common elements are alkalis, alkali earths and noble gases. The following
gases have already been condensed 1H, 1He∗, 7Li, 23Na, 85Rb, and 87Rb [31], [329],
[189], [188], [1126], [301], [580], [585]. Investigations in 1Ne∗, 39K, 133Cs, xSr, xCr
and 40Ca are underway [1227], [556], [737], [1056], [1202], [113], [466].

43.6.6 Exercises

43.6.6.1 Ex: Lensing by cold clouds

The interaction of light with two-level atoms generates a susceptibility which gives
rise to a refraction index,

η(r) =

√
1− 4πn(r)

k3(2∆/Γ + ı)
,

where n(r) is the cloud’s density distribution and Γ/2π = 30.5MHz for strontium.
a. Calculate the phase-shift suffered by a light beam crossing an ultracold atomic cloud
(N = 105, T = 1µK) confined in an isotropic harmonic trap (ωtrp = (2π) 100Hz) as
a function of detuning.
b. Estimate the focal distance of the cloud for ∆ = −Γ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_DensidadeLensing.pdf
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Solution: a. The density distribution is,

n(r) =
N

(2π)3/2r̄3
e−r

2/2r̄2 with r̄ =

√
kBT

mω2
trp

.

The phase shift is then,

φ =

∫ ∞

−∞
n(0, 0, z)σ(∆)

∆

Γ
dz =

3λ2

2π

Γ2

4∆2 + 2Ω2 + Γ2

∆

Γ

N

(2π)3/2r̄3

∫ ∞

−∞
e−z

2/2r̄2dz

=
3Nλ2

(2π)5/2
∆Γ

4∆2 + 2Ω2 + Γ2

mω2
trp

kBT

√
2π =

3N

k2
∆Γ

4∆2 + 2Ω2 + Γ2

mω2
trp

kBT
.

b. Let us assume that the phase shift is negligible for a beam passing at a distance r̄
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Figure 43.38: (code) Lensing.

from the cloud center. Then we estimate the focal distance f from,

φλ/2

r̄
= tan θ ≃ sin θ =

r̄

f

as,

f ≃ 2r̄2

φλ
≈ 1mm .

43.6.6.2 Ex: Optical density

A cloud of N = 106 87Rb atoms is prepared in a cylindrical harmonic trap char-
acterized by the axial vibration frequencies ωz = (2π) 50Hz and the radial one
ωr = (2π) 200Hz. The experimenter takes the absorption image after 18ms time-of-
flight, as shown in Fig. 43.36(a). A pixel of the CCD camera corresponds to 5µm in
real space.
a. At what temperature is the phase transition to Bose-Einstein condensate to be
expected?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Techniques_ImageLensing.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_DensidadeOptica.pdf
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b. Determine the temperature of the sample.
c. Evaluate its density distribution.
d. Evaluate the resonant optical density for the D2-transition at 780 nm along the
symmetry axis of the trapped cloud.

Solution: a. The critical temperature is Tc =
ℏ(ω2

rωz)
1/3

kB

(
N

1.202

)2/3
, giving Tc =

570 nK.
b. The cloud is purely thermal, since the distribution after ballistic expansion is
isotropic. From the image’s rms-diameter, r̄tof , we calculate the rms-diameter of

the velocity distribution, v̄ =
r̄tof
ttof

, and therewith the temperature, T = mv̄2

kB
. This

yields T = 17µK.
c. The thermal cloud is described by a Gaussian distribution, n(r) = n0e

−U(r)/kBT .
Normalization gives,

N =

∫
n(r)d3r = n0

∞y
−∞

e(−mω
2
rr

2−mω2
zz

2)/2kBT dxdydz = n0

√(
2πkBT

m

)3
1

ω4
rω

2
z

.

Or n0 = N

√(
m

2πkBT

)3
ω4
rω

2
z . This yields, n0 = 4.8 · 1011 cm-3.

d. The optical density is now,

b = 3
λ2

2π

∫ ∞

−∞
n(r)dz = 3

λ2

2π
n0

∫ ∞

−∞
e−mω

2
zz

2/2kBT dz = 3
λ2

2π
n0

√
2πkBT

mω2
z

.

This gives b = 44.8.

43.6.6.3 Ex: Inverse Abel transformation

Calculate the inverse Abel transform using Bessel of an arbitrary function in 2D.

Solution: MW AbelTrafo1: Inverse Abel transform using Bessel of a real Fermi
sphere. MW AbelTrafo2: Inverse Abel transform using Bessel of an arbitrary func-
tion in 2D. MW AbelTrafo3: Inverse Abel transform . MW AbelTrafo4: Forward Abel
transform, comparison with column integration and analytical formula. MW AbelTrafo5:
Forward Abel transform, comparison with column integration and analytical formula
in 2D.

43.7 Further reading

H.J. Metcalf and P. van der Straaten, Laser cooling and trapping [880]ISBN

Y.B. Ovchinnikov et al., A Zeeman slower based on magnetic dipoles [990]DOI

S.C. Bell et al., A slow atom source using a collimated effusive oven and a single-layer
variable pitch coil Zeeman slower [115]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Techniques_DensidadeAbel.pdf
http://isbnsearch.org/isbn/978-1-461-21470-0
http://doi.org/10.1016/j.optcom.2007.04.048
http://doi.org/10.1063/1.3276712
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Chapter 44

Thermodynamics of ideal
quantum gases

The journey of the quest for Bose-Einstein condensation (BEC) begins with its pre-
diction by Bose and Einstein in 1926. The first hint, that the condensation was more
than just a theoretical fantasy came from London [812], who linked the newly dis-
covered phenomenon of superfluidity in 4He to BEC. However, the interpretation of
the λ-point in terms of BEC was not obvious, because strong interactions between
particles concealed the role of quantum statistics, and the thermodynamic potentials
exhibited divergences at the critical temperature instead of discontinuities, as ex-
pected for an ideal gas BEC. These uncertainties triggered an intense search for other
systems. In 1954, Schafroth pointed out that electron pairs can be seen as composite
bosons and may form Bose-Einstein condensates at low temperatures [1149]. In 1957,
Bardeen, Cooper and Schrieffer developed the microscopic theory of superconductiv-
ity [93], after other researchers, including Blutt, Schaffrot, Fröhlich and Bogolubov,
had suggested a relationship of this phenomenon to Bose condensation of electron
pairs (nowadays called Cooper pairs).

Figure 44.1: Illustration of atomic Broglie waves. From the top to the bottom the temper-
ature of the atoms is decreasing.

Motivated by the need to test the concept of condensation of composite particles

2619
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in weakly interacting systems, in 1962 Blatt et al. proposed the investigation of the
BEC in gases of excitons [149]. Excitons are bound electron-hole pairs that can form
a weakly interacting gas in certain non-metallic crystals. They are interesting because
their small mass allows BEC at high temperatures and gas density can be controlled
over a wide range, by only modifying the intensity of the optical excitation. Being
quasi-particles, excitons can be created and annihilated, that is their number is not
conserved. Excitons were discovered in 1968, and the first evidence for Bose-Einstein
of biexciton molecules in a CuCl crystal dates back to 1979 [248].

The laser as coherence phenomenon between photons shares many analogies with
condensates. However, photons are quasi-particles as well, and again their number
is not conserved 1. Hence, there is no phase transition: When an optical cavity
containing photonic modes is cooled, the photons prefer to disappear in the walls of
the cavity instead of condensing.

Hecht [592] suggested in 1959, followed by Stwalley and Nosanow [1275] in 1976,
that an atomic hydrogen gas with polarized spins would be an appropriate candidate
for BEC. The advantage of this system is that interactions between atoms are weak
and only give rise to a negligible quantum depletion below 1%. In 1978 Greytak and
Kleppner started at the MIT intensive efforts to generate BECs in dilute hydrogen
gases. In the 1990s, important advances in the cooling of atoms using laser light
allowed to reach very low temperatures, and the invention of the magneto-optical trap
(MOT) for neutral atoms permitted their spatial confinement and the compression of
their density. These successes boosted efforts to try to create BEC in alkaline gases,
which have electronic level schemes that lend themselves to optical cooling. Later, it
was discovered that the phase space density in MOTs is limited by radiation trapping
effects. As a solution to this problem, scientists had to learn how to trap atoms
without the use of light in conservative traps, e.g. by their magnetic dipole moment,
and to replace optical cooling with evaporative cooling. This was the crucial step
that finally permitted to reach BEC in alkaline gases in 1995. Later, the hydrogen
experiment, which initially stimulated the alkaline experiments, now taking advantage
of their success, has been taken to BEC as well [466].

Why did it take so long to reach Bose-Einstein condensation, seven decades after
its prediction by Bose and Einstein? How can we see when we have a condensate?
What are the characteristics of a BEC accessible to observation and how to measure
them? These are the answers that we will answer in the following sections. Solve

Figure 44.2: Scheme of the Broglie wave of cold atoms. From top to bottom the temperature
decreases.

Exc. 44.1.5.1.

1The chemical potential of photons is µ = 0.
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44.1 Quantum statistics of an ideal Bose gas

The canonical approach to statistical mechanics begins with the probabilistic analysis
of Boltzmann’s velocity distribution of an ideal gas. For a gas consisting of particles
of mass m at temperature T , the velocity distribution is given by the well-known
Maxwell-Boltzmann law (MB) [641]

g(v) =

(√
m

2πkBT

)3

e−mv2/2kBT , (44.1)

where kB is the Boltzmann constant. Maxwell-Boltzmann’s law was experimentally
proven by Otto Stern in 1920, using a primitive atomic beam and a simple time-
of-flight technique based on a rotating drum for selecting atomic velocities. With
the advent of laser spectroscopy, the MB law and its limitations can be tested with
highly improved accuracy. This law describes well the behavior of weakly interacting
hot atoms. Deviations from this law are insignificant until, at low temperatures,
quantum effects come into play. For this to happen the temperature must be so
low that the atomic Broglie wavelengths become comparable to the average distance
between particles. For a gas in thermal equilibrium the characteristic wavelength,
called thermal de Broglie wavelength, is,

λtherm =

√
2πℏ2
mkBT

, (44.2)

where ℏ = h/2π is Planck’s constant. In a gas of density n, the mean distance between
particles is n−1/3. So, quantum effects are expected to emerge when n−1/3 ∼ λdB(T ),
such that the limit for this regime is defined by,

kBT (n) =
2πℏ2

m
n2/3 . (44.3)

For example, an atomic gas with density n ∼ 1016 cm-3 and temperature 900K is
certainly in the classical regime, since n−1/3 ∼ 106 cm ≫ λdB = 10−9 cm. To observe
quantum effects, we need relatively dense and cold clouds of atoms. In most gases,
lowering the temperature or increasing the density promotes the system to liquidity
before the quantum regime is reached. Well-known exceptions are spin-polarized
hydrogen (H↑), which does not become liquid and helium, which exhibits quantum
degeneracy effects in the liquid phase, although these effects are quite complex due
to strong interparticle forces.

We have already seen that all particles in the quantum world are either bosons with
integer spin or fermions with semi-integer spin. Fermions do not share a quantum
state, because they must follow the Pauli’s exclusion principle. They obey a quantum
statistical distribution called Fermi-Dirac distribution (FD). In contrast, bosons enjoy
to share a quantum state and even encourage other bosons to join them in a process
called bosonic stimulation. Bosons obey a quantum statistical distribution called
Bose-Einstein distribution (BE). The basic difference between the MB-statistics on
one hand and the BE- or FD-quantum statistics on the other is that the former applies
to identical particles which, however, are distinguishable from each other, while the
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second describes identical indistinguishable particles. For the BE/FD statistics one
can derive [726] the occupancy number for a non-degenerate quantum state having
the energy ε when the system is kept at temperature T ,

wT,µ =
1

(2π)3
1

eβ(ε−µ) ∓ 1
, (44.4)

where we used the abbreviation β ≡ 1/kBT . The upper sign refers to the BE statistics,
the lower sign to the FD statistics. The chemical potential µ is an important system
parameter, which helps to normalize the distribution (44.4) to the total number of
particles,

N =
∑

ε

wT,µ(ε) . (44.5)

Similarly, the total energy of the system is given by,

E =
∑

ε

εwT,µ(ε) . (44.6)

A very remarkable effect occurs in a bosonic gas at a certain characteristic critical
temperature Tc: below this temperature a substantial fraction of the total number
of particles occupies the lowest energy state, while all other states are occupied by
a negligible number of particles. Above the transition temperature the macroscopic
observables of the gas, such as pressure, heat capacity, etc., receive contributions of all
states with a certain statistical weight, but without favoring the state of lower energy.
Below the transition temperature, the observables are altered by a macroscopic occu-
pation of the ground state, which results in dramatic changes of the thermodynamic
properties. The phase transition is named after Shandrasekar Bose [181] and Albert
Einstein [410] Bose-Einstein condensation (BEC).

44.1.1 Condensation of a free gas confined in a box potential

One of the keys to understanding BEC is the behavior of the chemical potential µ at
very low temperatures. The chemical potential is responsible for the concentration of
a large number of atoms in the ground state N0. A system with a large number of non-
interacting bosons condenses to the ground state when the temperature approaches
zero, N0 → N . The Bose-Einstein distribution function (44.4) gives the population
of the ground state, ε = 0, in the zero temperature limit, N = limT→0(e

−βµ− 1)−1 =
−1/βµ, or in terms of the fugacity defined by,

Z ≡ eβµ , (44.7)

we may write, Z ≃ 1−1/N . It should be noted that the chemical potential in a bosonic
system must always be less than the ground state energy in order to guarantee non-
negative occupation wT,µ(ε) of any state. Z ≃ 1 denotes macroscopic occupation of
the ground state. We define the critical temperature for Bose-Einstein condensation
via the occupation of the ground state. Above this temperature the occupancy of
ground state is not macroscopic, below it is.
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For a Bose gas of N non-interacting particles with mass m confined inside a box
potential of volume V = L3 the critical temperature for BEC can be calculated
from equation (44.3). The boundary conditions require that the momenta satisfy
pj = 2πℏlj/L, where j = x, y or z and j are integers. Each state is labeled by a set
of three integers (lx, ly, lz). In the thermodynamic limit, the sum over all quantum
states can be converted into an integral over a continuum of states,

∑

r,k

N→∞−→ 1

ℏ3

∫
d3rd3p =

∫
d3rd3k . (44.8)

For a free gas with energy ε = p2/2m we can derive, simplifying the calculation
using the density of states η defined by (43.19), which basically depends on the ge-
ometry of our system 2. Using the occupation number wT,µ(ε) for the Bose-Einstein
distribution (44.4) in the thermodynamic limit and the density-of-states in a box
potential (43.22), let us calculate the total number of particles,

N = N0 +
x

wT,µ(ε(r,k))d
3rd3k = N0 + (2π)3

∫ ∞

0

wT,µ(ε)η(ε)dε (44.9)

= N0 +

√
2m

3

(2π)2ℏ3
V

∫ ∞

0

ε1/2dε

eβ(ε−µ) − 1
,

where the ground state population N0 is maintained explicitly. In the process of
converting the sum to an integral (44.8) the density of states disappears when we
approach the ground state. This error is corrected by adding a contribution of an
explicit term N0 to the integral.

44.1.1.1 Riemann’s zeta function

At this point, to help simplifying the notation, we introduce the Bose function and
its integral representation,

gξ(Z) =

∞∑

t=1

Zt

tξ
=

1

Γ(ξ)

∫ ∞

0

xξ−1dx
Z−1ex − 1

. (44.10)

where Γ(η) denotes the Gamma function. Analogically, we can define the Fermi
function via,

fξ(Z) =

∞∑

t=1

− (−Z)t
tξ

=
1

Γ(ξ)

∫ ∞

0

xξ−1dx
Z−1ex + 1

. (44.11)

For classical particles,

cξ(Z) =
1

Γ(ξ)

∫ ∞

0

xξ−1dx
Z−1ex + 0

= Z . (44.12)

A particular value is the Riemann zeta-function,

gξ(1) = ζ(ξ) . (44.13)
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Figure 44.3: (code) (a) Bose and Fermi functions for box potentials (g3 and f3) and for

harmonic potentials (g3/2 and f3/2). Also shown is the Boltzmann limit (44.12). (b) Riemann

function.

With this definition and the definition of the thermal Broglie wavelength (44.2),
Eq. (44.9) becomes,

N = N0 +
V

λ3th(T )
g3/2(e

βµ) . (44.14)

We can use Eq. (44.14) to calculate the critical temperature3 T
(3/2)
c defined forN0 ↗ 0

and µ→ 0. Above the phase transition, T > T
(3/2)
c , the population is distributed over

all states, each individual state being weakly populated. Below T
(3/2)
c the chemical

potential is fixed by µ = 0 and the number of the particles occupying the excited
states is,

Nth =
V

λ3th(T )
g3/2(1) = N

(
T

T
(3/2)
c

)3/2

, (44.15)

with g3/2(1) = 2.612. Since N0 + Nth = N , the number of particles in the ground
state is given by,

N0

N
= 1−

(
min(T, T

(3/2)
c )

T
(3/2)
c

)3/2

with kBT
(3/2)
c =

2πℏ2

m

(
N

V g3/2(1)

)2/3

,

(44.16)
N0/N is the fraction of the atomic cloud which is condensed in the ground state. The
abrupt occurrence of a finite occupation in a single quantum state at temperature

below T
(3/2)
c indicates a spontaneous change in the system and a thermodynamic

phase transition. Solve Exc. 44.1.5.2.

2We must, however, keep in mind that the state density approach is an approximation not valid
for experiments with a limited number of atoms.

3The superscript (3/2) denotes the box potential shape of the trapping potential. See 44.1.5.3 for
an explanation of the notation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseFermiFunction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseFermiFunction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseFermiFunction.m
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44.1.2 Condensation of a harmonically confined gas

The critical temperature T 0
c can be significantly altered, when the atoms are confined

to a spatially inhomogeneous potential. The critical temperature depends on the
general shape and the tightness of the potential. Let us consider N particles of an
ideal Bose gas distributed over several quantum states of an arbitrary potential. The
occupation number wT,µ(ε) of particles at an energy level ε is still given by (44.4),
the ground state energy is defined as zero. In the thermodynamic limit, the relation
between the chemical potential and the total number of particles is still given by
Eq. (44.9), with an adequate density of states η(ε). The state density for an arbitrary
confinement potential U(r) can be found by generalizing the calculation to the free
gas. The phase space volume between the energy surfaces ε and ε+dε is proportional
to the number of states in this energy range. However, the external potential limits the
space available for the gas. For a harmonic potential (43.18) with the mean secular
frequency ω̄ the density-of-states η(ε) has already been calculated in Eq. (43.21).
With this, we can analogically to (44.9) calculate,

N = N0 +
x

wT,µ(ε(r,k))d
3rd3k = N0 + (2π)3

∫ ∞

0

wT,µ(ε)η(ε)dε (44.17)

= N0 +
1

2(ℏω̄)3

∫ ∞

0

ε2dε

eβ(ε−µ) − 1
= N0 +

(
kBT

ℏω̄

)3

g3(Z) .

In the same way as for a potential well we find for a harmonic potential,

Nth =

(
kBT

ℏω̄

)3

g3(1) = N

(
T

T
(3)
c

)3

, (44.18)

with g3(1) = 1.202. Since N0 +Nth = N , the number of particles in the ground state
is,

N0

N
= 1−

(
min(T, T

(3)
c )

T
(3)
c

)3

with kBT
(3)
c = ℏω̄

(
N

g3(1)

)1/3

. (44.19)

The superscript (3) indicates the harmonic shape of the trap.
Fig. 44.4(left) traces the condensed fraction Nc/N measured as a function of the

reduced temperature T/T
(3)
c . Experiments [580, 417] confirm Bose’s ideal gas theory

in the thermodynamic limit.
We note that smaller trapping volumes (or tighter potentials) increase the critical

temperature Tc, thus allowing for quantum degeneracy at higher temperatures, which
can be advantageous in experimentation. Also, at a given temperature, a strongly
confining potential reduces the total minimum number of atoms required to reach
condensation.

44.1.3 Energy and heat capacity

When the number of atoms is limited, N < ∞, we expect a slightly reduced critical
temperature [551]. In addition, the interatomic interaction reduces the critical tem-
perature [72]. The technical resolution of most experiments today is not sufficient to
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Figure 44.4: Left: Condensed fraction Nc/N as a function of reduced temperature

T/T
(3)
c . The circles represent measured values. The upper solid line shows the theory

for an ideal gas, the intermediate solid line shows a curve fitted to the measurements,
and the lower part is a theoretical curve taking into account finite size effects and
interatomic interactions. Right: Measurement of the release energy [417].

permit the study of these effects. However, measurements of other thermodynamic
quantities such as energy and heat capacity [347, 417] showed significant deviations
from the ideal gas behavior due to interaction effects. Therefore, although tempera-
ture being the most basic variable of the thermodynamic state, the system needs to
be characterized by other quantities.

Heat is not a state variable because the amount of heat needed to raise the tem-
perature of the system depends on how the heat is transferred. The heat capacity
quantifies the system’s ability to secure its energy. In conventional systems, the heat
capacity is typically given either specified at constant volume or at constant pressure.
Together with this specification, heat capacities are extensive state variables. When
crossing a phase transition, the temperature-dependent heat capacity measures the
degree of change in the system above and below the critical temperature and provides
valuable information about the general type of phase transition.

The total energy E/N ≡ N−1
∫
ϵwd3xd3k per particle is given by,

E

N
=

∫
ϵwT,µ(x,k)d

3xd3k∫
wT,µ(x,k)d3xd3k

=

∫
ϵη(ϵ)(eβ(ϵ−µ) − 1)−1dε∫
η(ϵ)(eβ(ϵ−µ) − 1)−1dε

= 3kBT
g4(Z)

g3(Z)
. (44.20)

For a confined gas, volume and temperature are interdependent, and the concept of
pressure is somewhat vague. In this case, we can not refer to the heat capacity at
constant volume or pressure. However, one can define the heat capacity for a fixed
number of particles,

C(T ) =
∂E(T )

∂T
. (44.21)

Recalling the implicit dependencies of the thermodynamic variables on temperature,
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Figure 44.5: (code) Numerical calculation of thermodynamic potentials for a Bose gas as a

function of temperature for a given trapping potential. (a) Chemical potential, (b) energy,

(c) heat capacity per particle, and (d) total heat capacity.

we can evaluate (44.19):

C(T ) = β

∫ ∞

0

εf(ε)2ρ(ε)

[
µ′(T ) +

ε− µ
T

]
eβ(ε−µ)dε , (44.22)

where the derivative of the chemical potential approaching the phase transition from
above, T ↘ T 0

c , is

µ′(T+
c ) = − 1

T

∫∞
0
εf(ε)2ρ(ε)eβεdε∫∞

0
f(ε)2ρ(ε)eβεdε

. (44.23)

Calculating the second moments of the distributions obtained for the same density
by time-of-flight of absorption images, we obtain the kinetic energy,

U =

∫
p2

2m
n(p)d3p . (44.24)

For confined ideal gases, the virial theorem ensures Ekin + Epot = 2Ekin. For real
gases, the repulsive energy of the mean field adds to this energy, E = Ekin + Epot +
Eself . The sudden extinction of the trapping potential before time-of-flight takes away
the potential energy Epot non-adiabatically. The kinetic energy and the self-energy of
the condensate are fully converted into kinetic energy during ballistic expansion. It
is this energy, p2/2m = Ekin+Eself , which is sometimes called release energy, which
is measured after ballistic expansion 4. Fig. 44.4(right) shows a measurement of the
release energy. Solve the Exc. 44.1.5.3.

4It is interesting to measure the heat capacity of a partially condensed cloud near the critical
point and analyze the discontinuity, because it contains important information about interatomic
interactions and finite-size effects ([297], Seç. 3.4). In addition, the classification of Bose-Einstein con-
densation as a phase transition depends very much on the behavior of the thermodynamic potential
near the critical point [772, 641].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseThermPotentialsBox.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseThermPotentialsBox.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseThermPotentialsBox.m
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44.1.4 Distribution functions for a Bose gas

Bose-Einstein condensates consist of atoms sharing a single quantum state. In in-
homogeneous potentials, the condensate and the thermal fraction form spatially sep-
arated clouds, concentrated around the center of the potential and therefore very
dense. For this reason, interatomic interaction effects generally dominate the density
and momentum distribution of the condensed fraction. However, the non-condensed
(or normal, or thermal) fraction is also subject to modifications due to the bosonic na-
ture of the atoms. Since the density of the normal fraction is generally much smaller,
these modifications are weak. In this section, we will only discuss these effects briefly,
but we note that the calculations are analogous to the calculations for fermionic gases
presented in Sec. 44.2.4.

For an ideal Bose gas the density and momentum distributions are expressed by
Bose functions g3/2(z) [297]. For example, as will be derived in Exc. 44.1.5.4(a), the
density and momentum distributions are,

n(x) =
1

λ3dB
g3/2(e

−β[U(x)−µ])

n(k) =
a6trap
λ3dB

g3/2(e
β(µ−p2/2m))

bosonic distribution functions . (44.25)

In the classical limit, we can calibrate the chemical potential by Eq. (44.14) for a
box potential or by (44.17) for a harmonic potential,

g3/2(e
βµ)→ c3/2(e

βµ) = eβµ =





N
V λ

3
th for a box potential

c3(e
βµ) = N

(
ℏω̄
kBT

)3
for a harmonic potential

.

(44.26)
Hence, we obtain for the classical density distribution,

n(x) =
1

λ3th
c3/2(e

−β[U(x)−µ]) =
eβµ

λ3th
e−βU(x) (44.27)

=





N
V e
−βU(x) for a box potential

N
√

mω̄2

2πkBT

3

e−βmω̄
2x2/2 for a harmonic potential

.

Similarly, the momentum density distribution is given by,

n(k) =
a6trp
λ3th

c3/2(e
β(µ−p2/2m)) =

a6trpe
βµ

λ3th
e−βp

2/2m (44.28)

=





N
V a

6
trpe

−βU(x) for a box potential

Nℏ3
√

1
2πmkBT

3

e−βp
2/2m for a harmonic potential

.

We see that we recover the Maxwell-Boltzmann velocity distribution, as seen in
Fig. 44.6,

n(v) = n(k)
m3

ℏ3
= N

√
m

2πkBT

3

e−βmv
2/2 . (44.29)
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Figure 44.6: (code) (a) Density and (b) momentum distribution of a Bose gas (red) and a

Boltzmann gas (green) at T = 1.1Tc (solid line) and at T = 2Tc (dotted line).

44.1.4.1 Ballistic expansion

To describe the density distribution of an ultracold Bose-gas after a time-of-flight we
replace in the second Eq. (44.25): k = mr/ℏttof . We obtain the density distribution,

ntof (r, ttof ) =

(
m

ℏttof

)3

n(k = mr/ℏttof ) =
(

m

ℏttof

)3 a6trp
λ3th

g3/2(e
(µ−mr2/2t2tof )/kBT )

T→∞−→
(

m

ℏttof

)3

Nℏ3
√

1

2πmkBT

3

e−mr
2/2t2tofkBT =

N

(2π)3/2r3rms
e−r

2/2r2rms , (44.30)

where we defined,

rrms ≡
√
kBT

m
ttof . (44.31)

This distribution does not directly depend on the potential U(r), that is, the expansion
is isotropic. However, the chemical potential does depend on the potential. For very
long flight times (usually several 10 ms) the density resembles a Gaussian distribution
[297]. In Exc. 44.1.5.4(b) we determine the time-of-flight density distribution of an
ultracold Bose gas.

In a time-of-flight experiment, any deviation observed between the results (44.30)
and (44.31) points towards an impact of quantum statistics. However, absorption
images only record projections of the time-of-flight distribution on a plane.

44.1.4.2 Temperature and excitations

The temperature of a Bose condensate is given by the ratio of the numbers of con-
densed and thermal atoms. What about collective excitations in pure condensate?
Can they be cooled? In fact, an oscillating BEC is not in thermal equilibrium. How-
ever, in the presence of some dissipation mechanism the excitations may thermalize
evolving towards a steady state. Once the collective excitations have become thermal
excitations, they simply increase the thermal fraction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseDistributions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_BoseDistributions.m
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44.1.5 Exercises

44.1.5.1 Ex: Boson or fermion?

Whether an atom is a fermion or boson solely depends on its total spin. Half-integer
spin particles are fermions, integer spin particles are bosons. For example, Rb atoms
have in the ground state J = 1/2, I = 7/2 and F integer, and therefore are bosons.
Ca+ ions have J = 1/2 and no hyperfine structure, and thus are fermions. 6Li has
the half-integer F and is a boson.
Decide on the bosonic or fermionic nature of the following atoms/molecules:
85Rb with I = 3/2 in the state 2S1/2
88Sr with I = 0 in the state 1S0
88Sr with I = 0 in the state 3P2
87Sr with I = 9/2 in the state 1S0
172Yb+ with I = 0 in the state 2S1/2
171Yb+ with I = 1/2 in the state 2S1/2

Solution: 85Rb in the state 2S1/2 has the total spin F = 1 or F = 2 and is a
boson
88Sr in the state 1S0 has the total spin F = 0 and is a boson
88Sr in the state 3P2 has the total spin F = 2 and is a boson
87Sr in the state 1S0 has the total spin F = 9/2 and is a fermion
172Yb+ in the state 2S1/2 has the total spin F = 0 and is a boson
171Yb+ in the state 2S1/2 has the total spin F = 0 or F = 1 and is a boson

44.1.5.2 Ex: Monoatomic gas

Consider a classical monoatomic gas made up of N non-interacting atoms of mass m
confined in a container of volume V , at temperature T . The Hamiltonian correspond-
ing to an atom is given by Ĥ = (p2x + p2y + p2z)/2m.
a. Show that the atomic canonical partition function is ζ = V/λ3, where λ =
h/
√
2πmkBT is the thermal de Broglie wavelength.

b. Using ζ of the previous item, obtain the system’s partition function Z and the
Helmholtz free energy F . Also obtain the free energy per atom f = F/N in the
thermodynamic limit N −→∞, V −→∞, v = N/V fixed.
c. Obtain internal energy U and the gas pressure p.
d. Calculate the chemical potential and entropy per atom in the thermodynamic limit.

Solution: a. Be β = 1/kBT . The atomic canonical partition function is,

ζ =
1

h3

∫
e−βHdpxdpydpzdxdydz =

1

h3

∫
e−β(p

2
x+p

2
y+p

2
z)/2mdpxdpydpzdxdydz

=
V

h3

(
2πm

β

)3/2

= V

(
2πmkBT

h2

)3/2

=
V

λ3
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Thermodynamics_BosonFermion.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Thermodynamics_GasMonoatomico.pdf
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b. For a sample of N atoms we have Z = ζN

N ! =
V N

N !λ3N . With this,

F = −kBT lnZ = −kBT
(
N ln

V

λ3
−N !

)
.

Using the Stirling formula,

F = −kBT
(
N ln

V

λ3
−N lnN +N

)
= −kBTN

(
ln

V

Nλ3
+ 1

)
,

and
f = −kBT

(
ln

v

λ3
+ 1
)
.

c. The internal energy is,

U = − ∂

∂β
lnZ = −N ∂

∂β
ln ζ =

3N

2β
=

3N

2
kBT .

The pressure is,

p = −∂F
∂V

= kBT
∂

∂V
lnZ = kBT

N

V
.

d. The chemical potential is,

µ =
∂F

∂N
= −kBT

(
ln
V

λ3
− lnN

)
= −kBT ln

v

λ3
.

The entropy is

s =
∂f

∂T
,

or, using f = u− Ts, u = U/N ,

s =
u− f
T

= kBT

(
ln

v

λ3
+

5

2

)
,

which is the Sackur-Tetrode formula.

44.1.5.3 Ex: Generalization for arbitrary potentials in reduced dimen-
sions

The calculation of the thermodynamic potentials can be generalized to arbitrary trap-
ping potentials and dimensions [181, 410, 338, 73, 1405, 457, 74, 551, 615, 722, 711,
945, 772, 812, 417]. To do so, we consider a generic power law potential confining an
ideal Bose gas in α dimensions,

U(r) =
∑α

i=1

∣∣∣∣
xi
ai

∣∣∣∣
ti

,

and define a parameter describing the confinement power of the potential,

ξ =
α

2
+
∑α

i=1

1

ti
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Thermodynamics_DimensoesReduzidas.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Thermodynamics_DimensoesReduzidas.pdf
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For example, for a three-dimensional potential, α = 3. Now, for a 3D harmonic po-
tential, ξ = 3, and for 3D box potential, ξ = 3/2.
a. Calculate the density of states η using the equation (43.19) employing Bose func-
tions (44.10).
b. Prove the following expressions:

bosonic potentials

N0

N
= 1−

(
min(T, Tc)

Tc

)ξ

E

NkBT
= ξ

gξ+1(Z)

gξ(Z)

(
min(T, Tc)

Tc

)ξ

S

NkB
= 4

gξ+1(Z)

gξ(Z)
− 2µ

kBT

C

NkB
= ξ(ξ + 1)

gξ+1(Z)

gξ(Z)

(
min(T, Tc)

Tc

)ξ
− ξ2 gξ(Z)

gη−1(Z)
max(T − Tc, 0)

T − Tc
CT>Tc

NkB
= ξ(ξ + 1)

gξ+1(Z)

gξ(Z)
− ξ2 gξ(Z)

gξ−1(Z)
,

CT<Tc

NkB
= ξ(η + 1)

gξ+1(1)

gξ(1)
∆CTc

NkB
=

CT−
c
− CT+

c

NkB
= ξ2

gξ(1)

gξ−1(1)

.

Solution: a. The calculations are analogous to those performed for homogeneous
Bose-gases, and we restrict ourselves here to give the general results for the thermo-
dynamic quantities [72, 1405], e.g. the internal energy E and the heat capacity C. The
expression for the critical temperature for N confined particles in a generic power law
potential in α dimensions is,

T 0
c = k−1B

[
hα

(2πm)α/2
N

2α
1

gη(1)
∏α
i=1 aiΓ(t

−1
i + 1)

]1/η
.

To evaluate the temperature dependence of the thermodynamic variables, we can cal-
culate the fugacity Z(T ) = eβµ from the second of the above equations to E/NkBT
[641]. For T > Tc we derive fugacity as the root of gη(Z) = gη(1)(Tc/T )

η and for
T < Tc the fugacity is simply Z = 1.
b. It is especially interesting to compare the discontinuity of the heat capacity and its
a derivative ∂C(T )/∂T for several power law potentials and confinement dimensions,
since this may clarify the nature of the phase transition. The thermodynamic quanti-
ties take a particularly simple form for power law potentials.
It is also interesting to note that the jump in the heat capacity at the phase transition
is higher for any power law potential than for a potential well. This is due to the fact
that the increase of the gas’ energy requires work against the confinement potential.
Steeper potentials (i.e., smaller coefficients ti) give higher values for T 0

c . The critical
temperature also depends on the confinement power of the potential,

η = −T
0
c

N

(
dN0

dT

)

T=T 0
c

.



44.2. QUANTUM STATISTICS OF AN IDEAL FERMI GAS 2633

44.1.5.4 Ex: Time-of-flight distribution of a Bose-gas

a. Derive the formulae (44.25) describing the density and momentum distribution of
an ultracold Bose-gas.
b. Calculate the time-of-flight distribution of a Bose-gas as a function of temperature
(i) analytically for a harmonic potential and (ii) numerically for an arbitrary poten-
tial.

Solution: a. To start with, we need to know the trap’s geometry V (r). Let us first
assume a harmonic potential,

V (r) = m
2 ω

2
xx

2 + m
2 ω

2
yy

2 + m
2 ω

2
zz

2 .

From the time-of-flight picture we can determine the number of atoms N . We also
assume a given temperature T and proceed as follows. First we calculate the chemical
potential from the normalization condition N =

∫
n(e)ρ(e)de.

44.2 Quantum statistics of an ideal Fermi gas

Atoms are fermions or bosons, or depending on their spin is integer or semi-integer.
For example, 87Rb atoms with their total integer spin of F are bosons, while 40K
atoms having a half-integer spin are fermions. At high phase space densities, atoms
have to figure out how they will organize their coexistence. Bosons encourage each
other to occupy the same phase space cell, in contrast to the reluctant fermions,
which prefer to follow Pauli’s exclusion principle. The different behavior is described
by different quantum statistics that determine how the phase space (i.e., the available
energy levels) has to be filled by the atoms. The Bose-Einstein distribution is valid for
bosons, the distribution of Fermi-Dirac for fermions and both asymptotically approach
the Boltzmann distribution at high temperatures. We have seen that bosons undergo
a phase transition and condense in the ground state when the temperature is reduced
below a critical threshold. On the other hand, the fermions organize their phase
space, so that their energy levels are arranged like a ladder. The impact of fermionic
quantum statistics on a cold cloud of atoms were observed experimentally by DeMarco
and Jin [347, 966]. They cooled a two-components Fermi gas of 7 × 105 potassium
atoms down to 300 nK, which corresponded to 60% of the atoms populating energy
levels below the Fermi energy. The measured density distribution was found to deviate
from the one expected for an ideal Boltzmann gas 5.

44.2.1 Chemical potential and Fermi radius for a harmonic
trap

The phase space density for a degenerate Fermi gas has already been given in (44.4). In
the same way as for a Bose gas, the chemical potential must satisfy the normalization

5We note that meanwhile ultracold two-components Fermi gas have been demonstrated to form
bosonic Cooper-pairs, similarly to the phenomena known as superconductivity in some metals and
as superfluidity of the fermionic 3He.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Thermodynamics_BallisticBose.pdf
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condition,

N =
x

wT,µ(x,k)d
3xd3k = (2π)3

∫
wT,µ(ε)η(ε)dε (44.32)

=
1

2(ℏω̄)3

∫ ∞

0

ε2dε

eβ(ε−µ) + 1
=

(
kBT

ℏω̄

)3

f3(Z) .

In the last line, we inserted the density of the states into a harmonic potential (43.21)
and used the definition of the Fermi functions (44.11).

For low temperatures, x ≡ µ≫ 1, we can use the Sommerfeld expansion which in
first order gives fη(e

x) ≃ xη/Γ(η + 1). From this we immediately obtain the energy,
the Fermi radius and the momentum of free particles,

EF = µ(T = 0) = ℏω̄(6N)1/3 (44.33)

rF =

√
2EF
mω2

r

and zF =

√
2EF
mω2

z

KF =

√
2mEF
ℏ2

.

Using the second order of the Sommerfeld expansion, fξ(e
x) ≃ xξ

Γ(ξ+1)

(
1 + π2ξ(ξ−1)

6x2 + ...
)
,

we obtain for the chemical potential the equation, 0 = µ3 + (πkBT )
2
µ − E3

F . The
approximate solution of this equation, neglecting terms such as 4π6k6BT

6 ≪ 27E6
F , is

µ = EF

[
1− π2

3

(
kBT

EF

)2
]
. (44.34)

In the limit of high temperatures, fη(Z)
Z→1−→ Z

N =

(
kBT

ℏω̄

)3

eβµ =

(
kBT

ℏω̄

)3

(1 + βµ+ ...) , (44.35)

µ ≈ kBT lnN

(
ℏω̄
kBT

)3

= kBT ln
1

6

(
EF
kBT

)3

.

This means that we recover the Boltzmann gas, which satisfies an ideal gas equation
similar to that of particles in a box potential,

N =

(
kBT

ℏω̄

)3

(Boltzmann) . (44.36)

For comparison, for bosons we have,

N0

N
= 1−

(
T

Tc

)3
g3(Z)

g3(1)
(Bose) . (44.37)

The chemical potentials are calculated in Fig. 44.7(a).
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44.2.2 Energy

The total energy E1 ≡ E/N ≡ N−1
∫
ϵwd3xd3k per particle is given by,

E1 =

∫
ϵwT,µ(x,k)d

3xd3k∫
wT,µ(x,k)d3xd3k

(44.38)

=

∫
ϵη(ϵ)

(
eβ(ϵ−µ) + 1

)−1
dε

∫
η(ϵ)

(
eβ(ϵ−µ) + 1

)−1
dε

= 3kBT
f4(Z)

f3(Z)
.

Again using the Sommerfeld approximation, we see that for T → 0 the energy is
limited by

E1 =
3

Nβ(βℏω̄)3
f4(e

βµ) (44.39)

=
3µ4

4E3
F

(
1 +

2π2

(βµ)2
+ ...

)
T→0−→ 3

4
EF (Fermi) .

because the atoms are forced to adopt a state of larger dynamics in the outermost

regions of the trap. This implies, E1/EF
T→0−→ 3/4.

In the limit of high temperatures, T → ∞, a classical gas has the energy per
particle,

E1 =
3

Nβ(βℏω̄)3
f4

(
f−13

(
(βEF )

3

6

))
≈ 3kBT (Boltzmann) , (44.40)

which is seen by taking the high temperature limit fη(Z)
Z→0−→ Z and extrapolating

to all Z. This implies, E1/EF
T→∞−→ 3kBT/EF .

Comparing with bosons,

E1 = 3kBT
g4(1)

g3(1)
≈ 2.7 (Bose) . (44.41)

44.2.3 Entropy and heat capacity

The entropy S = −kB
∫
g(ϵ) [w lnw + (1− w) ln(1− w)] dϵ per particle is,

S1 = 4kB
f4(Z)

f3(Z)
− µ

T
=

4E1

3T
− µ

T
. (44.42)

The heat capacity per particle C1 = ∂E1

∂T

∣∣
N

is easily calculated using Zf ′η(Z) =
fη−1(Z),

C1 = 3kB
f4(Z)

f3(Z)
− 3µ

T

(
1− f4(Z)f2(Z)

f3(Z)2

)
=
E1

T
− 3µ

T

(
1− f4(Z)f2(Z)

f3(Z)2

)
. (44.43)

For fermions well below the Fermi temperature, T → 0, using the Sommerfeld
approximation, we calculate,

C1
T→0−→ 3π2

2

kBT

TF
(Fermi) . (44.44)
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For high temperature T

C1 ≈ 3kB (Boltzmann) . (44.45)
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Figure 44.7: (code) Numerical calculation of thermodynamic potentials for Bose (red) and

Fermi (green) gases as a function of temperature for a given harmonic trapping potential.

(a) Chemical potential, (b) energy, (c) heat capacity per particle, and (d) total heat capacity.

The dotted magenta line in (a) shows the chemical potential calculated from the Sommerfeld

approximation.

44.2.4 Distributions of a Fermi gas

44.2.4.1 Spatial distribution

The density distribution is,

n(x) =

∫
wT,µ(x,k)d

3k =
1

(2π)2

∫
2k2dk

eβ[ℏ2k2/2m+U(x)−µ] + 1
(44.46)

=
1

(2π)2

(
2m

ℏ2

)3/2 ∫ √
εdε

eβ[ε+U(x)−µ] + 1
=

1

(2π)2

(
2m

βℏ2

)3/2

Γ(3/2)f3/2(e
−β[U(x)−µ]) ,

such that,

n(x) = λ−3dBf3/2(e
−β[U(x)−µ]) (Fermi) . (44.47)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermiThermPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermiThermPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermiThermPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermiThermPotentials.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermiThermPotentials.m


44.2. QUANTUM STATISTICS OF AN IDEAL FERMI GAS 2637

At low temperatures, T → 0, we can apply the Sommerfeld expansion [221], which to
first order gives µ→ EF ,

n(x) ≈ 1

(2π)2
Γ(3/2)

Γ(5/2)

(
2m

ℏ2
[µ− U(x)]

)3/2

(44.48)

=
1

(2π)2
2

3

(
2m

ℏ2

)3/2 (
EF −

m

2
ω2
rρ

2
)3/2

=
8λ

π2

N

R3
F

(
1− ρ2

R2
F

)3/2

.

At high temperatures, T →∞, we should recover the Boltzmann gas situation,

n(x) = λ−3dBf3/2(e
−β[U(x)−µ]) (44.49)

≈ λ−3dBN (βℏω̄)3 e−βU(x) =

(
mβω̄2

2π

)3/2

Ne−βm(ω2
xx

2+ω2
yy

2+ω2
zz

2)/2 .

It’s easy to check,
∫
n(x)d3x = N . Introducing the peak density n0, we obtain,

n(x) = n0e
−mω2ρ2/2kBT (Boltzmann) . (44.50)

The rms-radius of the distribution is σj =
√
kBT/mω2

j , which seems contrary to the

above results, m2 ω
2
j

〈
x2j
〉
= kBT . In comparison,

n(x) = λ−3dBg3/2
[
eβ(µ−U(x))

]
(Bose gas above Tc) . (44.51)

where λdB =
√
2πℏ2/mkBT e atr =

√
ℏ/mω̄.

44.2.4.2 Momentum distribution

The momentum distribution is,

ñ(k) =

∫
wT,µ(x,k)d

3x =
1

(2π)2

∫
rdrdz

eβ[ε(k)+mω
2
rρ

2/2−µ] + 1
(44.52)

=
1

(2π)3

∫
4πρ2dρ

eβ[ε+mω
2
rρ

2/2−µ] + 1

=
1

(2π)2

(
2

βmω2
r

)3/2 ∫ √
tdt

eβ[ε+t−µ] + 1
=

1

(2π)2

(
2

βmω2
r

)3/2

Γ(3/2)f3/2(e
β(µ−ε)) ,

such that,

ñ(k) = λ−3dBa
6
trf3/2(e

β(µ−ε)) (Fermi) . (44.53)

At low temperatures, T → 0,

ñ(k) ≈ 1

(2π)2

(
2

βmω2
r

)3/2
Γ(3/2)

Γ(5/2)
(β [µ− ε])3/2 (44.54)

≈ 1

(2π)2

(
2

mω2
r

)3/2
2

3

(
EF −

ℏ2k2

2m

)3/2

=
8

π2

N

K3
F

(
1− k2

K2
F

)3/2

.
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This can easily be integrated by dimensions,

ñT→0(kz) =

∫ ∞

−∞

∫ ∞

−∞
ñcl(k)dkxdky =

8

π2

N

K3
F

∫ ∫

|k|≤KF

(
1− k2

K2
F

)3/2

dkxdky

(44.55)

=
8

π2

N

K3
F

∫ 2π

0

∫ √K2
F−k2z

0

(
1− k2z

K2
F

− k2ρ
K2
F

)3/2

kρdkρdϕ =
16

5π

N

KF

(
1− k2z

K2
F

)5/2

.

It is easy to check
∫∞
−∞ ñT→0dkz = N , with Maple.

At high temperatures, T →∞, we should recover the Boltzmann gas situation,

ñ(k) ≈
(

ℏ2ω̄2

2πmω2
r

)3/2

Ne−βε (Boltzmann) . (44.56)

Since ε is the kinetic energy, the rms-radius
√
k2 of this distribution is βℏ2⟨k2⟩ = m.

In comparison,

ñB(k) = λ−3dBa
6
tr g3/2

[
eβ(µ−p

2/2m)
]

(Bose gas above Tc) . (44.57)

Example 281 (Integrated momentum distribution of a Fermi gas): To
integrate the momentum distribution of finite temperature Fermi gas by dimen-
sions,

ñ(kz) =
1

(2π)3

(
2

βmω̃2
tr

)3/2 ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

4πr̃2dr̃

eβε−βµ+r̃2 + 1
dkydkx (44.58)

=
1

(2π)3

(
2

βmω̃2
tr

)3/2

2π

∫ ∞
0

∫ ∞
0

4πr̃2dr̃

eβℏ
2k2z/2m+βℏ2k2ρ/2m−βµ+r̃2 + 1

kρdkρ

=
1

π

(
2

βmω̃2
tr

)3/2
2m

βℏ2

∫ ∞
0

∫ ∞
0

k̃ρdk̃ρ

eβℏ
2k2z/2m−βµ+r̃2+k̃2ρ + 1

r̃2dr̃

=
1

π

(
2

βmω̃2
tr

)3/2
2m

βℏ2
1

2

∫ ∞
0

r̃2 ln
1

1 + e−βℏ
2k2z/2m+βµ−r̃2−k2ρ

∣∣∣∣∞
0

dr̃

=
2

π (βℏω̃tr)2

(
2

βmω̃2
tr

)1/2 ∫ ∞
0

r̃2 ln
(
1 + eβµ−βℏ

2k2z/2m−r̃
2
)
dr̃ .

44.2.4.3 Time-of-flight distribution

To describe time-of-flight images we substitute k = mr/ℏt. We obtain the density
distribution from a convolution,

nToF (x, t) =
1

(2π)3

∫
d3x0d

3k
δ3(x− x0 − pt/m)

eβ(H(x0,p)−µ) + 1
(44.59)

=
1

(2π)3

∫
d3k

eβ(H(x+pt/m,p)−µ) + 1

=
1

(2π)3

∫
dkxdkydkz

eβΣj[ℏ2k2j/2m+ 1
2mω

2
j (xj+ℏkjt/m)2]/Z + 1

.
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We rewrite the exponent,

ℏ2k2j/2m+ 1
2mω

2
j (xj + ℏkjt/m)

2
= ℏ2k2j/2m(1 + ω2

j t
2) + ω2

j txjℏkj + 1
2mω

2
jx

2
j

(44.60)

=



√

ℏ2k2j
2m

(1 + ω2
j t

2) +
ω2
j txj
√
2m

2
√
1 + ω2

j t
2




2

+
mω2

jx
2
j

2(1 + ω2
j t

2)

= ξj +
m

2
ω̌2
jx

2
j .

where we define ω̌i ≡ ωi
(
1 + ω2

i t
2
)−1/2

. With the substitution dξj = dkj

√
2ℏ2

m ξj
(
1 + ω2

j t
2
)

we obtain

nToF (x, t) =
1

(2π)3

(
mkBT

2ℏ2

)3/2
1∏

i (1 + ω2
i t

2)

∫
β3/2 (ξxξyξz)

−1/2
dξxdξydξz

eβΣj[ξj+m
2 ω̌

2
jx

2
j ]/Z + 1

(44.61)

=
1

23π3/2

1

λ3dB

ω̃3

ω̄3

∫
β3/2ξ−3/24πξ2dξ

eβΣj[ξ+m
2 ω̌

2
jx

2
j ]/Z + 1

,

where ω̄ ≡ (ωxωyωz)
1/3 and ω̌ ≡ (ω̌xω̌yω̌z)

1/3
.

nToF (x, t) =
1

λ3dB

ω̌3

ω̄3
f3/2

(
eβµ−

1
2βmΣj ω̌

2
jx

2
j

)
. (44.62)

For long times-of-flight t≫ ω−1,

nToF (x, t) =
1

λ3dB

1

ω̄2t2
f3/2

(
eβ(µ−mx2/2t2)

)
=
(m
ℏt

)3
ñ(mx/t) . (44.63)
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Figure 44.8: (code) Time-of-flight velocity distribution of (red) a Li Fermi gas at T = 0 with

vanishing initial spatial distribution [221] and (green) a thermal gas at T = TF .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermiDistributionTof.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermiDistributionTof.m
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At low temperatures,

nToF (x, t) =
(m
ℏt

)3 N

K3
F

8

π2

(
1− (mx/ℏt)2

K2
F

)3/2

(44.64)

=
(m
ℏt

)3 R3
F

6π2λ


1−

(
RFmx/ℏt
(48Nλ)

1/3

)2


3/2

At high temperatures,

nToF (x, t) =
1

λ3dB

1

ω̄2t2
f3/2(e

β(µ−mx2/2t2)) (44.65)

≈ 1

λ3dB

1

ω̄2t2
eβ(µ−mx2/2t2)

≈
(
mkBT

2πℏ2

)3/2
1

ω̄2t2
N

(
ℏω̄
kBT

)3

e−βmx2/2t2 ≈ N ω̄

t2

(
m

2πkBT

)3/2

e−βmx2/2t2 .

A rms-width is,

〈
r2ToF

〉
=

∫
r2nToF (x, t)d

3x (44.66)

=
1

λ3dB

ω̌3

ω̄3

∫
r2f3/2

(
eβµ−

1
2βmΣj ω̌

2
jx

2
j

)
d3x

=
2

mω̌2
rN

∫
εg(ε)dε

eβ(ε−µ) + 1
=
kBT

mω̌2
r

g4(Z)

g3(Z)
.

This shows that the width of the flight-of-time distribution can simply be obtained
from the spatial distribution by substituting ω → ω/

√
1 + ω2t2. Of course this does

not hold for condensed gases Bose.

44.2.5 Equipartition theorem

We find for harmonic traps,

Epot,1 =

∫
U(x)wT,µ(x,k)d

3xd3k∫
wT,µ(x,k)d3xd3k

=
1

(2π)3N2

∫
mω2r2d3xd3k

eβ[ℏ2k2/2m+mω2r2/2−µ] + 1

=
16

πNβ4 (ℏω)3

∫
u4v2dudv

eu2+v2/Z + 1
(44.67)

=
1

(2π)3N2m

∫
ℏ2k2d3xd3k

eβ[ℏ2k2/2m+mω2r2/2−µ] + 1
=

∫
ℏ2k2wT,µ(x,k)d3xd3k

2m
∫
wT,µ(x,k)d3xd3k

= Ekin,1 .

This confirms the equipartition theorem for confined particles, which postulates,

E = Ekin + Epot = 2Ekin . (44.68)

In flight time, however, Epot suddenly vanishes.



44.2. QUANTUM STATISTICS OF AN IDEAL FERMI GAS 2641

44.2.5.1 Calibrating the number of atoms

Experimentally, to calibrate N , we can use either the measured value of ⟨k2⟩ at T = 0,
which gives µ = EF = 4E/3 and consequently,

N =
32

3

(
ℏ2⟨k2⟩
6mℏω̄

)3

. (44.69)

Or we determine the temperature Tg where the Boltzmann gas turns into a Fermi gas
3µ/4 = 3kBTg,

N =
32

3

(
kBTg
ℏω̄

)3

. (44.70)

44.2.6 Density and momentum distribution for anharmonic
potentials

44.2.6.1 Width of momentum distribution for anharmonic potentials

If the potential is non-harmonic, the widths of Fermi distributions must in general
be calculated numerically. I.e. first g(ϵ) is determined by integrating for every value
of ϵ the root

√
ϵ− U(x) over the entire volume, where U(x) < ϵ, i.e. in the case of

cylindrical symmetry,

g(ϵ) =
(2m)3/2

2πℏ3

∫ √
ϵ− U(r, z)rdrdz . (44.71)

Second the chemical potential must also be calculated numerically from

N =
∫
g(ϵ)

(
eβ(ϵ−µ) + 1

)−1
dϵ by minimizing the function,

o(Z) =

∣∣∣∣βN −
∫
g(x/β)dx

ex/Z + 1

∣∣∣∣ . (44.72)

Finally, the rms-momentum width of a degenerate Fermi-gas is calculated from,

⟨k2⟩
k2F

=
E1

EF
=

1

NEF

∫
ϵg(ϵ)dϵ

eβ(ϵ−µ) + 1
. (44.73)

It is important to note that the temperature cannot be obtained from ℏ2
〈
k2
〉
/2m =

3NkBT any more. Rather for a given ⟨k2⟩ the parameter β in the integral (44.71)
must be fitted to satisfy the equation.

Alternatively, we may assume a polynomial potential for which the density of
states can be described by g(ϵ) ∝ ϵn. Then,

⟨k2⟩
k2F

=
1

EF

∫
ϵg(ϵ)

(
eβ(ϵ−µ) + 1

)−1
dϵ

∫
g(ϵ)

(
eβ(ϵ−µ) + 1

)−1
dϵ

=
T

TF

(n+ 1)fn+2(Z)

fn+1(Z)
, (44.74)

For a harmonic potential we recover the energy formula,

⟨k2⟩
k2F

=
3T

TF

f4(Z)

f3(Z)
, (44.75)



2642 CHAPTER 44. THERMODYNAMICS OF IDEAL QUANTUM GASES

and for hot clouds the classical limit holds,

⟨k2⟩
k2F

=
n+ 1

βEF
. (44.76)

Must for a single dimension the value be divided by three? ℏ2⟨k2j ⟩ = 2mkBTf4(Z)/f3(Z)

setting ϵ = ℏ2k2/m.

For a harmonic potential g(ϵ) ∝ ϵ2 and for a linear potential g(ϵ) ∝ ϵ7/2. Interme-
diate values are possible for non isotropic traps, which are linear in some directions
and harmonic in others, e.g. for a radially quadrupolar and axially harmonic trap, we
expect g(ϵ) ∝ ϵ3 and thus E = 4NkBT . In general, we may have more complicated
situations, where the trap becomes non-harmonic beyond a certain distance from the
origin. In those cases, the density of states may be approximated by series,

g(ϵ) ∝ ϵ2 + ηϵ3 , (44.77)

where η is a small parameter, so that,

⟨k2⟩
k2F

=
1

EF

∫
(ϵ3 + ηϵ4)(eβ(ϵ−µ) + 1)−1dϵ∫
(ϵ2 + ηϵ3)(eβ(ϵ−µ) + 1)−1dϵ

=
T

TF

3f4(Z) + 12ηf5(Z)

f3(Z) + 3ηf4(Z)
, (44.78)

which in the classical limit gives rise to energies E = 3..4NkBT depending on the
value of η.

Such effects must be considered when the time-of-flight method is used for temper-
atures measurements. For example, if we underestimate g(ε) by assuming a harmonic
potential at all ε, although the potential is quadrupolar at large ε ≫ kBT , we get a
wrong estimate for the temperature Twrng = E/3NkB instead of Tcorr = E/4NkB .

44.2.6.2 Width of the density distribution for anharmonic potentials

The result also permits to calculate the rms spatial width,

∑3

j=1

m

2
ω2
j ⟨x2j ⟩ = 3kBT

f4(Z)

f3(Z)
. (44.79)

Let us for simplicity assume ωi = ωj . So in the classical limit,

⟨x2j ⟩
R2
F

=
⟨x2⟩
3R2

F

=
E1

3EF
=

1..1.3T

TF
. (44.80)

If the potential is non-harmonic, the widths of Fermi distributions must in general be
calculated numerically. We may use the same results for the density of states and the
chemical potential as for the momentum width calculations. Then,

⟨x2j ⟩
R2
F

=
E1

3EF
=

1

3EF

∫
ϵg(ϵ)

(
eβ(ϵ−µ) + 1

)−1
dϵ

∫
g(ϵ)

(
eβ(ϵ−µ) + 1

)−1
dϵ

. (44.81)
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44.2.7 Classical gas

For a harmonic potential [330] the fraction of particles with energy smaller than ηkBT
is,

N(η) =
1

2N(ℏω̄)3

∫ ηkBT

0

dϵ

eβϵ/Z − 0
≈ 1− 2 + 2η + η2

2eη
(44.82)

E(η) =
1

2N(ℏω̄)3

∫ ηkBT

0

ϵ2dϵ

eβϵ/Z − 0
≈ 3− 6 + 6η + 3η2 + η3

6eη
,

while for a quadrupole potential,

N(η) ≈ −2√z 105 + 70η + 28η2 + 8η3√
π105eη

+ erf(
√
η) (44.83)

E(η) ≈ −2

9

√
z
945 + 630η + 252η2 + 72η3 + 16η4√

π105eη
+

9

2
erf(
√
η) .

44.2.7.1 Momentum distribution for a classical gas

For high temperatures, T →∞, we should recover the ideal Boltzmann gas situation,
f3/2 → id,

ñT→∞(k) =
1

(2π)3

∫
4πρ2dρ

eβ[ε+mω
2
trρ

2/2−µ] =
1

2π2
e−β(ε−µ)

∫
e−βmω

2
trρ

2/2ρ2dρ (44.84)

=

(
1

2πβmω2
tr

)3/2

e−β(ε−µ) = λ−3dBa
6
tr e

β(µ−ε) .

Since the chemical potential satisfies the normalization,
∫
ñT→∞(k)d3k = 1,

ñT→∞(k) =

(
1

2πβmω2
tr

)3/2

N

(
ℏωtr
kBT

)3

e−βε = N

√
ℏ2

2πmkBT

3

e−ℏ
2k2/2mkBT .

(44.85)
This is easy to integrate by dimensions, so that,

ñT→∞(kz) =

∫ ∞

−∞

∫ ∞

−∞
ñT→∞(k)dkxdky = N

√
ℏ2

2πmkBT
e−ℏ

2k2z/2mkBT . (44.86)

The rms-width of this distribution is,

∆kz =

√
mkBT

ℏ
. (44.87)

44.2.7.2 Correlating fluctuations in the number of atoms

Experimentally the atom number will fluctuate. To minimize this problem we can
renormalize it to a norm number Nnorm by multiplying the measured time-of-flight
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variance ⟨x2tof ⟩ with,

CT (N) =
⟨x̃2tof ⟩
⟨x2tof ⟩

=
N

Nnorm

f4(Z̃)

f4(Z)
(44.88)

=
N

Nnorm

f4
[
f−13 (Nnorm(βℏω̄)3)

]

f4
[
f−13 (N(βℏω̄)3)

] .

44.2.8 Intensive and extensive parameters

The distinction between an intensive parameter and an extensive parameter is based
on the concept that the system under investigation can be subdivided into smaller,
identical and non-interconnected entities within which the parameter in question has
the same properties, such that this parameter does not change, when the system
is divided or subentities are combined 6 An intensive property is a global property,
meaning that it is a physical property of a system that does not depend on the system
size or the amount of material in the system. Examples of intensive properties are
the temperature and the hardness of an object. No matter how small a diamond is
cut, it maintains its intrinsic hardness.

By contrast, an extensive property is one that is additive for independent, non-
interacting subsystems. The property is proportional to the amount of material in
the system. For example, both the mass and the volume of a diamond are directly
proportional to the amount that is left after cutting it from the raw mineral. Mass
and volume are extensive properties, but hardness is intensive.

The ratio of two extensive properties, such as mass and volume, is scale-invariant,
and this ratio, the density, is hence an intensive property.

Intensive parameter are: chemical potential, concentration, density (or specific
gravity), ductility, elasticity, electrical resistivity, hardness, magnetic field, magne-
tization, malleability, melting point and boiling point, molar absorptivity, pressure,
specific energy.

Extensive parameter are: energy, entropy, Gibbs energy, length, mass, particle
number, momentum, number of moles, volume, magnetic moment, electrical charge,
weight.

44.2.9 Signatures for quantum degeneracy of a Fermi gas

Whether an atom is a fermion or a boson uniquely depends on its total spin. Halfinte-
ger spin particles are fermions, integer spin particles are bosons. E.g. Rb atoms have
in the ground state J = 1/2, I = 7/2, integer F , and are therefore bosons. Ca+ ions
have J = 1/2 and no hyperfine structure so that F is halfinteger, and are therefore
fermions. 6Li has half-integer F and is a boson.

For a composite particle the quantum statistical nature may depend on the inter-
action strength of the partners. For weak interaction, e.g. Feshbach the total spins of
the partners will couple to a total total spin, which determines the nature of the com-
posite particle. A fermion pairing with a fermion or a boson pairing with a boson will

6How to derive the thermodynamic potentials from the macrocanonical partition function? How
to calculate pressure and volume? [check thermodynamic derivations from Romero-Rochin [see
Freddy’s thesis].
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be bosons. A fermion pairing with a boson will be a fermion. Composite trimers may
be either bosonic or fermionic depending on the coupling scheme. Can the quantum
nature change with the tightness of the binding? What is the total spin of a deeply
bound molecule? [1084, 183, 513], [?, 622, 1020, ?]

44.2.9.1 Optical density of a Fermi gas

With the local density of a Fermi gas,

nloc =
k3F
3π2

(44.89)

the optical density is at T = 0,

∫
σndy =

8σ

π2

N

R3
F
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R2
F
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dy (44.90)
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Z2
F

)3/2 ∫ RF
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(
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F − x2 −R2

F z
2/Z2

F

)3/2

dy .

Writing a = RF /
√
R2
F − x2 −R2

F z
2/Z2

F ,

∫
σndy =

8σ

π2

N

R2
Fa

4

∫ a

−a
(1− ỹ2)3/2dỹ (44.91)

=
2σ

π2

N

R2
Fa

4

(
9a
√
1− a2 − 2a3

√
1− a2 + 3arcsin a

)
.

In the center, a = 1, ∫
σndy =

3Nσ

πR2
F

=
9mω2

rN

k2LEF
, (44.92)

such that for EF ≃ 1µK we expect nloc ≃ 4× 1012 cm−3.
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Figure 44.9: (code) (a) Radial momentum distribution and (b) distribution of momentum

classes in the direction of kz for a Fermi gas at T/TF = 0.2 µK (solid), a classical gas

(dash-dotted), and a Fermi gas at T = 0 (dashed).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermibraggDistribution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermibraggDistribution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Thermodynamics_FermibraggDistribution.m
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44.2.9.2 ’Pauli blocking’ of sympathetic cooling

For a harmonic trap U = µB = mω2r2 the rms-radius of a thermal cloud,

rrms =

√
2kBT

mω2
r

=

√
kBT

µ∂2rB
, (44.93)

is independent on the atomic mass. This means that a Li and a Rb cloud in the same
harmonic trap at the same temperature have the same radius. This ensures good
overlap. E.g. at T = 10 µK assuming the Rb secular frequencies ωr ≃ 2π × 300 Hz
and ωz ≃ 2π × 30 Hz, we expect rrms = 16 µm and zrms = 160 µm. However below
the temperature 0.5TF , which is TF ≃ 1 µK for NF = 104, the quantum pressure
stops the reduction of the fermion cloud while cooling. This evtl. reduces the overlap
with the boson cloud, disconnects the two clouds and stops the evaporative cooling.
On the other hand, the interaction energy of the boson cloud also increases its size,
when the Rb cloud approaches the critical temperature Tc ≃ 0.6 µK for NB = 106.

The Pauli blocking of sympathetic cooling is a signature for the advent of quantum
statistics [348, 540, 967]. It is due to a reduced mobility (or better reduced available
phase space at collisions) of the atoms and not to be confused with the prohibition of
s-wave collisions due to the Pauli exlusion principle. Furthermore, elastic collisions
are suppressed [347], because atoms cannot be scattered into occupied trap levels
[637, 1319, 562, 567].

44.2.9.3 Superfluid suppression of sympathetic cooling

The fermions inside the bosonic cloud can be regarded as impurities. If they travel too
slow, v < c, and if the condensed fraction is too large, the motion will be frictionless
and thermalization stops. If they travel fast, quasiparticles are excited, which can
be removed by evaporation. With the typical velocity of sound in the BEC c =
ℏ
√
16πna/2mB ≈ 2 mm/s, or m

2 c
2 ≈ kB × 20 nK, we see that this is no real danger.

44.2.9.4 Component separation

If the interspecies interaction h is stronger than the inter-bosonic interaction, the
components may separate [965]. Otherwise a small fermionic cloud stays inside the
BEC.

44.2.9.5 Excess energy modifies 2nd moment

Independent on any model, just look deviation from Gaussian (interaction energy
plays no role for the fermions). Also calculate the 2nd moment U =

∫
Ekin(k)n(k)dk,

where n(k) is measured in time-of-flight and Ekin = ℏ2k2/2m.

44.2.9.6 Modification of light scattering

The unavailability of final momentum states inhibits scattering in a similar way as the
Lamb-Dicke effect. Forward scattering is suppressed, because all small momentum
states are occupied. Furthermore, spontaneous emission is suppressed like in photonic
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band gaps. However, here it is rather an atomic momentum band gap. Could it be
that because scattering is suppressed, in-situ images of fermions are hampered?

A condition for this effect to play a role is krec ≪ kF . For Li the temperature
must be kBTF = ℏ2k2F /2m = ℏω̄(6N)1/3 ≫ ℏ2k2L/2m ≈ kB×3 µK. I.e. we need quite
large Fermi gases.

44.2.9.7 Hole heating

Loss processes that remove particles from an atom trap leave holes behind in the
single particle distribution if the trapped gas is a degenerate fermion system. The
appearance of holes increases the temperature, because of an increase in the energy
share per particle if cold particles are removed. Heating is significant if the initial
temperature is well below the Fermi temperature. Heating increases the temperature
to T > TF /4 after half of the systems lifetime, regardless of the initial temperature.
The hole heating has important consequences for the prospect of observing Cooper
pairing in atom traps.

44.2.10 Fermi gas in reduced dimensions

In n dimensions with the energy ε = aps + brt [?] we have to generalize the results of
the last chapter,

N = g
Γ
(
n
s + 1

)
Γ
(
n
t + 1

)

(2ℏ)nan/sbn/tΓ
(
n
2 + 1

)2 (kBT )n/s+n/tfn/s+n/t(z) . (44.94)

This gives for a harmonic trap where ε = 1
2mp

2+m
2 ω

2r2 and with the spin degeneracy
factor g = 1,

N =

(
kBT

ℏω

)n
fn(z) . (44.95)

The Fermi energy again follows from Sommerfeld’s expansion,

EF = (n!N)1/nℏω . (44.96)

We now assume a 1D potential V = m
2 ω

2
zr

2 embedded in a 3D trap. A true 1D
situation arises when the atoms occupy all low-lying axial levels with the lowest radial
vibrational quantum number, i.e. EF ≪ ℏωr which gives,

N ≪ ωr
ωz

. (44.97)

Such quantum degenerate 1D fermion gases realize the so-called Luttinger liquid. One
of the hallmarks of Luttinger liquids is spin-charge separation.

Example 282 (Estimations for 1D): Let us consider a Fermi gas in a very

elongated microtrap: ωr =
√

87
7
2π × 1.4 kHz and ωz =

√
87
7
2π × 15 Hz for Rb.

With NLi = 105 the Fermi temperature is as high as TF ≃ 5 µK. However we
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need N ≪ 100 to see 1D features.
Assume ε = 1

2m
p2 + m2

4
b4r4,

N =
1

(ℏb)n
Γ
(
n
4
+ 1
)

Γ
(
n
2
+ 1
) (kBT )3n/4f3n/4(z)

EF ≈ (ℏb)4/3
(
N

Γ
(
n
2
+ 1
)
Γ( 3n

4
+ 1)

Γ
(
n
4
+ 1
) )4/3n

.

In 1D,

N =
1.02

ℏb
(kBT )

3/4f3/4(z)

EF ≈ 0.87(Nℏb)4/3 .

44.2.11 Exercises

44.2.11.1 Ex: Li Fermi gas

Programs on Li Fermi gases.

Solution: FermiBlocking1: Density distribution of a Li Fermi gas.
FermiBlocking2: Momentum distribution of a Li Fermi gas.
FermiBlocking3: Time-of-flight distribution of a Li Fermi gas.
FermiBlocking4: Temperature dependence of the rms-size of a Li Fermi gas [221].
FermiBlocking4a: Temperature dependence of the rms-size of a Li Fermi gas [221],
in the Sommerfeld approximation.
FermiBlocking4b: Temperature dependence of the rms-size of a Li Fermi gas [221],
numerical integration of density of states.
FermiBlocking5: Temperature dependence of ToF sizes for various atom numbers.

44.3 Further reading

V.S. Bagnato et al., Bose-Einstein Condensation in an External Potential [73]DOI

D.A. Butts et al., Trapped Fermi gases [221]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Thermodynamics_.pdf
http://doi.org/10.1103/PhysRevA.35.4354
http://doi.org/10.1103/PhysRevA.55.4346


Chapter 45

Bose-Einstein condensation

The experimental verification of Bose and Einstein’s prediction was for a long time
a cherished dream of many physicists. On the one hand, several phenomena have
been related to BEC in the past, for example, the phenomenon of superfluidity in
liquid helium and superconductivity. On the other hand, these strongly interacting
systems are not pure enough to clearly identify the role of BEC. In 1995, however,
Bose-Einstein condensation of weakly interacting confined atomic gases was achieved
in several laboratories [31, 331, 189, 580]. This success gave rise to a revolution
in atom optics documented in an enormous amount of theoretical and experimental
work. While initial work focused on the equilibrium thermodynamics of condensates
near the phase transition, very soon the dynamic response of condensates to pertur-
bations was the subject of in-depth investigations, followed by the study of super-
fluid characteristics, quantum transport phenomena, the interaction of condensates
with light, of condensed gas mixtures [939, 1261], and the behavior of condensates
in periodic potentials. To name only a few landmarks, we mention the creation of
vortices [856, 833] and quantum turbulence [609], the realization of various types of
atom lasers [881, 30, 154, 570] and atom interferometers with condensates [574, 746],
the coherent amplification of matter waves [649, 749, 651, 354], the creation of the
Mott insulating states in optical lattices [537], the study of condensates in reduced
dimensions [924], the Anderson localization of atomic matter waves [245, 1101], the
observation of Feshbach type collision resonances [300, 648, 1349] and Efimov states
[750, 100], the creation of homonuclear molecular [538, 677, 311, 1443, 1402, 612] and
heteronuclear condensates [986] and degenerate Fermi gases [347], the observation of
BCS type pairing [623, 539], the observation of matter wave superradiance [649] and
the interaction of condensates with optical cavities [1217, 223] and with surfaces [119].

It is clearly unthinkable to discuss all matters in this course. Let us, however, give
a basic and practical introduction to atomic optics with condensates.

45.1 Bose-Einstein condensation of dilute gases

The challenge of the experimental realization of Bose-Einstein condensation is the
preparation of a very dense sample of very cold atoms. In practice, the first step
consists in providing an atomic gas, for example, of an alkali metal. This is done
by heating the metal in an oven (or sometimes in a dispenser). The atoms being
ejected from the metal and forming a hot gas are then forced through a nozzle out of
the oven, where they form a hot atomic beam. Some experiments employ a Zeeman

2649
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slower, which is a device that decelerates the fast atoms of the beam by means of
a counterpropagating laser exerting a radiative pressure force. A position-dependent
magnetic field applied along the trajectory of the atoms is calculated in order to
compensate for the Doppler decreasing shift of the decelerated atoms and to ensure
that the laser always stays in resonance with an atomic transition (see Exc. 34.6.7.3).
Velocities around 30m/s are realistic and low enough to allow the capture of the
atoms by a magneto-optical (MOT) trap. Usually, some 109 atoms are captured in a
few seconds.

MOTs do not only trap atoms, but simultaneously cool them down to the Doppler
limit of typically some 10µK. Quasi-resonant optical traps, such as MOT, are afflicted
by the problem of radiation trapping (see Sec. 43.3.1), which limits the densities of
atomic clouds to typically 1011 cm3. This corresponds (at temperatures close to the
Doppler limit) to phase space densities several orders of magnitude away from the
threshold to Bose-Einstein condensation. For this reason, the atoms are transferred
from the MOT to a potential exempt of radiative pressure force, for example, an
optical dipole potential or a magnetic trap.

Once the atoms are confined in such a conservative potential, all the light beams are
turned off, and the technique of evaporative cooling is activated (see Sec. 43.4.3). That
is, the effective potential is deformed (for example, by an irradiated radiofrequency)
in a way to skim out hot atoms and leave behind a cooler sample. This however
supposes that the atomic cloud finds back to thermal equilibrium afterwards. As
the rethermalization happens by elastic collisions, a high atomic density is necessary,
which is often achieved via a compression of the trapping potential. In general,
99.9% of the atoms must be sacrificed to condense the rest. Finally, the momentum
distribution is imaged after a time of free expansion. This is done by irradiation of a
probe laser pulse (see Fig. 43.36). The entire process of producing a condensed cloud
usually takes between 10 s and 60 s.

45.1.1 Condensate of alkaline gases

The first experimental observation of Bose-Einstein condensation was done with a
dilute rubidium gas by Cornell and Wieman at the Joint Institute for Laboratory
Astrophysics (JILA) [31]. A group from the University of Texas [580, 301] used
rubidium as well. A group led by Ketterle from the Massachusetts Institute of Tech-
nology (MIT) created the first sodium condensate. And a group led by Hulet from
Rice University opted for lithium [189, 187], which has a slightly negative scattering
length, a = −27.3aB . In this situation, only small condensates are expected to be
stable [1122, 1270], which explains the observation of a limited number of about 1400
condensed lithium atoms. Meanwhile, Bose-Einstein condensation has been achieved
with many other species, such as 1H [466], 85Rb [293], 4He∗ [1107], 133Cs [1227], 39K
[1056], 4Ne [113], 88Sr [1257], or even molecules [1396].

45.1.2 Condensation of hydrogen

Hydrogen is a very interesting element to study condensation, because its short scat-
tering length, a ≈ 1.23aB , makes it an almost ideal gas. Consequently, the three-body
collision rate causing losses is weak, even at very high densities. Since the mass of
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hydrogen is small, the critical temperature is high. The simplicity of its electronic
structure allows precise calculations of the interaction potentials based on fundamen-
tal principles, which can thus be tested experimentally.

Twenty years after having started the project of condensing dilute hydrogen gases,
Greytak and Kleppner [466] crossed the phase transition at a temperature of 50µK
with an atomic density of 5 × 1015 cm−3. The number of condensed atoms was 109,
which corresponds to a condensed fraction below 10% 1. The condensed cloud had a
needle-like shape of 15µm diameter and 5mm length. It was detected by an in situ
measurement technique of the atomic velocity distribution.

Figure 45.1: Spectrum of condensed hydrogen.

45.1.3 Recognizing Bose-Einstein condensates

’How to recognize the presence of a condensate, what are its signatures?’ We have
already seen in Sec. 44.1.4 that, trapped inside a confinement potential, an ultracold
ideal Bose-gas has a modified density distribution when Bose-Einstein statistics come
into play. Below the critical temperature the density distribution is well described by
a superposition of a condensed cloud concentrated in the trap’s ground state and a
thermal cloud distributed over several vibrationally excited states. We thus expect
distinct distribution functions for both clouds, and the same is true for the momen-
tum distribution. The splitting of the distribution functions in two fractions occurs
abruptly during the phase transition to quantum degeneracy. In a real gas, however,
the interatomic collisions have a drastic influence on the distribution functions and
the behavior of the gas at the phase transition, and we are obliged to develop a more
general theory in order to quantitatively understand the thermodynamic properties
(temperature, critical point, heat capacity, ...) through the measured static quantities
(density, number of atoms, condensed fraction, ...).

’What observables can be measured in the laboratory?’ In fact, with few excep-
tions, the only accessible quantity is the spatial density distribution of the atomic cloud

1When the condensed fraction and the density are too high, losses induced by dipolar spin-flip
processes predominate over the gain due to evaporative cooling of the thermal cloud [618].
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n(r) measured after a time of ballistic expansion. Information on non-trivial proper-
ties of the condensate, for example, its dynamic behavior (excitations, superfluidity,
turbulence, ...) or its coherent features (phase, correlations, ...), can only be gathered
through an observation of the condensate’s response to applied perturbations. Solve
the Excs. 45.1.5.1 and 45.1.5.2.

45.1.4 Photon condensation

An interesting question is that of the possibility of photon condensation and its re-
lationship to the laser. The relationship is not that obvious because, on one hand
atomic condensates are produced by evaporating a ensemble in constant thermal
equilibrium, while on the other hand the photonic laser requires inversion, which is
a highly non-equilibrium situation. And under the constraint of having to reduce its
energy, a photon gas trapped in an optical cavity has the simpler alternative to let
photons escape into the void by annihilating them on the cavity walls, as it happens
for black-body radiation. Since the number of photons in a cavity is not conserved,
the chemical potential disappears, µ = 0. The density of states can be written,

u(ν) =
8πV

c3
E2dE

h2
. (45.1)

It is the same as in the Debye model. Planck’s formula now follows from,

u(ϵ)dϵ =
1

V
ϵfBE(ϵ)ρ(ϵ)dϵ , (45.2)

where fBE is the Bose-Einstein distribution. Hence, the treatment of the photons
as indistinguishable particles following the Bose-Einstein distribution is equivalent to
assuming a Boltzmann distribution for waves with quantized energies.

Nevertheless, one can imagine a photonic gas in thermal equilibrium with an
atomic gas through Compton scattering [712]. In fact, photon condensation was
observed experimentally [727]. Also, there are theories about superfluid photon gases
[254] 2.

2Bose-Einstein condensation occurs in thermal equilibrium when entropy is maximized by putting
a macroscopic population of atoms into the ground state of the system. It might appear counter-
intuitive that an apparently highly ordered state as the Bose condensate maximizes entropy. How-
ever, only the particles in excited states contribute to the entropy. Their contribution is maximized
at a given total energy by forming a Bose condensate in the ground state and distributing the re-
maining atoms among higher energy states. A macroscopic population of atoms in the ground state
of the system is achieved simply by lowering the temperature of the sample. This is in contrast to
the optical laser where a non-equilibrium process is necessary to place a macroscopic population of
photons in a single mode of the electromagnetic field. This is due to the fact that, unlike photons,
the number of atoms is conserved. For bosonic atoms, the lowest entropy state below a certain tem-
perature includes a macroscopic population of the ground state. In contrast, when one cools down
a blackbody cavity, the cavity empties. Photons do not Bose condense into the ground state of the
cavity, but are absorbed by the walls. The absorbed energy leads to a larger entropy than forming a
Bose condensate. The laser phenomenon requires inversion of the active medium characterized by a
’negative’ temperature. In that sense, ’lasing’ of atoms is a simpler phenomenon than lasing of light
–all you need to do is cool a gas! However, if a photon gas would thermalize while the number of
photons is conserved, it would be described by a Bose-Einstein distribution with non-zero chemical
potential and could form a Bose condensate. Thermalization with number conservation is possible,
for example, by Compton scattering with a thermal electron gas [712].
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45.1.5 Exercises

45.1.5.1 Ex: Condensation of ions

Discuss the possibility of creating Bose-Einstein condensates from ionic clouds.

Solution: Assuming that we can cool the ions to the ground state of a tight trap,
they will still have µm distances because of Coulomb repulsion. The de Broglie wave-
length then needs to be ...

45.1.5.2 Ex: Isobaric impurities

Discuss the possibility of creating Bose-Einstein condensates with isobaric species.

Solution:

45.2 Quantum theory

As detailed above, interatomic interactions strongly influence the properties of Bose-
Einstein condensates, even their density and momentum distributions. For a correct
interpretation of the experimental measurements a theoretical many-body treatment
taking care of these interactions is compulsory. This is done through a description of
the atomic distribution as a scalar field of matter called second quantization, where
the atoms are treated as delocalized Broglie waves. However, we will leave a thorough
introduction of this formalism to Chp. 50.3 or referto [1355].

45.2.1 Description of the atom as a scalar field

In position space a state with n particles can be described in a canonically quantized
way by a field operator,

Ψ̂(r1, ..., rn, t) = ψ̂†(r1, t) · ... · ψ̂†(rn, t)Ψ̂0 , ψ̂(r)Ψ̂0 = 0 , (45.3)

where Ψ0 is the vacuum state. The field operators ψ̂(r, t) and ψ̂†(r, t) annihilate,
respectively create, an atom at position r and time t. This state represents a bosonic
Fock state and can be generated from the empty state by a sequence of individual
particle creation operators. Applying the notions and rules developed for the harmonic
oscillator in Sec. 24.6.1, we can define a coherent state of bosonic matter as,

|Φ̂(t)⟩ =
∞∑

n=0

Nn/2

√
n!
|Ψ̂(r1, ..., rn, t)⟩ . (45.4)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_CondensacaoIons.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ImpurezasIsobaras.pdf
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The field operators for particle creation and annihilation are normalized to the number
of atoms and satisfy the following commutation rules,

(i) [ψ̂(r), ψ̂(r′)]− = 0

(ii) [ψ̂(r), ψ̂†(r′)]− = δ3(r− r′) , ψ̂†(r) =

∫
d3r′ψ̂†(r′)δ3(r− r′)

(iii) [ψ̂(r), N̂ ]− = ψ̂(r) , N̂ =

∫
d3r′ψ̂†(r′)ψ̂(r′)

(iv) [ψ̂(r), p̂]− = ℏ
ı∇ψ̂(r) , p̂ =

∫
d3r′ψ̂†(r′)(ℏı∇′)ψ̂(r′)

(v) [ψ̂(r),H]− = ıℏ ∂
∂t ψ̂(r)

(45.5)
The last equation is the Heisenberg equation of motion and describes the dynamics of
a system whose many-body Hamiltonian H ≡ Hcm +Hself for N bosons interacting
within an external potential Vtrap in second quantization is defined by 3,

Hcm ≡
∫
d3rψ̂†(r)

(
− ℏ2

2m
∇2 + Vtrap(r, t)

)
ψ̂(r)

Hself ≡
∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)Vcoll(r− r′)ψ̂(r′)ψ̂(r)

. (45.6)

The equations (45.5) and (45.6) represent the foundation of the theory of ultra-
cold bosonic gases. However, to solve the equations, we will need to apply some
simplifications, which will be discussed in the following sections. For example, we will
generally assume that the temperature of the sample is T = 0, and that all atoms are
condensed. Also, in a first time, we will neglect quantum fluctuations, replacing field
operators with complex numbers. And finally, we will need to handle the nonlinear
term appearing in Hself and which signs responsible for collisions between atoms.

45.2.2 Quantum scattering at low temperatures

To simplify the term Hself , we have to go back to Secs. 33.2.5 (and following) and
study the phenomenon of the elastic collisions in the ultracold regime. For simplicity,
we consider two particles without internal degrees of freedom with masses m1 and
m2 approaching each other along the z-axis [276, 1363]. Neglecting spin-spin and
spin-orbit interactions, the Schrödinger equation in the inertial center-of-mass system
is given by (33.115),

(
− ℏ2

2m∗
∇2 + Vcoll(r)

)
ψ̂(r) = Eψ̂(r) , (45.7)

where r = r1 − r2 is the momentary interatomic separation, r = |r|, and mr ≡
m1m2/(m1 +m2) is the reduced mass of atomic collision partners. We assume that
the interatomic potential, Vcoll(r), is spherically symmetrical. In the asymptotic
limit of large separations 4, and in the Born-approximation (33.135), the solution of

3Sometimes the Kamiltonian is used for canonical and macrocanonic ensembles. It defined by,
K = Hcm +Hself −

∫
d3rψ̂†(r)µψ̂(r), where µ is the chemical potential.

4This means, r ≫ r0, where r0 is the range of potential V (r).
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Eq. (45.7) can be seen as the sum of an incident plane wave and a scattered spherical
wave modulated with a certain amplitude f(θ),

ψ(r) = eıkz + f(θ)
eıkr

r
, (45.8)

where k =
√
2mrE/ℏ2 is the amplitude of the wavevector of the incident and scat-

tered waves and θ the angle between r and z. The function f(θ) is called scattering
amplitude and determines the scattering cross-section for s-wave collision through the
expression [see (33.123)],

dσ

dΩ
= |f(θ)|2 . (45.9)

where dΩ = sin θdθdϕ is an element of the solid angle. To calculate the scattering
amplitude, we expand the wavefunction (45.8) into spherical partial waves of orders
ℓ of the angular momentum, as done in (33.136),

fk(θ) =
1

k

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)e
ıδℓ sin δℓ . (45.10)

The collision cross section has been shown in (33.148) to be given by,

σ =
4π

k2

∞∑

ℓ=0

(2ℓ+ 1) sin2 δℓ . (45.11)

For a potential with finite range, that is, a potential falling faster than r−3 with the
distance (interatomic potentials usually fall as r−6 or r−7), the phase shift satisfies,

δℓ ∝ k2ℓ+1 (45.12)

for small k. In ultra-cold gases, the collision energy is very low and k → 0. Thus
the scattering will be dominated by terms with ℓ = 0. This is the so-called limit of
s-wave scattering. In this limit the Eqs. (45.10) can be approximated as,

fk(θ) =
1

k
eıδ0 sin δ0 . (45.13)

45.2.3 Scattering length

For ℓ = 0, taking the limit k → 0, we define the scattering length as via,

Im fk(θ)

Re fk(θ)
= tan δ0 ≡ − tan kas . (45.14)

Therefore, the scattering length and cross section are given at very low temperatures
at the asymptotic boundary by,

as = −
δ0
k

and σ = 4πa2s . (45.15)
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The scattering process can be interpreted as follows: During a collision, the sys-
tem’s wavefunction undergoes a phase shift, δ0, which may be positive or negative,
depending on the sign of as. If as < 0, the phase is ’delayed’ by the collision. This
corresponds to an attractive interaction. In contrast, if as > 0, the phase is ’advanced’
and the interaction is repulsive. Of course, the intensity of the interaction is propor-
tional to the value of |as|. The expression for σ in Eq. (45.15) indicates, that the
atoms behave like hard spheres with radius |as|. The specific value of as will depend
on the interaction potential, however, the details of the potential are unimportant,
as all information about the collision is already contained in as. Consequently, in
the low-energy limit, we can assume that the collision is mediated by an effective
potential Vcoll(r), which has the particularity,

∫
Vcoll(r)d

3r =
4πℏ2

m
as ≡ g . (45.16)

This has been shown in Sec. 33.1.2. Consequently, the effective interaction between
two particles at positions r and r′ can be considered as contact interaction given by 5,

Vcoll(r, r
′) =

g

2
δ(r− r′) . (45.17)

The interatomic interaction potential decides on the value of the scattering length
as: A repulsive potential corresponds to a positive as. For a purely attractive potential
that does not support bound states as is negative, and for an attractive potential that
supports bound states as may be positive or negative depending on the proximity of
the last bound vibrational state of the interaction potential below the dissociation
limit.

45.2.4 The mean field approximation

The mean-field theory (MFT) or local density approximation (LDA) is based on the
assumption of hard sphere collisions between atoms (as described by the potential

(45.17)) propagating through a locally homogeneous mean-field potential, g
2 |ψ̂(r)|2.

The procedure is also called regularization of the interaction.

Thus, the mean-field energy of a condensate is proportional to the density of the
gas n and to a single atomic constant, which is the scattering length as. Its presence
in the Gross-Pitaevskii equation emphasizes its impact on shape, dynamic stability
and many other properties of the condensate. For example, the mean-field interaction
contributes to the broadening of a condensed wavepacket, and consequently contracts
its momentum distribution in comparison with an ideal gas. Homogeneous conden-
sates with a negative scattering length are unstable, because the attempt of such a
condensate to lower its self-energy by increasing its density also increases the rate of
inelastic three-body collisions until the condensate collapses.

5The Hartree-Fock-Bogolubov method (HFB) for the mean-field theory disregards corrections of
higher orders, for example, due to the renormalization of the scattering length. It also neglects

quantum depletion due to the correlation effects of the order of Nout/N = 5
8

√
π
√
a3n0. The the-

ory mean-field supposes the validity of the Born approximation, that is, two-body correlations are
neglected, ψ̂(r′) ≈ ψ̂(r) and

∫
d3RVcoll(R) = g

2
.
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45.2.5 Gross-Pitaevskii equation

The Heisenberg equation [last line of (45.5)] is equivalent to the variational principle,
as stated by the Ehrenfest theorem,

ıℏ
dψ̂

dt
=
δH
δψ̂†

. (45.18)

This facilitates the derivation of the equation of motion for the atomic field. With
the Hamiltonian (45.6) in the mean-field approximation,

Hatom ≡ Hcm +Hmf with Hmf ≡
∫
d3rψ̂†(r, t)

g

2
|ψ̂(r, t)|2ψ̂(r, t) , (45.19)

we find the non-linear Schrödinger equation,

[
− ℏ2

2m
∇2 + Vtrap(r, t) + g|ψ̂(r, t)|2

]
ψ̂(r, t) = ıℏ

∂

∂t
ψ̂(r, t) . (45.20)

Remember that, despite their symbol ψ̂, which usually is associated to wavefunc-
tions, and the fact that they satisfy a non-linear Schrödinger equation the field op-
erators are represented by matrices acting of many-body states. That is, Eq. (45.20)
also represents a Heisenberg equation for the field operators.

A common approximation is the Bogolubov prescription, where the field operators
describing the condensate and its fluctuations are decomposed into a complex func-
tion, ψ0(r) ≡ ⟨ψ̂(r)⟩ called condensed wavefunction, which can be chosen as the order

parameter of the system, and a small perturbation, δψ̂(r) ≡ ψ̂(r) − ψ0(r) describing
thermal excitations. At zero temperature, we can neglect the excitations [108], and
our system is completely described by a single wavefunction, ψ0(r, t), obeying the
famous Gross-Pitaevskii equation (GPE),

[−ℏ2
2m
∇2 + Vtrap(r, t) + g|ψ0(r, t)|2

]
ψ0(r, t) = ıℏ

∂

∂t
ψ0(r, t) . (45.21)

45.2.5.1 Spontaneous breaking of gauge symmetry

The description of a condensate by a single macroscopic wavefunction means that we
attribute a well-defined phase to it. However, the GPE does not allow us to pre-
dict, which phase between 0 and 2π this will be, and we have to assume, that the
BEC chooses its phase spontaneously when it undergoes the phase transition to quan-
tum degeneracy. This principle is called spontaneous breaking of gauge symmetry 6.
In Exc. 45.2.6.2 we study the relation between the fact of having exactly N atoms
in a condensate and a well-defined phase φ, knowing that these two quantities are
conjugate variables having to satisfy a Heisenberg uncertainty relation.

6An alternative way of modeling the development of a BEC phase is based on measurement theory.
See also (35.72) for an analogy to the correct state of a laser.
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45.2.6 Exercises

45.2.6.1 Ex: Derivation of the non-linear Schrödinger equation

Derive the non-linear Schrödinger equation using (a) the commutator relation (45.5)(v)
and (b) the variational expression (45.18).

Solution: From the commutator relation,

ıℏ ∂
∂t
ψ̂(r) = [ψ̂(r),H]− =

[
ψ̂(r),

∫
d3r′ψ̂†(r′)

(
− ℏ2

2m
∇′2 + Vtrap(r

′, t) +
g

2
ψ̂†(r′)ψ̂(r′)

)
ψ̂(r′)

]
−

= − ℏ2

2m

∫
d3r[ψ̂(r), ψ̂†(r′)]−∇′2ψ̂(r′) +

∫
d3r[ψ̂(r), ψ̂†(r′)]−Vtrap(r

′, t)ψ̂(r′)

+
g

2

∫
d3r[ψ̂(r), ψ̂†(r′)ψ̂†(r′)]−ψ̂(r

′)ψ̂(r′)

= − ℏ2

2m
∇2ψ̂(r) + Vtrap(r, t)ψ̂(r) +

g

2

∫
d3r

{
[ψ̂(r), ψ̂†(r′)]−ψ̂

†(r′) + ψ̂†(r′)[ψ̂(r), ψ̂†(r′)]−
}
ψ̂(r′)ψ̂(r′)

=

(
− ℏ2

2m
∇2 + Vtrap(r, t) + g|ψ̂(r)|2

)
ψ̂(r) ,

using the commutation relation [ψ̂(r), ψ̂†(r)]− = δ(r− r′).
b. From the variational expression,

ıℏ
∂

∂t
ψ̂(r) =

δH
δψ̂†

=
δ

δψ̂†

∫
d3r′ψ̂†(r′)

(
− ℏ2

2m
∇′2 + Vtrap(r

′, t) +
g

2
ψ̂†(r′)ψ̂(r′)

)
ψ̂(r′)

=

(
− ℏ2

2m
∇2 + Vtrap(r, t) + g|ψ̂(r)|2

)
ψ̂(r) .

45.2.6.2 Ex: Spontaneous breaking of gauge symmetry

One of the primary characteristics of a condensate is its phase coherence. Now, con-
sider a condensate with exactly N atoms. The exact knowledge of the atom number
implies a totally uncertain phase of the condensate, according to Heisenberg’s uncer-
tainty relation. Explain this contradiction!

Solution: Following Yukalov [297], the existence of a single phase is not essential
for BECs. The question of symmetry breaking as a concept of quantum field theory
only arises for homogeneous systems. If, in a phase transition, the two phases have
different symmetries, the transition is accompanied by a symmetry breaking. Only
continuous phase transitions may exhibit symmetry breaking. Therefore, spontaneous
symmetry breaking is not expected for homogeneous condensates, but only in confined,
finite or interacting systems. Gauge symmetry breaking leads to collapse and revivals
due to particle number fluctuations. It was demonstrated [1115], that the theory of
BEC can also be formulated without the concept of symmetry breaking. The existence
of off-diagonal long-range order (ODLRO) in the density operator, which is an indi-
cator for long-range correlations between particles, is equivalent to the presence of a
condensed phase in a sample.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_QuebraCabeca.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_QuebraCalibre.pdf
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45.3 Approximate solutions of the Gross-Pitaevskii
equation

45.3.1 Stationary GPE

In cases where the external potential is stationary, Vtrap(r, t) = Vtrap(r), the temporal
dependency of the GPE can be removed by the ansatz,

ψ0(r, t) = ψ0(r)e
−ıµt/ℏ . (45.22)

This gives the stationary Gross-Pitaevskii equation,

[−ℏ2
2m
∇2 + Vtrap(r) + g|ψ0(r)|2

]
ψ0(r) = µψ0(r) , (45.23)

where µ is called the chemical potential. Solve Exc. 45.3.4.1.

45.3.2 Trapped condensates and the Thomas-Fermi limit

45.3.2.1 Free particles

The wavefunction of free particles, V (r) = 0, can be described by a plane wave,

ψ(r) =
√
neık·r , (45.24)

also called the Hartree solution. Inserted it into the equation of Gross-Pitaevskii
equation,

E(k) =
ℏ2k2

2m
+ gn , (45.25)

we observe a gap in the energy spectrum due to the interaction.

45.3.2.2 Ideal gas in a harmonic potential

Most experiments apply non-isotropic (often cylindrical) potentials, which are ad-
ditionally distorted by the mean-field. Hence, the non-linear term of the GPE is
important, and the spatial coordinates can not be separated. However, assuming an
ideal gas and a harmonic potential, the dimensions could be separated, as demon-
strated in Sec. 24.5.5, even when the potential is not isotropic. It is then sufficient to
consider one-dimensional problems with g = 0,

[
− ℏ2

2m

∂2

∂x2
+
m

2
ω2
xx̂

2

]
ψn = µnψn . (45.26)

In this limit, the GPE is nothing more than the usual Schrödinger equation, which
has the well-known spectrum (24.110) and the solutions (24.109).
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45.3.2.3 Ideal gas in an isotropic potential

In the case of an ideal gas trapped in a spherically symmetric potential, as shown in
(25.34), the Schrödinger equation can be reduced to its radial component,

[
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
+ Vtrap(r)

]
fnlm(r) = µnlfnlm(r) , (45.27)

with the solution (25.18),

ψn(r, ϑ, φ) =
∑

l,m

fnlm(r)Ylm(ϑ, φ) (45.28)

The differential equation (45.27) can be solved numerically by Runge-Kutta type
methods, (

f ′′

f ′

)
=

(
2
r µ+ l(l+1)

r2 − Vtrap(r)
1 0

)(
f ′

f

)
. (45.29)

45.3.2.4 Thomas-Fermi limit for strong interactions

In the case of strong interactions, the kinetic energy term can be neglected, at least in
the center of the cloud, where the mean-field energy is stronger. For this case, called
Thomas-Fermi limit, the GPE solution is easy,

|ψ0(r)|2 =
µ− Vtrap

g
. (45.30)

The chemical potential follows from the normalization condition,

N =

∫

n(r)>0

n(r)d3r . (45.31)

In the case of an cylindrical harmonic oscillator potential, Vtrap(r, z) = m
2 (ω

2
rr

2 +
ω2
zz

2), the chemical potential is,

µ =

(
15Ng

8π

)2/5 (m
2
(ω2
rωz)

2/3
)3/5

. (45.32)

The radial size σ of the condensate follows from n(rhw, 0) =
n(0,0)

2 ,

rhw =

√
µ

mω2
r

. (45.33)

Solve the Excs. 45.3.4.2 and 45.3.4.3.

45.3.3 Variational treatment of the GPE

The many-body Hamiltonian (45.19) can be used as an energy functional,

E[ψ0] ≡ ⟨H[ψ0]⟩ =
∫
d3r

[
ℏ2

2m
|∇ψ0|2 + Vtrap(r)|ψ0|2 +

g

2
|ψ0|4

]
, (45.34)
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from which, using the variational condition (45.18), we have derived the Gross-
Pitaevskii equation (45.21). Hence, the wavefunction ψ0 minimizes the functional
[378]. By inserting an ansatz for the wavefunction with adjustable parameters, the
functional provides conditions to optimize these parameters.

The variational method is useful e.g. for finding the ground state wavefunction
of a condensate in an arbitrarily shaped trap or to perform a stability analysis of a
condensate with attractive interatomic forces.

45.3.3.1 Finding the fundamental state of the GPE

This problem of finding the ground state wavefunction of a condensate consists in
finding the ψ for which the energy H[ψ] goes to a minimum. In general, the functional
has the form H[ψ] =

∫
f [ψ,∇ψ]d3r. The fastest way to the minimum is to reduce the

energy by varying ψ in that direction, where the gradient δH/δψ∗ is largest, that is,
H → H[ψ + τ δH

δψ∗ ] (45.35)

ψ → ψ + τ δHδψ∗ ,

with the boundary condition, that the normalization must be preserved. Formally,
this problem is similar to a time-dependent Gross-Pitaevskii equation, but with imag-
inary time. Physically, the procedure, called the steepest descent method, can be
interpreted as applying a heavily ’overdamped’ friction force,

∂ψ

∂τ
=

δH
δψ∗

. (45.36)

-5 0 5
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Figure 45.2: (code) Calculation of the BEC wavefunction by the steepest descent method

(red dots). Also shown are the ideal gas approximation (yellow line) and the Thomas-

Fermi approximation (magenta line), as well as the ground state energy (black line) and the

chemical potential (green line).

In practice, the procedure is as follows: we start with a trial wavefunction, for
example, the exact solution of the interaction-free case. This function is now prop-
agated in imaginary time, using the complete Hamiltonian including the non-linear
term, and then renormalized:

ℏ
∂

∂t
ψ(r, t) = H(r)ψ(r, t) . (45.37)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_SteepestDescent.m
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Substituting the imaginary unit i in the time-dependent Gross-Pitaevskii equation
(45.21) by −1, we obtain,

ψ(r, t+ dt) = [1− ℏ−1H(r)dt]ψ(r, t) (45.38)

ψ′(r, t) ≡ ψ(r, t+ dt)

|ψ(r, t+ dt)| → ψ(r, t) .

This procedure is repeated until the function converges. Since this method is derived
from a variational principle, it only serves to find the ground state of the trapping
potential. It can not be used for excited states (with the exception of vortex states,
where in cylindrical coordinates the Hamiltonian differs by an additional centrifugal
term).

45.3.3.2 Collapse and stabilization of condensates with attractive inter-
actions

Attractive interactions destabilize a Bose-Einstein condensate. Since the interaction
energy, 4πℏ2asn/m, of a condensate with negative scattering length decreased with
increasing density n, the condensate attempts to lower its interaction energy by in-
creasing its density until it succumbs to inelastic two-body spin-changing collisions of
to three-body collisions leading to the formation of molecules [1270]. Strictly speak-
ing, this only holds true for homogeneous condensates. In the presence of a trapping
potential, however, the zero-point energy exerts a kinetic pressure, which counteracts
the condensate collapse to a certain extent, such that small condensates are stabi-
lized. This can be verified by inserting a Gaussian wavefunction ψ0 ∝ e−r

2/2r̄2 into
the energy functional (45.34). Varying the radius r̄ of the condensate, we find a local
minimum where the condensate is stable. Calculations for spherical traps predict
[1122, 319],

Nmin ≃ 0.575
atrp
|as|

, (45.39)

where atrp =
√
ℏ/mωtrp.

The atomic species 7Li has a slightly negative scattering length as = −27.3aB . As
can be seen in Fig. 45.3, small condensates can survive in a confining trap, since the
energy functional has a local minimum [189, 187, 1124]. Solve Exc. 45.3.4.4.

45.3.4 Exercises

45.3.4.1 Ex: GPE in dimensionless units

Use the following abbreviations to rewrite the Gross-Pitaevskii equation and its solu-
tion for a harmonic isotropic potential in dimensionless units,

V1 ≡ Vtrap/ℏωtrp Vtrap = m
2 ω

2
trpr

2

r1 ≡ r/atrp atrp =
√
ℏ/mωtrp

µ1 ≡ µ/ℏωtrp T1 ≡ kBT/ℏωtrp
ψ1 ≡ ψ/a3/2trp p1 ≡ atrpp/ℏ
g ≡ 4πℏ2a/m g1 ≡ 8πN0a/atrp

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_GpeSemdimensao.pdf
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Figure 45.3: (code) Energy of a 7Li condensate in a harmonic isotropic potential with

ωtrp = (2π) 50 Hz with N = 500 atoms (linha inferior) up to N = 3000 (linha superior)

when the radius r̄ of the condensate is varied.

Solution: In 3 dimensions the GPE becomes,

(
∇2

1 + r21 + g1|ψ1|2
)
ψ1 = µψ1 .

45.3.4.2 Ex: Interacting gas in an isotropic potential

Consider the potential V (r) = V (r), such that the wavefunction will have radial sym-

metry, ψ(r) = ϕ(r)
r . Rewrite the Gross-Pitaevskii equation for the function ϕ [626].

Solution: The Gross-Pitaevskii equation is,

ıℏ
∂ψ(r)

∂t
=

(
− ℏ2

2m
∇2 + Vtrap(r) + g|ψ(r)|2

)
ψ(r)

or [626],

µ
ϕ(r)

r
=

(
− ℏ2

2m

[
1

r

∂2

∂r2
r +

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

r2 sin2 ϑ

∂2

∂φ2

]
+ Vtrap(r) + g

∣∣∣∣ϕ(r)r
∣∣∣∣2
)
ϕ(r)

r

µϕ(r) =

(
− ℏ2

2m

∂2

∂r2
+ Vtrap(r) + g

|ϕ(r)|2
r2

)
ϕ(r) ,

with ∫
|ψ(r)|2d3r = 4π

∫ ∞

0

|ψ(r)|2r2dr = 4π

∫ ∞

0

|ϕ(ρ, z)|2dr = 1 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_StableCollapse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_StableCollapse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_StableCollapse.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_GasinteragindoIsotropo.pdf
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45.3.4.3 Ex: Interacting gas in a cylindrical potential

Consider the potential V (r) = V (ρ, z), such that the wavefunction will have rotational

symmetry, ψ(ρ, z, φ) = ϕ(ρ,z)
ρ . Rewrite the Gross-Pitaevskii equation for the function

ϕ [626].

Solution: The Gross-Pitaevskii equation is,

ıℏ ∂
∂t

ϕ(ρ, z)

ρ
=

(
− ℏ2

2m

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

]
+ Vtrap(ρ, z) + g

∣∣∣∣ϕ(ρ, z)ρ

∣∣∣∣2
)
ϕ(ρ, z)

ρ

iℏ∂ϕ(ρ, z)
∂t

= − ℏ2

2m

[
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

1

ρ2
+

∂2

∂z2

]
ϕ(ρ, z) + Vtrap(ρ, z)ϕ(ρ, z) + g

|ϕ(ρ, z)|2
ρ2

ϕ(ρ, z) .

Often we have a harmonic trap at least in the radial direction, ρ1 ≡ ρ/aρ. An
appropriate scale is then,

ı
∂ϕ(ρ, z)

∂ωρt
= −1

2

[
∂2

∂ρ21
− 1

ρ1

∂

∂ρ1
+

1

ρ21
+

∂2

∂(z/aρ)2

]
ϕ(ρ, z)+

Vtrap(ρ, z)

ℏωρ
ϕ(ρ, z)+

4πℏas|ϕ(ρ, z)|2
ρ21

ϕ(ρ, z) ,

with

∫
|ψ(r)|2d3r = 2π

∫ ∞

−∞

∫ ∞

0

|ψ(r)|2ρdρdz = 2π

∫ ∞

−∞

∫ ∞

0

|ϕ(ρ, z)|2
ρ

dρdz = 1 .

45.3.4.4 Ex: Collapse of condensate with attractive interactions

A Bose-Einstein condensate of 7Li may become unstable due to attractive inter-
atomic forces, the scattering length being as = −27.3aB . Consider the radial Gross-
Pitaevskii Hamiltonian with an external harmonic potential with the oscillation fre-
quency ωtrp/(2π) = 50 Hz. Using the variational method, determine the maximum
number of atoms allowing for a stable condensate. (Note that the derived minimiza-
tion condition must be evaluated numerically.)

Solution: We want to minimize the radial Gross-Pitaevskii Hamiltonian,

Ĥα = − ℏ2

2m

d2

dr2
+
m

2
ω2r2 +

g|ϕα(r)|2
r2

,

with ψα(r) =
ϕα(r)
r e g = N 4πℏ2as

m making the ansatz ψα(r) = Ae−αr
2

. Normalization
requires,

1 = ⟨ψα|ψα⟩ = 4π

∫ ∞

0

|ψα(r)|2r2dr = 4π

∫ ∞

0

|ϕα(r)|2dr = 4π

∫ ∞

0

A2e−2αr
2

r2dr = A2

√
π

2α

3

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_GasinteragindoCilindrico.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ColapsoInteracaoatrativa.pdf
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Hence, A2 =
√

2α/π
3
. The ground state energy is now,

µα = ⟨ϕα|Ĥα|ϕα⟩ = 4π

∫ ∞
0

ϕα(r)Ĥαϕα(r)dr

= 4πA2

∫ ∞
0

re−αr
2
[
− ℏ2

2m
(−6α+ 4r2α2) + m

2
ω2r2 + gA2e−2αr2

]
re−αr

2

dr

= 4πA2

α
√
α

6ℏ2α
2m

∫ ∞
0

ζ2e−2ζ2dζ + 4πA2

α2
√
α

(
− 4ℏ2α2

2m
+ mω2

2

)∫ ∞
0

ζ4e−2ζ2dζ + 4πA2

α
√
α
gA2

∫ ∞
0

ζ2e−4ζ2dζ

= 4πA2

α
√
α

6ℏ2α
2m

1
8

√
π
2
+ 4πA2

α2
√
α

(
− 4ℏ2α2

2m
+ mω2

2

)
3
32

√
π
2
+ 4πA2

α
√
α
gA2

√
π

32
= 3ℏ2α

2m
+ mω2

2α
+ g

(
α
π

)3/2
.

Minimizing,

0 =
∂µα
∂α

=
∂

∂α

[
3ℏ2α
2m

+
mω2

2α
+ g

(α
π

)3/2]
=

3ℏ2α2 −m2ω2 + 3π−3/2gα
5
2m

2mα2

we obtain,
0 = 3ℏ2α2 −m2ω2 + 3π−3/2gα

5
2m .

This equation must be evaluated numerically.

45.4 Elementary excitations

The dynamics of Bose-Einstein condensates is usually studied by observing the change
of their shape in response to temporal variations in the trapping potential. The sim-
plest variation surely consists in suddenly removing the trapping potential altogether.
Consequently, the first experiment performed with a BEC was the study of its ballistic
expansion [31, 420, 238] (see Sec. 45.7.1).

On the other hand, the temporal variation of the potential can also be a small
oscillatory or pulsed perturbation, for example, a small modification of the amplitude
of the trapping field, a displacement or a local anisotropy induced by the dipole force
of a laser beam tuned far away from resonance. It is even conceivable to manipulate
the self-energy of the condensate or to irradiate electromagnetic waves, which couples
internal atomic excitation levels or states of the atomic motion [108, 33, 1241, 674,
883, 1210, 406, 1271, 675, 976, 1240, 501]. The response of the condensate to such
small perturbations can be understood by a linearized model of the Gross-Pitaevskii
equation, which we will present in the following sections.

45.4.1 Bogolubov spectrum of excitations

To analyze the spectrum of a condensate’s response to small perturbations, let us
follow Bogolubov’s treatment of the time-dependent Gross-Pitaevskii equation [1238].
We start by substituting Eq. (45.20) [405],

ψ̂(r, t) −→ ψ̂(r, t)e−ıµt/ℏ , (45.40)

which gives us,
[
− ℏ2

2m
∇2 + Vtrap(r) + g|ψ̂(r, t)|2

]
ψ̂(r, t) =

[
µ+ iℏ

∂

∂t

]
ψ̂(r, t) . (45.41)
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The Bogolubov prescription now consists in approximating the field operators of the
condensate by a sum of the equilibrium wavefunction, which is interpreted as a com-
plex number, and a small perturbation, which conserves its operator character,

ψ̂(r, t) ≃ ψ0(r) + δψ̂(r, t) . (45.42)

This treatment assumes that most atoms are condensed, N − N0 ≪ N0, and only a
few thermal atoms are left out.

Applying the Bogolubov transform,

δψ̂(r, t) ≡
∑

k

uk(r)âk(t) + v∗k(r)âk(t)
† , (45.43)

the perturbation is expressed as a superposition of amplitudes for annihilation and
creation of non-interacting quasi-particles. By inserting this ansatz into the Gross-
Pitaevskii equation, we obtain a linear system of equations called Bogolubov-de Gennes
equations.

45.4.1.1 Semi-classical approximation

To simplify the equations, let us neglect the operator character of the quasi-particle
by doing the substitutions,

âk → e−ıωkt and â†k → eıωkt . (45.44)

That is, we insert the ansatz (45.42) with,

δψ̂(r, t) ≡ uk(r)e−ıωkt + v∗k(r)e
ıωkt , (45.45)

into the Gross-Pitaevskii equation (45.41), we look for the lowest order,

(
− ℏ2

2m
∇2 + Vtrap + g|ψ0|2

)
ψ0 = µψ0 , (45.46)

and we collect the terms of first order in e±iωkt, neglecting terms of order u2k, v
∗2
k or

higher,

− ℏ2

2m
∇2uk + Vtrapuk + 2gψ2

0uk − gψ2
0v
∗
k = µuk + ℏωkuk (45.47)

ℏ2

2m
∇2vk − Vtrapvk − 2gψ2

0vk + gψ2
0u
∗
k = −µvk + ℏωkvk .

Introducing the abbreviations n = ψ2
0 and,

L ≡ −ℏ
2∇2

2m
+ Vtrap + 2gn− µ , (45.48)

we can write
(
L − ℏωk gn

gn L+ ℏωk

)(
uk

vk

)
=

[(
L gn

gn L

)
− ℏωkσ̂z

]
ϕk = 0 , (45.49)
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with σ̂z being the third Pauli matrix. The solution of Eq. (45.49) is given by the
requirement, that the determinant of the matrix be 0,

ℏωk =
√
L2 − (gn)2 . (45.50)

The object

ϕk ≡
(
uk(r)

vk(r)

)
(45.51)

is called a normal mode of the condensate. The normal modes (45.50) are orthonormal,

⟨ϕk|ϕk′⟩ =
∫
drϕ†k(r)σ̂zϕk′(r) = δk,k′ , (45.52)

which means that the modes do not interact, that is, the quasi-particles do not collide.
For homogeneous systems or at the interior of a large condensate with strong

interactions, we can assume that the potential is approximately constant, Vtrap → 0,
and kinetic energy negligible compared to the self-energy, and Eq. (45.41) shows us,
µ→ gn. Assuming plane waves,

uk(r) ≡ ueık·r and vk(r) ≡ veık·r , (45.53)

we obtain the Bogolubov spectrum of elementary excitations,

ℏωk =

√
ℏ2k2

2m

(
ℏ2k2

2m
+ 2µ

)
. (45.54)

which corresponds to a dispersion relation for Bose-Einstein condensates. For an
interacting gas, the collective modes are distortions of the condensate, caused by
restoring forces originating in the finite compressibility of the gas.

45.4.1.2 Phonon- and particle-like excitations

The coefficients u and v describe the annihilation and u∗ and v∗ the creation of quasi-
particles called fonons or elementary excitations. Two limits are interesting. In the

low energy limit, ℏ2k2

2m ≪ gn(r), we create phonon-like excitations. The Bogolubov
spectrum becomes,

ℏωphk ≃ csℏk with cs ≡
√
ng

m
. (45.55)

Here is cs the sound velocity inside the condensate. The fact that, comparing (45.54)
and (45.55), we find,

ℏωk > ℏωphk (45.56)

for all k is the Landau criterion for the superfluidity of the condensate. It means that,
for an object being dragged through the condensate with a velocity less than cs, it does
not become energetically favorable to produce excitations, see Fig. 45.4. Therefore,
the object will move without dissipation, which is an important characteristic of
superfluids. Experiments demonstrated this manifestation of superfluidity by slowly
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stirring a strongly focused blue-detuned laser through a condensate. We will come
back to this in Sec. 46.1.1.

In the high energy limit, ℏ2k2

2m ≫ gn(r), we create particle-like excitations. The
Bogolubov spectrum becomes,

ℏωpak =
ℏ2k2

2m
. (45.57)

In this limit, we recover the quadratic dispersion relation of free particles, as seen in
Fig. 45.4.
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Figure 45.4: (code) Bogolubov spectrum (red), phonon limit (blue line) and particle limit

(green line).

Experimentally, the complete Bogolubov spectrum (45.54) can be measured by
Bragg spectroscopy [1260, 1239] (see Sec. 47.2). Solve Exc. 45.4.3.1.

45.4.2 Excitation of normal modes

In the simplest case, we generate a perturbation as a weak additional potential in the
Gross-Pitaevskii equation (45.41),

[
L − gn+ f+(r)e

−ıωpt + f−(r)e
ıωpt
]
ψ̂ = iℏ

∂

∂t
ψ̂(r, t) . (45.58)

After the Bogolubov transform (45.45) we now have,
[(
L gn

gn L

)
− ℏωkσ3

](
u(r)

v(r)

)
= −

(
f+(r)ψ0(r)

f∗−(r)ψ
∗
0(r)

)
. (45.59)

The solution of this equation is found by expanding the amplitudes u(r) and v(r) into
normal modes,

(
u(r)

v(r)

)
=
∑

k

ckϕk(r) and

(
f+(r)ψ0(r)

f∗−(r)ψ
∗
0(r)

)
=
∑

k

gkϕk(r) , (45.60)

where gk is given by the overlap integral,

gk =

∫
drϕ†k(r)σ3

(
f+(r)ψ0(r)

f∗−(r)ψ
∗
0(r)

)
. (45.61)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BogolubovSpectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BogolubovSpectrum.m
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To calculate the response of the condensate to a given perturbation f±(r), we must
first calculate the normal mode spectrum ϕk(r) from the Bogolubov equation (45.49).
After that, we can calculate the coefficients (45.61). Inserting the expansions into the
Eq. (45.59), we obtain the response of the condensate,

(
u(r)

v(r)

)
= −

∑

k

gk/ℏ
ωk − ω

ϕk . (45.62)

The deviation, which is observed for resonant excitation, is due to the neglected losses
and non-linear effects.

45.4.2.1 Classification of normal modes

BECs often have cylindrical symmetry, ψ(r) = ψ0(r, z). In this case, similar calcu-
lations to those shown above, result in analytical expressions for the frequencies of
the elementary excitations. These frequencies were derived by [318] 7. The modes
can be classified by their main quantum numbers nr and by their multipolar moment
ℓ. Examples are the surface excitation or shape oscillation (nr = 0) and the com-
pression oscillation (nr ̸= 0). Special cases are called shaking mode, breathing mode
(nr = 1, ℓ = 0), and swirling mode. In the case of cylindrical symmetry, the projec-
tion of the angular momentum onto the symmetry axis m is the relevant quantum
number. The dispersion relations are,

ω(ℓ,∓m = ℓ) = |m|ω2
r (45.63)

ω(ℓ,∓m = ℓ− 1) = |m|ω2
r + ω2

z

ω(ℓ,∓m = ℓ− 2) = ω2
r

[
2|m|+ 2 + 3

2λ
2 ∓

√
(|m|+ 2− 3

2λ
2)2 + 2λ2(|m|+ 1)

]

ω(ℓ,∓m = ℓ− 3) = ω2
r

[
2|m|+ 2 + 7

2λ
2 ∓

√
(|m|+ 2− 5

2λ
2)2 + 6λ2(|m|+ 1)

]
,

where λ is the aspect ratio λ = ωz/ωr. Obviously, higher excitation orders depend
on the trap geometry. Moreover, we can easily see, that occasional degeneracies must
arise for specific aspect ratios. For example, when ω+(2, 0) = 2ω(2, 2), we derive
from (45.63) the condition λ =

√
16/7, and when ω+(2, 0) = 2ω−(2, 0), we derive

λ = 1
6

√
77 + 5

√
145.

45.4.2.2 Quantum depletion

Following Bogolubov’s theory the quantum depletion is given by,

δN

N
=

1

N

∑

k

∫
d3r|vk(r)|2 . (45.64)

7It is worth mentioning that the linearized theory applies to small perturbations. Strong distur-
bances render the dynamics chaotic, since the energy is coupled to many modes of excitation.
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a) b) c)

Fig. 14. – Shape of low-lying collective excitations: a) slow m = 0 quadrupolar oscillation (JILA, MIT), b) fast
m = 0 radial oscillation (MIT), c) |m| = 2 oscillation (JILA).

quadrupolar modes observed at JILA, with out-of-phase oscillations along the axial and radial directions.

The higher frequency mode was primarily a radial breathing mode (fig. 14b). After locating the modes

by a non-selective “step” excitation, we used a five-cycle sinusoidal modulation of the trapping coils to

resonantly excite the shape oscillations. The subsequent free oscillations were clearly visible as periodic

modulations of the aspect ratio in time-of-flight (fig. 15) and in phase-contrast (fig. 16) as observed

later [30].

Fig. 15. – m = 0 quadrupolar condensate oscillations viewed in time-of-flight absorption imaging. Oscillations in
the aspect ratio of the expanding condensate are clearly visible. The horizontal width of each cloud is 1.2 mm.
Figure taken from ref. [177].

350 µm

Fig. 16. – m = 0 quadrupolar condensate oscillations viewed in-situ. Repeated phase-contrast images, taken at
5 ms intervals, show large-amplitude oscillations of a low-temperature Bose-Einstein condensate. Figure taken
from ref. [30].
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Fig. 14. – Shape of low-lying collective excitations: a) slow m = 0 quadrupolar oscillation (JILA, MIT), b) fast
m = 0 radial oscillation (MIT), c) |m| = 2 oscillation (JILA).

quadrupolar modes observed at JILA, with out-of-phase oscillations along the axial and radial directions.

The higher frequency mode was primarily a radial breathing mode (fig. 14b). After locating the modes

by a non-selective “step” excitation, we used a five-cycle sinusoidal modulation of the trapping coils to

resonantly excite the shape oscillations. The subsequent free oscillations were clearly visible as periodic

modulations of the aspect ratio in time-of-flight (fig. 15) and in phase-contrast (fig. 16) as observed

later [30].

Fig. 15. – m = 0 quadrupolar condensate oscillations viewed in time-of-flight absorption imaging. Oscillations in
the aspect ratio of the expanding condensate are clearly visible. The horizontal width of each cloud is 1.2 mm.
Figure taken from ref. [177].

350 µm

Fig. 16. – m = 0 quadrupolar condensate oscillations viewed in-situ. Repeated phase-contrast images, taken at
5 ms intervals, show large-amplitude oscillations of a low-temperature Bose-Einstein condensate. Figure taken
from ref. [30].

(d)

Figure 45.5: Normal modes of a BEC. (a) Shape oscillation, (b) breathing oscillation,
and (c) quadrupole oscillation. (d) Non-destructive measurements of quadrupolar
vibrations of a BEC [1240].

45.4.2.3 Fluctuations in BECs

Fluctuations in condensates are reduced as compared to thermal ensembles. Non-
linearities are always very sensitive to fluctuations (see the laser). Therefore, we
have to look at closer at collisions. For 3-body decay in a thermal source, ⟨ρ(r)3⟩ ∼
6⟨ρ(r)⟩3, and in a coherent source: ⟨ρ(r)3⟩ ∼ ⟨ρ(r)⟩3 [217, 1227].

45.4.3 Exercises

45.4.3.1 Ex: Sound velocity in the Thomas-Fermi regime

Consider a condensate of N = 105 87Rb atoms confined to an isotropic harmonic
potential with secular frequency ωtrp = (2π) 50 Hz. Remember as = 110aB and use
the Thomas-Fermi approximation.
a. Evaluate the chemical potential.
b. Calculate the sound velocity at the center of the condensate.

Solution: a. In the Thomas-Fermi limit the density distribution is given by,

n(r) = 1
g

(
µ− m

2 ω
2
trpr

2
)
.

Normalization gives,

N =

∫
n(r)d3r = 1

g

∫ √2µ/mω2
trp

0

(
µ− m

2 ω
2
trpr

2
)
4πr2dr =

8πµ

15g

√
2µ

mωtrp
.

Hence,

µ =

(
15Ng

8π

)2/5 (m
2
ω2
trp

)3/5
.

This gives µ = h · 796 Hz.
b. The density at the center of the condensate now is,

n0 =
µ

g
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_SomThomasfermi.pdf
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The velocity of sound at the center is given by,

cs =

√
gn0
m

=

√
µ

m
.

Hence, we find cs = 1.9 mm/s.

45.5 Hydrodynamics and the propagation of sound

The question arises how the elementary excitations relate to the phenomenon of sound,
well known from the hydrodynamic theory of superfluid 4He proposed by Landau
[772]. The hydrodynamic regime is characterized by the dominance of collisions 8. On
the other hand, Bogolubov’s theory describes elementary excitations in the collision-
less regime, where quasi-particles do not interact 9. There is, therefore, a great
motivation to study excitations with condensates in a very dense regime, where one
can expect to recover predictions of hydrodynamic theory.

The hydrodynamic regime is reached, when the free path of the particles is smaller
than the wavelength of the sound, that is 10,

lmfp < λ/2π . (45.65)

45.5.1 Zero, first and second sound

The occurrence of several types of sound was related by Tisza and London to the
existence of superfluid and normal components in 4He [954]. The second sound is a
quantum phenomenon, where the heat transfer occurs as an wave-like motion instead
of being diffusive. Heat takes the place of pressure in normal sound waves called first
sound. This induces a very high thermal conductivity. At temperatures below the
λ-point, 4He has the highest known conductivity of all materials (a few hundred times
higher than copper).

The zero sound was introduced by Landau to name quantum vibrations in Fermi
quantum liquids. This sound can not be seen as a simple wave of compression and
rarefaction. In gaseous condensates, the zero sound corresponds to the elementary
excitation called phonon-like.

Finally, the excitation called particle-like or ballistic, observed in gaseous conden-
sates has no correspondence in dense superfluids, since the mean free path there is too
short. The various regimes accessible in condensed gasses are listed in the following
table [33, 35, 544, 704, 1198, 1241, 1240, 456]:

8Collisions prevent condensation, because they localize the particles. This is the reason for the
large quantum depletion, which in 4He is of the order of 10% and hides effects of quantum statistics.
Quantum depletion prevents any form of long-range order, as this requires delocalization.

9Bogolubov’s theory assumes that the only impact of collisions is to deform the dispersion rela-
tionship, keeping the collective modes orthogonal.

10Note the similarity to the Ioffe-Regel criterion.
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Our experiments were performed with condensates which were well in the Thomas-Fermi limit. The

oscillations we observed were considered by Stringari, who provided the first analytical expression for

their frequency and shape [222]. The agreement between the predicted frequencies and the experimental

results was quite good. The fast oscillation at ν = 2.04(6) ·νr agreed with the prediction of 2 ·νr. For the

slow oscillation, we measured a frequency ν = 1.556(14) · νz compared with the prediction of 1.580 · νz.

More recently, we improved our measurement to obtain a frequency of 1.569(4) · νz at the limit of low

temperature (νr and νz are the radial and axial frequencies, resp.) [30]. This close agreement constitutes

a critical quantitative test of the mean-field description of excited states of a Bose condensate.

6
.
4. Measurements of the speed of Bogoliubov sound . – The experiments described above studied the

low-lying discrete oscillation modes of a trapped condensate. In order to connect more closely with

the continuous excitation spectrum of homogeneous system, we also studied density modulations at

wavelengths of 20 – 30 µm that were smaller than the length of the condensate [28, 223]. For this,

localized density perturbations were created using an off-resonant blue-detuned laser beam focused to

the middle of the trap. Positive perturbations were created by suddenly switching on the laser beam

after the condensate had formed. The repulsive optical dipole force expelled atoms from the center of

the condensate, creating two density peaks which propagated symmetrically outward. Alternatively, we

formed a condensate in the presence of the laser light and then switched the laser off. This created

localized depletions of density which also propagated outward.

Fig. 17 shows the propagation of density perturbations observed by sequential phase-contrast imaging

of a single trapped cloud. We observed one-dimensional axial propagation of sound at a constant velocity

near the center of the cloud, where the axial density varies slowly. The density dependence of the

speed of sound was studied using adiabatically expanded or compressed condensates, yielding maximum

condensate densities n0 ranging from 1 to 5 ×1014 cm−3 (fig. 18). The data were compared with the

prediction of Bogoliubov theory, cs = (4πh̄2an/m2)1/2, where the variation of the condensate density

across the radius of the cloud is accounted for by using n = n0/2 [224, 225, 220]. The agreement between

the data and this theory was good except at low density where the assumption that the sound pulse is

longer than the radial extent of the condensate began to break down.
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Fig. 17. – Observation of sound propagation in a Bose condensate. A non-destructive phase-contrast image was
taken every 1.3 ms. Vertical profiles of the condensate density show two “blips” traveling out symmetrically from
the center of the cloud. Figure taken from ref. [28].

Figure 45.6: (code) Consecutive measurements of the BEC density profile showing the prop-

agation of zero sound. The sound was excited by a blue-detuned laser tuned focused into the

middle of the BEC (lower curve). The other curves show how the perturbation propagates

towards the edges of the BEC.

regime range scale energy range condensate thermal cloud

collision-less k−1 < ξ < lmfp
ℏ2

2ml2mfp
< gn0 <

ℏ2k2

2m ballistic ballistic

collision-less ξ < k−1 < lmfp
ℏ2

2ml2mfp
< ℏ2k2

2m < gn0 zero sound ballistic

hydrodynamic ξ < lmfp < k−1 ℏ2k2

2m < ℏ2

2ml2mfp
< gn0 second sound first sound

(45.66)

normal modes qR≪ 1

macroscopic qa≪ 1

beyond Bogolubov qa > 1

superfluid (TF limit, LDA) Eself ≫ Ekin 8πNa≫ aho aho ≫ ξ

??? Eself ≪ Ekin 8πNa≪ aho aho ≪ ξ

collision-less γcoll ≪ ℏq2
2m qlmfp ≪ 1

hydrodynamic γcoll >
ℏq2
2m qlmfp > 1

(45.67)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecSoundKetterle.m
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With lmfp ≃ 1/nthσ. Typical values are,

a = 0..1000aB = 0..50 nm

n−1/3 = 20..200µm

2π/q = 0.2..∞µm

ξ =
√
8πna

−1
= 0.03..30µm

aho =
√
ℏ/mωtr = 0.1..3µm

2π/kF = 2πaho(48N)−1/6 = 30..70µm

(45.68)

The various regimes of sound are distinguished by frequency shifts and damping
rates of the collective modes, which depend on the density (determining the mean-field
energy and the mean free path) and the temperature (controlling the ratio between
condensed and normal fraction). The quantity

ξ ≡ 1√
8πasn

, (45.69)

is called healing length.
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Figure 45.7: Simulation of the propagation of sound toward the edges of the condensate.

45.6 Momentum representation

We showed in Sec. 23.3.7, that the wavefunctions can be represented in the spatial or
the momentum domain. These notions can be extended to the second quantization
procedure by generalizing the equations (23.104),

âk ≡ 1√
(2π)3V

∫
ψ̂(r)e−ık·rd3r , ψ̂(r) ≡

√
V

(2π)3

∫
âke

ık·rd3k . (45.70)

Differently from (23.104) we chose here a normalization, which leaves the field oper-
ators ak without unit.
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45.6.1 Confined particles

In the case of confined atoms, H = Hcm+ Vtrap(r) +Hself , we get sharp eigenvalues,

âk =
1

V

∑

k′

âk′δ(3)(k− k′) . (45.71)

We insert this in equation (45.70),

ψ̂(r) =
√

1
(2π)3V

∑

k′

âk′

∫
δ(3)(k− k′)eık·rd3k (45.72)

=
√

1
(2π)3V

∑

k′

âke
ık·r =

∑

k

uk(r)âk ,

thus making an expansion of the condensate into plane waves,

uk(r) =
1√

(2π)3V
eık·r , (45.73)

which is particularly adapted to the 3D box potential, Vtrap(r) ≡ ∞ se r > R. Also,
we calculate,

âk =
√

1
(2π)3V

∫
ψ̂(r)e−ık·rd3r =

∫
ψ̂(r)u∗k(r)d

3r . (45.74)

We obtain the observable commutation rules from (45.5),

[âk, â
†
k′ ] = δkk′ , [âk, âk′ ] = 0 , N̂ =

∑

k

â†kâk . (45.75)

Using the following mathematical relationships,

1
(2π)3V

∑

k

e−ık·(r−r
′) = δ3(r− r′) and 1

(2π)3V

∫
d3reı(k

′−k)·r = δk,k′ , (45.76)

and easy to show for plane waves,

∑

k

u∗k(r)uk(r
′) = δ3(r− r′) and

∫
u∗k(r)uk′(r)d3r = δkk′ . (45.77)

In Exc. 45.6.4.1 we will check the validity of the commutation rules (45.75), and in
Exc. 45.6.4.2 we derive the following representation of the Hamiltonian:

H =

∫
d3rψ̂†(r)

(
− ℏ2

2m
∇2 + Vtrap(r)

)
ψ̂(r)

+
g

2

∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)δ(r− r′)ψ̂(r′)ψ̂(r)

=
∑

k

ℏ2k2

2m
â†kâk +

∑

k,k′

â†kVk,k′ âk′ +
g

2

∑

k,k′,k′′

â†kâ
†
k′ âk′′ âk+k′−k′′

, (45.78)
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with the abbreviation,

Vk,k′ =

∫
u∗k(r)Vtrap(r)uk′(r)d3r = 1

(2π)3

∫
Vtrap(r)e

ı(k′−k)rd3r . (45.79)

The equation of motion for the momentum wavefunction now becomes,

ıℏ
∂

∂t
âk = [âk,H] =

ℏ2k2

2m
âk +

∑

k′

Vk,k′ âk′ + g
∑

k′,k′′

â†k′ âk′′ âk+k′−k′′ . (45.80)

45.6.1.1 Harmonically confined particles

In harmonic traps, Vtrap(r) =
m
2 ω

2
trpr

2, the motion can be canonically quantized,

â =
1√
2

(
r̂

atrp
∓ iatrpp̂

)
, Hcm =

∑

k

ℏωtrpâ†kâk , (45.81)

with the size of the ground state,

atrp ≡
√

ℏ
mωtrp

. (45.82)

As an alternative notation we could introduce,

|r⟩ ≡ ψ̂†(r) and |k⟩ ≡ â†k . (45.83)

Hence, just considering the ground state of the trap, that is, assuming that the atomic
motion be frozen, our Hamiltonian becomes:

Hcm +Hself = ℏωtrpâ†â+
g

2
â†â†ââ . (45.84)

45.6.2 Thomas-Fermi limit

In the limit of negligible kinetic energy (that is, in the middle of a large condensate)
with the analytical form of the condensate wavefunction,

ψ̂(r) ∝ √n0
(
1− r2

r20

)
, (45.85)

the transformation (45.70) allows us to derive an expression for the momentum dis-
tribution,

|a(k)| ∝ J1(k · r0)
(k · r0)2

. (45.86)

45.6.2.1 Width of the momentum distribution

It is interesting to compare the size of an ideal gas condensate with the size of an
interacting condensate. We can express the Thomas-Fermi radius as,

∆rTF = atrp

√
µ

ℏωtrp
. (45.87)
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The Heisenberg limit requires,

∆pTF =
ℏ

∆rTF
. (45.88)

Since
√
µ/ℏωtrp > 1, the interaction increases the volume of the condensate, but

restricts the distribution of its velocities. For a hypothetical thermal Boltzmann gas
having the same temperature,

∆rth = atrp

√
kBT

ℏωtrp
and ∆pth =

ℏ
atrp

√
kBT

ℏωtrp
. (45.89)

The thermal cloud is not at the Heisenberg limit, because
√
kBT/ℏωtrp > 1.

These relationships were experimentally confirmed [1260] by measurements of
the velocity distributions of condensates using a Bragg spectroscopy technique (see
Sec. 47.2). It is interesting to note that the measured widths of velocity distributions
were lower than the photonic recoil limit, ℏk/m ≃ 30 mm/s for 87Rb.

45.6.3 Master equation approach

The Hamiltonian that describes a BEC in second quantization in an orthonormal set
of energy eigenfunctions reads:

H =
∑

i,j
H(ij)
atomâ

†
i âj +

∑

i,j,k,l

1
2W

(ijkl)â†i â
†
j âkâl (45.90)

H(ij)
atom = ⟨ϕi| 1

2mp2 + Vtrap(r)|ϕj⟩

W (ijkl) = g

∫
ϕi(r)ϕj(r)ϕk(r)ϕl(r)d

3r .

The inclusion of spontaneous processes (one-body-loss, dephasing) requires a master
equation including a Lindblad term within a density matrix formalism. The von
Neumann equation for the density operator reads:

d

dt
ρ̂ = −ı[V, ρ̂] + Lρ̂ (45.91)

Lone−body loss ≡ κ(2âρ̂â† − â†âρ̂− ρ̂â†â)
Lone−body feeding ≡ κ(2 + 2â†ρ̂â− ââ†ρ̂− ρ̂ââ†)
Ltwo−body loss ≡ κ

(
2â2ρ̂â†2 − â†2â2ρ̂− ρ̂â†2â2

)
.

45.6.4 Exercises

45.6.4.1 Ex: Commutators in momentum space

Demonstrate the validity of the commutation rules (45.75).

Solution: It holds,

δ3(r−r′) = [ψ̂(r), ψ̂†(r′)] = 1
(2π)3V

∑

k,k′

e−ık·r+ık
′·r′ [âk, â

†
k′ ] = 1

(2π)3V

∑

k,k′

e−ık·r+ik
′·r′ [âk, â

†
k′ ] .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ComutadoresMomento01.pdf
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This is valid when [âk, â
†
k′ ] = δk,k′ . Also holds,

0 = [ψ̂(r), ψ̂(r′)] = 1
(2π)3V

∑

k,k′

eık·r+ık
′·r′ [âk, âk′ ] = 1

(2π)3V

∑

k,k′

eık·r+ık
′·r′ [âk, âk′ ] ,

This is valid when [âk, â
†
k′ ] = 0. We can also express,

N̂ =

∫
d3rψ̂†(r)ψ̂(r) = 1

(2π)3V

∑

k,k′

∫
d3reı(k−k

′)·râ†k′ âk =
∑

k,k′

â†k′ âkδk,k′ =
∑

k

â†kâk .

45.6.4.2 Ex: Commutators in momentum space

Derive the representation (45.78) of the Hamiltonian.

Solution: The energy can also be calculated by,

H =

∫
d3rψ̂†(r)

(
− ℏ2

2m
∇2 + Vtrap(r)

)
ψ̂(r) + g

2

∫
d3r

∫
d3r′ψ̂†(r)ψ̂†(r′)δ(r− r′)ψ̂(r′)ψ̂(r)

= ...+ g
2

∫
d3r

∫
d3r′

∑

k

u∗k(r)â
†
k

∑

k

u∗k(r
′)â†kδ(r− r′)

∑

k

uk(r
′)âk

∑

k

uk(r)âk

= ...+ g
2

∑

k,k′,k′′,k′′′

â†kâ
†
k′ âk′′ âk′′′(2π)−6

∫
d3r

∫
d3r′e−ık·re−ık

′r′δ(r− r′)eık
′′r′eık

′′′r

= ...+ g
2

∑

k,k′,k′′,k′′′

â†kâ
†
k′ âk′′ âk′′′(2π)−6

∫
d3re−ık·re−ık

′reık
′′reık

′′′r

=
∑

k

ℏ2k2

2m
â†kâk +

∑

k,k′

â†kVk,k′ âk′ +
g

2

∑

k,k′,k′′

â†kâ
†
k′ âk′′ âk+k′−k′′ ,

where we defined,

Vk,k′ =

∫
u∗k(r)Vtrap(r)uk′(r)d3r = 1

(2π)3

∫
Vtrap(r)e

ı(k′−k)rd3r .

45.7 Condensates at finite temperature

45.7.1 Ballistic expansion of a bosonic gas

As discussed in Sec. 43.6, the atomic density distributions are revealed through their
interaction with a laser beam. The problem with imaging a confined condensate
is, on the one hand, its very high optical density, which inhibits the penetration of
resonant light and, on the other hand, its very small size, which is often below the
diffraction limit and prevents its optical resolution. As discussed in Sec. 43.6, both

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_ComutadoresMomento02.pdf
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problems can be avoided by the time-of-flight imaging technique, which consists in
quickly switching off the trap and dropping the atomic cloud (see Fig. 43.35). If the
switching-off process is fast enough, the potential energy is lost, but in the course of
ballistic expansion, the self-energy is transformed into kinetic energy. Both the self-
energy transformed to kinetic energy and the inherent initial kinetic energy contribute
to blow up the size of the atomic cloud, so that the density rapidly decreases. After
a few 10 ms, when the optical density is sufficiently low (on the order of 1), the cloud
can be imaged via its absorption of a resonant laser beam. The condensate, which is
about 10 times denser than the thermal cloud, has a much larger repulsive self-energy.
When the condensate is suddenly released from its trap, its explosion is accelerated by
this self-energy, and the acceleration is faster in those directions, where the confining
potential was stronger [626, 238]. Therefore, the aspect ratio of the condensate’s
shape is inverted during the flight time [712, 238]. In contrast, the self-energy of the
thermal cloud is relatively insignificant. Therefore, its spatial density after a time of
free expansion reflects the pure velocity distribution of the atomic cloud while it was
trapped. This allows the interpretation of the spatial distribution of the expanded
cloud in terms of a temperature of the trapped cloud.
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Figure 45.8: Inversion of aspect ratio during time-of-flight. The frequencies of the harmonic
trap were ωr = (2π) · 248 Hz and ωr = (2π) · 16 Hz [712].

45.7.1.1 Popov approximation

The Popov decomposition separates the condensed part, described by a c-number
ϕ ≡ ⟨ψ̂⟩ and normalized to the number of condensed atoms N0 from the thermal part
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ψ̃ ≡ ψ̂ − ϕ, which keeps track of the quantum nature of the Bose-gas [380],

K = K0 +K1 +K†1 +K2 (45.92)

K0 =

∫
d3rϕ∗(r)

(
− ℏ2

2m
∇2 + Vtrap(r) +

g

2
|ϕ|2 − µ

)
ϕ(r)

K1 = 0 if [L − gn0(r)]ϕ(r) = 0

K2 =

∫
d3r

[
ψ̃+(r)Lψ̃(r) + g

2

(
ϕ(r)2ψ̃+(r)ψ̃+(r) + ϕ∗(r)2ψ̃ + (r)ψ̃(r)

)]

L ≡ − ℏ2

2m
∇2 + Vtrap(r)− µ+ 2gn(r)

n(r) = n0(r) + nT (r) = |ϕ(r)|2 + ⟨ψ̃†(r)ψ̃(r)⟩ .
We perform the Bogolubov transform to the diagonalized Hamiltonian,

KPopov = K0 +
∑

j
εj b̂

+
j b̂j (45.93)

ψ̃(r) =
∑

j
uj(r)b̂j − v∗j (r)b̂+j

δjk =

∫
d3r (uju

∗
k − vjv∗k)

δjk = [b̂j , b̂
+
k ] .

This yields a set of equations for elementary excitations (quasi-particle excitations in
a diagonalized energy space),

Nj = [exp(εj/kBT )− 1]
−1

(45.94)

nT (r) =
∑

j

[(
|uj |2 + |vj |2

)
Nj + |vj |2

]

Luj(r)− gn0(r)vj(r) = εjuj(r) ,

Lvj(r)− gn0(r)uj(r) = −εjvj(r) .
The quantum depletion at T = 0 [last term in the density n(r)] may be neglected.
In this zero-temperature limit, the equations simplify to yield the Gross-Pitaevskii
equation. We may separate these equations using auxiliary functions [645],

ψ̃
(±)
j (r) ≡ uj(r)± vj(r) (45.95)

ĥ0 ≡ L− gn0(r)
ĥ0ψ̃

(+)
j (r) = Ejψ̃

(−)
j (r) .

The eigenvalue equations that one gets after substituting (III.2.5) into (III.2.4) may

be solved by expanding in a set of eigenfunctions of ĥ0:

ψ̃
(±)
j (r) ≡

∑
α
c(j)α ϕα(r) (45.96)

ĥ0ϕα(r) ≡ εαϕα(r)∑
β
(Mαβ + εαδαβ)εβc

(j)
α = E2

j c
(j)
α

Mαβ = 2g

∫
ϕ∗α(r)n0(r)ϕβ(r)d

3r .
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45.7.2 Hartree-Fock approach

45.7.2.1 Two-gas model for T > 0

The two phases of a condensate above T = 0 have a specific interdependence, which
makes it possible to treat the problem with an approximation, where only the con-
densed part influences the non-condensed and not vice versa [379]. The HFB equation
(III.2.11) is solved for the condensed part alone, assuming nth = 0. The condensate
wavefunction and the chemical potential are derived from that, f.e. using numerical
methods like the method of steepest descent. The effective potential for the thermal
cloud in the presence of a condensate is:

V1,eff (r1) = V1,trap(r1) + g1|ψ1(r1)|2 . (45.97)

Next, we diagonalize the Schrödinger equation:

[−∇2
1 + V1,eff (r1)]ψ1,j(r1) = 2E1,jψ1,j(r1) , (45.98)

maintaining the normalization,

1 =

∫
|ψ1,j(r1)|2d3r1 . (45.99)

This provides us with the energy eigenvalues of the excited trap states and their
eigenfunctions. One can f.e. guess an eigenvalue and numerically solve the Schrödinger
equation using Runge-Kutta integration routines. The eigenfunction will probably
diverge. In this case, we vary the eigenvalue until the solution converges.

Finally, we can calculate the thermal density distribution:,

Nj ≡ [exp((E1,j − µ1)/kBT1)− 1]
−1

(45.100)

nth(r1) =
∑

j
Nj |ψ1,j(r1)|2 ,

and all thermodynamic potentials, as shown in Sec. 44.1.2.
A more sophisticated method uses self-consistent recursion [645]. Here, the ther-

mal density is plugged back into the HFB equation, and the whole procedure is
repeated until it converges.

45.7.2.2 Hartree-Fock approximation

We have already seen that, inside a trap the condensate occupies the lowest vibra-
tional level, whereas the atoms of the thermal gas are distributed among all levels.
The trapping potential is often harmonic, Utrp(r) =

m
2 ω

2
rr

2, with secular frequencies
ωr typically on the order of several tens or hundreds of Hz. The spatial (radial) extent
of the vibration levels varies a lot with their quantum number, rj =

√
(2j + 1)ℏ/mωr.

This naturally produces a separation of the thermal (or normal) and condensate frac-
tions at T > 0, which does not exist for a homogeneous gas and which allows (up
to a certain degree) an individual treatment of the two fractions. The details of the
interaction between the two fractions are very complicated and are still under intense
theoretical investigation. However, to understand the shape of a trapped atomic cloud
and other characteristics, we can use a simple approximate model [?, 645], assuming
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that the condensate is only weakly disturbed by the thermal cloud. In contrast, the
presence of the condensate dramatically modifies the potential for the thermal atoms.
Therefore, we must first calculate the density of the condensate n0(r), before calcu-
lating that of the thermal cloud. If this procedure is applied iteratively, it is called
Hartree-Fock method:

i. We start with nth(r) = 0;

ii. we solve the GPE
(
− ℏ2

2m∆+ Vtrap(r)− µ+ g
[
|ψ(r)|2 + nth(r)

])
ψ(r) numeri-

cally with the steepest descent method, we derive µ and ψ, and also n(r) = |ψ(r)|2 +
nth(r);

iii. assuming that collisions between atoms of the thermal cloud, the density of
which is weak, can be neglected, we can view the cloud as an ideal gas in a potential
modified by the strongly anharmonic mean field of the condensate, Vtrap(r)+ 2gn(r),

we calculate the thermal density n′th(r) = λ−3dBg3/2
(
exp

Vtrap(r)−µ+2gn(r)
kBT

)
;

iv. we start over at (ii) using the new thermal density.

We can now calculate the total energy,

U =

∫
d3r

(
ψ(r)−ℏ

2∇2

2m ψ(r) + Vtrap(r)n(r) +
g
2 [2n(r)

2 − n0(r)] + h−3
∫
d3k−ℏ

2k2

2m n(r,k)

)

(45.101)

=

∫
d3r

(
ψ(r)−ℏ

2∇2

2m ψ(r) + Vtrap(r)n(r) +
g
2 [2n(r)

2 − n0(r)] + 3kBT
2λ3

dB
g3/2

[
exp

Vtrap(r)−µ+2gn(r)
kBT

])
,

and other thermodynamic quantities.

45.7.3 Ideal gas limit

Consider the ideal gas in an isotropic harmonic potential. The excitation spectrum
then takes the form:

f(k, r) = n(k, r) (45.102)

εHF (k, r) = L(k, r) =
ℏ2k2

2m
+ V (r)− µ .
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We can immediately calculate:

g −→ 0 (45.103)

µ
g→0−→ 3

2ℏω

ϕ(r)
g→0−→

√
N0

π3/4a
3/2
trap

exp(− r2

2a2trap
)

Ekin =

∫
ϕ(r)
−ℏ2∆
2m

ϕ(r)d3r = − 9
4N0ℏω

nth(r)
g→0−→

∫
f(r · k)d3k =

1

λ3dB
g3/2

[
exp

(
Vtrap(r)−µ

kBT

)]

Nth
g→0−→

∫
nth(r)d

3r =

(
kBT

ℏω

)3

g3

[
exp

(
µ

kBT

)]

U
g→0−→

∫
εHF f(r · k)d3r · d3k = 3kBT

(
kBT

ℏω

)3

g4

[
exp

(
µ

kBT

)]
.

45.7.4 Exercises

45.7.4.1 Ex: Ballistic expansion of a condensate

Calculate the ballistic expansion of a 87Rb BEC initially confined in a cylindrically
symmetric trap with secular frequencies ωz = 20Hz and ωr = 100Hz.

Solution: The result is shown in Fig. 45.9.
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Figure 45.9: (code) Ballistic expansion of a condensate.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_BECExpansion01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_BecExpansion.m
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45.8 Numerical simulations of the Gross-Pitaevskii
equation

To simulate the one-dimensional evolution of a wavepacket following the Gross-Pitaevskii
equation,

ıℏ
∂

∂t
ψ(z, t) =

[−ℏ2
2m

d2

dz2
+ Vtrap(z) + |ψ(z, t)|2

]
ψ(z, t) . (45.104)

we solve iteratively [1046],

ψ(z, t+ dt) = ψ(z, t) + dtψ̇(z, t) . (45.105)

As initial state we choose, ψ(z, 0) = e−z
2/2z̄2eıkz, where k ≡

√
2mE/ℏ is the wavevec-

tor.
The numerical propagation is conveniently performed using the time-splitting spec-

tral algorithm [85, 84, 83, 486], which can be easily extended to two dimensions.

45.8.1 Crank-Nicholson-Crout algorithm

45.8.1.1 Crank-Nicholson-Crout algorithm for the time-dependent Schrödinger
equation

The Crank-Nicholson algorithm goes as follows. The time-dependent Schrödinger
equation in one dimension,

∂

∂t
ψ(x, t) =

ıℏ
2m

∂2

∂x2
ψ(x, t)− ıV (x)

ℏ
ψ(x, t) (45.106)

is a parabolic partial differential equation. We usually seek a solution on an interval
x ∈ [a, b] and t > 0. The solution is uniquely determined from boundary conditions:
ψ(a, t) = ψ(b, t) = 0 and ψ(x, 0) = g(x). One method for numerical solution solves
for the values of the wavefunction on a regular grid of dimension h = (b− a)/Nx in x
and τ in t:,

ψkj = ψ(a+ jh, kτ) . (45.107)

The derivatives are replaced by simple finite differences. The r.h.s. of the equation at
the grid point (i, j) is then,

ıℏ
2mh2

(
ψkj+1 − 2ψkj + ψkj−1

)
− iV (a+ jh)

ℏ
ψkj =

N∑

m=0

iHjmψ
k
j , (45.108)

where H is a real symmetric tridiagonal matrix (provided V (x) is real). The l.h.s. of
the equation can be replaced either by a forward or backward difference,

ψk+1
j − ψkj

τ
or

ψkj − ψk−1j

τ
, (45.109)

which, when combined with the r.h.s. gives the explicit algorithm,

ψk+1 = (1 + iHτ)ψk or ψk = (1− ıHτ)ψk+1 . (45.110)
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The Crank Nicholson Algorithm averages both,

(1− ıHτ/2)ψk+1 = (1 + ıHτ/2)ψk . (45.111)

This method is a second order algorithm in t, i.e. the discretization error decreases
as τ2. The finite difference representation of the second derivative d2/dx2 is also
good to second order in h2. The Crank-Nicholson Algorithm also gives a unitary
evolution in time. That is especially useful for quantum mechanics where unitarity
assures that the normalization of the wavefunction is unchanged over time. The
algorithm steps the solution forward in time by one time unit, starting from the
initial wavefunction at t = 0. According to the Crank-Nicholson scheme, the time
stepping process is half explicit and half implicit. The implicit part involves solving
a tridiagonal system. That solution is accomplished by Crout reduction, a direct
method related to Gaussian elimination and LU decomposition.

To simplify the algorithm we have chosen units in which the Planck constant ℏ = 1,
time step τ = 1 and the spatial separation h = 1. This can always be arranged by an
appropriate redefinition of mass and potential: m = mSI h

2/τℏ and V = VSI τ/h.

45.8.1.2 Crank-Nicholson algorithm for the time-dependent Gross-Pitaevskii
equation

The Crank-Nicholson algorithm [7],

ı
(
φn+1
j − φnj

)

∆
= −

φn+1
j+1 − 2φn+1

j + φn+1
j−1 + φnj+1 − 2φnj + φnj−1
2h2

(45.112)

+
1

2

(
c(xj)

2

4
+ n
|φnj |2
(xj)2

)
(φn+1
j + φnj ) .

Introducing abbreviations,

B(φn+1
j −φnj ) = −A

(
φn+1
j+1 − 2φn+1

j + φn+1
j−1 + φnj+1 − 2φnj + φnj−1

)
+Cnj

(
φn+1
j + φnj

)
.

(45.113)
Can be rewritten as,

Aφn+1
j+1+

(
−2A+B − Cnj

)
φn+1
j +Aφn+1

j−1 = −Aφnj+1+
(
2A+B + Cnj

)
φnj−Aφnj−1 = Xn

j .
(45.114)

The set of equations,



−2A−B − Cn1 A 0 · · · 0

A −2A−B − Cn2 A · · · 0

0 A −2A−B − Cn3
. . . 0

...
...

. . .
. . .

...

0 0 · · · A −2A−B − Cnj







φn+1
1

φn+1
2

φn+1
3

...

φn+1
j




=




Xn
1

Xn
2

Xn
3

...

Xn
j




(45.115)
can be solved by inverting tridiagonal matrix. Set φn+1

0 = φn+1
J+1 = 0. Run a loop

j = 1, .., J . Assume given φn+1
1 = φn+1

j ,

φn+1
j+1 =

Xn
j

A
+

2A−B + Cnj
A

φn+1
j − φn+1

j−1 . (45.116)
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45.8.2 Time-splitting spectral algorithm: Coherent propaga-
tion

We write the one-dimensional GPE in the form,

ıℏ
∂ψ(x, t)

∂t
= − ℏ2

2m
∇2ψ(x, t) + V (x)ψ(x, t) +

4πℏ2as
m(2rh)2

|ψ(x, t)|2ψ(x, t) (45.117)

for a < x < b. Choose periodic boundary conditions, ψ(a, t) = ψ(b, t) and ψx(a, t) =
ψx(b, t). Various methods are known to solve the GPE numerically, such as the Crank-
Nicholson algorithm. The time-splitting spectral algorithm (TSSA) consists in solving
the first and the second of the following equations in two distinct steps [85, 84, 83, 486],

∂ψ(x, t)

∂t
= −ıV (x)

ℏ
ψ(x, t)− ı g1D

ℏ
|ψ(x, t)|2ψ(x, t) (45.118)

∂ψ(x, t)

∂t
= i

ℏ
2m

ψxx(x, t) ,

i.e. we discretize in space using x = a + j(b − a)/M and k = 2πl/(b − a) such that
k (x− a) = 2πlj/M . We propagate half the way, ∆t/2, in time,

φx ≡ e−
ı
ℏ (V (x)+g1D|ψ(x,t)|2)∆t

2 ψ(x, t) (45.119)

for j = 0, ..,M−1. Now we propagate the spectral components, (Fφ)k ≡
∑M−1
j=0 φxe

−2πilj/M ,

in momentum space and transform back, (F−1φ)x ≡M−1
∑M/2−1
l=−M/2 φke

2πilj/M ,

ϕx ≡ F−1
[
eı

ℏ
2mk2∆t(Fφ)k

]
. (45.120)

for l = −M/2, ..,M/2− 1. Finally, we propagate the remaining time, ∆t/2,

ψ(x, t+ dt) = e−
ı
ℏ (V (x)+g1D|ϕx|2)∆t

2 ϕx . (45.121)

Compared to the Crank-Nicholson algorithm time-splitting spectral algorithm has
several advantages:

• TSSA is much much faster, especially, for large arrays;

• No divergence, perfect reversibility;

• Imaginary version yields same density shape as steepest descent.

But there are problems:

• The coherent version changes shape, maybe it’s due to ifft(fft(x))!=x;

• The imaginary version mixes up real and imag parts;

• Don’t know how to generalize to coupled GPEs.
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45.8.2.1 Time-splitting spectral algorithm for coupled GPEs

Write the one-dimensional GPE in the form,

ıℏ
∂ψ1(x, t)

∂t
= − ℏ2

2m
∇2ψ1(x, t) + V (x)ψ1(x, t) +

4πℏ2as
m(2rh)2

|ψ1(x, t)|2ψ1(x, t) (45.122)

+
ℏ
2
Ωmwψ2(x, t) + ℏ∆mwψ1(x, t)

iℏ
∂ψ2(x, t)

∂t
= − ℏ2

2m
∇2ψ2(x, t) + V (x)ψ2(x, t) +

4πℏ2as
m(2rh)2

|ψ2(x, t)|2ψ2(x, t)

+
ℏ
2
Ωmwψ1(x, t)

for a < x < b. Choose periodic boundary conditions, ψ(a, t) = ψ(b, t) and ψx(a, t) =
ψx(b, t). We generalize the time-splitting spectral algorithm,

∂ψ1(x, t)

∂t
= − ı

ℏ
V (x)ψ1(x, t)−

ı

ℏ
g1D|ψ1(x, t)|2ψ1(x, t)− ı∆mwψ1(x, t)−

ı

2
Ωmwψ2(x, t)

∂ψ2(x, t)

∂t
= − ı

ℏ
V (x)ψ2(x, t)−

ı

ℏ
g1D|ψ2(x, t)|2ψ2(x, t)−

ı

2
Ωmwψ1(x, t)

∂ψ1(x, t)

∂t
= i

ℏ
2m

ψxx1(x, t)

∂ψ2(x, t)

∂t
= i

ℏ
2m

ψxx2(x, t) , (45.123)

i.e. we discretize in space and propagate half the way, ∆t/2, in time,

φx1 ≡ ψ1(x, t)−
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ψ1(x, t)|2 + i∆mw

)
ψ1(x, t)−

ı

2
Ωmwψ2(x, t)

] ∆t
2

φx2 ≡ ψ1(x, t)−
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ψ2(x, t)|2

)
ψ2(x, t)−

ı

2
Ωmwψ1(x, t)

] ∆t
2
.

(45.124)

Since we here use the first order Taylor expansion of the exponential function, we
introduce an error that we have to keep low by renormalizing the wavefunction after
each step. Now we propagate the spectral components in momentum space and
transform back,

ϕx1 ≡ F−1
[
eı

ℏ
2mk2∆t(Fφx1)k

]
(45.125)

ϕx2 ≡ F−1
[
eı

ℏ
2mk2∆t(Fφx2)k

]
,

for l = −M/2, ..,M/2− 1. Finally, we propagate the remaining time, ∆t/2,

ψ1(x, t+ dt) = ϕx1 −
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ϕx1|2 +

ı

2
∆mw

)
ϕx1 −

ı

2
Ωmwϕx2

] ∆t
2

ψ2(x, t+ dt) = ϕx1 −
[( ı

ℏ
V (x) +

ı

ℏ
g1D|ϕx2|2

)
ϕx2 −

ı

2
Ωmwϕx1

] ∆t
2
. (45.126)
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45.8.2.2 Spinor notation

It may be possible to simplify the notation by writing the wavefunction as a spinor,

ψ⃗ ≡
(
ψ1

ψ2

)
. Now the non-kinetic part of the coupled GPE can be written,

∂ψ⃗(x, t)

∂t
=Mψ⃗(x, t) , (45.127)

with the matrix,

M =

(
− ı

ℏV (x)− ı
ℏg1D|ψ1(x, t)|2 − ı∆mw − ı

2Ωmw

− ı
2Ωmw − ı

ℏV (x)− ı
ℏg1D|ψ2(x, t)|2

)
, (45.128)

and the solution,
ψ⃗(x, t) = eMtψ⃗(x, 0) . (45.129)

Let us now abbreviate the matrix by,

M =

(
A B

B D

)
. (45.130)

The matrix is diagonalized with the unitary transforms,

U =
1√
2∆

(
A−D
2B +∆ A−D

2B −∆

1 1

)
and U−1 =

1√
2∆

(
1 −A−D2B +∆

−1 A−D
2B +∆

)
.

(45.131)
The eigenvalue matrix is,

U−1MU =

(
E1 0

0 E2

)
(45.132)

with E1,2 = 1
2A+ 1

2D±B∆. Here we used the abbreviation ∆ =

√(
D−A
2B

)2
+ 1. The

formal solution now reads,

ψ⃗(x, t) = exp

[
U

(
E1 0

0 E2

)
U−1t

]
ψ⃗ = U

(
eE1t 0

0 eE2t

)
U−1ψ⃗(x, 0) . (45.133)

This formula can easily be computed, because the block matrices of transform U are
diagonal in x.

45.8.3 Wavepacket propagation

45.8.3.1 1D simulations

We want to describe the one-dimensional evolution of an atomic wavepacket according
to the Schrödinger equation. The problem is fully described by [1046],

ıℏ
∂

∂t
ψ(z, t) =

−ℏ2
2m

d2

dz2
ψ(z, t) + V (z)ψ(z, t) . (45.134)
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Numerically the Schrödinger equation is integrated via,

ψ(z, t+ dt) = ψ(z, t) + dtψ̇(z, t) . (45.135)

The initial state of the wavepacket is set to ψ(z, 0) = e−z
2/2z̄2eıkz, where k ≡

√
2mE/ℏ

is its wavevector.
The numerical propagation is conveniently done with the time-splitting spectral

algorithm [85, 84, 83, 486].
The flux is,

ψ∇ψ = 0 . (45.136)

45.8.3.2 2D simulations

We want to describe the two-dimensional evolution of an atomic wavepacket according
to the Schrödinger equation. The problem is fully described by,

−ℏ2
2m

(
d2

dx2
+

d2

dz2

)
Ψ(x, z, t) + V (x, z)Ψ(x, z, t) = iℏ

∂

∂t
Ψ(x, z, t) . (45.137)

Since the potential is conservative, we separate the time-evolution,

Ψ(x, z, t) = ψ(x, z)e−ıEt/ℏ (45.138)

The initial shape of the wavefunction moving along the y coordinate could be a
Gaussian,

ψ(x, z) = ψx(x, 0)ψz(0, z) = (2πσxσz)
−1/2

e−x
2/4σ2

x−z2/4σ2
y . (45.139)

We can assume σz ≫ σx and obtain an effectively one-dimensional model, E = Ekz.
Set,

ψ(x, z, 0) = ϕ(x, z)e−ıkzz (45.140)

and,

− d2

dz2
ϕ(x, z) + 2ıkz

d

dz
ϕ(x, z) =

d2

dx2
ϕ(x, z) +

[
2m

ℏ2
Ekz −

2m

ℏ2
V (x, z)− k2z

]
ϕ(x, z) ,

(45.141)
and,

d

dz
ϕ(x, z) =

d2

dx2
ϕ(x, z)− 2m

ℏ2
V (x, z)ϕ(x, z) (45.142)

d

dz
ϕ(x, z) =

1

2ıkz

1

dx2
[ϕ(x− dx, z)− 2ϕ(x, z) + ϕ(x+ dx, z)]− m

ıkzℏ2
V (x, z)ϕ(x, z) .

Discretize in steps dz.

45.8.3.3 Reflection from a potential barrier

Now we allow for a change of direction. We assume that a matter wave with wavevec-
tor k0 = k0xêx + k0yêy = k0êx sinα + k0yêy cosα, runs towards a potential step. If
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the step is sharp, V (x) = V1θ(−x) + V2θ(x), the following ansatz is reasonable,

ψ0(x, y) = eıxkx+ıyky (45.143)

ψ1(x, y) = re−ıxkx+ıyky

ψ2(x, y) = teıxk
′
x+ıyky

and we have to solve the equations,

−ℏ2
2m

(
d2

dx2
+

d2

dy2

)
(ψ0 + ψ1) = (E − V1) (ψ0 + ψ1) (45.144)

−ℏ2
2m

(
d2

dx2
+

d2

dy2

)
ψ2 = (E − V2)ψ2 .

In the step is smooth, V (x → −∞) = V1 < V2 = V (x → ∞), the situation is more
complicated. Let us set V (x) = (V1 − V2) 1π arctanx+ 1

2 (V1 + V2).

Figure 45.10: (code) Reflection of a wavepacket at a potential barrier. Do evanescent matter

waves propagate along the barrier? Is there an atomic analogue to the Goos-Hänchen shift?

45.8.4 Exercises

45.8.4.1 Ex: Propagation of wavefunctions

Programs on the propagation of wavefunctions.

Solution: BecAdjust1 harmonic potential, comparison to Thomas-Fermi, correct
norm, physical units.
BecAdjust1b harmonic potential, comparison to Thomas-Fermi, correct norm, physi-
cal units, negative potential.
BecAdjust2 harmonic potential, real-time propagation of a soliton, correct norm, di-
mensionless scaling.
BecAdjust3 harmonic potential, sudden phase-shift of half the condensate, wrong
norm, dimensionless scaling.
BecAdjust4 real-time propagation of merging double-well BECs, wrong norm, dimen-
sionless scaling.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_WavepacketPropagation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Condensation_WavepacketPropagation.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_.pdf
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BecAdjust5 real-time propagation of 2 adjacent ballistically expanding BECs, wrong
norm, dimensionless scaling.
BecAdjust6 ground state of an adiabatic potential, sudden displacement.
BecTwoDim1 2 dimensions, switching from double-well to single-well.
BecTwoDim1b 2 dimensions, switching from double-well to single-well.
BecTwoDim1c 2 dimensions, switching from double-well to single-well.
BecTwoDim2 Two-gas description of finite Temperature BECs, first the method of
Steepest Descent, second solving the thermal gas Schrödinger equation for T¿0.
BecTwoDim3 2 dimensions, switching from double-well to single-well.
TimeSplitSpectralProp1 Compares Runge-Kutta or Crank-Nicholson-finite-difference
(CNFD)-like algorithm with time-splitting spectral algorithm (TSSA) based on stan-
dard Strang splitting [Bao02,03,04].
TimeSplitSpectralProp2 Try coupled GPEs with TSSP, second method, no work???
TimeSplitSpectralProp3 Single GPE, yet another version.
TimeSplitSpectralProp4 Rescaled version.
TimeSplitSpectralProp5 Rescaled version, steepest descent using TSSP with sine-fft,
no work???
BecMomentum1 Integrating the GPE by the method of steepest descent in Fourier
space, harmonic potential, no interaction.

45.8.4.2 Ex: Programs on wavepackets reflected from potential barriers

Programs on wavepackets reflected from potential barriers.

Solution: WavepacketPropagation1 2D, Runge-Kutta, evanescent wave potential.
WavepacketPropagation2 2D, time-splitting spectral method, hard wall potential.
WavepacketPropagation3 1D, Wavepacket propagation integrating the Schrödinger equa-
tion, Runge-Kutta.
WavepacketPropagation4 1D, time-splitting spectral algorithm.

45.9 Further reading

E.A. Cornell, Very Cold Indeed: The Nanokelvin Physics of Bose-Einstein Conden-
sation [291]DOI

F. Dalfovo et al., Theory of Bose-Condensation in Trapped Gases [319]DOI

Ph.W. Courteille et al., Bose-Einstein Condensation of Trapped Atomic Gases [297]DOI

A.J. Leggett, Bose-Einstein condensation in the alkali gases Some fundamental con-
cepts [785]DOI

C.J. Myatt et al., Production of Two Overlapping Bose-Einstein Condensates by
Sympathetic Cooling [939]DOI

W. Ketterle et al., Making, probing and understanding Bose-Einstein condensates
[712]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Condensation_.pdf
http://doi.org/10.6028/jres.101.045
http://doi.org/10.1103/RevModPhys.71.463
http://doi.org/10.1142/9789812796684_0003
http://doi.org/
http://doi.org/10.1103/PhysRevLett.78.586
http://doi.org/


Chapter 46

Superfluid and coherent
properties of Bose-Einstein
condensates

Superfluid liquids or gases are distinguished by their ability to sustain flow without
dissipation, i.e. flow which is free of viscous damping. The phenomenon of superfluid-
ity is a well-known property of liquid 4He, but the relationship between superfluidity
and Bose-Einstein condensation in this strongly interacting system is not trivial. The
situation is much simpler in weakly interacting Bose gases, where the superfluid frac-
tion is almost identical with the condensed fraction and the normal phase of the fluid
with the thermal fraction. The availability of dilute gas Bose-Einstein condensates
now offers the unique opportunity to study the complicated interdependence between
superfluidity and condensation.

46.1 Superfluidity in quantum gases

The superfluidity of a gaseous condensate, which is one of its most apparent properties,
is intrinsically linked to interatomic collisions. To characterize this phenomenon, it is
useful to define some parameters. In the local-density approximation, the homogeneity
of a gas of N atoms with the thermal de Broglie wavelength (43.9) confined inside a
harmonic trap with the ground state size defined by (24.85), is characterized by,

kBT

ℏωtrp
=

2πa2trp
λ2therm

. (46.1)

For a typical experimental situation, kBT/ℏωtrp ≈ N1/3 ≈ 100. This shows that the
assumption of a locally homogeneous gas is generally a good approximation. With
the definition of the healing length (45.69), the degree of superfluidity of a condensate
with density n can be cast into the form,

gn

ℏωtrp
=
a2trp
ξ2

. (46.2)
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For a typical experimental situation, a2trp/ξ
2 ≈ 100. A parameter that well charac-

terizes the importance of interatomic forces within a condensate is the gas dilution,

na3s =
a2s

8πξ2
. (46.3)

The typical numerical value na3s ≈ 10−5 shows, that atomic gases are usually very
dilute, although interatomic forces play an important role in the dynamics of con-
densates. In contrast, three-body collisions can be totally neglected, because the
probability to have three atoms close to each other is even lower than the probability
for two atoms.

There are several manifestations of phenomena linked to superfluidity, such as
the behavior of collective elementary excitations, superfluid flow of non-circulating
topological modes, quantized flux in vortices and matter wave solitons, which will be
discussed in the following sections.

46.1.1 Landau’s criterion for superfluidity

According to Landau, the phenomenon of superfluidity is rooted in the particular
character of the Bogolubov spectrum of elementary excitations (45.54). Let us con-
sider a bosonic fluid at a given temperature moving with velocity v. A macroscopic
obstacle in the path of the superfluid can generate elementary excitations. That is, a
fraction of the kinetic energy of the fluid is transferred to these excitations, thereby
decelerating the fluid and causing viscosity. With the excitation energy E(p) and the
momentum p, the total energy of the fluid interacting with the obstacle is,

E = E(p)+ (p+Mv)2

2M
= E(p)+p ·v+ 1

2Mv2+
p2

2M
≃ E(p)+p ·v+ 1

2Mv2 , (46.4)

where M is the total mass of the superfluid. Since the term Mv2/2 is the initial
kinetic energy of the fluid, E(p) + p · v represents the excitation energy. And since
the kinetic energy of the superfluid can only be diminished by the excitation, we need
E(p) + p · v < 0. Finally, as E(p) must be positive, the condition for generating
elementary excitations is,

E(p) ≤ pv , (46.5)

where p and v are antiparallel.
Therefore, there is a relative minimum velocity between the fluid and the obstacle,

called critical Landau velocity, for creating excitations,

vc = min

(E(p)
p

)
. (46.6)

For velocities below vc, it is impossible to generate excitations, and there is no mech-
anism to decrease the kinetic energy of the fluid. As a result, the system becomes
superfluid [772].

The spectrum of elementary excitations for a weakly interacting condensate, is the
Bogolubov spectrum (45.54). The graph Fig. 46.1 shows, that for velocities below the
sound velocity given by (45.56), v < cs, the curve representing the propagation of the
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perturbation does not cross the Bogolubov spectrum. That is, the perturbation can
not be converted into excitations, which is only possible when v > cs.

In an ideal condensate without interactions, as = 0, the Bogolubov spectrum
reduces to the quadratic dispersion relation of free particles, which means that there
is no critical velocity, vc = cs. Consequently, it is always possible to excite the
condensate, that is, an ideal condensate can not be superfluid, and, as first pointed out
by Landau: superfluidity and Bose-Einstein condensation are different phenomena.

0 0.5 1 1.5 2

k/k0

0

10

20

30
E
/h

(H
z)

Figure 46.1: (code) Landau’s criterion for superfluidity. Slow perturbations (blue line)

do not cross the Bogolubov spectrum (red line) and do not generate excitations. Rapid

perturbations (green line) cross the spectrum and can be dissipated.

46.1.2 Impurity scattering

A first hint for the superfluid nature of Bose-Einstein condensates is the fact that
the hydrodynamic theory of superfluidity describes well the collective excitations (see
Sec. 45.5). Moreover, several experiments provided direct evidence for the superfluid
nature of condensates. For example, via a calorimetric measurement [1071]: A con-
densate, stirred around by a rotating far blue-detuned laser beam, dissipated atoms
to the thermal fraction of the atomic cloud, provided the stirring velocity exceed a
certain critical velocity vc: At lower velocities, the perturbation did not lead to dis-
sipation. At higher velocities, phonons were excited and the cloud was heated. In
a subsequent experiment, perturbation-induced density fluctuations were observed in
vivo and in situ [978]. When the stirring speed was below the critical velocity, the
density was almost homogeneous, thus indicating superfluid flow. When, however,
the stirring speed exceeded vc, atoms piled up in front of the stirring beam, and the
resulting pressure gradients led to a turbulent flow around the perturbation and to
dissipation.

The critical velocity vc found in the stirring experiments was about ten times
smaller than the local sound velocity cs,

cs ≡
√
gn

m
=

ℏ√
2mξ

. (46.7)

In fact, while the onset of dissipation is accelerated by turbulence around the macro-
scopic object traversing the superfluid, the local sound velocity (46.8) is derived for

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_LandauCriterion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_LandauCriterion.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_LandauCriterion.m
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a microscopic object. Puzzled by this discrepancy, Chikkatur et al. [255] studied the
motion of microscopic atomic impurities through a condensate. The impurity was
created by transferring a few atoms out of the original BEC from the trapped state
|F = 1,mF = −1⟩ to the free state |F = 1,mF = 0⟩ via induced Raman transitions.
The initial velocity was adjusted by the laser beams exciting the Raman transition
(polarization, incident angle and relative detuning) to satisfy the Bragg condition (see
Sec. 47.2). After the free impurity passed through the BEC, the trap was switched
off, a Stern-Gerlach magnetic field gradient was pulsed to separate atoms in different
Zeeman states, and finally the atoms were detected via time-of-flight imaging (see
Sec. 43.6.1). When the initial velocity of the impurity was well above a critical value
given by the local velocity of sound, ultracold s-wave collisions between impurity
atoms and the stationary condensate distributed the momenta of the collision part-
ners uniformly. In TOF images this appeared as a circular halo centered around the
center-of-mass momentum of the collision partners (see Fig. 46.2). When, however,
the initial velocity of the impurity was reduced, its collision rate with the stationary
condensate was suppressed and the trajectory became superfluid.

Figure 46.2: (a) Scattering of impurities at velocities above the critical velocity. The presence
of a halo indicates the occurrence of collisions between the impurity and the condensate
dissipating the relative kinetic energy. (b) For velocities below the critical velocity the halo
disappears.

46.1.3 Hydrodynamic theory of superfluidity

For the description of superfluidity a hydrodynamic theory is adequate. Therefore,
we will rewrite the time-dependent Gross-Pitaevskii equation (45.21). We consider
the general case, in which the external potential Vtrp(r, t) depends on time. The
wavefunction can be written by defining the density and the velocity fields,

ϕ(r, t) =
√
n0(r, t)e

iθ(r,t) (46.8)

vs(r, t) =
j(r, t)

n0(r, t)
=

1

2im

1

n(r, t)
[ϕ∗(r, t)∇ϕ(r, t)−∇ϕ∗(r, t)ϕ(r, t)] .

This gives,
vs(r, t) =

ℏ
m∇θ(r, t) . (46.9)

From the GPE we derive the continuity and the Navier-Stokes equations:

∂n

∂t
+∇(vsn) = 0 (46.10)

m
∂vs
∂t

+∇
(
Vtrp + gn− ℏ2a

2m
√
n
∇2
√
n− µ+

m

2
v2
s

)
= 0 .
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We can see that the hydrodynamic behavior of a BEC depends greatly on the quantum
phase θ. When the kinetic pressure is small compared to the mean-field energy,

m
∂vs
∂t

+∇
(
Vtrp + gn+

m

2
v2
s

)
= 0 . (46.11)

This is the Euler equation for a fluid with a potential flow. This equation and the
continuity equation have the typical structure of equations describing superfluids at
T = 0. This is due 1. to the presence of a Bose-Einstein condensate allowing us
to formulate an equation for a complex order parameter, and 2. to the presence of
interactions, included via the pressure term in the Euler equation, which are necessary
condition for superfluidity.

At zero temperature, the entire fluid is superfluid. Moreover, in the Gross-
Pitaevskii approximation, the whole fluid is condensed. Therefore, vs(r, t) is the
velocity flow of the superfluid 1.

46.2 Topological modes

Significant manifestations of superfluidity are associated with rotational phenomena.
An example is the occurrence of scissor modes [557], which are excited, when an
angular momentum is suddenly applied to a condensate confined in an anisotropic
trap. This can be done via a sudden reorientation of the symmetry axis of the trap
[843, 842]. The condensate responds to this perturbation by an oscillation of its
inclination implemented by an irrotational superfluid flow. The excitation spectrum
reflects the strong reduction of the inertial momentum for superfluids.

The most rigorous manifestation of superfluidity, however, is the occurrence of a
quantized and persistent current, called quantized vortex. In contrast to the elemen-
tary excitations, which must be created by perturbations, the vortex is a stationary
(or topological mode) solution of the Gross-Pitaevskii equation Eq. (45.21).

Work on vortices has been done by [857, 833, 1071, 978, 255, 557, 843, 834, 253,
29, 1113, 377, 658, 222, 1420].

46.2.1 Vortices

From Eq. (46.9) it is easy to see, that the superfluid is non-rotational, that is,

∇× vs(r, t) = 0 . (46.12)

This raises the question, how vortices are possible. The solution to this apparent
contradiction is, that Eq. (46.12) does not apply, when the phase exhibits a singularity.
Consider, for example, a closed loop C around the singularity. In a vortex, the
superfluid current is pulled by the phase gradient, v = ℏ

m∇θ. For the condensate
wavefunction to be well defined, the phase variation ∆θ around the loop must be a
multiple of 2π, that is,

∆θ =

∮

C

∇θ · dl = 2πℓ . (46.13)

1This is not the case for strongly interacting superfluids, such as superfluid helium, where the
normal fluid fraction is considerable.
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where ℓ is an integer. Therefore, we can calculate the circulation Γ around the closed
loop, that is,

Γ =

∮

C

vs(r, t) · dl =
h

m
ℓ . (46.14)

Apparently, the superfluid circulation is quantized in units of ℏ/m. The parameter
ℓ is called charge of the vortex and measures, in unit of h, the quantized angular
momentum of the vortex.

In addition, the flow must be persistent, because its circulation can only be changed
in a discontinuous way, by overcoming a discrete energy barrier, which requires energy
coming e.g. from thermal excitations. Clearly, the normal (thermal) fraction of a gas
can also have a circular flow. However, the disordered microscopic motion of each
individual particle causes a viscous drag that prevents the persistence of the flow in
the absence of a torque. This is in contrast to superfluid flow, which persists even
without external torque. The issues of vortex stability, formation, and topology were
addressed in recent experiments [856, 833, 834, 253, 29]. Solve the Excs. 46.2.6.1 and
46.2.6.2.

The kinetic energy per unit vortex length can be estimated from a semi-classical
approach. First, we define as the mass density ρm of the superfluid. If n is the particle
density, ρm = nm. The kinetic energy of a flux line at the radius r is,

Ekin = 1
2ρmv

2
s =

ℏ2ℓ2

2m

n

r2
. (46.15)

To obtain the kinetic energy per unit length, we integrate the expression (46.21) over
a plane perpendicular to the vortex axis. Note, however, that the velocity field is
vs ∝ r−1 and, therefore, can not be integrated from zero. Instead, we begin the
integration at a radius given by the healing length ξ, which represents a measure of
the vortex core size. Now, the kinetic energy per unit length is,

Esemi =

∫ 2π

0

∫ R

ξ

Ekin(r)rdrdθ = πn
ℏ2ℓ2

m
ln
R

ξ
. (46.16)

Note, that a multiply charged vortex carrying the entire angular momentum ℓ = ℓ0
of the superfluid is energetically less favorable than an ensemble of ℓ0 vortices with
unit charge ℓ = 1. Therefore, a multiply charged vortex is unstable and may decay
to several single charge vortices.

To calculate exactly the energy of a vortex, we do the following ansatz,

Φ0(r) = ϕ(r, z)eiℓϑ , (46.17)

we then solve the Gross-Piatevskii equation (45.21) numerically, and calculate the
expectation value of the energy of the vortex through the expression,

⟨Φ0|Ĥ|Φ0⟩ =
∫
d3r

[
ℏ2

2m |∇Φ0(r, z)|2 + Vtrp|ϕ(r, z)|2 + g|ϕ(r, z)|4
]
, (46.18)

where Ĥ is the Gross-Pitaevskii Hamiltonian.
The calculation yields for energy per unit length of a single charge vortex in a

uniform cylindrical condensate [1017],

Eunif = πnℏ2

m ln
(
1.464Rξ

)
, (46.19)
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which is very close to our semi-classical prediction. Although the wavefunction
|ϕ(r, z)| has no analytic form, it can be shown by a variational approach, that the
trial wavefunction,

|ϕ(r, z)| = nr√
2ℓ2ξ2 + r2

(46.20)

is a good approximation [1017]. Note that the healing length ξ characterizes the size
of the vortex. For a superfluid, we can calculate the total energy of the vortex exactly,
because the fluid is confined in all directions,

Etot =
4πn0

3
ℏ
m ln

(
0.671Rr

ξ0

)
, (46.21)

where n0 and ξ0 are, respectively, the density and healing length at the center of the
fluid. Rz and Rr are, respectively, the extensions of the cloud along the axial and
radial directions within the Thomas-Fermi approximation.

46.2.1.1 Creation and detection of vortices

The first superfluid vortex was observed 1979 in 4He [1409]. For gaseous condensates,
two approaches have been employed to produce vortices. Either one stirs the atomic
cloud in order to impart an angular momentum to it. This can be done by rotating
the (anisotropic) trap during the process of forced evaporation with time-orbiting
magnetic fields or with an optical spoon. The vortex state is formed when the critical
temperature for condensation is crossed. An alternative method is to imprint a 2π
circular phase gradient into a previously created condensate. Indeed, the local phase
of a matter wave can be manipulated via a local modification of the potential depth,
which can be achieved by a Stark shift induced by a far-detuned laser beam [377].
Focused into a tiny spot which is moved across the condensate, the laser beam will
create a phase gradient, which in turn will cause a velocity flow. It is important to
force the local density at the center of the vortex to zero, which can be achieved via
a proper design of the trapping potential (e.g., a Mexican hat-shaped potential), and
let the BEC then relax to the vortex state.

A variation of this method [1378] avoids the need for relaxation processes. In this
configuration the phase gradient is created through a local Raman coupling between
two internal atomic states (for example, in 87Rb the two trappable Zeeman states
|F,mF ⟩ = |1,−1⟩ to |2, 1⟩). At the spots, where the focused Raman beams hit the
condensate, atoms were dynamically converted from the ground state to the excited
state. The circular trajectory of the spots and the rotation speed were calculated such
as to generate a toroidal topology for the adiabatic population transfer. The process
was coherent and allowed to directly construct and shape the vortex wave function.
We study this experiment in more detail in the Exc. 46.2.6.3.

In confined single-species condensates the diameter of the vortex core is on the
order of the healing length, 2ξ. With typical values of 2ξ ≈ 0.4 µm it is thus way
too small to be imaged in situ, and ballistic expansion times of several 10 ms are
necessary. On the other hand, in double condensates formed by two repelling species
(e.g. the two states |2, 1⟩ and |1,−1⟩ in 87Rb), one of the species can form a vortex
around the second. In this case, the diameter of the vortex core, is determined by
the diameter of the condensate of the second species and, hence, much larger. When
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We have created vortices in two-component Bose-Einstein condensates. The vortex state was created
through a coherent process involving the spatial and temporal control of interconversion between the
two components. Using an interference technique, we map the phase of the vortex state to confirm
that it possesses angular momentum. We can create vortices in either of the two components and have
observed differences in the dynamics and stability.

PACS numbers: 03.75.Fi, 42.50.Md, 67.57.Fg, 67.90.+z

The concept of a vortex is at the center of our under-
standing of superfluidity. A vortex is a topological fea-
ture of a superfluid—in a closed path around the vortex,
the phase undergoes a2p winding and the superfluid flow
is quantized. Following the experimental realization of a
dilute atomic Bose-Einstein condensate (BEC) [1], much
theoretical effort has been directed towards the formation
and behavior of vortices in atomic BEC [2–4]. This paper
presents the experimental realization and imaging of a vor-
tex in BEC. We use the method proposed by Williams and
Holland [5] to create vortices in a two-component BEC.
An interference technique is used to obtain phase images
of the vortex state and confirm the2p phase winding re-
quired by the quantization condition. We have also carried
out preliminary studies of the stability of the vortices.

Vortices can be created in superfluid helium by cooling a
rotating bucket of helium through the superfluid transition,
and a vortex forms for each unit of angular momentum.
This does not work for BEC because it is formed in a
harmonic magnetic trap. When the condensate first forms
it occupies a tiny cross-sectional area at the center of the
trap and is too small to support a vortex. Eventually, the
condensate grows to a sufficient size so that it can support
vortices, but the time scale for vortices to be generated
in the vortex-free condensate due to coupling with the
rotating environment is unknown, and may well be longer
than the lifetime of the condensate. This is the potential
difficulty with using an optical “stirring beam” or magnetic
field distortion to rotate the cloud during condensation,
as has been frequently proposed. Another proposal has
been to use optical beams with appropriate topologies
to “imprint” a phase on an existing condensate. This
technique must drive the local density to zero at some
point and then rely on uncertain dissipative processes for
the condensate to relax into a vortex state.

We have avoided these uncertainties by creating vortices
using a coherent process that directly forms the desired
vortex wave function via transitions between two internal
spin states of87Rb. The two spin states, henceforth
j1� and j2�, are separated by the ground-state hyperfine
splitting and can be simultaneously confined in identical

and fully overlapping magnetic trap potentials. A two-
photon microwave field induces transitions between the
states. As we have seen in previous experiments, this
coupled two-component condensate is exempt from the
topological rules governing single-component superfluids
[6]—rules that make it difficult to implant a vortex within
an existing condensate in a controlled manner. In the
coupled system, we can directly create aj2� (or j1�) state
wave function having a wide variety of shapes [5] out of
a j1� (or j2�) ground-state wave function by controlling
the spatial and temporal dependence of the microwave-
induced conversion ofj1� into j2�.

We control the conversion by shifting the transition fre-
quency using the ac Stark effect. A spatially inhomoge-
neous and movable optical field (a focused laser beam)
provides the desired spatial and temporal control of the ac
Stark shift. The vortex state is an axially symmetric ring
with a 2p phase winding around the vortex core where
the local density is zero. To create a wave function with
this spatial symmetry, the laser beam is rotated around
the initial condensate as in Fig. 1a. The desired spatial

FIG. 1. (a) A basic schematic of the technique used to create
a vortex. An off-resonant laser provides a rotating gradient
in the ac Stark shift across the condensate as a microwave
drive of detuningd is applied. (b) A level diagram showing
the microwave transition to very near thej2� state, and the
modulation due to the laser rotation frequency that couples
only to the angular momentuml � 1 state whenv � d. In
the figure, the energy splitting (,1 Hz) between thel � 1 and
l � 0 states is exaggerated.
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Figure 46.3: (Left) Scheme of the experiment [856]. (Medium) Level system used.
(Right) Density distribution of a vortex state: (a) (the visible atoms are in the upper
hyperfine state), (b) after a π/2-pulse and (c) after a π-pulse (the visible atoms are
in the lower hyperfine state). The images (d) and (e) visualize the phase slip around
the vortex.

the second species is selectively removed (e.g. by the radiative pressure exerted by a
resonant laser), and the vortex in the first species can be studied by in situ imaging
of the confined density distribution [857].

A particularly smart detection method for vortices is based on matter wave in-
terferometry (see Sec. 46.3.3). Here, two matter waves, that is, the vortex state in
|2, 1⟩ and a (reference) ground state BEC in |1,−1⟩ are coherent mixed via a reso-
nant two-photon radiofrequency π/2-pulse. The resulting matter wave interference
patterns reveals the phase profile of the vortex (see Fig. 46.3).

46.2.1.2 Stability

In a topologically ’singly-connected’ trap, for example a potential harmonic, vortices
do not represent the lowest energy eigenstate, and they must decay to the ground
state. If the mean-field energy of the condensate is weak compared to the kinetic
energy, gn0/ℏωz ≪ 1, the healing length will exceed the size of the BEC, ξ ≫ atrp,
and the vortex rapidly decays by dissipating its excess energy to thermal excitation.
Such BECs can not be considered superfluid. If the mean-field interaction is strong,
the vortex spontaneously breaks azimuthal symmetry, moves away from the center
and exits the condensate on a spiral-shaped trajectory [1113]. Nevertheless, the decay
time may be quite long.

On the other hand, a vortex can be the ground state of a ’multiply-connected’
trap (for example, a toroidal potential). Such a potential can be realized as the
temporal average of a harmonic potential with a small rotating anisotropy [833]. In
such geometries vortices are extremely stable.

46.2.1.3 Vortex precession

A radial force acting on a vortex results in a radial displacement and a precession
about the symmetry axis. The effect, known as Magnus effect [658], is due to pressure
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imbalances on the vortex surface. A radial force naturally arises, when the core is
displaced from the center, because local pressure gradients will force the vortex out
of the center toward regions with lower densities. Experimentally, a slow precession
(∼ 1 Hz) spiraling the vortex toward the rim of the condensate has been observed
[29] by taking a succession of nondestructive images.

46.2.2 Vortex lattices

Superfluid 4He in a rotating bucket spontaneously develops symmetrically organized
vortex patterns. Similar phenomena can be observed, when a dilute gas Bose-Einstein
condensate is forced to rotate [222] at a given frequency Ω. The energy in the rotat-
ing system receives an additional contribution from the centrifugal term, Urot(r) =
Utrp(r) − ΩLz, where Lz = ℏNlz, and lz = i(y∂x − x∂y) is the angular momentum
of the individual atoms. If the rotation is slow, the energy ΩLz is too small to force
the condensed wavefunction to rotate. If the rotation frequency is beyond a critical
value Ωc, the time-averaged potential, Urot(r) eventually develops a local minimum
in the center, thus adopting the toroidal shape. For non-interacting gases, the criti-
cal frequency coincides with the radial secular frequency, Ωc = ωr. Then the radial
restoring force of the trap does not balance the centrifugal force, such that atoms can
escape from the trap. However, for superfluid gases the critical frequency is reduced,
Ωc < ωr. Between the rotation frequencies Ω = Ωc and Ω = ωr, the state with the
lowest energy in the toroidal potential is the vortex, whose filament is pinned to the
symmetry axis. For even higher rotation frequencies, we could expect a single vortex
with a larger winding number (more than the phase winding of 2π for a single turn).
However, individual multiple-order vortices in harmonic traps are unstable. Instead,
vortex lattices [222] called Abricosov lattices will form. For a given trapping poten-
tial and mean-field energy, the symmetry of the lattice and the number of vortices
depend on the rotation frequency Ω. Counter-intuitively, the angular momentum of
individual particles lz is not quantized. When we vary Ω, regimes of forbidden lz
(i.e. when no vortex pattern is formed) alternate with allowed regimes. The discon-
tinuous transition from one vortex pattern to another is a first-order phase transition,
which spontaneously breaks one symmetry to form another. An upper limit for the
rotation speed is given by the equilibrium between the centrifugal force and the radial
restoring force of the trapping potential at Ω = ωr.

Figure 46.4: Abricosov vortex lattice.

These patterns of vortex lattices were observed in experiments using the stir-
ring method, which consists in brushing a far-detuned focused laser (’optical spoon’)
around the rim of a condensate [833] at a certain frequency Ω. In this experiment, the
ratio of the mean-field energy to the kinetic energy was gn0/ℏωz = a2trp/2ξ

2 > 100.
Beyond a certain critical rotation frequency, Ωc ≈ 2π×150 Hz, a single central vortex
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was formed. At even higher frequency, a symmetrical vortex lattice appeared in a
transverse plane (see Fig. 46.4). Finally, at rotation frequencies near the radial trap
frequency ωr, the condensate wavefunction became turbulent and finally disappeared.
As soon as the optical spoon was removed, the vortex lattice gradually decayed losing
the vortices one by one.

46.2.3 Solitons

Work on solitons has been done by [1416, 1377, 856, 1378, 921, 1089, 657, 938, 218,
69, 397, 212, 356].

46.2.3.1 Dark solitons

Solitons are non-singular solutions of any equation satisfying,

|ψ(r, t)| = |ψ(r− vt)| . (46.22)

Solitons are well known to occur in non-linear optical media, for example in optical
fibers, when dispersion is counterbalanced by self-phase modulation, such that op-
tical signals propagate without spreading. The Gross-Pitaevskii equation is another
example for a nonlinear wave equation supporting soliton-like solutions. States called
dark soliton or twisted state with a dynamically stable density dip are expected in
condensates with repulsive interactions [921, 1089, 657, 938]. In contrast to topolog-
ically stable states, for example, vortices, dark solitons are pseudo-defects, the decay
of which, even though it may be slow, is topologically trivial. Due of the greater
freedom of movement of their wavefunctions, solitons can be distorted by complex de-
formations [218]. Soliton-like matter wave states were initially observed in superfluid
3He-B [69]. In dilute gases, the size of the solitons is of the order of healing length.

The first dark solitons in dilute gases were created by applying an inhomogeneous
phase shift to a condensate [212, 356]. One half of the condensate was irradiated by a
far-detuned laser pulse (detuning ∆, Rabi frequency Ω, duration τ ≪ ℏ/gn0) in order
to advance the phase of this part of the condensate by φ = Ω2τ/4∆. When the phase
shift was set to π, an abrupt phase gradient developed at the boundary delimiting
the two halves. The condensate reacted to the phase gradient by developing a deep
density minimum all along the boundary corresponding to a soliton (see Fig. 46.5).
The phase distribution can also be imaged by interferometric techniques based on
Bragg diffraction (see Sec. 47.2). In one dimension, the density dip of the soliton
corresponds to a node of the dipolar topological mode [1378, 921, 938].

The abrupt phase gradient at the boundary plane exerts a force trying to increase
the gap, while repulsive interactions work to heal it. At zero temperature, this balance
ensures the dynamic stability of the soliton. While a perfect dark soliton should be
stationary, experiments [212, 356] revealed that solitons with finite contrast propagate
along the direction of the plane’s normal vector with a velocity, which must always
be less than the local sound velocity,

vsol = cs

√
nsol
n

, (46.23)

where n is the peak density of the condensate and nsol the density at the bottom of
the dark soliton [1089, 657]. Fig. 46.5 shows that the soliton develops a curvature
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when it propagates. One reason for this is a slower sound velocity, cs =
√
gn0/m, on

the edges of the condensate, where the density is lower. The second reason is, that
the density in the dip, nsol, goes to zero at the edges. In the presence of a thermal
cloud, dissipation reduces the contrast of the density dip and accelerates the soliton,
until it reaches the sound velocity cs and finally disappears.

Figure 46.5: Solitons.

46.2.3.2 Bright solitons

In condensates with attractive interactions bright solitons have been observed, as well
[715, 695].

46.2.4 Description of general topological modes

A coherent topological mode is a stationary solution of the Gross-Pitaevskii equation,

[
− ℏ2

2m
∇2 + Utr(r) +

4πℏ2as
m

N |ϕn|2
]
ϕn(r) = EnΦ(r) . (46.24)

These modes can be calculated using an optimized perturbation theory [297]. We
separate the Hamiltonian into an unperturbed part and a perturbed part, Ĥ = Ĥ0 +
∆Ĥ, where the unperturbed part now depends on variational parameters,

Ĥ = Ĥ0(u, v, ..) + ∆H . (46.25)

As usual, the first-order energy correction is,

E(1)

n (u, v, ..) = E(0)
n (u, v, ..) + ⟨Φ(0)

n |∆Ĥ|Φ(0)
n ⟩ , (46.26)

where the Φ
(0)
n = Φ

(0)
n (u, v, ..) are the solutions of the unperturbed Hamiltonian Ĥ0.

Once the energies are found, we must minimize them in terms of the variational
parameters,

∂En
∂u

= 0 ,
∂En
∂v

= 0... . (46.27)

With these parameters, we obtain the energies and the wavefunctions 2.

2Excited modes can be understood stationary matter waves with the trap serving as a cavity.
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46.2.4.1 Creation of topological modes

One possibility of creating topological modes is to apply a temporal modulation to
the trapping potential [1416]. The modulation frequency must be resonant with the
energy difference between the excited mode and the ground state. Another possibility
is to vary the interaction energy via a modulation of the scattering length in the
vicinity of a Feshbach resonance [301].

The steady-state situation of a cloud in a stationary trap is thermal equilibrium,
that is, inversion is not possible. At a time-dependent (e.g. shaking) potential how-
ever, for example, transitions to excited vibrational levels can be driven. These can
generate inversion, provided collision-induced relaxation is not too fast 3.

46.2.5 Turbulence

The issue of turbulence is one of the most important problems of classical physics
yet to be solved [442]. In superfluids, restrictions imposed by quantum mechanics
constrain the emergence of turbulence, which is then called quantum turbulence. On
the other hand, the study of quantum turbulence can improve our understanding of
classical turbulence [384]. Recently, the study of the dynamics of a ensemble of vortices
in a Bose-Einstein condensate allowed the identification of signatures of quantum
turbulence [609, 584].

Figure 46.6: Turbulence.

46.2.6 Exercises

46.2.6.1 Ex: Comparison between the quantum and the classical vortex

Consider a vortex around a straight line along the z-axis at r = 0. Compare the
radial velocity variation of a quantum vortex with that of a classical one.

Solution: Because of symmetry, the flux lines around the axis are concentric. There-
fore, vs(r) = vs(r)θ̂. Choosing the loop C as a centered circle of radius r, we get

Γ =

∫ 2π

0

vs(r, t)θ̂ · (θ̂rdθ) = 2πrvs(r, t) =
ℏ
m
ℓ .

Therefore, the velocity field of the superfluid is a quantized vortex,

vs(r, t) = ℓ
ℏ
mr

θ̂ .

3The dynamics of atoms trapped in a harmonic potential is similar to the Jaynes-Cummings dy-
namics of an optical mode. However, the non-linear condensate self-interaction changes the situation
and makes the collisions being collective.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_VorticeQuantico.pdf
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This is in contrast to classical fluids, where vortices generally satisfy the rotational
field v = Ω × r, where Ω is the angular velocity. In this case, instead of decreasing,
the amplitude of the velocity field increases with the radius.

46.2.6.2 Ex: Singularity in vortices

Show for the above simple example,

∇× vs(r, t) = ẑ
ℓh

m
δ(x)δ(y) .

Solution: The rotation reads in cylindrical coordinates (r, θ, z):

∇× vs =

(
1

r

∂

∂θ
vz −

∂

∂z
vθ

)
r̂+

(
∂

∂z
vr −

∂

∂r
vz

)
θ̂ +

(
1

r

∂

∂r
(rvθ)−

1

r

∂

∂θ
vr

)
ẑ .

For our case,

∇× v =

(
1

r

∂

∂r
(rvθ)

)
ẑ = ℓ

ℏ
mr

.

46.2.6.3 Ex: Phase-engineering of a vortex state

The first vortex in a dilute gas was created at the JILA [857]. Study the paper and
explain in detail, how the vortex was created.

Solution: Beginning with a standard BEC of 87Rb in the fundamental state |1,−1⟩
confined to a harmonic potential, the hyperfine state |2, 1⟩ was coupled by microwave-
radiofrequency two-photon radiation. The sum of the frequencies has been tuned
∆rf/2π = 94 Hz out of resonance. The radiation intensity was adjusted to a Rabi
frequency of Ωrf = (2π)35 Hz, causing the Bloch vector of the effective two-level sys-
tem to precede with a generalized Rabi frequency Grf = (Ω2

rf +∆2
rf )

1/2 = (2π)100 Hz.
Spatial and temporal control over the conversion rate between the hyperfine states was
obtained by an additional laser beam focused into the BEC (P = 10 nW, w0 = 180 µm)
and rotating with frequency ωrot about the symmetry axis of the trap. The laser was
tuned ∆l = (2π)800 MHz to the blue of the D2 line, thus causing an inhomogeneous
and time-varying dynamic Stark shift Ωl(r, t)

2/4∆l, where Ωl is the Rabi frequency
at the D2 transition. While ground state atoms located at the trap center did not
feel the Stark shift modulation, atoms located at a distance rrot of the center were
subjected to the total contrast of the modulation and, therefore, to the microwave ra-
diation through the two modulation sidebands located in ∆rf ± ωrot. To satisfy the
resonance condition for one of the sidebands and excite transitions from the ground
state to the state |2, 1⟩, the rotation frequency was synchronized with the precession
frequency, |ωrot| = Grf . This is equivalent to accommodating the precession phase of
the Bloch vector, Grf t, with the azimuthal Broglie phase of the atoms created in the
state |2, 1⟩, ωrott, ensuring a unique de Broglie phase along the rotation path. The

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_SingularidadeVortice.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_VortexCreation.pdf
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phase gradient of the matter wave then generated a circular flow and formed a vortex.

46.3 Atom optics

Unlike the photons [770], there is no doubt about the fact that atoms are particles.
On the other hand, the deep analogy between light and matter, resulting from the
particle-wave duality, prompted de Broglie in 1924 to ascribe a wave to each massive
particle, whose wavelength would be a function of the particle’s momentum. Whether
an atom behaves more like a particle or a wave depends on the specific experimental
situation. For example, interferometers emphasize its wave nature: Atoms are able
to interfere with themselves, when their Broglie wavelength is coherently split and
then recombined. (Bosonic) atoms are able to interfere with other atoms, if their de
Broglie wavelengths are greater than their distances. For this to happen, it requires
high densities and very low temperatures, that is, high phase space densities. When
the phase space densities are so high that the Broglie waves come into contact, effects
of quantum statistics begin to influence the dynamics of the atoms, and fermions will
behave differently from bosons.

Analogously to the distinction between classical and laser optics, we can separate
the area of conventional atomic optics working with individual, mutually incoherent
atoms, from the area of coherent atomic optics working with Bose-Einstein conden-
sates. Unlike for the study of phenomena related to superfluidity, gases with weak
interatomic interactions are generally more useful for the study of the coherent prop-
erties of condensates and for application in atomic optics. Nevertheless, interatomic
collisions increase the complexity of the dynamics of matter waves interacting with
atom optical devices, by introducing non-linarities analogous to those known from
nonlinear optics and thus raising the field of nonlinear atom optics.

46.3.1 Atomic optical tools

The basic equipment of an atomic optics laboratory [904, 6, 1032, 463, 1060] com-
prises atomic beams, atom traps, lenses and waveguides, various types of mirrors
and resonators, Stern-Gerlach type matter wave polarizers, de Broglie wave phase
shifters based on Bragg diffraction, and a multitude of atomic beam gratings. Ob-
viously, gratings allow the construction of atom interferometers, which are used in
experiments and high precision devices, for example, atomic gyroscopes and gravime-
ters. Other applications for atomic beams controlled by atom optical elements are in
atomic holography for the projection of complex pattern into integrated semiconduc-
tor circuits [923], in lithography [1309], and in microscopy [376].

An important feature of atoms (as compared to light) is the existence of a rich
internal structure providing a wealth of additional degrees of freedom, whose dynamics
(of the Bloch vector) is frequently entangled with the motional dynamics (of the
de Broglie wave). This allows to monitor (e.g. in matter wave interferometers) the
evolution of the motional state of the matter wave via an observation of the internal
excitation. Moreover, in some interferometers, the de Broglie wave is not even split,
and one does interferometry with completely immobile atoms or ions [642].
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The epitome of a coherent light source is the laser, and we may ask whether there is
a material analogue, which would be a source of coherent matter [1386, 179, 1231, 625,
933, 730] serving for coherent atom optics. In fact, we may already consider a trapped
condensate as a stationary atom laser pulse with the trapping potential playing the
role of the laser resonator. While most atom optical devices (including conventional
atomic interferometers) do not require mutual coherence of atoms, certain applications
take advantage of an intense, highly directional, monochromatic, and coherent atom
source. In this respect, atom lasers are much superior to thermal atomic beams.
While a thermal beam contains about 10−12 atoms per mode and a magneto-optical
trap about 10−6, a condensed mode may contain more than 106 atoms. Condensates
offer the advantage of large de Broglie wave amplitudes and de Broglie wavelengths as
long as their actual size (which can be much longer than optical wavelengths). And for
an atom laser, the coherence length can even be longer than that of the condensate
from which it emerged. This obviously has a major impact on the sensitivity and
resolution of atom optical elements, in particular those, where atomic coherence is
important, for example, atom interferometers. Without doubt atom lasers will replace
conventional atomic beams in precision measurement of fundamental constants and
tests of fundamental symmetries ([Phys. World (mar,97) p.43]). Finally, atom lasers
are crucial for nonlinear optics.

Also of interest are the references [1229, 923, 1072, 774, 1121, 80, 608, 390, 1059,
355, 620, 1092, 656, 1156, 133, 376, 1366].

46.3.2 The atom laser

A large number of techniques for making an atom laser has already been developed
[881, 36, 890, 30, 154, 570, 849] and theories on atom lasers have been formulated
[565, 931, 1384, 1353, 644]. The following sections are devoted to explaining, why the
term atom laser is justified. For the reasoning we will let as guide by the optical laser.

We already mentioned the trapping potential (replacing the resonator in lasers)
as a major ingredients of an atom laser 4. Another necessary feature would be the
availability of an output coupling mechanism, which we still need to discuss in the
following. Apart from these more practical aspects, we need to prove, that atom lasers
are indeed phase-coherent, and we have to clarify the role of bosonic stimulation and
of irreversibility in the production process of a BEC.

46.3.2.1 Bosonic stimulation and irreversibility

The gain mechanism for optical lasers is photonic stimulation of atoms inciting them
to emit other photons into the stimulating mode. The atomic laser operates in a
similar way. Atoms trapped in a potential constitute a thermal reservoir. Binary
collisions redistribute the atoms among the vibrational energy levels of the potential.
If a vibrational level already contains an atomic population, Bose-Einstein quantum
statistics will encourage atoms involved in a collision process to join this level. Ulti-
mately, this comes down to an irreversible pumping of a single level, where the atoms
accumulate to build a single degenerate quantum state. Bose condensation is always

4Coherent reflection of atom laser beams has been demonstrated [167, 45, ?], and an atom laser
cavity with efficient transverse focusing has been built [156]
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the result of bosonic stimulation. However, the dynamics and time scale for the for-
mation of a condensate have been controversially discussed, until some experiments
[890] could directly visualize in vivo the process of nucleation and the exponential
amplification at the center of a thermal cloud (see Fig. 46.7).
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Figure 46.7: (a) Illustration of the idea of bosonic stimulation. (b) The curves show
the growth of a condensate toward thermal equilibrium for different initial numbers
of condensed atoms.

The very high concentration of population in a single phase space cell during the
creation of a condensate represents a dramatic reduction of entropy. Since the total
entropy can not decrease, the condensate must be coupled to a thermal reservoir
receiving the excess entropy. This coupling is necessarily irreversible. In practice, the
reservoir is the cloud of thermal atoms, whose energy is spread over many vibrational
states. Irreversibility is introduced by collisions and the subsequent removal of the
hottest atoms.

46.3.2.2 Phase of a condensate and first and higher-order coherences

First-order coherence and long-range order are necessary conditions for assigning a
single global phase to the condensate. The existence of a single phase, and the possi-
bility of measuring it, were questioned in the past. Certainly, the phase of a BEC is
not observable by itself, but only the relative phase of two condensates.

The intrinsic phase-coherence of condensates has demonstrated in many experi-
ments. An early example [575] employed internal state interferometry by splitting and
remixing 87Rb condensates trapped in the different Zeeman states |F,mF ⟩ = |1,−1⟩
and |2, 1⟩. They found that the phase was remembered for times longer than 150 ms.
In another experiment [33, 712, 1353], illustrated in Fig. 46.8, a condensate was spa-
tially split in two halves and then recombined. The interpenetration of the two halves
at a well-defined relative velocity gave rise to a clear matter wave interference pattern.
This ability of ballistically expanding condensates to interfere demonstrated the ab-
sence of a random phase lag during the expansion process and that the preservation
of the condensates’ long range order. However, under the repulsive influence of the
mean-field energy, the phase profile of a released condensate evolves in a non-uniform
but well-defined manner [1209].

The homogeneity of the phase of a confined condensate was also confirmed exper-
imentally [1259, 569, 155] through interferometric techniques based on Bragg diffrac-
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tion (see Sec. 47.2.2). The spatial coherence of an output coupled atom laser has been
verified with a double-slit experiment [155]. And the temporal coherence of an atom
laser beam was shown to be Fourier-limited by the finite output coupling time [?].

Similar to Young’s double slit experiment in optics, the observation of matter
wave interference only indicates first-order coherence, i.e. amplitude fluctuations in
the matter field. Signatures for the presence of higher-order coherences in conden-
sates were discovered in other experiments: The second-order correlation function,
which represents a measure for intensity fluctuations (number of particles) in the
matter field, was derived from measurements of the condensate’s release energy [714].
And the third-order coherence can be deduced from a comparison of the three-body
recombination rates for condensed and thermal clouds [217].

optical pumping
beam

interfering BECs
after 40ms TOF

probe laser

trapped split BECs

CCD

(a) (b)

Figure 46.8: (a) Scheme for observation of matter wave interference. (b) Interference
fringes.

A reliable characterization of atom number fluctuations and matter wave phase
fluctuations in condensates is important for the simple reason, that these fluctua-
tions will limit ultimately the resolution of atom interferometers, analogous to the
Schawlow-Townes limit in lasers.

46.3.2.3 Output coupling

The output coupler for a trapped condensate plays a role similar to that of the partially
reflecting mirror of a laser resonator. It transfers a fraction of condensed atoms out
of the trapping potential through a coherent coupling to untrapped states. The cou-
pling can be conveniently implemented via adiabatic potentials (see 38.1.3 and 43.4.3)
generated by radiation (e.g. radiofrequency pulses [881] or continuous radiofrequency
[154]). Also, pairs of laser beams in Raman configuration can create a coherent quasi-
continuous and well-collimated atomic beam [570] and tunneling can give rise to a
pulsed mode-locked atom laser (mode-locked laser) [30].

A trapped condensate represents a finite reservoir from which an atom laser can
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be fed. For a really cw atom laser, an incoherent pumping mechanism, continuously
feeding the BEC, while it delivers atoms to the atom laser, is still lacking [838].

Figure 46.9: Several types of atomic lasers realized, from left to right at the MIT in 1997,
in Munich in 1999, at Yale in 1998, and at NIST in 1999. The vertical sizes of the images
are, from left to right: 5, 2, 0.5, and 1 mm.

46.3.3 Atomic interferometry with Bose-Einstein condensates

The most obvious use of an atom laser is within an atomic interferometer [1260, 1237,
168, 569, 155, 1209, 714, 217, 992, 353, 900, 926]. Many types of interferometers have
been developed over the years. First of all, we note that the interferometric idea
can be realized in the spatial domain (e.g. an atomic beam passing through a light
wave) or in the time domain (e.g. a trapped atomic cloud or an immobile trapped ion
irradiated by a pulsed light) [178, 642, 1073, 511].

Furthermore, depending on the involved degree of freedom (kinetic or internal
excitation), we may distinguish two types of interferometers. Matter wave interfer-
ometers operating with the kinetic degree of freedom often use beam splitters based
on Bragg diffraction [746, 992, 569, 1209]. Matter wave interferometers involving in-
ternal degrees of freedom generally couple two species of condensates, that is, two
condensates in different states of internal excitation, for example, in different Zeeman
[1261], hyperfine [939, 575, 900], or dressed states [780]. The phases of two BECs
in different internal states, which we will call |±⟩, evolve according to their respec-
tive chemical potentials, φ|±⟩(t) = µ|±⟩t. The accumulated phases are not directly
observable, but their difference, ∆φ(t), can be measured by Ramsey interferometry.
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46.3.4 Non-linear atomic optics

In classical nonlinear optics, the interaction between matter (e.g. dilute gases) and
light is described by Maxwell’s equations. The electromagnetic field E creates a
macroscopic polarization,

P(r, t) = χ(E)E(r, t) = χ(1) ·E+ χ(3) : EEE+ ... . (46.28)

which in turn acts back onto the field. Higher-order processes, such as self-focusing,
second-harmonic generation, four-wave mixing, etc. are described by the non-linear
susceptibility χ(3). These processes require the presence of a non-linear medium (the
vacuum polarization itself being too small [696, 553]).

The role of binary collisions in coherent matter wave optics, as described by the
nonlinear term in the Gross-Pitaevskii equation (45.21), is very similar to the role of
the third-order nonlinear susceptibility in quantum optics [787, 746, 354, 518, 1318,
697, 586, 700, 792, 318, 591]. For example, if the atomic interaction is repulsive,
the nonlinear term tries to increase the size of the condensate as much as possible
within the limits imposed by the trapping potential. This behavior is analogous to
the phenomenon of self-defocusing known in non-linear optics.

Small-amplitude elementary oscillations are well described by the Bogolubov-de
Gennes equations, which are a linearized version of the Gross-Pitaevskii equation
[297]. On the other hand, large-amplitude oscillations, which are sensitive to the
nonlinear mean-field interaction [1222], showed a splitting of the frequency for quasi-
particle excitation, in analogy with the generation of the second-harmonic (SHG) in
quantum optics [591].

Other phenomena, such as matter wave phase conjugation and four waves mixing
(4WM) [518] have been observed in experiments [354]. The three matter wave modes
for the nonlinear mixing were produced out of a single condensate by applying two
short consecutive sequences of Bragg diffraction pulses. The condensates are created
in the same spatial region, but at different times. The nonlinear mixing during the
process of spatial separation was observed by time-of-flight images.

The geometry of the laser beams is shown in Fig. 46.10(a) in the laboratory system.
A first standing wave light pulse is generated by lasers k1 and k2 detuned from each
other by an amount, such that the Bragg condition is satisfied and the momentum
p2 = ℏk1 − ℏk2 is transmitted to the diffracted atoms. Then, a second standing
wave light pulse formed by lasers k1 and k3 = −k1 transmits to the diffracted atoms
the momentum p3 = 2ℏk1. The duration and intensity of the standing waves are
adjusted such as to create an approximately equal distribution ofN0

j atoms in all three
condensate momentum modes, each mode having a different momentum, p1 = 0, p2,
and p3. Initially, the three wavepackets ψ̂j ≡ ψ̂0(r)e

ipjr/ℏ overlap. The nonlinear
term in the Gross-Pitaevskii equation mixes the wavepackets while they separate to
form other wavepackets, ψ̂4 ∼ gψ̂+

j ψ̂mψ̂ne
ip4·r/ℏ, where,

N4 = −Nj +N0
j = Nm −N0

m = Nn −N0
n =

∑3

κ=1
(N0

κ −Nκ) (46.29)

p4 = −pj + pm + pn

p24 = −p2j + p2m + p2n .
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To produce the new momenta, p4 ̸= p1,p2,p3, the corresponding wavepackets must
gather atoms from all three initial packets p1 ̸= p2 ̸= p3.

The experimental observation of a newly emerging wavepacket ψ̂4 has two comple-
mentary interpretations: In the inertial system defined by p1 = −p3 [see Fig. 46.10(b)],

the wavepackets ψ̂1 and ψ̂3 suffer elastic collisions. The direction in which the con-
densates are scattered is, a priori, isotropic. The injection of a third condensate
ψ̂2 bosonically stimulates the formation of a forth one, ψ̂4, in a predefined direction
p4 = −p2. The laws of conservation for the particle numbers, momenta, and ener-
gies (46.29) only allow processes, which can be interpreted as degenerate 4WM in this

inertial system. Each of the wavepackets ψ̂1 and ψ̂3 sacrifice N4 atoms to create a
new wavepacket ψ̂4 and to amplify the wavepacket ψ̂2. The redistribution of atoms
is a coherent process.

Figure 46.10: Matter wave 4WM can be illustrated (a) in the laboratory system, or (b) in
the inertial system defined by p1 = −p3, or (c) in the system defined by p1 = −p2. In each
system the process has a different physical interpretation (see text). The right image shows
the experimental result.

The second interpretation becomes clear in the inertial system, in which p1 =
−p2 [see Fig. 46.10(c)]. The conservation of energy only allows scattering products

satisfying p4 = p3, that is, ψ̂+
1 ψ̂2ψ̂3 and ψ̂+

2 ψ̂1ψ̂3. In this system, the process can

be interpreted as Bragg diffraction of the wavepacket ψ̂3 by the matter wave lattice
formed by ψ̂1 and ψ̂2. The wavepacket ψ̂4 is nothing more than the first diffraction
order. Unlike the Bragg diffraction in an optical lattice (see Sec. 47.2), the Bragg
diffraction by a matter wave lattice requires nonlinear mixing through binary atomic
collisions. Thus, the number of redistributed atoms depends on parameters such as
the interatomic interaction strength, the size of the condensate, and the collision time
between the wavepackets, i.e. the time that the wavepackets spend together before
separating.

Despite the similarity with the optical counterpart, matter wave 4WM is fun-
damentally different: The number of particles must be conserved and the energy-
momentum dispersion relation is not linear. Furthermore, while photons require the
presence of a nonlinear medium in order to participate in higher-order processes,
atomic matter waves mix through binary collisions.
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46.4 Quantum atom optics

When describing a condensate by the Gross-Pitaevskii equation, we specify a phase
and an atom number. However, both are conjugate quantities, which can not be
specified without uncertainty. So, what does the BEC really look like: a Glauber
state or rather a Fock state? We need to be careful. Certainly, it makes no sense
talking about the absolute phase of a single BEC. Only the relative phase between two
BECs matters. The condition for interference is, that we do not know, from which
condensate the interfering atom came ∆N∆φ ≥ 1. So, the relative atom number
must be uncertain.

46.4.1 Quantum transport

Now, let us imagine two BECs in a double-well potential. Atoms may be move
between the wells via Josephson tunneling, even if the height of the barrier is higher
than the atomic energy. Hence, the motion is a type of quantum transport. Be
ψ(r, t) = ψ1(r)e

iµ1t/ℏ + ψ2(r)e
iµ2t/ℏ. In elongated traps the Josephson current is

obtained as the expectation value of the flux operator,

I(z, t) =
iℏ
2m

∫ (
ψ(r, t)

d

dz
ψ∗(r, t)− c.c.

)
dxdy . (46.30)

One obtains,

I(z, t) =
iℏ
2m

∫ (
ψ1
dψ∗1
dz

+ ψ1
dψ∗1
dz

+ ψ1
dψ∗1
dz

ei(µ1−µ2)t/ℏ + ψ1
dψ∗1
dz

ei(µ1−µ2)t/ℏ − c.c.
)
dxdy .

(46.31)
Choosing the original phase of the two condensates equal to zero, the time-independent
terms are real and cancel each other, leaving,

I(z, t) =
iℏ
2m

∫ (
ψ1
dψ2

dz
− ψ2

dψ1

dz

)
2i sin

(µ1 − µ2)t

ℏ
dxdy (46.32)

≡ I0 sin
(µ1 − µ2)t

ℏ
.

This shows that the current oscillates in time. This feature is well-known for Joseph-
son junction in superconductors.

The question is now, what will be the steady-state of the two BECs [982]. Ex-
periments have shown, that the BECs will gradually evolve into a superposition of
number states, until they are coherent. The time scale is set by Josephson tunneling.
The same interference pattern would result from BECs initially having well-defined
phases 5,6

5Also, a spin-squeezed state i.e. a state with sub-Poissonian number statistics approaching pure
number states have been compared to coherent states. Superposition of the first ones exhibited no
interference while superposition of the second ones lead to observable interference.

6If two Josephson-coupled BECs are initially in Fock-states, the current must initially be a quan-
tum superposition of all currents corresponding to all possible atom number differences. This quan-
tum superposition decoheres rapidly, leaving behind a semi-classical oscillation.
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46.4.2 Optical lattices and the Mott insulator

We have already pointed out in Sec. 43.3.2, that laser beams tuned far away from
resonances serve to construct trapping potentials for atoms. Laser beams incident
on the atomic cloud under various angles allow the engineering of a large diversity
of geometries for attractive potentials (with red tuned lasers) or repulsive potentials
(with blue tuned lasers). Various cooling methods can be combined with dipolar
traps, for example, Doppler cooling [647], Raman cooling [579], evaporative cooling
[5], or gravitational Sisyphus cooling [948]. A particularly interesting geometry is that
of are optical lattice, which we will discuss in the following sections.

46.4.2.1 Bragg scattering from optical lattices

In solid state physics the structure of crystal is studied by Bragg or von Laue scattering
with X-ray radiation. Similar techniques can be used in optical lattices [146, 1157,
1360, 1361, 1217]. Under certain conditions, we can even expect to open a photonic
band gap [37, 361, 1158], which draws an analogy between optical lattices and photonic
crystal.

A great advantage of optical lattices is the possibility of directly visualizing the
momentum distribution of the confined atoms, that is, the distribution of atoms over
the Brillouin zone.

46.4.2.2 Bloch bands with mean field interaction

The Gross-Pitaevski equation is,

Hψ =
−ℏ2
2m

d2

dx2
+ v cosKx+ c|ψ|2 = µψ . (46.33)

We have a periodic potential, U(x) = U(x+X). In the following, we restrict ourselves
to 1D. Assume e.g. a sine wave potential,

U(x) = U0 cos(2Kx) . (46.34)

The Gross-Pitaevskii equation is rescaled via k/K → k, 2Kx→ x, 4εt→ t, ψ/
√
n→

ψ and C = πnas/K
2. All frequencies are scaled like U/4ε→ U . Then,

− 1
2

∂2ψ

∂x2
+ (U cosx− U) ψ + C|ψ|2ψ = µψ . (46.35)

The Bloch-theorem says that the Schrödinger equation be solved by any Bloch state.
Those are superpositions of plane-wave momentum states [?],

ψ(x) = eıkxuk(x) , (46.36)

with uk(x) = uk(x+X). We obtain,

− 1
2

(
∂

∂x
+ ık

)2

uk + U cosx uk + C|uk|2uk = [µ(k) + U ]uk . (46.37)
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Inserting the plane-wave expansions uk(x) =
∑N
q=−N aq(k)e

iqx into the Schrödinger
equation, we get,

N∑
q=−N

[
1
2
(q + k)2aqe

ıqx + 1
2
Uaq(e

ı(q+1)x + eı(q−1)x) (46.38)

+C

N∑
m,n=−N

ama
∗
naqe

ı(m−n+q)x − [µ(k) + U ]aqe
ıqx

]
= 0

1
2
(q + k)2aq +

1
2
U(aq−1 + aq+1) + Caq

∑N

n=−N
|an|2 − [µ(k) + U ]aq = 0 .

We choose a cut-off q0 so that aq>q0 = 0. For a given k the coefficients aq and
the chemical potential µ, and thus the Bloch wave uk(x) can easily be calculated by
minimizing the left hand side of the above equation. Note that for C = 0 we have
we linear set of differential equation that can be solved as an eigenvalue problem (see
Sec. 26.2.2).
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Figure 46.11: (code) Nonlinear interaction matrix finds just one minimum, dependence on

k, [1389, 1391].

If we only consider the two lowest Bloch bands

uk(x) = eıkxa(x) + eı(k−K)xb(x) (46.39)

with |a|2 + |b|2 = 1, so that

|uk|2 =
(
eıkxa+ eı(k−K)xb

)(
aeıkx + beı(k−K)x

)
= 1 + 2ab cosKx , (46.40)

and insert this into the Gross-Pitaevski equation Eq. (46.37), we find that the system
of differential equations Eq. (46.38) simplifies to,

(
ℏ2k2

2m + c v
2 + abc

v
2 + abc ℏ2(k−K)2

2m + c

)(
a

b

)
= µ

(
a

b

)
. (46.41)

For −2ab = v
c the off-diagonal elements vanish, and because the interacting BEC

shields the potential. Since |2ab| ≤ 1, this is only possible for c ≥ v.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_Blochloops.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Superfluidity_Blochloops.m
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If we substitute µ = µ̃ + 1
2
ℏ2k2

2m + 1
2
ℏ2(k−K)2

2m + 3
2c, multiply the first row with b,

the second with a and add both rows, we obtain,

2µ̃ =
v

2ab
. (46.42)

Example 283 (Estimations): Estimated radial BEC size rt ≃ 10 µm, esti-
mated number of atoms per antinode n1D ≃ 1000 µm−1,

ωr =
ℏk2

2m
= 2π · 3.8 kHz (46.43)

g1D =
4πℏ2as
mr2t

(46.44)

g1Dn1D = h · 77Hz (46.45)

Since we need at least two Bloch bands to see interesting effects, we must arrange

for much stronger mean fields.

46.4.2.3 The Mott insulator

In the Mott insulating state, the atoms are localized at individual sites of an optical
lattice. On one hand, the localization impedes any phase relation between atoms at
different sites, that is, at a given site the phase uncertainty ∆ϕ is complete. But at
the same time, there is a perfect correlation of the atom number at each site known
as spin squeezing 7, because (in a homogeneous lattice) every site contains exactly the
same number of atoms, that is, the atom number uncertainty ∆N tends to zero. At
a given lattice site, the number of atoms and the phase of the wavefunction can not
be simultaneously fixed: ∆N∆ϕ > 1.

The absence of relative coherence between different sites and of the ability to
interfere prohibits the description of the system by a single global wavefunction and
the use of the Gross-Pitaevskii equation. Nevertheless, the Mott insulating state is
not equivalent to a completely randomized sample. On the contrary, the coherence
only changes its character 8.

The Mott transition of a condensate from a superfluid state and to state of a Mott
insulator occurs as a quantum phase transition, because it is driven by quantum fluc-
tuations rather than of thermal noise. Therefore, it is a direct result of Heisenberg’s
uncertainty relation.

46.4.2.4 The Bose-Hubbard model

The Bose-Hubbard model gives an approximate description of the physics of interacting
bosons in a lattice. The model is closely related to the fermionic Hubbard model, used
in solid state physics for the description of superconducting systems and the hopping
of electrons between the atoms of a solid crystalline lattice.

7The spin squeezing feature makes the Mott insulator interesting for spectroscopy at the Heisen-
berg limit and for quantum computation.

8Remember, that the Fock state is a complicated superposition of Glauber states. The disap-
pearance and reappearance of coherence is reminiscent to the phenomenon of collapse and revival in
the Jaynes-Cummings model.
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The Bose-Hubbard model starts from the following Hamiltonian [982, 537],

Ĥ = −J
∑

(i,j)

â†i âj +
∑

i

εin̂i +
1
2U
∑

i

n̂i(n̂i − 1) , (46.46)

where

J ≡
∫
d3x w∗(x− xi)

[
− ℏ

2m∇2 + V0(x)
]
w∗(x− xi) , (46.47)

and

U ≡ 4πasℏ2

m

∫
d3x |w∗(x)|4 , (46.48)

with εi ≡ 4πasℏ2

m

∫
d3x Vtrap(x)|w(x− xi)|2 ≈ Vtrap(x) and w(x) = w(x)w(y)w(z)

are the Wannier functions for an individual particle. We assume for the moment a
homogeneous condensate.

The Hilbert space dimension of the Bose-Hubbard model grows exponentially with
the number of atoms N and the number of sites L,

Db =
(Nb + L+ 1)!

Nb!(L− 1)!
. (46.49)

For the Fermi-Hubbard model, the Pauli exclusion principle leads to the Hilbert space
dimension,

Df =

(
L

Nf

)
. (46.50)

In three dimensional lattices the Hilbert space grows even faster. Therefore, it is a
difficult computational task to model or simulate such systems, and generally not
possible fro more than 20 atoms and 20 lattice sites.

At zero temperature, the Bose-Hubbard model (in the absence of disorder) predicts
the atomic ensemble to be an a Mott insulating state (MI) when J ≪ U , a superfluid
state (SF) when J ≫ U , or a supersolid phase (SS), where both solid and superfluid
phases (diagonal and off-diagonal) coexist. Mott insulation phases are characterized
by integer site occupation numbers, by the existence of an energy gap for particle-
hole excitations, and zero compressibility. In the presence of disorder, a third phase,
the Bose glass exists. This phase is insulation because of the Anderson localization
effects. Bose glass is characterized by a finite compressibility, the absence of a gap,
and an infinite superfluid susceptibility [449]. See also (watch talk).

In the limit of strong tunneling and weak interactions, J ≫ U , the matter wave
function looks like a Bloch state,

|ψSF ⟩ ∼
(

M∑

i=1

â†i

)N
|0⟩ . (46.51)

The variance of the number of particles per site is Poissonian, σSF ∼
√
Ni, that is, the

wavefunction per lattice site is (quasi)-coherent. However, the total wavefunction is
delocalized over all lattice sites, the local wavefunctions have a rigid phase relationship

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/BoseGlasses
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and no long-range coherence. Otherwise, the matter wave function is an independent
product of Fock states,

|ψMI⟩ ∼
M∏

i=1

(â†i )
n|0⟩ . (46.52)

The momentum distribution in terms of Wannier functions is [558, 1390],

n(k) = |w(k)|2
∑

i,j

eik(ri−rj)⟨â†i âj⟩ . (46.53)

46.4.3 Schrödinger cats

Ruostekoski et al. [1120] proposed a double BEC system consisting of two momen-
tum sidemodes and a far-off resonance laser beam that constantly spontaneously
redistributes the atoms between the sidemodes. Homodyne detection of the scattered
photons established relative phase information in such a way, that the relative number
information is blurred in such a way that both sidemodes evolve into a simultaneous
superposition of phase and number states. They disregard thermal excitations and
two-body collisions. The cats are very sensitive to decoherence.

Cirac et al. [266] and Gordon et al. [524] consider Josephson double species
condensates. The relative atom numbers Rabi flop. Mediated by the mean-field the
systems may evolve into cats. The proposals have been reexamined by Dalvit et al.
[324]. Other contributions come from [517, 617, 1127, 1074, 661]. First experiments
on spin-squeezed states have been made by [982].

46.4.4 Exercises

46.4.4.1 Ex: Superfluid to Mott insulator transition

Consider a condensate trapped in a 3D simple cubic optical lattice with lattice spacing
l. The Hamiltonian can be written as,

Ĥ = −J
∑

i,j

δ
(1)
ij â

†
i âj +

U
2

∑

i

â†i â
†
i âiâi ,

where âi (â
†
i ) is the operator annihilating (creating) one boson in the lattice site i;

δ
(1)
ij = 1 only when i and j are nearest neighbors, otherwise it is zero. Assume a total
ofM ≫ 1 sites, periodic boundary conditions in the x, y, and z directions, and U > 0.
On this lattice we consider the construction operator b̂†s defined in the following way:

b̂†s =
1√
M

∑

i

â†i .

a. Describe the action of this construction operator.
b. Derive the commutation relation,

[âα, b̂
†
s] =

1√
M
.

c. Derive the commutation relation,

[âα, (b̂
†
s)
N ] = N√

M
(b̂†s)

N−1 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Superfluidity_Walraven.pdf
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d. Suppose that the following N -atom state exists:

|N,SF ⟩ ≡ 1√
N !

(b̂†s)
N |0⟩ ,

where SF stands for a name label (and not for quantum numbers). Show that for
N =M we have âα|N,SF ⟩ = |N − 1, SF ⟩.
e. Define the density operator for the site i as n̂i = â†i âi. Calculate the density
fluctuation,

∆ni =
√
⟨n̂2i ⟩ − ⟨n̂i⟩2

of the state |N,SF ⟩ with N =M .
f. Calculate the total energy ⟨H⟩ with the state |N,SF ⟩.
g. Next consider the state,

|N,MI⟩ ≡
∏

j

â†j |0⟩ .

Calculate ⟨â†i âj⟩ and the density fluctuations ∆ni for this state.
h. Calculate the total energy ⟨H⟩ with the state |N,MI⟩.
i. Discuss the energy for the states |N,SF ⟩ and |N,MI⟩. Which one is the ground
state? How to make a ground state change from |N,SF ⟩ to |N,MI⟩?

Solution:

46.5 Further reading

M.R. Matthews et al., Vortices in a Bose-Einstein Condensate [857]DOI

K.M. Mertes et al., Nonequilibrium Dynamics and Superfluid Ring Excitations in
Binary Bose-Einstein Condensates [879]DOI

I. Bloch, Ultracold quantum gases in optical lattices [153]DOI

J. Estève et al., Squeezing and entanglement in a Bose-Einstein condensate [427]DOI

http://doi.org/10.1103/PhysRevLett.83.2498
http://doi.org/10.1103/PhysRevLett.99.190402
http://doi.org/10.1038/nphys138
http://doi.org/10.1038/nature07332
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depth of around 13 Er the interference maxima no longer increase in
strength (see Fig. 2e): instead, an incoherent background of atoms
gains more and more strength until at a potential depth of 22 Er no
interference pattern is visible at all. Phase coherence has obviously
been completely lost at this lattice potential depth. A remarkable
feature during the evolution from the coherent to the incoherent
state is that when the interference pattern is still visible no broad-
ening of the interference peaks can be detected until they completely
vanish in the incoherent background. This behaviour can be
explained on the basis of the super¯uid±Mott insulator phase
diagram. After the system has crossed the quantum critical point
U=J � z 3 5:8, it will evolve in the inhomogeneous case into
alternating regions of incoherent Mott insulator phases and coher-
ent super¯uid phases2, where the super¯uid fraction continuously
decreases for increasing ratios U/J.

Restoring coherence
A notable property of the Mott insulator state is that phase
coherence can be restored very rapidly when the optical potential
is lowered again to a value where the ground state of the many-body
system is completely super¯uid. This is shown in Fig. 3. After only
4 ms of ramp-down time, the interference pattern is fully visible
again, and after 14 ms of ramp-down time the interference peaks
have narrowed to their steady-state value, proving that phase
coherence has been restored over the entire lattice. The timescale
for the restoration of coherence is comparable to the tunnelling time
ttunnel � ~=J between two neighbouring lattice sites in the system,

which is of the order of 2 ms for a lattice with a potential depth of 9
Er. A signi®cant degree of phase coherence is thus already restored
on the timescale of a tunnelling time.

It is interesting to compare the rapid restoration of coherence
coming from a Mott insulator state to that of a phase incoherent
state, where random phases are present between neighbouring
lattice sites and for which the interference pattern also vanishes.
This is shown in Fig. 3b, where such a phase incoherent state is
created during the ramp-up time of the lattice potential (see Fig. 3
legend) and where an otherwise identical experimental sequence is
used. Such phase incoherent states can be clearly identi®ed by
adiabatically mapping the population of the energy bands onto
the Brillouin zones19,21. When we turn off the lattice potential
adiabatically, we ®nd that a statistical mixture of states has been
created, which homogeneously populates the ®rst Brillouin zone of

articles
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Figure 1 Schematic three-dimensional interference pattern with measured absorption

images taken along two orthogonal directions. The absorption images were obtained after

ballistic expansion from a lattice with a potential depth of V 0 � 10E r and a time of ¯ight of

15 ms.
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Figure 2 Absorption images of multiple matter wave interference patterns. These were

obtained after suddenly releasing the atoms from an optical lattice potential with different

potential depths V0 after a time of ¯ight of 15 ms. Values of V0 were: a, 0 Er; b, 3 Er; c, 7 E r ;

d, 10 Er; e, 13 Er; f, 14 Er; g, 16 E r ; and h, 20 E r.
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Figure 3 Restoring coherence. a, Experimental sequence used to measure the restoration

of coherence after bringing the system into the Mott insulator phase at V 0 � 22E r and

lowering the potential afterwards to V 0 � 9E r; where the system is super¯uid again. The

atoms are ®rst held at the maximum potential depth V0 for 20 ms, and then the lattice

potential is decreased to a potential depth of 9 Er in a time t after which the interference

pattern of the atoms is measured by suddenly releasing them from the trapping potential.

b, Width of the central interference peak for different ramp-down times t, based on a

lorentzian ®t. In case of a Mott insulator state (®lled circles) coherence is rapidly

restored already after 4 ms. The solid line is a ®t using a double exponential decay

(t1 � 0:94�7�ms, t2 � 10�5�ms). For a phase incoherent state (open circles) using the

same experimental sequence, no interference pattern reappears again, even for ramp-

down times t of up to 400 ms. We ®nd that phase incoherent states are formed by applying

a magnetic ®eld gradient over a time of 10 ms during the ramp-up period, when the

system is still super¯uid. This leads to a dephasing of the condensate wavefunction due to

the nonlinear interactions in the system. c±e, Absorption images of the interference

patterns coming from a Mott insulator phase after ramp-down times t of 0.1 ms (c), 4 ms

(d), and 14 ms (e).

© 2002 Macmillan Magazines LtdFigure 46.12: Signature of the Mott phase.



Chapter 47

Interaction of Bose-Einstein
condensates with light

Light can essentially be used in two ways for the manipulation of matter waves:
1. Tuned far from resonance, light serves to create conservative optical dipole poten-
tials (see Secs. 43.3.2 and 46.4.2). In such circumstances the states of internal atomic
excitation can be adiabatically eliminated from the description of the center-of-mass
dynamics. 2. Close to resonance the situation is quite different, but even then, the
coherent excitation of internal states may allow for a controlled manipulation of the
atomic motion. Among the examples discussed in the following sections are the adia-
batic sweeps, the Raman output coupler, Bragg pulses, photoassociation, and matter
wave superradiance (see Fig. 47.1).

Figure 47.1: Different types of coherent coupling: (a) coherent coupling of hyperfine levels,
(b) coupling from a confined state to the continuum of free states, (c) mutual coupling of
different velocity states of an atom, and (d) coupling between a (collisional) state of two free
atoms with a bound molecular state.

47.1 Scattering of light by degenerate gases

47.1.1 The structure factor for degenerate quantum gases

We introduced in Sec. 39.1.1 the notion of the structure factor, where it was used to
characterize the scattering of light by thermal distributions of atoms. To characterize
the scattering of matter waves, we must generalize the notion of the structure factor.
We wrote in (39.3) the Fourier transform of the density distribution, which now

becomes, after inserting n̂(r) = ψ̂†(r)ψ̂(r) and the plane wave expansion (45.70),

ρ̂†(q) =
∫
ψ̂†(r)ψ̂(r)eıq·rd3r = V

(2π)3

y
â†k′ âke

ı(k−k′+q)·rd3k′d3kd3r . (47.1)

2719
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With (45.76) and assuming sharp momenta (45.71),

ρ̂†(q) = V 2
x

â†k′ âkδk′,k+qd
3k′d3k =

∑

k′,k

â†k′ âkδk′,k+q . (47.2)

Finally,

ρ̂†(q) =
∑

k

â†k+qâk =
∑

k

|k+ q⟩⟨k| . (47.3)

Hence, ρ̂†(q) describes the scattering of an atom with the momentum k to k+q. We
also find,

ρ̂†(q) = ρ̂(−q) . (47.4)

Understanding the fundamental state |g⟩ as the state without excitations, we define
the static structure factor (39.5) now normalized to the number of particles [1237],

S(q) ≡ 1
N ⟨g|ρ̂(q)ρ̂†(q)|g⟩ , (47.5)

as a generalization of the classical structure factor. The static structure factor de-
scribes the probability to excite a condensate by creating a quasi-particle with mo-
mentum k. We will need these notions in the Sec. 47.2.3.

The dynamic structure factor is obtained from S(q) =
∫
S(q, ω)dω and measures

the density of correlations in the ground state with 0 momentum. The formula de-
scribes, how an atom probes its environment by scattering quasi-particles back and
forth,

S(q, ω) = 1
N

∑

f

⟨g|ρ̂(q)|f⟩⟨f |ρ̂(q)|g⟩ℏδ(ℏω − Ef + Eg) . (47.6)

Solve the Excs. 47.1.6.1 to 47.1.6.5.

Example 284 (Spatial coherence and the correlation function): The spa-
tial coherence can be defined by [CCT & Aspect],

F (x) ≡
∫
⟨r|ρ̂|r+ x⟩d3r =

∫
eık·x⟨k|ρ̂|k⟩d3k . (47.7)

We will demonstrate this relationship in Exc. 47.1.6.6. The coherence length ξ
is given by F (ξ) = 1

e
F (0) = 1

e
. A second order correlation function is defined

by,

g(2)(r1, r2) =
⟨ψ̂†(r1)ψ̂†(r2)ψ̂(r2)ψ̂(r1)⟩

⟨n̂(r1)⟩⟨n̂2(r)⟩

g(2)(r) ≡ g(2)(r1, r1 + r)

.

47.1.2 The structure factor in Bragg spectroscopy

47.1.2.1 The Hamiltonian of the Rayleigh scattering process

In Sec. 23.5.3 we saw the Galilei-boost (??),

|k+ q⟩ = eıq·̂r|k⟩ . (47.8)
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In the second quantization we generalize to,

|k+ q⟩ =
∫
ψ̂†(r)eıq·rψ̂(r)d3r|k⟩ = ρ̂†(q)|k⟩ . (47.9)

Thus, we can implement the second quantization by simply replacing eıq·r by ρ̂†(q).
Now, the Hamiltonian for the process of a photon absorption from the mode ĉki

,
taking into account the photonic recoil, was introduced in (38.6),

Ĥint = ℏΩ(r̂)e−ıki ·̂rĉki
σ̂+ + c.c. . (47.10)

If the process is followed by the reemission of a photon to the mode ĉkf
,

Ĥint = ℏΩ(r̂)eı(kf−ki)·rĉ†kf
ĉki

. (47.11)

Going to second quantization, as done in (47.9), and doing the Fourier transform 1,

H̃int = C
∑

pf ,pi

ĉ†kf
ĉki â

†
pf
âpiδkf−ki+pf−pi . (47.12)

We assume here, that the light modes ki and kf are predefined, but the velocities
pi are distributed. Otherwise, in the expression (47.12), we must also sum over light
modes 2,

H̃int = C
∑

ki,kf ,pi,pf

ĉ†kf
ĉki â

†
pf
âpiδkf−ki+pf−pi , (47.13)

where C is a normalization constant. This Hamiltonian describes the elementary
scattering process as a process of four wave mixing (4WM) [712, 1238]. The light and
the atoms are treated on equal footings as modes which can receive (quasi-)particle
populations, and the scattering corresponds to a redistribution of populations between
the modes 3.

The Hamiltonian (47.13) can be applied to various situations, such as spontaneous
or stimulated Rayleigh scattering or Bragg scattering, depending on which ones of the
modes kf , ki, pf , and pi are populated or filtered by imposed boundary conditions.

Using momentum conservation q ≡ kf − pi = −pf + pi, we obtain the cross
section,
(
dσ

dΩ

)

ki→kf

= C2
∑

f

|⟨f |Ĥint|i⟩|2 = C2
∑

f

|⟨f |
∑

pi

ĉ†ki+qĉki
â†pi−qâpi

|i⟩|2 , (47.14)

Example 285 (Description of Bragg scattering via the structure fac-
tor): In this example we irradiate two plane waves in directions k1 and k2 into
a Bose-Einstein condensate. The total intensity will be,

Imod(r, t) = I cos(q · r− ωt) with q = k1 − k2 . (47.15)

1âp and â†p are the operators of the quantized atomic field, while ĉk and ĉ†k are the operators of
the light fields.

2Note the different form of this Hamiltonian as compared to (39.10).
3This is analogous to the way, in which a ’collision’ redistributes atomic populations between

momentum modes. We will discuss this general concept of 4WM in Secs. 47.3.4 and 46.3.4.
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and the optical potential,

Vmod =
ℏΓ2

8∆
I cos(q · r− ωt) = ℏΓ2

8∆

I

2Isat
(eıq·r−ıωt + e−ıq·r+ıωt) (47.16)

→ V̂mod =
V

2
[ρ̂†(q)e−ıωt + ρ̂†(−q)eıωt] .

Now, the transition rate is [1238],

W

N
= 2πΩ2

RS(q, ω) =
2π

Nℏ

(
V

2

)2∑
f

|⟨f |ρ̂†(q)|g⟩|2δ(ℏω− (Ef −Eg)) , (47.17)

with V
2
= ℏΩR.

Resolve Exc. 47.1.6.7.

47.1.3 Bosonic stimulation

We assume in the following weak light intensities (and hence a negligible contribution
of the Mollow fluorescence spectrum). That is, without cooperative effects the light
would be elastically scattered by Rayleigh scattering. Now, we adopt a notation
labeling the multimodal state by the numbers of photons and atoms distributed over
the available light and momentum modes. That is, the initial state consists of np
atoms distributed over momentum atomic states p and Nk photons distributed over
wave vector modes k denoted by |...Nk...⟩rad ⊗ |...np...⟩at:

|i⟩ ≡ |...npi
...npf

...⟩at ⊗ |...Nki
...Nkf

...⟩rad ≡
∣∣∣∣∣
...npi

...npf
...

...Nki
...Nkf

...

〉
, (47.18)

where we introduced the vector-like notation for notational compactness.
A particular scattering process can be treated like a ’collision’ by redistributing

the initial populations to final populations:

|f⟩ =
∣∣∣∣∣
...npi

− 1...npf
+ 1...

...Nki − 1...Nkf
+ 1...

〉
. (47.19)

We write the matrix element,

⟨f |Ĥint|i⟩ ∝
〈
...np′′

i
...np′′

f
...

...Nk′′
i
...Nk′′

f
...

∣∣∣∣∣C
∑

k′
i,k

′
f ,p

′
i,p

′
f

ĉ†k′
f
ĉk′

i
â†p′

f
âp′

i
δk′

f−k′
i+p′

f−p′
i

∣∣∣∣∣
...npi ...npf

...

...Nki ...Nkf
...

〉
.

(47.20)

Assuming that all modes are not degenerate, such that [âpf
, â†pi

] = δpf ,pi
, that is,

â†pf
and âpf

only act on the mode |npf
⟩at, etc.,

∑

p′
i

âp′
i
|...npi

...⟩at =
∑

pi

√
npi
|...npi

− 1...⟩at (47.21)

and
∑

p′
f

â†p′
f
|...npf

...⟩at =
∑

pf

√
npf

+ 1|...npf
+ 1...⟩at ,
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as well as,
∑

k′
i

ĉk′
i
|...Nki ...⟩rad =

∑

ki

√
Nki |...Nki − 1...⟩rad (47.22)

and
∑

k′
f

ĉ†k′
f
|...Nkf

...⟩rad =
∑

kf

√
Nkf

+ 1|...Nkf
+ 1...⟩rad .

Let us now assume for a moment, that the photon is scattered to the vacuum, that
is, the final mode of light is initially empty, Nkf

= 0 4,

⟨f |Ĥint|i⟩inel (47.23)

∝
〈
...np′′

i
...np′′

f
...

...Nk′′
i
...Nk′′

f
...

∣∣∣∣∣ ∑
pf ,pi,kf ,ki

√
Nki

√
npf + 1

√
npi

∣∣∣∣∣...npi − 1...npf + 1...

...Nki − 1...1kf ...

〉

=
∑

pf ,pi,kf ,ki

√
Nki

√
npf + 1

√
npiδNk′′

i
,Nki

−1δNk′′
f
,Nkf

+1δnp′′
i
,npi

−1δnp′′
f
,npf

+1

=
√
Nki

√
npf + 1

√
npi .

Obviously, the differential scattering cross-section,

(
dσ

dΩ

)

inel

∝ Nki(npf
+ 1)npi . (47.24)

depends, in addition to the numbers of provided photons Nki
and atoms npi

in the
initial mode, also on the number of atoms in the final mode npf

. This amplification
of the probability of the scattering process is called bosonic stimulation.

Now, we consider the degenerate case, where the initial atomic momentum mode
coincides with the final mode, npf

= npi . In this case,

∑

p′
f=p′

i

â†p′
f
âp′

i
|...npi

...npf
...⟩at =

∑

p′
i

â†p′
i
âp′

i
|...npi

...npi
...⟩at =

∑

pi

npi
|...npi

...npi
...⟩at ,

(47.25)
and a calculus analogous to (47.23) yields,

⟨f |Ĥint|i⟩el ∝
〈
...np′′

i
...np′′

f
...

...Nk′′
i
...Nk′′

f
...

∣∣∣∣∣ ∑
pi,kf ,ki

√
Nkinpi

∣∣∣∣∣ ...npi ...npi ...

...Nki − 1...1kf ...

〉
(47.26)

=
∑

pi,kf ,ki

√
Nkinpi rad⟨...Nk′′

i
...Nk′′

f
...|...Nki − 1...1kf ...⟩rad at⟨...np′′

i
...np′′

f
...|...npi ...npi ...⟩at

=
∑

pi,kf ,ki

√
NkinpiδNk′′

i
,Nki

−1δNk′′
f
,Nkf

+1δnp′′
i
,npi

δnp′′
f
,npi

=
√
Nkinpi .

Now, the differential scattering cross-section,

(
dσ

dΩ

)

el

∝ Nkin
2
pi

, (47.27)

4We will discuss later the case, where the scattering is (bosonically) stimulated by the number of
photons already present in the final mode prior to the scattering process.
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only depends on the number of provided photons Nki
and the number of atoms npi

in the initial mode.

47.1.3.1 Elastic and inelastic scattering

The interpretation of the result is the following: Light can be scattered in two ways:
(i) with or (ii) without change of atomic moment distribution. The event of a photon
scattering (47.19) then it consists of two terms (47.24) and (47.27) [1044],

dσ

dΩ
=

(
dσ

dΩ

)

el

+

(
dσ

dΩ

)

inel

. (47.28)

The first term of (47.28) occurs when the momentum of the scattering atom does
not change, p = q, that is, when the populations of the momentum states np and nq
do not change. The corresponding term (47.27) describes elastic Rayleigh scattering.
This process is coherent, that is, the phase relationship between the incident wave
and the outgoing wave is fixed, because the photon emission is self-stimulated. I.e. it
decays to the original mode via forward scattering within the angle defined by the
phase matching condition ϑ < λ/d, where d is the size of the atomic sample [712].
This contribution is dispersive, reversible, and conservative, and it is at the origin of
the dipole force.

The second term of (47.28) is the inelastic part of Rayleigh scattering, where an
atom with the initial momentum np is scattered to the momentum state nq. This
term is absorptive, dissipative, and spontaneous. The frequency of the photons is
shifted, a momentum is imparted to the atom, such that the process is incoherent.
Hence, a suggestive way of expressing the differential scattering cross-section (47.19)
is,

dσ

dΩ
∝

∣∣∣∣∣
∑

i

ni⟨i|Ĥint|i⟩
∣∣∣∣∣

2

+
∑

i ̸=f
ni(1 + nf )|⟨i|Ĥint|f⟩|2 , (47.29)

where |i⟩ and |f⟩ denote momentum states of the atomic sample.
The bosonic stimulation of inelastic Rayleigh scattering represents a way to over-

come, on one hand the restrictive phase matching condition, and on the other the
incoherence of the scattering into large angles. For non-interacting systems of local-
ized bosons S(q, ω) can be expressed using single particle states |i⟩ with energy Ei
and population Ni [see (39.3) and (39.6)],

S(q, ω) = N

∣∣∣∣∣
∑

i

ni⟨i|Ĥint|i⟩
∣∣∣∣∣

2

δ(ω)+N
∑

i ̸=f
|⟨f |Ĥint|i⟩|2ni(nf +1)δ[ω−(Ef −Ei)/ℏ] ,

(47.30)

with S0(q) = |⟨ρ̂†(q)⟩|2 =
∣∣∣
∑
i ni⟨i|Ĥint|i⟩

∣∣∣
2

.

47.1.4 Playing with bosonic and fermionic states

Here, we want to address the question, whether scattering processes are influenced
by bosonic stimulation or cooperative enhancement. Let us consider the case of N
atoms (bosons or fermions) generated from vacuum by operators â†m(q)|0⟩, where m
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indicates some additional quantum number (for example, the vibrational state of a
loose trapping potential) helping us to enumerate fermionic states, and q indicates
the momentum (considered independent from the trapping potential for short enough
times). The operators respect the rules,

[âm(0), ân(q)]∓ = 0 = [â†m(0), â†n(q)]∓ (47.31)

and [âm(0), â†n(q)]∓ = δm,nδ0,q and âm(q)|0⟩ = 0 ,

where upper signs hold for bosons and lower signs for fermions. Initially the N atoms
are in the bosonic, respectively, fermionic many-body state [919],

|Ψ(N)
b (0)⟩ = 1√

N !
â†0(0)

N |0⟩ resp. |Ψ(N)
f (0)⟩ =

N−1∏

n=0

â†n(0)|0⟩ . (47.32)

Note that |Ψ(N)
b (0)⟩ = |N⟩ is a Fock state satisfying ⟨Ψ(N)

b (0)|Ψ(N)
b (0)⟩ = 1, while

|Ψ(N)
f (0)⟩ is a product state being normalized as well, ⟨Ψ(N)

f (0)|Ψ(N)
f (0)⟩ = 1.

Probing the number of atoms in a many-body state is done by,

N = ⟨Ψ|N̂ |Ψ⟩ where N̂ =

∫
ψ̂†(r)ψ̂(r)d3r =

∑

m,k

â†m(k)âm(k) , (47.33)

or if we are only interested in a particular momentum state k and vibrational state
m,

⟨Ψ|N̂m(k)|Ψ⟩ = ⟨Ψ|â†m(k)âm(k)|Ψ⟩ = ∥âm(k)|Ψ⟩∥2 . (47.34)

Other possible many-body states are bosonic or fermionic product states,

|Ψ(N1)(0)⟩|Ψ(N2)(q)⟩ . (47.35)

We will see in 47.1.6.9 that product states are normalized if the partial states are
normalized. Explicitly,

|Ψ(N1)
b (0)⟩|Ψ(N2)

b (q)⟩ = 1√
N1!N2!

â†0(0)
N1 â†0(q)

N2 |0⟩ (47.36)

|Ψ(N1)
f (0)⟩|Ψ(N2)

f (q)⟩ =
N1−1∏

n=0

â†n(0)
N2−1∏

n=0

â†n(q)|0⟩ .

Note, that product states in the same mode need renormalization when merged,

|Ψ(N1)
b (0)Ψ

(N2)
b (0)⟩ = 1√

N1!N2!
â†0(0)

N1+N2 |0⟩ =
√(

N1 +N2

N1

)
|Ψ(N1+N2)
b (0)⟩ ,

(47.37)

for example, |Ψ(N)
b (0)Ψ

(1)
b (0)⟩ =

√
N + 1|Ψ(N+1)

b (0)⟩.
A π/2-Bragg pulse has the faculty to transfer 50% of the atoms into a momen-

tum mode q, thus creating a new state where every single atom lives in a coherent
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Figure 47.2: Cartoon of (a,b) bosonic stimulation and (c,d) cooperative enhancement.

superposition of two momenta,

|Ψ(brgg,N)
b (0,q)⟩ =

[â†0(0) + â†0(q)]
N

√
2NN !

|0⟩ =
N∑
n=0

(
N

n

)
â†0(0)

N â†0(q)
N−n

√
2NN !

|0⟩

|Ψ(brgg,N)
f (0,q)⟩ =

N−1∏
n=0

[â†n(0) + â†n(q)]√
2N

|0⟩

. (47.38)

In the following, we will study scattering processes, that is, fluctuations, in the
presence of the states (47.35) or (47.38).

47.1.4.1 Bosonic stimulation versus cooperative enhancement by a Bragg
grating

Now, we scatter a photon, whose fate is not of interest here, but which triggers
possible transitions of an atom sitting together with N1 atoms in the momentum
state 0|0⟩ towards another momentum state q|0⟩ initially populated with N2 atoms
via the operator,

Ĥ =
∑

m

â†m(k)âm(0) , (47.39)

which in fact is nothing else than the static structure factor. Applying this process
to bosonic or fermionic clouds, as defined in (47.32), we find bosonic stimulation only
in the case of bosons,

⟨Ψ(N1−1)(0)Ψ(N2)(q)|Ĥ|Ψ(N1)(0)Ψ(N2−1)(q)⟩ = δk,q

{√
N1N2 for bosons

1 for fermions
,

(47.40)
as will be shown in Exc. 47.1.6.10(a). The transition probabilities are then,

dσ

dΩ
= |⟨f |Ĥ|i⟩|2 = δk,q

{
N1N2 for bosons

1 for fermions
. (47.41)

Note, that these results does not change in the presence of a Bragg grating not
participating in the dynamics:

⟨Ψ(M−1)
b (0)Ψ

(brgg,N+1)
b (0,q)|Ĥ|Ψ(M)

b (0)Ψ
(brgg,N)
b (0,q)⟩ = 1 . (47.42)
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However, applying the same scattering process between a BEC withM atoms and
the Bragg state defined in (47.38) consisting of N atoms, we identify two interesting
possibilities for which we find,

⟨Ψ(M−1)
b (0)Ψ

(brgg,N)
b (0,q)|Ĥ|Ψ(M)

b (0)Ψ
(brgg,N−1)
b (0,q)⟩ = (δk,0 + δk,q)

√
MN

⟨Ψ(M)
b (q)Ψ

(brgg,N−1)
b (0,q)|Ĥ|Ψ(M−1)

b (q)Ψ
(brgg,N)
b (0,q)⟩ = δk,q

√
MN

.

(47.43)

Interestingly, we find the same expression for bosons and for fermions,

⟨Ψ(brgg,N−1)
b,f (0,q)Ψ

(1)
b,f (q)|Ĥ|Ψ

(brgg,N)
b,f (0,q)⟩ =

√
N
2

[
δk,0 ± N−1

2 (δk,0 + δk,q)
]
.

(47.44)
as will be shown in Exc. 47.1.6.10(b). The transition probabilities are then for boson
and for fermions,

dσ

dΩ
= |⟨f |Ĥ|i⟩|2 = δk,q

N

2

(N − 1)2

4
. (47.45)

This means that, if k = 0 or k = q, the scattering is subject to cooperative enhance-
ment by a factor of N/2 (which is the number of atoms in each of the momentum state
0 and q) independently on the quantum nature of the atom (boson or fermion). That
is, the probability that the scattered atoms joins one of the two momentum goes, for
large N , like N2, but for N = 1 there is no enhancement possible. Do Exc. 47.1.6.11.

47.1.4.2 Interpretation of bosonic stimulation as cooperative enhance-
ment

The distinction between spontaneous and stimulated processes is not always obvious,
as there is a whole world of cooperative processes in between those two concepts, for
instance, superradiance, Bragg scattering, and enhanced spontaneous emission into
a resonant cavity. All those processes have in common that they are amplified by
fluctuations.

Example 286 (Stimulated emission versus spontaneous emission: Co-

operativity in a cavity): Let us first discuss the case of a cavity. Vacuum

fluctuations (VF) are structured by a cavity (finesse F ) leading to a modified

DOS becoming anisotropic and developing spectral resonances. In resonance

the VFs are enhanced (we get a standing wave of VFs), while off resonance they

are suppressed. Therefore, an excited atom placed inside a cavity will suffer

’spontaneous stimulation’ to decay into the cavity mode. Alternatively, we may

say that the atom not only reacts to the local VFs but to all VFs reflected F

times by the cavity mirrors provided these VFs are in phase (which is the case

when the cavity is resonant). That is, cavity-enhanced VFs amplify scattering

into cavity modes and, as we argued in Sec. 40.1.4 the VFs are measured by the

structure factor (40.44).

Note, that the presence of photons in the cavity does not stimulate ’additionally’,

because stimulated emission and absorption are reversible processes.

Example 287 (Bragg scattering: Cooperativity in a lattice):
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Figure 47.3: Cartoon of cooperative enhancement in a cavity.

Example 288 (Matter wave superradiance and CARL: Cooperativity

in a BEC ): We have seen that the stimulated processes mentioned above do

not rely on quantum statistics, but rather on symmetry and coherence. Let us

start with a naive picture of bosonic stimulation, a concept which can be ap-

plied to matter waves [713]. The physical process behind bosonically stimulated

scattering is, that the presence of a macroscopically occupied state increases

the density fluctuations of the system, and bosonically enhanced scattering is

simply the diffraction of particles from these density fluctuations measured by

S(q, ω).

47.1.5 Collective scattering for condensates with interactions

Until now we totally disregarded interactions between particles. Correlations are in-
troduced in a BEC by interactions between the atoms. Therefore, collective scattering
effects are influenced by interactions, while on the other hand an ideal gas (gn→ 0)
scatters like an ultra-cool non-degenerate thermal cloud. In this sense, particle-like
excitations (p2/2m ≫ gn) in an interacting BEC behave like thermal atoms. The
mean-field energy can be seen as resulting from excitations of phonon pairs. These
pairwise excitations populate the momentum modes, which modify the scattering of
light via bosonic stimulation. That is, an interacting condensate (gn > 0) gives a col-
lective response to an incident light beam. Note that µ > 0 is possible when V (r) ̸= 0
and gn ̸= 0 even if T → 0, which is the case here considered.

What is the nature of the collective behavior? 1. The Bogolubov spectrum is
modified. In the phononic regime, the absence of dispersion allows the definition of a
speed of sound. 2. The scattering of light can be suppressed by excitation of phonon
pairs. This effect is anisotropic and more pronounced in forward direction. That is,
the resonance at which the light is scattered is shifted and broadened. The latter
effect is understood via destructive interference of two processes: Scattering from a
BEC to the momentum mode k and from the momentum mode −k to a BEC.

It is important to be aware that the notion of bosonic stimulation ∼ ni(1+nf ) and
fermionic inhibition ∼ ni(1 − nf ) also has its limitations, when interatomic interac-
tions are not negligible, that is, when the quantum depletion is remarkable [527, 862].
The effect of interatomic collisions can be taken into account as contributions of pair
correlations to the ground state of the BEC,

|ψ0, n0⟩ = |n0, 0, 0⟩−
∑

k

(v2k/u
2
k)|n0−2, 1, 1⟩+

∑

k

(v2k/u
2
k)

2|n0−4, 2, 2⟩− ... , (47.46)

where |n0, nk, n−k⟩ denotes the state with n0 atoms in the trap’s ground state and n±k
atoms in the momentum mode k, where v2k is the average population of momentum
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mode k. The populated recoil modes result in a increase of spontaneous emission by
a factor of v2k = 1 + u2k. We can also understand the modification of the scattering
rate as resulting from small scale inhomogeneities generated by pair correlations. The
effect is strongest at small scattering angles, that is in forward direction.

47.1.6 Exercises

47.1.6.1 Ex: Sum rules for the dynamic structure factor

Derive the following sum rules for the norm, the kinetic energy, and the compressibil-
ity,

S(q) =

∫
S(q, ω)dω

ℏ2q2

2m
=

∫
ℏωS(q, ω)dω

κ2

2
=

∫
S(q, ω)

ℏω
dω

∣∣∣∣
q→0

.

Solution: According to [877] ...

47.1.6.2 Ex: Interaction energy of a condensate via spatial coherence

Show that the total energy of a condensate is given by ⟨U⟩ = 1
2

∫
n(r1)U(r1 −

r2)g
(2)(r1, r2)n(r2)d

3r1d
3r2.

Solution: The interaction energy expressed by the correlation function is,

⟨U⟩ = 1
2

∫
n(r1)U(r1 − r2)g

(2)(r1, r2)n(r2)d
3r1d

3r2 ≃
2πℏ2

m
ag(2)(0) 12

∫
n(r)2d3r .

47.1.6.3 Ex: Structure factor of a condensate in the local density ap-
proximation

Calculate the structure factor of a condensate in the local density approximation
(LDA) [204, 1237].

Solution: With Er = ℏ2q2

2m and µ = ℏ2

2mξ2 , where ξ = (8πna)−1/2, using the Bo-
golubov expression,

S(q, ω) =
ℏ2q2

2mϵ(q)
δ(ω − ϵ(q)/ℏ)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence00.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence03.pdf
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inserting the Bogolubov dispersion relation ϵ(q) =

√
ℏ2q2

2m

(
ℏ2q2

2m + gn(r)
)

and calcu-

lating the average over the Thomas-Fermi profile, n(r) = g−1[µ−Vext(r)], we obtain,

SLDA(q, ω) =
15π

8

ℏ2ω2 − E2
r

Erµ2

(
1− ℏ2ω2 − E2

r

2Erµ

)1/2

.

This holds for qξ < 1, where for contrapropagating waves q = 2 · 2π/λ. Alternatively
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Figure 47.4: (code) (a) Static structure factor. (b) Dynamic structure factor. (c) Integrated

dynamic structure factor. (d) Center-of-mass momentum.

[527, 861, 862],

S(q) = (uq − vq)2 = (coshϕq − sinhϕq)
2

tanh 2ϕq =
µ

Er(q) + µ

Er(q) =
ℏ2q2

2m
.

47.1.6.4 Ex: Structure structure of a Fermi gas

Calculate the structure factor for Bragg scattering on a Fermi gas.

Solution: We calculate the Bragg scattering profile using the two-level model in ad-
dition to the Schrödinger equation and construct the sum of the density distributions
at 0ℏq and 2ℏq. Then, we calculate the axial center-of-mass momentum as a function
of ω,

pcm(q, ω) =

∫
nq,ω(z)dz .

On the other hand, the center-of-mass momentum is related to the dynamic structure
factor via [1331],

pcm(q, ω) =
ℏΩ2

br

2
S(q, ω) ⋆

1− cos(ωtbr)

ω2
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_StructurefactorBEC.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_StructurefactorBEC.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence04.pdf
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Figure 47.5: (code) (a) Density distribution after Bragg diffraction. (b) Diffraction efficiency

as a function of Bragg detuning. (c) Center-of-mass momentum after Bragg diffraction.

In a Fermi gas the atoms are not correlated, so that the structure factor is S(q, ω) =
δ(ω − ωR). The center-of-mass momentum is thus approximately,

pcm(q, ω) =
ℏΩ2

br

2

1− cos[(ω − ωR)]tbr)
(ω − ωR)2

.

However, the inhomogeneity of the gas causes.
Alternatively, with N(k) = θ(kF − k),

Sfermi(q) =

∫
dkN(k)[1−N(k+ q)]

=

∫
dϕdϑdk k2 sinϑ θ(kF − k) [1−N(kF − |k+ q|)]

=???

=

{(
3q
4kF
− q3

16k3F
for 0 < q < 2kF

1 for 2kF < q

)

47.1.6.5 Ex: Structure factor of a heteronuclear mixture

In this exercise we discuss the structure factor of a heteronuclear mixture (specifically
contemplating 6Li mixed with 87Rb) generalizing the available theory for Li spin
mixtures to heteronuclear mixtures [288, 472, 473, 1331]. The total dynamic structure
factor is,

S(q, ω) = S87,87(q, ω) + S6,6(q, ω) + S6,87(q, ω) + S87,6(q, ω) .

Exciting the Bragg resonance for Li, the Rb cloud would stay unaffected,the such that
around ω/2π = 295 kHz, S87,87(q, ω) = 0, as well as, S6,87(q, ω) = S87,6(q, ω) = 0.
For Fermi gas S6,6(q, δ) → 1, except if Bose gas induces Li-Li correlations, as in the
case of BCS-pairing of phonon-mediated Efimov states.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_LiRbStructurefactor_Fermigas.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_LiRbStructurefactor_Fermigas.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence05.pdf
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How does Rb influence the Bragg scattering of Li? Via a variation of the apparent
mass as a displacement of the Bragg resonance or as a second peak appearing at a
specific detuning of the Bragg beams at ω6,6 ∗ 6/(6 + 87)?

Solution: We have,

pcm(q, ω) =
ℏΩ2

br

2
S(q, δ) ⋆

1− cos(ωtbr)

ω2
.

and

symbol &definition Bose gas at T = 0 Fermi gas at T = 0 gases at T > 0 spin mixtures heteronuclear mixtures

momentum population N(k)= ? θ(kF − k)

weighting factor F
sp
b

= 1 + Nb(kL) F
sp
f

= 1 − Nf (kL)

for spontaneous emisssion = cosh2

(
1
2

tanh−1 k2
s

k2
L

/2+k2
s

)
= θ(kL − kF )

static structure factor S(q)=
∫

S(q, ω)dω ?
∫

dk N(k)[1 − N(k + q)]

=

(
3q

4kF
− q3

16k3
F

)
(q ≤ 2kF ) + (q > 2kF )

weighting factor FRy = ? ?

for Rayleigh scattering

dynamic structure factor S(q, ω) = ? ?

autocorrelation function g2(r) = 1 + 2
N

∑
q[S(q) − 1]e−ıq·r g2,f (r) = 1 − 9

(kF r)4

[
sin kF r
kF r

− cos kF r

]2
g
↑↑
2 (r) = ?

g
ff
2 (r) =

crosscorrelation function − − − g
↑↓
2 (r) = ?

47.1.6.6 Ex: Spatial coherence of a condensate

Derive the relationship (47.7).

Solution: Using the expression (23.101), that is,

⟨r|k⟩ = 1
(2π)3/2

eık·r ,

we calculate,
∫
⟨r|ρ̂|r+ x⟩d3r =

y
⟨r|k⟩⟨k|ρ̂|k′⟩⟨k′|r+ x⟩d3kd3k′d3r

= 1
(2π)

y
eık·r⟨k|ρ̂|k′⟩eık′·(r+x)d3kd3k′d3r

=
x
⟨k|ρ̂|k′⟩eık′·xδ(3)(k− k′)d3kd3k′ =

∫
⟨k|ρ̂|k⟩eık·xd3k .

47.1.6.7 Ex: Structure factor for Bragg scattering

Demonstrate the following relationships,

dpcm(q, ω)

dt
= −mω2

zzcm + ℏq
Ω2
br

2

∫
dδ′[S(q, ω′)− S(−q,−ω′)] sin(ω − ω

′)tbr
ω − ω′

p̈cm(q, ω) + ω2
zpcm = ℏq

Ω2
br

2

∫
dω′[S(q, ω′)− S(−q,−ω′)] cos(ω − ω′)tbr −→ 0 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence06.pdf
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Solution:

47.1.6.8 Ex: Commutation expressions for bosons and fermions

Verify the following useful commutation relations:
a. For bosons,

âm(k)â†n(q)
N = Nδm,nδk,qâ

†
n(q)

N−1 + â†n(q)
N âm(k) , (47.47)

which can be generalized to,

âm(k)[â†n(q1) + â†n(q2)]
N (47.48)

= Nδm,n (δk,q1
+ δk,q2

) [â†n(q1) + â†n(q2)]
N−1 + [â†n(q1) + â†n(q2)]

N âm(k) .

b. For fermions do not support macroscopic populations of the type â†n(q)
N . Per-

forming a number P of permutations of the operators and assuming that one fermion
of the product state is in the internal state n, we calculate,

ân(k)

N−1∏

m=0

â†m(q) = (−1)P

δk,q

N−1∏

m ̸=n
â†m(q)−

N−1∏

m=0

â†m(q)ân(k)


 . (47.49)

If none of the fermions of the product state is in state n the first part of the sum
simply vanishes. This expression can also be generalized to,

ân(k)

N−1∏

m=0

[â†m(q1) + â†m(q2)] = (−1)P
N−1∏

m ̸=n
[â†m(q1) + â†m(q2)]ân(k)[â

†
n(q1) + â†n(q2)]

= (−1)P

(δk,q1 + δk,q2)

N−1∏

m̸=n

[â†m(q1) + â†m(q2)]−
N−1∏

m=0

[â†m(q1) + â†m(q2)]ân(k)


 .

(47.50)

Solution: a. For bosons the subsequent arguments the following side calculation will
be useful,

âm(k)â†n(q)
N = δm,nδk,qâ

†
n(q)

N−1 + â†n(q)âm(k)â†n(q)
N−1

= ... = Nδm,nδk,qâ
†
n(q)

N−1 + â†n(q)
N âm(k) .

b. For fermions do not support macroscopic populations of the type â†n(q)
N . Perform-

ing a number P of permutations of the operators and assuming that one fermion of
the product state is in the internal state n, we calculate,

ân(k)

N−1∏

m=0

â†m(q) = (−1)P
N−1∏

m ̸=n
â†m(q)ân(k)â

†
n(q) = (−1)P

N−1∏

m ̸=n
â†m(q)[δk,q − â†n(q)ân(k)

= (−1)P

δk,q

N−1∏

m ̸=n
â†m(q)−

N−1∏

m=0

â†m(q)ân(k)


 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_SpatialCoherence10.pdf
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If none of the fermions of the product state is in state n the first part of the sum
simply vanishes.

47.1.6.9 Ex: Extracting the atom number from many-body states

Verify the normalization of (a) the bosonic Fock state (47.32), (b) the fermionic prod-
uct state (47.32), (c) the bosonic product state (47.35), (d) the bosonic Bragg grating
state (47.37), and (e) the fermionic Bragg grating state (47.37). Help: Speed up the
calculations by using the results of 47.1.6.8.

Solution: a. For the BEC Fock state we have,

⟨Ψ(N)
b (0)|N̂m(k)|Ψ(N)

b (0)⟩ = 1
N ! ⟨0|â0(0)N â†m(k)âm(k)â†0(0)

N |0⟩
= 1

N !

∥∥Nδm,0δk,qâ†n(0)N−1|0⟩
∥∥2

= Nδm,0δk,q∥|Ψ(N−1)
b ⟩∥2 = Nδm,0δk,q ,

yielding ⟨Ψ(N)
b (0)|N̂ |Ψ(N)

b (0)⟩ =∑m,k⟨Ψ
(N)
b (0)|N̂m(k)|Ψ(N)

b (0)⟩ = N .
b. For the Fermi sea state we have,

⟨Ψ(N)
f (0)|N̂m(k)|Ψ(N)

f (0)⟩ = ⟨0
∣∣∣∣∣
N−1∏

n′=0

ân′(0)â†m(k)âm(k)

N−1∏

n=0

â†n(0)

∣∣∣∣∣ 0⟩

= ∥âm(k)â†m(0)

N−1∏

n ̸=m
â†n(0)|0⟩∥2 = δ0,k∥Ψ(N−1)

f (0)∥2 = δ0,k ,

yielding ⟨Ψ(N)
f (0)|N̂ |Ψ(N)

f (0)⟩ = N .
c. For the bosonic product state we have,

⟨Ψ(N1)
b (0)Ψ

(N2)
b (q)|N̂0(k)|Ψ(N1)

b (0)Ψ
(N2)
b (q)⟩

=
1

N1!N2!
⟨0|â0(q)N2 â0(0)

N1 â†0(k)â0(k)â
†
0(0)

N1 â†0(q)
N2 |0⟩

=
1

N1!N2!
∥N1δk,0â

†
0(0)

N1−1â†0(q)
N2 |0⟩+ â†0(0)

N1 â0(k)â
†
0(q)

N2 |0⟩∥2

=
1

N1!N2!

(
N2

1 δk,0∥â†0(0)N1−1â†0(q)
N2 |0⟩∥2 +N2

2 δk,q∥â†0(0)N1 â†0(q)
N2−1|0⟩∥2

)

= N1δk,0 +N2δk,q ,

yielding ⟨Ψ(N1)
b (0)Ψ

(N2)
b (q)|N̂ |Ψ(N1)

b (0)Ψ
(N2)
b (q)⟩ =∑k(N1δk,0+N2δk,q) = N1+N2.

d. To probe the number of bosons of the Bragg-state being in momentum state k, we
do,

⟨Ψ(brgg,N)
b (0,q)|N̂(k)|Ψ(brgg,N)

b (0,q)⟩
= 1

2NN !
⟨0|[â0(0) + â0(q)]

N â†0(k)â0(k)[â
†
0(0) + â†0(q)]

N |0⟩
= 1

2NN !
∥N(δk,0 + δk,q)[â

†
0(0) + â†0(q)]

N−1|0⟩∥2

= N2

2N (δk,0 + δk,q)∥|Ψ(sctt)
b,N−1⟩∥2 = N

2 (δk,0 + δk,q) ,
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yielding ⟨Ψ(brgg,N)
b (0,q)|N̂ |Ψ(brgg,N)

b (0,q)⟩ = N .
e. For fermions we get analogously,

⟨Ψ(brgg,N)
f (0,q)|N̂m(k)|Ψ(brgg,N)

f (0,q)⟩ = ∥ 1√
2N
âm(k)

N−1∏

n=0

[â†n(0) + â†n(q)]|0⟩∥2

= 1
2N

[δk,0 + δk,q]∥
N−1∏

n ̸=m
[â†n(0) + â†n(q)]|0⟩∥2

= 1
2 (δk,0 + δk,q)∥|Ψ(brgg,N−1)

b (0,q)⟩∥2 = 1
2 (δk,0 + δk,q) ,

also yielding ⟨Ψ(brgg,N)
f (0,q)|N̂ |Ψ(brgg,N)

f (0,q)⟩ = N
2 .

47.1.6.10 Ex: Bosonic stimulation and cooperative enhancement by lat-
tices of bosons and fermions

Compare bosons and fermions with respect to (a) bosonic stimulation and (b) coop-
erative enhancement.

Solution: a. To discuss bosonic stimulation we study the Rayleigh scattering of a
single atom out of a matter wave populated with N1 atoms into another one populated
with N2 atoms,

|Ψ(N1)
b (0)⟩|Ψ(N2−1)

b (q)⟩ Ĥ↷ |Ψ(N1−1)
b (0)⟩|Ψ(N2)

b (q)⟩ ,

mediated by the scattering Hamiltonian Ĥ ≡ ∑
m â
†
m(k)âm(0), with k ̸= 0. For

bosonic clouds we get,

⟨Ψ(N1−1)
b (0)Ψ

(N2)
b (q)|Ĥ|Ψ(N1)

b (0)Ψ
(N2−1)
b (q)⟩

= (δk,0 + δk,q)
⟨0|â0(0)N1−1â0(q)N2 |â†0(k)â0(0)|â†0(0)N1 â†0(q)

N2−1|0⟩√
N1!N2!(N1 − 1)!(N2 − 1)!

= 0 + δk,q
√
N1N2 ,

using

â0(q)
N2 â†0(â(q)

N2−1|0⟩ = (N2−1)â0(q)N2−1â†0(q)
N2−2|0⟩ = ... = (N2−1)!â0(q)|0⟩ = 0 .

For fermionic clouds we get,

⟨Ψ(N1−1)
f (0)Ψ

(N2)
f (q)|Ĥ|Ψ(N1)

f (0)Ψ
(N2−1)
f (q)⟩

= ⟨0|
N1−2∏

m′
1=0

âm′
1
(0)

N2−1∏

m′
2=0

âm′
2
(q)|â†n(q)ân(0)|

N1−1∏

m1=0

â†m1
(0)

N2−2∏

m2=0

â†m2
(q)|0⟩

= ⟨0|
N2−2∏

m′
2 ̸=n

âm′
2
(q)ân(q)â

†
n(q)

N2−2∏

m2=0

â†m2
(q)

N1−2∏

m′
1=0

âm′
1
(0)ân(0)â

†
n(0)

N1−2∏

m1 ̸=n
â†m1

(0)|0⟩

= ⟨0|ân(0)â†n(0)|0⟩ = 1 .
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This shows that, in contrast to bosons, the scattering of fermions is not bosonically
enhanced.
b. We study the two processes,

|Ψ(M)
b (0)Ψ

(brgg,N)
b (0,q)⟩ Ĥ↷ |Ψ(M−1)

b (0)Ψ
(brgg,N+1)
b (0,q)⟩

|Ψ(M)
b (q)Ψ

(brgg,N)
b (0,q)⟩ Ĥ↷ |Ψ(M+1)

b (q)Ψ
(brgg,N−1)
b (0,q)⟩ ,

For the first one we find,

⟨Ψ(M−1)
b (0)Ψ

(brgg,N+1)
b (0,q)|â†0(k)â0(0)|Ψ(M)

b (0)Ψ
(brgg,N)
b (0,q)⟩

=
⟨0|â0(0)M−1[â0(0) + â0(q)]

N+1â†0(k)â0(0)â
†
0(0)

M [â†0(0) + â†0(q)]
N |0⟩√

2N+1(N + 1)!2M−1(M − 1)!2NN !2MM !

=
⟨0|â0(0)M [â0(0) + â0(q)]

N+1â†0(k)â
†
0(0)

M [â†0(0) + â†0(q)]
N |0⟩

(M − 1)!N !2M+N
√
M(N + 1)

+ 0

=

〈
0

∣∣∣∣∣â0(0)M (N + 1)(δk,0 + δk,q)[â0(0) + â0(q)]
N â†0(0)

M [â†0(0) + â†0(q)]
N

+â0(0)
M â†0(k)[â0(0) + â0(q)]

N+1â†0(0)
M [â†0(0) + â†0(q)]

N

∣∣∣∣∣ 0
〉

(M − 1)!N !2M+N
√
M(N + 1)

=
(N + 1)(δk,0 + δk,q)M !N !2M+N

〈
Ψ

(M)
b (0)Ψ

(brgg,N)
b (0,q)|Ψ(M)

b (0)Ψ
(brgg,N)
b (0,q)0

〉
(M − 1)!N !2M+N

√
M(N + 1)

= (δk,0 + δk,q)
√
M(N + 1) ,

and for the second one,

⟨Ψ(M+1)
b (q)Ψ

(brgg,N−1)
b (0,q)|â†0(k)â0(0)|Ψ(M)

b (q)Ψ
(brgg,N)
b (0,q)⟩

=
⟨0|â0(q)M+1[â0(0) + â0(q)]

N−1â†0(k)â0(0)
[
â†0(0) + â†0(q)

]N
â†0(q)

M |0⟩√
2N−1(N − 1)!2M+1(M + 1)!2NN !2MM !

=
δk,q⟨0|â0(q)M+1[â0(0) + â0(q)]

N−1â†0(q)
M+1N [â†0(0) + â†0(q)]

N−1|0⟩
M !(N − 1)!2M+N

√
N(M + 1)

=
δk,qN(N − 1)!(M + 1)!2M+N

〈
Ψ

(M+1)
b (0)Ψ

(brgg,N−1)
b (0,q)|Ψ(M+1)

b (0)Ψ
(brgg,N−1)
b (0,q)0

〉
M !(N − 1)!2M+N

√
N(M + 1)

= δk,q
√
N(M + 1) .

For fermions we get analogously,

⟨Ψ(brgg,N−1)
f (0,q)Ψ

(1)
f (k)|Ψ(brgg,N)

f (0,q)⟩ =
∑

m

∥ 1√
2N
â†m(k)âm(0)

N−1∏

n=0

[â†n(0) + â†n(q)]|0⟩∥2

= 1
2N

∑

m

∥â†m(k)

N−1∏

n ̸=m
[â†n(0) + â†n(q)]|0⟩∥2

≃ N
∥∥∥â†0(k)| 1√

2
Ψ

(brgg,N−1)
f (0,q)⟩

∥∥∥
2

= N
2 ⟨Ψ

(brgg,N−1)
f (0,q)|1− N̂(k)|Ψ(brgg,N−1)

f (0,q)⟩
= N

2

[
1− N−1

2 (δ0,k + δ0,q)
]
.
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47.1.6.11 Ex: Cooperative enhancement versus bosonic stimulation

CARL amplification comes from cooperativity not from bosonic stimulation [919, 713,
1166], that is, it should work for fermions and boltzons. To demonstrate this proceed
as follows:
a. Set up the single-atom Hamiltonian for a 3D harmonic potential in which the atoms
(bosons or fermions) are initially placed allowing for the possibility of momentum re-
coil by photon scattering. This disregards the trap’s inhomogeneity, but is a good
assumption for short times. What are the eigenfunction of this Hamiltonian? Calcu-
late the expectation value for the density distribution. Express the field operators in
momentum space. Express the lowest energy states for a bosonic/fermionic cloud in
momentum representation.
b. Now apply a π/2-Bragg-pulse imparting the recoil K to the cloud. What is the
resulting state? Recalculate the expectation value for the density distribution.
c. Now, assume the presence of another free (test) atom (or photon). Write down the
Hamiltonian and the wavefunction for this atom. It is supposed to interact with the
atomic cloud via the (perturbatively treated) interaction potential,

V̂ = λ

∫
d3rψ̂†1(r)ψ̂

†
2(r)ψ̂2(r)ψ̂1(r) .

Calculate the probability that the atom is scattered at a particular wavevector, i.e. de-
termine the cooperative enhancement factor.
d. Is cooperative enhancement possible with just one atom?
e. How about cooperative enhancement in a cavity, when cooperativity is ensured by
a single atom plus all its mirror images?

Solution: a. Following [919] we consider a field ψ̂1(r) containing N identical bosons
or fermions in a harmonic trap,

Ĥho = ℏωm(n̂+ 1
2 ) ,

with the single particle orbitals φm(r) = Xmx(x)Ymy (y)Zmz (z). The Hamiltonian of
the harmonic oscillator plus recoil and the corresponding eigenfunctions are,

Ĥ1φm(r)eık·r =

(
p2
1

2M
+ ℏωm

)
φm(r)eık·r =

(
ℏωrec(k) + ℏωmφm(r)eık·r

)
= E1φm(r)eık·r ,

with the recoil shift ωrec(k) = ℏk2/2M . For example, the density distribution for
bosons is,

nb(r) = ⟨n̂b(r)⟩ = ⟨ψ̂†1(r)ψ̂1(r)⟩ = N |φ0(r)|2 with

∫
|φ0(r)|2d3r = 1 . (47.51)

Let us now define the field operators in momentum space,

â†m(k) ≡
∫
d3rφm(r)eık·rψ̂†1(r) , φm(r)ψ̂†1(r) ≡

∫
d3kâ†m(k)e−ık·r . (47.52)
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In momentum space the initial states for bosonic or fermionic clouds are,

|ϕb(0)⟩ =
1√
N !

â†0(0)
N |0⟩ , |ϕf (0)⟩ =

N−1∏

m=0

â†m(0)|0⟩ .

b. After the Bragg pulse the many-body state will be,

|ψb(τbrgg)⟩ =
1√

2NN !
[â†0(0)+â

†
0(K)]N |0⟩ , |ψf (τbrgg)⟩ =

1√
2N

N−1∏

m=0

[â†0(0)+â
†
0(K)]|0⟩ .

We see that the 50/50-Bragg pulse transforms every atom independently from the other
into a superposition of momentum states. To calculate the new density distribution it
is thus sufficient to substitute in Eq. (47.52),

1√
2
â†0(0) ↷ 1√

2
[â†0(0) + â†0(K)] = 1√

2

∫
d3rφ0(r)

(
1 + eıK·r

)
ψ̂†1(r) ,

and repeat the calculation of (47.51),

nb(r) =
∣∣∣φ0(r)

1√
2

(
1 + eıK·r

)
ψ̂†1(r)

∣∣∣
2

= Nφ0(r)|2(1 + 1 cosK · r) .

c. The wavefunction of the additional atom be ψ̂2(r). The free-atom Hamiltonian and
the corresponding eigenfunctions are,

Ĥ2
1√
V
eık·r =

p2
2

2M
1√
V
eık·r = ℏω2(k)

1√
V
eık·r = E2

1√
V
eık·r .

d.

47.2 Bragg diffraction

An important technique for manipulating the atomic motion is by Bragg diffraction 5.
It allows the coherent transfer of atoms to other states of motion or to superpositions
of motional states, and is extremely useful for applications, such as the realization of
matter wave beamsplitters [746] and atomic lasers, or for the targeted excitation of
quasi-particles [746, 1259, 1237].

To implement Bragg diffraction, we consider two laser pulses with different frequen-
cies and propagation directions ω,kω and ω − ∆ω,kω−∆ω, detuned from an atomic
resonance and intersecting at the position of atoms under an angle ϑ, as shown in
Fig. 47.6(a). The superposition of the electric fields of the light beams,

E = E0e
ı(kω·r−ωt) + E0e

ı[kω−∆ω·r−(ω−∆ω)t] = E0e
ı(kω·r−ωt)

(
1 + e−ı(q·r−∆ωt)

)

= 2E0e
ı(kω·r−ωt)e−

ı
2 (q·r−∆ωt) cos q·r−∆ωt

2 , (47.53)

5The idea is analogous to the manipulation of the k-vector of light waves by acousto-optic mod-
ulators.
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where q ≡ kω−kω−∆ω, produces a standing light wave with an intensity proportional
to,

|E|2 = 4E2
0 cos

2 q·r−∆ωt
2 = 2E2

0 [1 + cos(q · r−∆ωt) , (47.54)

with which the atoms interact.

The Bragg diffraction technique has proven extremely efficient: up to 100% of
the atoms can be transferred to well-defined momentum sidemodes. In general, the
components of a cloud with different momentum modes overlap during the time scale
of the Bragg pulses. They only separate spatially after a ballistic flight time, which
then allows their identification via absorption imaging.

Figure 47.6: Bragg scattering of atoms at a standing light wave. (a) Geometric layout: Short
pulses of two laser beams in Raman configuration enclosing an angle of ϑ and detuned from
each other by ∆ω are simultaneously irradiated into the cloud. (b) Bogolubov dispersion
relation for interacting condensates (blue line). The quadratic dispersion relation (cyan)
holds for free particles, and the linear dispersion relation (magenta) for phonon excitations.

47.2.1 Interpretations of the Bragg diffraction process

Bragg’s diffraction can be treated within the formalism developed in Sec. 47.1.2, as
will be shown later, in Sec. 47.2.3. But before that, let us present a simplified approach
and several simple pictures illustrating the dynamics of Bragg diffraction.

47.2.1.1 Bragg diffraction picture

The first interpretation of this phenomenon is as matter wave Bragg diffraction at a
standing light wave (i.e. an one-dimensional optical lattice) formed by two crossing
pulsed laser beams 6. We consider atoms initially at rest exposed to the standing
wave (47.53) with ∆ω = 0 and q ≡ qêz, such that the dipolar potential U ∝ |E|2 is,
with (47.54),

U(z) = U0 cos
2 qz

2 . (47.55)

6Note, that the initial population of the recoil mode should be small. Otherwise, since Bragg
diffraction is a coherent and thus reversible process, atoms initially in the recoil mode are transferred
back to the original matter wave mode.
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Assuming a given finite interaction time τ , the modulation of the local phase of the
atoms becomes 7,

ψτ (z) = ψ0(z)e
ıU(z)τ/ℏ = ψ0(z)e

ı
2ℏU0τ(cos qz+1) = ψ0(z)e

ıU0τ/2ℏ
∑

n

ınJn(
U0τ
2ℏ )einqz ,

(47.56)
where Jn are the Bessel functions of the first kind 8.

Example 289 (Bragg diffraction after a time-of-flight): To calculate the
density distribution after a certain flight time tToF , we construct the Fourier
transform of ψτ (z),

ψ̃τ (q) = ψ̃0(q) ⋆
∑
n

J2
n(U0τ/2ℏ)δ(q − nk) , (47.57)

and we evaluate it via z̃ ≡ tToF ℏq/m,

ψ̃τ (z̃) = ψ̃0(z̃) ⋆
∑
n

J2
n(U0τ/2ℏ)δ(z̃ − ntToF ℏk/m) . (47.58)

The density distribution of the expanded condensate ρ0(z̃) = |ψ̃0(z̃)|2 = e−(z̃/2rToF )2 ,
where rToF = tToF

√
kBT/m, is,

ρ(z̃) =
∑
n

ρ0(z̃ − ntToF ℏk/m)|Jn(U0τ/2ℏ)|2 . (47.59)

-200 -100 0 100 200
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0.1
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Figure 47.7: (code) Density distribution after time-of-flight.

The condensed wavefunction evolves into a superposition of motional modes, which
correspond to the diffraction orders of Bragg scattering and their amplitudes through
the Bessel functions Jn. The diffraction efficiency increases with laser intensity and
with time.

Now, we need to generalize this result to the propagating standing wave of the
expression (47.54). The intensity generates a dipole potential,

U(z, t) ≈ U0 cos
2 qzz−∆ωt

2 , (47.60)

7Using the Jacobi-Anger expansion, eıβ cos x =
∑
n ı
nJn(β)eınx.

8Andreas got ψ0(z)
∑
n J

2
n(U0τ/2ℏ)einqz/2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityBragg.m
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so that the condensate now evolves according to,

ψ(z, t) = ψ0(z)e
ı/ℏ
∫ t0+τ
t0

U(z,t)dt = ψ0(z)e
ı/ℏ
∫ t0+τ
t0

U0 cos2
qzz−∆ωt

2 dt . (47.61)

For short interaction times, τ ≪ 2π/∆ω, ...

47.2.1.2 Compton scattering picture

The second interpretation is that of Compton scattering: Spontaneous Rayleigh scat-
tering of a photon from a mode kω into a solid angle around kω−∆ω leaves an atom
with the recoil momentum ℏq ≡ pf · pi. Of course, one can stimulate the Rayleigh
scattering process by providing the laser mode kω−∆ω at the entrance. By replacing
the spontaneous output mode with a stimulated input mode, we increase the proba-
bility for an atomic recoil in the momentum mode ℏq, which is thus pre-selected by
the choice of kω−∆ω. Since the elementary scattering process must conserve energy
and total momentum,

ℏω +
p2i
2m

= ℏ(ω −∆ω) +
p2f
2m

(47.62)

ℏki + pi = ℏkf + pf ,

we obtain the Bragg condition,

E = ∆ω =
p2f
2m
− p2i

2m
=

(pf − pi)
2

2m
+

(pf − pi) · pi
m

=
q2

2m
+

q · pi
m

. (47.63)

Expressed by the Bragg angle, the condition reads,

q =
√
(pf − pi)2 =

√
ℏ2k2

i + ℏ2k2
f − 2ℏ2kikf ≃ ℏki

√
2− 2 cos θ = 2ℏki sinϑ/2 .

(47.64)
The efficiency for transferring atoms to the recoil mode depends on the fulfillment
of this condition. The Bragg condition can be employed to select higher diffraction
orders.

47.2.1.3 Stimulated Raman scattering picture

A third interpretation is as stimulated Raman scattering between two different kinetic
states of the atom [see 47.6(b)]. In fact, the momentum modes pi and pf have different
energies, which, for a condensate, are determined by the Bogolubov spectrum [512].
By varying the angle ϑ in the Bragg condition (47.63), we can choose the amount
of energy to be transferred and thus probe the spectrum, i.e. measure the excitation
energy E(q, µ) as a function of the momentum q and the chemical potential µ in the
particle regime q2/2m≫ µ, as well as in the phonon regime q2/2m≪ µ. On the other
hand, varying the detuning ∆ω in the Bragg condition (47.63), we selectively address
different velocity classes of a gas or condensate, which allows us to probe its velocity
distribution. This procedure is called spectroscopy of recoil-induced resonances (RIR)
[305, 1259]. RIR spectroscopy also provides detailed information on the mean-field
energy and the (inhomogeneous) density distribution of a condensate. Note, finally,
that Bragg scattering is closely related to Kapitza-Dirac scattering of atomic beams,
well-known in conventional atom optics [693, 531].
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Figure 47.8: Bragg scattering of atomic clouds. (a) Geometric layout as in 47.6. Here, we
assume pi = 0. (b) Experiment showing coherent splitting by a Bragg pulse.

47.2.1.4 Coherent splitting

There is a general interest in the possibility of dividing phase space by coherent cou-
pling of otherwise independent modes. We are talking, of course, about double slits or
beamsplitters, which represent an essential tool of quantum mechanics. Bragg diffrac-
tion realizes a beamsplitter for atomic clouds analogous to the optical beamsplitter.
In fact, Bragg diffraction has been used for the realization of output couplers for atom
lasers and for atom interferometers. A suggestion that is sometimes made is the fol-
lowing: ’A condensate is a macroscopically populated momentum mode. The Bragg
beamsplitter divides the phase space into two entangled output modes. Shouldn’t it
be possible to generate a macroscopic superposition of two condensates, i.e. a really
macroscopic Schrödinger cat?’ of the type

(|Ψ+⟩+ |Ψ−⟩) . (47.65)

Their is an obvious fundamental interest to study such states and the mechanisms
leading to their decoherence (see Sec. 36.1.1).

To clarify the situation, we first have to say, what we mean by Schrödinger cat.
A Schrödinger cat is a quantum superposition of many-body states. A perfect cat
made of N two-level atoms can be expressed as | + +...⟩ ± | − −...⟩. The Einstein-
Podolsky-Rosen (EPR) and the Greenberger-Horne-Zeilinger states (GHz) belong to
this category. The degree of entanglement of the cat is measured by the information
entropy defined as S = −⟨log2 ρ̂⟩, where ρ̂ is the density operator. The information
entropy measures the amount of classical information that can be encoded in the
quantum state. For example, the entropy of a perfect cat state is S = 1 bit, because
if we find one of the atoms in the state |+⟩, we know that all others are in the same
state.

Second, we have to explain, what we mean by a beamsplitter. Subject to a beam
splitting process, every individual atom has the choice between one of two output
ports. However, if the process is coherent, every atom will evolve into a coherent su-
perposition, but it does so independently from the other atoms. That is, we can write
the state of the atomic cloud as a product state of Schrödinger kittens (|+⟩ ± |−⟩)N ,
but no real cat. The information entropy is S = N bit, as for independent atoms.
Clearly, the state (47.65) is NOT the state generated by a beamsplitter! Nevertheless,
the beamsplitter creates a certain correlation between the two modes (see Sec.35.8).

It may come as a surprise, that a condensate composed of totally delocalized
atoms coherently interacting with a homogeneous light field (the photons of the Bragg
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Figure 47.9: Bragg interferometer.

beams are totally delocalized over the field mode including the condensate volume)
increases its entropy from 1 to N bits. This argument, however, would be the same
for a non-condensed thermal cloud being sufficiently cold that the thermal de Broglie
wavelengths exceeds the size of the cloud. That is, even in condensates the photons
are scattered by individual atoms. The interaction with the light localizes one atom
in the condensate before removing it from there by recoil. Nevertheless, cooperative
interaction of several atoms with a light mode is possible, e.g. in superradiance or when
the photons are recycled by means of an optical cavity, as in the Jaynes-Cummings
model.

47.2.2 Bragg interferometry of a thermal gas

Even above the critical temperature the momentum distribution of a dilute ther-
mal gas is (slightly) modified by quantum statistics, i.e. by the classical, bosonic or
fermionic nature of the gas. The momentum distributions have been calculated in
Chp. 44. We have already emphasized that Bragg interferometry can be used to mea-
sure the momentum distribution of a gas via RIR spectroscopy, whether the gas is
condensed or thermal. Now, let us discuss Bragg interferometry on a thermal gas,
based on the articles [853] and [344].

47.2.2.1 Free evolution of a thermal cloud

To describe the Bragg scattering process quantitatively, we interpret it as a Raman
transition between discrete atomic momentum states governed by a Schrödinger equa-
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tion. On the other hand, as long as no radiation is incident the atomic center-of-mass
wavefunctions evolve freely or under the constraint of an external potential. That is,
both processes concern the same motional degree of freedom. In order to derive a
complete quantum model, let us first develop the formalism for the description of the
free evolution of a thermal cloud, then we explain how a resonant radiation can be
included.

Figure 47.10: (a) Geometry for Bragg diffraction. (b) Illustration of a Raman transition be-
tween two points of the free-particle dispersion curve, when the atoms are initially thermally
distributed. (c) Same as (a), but now the detuning ∆ω is adjusted for second-order Bragg
diffraction.

We consider a thermal atomic cloud initially distributed over many momentum
classes according to the Maxwell-Boltzmann velocity distribution,

D(kz) =
ℏ

(2πmkBT )1/2
e−ℏ

2k2z/2mkBT =
e−πk

2
z/k

2
therm

ktherm
, (47.66)

using ktherm ≡ 2π/λtherm and (43.9). Because of the inhomogeneity of the distri-
bution, any evolution of atoms belonging to specific momentum classes caused by
velocity-selective radiation pulses, must be calculated with individual atoms. The
final momentum distribution (e.g. after a pulse sequence) can then be obtained by
weighing with the individual evolution with the initial momentum distribution 9.

We describe the quantum state of a thermal atom |ψ⟩ as a plane wave, ⟨z|ψ⟩ ∝
eıkzz, which in momentum space corresponds to a Dirac distribution, ⟨kz|ψ⟩ ∝ δ(z −
z0). Without radiative coupling, we describe the evolution in momentum space by
the solution of the Schrödinger equation (or propagator),

⟨kz|ψ(t)⟩ = eıĤt/ℏ⟨kz|ψ(0)⟩ . (47.67)

In free space, with the Hamiltonian Ĥfree = ℏ2k2z/2m, the wavefunction is obviously
constant.

In order to couple two intervals of momentum distribution by resonant radiation,
we first need to duplicate the Hilbert space,

ai,kz (t) ≡ ⟨i|ψkz (t)⟩ = ⟨i|⟨kz|ψ(t)⟩ (47.68)

9The procedure neglects interatomic interactions, which is always a good presumption, for exam-
ple, for an ultracold Fermi gas [347] or for 88Sr atoms, which have a very small scattering length.
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with i = 1, 2. Note that, in this case, the Hilbert spaces are not disjunct.
To obtain the atomic momentum distribution after the application of a pulse se-

quence, we calculate the evolution of the amplitudes aj,kz for a variety of initial
momenta and weigh the final populations of the momentum states with the distribu-
tion function D(kz). The number of atoms expected in the zeroth and first Bragg
diffraction order is, therefore,

Nj(t) =

∫
D(kz)|aj,kz (t)|2dkz . (47.69)

47.2.2.2 Bragg scattering and RIR

For large momentum distributions, T ≫ Trec, the atomic cloud occupies many mo-
mentum states, such that the Bragg scattering produces a RIR-like signal. That is,
the scattering probability is proportional to the population difference of the initial
and final momentum states, as discussed in Sec. 42.3.2. The number of scattered
atoms/photons is, therefore,

Ṅbrg ∝ ΩR
∂D(kz)

∂kz

∣∣∣∣
kz=ℏm∆ν/q

. (47.70)

where,

ΩR =
Ω1Ω2

2∆a
=

1

∆a

3λ2

4π

Γ

ℏω
√
I1I2 =

3πc2I

ℏω3

Γ

∆a
(47.71)

is the two-photon Rabi frequency. For very narrow momentum distributions, T ≪
Trec, we may assume the atomic cloud to occupy only a single momentum state,

Ṅbrg ∝ ΩRD(kz) . (47.72)

The transition rate per atom is then given by [1238],

W

N
=

2πℏ
N

Ω2
R

∑

f

|⟨f |ρ̂†(k)|g⟩|2δ(ℏν − Ef + Eg) ≡ 2πΩ2
RS(k, ν) . (47.73)

As illustrated in Fig. 47.10, to scatter an atom with the initial wavevector kz to
the next higher momentum state kz + 2q, the Bragg condition requires,

∆νR = νR2 − νR1 =
ℏ(kz + 2q)2

2m
− ℏk2z

2m
=

2ℏq
m

(kz + q) . (47.74)

If we tune ∆ν(±∆kz) until the Bragg signal Ṅbrg drops to e−1/2,

∆νR(∆kz)−∆νR(−∆kz) =
4ℏ∆kzq
m

=
4ℏq
m

√
mkBT

ℏ
= 4q

√
kBT

m
. (47.75)

47.2.2.3 Bragg scattering by free atoms

Let us first assume that during the Bragg pulse only two discrete atomic momentum
states j = 0, 1 are coupled [699, 148, 853, 344], and that trapping potentials are
absent or can be neglected. This is justified for Bragg pulse sequences much shorter
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than an oscillation period of the trap. We denote the probability amplitudes for the
two momentum states by momentum space wavefunctions aj,kz . They correspond to
atoms with initial momenta ℏkz that are coupled to states with momentum ℏk′z =
ℏ(kz + 2q). The temporal evolution of the amplitudes under the action of the Bragg
light is given by the solutions of the Schrödinger equation [853, 344],

(
a0,kz (t)

a1,kz (t)

)
= e−ıĤRt/ℏ

(
a0,kz (0)

a1,kz (0)

)
, (47.76)

with the Hamiltonian,

ĤR =

(
ℏ2

2mk
2
z

1
2ℏΩR

1
2ℏΩR

ℏ2

2mk
′2
z − ℏδ

)
, (47.77)

where ∆ = 2ℏq2/m−δ is the detuning of the Bragg lasers from the recoil shift. When
the Bragg light is switched off, the Hamiltonian simplifies to,

Ĥfree =

(
ℏ2

2mk
2
z 0

0 ℏ2

2mk
′2
z − δ

)
. (47.78)

Concatenating temporal evolutions described by e−ıĤRt/ℏ and e−ıĤfreet/ℏ, the phase
evolution of individual atoms in momentum state superpositions can be calculated
for arbitrary sequences of pulses separated by intervals of free evolution, for example,
Ramsey-type sequences.
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Figure 47.11: (code) (a) Distribution of momentum classes in the direction of kz after

irradiation of a 2π Bragg pulse. The width of the structure is determined by the power

broadening of the Raman transition. (b) Temporal evolution of the populations of the

momentum states 0 and 2q.

47.2.2.4 Bragg scattering by trapped particles

When trapped atoms are considered, the problem arises that the Hilbert space of mo-
mentum states is simultaneously coupled by two interactions: a moving optical lattice
(generated by the Bragg lasers) and the (harmonic) trap. However, the situation gets
simpler if a separation of the scales is possible. In general, the duration of a pulse

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggRabi.m
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is very short, τ ≪ 2π/ωz. In contrast, the duration of a free evolution period ∆t
(e.g. in a Ramsey cycle) may be such, that it is no more negligible compared to a trap
oscillation period, so that we need to account for the action of the trapping potential
explicitly.

As the trap couples the atomic momenta with the atomic positions (Ekin+Epot =
const), the initial spatial distribution of the atoms must now be considered. For
simplicity, we describe it as a thermal Gaussian, similarly to what has been done in
Eq. (47.66) for the momentum distribution,

G(z) =

√
mω2

z

2πkBT
e−mω

2
zz

2/2kBT =
e−πz

2/a4zk
2
therm

a2zktherm
. (47.79)

Beginning with the positions z and initial momenta kz, after a diffraction pulse trans-
ferring the recoil 2q to part of the atoms and being short enough not to change their
positions, the atoms follow classical trajectories. The atomic momenta (now depend-
ing on time) are simply the solution of the equation of motion ℏk̇z = −mω2

zz with
the initial conditions z(0) = z and kz(0) = kz, respectively, k

′
z(0) = kz + 2q,

k̃z(t) = kz cosωzt−
mωz
ℏ

z sinωzt (47.80)

k̃′z(t) = (kz + 2q) cosωzt−
mωz
ℏ

z sinωzt ,

where the first expression holds for non-diffracted atoms and the second for diffracted
atoms. These momenta are substituted for kz and k′z, respectively, in the Hamilto-
nians (47.77) and (47.78). As the Bragg pulses are short compared to the oscillation
period, τ ≪ 2π/ωz, the effect of the trapping potential may be neglected during
Bragg scattering. This means that the Hamiltonian ĤR depends on k̃z(t), but can be
treated as time-independent for the short intervals τ . In contrast, the Hamiltonian
for free propagation Ĥfree depends on the time, if ∆t is long. In this case, the phase
evolution of the atoms in both coupled states can be described by the time evolution
operator as,

e−ıĤfreet/ℏ =


exp

(
−ı
∫ t
0
dt ℏ

2m k̃
2
z(t)

)
0

0 exp
(
−ı
∫ t
0
dt
[

ℏ
2m k̃

′2
z (t)− δ

])

 . (47.81)

Since the amplitudes aj,z,kz now also depend on the initial atomic positions, the
final populations of the momentum states must be additionally weighted with the
initial spatial distribution. Therefore, the Eq. (47.69) for the expected the numbers
of diffracted and non-diffracted atoms must be replaced by,

Nj(t) =
x

D(kz)G(z) |aj,z,kz (t)|2 dkzdz . (47.82)

In practice, however, it might be a good approximation to assume small displacements
around a δ-shaped position distribution. Note, that the transformation (47.80) must
be repeated for every free evolution pulse of a sequence.
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Example 290 (Approximation for small displacements): In practice, we
may neglect the displacements, z ≃ 0. Then the equations (47.80) simplify to,

k̃z(t) = kz cosωzt and k̃′z(t) = (kz + 2q) cosωzt .

Inserting them in (47.81) we obtain for the propagator,

e−ıĤfreet/ℏ

= exp

(
− ıℏk2z
4mωz

(cosωzt sinωzt+ ωzt)

)(
1 0

0 exp
(
− ıℏqkz

2mωz
(cosωzt sinωzt+ ωzt)

)) .

In Exc. 47.2.4.1 we will study the behavior of an ultracold atomic cloud subject
to a gravitational potential during a Ramsey-Bordé sequence.

47.2.2.5 Bloch equations approach

Experimentally, we observe decoherence of the dynamics described above on a very
slow time scale. This phenomenon can be included in a description based on Bloch
equations,

d

dt
ρ⃗kz (τ) =Mj ρ⃗kz (τ) , (47.83)

with

ρ⃗kz (τ) =




ρ00,kz (τ)

ρ01,kz (τ)

ρ10,kz (τ)

ρ11,kz (τ)


 and Mj =




0 Γ ı
2ΩR − ı

2ΩR

0 −Γ − ı
2ΩR

ı
2ΩR

ı
2ΩR − ı

2ΩR −γ − ı∆j 0

− ı
2ΩR

ı
2ΩR 0 −γ + ı∆j




(47.84)
with the solution,

ρ⃗kz (τ) = eM3teM2teM1tρ⃗kz (0) (47.85)

with,

∆1 =
ℏ
2m

(kz + 2q)
2 −∆ν − ℏ

2m
k2z (47.86)

∆3 =
ℏ
2m

[(kz + 2q) cosωtrτ ]
2 − ℏ

2m
[(kz + 2q) cosωtrτ − 2q]

2 −∆ν .

We weigh populations with the initial momentum distribution,

Nj(τ) ≡
∫
D(kz)ρjj,kz (τ)dkz . (47.87)

47.2.2.6 Kapitza-Dirac scattering

An atomic beam with longitudinal de Broglie wavelength λdB = h/p diffracted by a
solid periodic grating with a slit distance of d receives a transverse amplitude mod-
ulation. In the far field, this generates focuses at angles defined by nλdB/d = sinϑ.
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Alternatively, the grating may consist of a standing light wave detuned from reso-
nances. The standing wave will create a periodic optical potential, which imprints
a transverse phase modulation on the atomic beam. In the far field, the result will
be the same as for the solid grating. Each atom will evolve into a superposition of
momentum sidemodes ±n2ℏk, without any momentum having been transferred to
the atoms. The diffraction angle is again sinϑ = ±n2ℏk/p = ±nλdB/(λ/2), where
λ/2 = d is the periodicity of the standing light wave. However, this is only true if
the phase shift is much smaller than π. This scheme is called the Raman-Nath regime
or the regime of Kapitza-Dirac scattering. An equivalent condition for this regime is,
that the interaction time is less than a period of oscillation in the optical potential,
τ ≪

√
ℏ/ωrec/U , or vtransτ ≪ λ.

The Raman-Nath regime is realized by a very focused optical standing wave. A
wave that is not plane can be considered a superposition of many spatial modes. Since
(off-resonant) scattering (absorption followed by induced emission) corresponds to a
photon redistribution between spatial modes, in a tight waist the phase matching
condition is somewhat relaxed and minor corrections to the energy balance are pos-
sible. In a certain sense, Kapitza-Dirac scattering is the inverse process of ’forward
scattering’ of a laser beam passing through an atomic cloud: the roles of light and
atoms are exchanged. The requirement that the interaction time be short implies,
that the light grating is ’optically dilute’ for the atomic beam 10.

Figure 47.12: (code) (a) Distribution of momentum classes in the direction of kz after

irradiation of a π Bragg pulse. (b,c) Temporal evolution of the populations of the momentum

states nq.

For larger Rabi frequencies,

ΩR ≫
2ℏqσkz
m

, (47.88)

with σkz =
√
mkBT/ℏ2 being the width of the momentum distribution, the Doppler

broadening is dominated by power broadening, meaning that Bragg diffraction occurs
all over the atomic cloud. At some point, however, the Rabi frequency becomes
comparable to the energy difference between adjacent momentum states, and Kapitza-
Dirac scattering sets in. According to [148] the scattering will stay two-state like as

10Note, that we usually employ the term of optical diluteness the other way round, i.e. an atomic
cloud can be optically dilute (or dense) for a laser beam.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggKapitza.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggKapitza.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggKapitza.m
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long as the Rabi frequency fulfills the condition,

ΩR ≪
ℏ
m
(4q2 − 2qσkz ) . (47.89)

In the Kapitza-Dirac regime, the large energy uncertainty, connected with the
fast coupling rate, allows several momentum states to be coupled simultaneously. In
particular the Bragg Hamiltonian is replaced by,

Ĥτ =




. . .
. . .

. . . ℏ(kz−2q)2
2m + δ ΩR

2
ΩR

2
ℏk2z
2m

ΩR

2

ΩR

2
ℏ(kz+2q)2

2m − δ . . .

. . .
. . .




. (47.90)

The crossover from the Bragg-diffraction regime to Kapitza-Dirac scattering is a
smooth transition. As we will see below, for intermediate Rabi frequencies (here
1MHz > ΩR/2π > 100 kHz) the neighboring diffraction states, corresponding to mo-
mentum shifts of 4ℏq and −2ℏq (second and minus first order), are scarcely populated.
For higher and higher Rabi frequencies, ΩR/2π > 1MHz, the scattering populates
more and more diffraction orders.

47.2.2.7 Higher-order Bragg scattering

Higher-order Bragg scattering is possible as well. Then the 2n-photon Rabi frequency
must be calculated and inserted in the second diagonal of (47.90).

47.2.3 Bragg spectroscopy of a condensate

To measure the Bogolubov spectrum, we need to excite perturbations in a condensate
and study its reaction [1238].

Let us now imagine that the potential has the form of a standing wave. Technically
this can be done by two laser beams having the same frequency crossing at the position
of the atoms,

Vtrap(r, t) ≡ V
2 e

ıq1·r−ıωt + V
2 e

ıq2·r−ıωt . (47.91)

Choosing the coordinate system such that, q1 ≡ (kx, 0, kz) and q1 ≡ (kx, 0,−kz),

Vtrap(r, t) =
Vx

2 e
ıkzz−ıωt + Vx

2 e
−ıkzz+ıωt , (47.92)

with Vx ≡ V eikxx. With this weak perturbation applied to the atoms, we make the
ansatz,

ψ(r, t) = e−ıµt/ℏ
(
ψ0(r, t) + u(t)eıkzz−ıωt − v(t)e−ıkzz+ıωt

)
, (47.93)

where the amplitudes of the perturbation, u(t) and v(t), only vary slowly in time. As-
suming that ψ0 is fairly homogeneous, i.e. ⟨ψ0|∇z|ψ0⟩ ≃ 0, the momentum transferred
to the BEC is,

⟨ψ(r, t)| − ıℏ∇z|ψ(r, t)⟩ = ℏkz(|u|2 − |v|2) . (47.94)
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We can now solve the Gross-Pitaevskii equation (45.20) in the same way as in
Sec. 45.4.1 inserting the ansatz (47.93). The terms proportional to eıkzz−ıωt are,

ℏ2k2
z

2m
u+

V

2
ψ0+g

(
|ψ0|2 + |u|2 + |v|2

)
u+gψ2

0v+g|v|2u+g|ψ0|2u =

(
ıℏ
∂

∂t
+ ℏω + µ

)
u ,

(47.95)
and the analogously for e−ıkzz+ıωt. Using µ = gn = g|ψ0|2 and assuming that the
perturbation is weak, |u|, |v| ≪ |ψ0|, we obtain,

(
ℏ2k2

2m
+ gn

)
u+

V

2
ψ0 − gnv =

(
ıℏ
∂

∂t
+ ℏω

)
u (47.96)

−
(
ℏ2k2

2m
+ gn

)
v − V

2
ψ0 + gnu =

(
−ıℏ ∂

∂t
+ ℏω

)
v .

This effect is called Bragg diffraction of atoms by a standing light wave.
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Figure 47.13: Spectrum of elementary excitations.

Figure 47.14: Spectrum of elementary excitations.

Using L ≡ ℏ2k2

2m + Vtrap + 2gn− µ− ıℏ ∂
∂t , we can write,

(
L − ℏωk −gn
−gn L+ ℏωk

)(
u

v∗

)
= 0 . (47.97)
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These equations can be decoupled using the Bogolubov transform.
We calculate the momentum transferred to the BEC, assuming ψ0 to be fairly

homogeneous,
⟨ψ(r, t)| − ıℏ∇|ψ(r, t)⟩ = ℏq(|u|2 − |v|2) . (47.98)

47.2.4 Exercises

47.2.4.1 Ex: Bragg diffraction in a Ramsey-Bordé interferometer

Simulate the behavior of a cold atomic cloud subject to a gravitational potential dur-
ing a Ramsey-Bordé sequence using the formalism developed in Sec. 47.2.2.

Solution: We just need to modify the equations (47.80). The atomic momenta de-
pending on time are now simply the solution of the equation of motion ℏk̇z = mg with
the initial conditions z(0) = z and kz(0) = kz, respectively, kz(0) = kz + 2q,

k̃z(t) = kz +
mg

ℏ
t and k̃′z(t) = kz + 2q +

mg

ℏ
t ,

and the free space propagator (47.81) becomes,

e−ıĤfreet/ℏ =


exp

(
− ıℏ

2m

∫ t
0

[
kz +

mg
ℏ t
]2
dt
)

0

0 exp
(
− ıℏ

2m

∫ t
0

[
kz + 2q + mg

ℏ t
]2
dt+ ıδt

)



= exp
(
−ı
[
ℏk2z
2m t+

g
2kzt

2 + mg2

6ℏ t
3
])(1 0

0 exp
(
−ı
[
ℏqkz
m t+ 2mgq

ℏ t2
]
− ı∆t

)
)

.

See also Excs. 23.5.6.2 and 23.5.6.3. We can now use this propagator to simulate a
Ramsey-Bordé interferometer type sequence in a gravitational field, assuming resonant
Bragg pulses, δ = 2ℏq2/m. It consists of the following sequence:
(i) First π

2 -Bragg pulse,

ψ
(1)
kz

(t = π
2ΩR

) = e−ıπĤR/2ℏΩRψkz (0) ,

(ii) free evolution,

ψ
(2)
kz

(t = τ) = e−ıĤfree(k̃z,k̃
′
z)τ/ℏψ

(1)
kz

(0) with

{
k̃z(t) = kz +

mg
ℏ t

k̃′z(t) = kz + 2q + mg
ℏ t

,

(iii) π-pulse,

ψ
(3)
kz

(t = π
ΩR

) = e−ıπĤR/ℏΩRψ
(2)
kz

(0) ,

(iv) free evolution,

ψ
(2)
kz

(t = τ) = e−ıĤfree(
˜̃
kz,
˜̃
k
′
z)τ/ℏψ

(1)
kz

(0) with




˜̃
kz(t) = k̃′z − 2q + mg

ℏ t = kz +
2mg
ℏ t

˜̃
k
′
z(t) = k̃z + 2q + mg

ℏ t = kz + 2q + 2mg
ℏ t

,

(v) and second π
2 -pulse,

ψ
(3)
kz

(t = π
2ΩR

) = e−ıπĤR/2ℏΩRψ
(2)
kz

(0) .

Note, that the model is only good for short sequences, mg∆t≪ ℏq.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BraggThermal01.pdf
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Figure 47.15: (code) Momentum distributions during a Ramsey-Bordé pulse sequence with

N = 105 strontium atoms of temperature T = 800 nK subject to Bragg pulses at λbrg =

461 nm under 60◦ angle (a) after the first π
2
-pulse, (b) after the π-pulse, and (c) after the

second π
2
-pulse. Blue and red line are calculated with g = 9.81m/s2, cyan and magenta lines

with (1 + 7 · 10−10)g. The Rabi frequency is ΩR = (2π) 30 kHz and the free evolution time

τ = 100µs.

47.3 Matter wave superradiance

47.3.1 Classical superradiance

The Bragg beam splitter introduced in the last section does not give rise to collective
scattering, even when the atoms are as strongly correlated as in a condensate. On the
other hand, collective scattering is known to occur in a classical gas: When two atoms
excited to an internal energy level, ∼ hc/λ, are separated by a distance R too large to
form a molecule, but smaller than the wavelength of the excited transition, aB ≪ R≪
λ, the atoms are coupled to the electromagnetic continuum by the same radiation that
they emit (see Fig. 47.16). The dipole moments of the atoms stimulate each other
to emit, and we observe a synchronized and accelerated relaxation, resulting in a
coherent and directional burst of radiation [366, 1085]. The directionality of the
radiation is due to a destructive interference of the dipolar radiation patterns emitted
by the atoms in all directions except the direction chosen by the first emitted photon.
This direction is random (except when bosonically stimulated). The atomic sample
evolves, during this time, to a state of coherent superposition, until all the atoms are
deexcited. This phenomenon is called Dicke superradiance. A similar effect exists for
matter waves, and will be discussed in the following sections [649].

Figure 47.16: Superradiance assumes small interatomic distances compared to the wave-
length of the excited dipole. Toroidal interference patterns interfering constructively in only
one direction.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggGravity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggGravity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggGravity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggGravity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggGravity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ThermalBraggGravity.m
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47.3.2 Matter wave superradiance & CARL

We consider the process of Rayleigh scattering from a condensate. The scattering
rate obviously depends on the number of atoms and the laser intensity. The crucial
point now is, that this rate can be stimulated by populations in the output modes,
that is, the modes of scattered light and the atomic recoil modes. Matter and light
participate in the scattering process as equal partners. In Sec. 47.2.1 we showed that
Bragg scattering can be interpreted as optical stimulation of matter wave scattering.
By analogy, it is possible to imagine a process of wave matter stimulation of light
scattering. We will now discuss such a process, called superradiant Rayleigh scattering
ormatter wave superradiance (MWSR) [649], with the help of the small cartoon shown
in Fig. 47.17. See also (watch talk).

Figure 47.17: Cartoon for MWSR (see text).

Let us imagine an elongated condensate, subject to a magnetic field directed along
its long axis and illuminated perpendicularly to the long axis by a linearly polarized
laser beam. The scattered light is emitted into a (toroidal) dipolar radiation pattern.
The fraction of the light scattered into the solid angle Ωj , which is inclined by angle ϑj
with respect to the polarization of the incident laser is Ωj sin

2 ϑj/(8π/3). Of course,
the number of scattered photons also depends on the optical cross section σ and
the number of scattering atoms N0. When an atom, recoiling due to the transfer of
one unit of photonic momentum, moves with a speed of a few centimeters per second
through the condensate, it interferes with other atoms of the condensate, thus forming
a wave matter grating. The grating, the lifetime of which is long in comparison to
the scattering rate, now stimulates subsequent photons to follow the same path Ωj
and receives, in turn, the scattering atoms. In other words, the bosonic stimulation of
the scattering process by the Nj atoms already populating the recoil mode amplifies
the photon scattering rate by a factor of Nj +1. The differential optical cross section
(power Pj scattered into the direction Ωj divided by the laser intensity I) is [649],

dσ

dΩj
=
Pj
I

=
Ωj sin

2 ϑj
8π/3

σN0(Nj + 1) . (47.99)

Each scattering event of a photon into the mode Ωj transfers an atom to the recoil
mode Nj :

Ṅj = Pj/ℏω ≡ GjNj where Gj =
I

ℏω
σ
Ωj sin

2 ϑj
8π/3

N0 . (47.100)

The phase matching condition is satisfied for a solid angle of approximately Ωj =
λ2/Aj , where Aj is the cross-sectional area of the condensate. If lj is the length of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/MatterwaveSuperradiance
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condensate, we can write,

Gj =
I

ℏω
σ
sin2 ϑj
8π/3

n0λ
2lj . (47.101)

With the atomic density n0 = N0/(Aj lj), the factor n0λ
2lj describes the optical

density of the BEC in the direction of the scattering. Therefore, we obtain exponential
gain for the atom number Nj , that is, the process is self-amplifying.

Using the terms of the dressed atom picture, we would say that the excited state
of our system is formed by the BEC and the laser mode. This state relaxes to a
state formed by the recoiled atoms and the scattered photons. The exponential gain
occurs, when this system exhibits inversion. The inversion is maintained, until the
BEC is completely transferred to the momentum recoil modes 11.

Figure 47.18: Observation of matter wave superradiance.

It is instructive to compare Dicke superradiance and matter wave superradiance.
Dicke superradiance is induced by an electronic coherence between adjacent atoms.
It requires a sufficiently long coherence time for the atomic dipoles. On the other
hand, MWSR is a coherence effect between two states of the atomic center-of-mass
motion, i.e. the condensed state and a momentum sidemode. A long lifetime of this
coherence is necessary to allow for correlations between successive scattering events.
The coherence lifetime corresponds to a coherence length, which for a condensate
is equal to its physical size, whereas for a thermal cloud, it only corresponds to its
thermal Broglie wavelength. This explains why it is difficult to observe MWSR with
non-condensed atomic clouds.

Since the scattered photons quickly leave the BEC, there is no feedback or bosonic
stimulation by the optical output mode. This can be interpreted as a fast decaying
cavity mode, and the regime is called the bad cavity limit. Let us now imagine, that
the photons were recycled, for example, via an optical cavity constructed around the
BEC and reflecting back the photons emitted in the solid angle Ωj

12. The mirrors of
the cavity create reflection images of the radiating atoms, which increase the density
of states, the scattering rate, and the gain Gj increase by a factor of 8F/π. An

11Superradiant scattering is due to a nonlinear coupling between two matter waves and two optical
waves in a four-wave mixing process (4WM) interpreted as scattering of light from a wave matter
stimulated by a wave matter mode. The process does not require nonlinearity due to collisions, but
it works with an ideal gas, g → 0. This distinguishes it from the 4WM of four matter waves, studied
in Sec. 46.3.4 and interpreted as a scattering of atoms by a matter wave stimulated by matter wave
mode, and 4WM in quantum optics involving four photons. But in all cases bosonic stimulation is
crucial.

12Alternatively, we may imagine a scheme decelerating of the group velocity of the light pulse.



2756 CHAPTER 47. INTERACTIONOF BOSE-EINSTEIN CONDENSATESWITH LIGHT

interesting question now is, what happens in the limit F → ∞. If the decay of the
cavity mode, and therefore the removal of photons from the coherent interaction zone
(which is precisely the volume occupied by the BEC) is slow, the MWSR process
seems to be doubly stimulated, optically and atomically. However, in this case we
also expect the inverse process, where photons are scattered back to the original mode,
to occur and to be stimulated by the number of atoms N0 in the condensate. We see
that the simple picture of bosonic stimulation does not work in this case, and a more
complete model including the possibility of Rabi oscillations amplified by stimulated
emission is necessary 13.

47.3.3 Amplification of matter and light waves

The feedback-induced exponential gain giving rise to the phenomenon of MWSR can
be used to construct a phase-coherent amplifier of matter and light waves. After all,
the momentum side modes observed in the MWSR process [649] already represent
amplified vacuum fluctuations. To experimentally realize a coherent matter wave am-
plifier [749, 651], it is sufficient to replace the vacuum fluctuations of the original
MWSR experiment with a small seed condensate: ∼ 0.1% of the ’mother condensate’
proved sufficient to stimulate the matter wave amplifier. The seed condensate was
created by Bragg diffraction transferring atoms from the mother BEC to another mo-
mentum state (see Sec. 47.2). The matter wave grating formed by interference of the
seed condensate and the mother BEC was subsequently amplified by a MWSR pulse.
The gain for the atom number in the seed condensate was 10 to 100 depending on the
intensity and duration of the MWSR pulse. Finally, the coherence of the amplification
process was demonstrated by active atom interferometry using the Ramsey scheme:
One of the interferometer arms consisted of the amplified seed condensate and the
other of a reference condensate (local oscillator) especially created by Bragg diffrac-
tion from the mother condensate. The observation of interference between these two
matter waves proved the coherence of the amplification process and the existence of a
well-defined phase relationship between the input and the output of the matter wave
amplifier.

In analogy to electronics, we may consider the coherent matter wave amplifier
as an active device complementing the atom optical toolbox of passive devices (see
Sec. 46.3.1).

47.3.4 Four-wave mixing of optical and matter waves

We will now make an attempt to categorize the various scattering processes involving
condensates. Let us first return to the radiation pressure [Fig. 47.20(a)], where an
incident photon is spontaneously scattered into a random direction. The isotropy of

13The phenomenon of the matter wave superradiance can be understood without quantization of
the atomic motion [?] and, in particular, without quantum degeneracy. A cold and dense thermal
cloud can show the phenomenon of MWSR [1413]. The scattered light forms together with the pump
light, a propagating standing light wave, from which the atoms are scattered by Bragg diffraction.
Atoms are accelerated by the CARL effect [305, 173, 775, 918, 917, 749, 651, 650] through a coherent
redistribution of photons between the pump and scattered modes. However, as was shown later-on,
the different recoil modes of the condensate exhibit phase-coherence, which is not explained by a
theories treating the atomic motion semi-classically.
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Figure 47.19: Matter wave amplification of a ’seed condensate’ at the expense of a ’mother
condensate’. Time-of-flight imaging visualizes the condensate’s momentum distribution.

the scattering process can, however, be broken when certain directions (i.e. spatial
modes) are favored by bosonic stimulation. The symmetry of the roles of matter wave
modes and light modes allows us to treat both on the same footing, for example, we
can stimulate scattered modes either by matter of light waves.

Let us first have a look at stimulation by optical modes [Fig. 47.20(b) and (c)].
Fig. (b) describes optical four-wave mixing (4WM) in nonlinear optical media, i.e. op-
tically stimulated scattering of photons from a standing light wave, which is a 4WM
process of 4 photons. Fig. (c) describes Bragg scattering, i.e. an optically stimulated
scattering of atoms by a standing light wave, which is a 4WM process of 2 photons
and 2 atoms.

Similarly, a scattering process can also be stimulated by a macroscopic number of
atoms in a recoil mode [Fig. 47.20(d) and (f)]. Fig. (d) describes superradiant Rayleigh
scattering and matter wave amplification, i.e. scattering of photons stimulated by a
de Broglie wave, which again corresponds to 4WM of 2 photons and two atoms.
Fig. (e) describes amplification of a laser pulse by superradiant Rayleigh scattering,
i.e. scattering of photons in a matter wave with double stimulation by light waves
and de Broglie waves, which once again is a 4WM process of 2 photons and 2 atoms.
Finally, Fig. (f) describes the basic process of nonlinear atom optics, i.e. the scattering
of atoms by a matter wave stimulated by de Broglie waves, which is a 4WM process
of 4 atoms.

47.4 Condensates in electronically excited states

The interaction between condensates and light has, so far, been treated in the limit
where the population of excited states can be neglected or adiabatically eliminated. An
example was the coherent coupling of different kinetic states of an atom by a method
called Bragg diffraction discussed in Sec. 47.2.

On the other hand, atoms can have metastable excited states, which can introduce
new degrees of freedom, and a whole world of new problems emerges that need to
be addressed: How do condensed atoms move, when they are in different states of
internal excitation (or superposition of states), and how do atoms in different states
interact with each other? We will now turn our attention to coherent coupling of
internal states 14.

14We will disregard, for the moment, possible effects due to inhomogeneous broadening caused by
the finite volume of the cloud inside the potential (Zeeman shift in magnetic traps or dynamic Stark
shift optical traps) or effects due to interatomic interactions. But we have to keep in mind, that



2758 CHAPTER 47. INTERACTIONOF BOSE-EINSTEIN CONDENSATESWITH LIGHT

Figure 47.20: Schematic comparison of 4WM processes between light and matter wave
modes. (a) Spontaneous emission, (b) classical 4WM of light modes, (c) Bragg scattering,
(d) superradiant Rayleigh scattering, respectively, matter wave amplification, (e) optical
amplification, and (f) 4WM of matter waves.

In Sec. 47.4.1 we will show how to generalize the second-quantized formalism
introduced in 45.2.1 in order to deal with coupled condensates in different states of
internal excitation.

In Sec. 47.4.2 we will discuss examples of how coherent coupling of two states can
be accomplished either by radiofrequency/microwave radiation or by two laser beams
in Raman configuration. In order to avoid spontaneous relaxation, we often choose
state with low excitation energy, for example, within the hyperfine structure (Ĥ ∼ I·J)
or the Zeeman structure (Ĥ ∼ µ ·B) of the electronic ground state. But one can also
consider the coupling between different kinetic states of free atoms Ĥ ∼ p2/2m, or
the output coupling of atoms confined to a trapping potential (Ĥ ∼ m

2 ω
2r2), or even

a chemical coupling between a vibrational state of two atoms bound together to form
a molecular and a state, where the same two atoms are free and involved in an elastic
collision.

Finally, in Sec. 47.4.3 we will show how to harness the forces induced by atom-light
coupling in order to design new geometries of trapping potentials.

47.4.1 Theory of the interaction of condensates with light

Let us consider two Bose-Einstein condensates in the mean-field approximation con-
sistent of atoms in two different internal excitation states, ψ1 and ψ2, separated by
the energy ℏω0. We illuminate the BEC by a plane wave of monochromatic light with
the frequency ω. The formal procedure consists of constructing the Hamiltonian of

interatomic interaction can have a big impact on the dynamics, because the chemical potential of
each condensate depends on its number of atoms. Thus, in view of the inhomogeneity of the trapping
potential, the transfer of atoms can excite oscillations and sound waves in the condensates.
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individual atoms, as done in Eq. (38.2), and then quantizing the field of matter [1036],

Ĥatom = |1⟩Ĥ(1)
cm⟨1|+ |2⟩(Ĥ(2)

cm + ℏω0)⟨2| where Ĥ(j)
cm =

p̂2

2m
+ V

(j)
trap(r̂) ,

(47.102)

where we allow for the fact that the trapping potentials can be different for the
two excitation states. We assume that atoms in different states of excitation are
distinguishable, such that their respective wavefunctions commute:

ψ̂j(r) ≡ |j⟩⟨j|ψ̂(r) , [ψ̂j(r), ψ̂j′(r)] = δjj′δ
3(r− r′) . (47.103)

However, we need to consider interatomic collisions which, in the mean-field approx-
imation (45.19) are described by,

Ĥ
(j)
mf =

∫
ψ̂†j (r)

2πℏ2as
m

ψ̂j(r)d
3r . (47.104)

The total atomic Hamiltonian is then a generalization of the many-body Hamiltonian
(45.6),

Hatom =

∫
ψ̂†1(r)

(
Ĥ(1)
cm + Ĥ

(1)
mf

)
ψ̂1(r)d

3r +

∫
ψ̂†2(r)

(
Ĥ(2)
cm + Ĥ

(2)
mf + ℏω0

)
ψ̂2(r)d

3r .

(47.105)

47.4.1.1 Interaction with a single light mode

The normalized annihilation operator for a photon in mode k is,

E⃗+(r) =
√

ℏω
2ε0V

ϵ⃗âeık·r . (47.106)

The semi-classical Hamiltonian (the light not being quantized) of individual particles
is, in the rotating wave approximation,

Ĥfield = ℏωâ†â and Ĥint = −d̂ · ˆ⃗E = −|2⟩d̂+ · ˆ⃗E+⟨1| − |1⟩d̂− · ˆ⃗E−⟨2| . (47.107)
For a condensate we still need to second-quantize the interaction part of the Hamil-
tonian which, disregarding collisions gives 15,

H = Ĥfield +Hatom −
∫ (

d̂+ · ˆ⃗E+ψ̂†2(r)ψ̂1(r) + d̂− · ˆ⃗E−ψ̂†1(r)ψ̂2(r)
)
d3r .

(47.108)
With the Hamiltonian (47.108) we derive the Heisenberg equations for the condensate
respecting the commutation rules (47.103) 16,

˙̂
ψ2 = − ı

ℏ (Ĥcm + ℏω0)
˙̂
ψ2 +

ı
ℏ d̂

+ · ˆ⃗E+ψ̂1 (47.109)

˙̂
ψ1 = − ı

ℏĤcm
˙̂
ψ1 +

ı
ℏ d̂
− · ˆ⃗E−ψ̂2 .

15Or, by defining the Rabi frequency g1 generated by a single photon, Hint =

−ıℏg1â
∫
d3rψ̂†2(r)e

ık·rψ̂1(r) + h.c..
16In the first quantization, these equations would simply be the equations of motion for the am-

plitudes of the fundamental and excited states.



2760 CHAPTER 47. INTERACTIONOF BOSE-EINSTEIN CONDENSATESWITH LIGHT

We transform to the non-rotating coordinate system by ψ̃2 ≡ ψ2e
ıωt and

˜⃗E+ ≡ ˆ⃗E+eıωt
introducing the detuning ∆ ≡ ω − ω0:

∂tψ̃2 = ı(∆− 1
ℏĤcm)ψ̃2 +

ı
ℏ d̂

+ · ˜⃗E+ψ̃1 . (47.110)

Making the adiabatic approximation ∂tψ̃2 = 0 and disregarding the external degree
of freedom, Ĥcm = 0, we obtain,

ψ̃2 =
ıd̂+ · ˜⃗E+

ℏ∆
ψ̃1 . (47.111)

47.4.1.2 Heisenberg equation for the light field

Similarly, we can write the Heisenberg equation for the light mode,

dâ

dt
=
ı

ℏ
[H, â] = −ıωâ+ ı

√
ω

2ε0V

∫
êke
−ık·r ·

(
d̂+ψ̂†2ψ̂1 + d̂+ψ̂†1ψ̂2

)
d3r . (47.112)

The integration of this gives the distribution of the fields (incident and scattered),
such that,

˜⃗E+(r) = ˜⃗E+in(r) +
∫
K(d, r− r′)ψ̂+

1 (r
′)ψ̂1(r

′)d3r′ , (47.113)

with the kernel:

K(d, r) =
1

4πε0

[
k2(R× d)×Re

ıkR

R
+ [3R(R · d− d)]

(
1

R3
− ık

R2

)
eıkR

]
.

(47.114)
We focus on the first term dominating in the far-field, and neglect the second term
by letting R ≈ r− êR ·r′ and R̂ ≈ r. We also define ks ≡ kêR, and we only retain the
term of order 1/R. In this Born approximation for optically thin media, we obtain,

K(d, r) ≃ 1

4πε0

eikR

r
k2(r× r)× de−ıksr

′
. (47.115)

Figure 47.21: Scheme for the light scattering off a condensate.

47.4.1.3 Incident plane waves

When we now excite the condensate by a plane wave,

ˆ⃗E+in(r) = 1
2 ϵ⃗e

ık·r , (47.116)
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we derive in the Born approximation of the equation (47.113):

˜⃗E+s (r) =
1

4πε0

eıkR

r
k2r× (r× d̂−)

∫
e−ıksr

′
ψ̂†1(r

′)ψ̂2(r
′)d3r′ , (47.117)

and from this the fluorescence spectrum.

47.4.2 STIRAP & adiabatic sweep

A frequent problem for experimenters is the need to transfer a magnetically trapped
atomic cloud from one Zeeman or hyperfine state to another. We will present here
two techniques called STImulated Raman Adiabatic Passage and adiabatic sweep.

47.4.2.1 Adiabatic sweep

To discuss the adiabatic sweep, we consider the example of a 87Rb cloud trapped in
the state |F,mF ⟩ = |2,−2⟩. The application of resonant radiofrequency radiation to
the transition |2,−2⟩-|2,−1⟩ also couples all other mF states and causes a diffusion of
the atomic populations toward an uncontrollable mixture of states. An alternative is
the application of a ramp sweeping the radiofrequency from red to blue (or vice versa).
Such a ramp is able to transfer the entire population toward the opposite Zeeman state
|2,+2⟩. To see this, we solve the Schrödinger equation, |ψ(t + dt)⟩ = eıH dt|ψ(t)⟩,
iteratively,

H =




0 1
2Ω 0 0 0

1
2Ω −∆ 1

2Ω 0 0

0 1
2Ω −2∆ 1

2Ω 0

0 0 1
2Ω −3∆ 1

2Ω

0 0 0 1
2Ω −4∆




. (47.118)

The initial population distribution is |ψ(t)⟩ =
(
1 0 0 0 0

)t
. Ω is the Rabi

frequency generated by the radiofrequency, ∆(t) is the instantaneous detuning. The
curves of Fig. 47.22 show the temporal evolution of populations |⟨k|ψ(t)⟩|2.

The disadvantage of this method is that only the external (fully stretched) states
|mF | = F can be interconverted.

47.4.2.2 Sweep through a dark resonance

To discuss STIRAP, let us think of how to transfer atoms from the state |1⟩ ≡ |2, 2⟩
to |2⟩ ≡ |2, 1⟩. The general idea consists in applying two radiation fields with Rabi
frequencies Ω13 and Ω23, tuned a bit out of resonance with an intermediate state |3⟩,
∆13 = ∆23 ̸= 0, in a counterintuitive pulse sequence. That is, the field Ω23 is applied
first and then adiabatically turned down, while the field Ω13 is ramped up. This
method is capable of transferring all atoms.

Considering the example of the preceding section, we will discuss here another
option (see Fig. 47.23). We consider continuous microwave fields with fixed tunings
∆13 to the red of the state |3⟩ ≡ |1, 1⟩ state. Now, we apply a ramp to the second
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Figure 47.22: (code) Adiabatic sweep through the ground state 87Rb F = 2. The Rabi

frequency is Ω = (2π)8 kHz. The frequency ramp is ∆(t) = t
tm

(2π)50 kHz with tm = 10 ms.

The red line shows the evolution of the population in the state |2,−2⟩, the green line of state

|2,+2⟩, and the blue line is the sum of the populations of all other states.
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Figure 47.23: STIRAP.

microwave field ∆23, such that the two radiation fields, at some point, cross the
Raman resonance, for example,

νmw1 = νhf + 3νzm +∆13 and νmw2(t) = νhf + 2νzm +∆23(t) . (47.119)

The evolution of the populations can be simulated by iterative solution of the Schrödinger
equation, |ψ(t+ dt)⟩ = eiH dt|ψ(t)⟩ with,

Ĥ =




0 0 1
2Ω13

0 ∆23 −∆12(t)
1
2Ω23

1
2Ω13

1
2Ω23 ∆23


 . (47.120)

The initial population distribution is |ψ(t)⟩ =
(
1 0 0

)t
. The curves of Fig. 47.24

show the temporal evolution of the populations |⟨k|ψ(t)⟩|2.

47.4.3 Condensate in adiabatic potentials

Adiabatic potentials have already been introduced in Secs. 38.1.3 and 43.4.3. Here,
we will focus on the dynamics of condensed atoms in different states of electronic
excitation, when these states are subject to different potentials and radiation fields

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticSweepFive.m
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Figure 47.24: (code) STIRAP ramp through a dark resonance. Here, the Rabi frequencies

are Ω13 = Ω23 = 2π10 kHz. The frequency of the first microwave is ∆13 = (2π)10 kHz and

the frequency ramp of the second microwave is given by ∆23(t) =
2t−tm
tm

(2π)100 kHz, where

tm = 10 ms.

that can induce transitions between the states. In particular, we consider paramag-
netic atoms in different Zeeman states placed in inhomogeneous static magnetic fields
and subject to single-mode or multi-mode radiofrequency radiation fields [299]. To
simplify the problem, let us concentrate on two-level systems, e.g. a system with the
total spin F = 1

2 [1437], and only consider the one-dimensional case.

47.4.3.1 Coupled Gross-Pitaevskii equations

For a single atom the Hamiltonian is the one given in (38.13),

Ĥ(r) = |1⟩
(
1
2µBgFB(r)− 1

2ℏω
)
⟨1|+|2⟩

(
− 1

2µBgFB(r) + 1
2ℏω

)
⟨2|+|1⟩ 12ℏΩ⟨2|+|2⟩ 12ℏΩ⟨1| .

(47.121)
With the definition,

ψ̂k(r) ≡ ⟨k|ψ̂(r)⟩ , (47.122)

and the abbreviation ℏ∆(r) ≡ µBgFB(r)− ℏω(r) we proceed to the second quantiza-
tion via,

H =
∑

k ̸=m

∫
d3r ψ̂†k

[−ℏ2∇2

2m
+ 1

2ukkψ̂
†
kψ̂k +

1
2uk,mψ

†
mψ̂m

]
ψ̂k

+
[
(−1)k ℏ

2∆(r)ψ̂†kψ̂k +
ℏ
2Ω(r)(ψ̂

†
kψ̂m + ψ†mψ̂k)

]
. (47.123)

The total energy of the system is the sum of the energies of the individual conden-
sates (kinetic, potential, and collisional interaction) plus the interspecies collisional
interaction energy. The coefficients ukl = 4πℏ2akl/m with the scattering lengths akl
govern the impact of the collisions.

The interaction with the radiofrequency field leads to Rabi oscillations with fre-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_StirapSweep.m
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quency Ω 17 The tuning of the radiofrequency depends on the position, due to the
non-homogeneous Zeeman shift ∆. Also, to simplify the model, we assume ukl = 0
for k ̸= l,

Ĥ =
∑

k ̸=m

∫
d3r ψ̂†k

[−ℏ2∇2

2m
+ 1

2ukkψ̂
†
kψk

]
ψk+

[
(−1)k ℏ

2∆(r)ψ̂†kψ̂k +
ℏ
2Ω
(
ψ̂†kψm + ψ̂†mψ̂k

)]
.

(47.124)
From the Heisenberg equations of motion for the field operators of the matter wave
and the light, we obtain [1437],

ı
˙̂
ψ1 = − 1

ℏ [Ĥ, ψ̂1] =
δĤ

ℏδψ̂†1
=

(−ℏ2∇2

2m
+ u11ψ̂

†
1ψ̂1 − ℏ

2∆(r)

)
ψ̂1 +

ℏ
2Ωψ̂2 (47.125)

ı
˙̂
ψ2 = − 1

ℏ [Ĥ, ψ̂2] =
δĤ

ℏδψ̂†2
=

(−ℏ2∇2

2m
+ u22ψ̂

†
2ψ̂2 +

ℏ
2∆(r)

)
ψ̂2 +

ℏ
2Ωψ̂1 .

The adiabatic potentials follow from a point-wise diagonalization of the Hamiltonian,
assuming that the atomic movement evolves in sufficiently small steps.

47.4.3.2 One-dimensional case

The reduction of the dimensionality of the Gross-Pitaevskii equation is shown in
Sec. 48.1. Applying this to our case, we consider a one-dimensional potential V (r) =
V (z) and assume condensates being radially homogeneous within the radial diameter
rh. In this case, we can neglect the radial kinetic energy. As normalization then
requires,

∫ rh

−rh

∫ rh

−rh

∫ ∞

−∞
|ψ̂(r)|2d3r = (2rh)

2

∫ ∞

−∞
|ψ̂(z)|2dz = 1 , (47.126)

replacing ψ̂(r) = ϕ̂(z)
2rh

and gkk = ukk

(2rh)2
, the Gross-Pitaevskii equation and the nor-

malization condition adopt a particularly simple form,

ıℏ
∂

∂t
ϕ̂(z) =

(
− ℏ2

2m

∂2

∂z2
+ Vtrap(z) +Ng1D|ϕ̂(z)|2

)
ϕ̂(z) . (47.127)

The coupled equations are now,

ı
˙̂
ϕ1 =

(−∂2z
2m

+ g11ϕ̂
†
1ϕ̂1 −

m

4
ω2
zz

2 − 1
2∆0

)
ϕ̂1 +

1
2Ωϕ2 (47.128)

ı
˙̂
ϕ2 =

(−∂2z
2m

+ g22ϕ̂
†
2ϕ̂2 +

m

4
ω2
zz

2 + 1
2∆0

)
ϕ̂2 +

1
2Ωϕ̂1 .

with, ∫ ∞

−∞
|ϕ̂1(z)|2 + |ϕ̂2(z)|2dz = 1 . (47.129)

This set of equations can be solved numerically by first identifying the ground state
using the ’steepest descent’ method and then propagating it in real time while slowly
varying ∆(r, t) or Ω(t).

17We are neglecting the possibility, that the coupling force may, in principle, be inhomogeneous,
if the orientation of the magnetic field is not uniform.
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Figure 47.25: (code) Two coupled condensates.

47.4.3.3 Damping

A heuristic way of introducing damping could be as follows: We write down the
condensate velocity field as,

mv(r, t) = ℏ
ϕ̂∗(r, t)∇ϕ̂(r, t)−∇ϕ̂∗(r, t)ϕ̂(r, t)

2ın(r, t)
, (47.130)

and subject it to a friction force,

Efr = −γrv . (47.131)

The problem with the coupled GPE approach is that in the absence of damping
any even small modification of the coupling triggers collective oscillations, so that
the ground state is not found. A numerical method to minimize the total energy
cannot be used, because the minimum is the untrapped state, so that all atoms are
lost. It seems that a master equation approach is necessary to introduce damping.
An alternative (but cheap) way is the following. The coupled GPEs were written in
the dressed states basis. Thus, if the Rabi frequency is strong enough to completely
decouple the dressed states, the dressed states represent good quantum numbers, and
the GPEs are appropriately written in a diagonal basis, i.e. the GPEs decouple on
adiabatic potentials 18,

Vad,k(z) = −(−1)k
1

2

√
ℏ2Ω2 + [µBgFB(z)− ℏω]2 , (47.132)

and we obtain,

ı
˙̂
ϕk =

(−∂2z
2m

+ Vad,k(z) + gkkϕ̂
†
kϕ̂k

)
ϕ̂k . (47.133)

47.4.3.4 Observations

An interesting question is, whether BECs trapped at different antinodes will syn-
chronize their phases. Traditionally, BECs mutually influence their de Broglie waves

18Gravitation can be included by Vad,k(z) → Vad,k(z) +mgz.
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either by colliding or by some kind of coherent coupling, e.g. Josephson tunneling or
radiative coupling of internal or motional states. Sound propagation through a stand-
ing wave requires tunneling. It cannot propagate if the potential is too deep. Then
excitations stay local. Is it possible to translate the ring cavity coupling mechanism to
the quantum regime of Bose-condensates confined to different antinodes? By analogy
to the classical situation, one expects the de Broglie wave to correlate. In the matter
wave language we would say, that the BEC wavefunctions transfer their excitations
via the standing wave, i.e. they share a common excitation energy via the exchange of
phonons. In the presence of a dissipation mechanism (e.g. via cavity cooling, by fric-
tion with a thermal cloud, etc.), which carries away the excess entropy, the excitations
will damp [632]. This means the condensates mutually adjust and synchronize their
phases. It is worth noticing, that the BEC will merge although they might be trapped
at very distant locations, were coupling by tunneling is prohibited. Cavity-mediated
cooling in ring cavities is known to damp essentially the center-of-mass motion. The
relative motion of the trapped particles is damped on a much longer time-scale. In
the case of BECs, however, the situation is different from the single-particle case: The
strong motional correlations within a BEC, we have to treat them like a single parti-
cle. Since BECs trapped at different antinodes are likely to have different sizes, they
also have different collective secular frequencies. Therefore the center-of-mass motion
and the relative motion of different BECs periodically exchange kinetic energy, which
leads to an indirect cooling also of the relative motion. TOF interference experiments
can reveal phase differences [663].

47.4.3.5 Microwave and radio frequency spectra

For an irradiated magnetic field Brf (t) = Brf êrf cosωt the coupling matrix element
is,

ℏΩ =
1

4
µBgF (Brf × êz)

√
F (F + 1)−mF (mF ± 1) . (47.134)

With Pin = 35 dBm coupled into the microwave, typically Pout = 200 W are ra-
diated [385]. At the atomic location, at a distance of r = 30 cm, we get Brf =√
µ0P/4πcr2 = 8.6 mG, and thus expect Ω ≲ (2π) 1 kHz. Typical measured Rabi

frequencies are 7.6 kHz. Let us count with the 5 kHz in the following. For an irradi-
ated power of +27 dBm we may get some Ω = 2π × xxx kHz.

To estimate the chemical potential, we use the Thomas-Fermi approximation,

2µ = ℏωho
(
15Na

aho

)2/5

, (47.135)

where ωho ≡ (ω2
rωz)

1/3 and aho =
√
ℏ/mωho is the size of the ground state of the

Ioffe trap. For N = 1 × 105 condensed atoms, we expect 2µ ≈ 20ℏωho ≈ h × 8 kHz.

The Thomas-Fermi radius is Rtf =
√
2µ/mω2

trap ≈ 4.5 µm. Note that this is not too

far from a 1D situation defined by ωr ≪ µ ≪ ℏωz (or equivalently az ≫ ξ ≫ ar).
The radio frequency ωrf is resonant over the range from µBB0/ℏ to µBB0/ℏ+µ. The
radio frequency is resonant in the range ℏω = U( gω2

x
± Rtf , 0), i.e. over an interval

ℏ∆ω = 2mgRtf ≈ h× 20 kHz [154].
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47.4.4 Exercises

47.4.4.1 Ex: Output coupler for trap extraction applications

Write down, in second quantization, the Hamiltonian of a condensate trapped in a
harmonic potential and couple it to a free condensate. Simulate the coupled GPEs.

Solution:

47.4.4.2 Ex: Gravitational acceleration in radio frequency combs

The first scenario is to observe Bloch oscillations in a radio frequency lattice due to
gravitational acceleration. In order to obtain an equidistant lattice, we chose small
magnetic offset fields leading to steep constant gradients. For example for ωn+1−ωn =
2π×4 kHz, B0 = 0.16G, ∇xB = 140G/cm and Ω = 2π×1 kHz, we get d ≈ 0.6µm and
Vad = h × 1 kHz ≈ 0.7Er [299]. The velocity acquired by gravitational acceleration

Ioffe trap

B-field offset             B 0 = 0.16 G

Radial frequency           ω
y
/2π = 950 Hz

Axial frequency            ω
z
/2π = 50 Hz

Radial B-field gradient    b
y
 = 149.0009 G/cm

Axial B-field gradient     b
z
 = 7.8422 G/cm

Chemical potential         μ/h = 8.0832 kHz

Gravitational sag          y
sag
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Figure 47.26: (code) (a) Two-dimensional cut through a Ioffe trapping potential with B0 =

0.16G, ωr/2/π = 950Hz, and ωz/2/π = 50Hz. (b) Vertical cut through the Ioffe trap

without (dashed line) and with gravity (solid line). The range over which the BEC can be

excited is the shaded area, the upper limit of which corresponds to the chemical potential

µ/h = 4kHz with N = 106 condensed atoms.

in a field-free case along one lattice period is vgr = dt =
√
2ad ≈ 3.5mm/s. The

atoms are Bragg-reflected when the acquired velocity matches the Bragg condition
vbrg ≈ 7.5mm/s, which occurs after a time t = vbrg/a ≈ 0.8 ms. The secular frequency
of the potential sites is,

ωho =
2µBgF by√

2mℏΩ
. (47.136)

For by = 140G/cm and Ω = 2π × 1 kHz we expect ωho ≈ 2π × 6.3 kHz.

Solution: The gravitational potential difference over a single lattice period, ∆Egrav =
mgd ≈ h × 2.1 kHz, is on the same order of magnitude as the first Bloch band [30].
The solid state approach introduces Bloch bands [cf. Fig. 47.28(a)], If the Bloch states
are characterized by |n, q(t)⟩. The mean velocity is,

⟨v⟩n(q(t)) =
1

ℏ
dEn(q(t))

dq
(47.137)
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Figure 47.27: (code) (a) Adiabatic potentials for the F = 2 hyperfine state without gravity.

Two frequencies are irradiated at ωn/2π = 30, 90 kHz with Ω/2π = 1kHz. (b) Upper

adiabatic potential without and with gravity and ωn/2π = (6+3n) kHz with Ω/2π = 1kHz.

(c) Periodic potential with the lattice constant d and the modulation depth Vad. The different

shape of the lattice comes from the fact that in (a,b) we are still in the flat harmonic part

of the potential.

with
q(t) = q(0) +mat/ℏ , n (47.138)

where a = g. The velocity thus exhibits an oscillatory time dependence shown in
Fig. 47.28(b). Our goal is to observe these oscillations in a radio frequency lattice
in order to use them as a tool for probing and characterizing this lattice. For this
purpose we produce a 87Rb BEC, keep the rf-shield on. Irradiate additional rf- or
mw-radiation and wait for a time t. Then we switch off the magnetic field and do
time-of-flight imaging. We expect periodic change of the velocity acquired during the
irradiation time. This velocity vn(t) influences the falling distance at time-of-flight,

s(t, ttof ) =
a

2
t2tof + vn(t)ttof . (47.139)

For small velocities vn(t) ≈ 1 mm/s, the displacement vn(t)ttof may be barely visible.
There are however problems: 1. High loss rates due to collisions and Majorana spin-
flips limit the lifetime. 2. The fast down-ramping makes that the BEC is not in
equilibrium. We observe interference fringes, which do not result from rf. 3. Switch-
off problems giving rise to Majorana losses, when a magnetic zero is swept across
the BEC. This makes nice Stern-Gerlach pictures. Nevertheless, we see BEC pulses
outcoupled by rf, falling the gravitational field. The critical point of the experiment is
probably the adiabatic transfer of the atoms into the lattice. It is possible to ramp the
rf power, but not the frequency. In exchange, we can ramp the magnetic field offset
which allows us to tune the resonant locations. The grating should be switched on or
ramped in slowly to guarantee that the BEC completely goes to the lowest band.

47.4.4.3 Ex: Egg-shell trap and frustrated outcoupling

It is at first sight counterintuitive that non-resonant frequency components, i.e. fre-
quency components which would not couple the atoms to other Zeeman states, never-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticpotsTrapDressed.m
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Figure 47.28: (code) (a) Lattice potential without gravity. The shaded areas denote the

Bloch bands in position space. The parameters are taken from Fig. 47.27. The corresponding

lattice constant is d = 0.6 µm and the potential depth is Vad = 1.2Er. (b) Bloch bands in

momentum space (solid lines). The dotted lines represent expected energy levels in the

harmonic approximation. The dashed line show the free particle case. (c) Mean velocity.

(d) Bloch bands in momentum space (solid lines). The dotted lines represent expected energy

levels in the harmonic approximation. The dashed line show the free particle case.

theless contribute to generate an adiabatic potential. In order to test this, we image
the following second scenario. This scenario is to make an rf-knife as for evapora-
tion or atom lasing. Then irradiate rf component slightly higher then the first one.
In the adiabatic picture the outcoupling should be stopped. On the other hand, if
the frequencies are too close (like degenerate) this picture cannot be true. Where is
the limit? This is an additional limitation for the smallness of the lattice constant:
VStark,1 ≪ |µBgFB − ℏω2|. States should couple unperturbed potentials to avoid
interferences, i.e. ???

Solution: The radiofrequency is ramped from −40 kHz (red) to +40 kHz (blue),
then a Stern-Gerlach experiment is performed, and finally time-of-flight images are
taken. To understand the observed images, we have to proceed in several steps. 1. The
Rabi frequency is estimated by comparing the speed with which other Zeeman states
are populated with Schrödinger equation simulations of an adiabatic transfer due to
the frequency ramp. It is Ω ≈ 2π × 1 kHz. 2. The time-of-flight duration is easily
calibrated by comparison with in-situ images. 3. The Stern-Gerlach force is easily
calibrated by comparing the behavior of mF = 0 and mF ≥ 1 atoms. The impact of
gravity during the trapping period is seen by comparing the behavior of mF = 0 and
mF ≥ 1 atoms. As soon as mF ≤ −1 atoms are produced, these anti-trapped atoms

are accelerated away from the Ioffe trap, which we describe as B =
√
B2

0 + b2yy
2, with

the force −∂yµBgFmFB(y) = −µBgFmF b
2
yy/
√
B2

0 + b2yy
2, where by = 140G/cm plus
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Figure 47.29: (code) (a) Adiabatic potentials. (b) Downramping B0.

gravity. We thus have to solve the differential equation,

ẏ = v (47.140)

v̇ =
−µBgFmF b

2
yy

m
√
B2

0 + b2yy
2
+ g .

for different atoms labelled k produced at time tk with the initial conditions y(tk) ≈ 0
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Figure 47.30: (code) (a) Evolution of the populations of the five Zeeman states. The adia-

batic ramp is performed in 1 ms.

and ẏ(tk) = 0. 2. The Stern-Gerlach acceleration is due to residual magnetic field
gradients during the trap switch off. Therefore, the direction of the Stern-Gerlach
force, −∇µBgFmFBSG(y, z) = −µBgFmFbSG, is not controlled (but nevertheless
reproducible). The final values of the Ioffe trap acceleration period are used as starting
conditions for the equation,

ẏ = v (47.141)

v̇ =
−µBgFmF bSG,y

m
.

4. And finally, time-of-flight,

s =
g

2
t2ToF + vtToF . (47.142)
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticpotsTrapRamp.m


47.4. CONDENSATES IN ELECTRONICALLY EXCITED STATES 2771

The easiest way to handle these equations is numerical iteration.

47.4.4.4 Ex: Optical dipole trap with 1D gradients from Ioffe wires

The third scenario consists in the generation of steep 1D magnetic field gradients
is most convenient with microtraps [1348]. On the other hand, we wish to expose
an elongated atomic cloud to a 1D periodic potential. To separate the trapping
potential from periodic potential to be probed by the atoms, let us consider 1 µK
cold 87Rb atoms stored in an optical dipole trap with radial secular frequencies of
ωr = (2π) 1 kHz and an axial frequency of ωr = (2π) 10Hz. The thermal cloud is
then z̄ =

√
kBT/mωz ≈ 160µm long and has a radial size of z̄ ≈ 1.6µm. Let us also

assume that the magnetic field gradient is provided by two parallel current-carrying
wires running perpendicularly to the dipole trap axis (see scheme of Fig. 47.31).

Solution: We simulate,
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Figure 47.31: (code) (a) Scheme of dipole trap and magnetic fields. (b) Magnetic field. (c)

Gradient.

47.4.4.5 Ex: Multiple BECs coupled by radiation via GPEs

Programs on multiple BECs coupled by radiation via GPEs.

Solution: Before doing GPE simulations, do adiabatic ramp to check appropriate
parameters. Some literature [316, 1007, 30, 155, 154, 295, 625, 988, 850, 284, 1437,
1438]. Look up Numerical Recipes Chapter 16.1.

• AdiabaticBecCoupled: coupling with anti-trapped state.

• AdiabaticBecCoupled1: phase separation of two-species BECs due to repulsive
interaction.

• AdiabaticBecCoupled2: trapped BECs, Euler agorithm.

• AdiabaticBecCoupled2b:trapped BECs, 4th order Runge-Kutta algorithm.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_CondExcit03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticpotsTrapWire.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_AdiabaticpotsTrapWire.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_.pdf
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• AdiabaticBecCoupled2c:atom laser, compare pure and dressed states.

• AdiabaticBecCoupled3: with gravity, watching dressed and bare states.

• AdiabaticBecCoupled4: five level system.

Comments: Runge-Kutta does not improve a lot. Seems like the way Ψ converges for
r →∞ makes the change; take larger intervals or suppress Ψ at ∞.

47.5 Interaction between condensates and optical
cavities

In 47.4.1 we have set up the many-body Hamiltonian (47.108) describing the inter-
action of a matter wave (treated in mean-field approximation) with an incident light
field. We emphasized the role of photonic recoil in (47.231). In the following sections
we aim at applying this theory to the particular case of atoms interacting with two
counterpropagating modes of an optical ring cavity. The system has already been
studied in Chp. 42 in the context of CARL, where the atomic motion, as well as the
light fields, have mostly been treated classically.

CARL is based on a coherent redistribution of photons between the two coun-
terpropagating modes of a moving standing light wave mediated by atoms which
are located in the mode volume. Cooperative Compton scattering induces a collec-
tive atomic recoil and a self-bunching of the atoms, which results in an exponen-
tial gain for the optical mode receiving the scattered photons. The recent observa-
tion of the MWSR [649] in a BEC raises the question about an ultra-cold version
of CARL [918, 617]. In MWSR the long coherence time of a BEC establishes a
strong correlation between subsequent elastic Rayleigh scattering events mediated
by very stable quasi-particle excitations. The feedback of these excitations on the
laser creates an exponential gain for the optical mode receiving the scattered photons
[650, 305, 173, 775, 918, 917, 749, 651, 650].

We have discussed the classical CARL earlier in the superradiant as well as the
good-cavity regime. We have also generalized the problem to the case of quantized
atomic motion (see Sec. ??) and to quantized radiation fields (see Sec. ??). The
internal states were always adiabatically eliminated. In the following, we will fully
quantize the bosonic atomic particle field.

The advantages of this second quantization is that interatomic interactions, quan-
tum fluctuations, and decoherence of the matter wave can be taken into account.
Various proposals have been made focusing on either one of the above three aspects.
Fundamental aspects of the BEC-in-a-cavity-system lead into two directions: 1. quan-
tum synchronization and 2. quantum correlations.

The system under consideration is a BEC of two-level atoms with transition res-
onance frequency ω0 trapped in an external magnetic trap, located inside the mode
volume of a ring cavity and interacting with its light modes. The atomic field opera-
tors obey the commutation relations,

[ψ̂k(r), ψ̂
†
m(r′)] = δkmδ

(3)(r, r′) (47.143)

[ψ̂k(r), ψ̂m(r′)] = 0 = [ψ̂†k(r), ψ̂
†
m(r′)] ,
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where k,m = 1, 2 label the internal state of the atoms. In general, the light field
consists of only two counterpropagating monochromatic modes with Rabi frequencies
2gâ†±â±. Choosing the coordinate system properly, we can set the wavevectors of
the modes as k+ · êr = kẑ = −k− · êr. The second-quantized Hamiltonian is a
generalization of (42.4),

H = Hatom +Hatom−atom +Hatom−cav + Ĥcav + Ĥlaser−cav , (47.144)

where,

Hatom =

∫
d3rψ̂†1(r)

(
p̂2

2m
+ V1(r)

)
ψ̂1(r)

+

∫
d3rψ̂†2(r)

(
p̂2

2m
+ V2(r)−∆a

)
ψ̂2(r)

Hatom−atom =
∑
i=1,2

∫
d3rψ̂†i (r)ψ̂

†
i (r)

uii

2 ψ̂i(r)ψ̂i(r)

+

∫
d3rψ̂†1(r)ψ̂

†
2(r)

u12

2 ψ̂2(r)ψ̂1(r)

Hatom−cav =
∑
± gâ±

∫
d3rψ̂†2(r)e

±ıkzψ̂1(r) + h.c.

Ĥcav = −∑±∆câ
†
±â±

Ĥlaser−cav = −∑± ıη±(â± − â
†
±)

, (47.145)

with uij ≡ 4πℏ2as,ij/m.
Various approximations can be made depending on the subject of interest. For

example, if only one cavity mode, â+, is strongly pumped, such that the field becomes
intense, we may remove the term Ĥlaser−cav and describe the field mode classically
by a Rabi frequency Ω. The interaction between the pump mode and the cavity is
then, Ĥatom−pump = ℏΩ

2 e
−ıω2t

∫
d3rψ̂†2(r)e

ıkẑψ̂1(r) + h.c..
A talk on this subject is available at (watch talk).

47.5.1 Ideal gas Hamiltonian after adiabatic elimination

Assuming the light fields to be tuned far from resonance we disregard spontaneous
emission, as explained in Sec. 42.1.2, and adiabatically eliminate the internal states,
as shown in Sec. 42.1.3 [1051, 278]. On the other hand, we treat the light field
and the atomic motion in second quantization. The canonical way to describe a
BEC interacting with two optical modes â± is to second-quantize the single-particle
Hamiltonian (42.26),

H ≃
∫
d3rψ̂†(r)

(
p̂2

2m
+ Vtrap(r) +

u

2
N̂(r)

)
ψ̂(r) + (N̂U0 −∆c)

∑

±
â†±â±

+ U0â
†
+â−

∫
d3rψ̂†(r)e−2ıkzψ̂(r) + h.c.− ı

∑

±
η±(â± − â†±)

,

(47.146)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/UltracoldFusion
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where ψ̂(r) is now the ground-state wave function of the matter wave, u = 4πℏ2as/m
in the mean-field approximation and,

U0 =
g2

∆a
, (47.147)

when the mode to mode coupling strength. This adiabatically approximated Hamil-
tonian looks very similar to (42.26).

47.5.2 Expansion into momentum states

It is useful to convert the Hamiltonian to momentum space via a plane wave expansion
of the BEC according to (45.70),

ψ̂(r) =
√

V
(2π)3

∫
ĉqe

ıq·rd3q with [âq, âq′ ] = δq,q′ . (47.148)

The conversion of that Hamiltonian part Hbec to momentum space has been demon-
strated in (45.78),

Hbec =
∑

q

q

2m
ĉ†qĉq +

∑

q,q′

ĉ′†qVq′,qĉq +
u

2

∑

q,q′,q′′

ĉ†qĉ
′†
q ĉ
′′
qĉq + q′ − q′′ . (47.149)

The light field part Ĥcav remains unchanged and the atom-light interaction becomes
using (47.3),

Hbec−cav = U0

∫
ψ̂†(r)â†+â−e

−ı(k+−k−)·rψ̂(r)d3r + h.c. (47.150)

= ıℏU0â
†
+â−V

∫ ∫
ĉ†(q′)ĉ(q)δ3(q− q′ − 2kêz)d

3qd3q′ = U0â
†
+â−

∑

q

ĉ†q−2kĉq .

All in all,

H =
∑

q

q2

2m
ĉ†qĉq +

∑

q,q′

ĉ†q′Vq′,qĉq +
u

2

∑

q,q′,q′′

ĉ†qĉ
†
q′ ĉq′′ ĉq+q′−q′′

+ (N̂U0 −∆c)
∑

±
â†±â± + U0â

†
+â−

∑

q

ĉ†q−2kĉq − ı
∑

±
η±(â± − â†±)

.

(47.151)

The BEC-CARL equations of motion are readily obtained from the Heisenberg
equations,

ı
dĉp
dt

= [ĉp,H] =
q2

2m
ĉp +

∑

q

Vp,qĉq + u
∑

q,q′

ĉ†qĉq′ ĉq−q′+p + U0â
†
+â−ĉp+2k + h.c.

ı
dâ±
dt

= [â±,H] = (N̂U0 −∆c)â± + U0â∓
∑

q

ĉ†q∓2kĉq + ıη± . (47.152)
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47.5.2.1 Discretization of the momentum space

Assuming the BEC to be initially at rest with 0 temperature, its momentum state can
be written as ĉ0. And if the dynamics only involves the z-axis, then all momentum
states are separated by multiples of 2ℏk, such that we may replace the labeling by
integer numbers: ĉq → ĉn. We get,

H =
∑

n

n2q2

2m
ĉ†nĉn +

∑

n,n′

ĉ†n′Vn′,nĉn +
u

2

∑

n,n′,n′′

ĉ†nĉ
†
n′ ĉn′′ ĉn+n′−n′′ (47.153)

+
∑

±

(
N̂U0 −∆c

)
â†±â± + U0â

†
+â−

∑

n

ĉ†n−1ĉn + h.c.− ıη±(â± − â†±) .

Neglecting the external trapping potential and collisions the Heisenberg equations for
the field and the atomic motion now read,

dĉn
dt

= −ı[ĉn,H] = −ı
n2k2

2m
ĉn + U0â

†
+â−ĉn+1 + h.c. (47.154)

dâ±
dt

= −ı[â±,H] = (N̂U0 −∆c)â± + U0â∓
∑

n

ĉ†n∓1ĉn + ıη± .

These equations look identical to those found in (42.160).

47.5.3 Damping of BECs in cavities

Horak et al. [634] treat the BEC as an entity, as if is was located at a single antinode.
They find that excitations can be damped. Local phase shifts in a BEC give rise
to excitations. How about if the phase shift occurs only at a spatially well-defined
location, i.e. at a specified antinode? Following [632, 633] in the Lamb-Dicke limit only
low-lying modes are damped. Higher-order modes are damped via self-interaction and
trap anharmonicity.

47.5.3.1 Self-consistent ground state

There is no entanglement if the field is too strong |α|2 ≫ 1. If the internal states
can be adiabatically eliminated, the basic equations now read (use UN ≡ NU0) with
u = 4πℏ2as/m,

d

dt
α±(t) = −[κ− ı∆c + ıUN ]α±(t)− ıUN ⟨e∓2ıkẑ⟩α∓(t) + η± (47.155)

ıℏ
d

dt
ψ(z, t) =

[
p̂2

2m
+ ℏU0

∣∣α+(t)e
ıkz + α−(t)e

−ıkz∣∣2 + u|ψ(z, t)|2
]
ψ(z, t) ,

where ⟨e∓ıkẑ⟩ =
∫
ψ∗(z, t)e∓ıkẑψ(z, t)dz. The wavefunction is scaled such that

∫
|ψ|2d3z =

N .
If we assume that the cavity field adiabatically follows the BEC, α̇± = 0,

α±(t) = η±
κ− ı∆c + ıUN − ıUN ⟨e−2ıkẑ⟩

(κ− ı∆c + ıUN )2 +N2U2
0 ⟨e2ıkẑ⟩⟨e∓ıkẑ⟩

. (47.156)
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The equations are solved self-consistently, i.e. we start from trial field and wavefunc-
tion,

α±(0) ≡ η± , ψ(0) ≡ e−x
2

|e−x2 | . (47.157)

Then the potential is calculated, for example,

V =

{
U0|αeıkx + βe−ıkz|2 for |z| < zmax

2η2 for |z| > zmax
(47.158)

Then the groundstate wavefunction ψ is found by iterating Eq. (47.155)(b) with the
method of steepest descent,

H = − ℏ2

2m
∇2 + V +Nu|ψ|2 (47.159)

ψ(t+ dt) =
ψ(t)(1− ℏ−1H dt)

|ψ(t)(1− ℏ−1H dt)| .

The solution is used to calculate ⟨e∓ıkẑ⟩ and α±. If the laser is locked to resonance,
we can use ∆c = UN . And now α± is used to calculate the potential in the GPE
again. This procedure is repeated until convergence.
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Figure 47.32: (code) BEC in a periodic potential. Shown is the potential V (x) and the

wavefunction ψ(x) with an offset corresponding to min(H). The normalization is z = z/aho,

(ψ/aho)
3/2.

Horak et al. [632] seem to believe that a BEC falling through a cavity field is
adiabatically transferred to the ground state. If the trap is deep, this must result in
trapping along the axial cavity direction.

Example 291 (Optimum cavity-finesse): Size in the Thomas-Fermi limit
V = 3×3×20µm3. The chemical potential is µ = h×3 kHz. The atom number
N = 105. Near the D2 line about 50 antinodes are filled with BEC.
In a simulation for cavity-damping Horak et al. [634] assumed N = 105, κ =
100ωr = 50ε, NU0 = 10κ, η2 = 20κNωr. With these parameters we expect for

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_BecStandingWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_BecStandingWave.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_BecStandingWave.m
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our system,

κ/2π = 700 kHz or F = 2400 (47.160)

∆a =
Ng2

10κ
= 2π × 1.4GHz

α+ =
η

κ
=
√
20000 or P = 17µW

γscat =
g2Γ

∆2
a

α2
+ = 600 s-1

U = ℏU04α
2
+ = ℏ10κ

105
80000 = 800ℏωr .

This is about two orders of magnitude too short.

As soon as the ground state is found, one may propagate the equations (47.155)
in real time with the Hamiltonian,

H =
p̂2

2m
+ U0|α±(t)eıkx + α∓(t)e

−ıkx|2 +Nu|ψ(x, t)|2 (47.161)

in the usual way. However, the subsystems may evolve on very different time-scales,
so that a scale separation, as done for (47.156) may be appropriate.

47.5.4 BECs in two internal states coupled by a cavity

A lossy cavity can act as an effective zero temperature reservoir. One possible imple-
mentation [663] realizes a three-level cycling scheme, with two BECs in two ground
states |g1⟩ and |g2⟩ coherently coupled by a two-photon transition (Raman-lasers or
microwave-radiofrequency combination). The ground states are additionally coupled
by an irreversible Raman transition via an intermediate spontaneously decaying level
|e⟩. One transition is not driven but stimulated by a ring cavity mode â.

�
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g �
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|1,-1�
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Figure 47.33: (code) (a) Level scheme with a microwave-driven hyperfine structure, a laser-

driven optical transition, and a cavity-enhanced Raman deexcitation. (b) Ring cavity used

for the experiment. (c) Scheme for coupling the Zeeman states |2, 1⟩ and |1,−1⟩ with a

two-photon transition in a magnetic trap.

The Hamiltonian consists of three parts, the BEC energy Hbec, the interaction
energy with the coherent coupling assumed to be classical Hcpl and the interaction

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionIdea.m
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with the mode of a ring cavity Hcav treated quantum mechanically (ℏ = 1),

H = Hbec +Hcpl +Hcav (47.162)

=

∫
d3r ψ̂†1

(
−∇2

2m + V + u11

2 ψ̂†1ψ̂1 +
u12

2 ψ̂†2ψ̂2

)
ψ̂1+

+

∫
d3r ψ̂†2

(
−∇2

2m + V + u12

2 ψ̂†1ψ̂1 +
u22

2 ψ̂†2ψ̂2

)
ψ̂2+

+

∫
d3r

(
−∆mwψ̂

†
1ψ̂1 +

Ωmw

2 ψ̂†1ψ̂2 + h.c.
)
+

∫
d3r

(
gcvâψ̂

†
1ψ̂2 + h.c.

)
−∆cvâ

†â .

The BEC energy consists of the two energies (kinetic, potential, self) of the individual
BECs and the cross-species interaction proportional to ukl = 4πℏ2akl/m. The interac-
tion energy with the classical microwave frequency (mostly we will assume ∆mw = 0)
leads to Rabi flopping with frequency Ωmw. Finally, the incident light field is treated
classically with a Rabi frequency Ωlf and a detuning ∆lf , while the cavity field is
treated quantum mechanically with a coupling constant Ωcv and a detuning ∆cv. The
irreversible coupling leads to an energy contribution where gcv ≡ ΩlfΩcv/2∆lf is the
two-photon Rabi-frequency if the auxiliary state is adiabatically eliminated. From the
Heisenberg equations of motion for the matter wave and the optical field operators
we obtain,

˙̂
ψ1 = ı[H, ψ̂1] = −ı

δH

δψ̂†1
(47.163)

= −ı
(−∇2

2m
+ V + u11|ψ̂1|2 + u12|ψ̂2|2

)
ψ̂1 − ı

(
Ωmw

2 + gcvâ
)
ψ̂2 − ı∆mwψ̂1 ,

˙̂
ψ2 = ı[Ĥ, ψ̂2] = −ı

δH

δψ̂†2

= −ı
(−∇2

2m
+ V + u12|ψ̂1|2 + u22|ψ̂2|2

)
ψ̂2 − ı

(
Ωmw

2 + gcvâ
†) ψ̂1 ,

˙̂a = ı[Ĥ, â]− κ
2 â = −ı δH

δâ†
− κ

2 â

= −ı
∫
d3r gcvψ̂1ψ̂

†
2 −

(
ı∆cv +

κ
2

)
â .

Example 292 (Single atoms in two states interacting with a cavity): As
a first example, we start from the matter wave Hamiltonian (47.162) for two
coupled BECs and neglect the center-of-mass motion (and consequence the con-
densate part, i.e. self-interaction, kinetic energy and the external potential).
Furthermore, we assume ψ̂i(r) = ĉiδ

3(r),

H = Hbec +Hclp +Hcav (47.164)

= −∆mw ĉ
†
1ĉ1 +

Ωmw
2
ĉ†1ĉ2 + gcvâĉ

†
1ĉ2 + h.c.−∆cvâ

†â .

Consequently, the Heisenberg equations of motion are simply,

˙̂c1 = −ı
(
Ωmw

2
+ gcvâ

)
ĉ2 − ı∆mw ĉ1 (47.165)

˙̂c2 = −ı
(

Ωmw
2

+ gcvâ
†
)
ĉ1

˙̂a = −ıgcv ĉ1ĉ†2 −
(
ı∆cv +

κ
2

)
â .
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Obviously, since the matter wave degree of freedom is ignored, the dynamics

only concerns the Bloch vector. Simulations of these equations are exhibited in

Fig. 47.34 and in movies that can be watched under (watch movie) and (watch

movie).
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Figure 47.34: (code) Bloch vector phase stabilization in the cavity. (a) Populations and (b)

coherences.

47.5.4.1 Phase description

If we replace all field operator ψ̂k and ĉ in the Eqs. (47.163) by c-numbers, we obtain a
set of three equations that can be simulated by numerical procedures. Obviously, the
equations then do not allow for quantum fluctuations and correlations. Furthermore,
by setting,

ψk(r, t) ≡
√
Nk(t)φ(r)e

ıΦk , (47.166)

where k = 1, 2 and φ is invariable and normalized to 1 =
∫
d3r |φ|2, we assume the

condensates can only vary global phases and atom numbers and not their shape or
local phases. Then, defining the chemical potentials as,

µk ≡
∫
d3r φ

(−∇2

2m
+ V + ukkNk|φ|2 + uklNL|φ|2

)
φ , (47.167)

and introducing new variables via Φ ≡ Φ1 − Φ2 and PΦ ≡ 1
2 (N2 −N1) we arrive at,

Φ̇ = µ2 − µ1 −∆mw −
2PΦ√
N1N2

Re
(
1
2Ωmw + gcvc

)
e−ıΦ

ṖΦ = −2
√
N1N2 Im

(
1
2Ωmw + gcvc

)
e−ıΦ

ċ = −ıgcv
√
N1N2e

ıΦ −
(
ı∆cv +

1
2κ
)
c

, (47.168)

as shown in 47.5.5.6.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AO_Radiation_FusionSingleatom_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AO_Radiation_Fusion_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Movies/AO_Radiation_Fusion_Movie.mp4
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionSingleatom.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionSingleatom.m
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47.5.4.2 Thomas-Fermi approximation

With N = N1 +N2 and u12 − u11 ≈ u22 − u12 difference of the self-energies is,

(µ2 − µ1) = [(u12 − u11)N1 + (u22 − u12)N2]

∫
d3r |φ|4 (47.169)

≃ (u12 − u11)N
∫
d3r |φ|4 .

The integral is on the order of 1, but to be more accurate, we integrate the square
of the Thomas-Fermi profile. This is an approximation, because the shape of the
Thomas-Fermi profile depends on the number of condensed atoms. On the other
hand, the approximation should be good when the mean-field energy is dominant.
The density distribution of a BEC with N atoms in the Thomas-Fermi approximation
is,

n =
1

u

(
µ− m

2
ω2
ρρ

2 − m

2
ω2
zz

2
)
, (47.170)

where u = 4πℏ2as/m and 2µ =
(
15u
4π Nm

3/2ω2
ρωz
)2/5

. The BEC shape function is
normalized. Hence,

∫
d3r |φ|4 =

1

N2

∫
dr n2 =

15

4Nus(ℏµ)5/2

∫
(ℏµρ̃2 − z̃2)2ρ̃dρ̃dz̃ = 4µ

7Nu
. (47.171)

Now, the equations to be simulated read,

Φ̇ =
u12 − u11

7uℏ
4µ−∆mw −

4PΦ√
N2 − 4P 2

Φ

Re
(
1
2Ωmw + gcvc

)
e−ıΦ (47.172)

ṖΦ = −
√
N2 − 4P 2

ΦIm
(
1
2Ωmw + gcvc

)
e−ıΦ

ċ = − ı
2gcv

√
N2 − 4P 2

Φe
ıΦ − (ı∆cv +

1
2κ)c .

Example 293 (Interpretation of the ultracold fusion via analogy with

two-level system): The chemical potential of the BECs in both states shifts

the energy levels up depending on the inversion, µ2−µ1 ∝ N2−N1. If the inver-

sion oscillates the spontaneous Raman cycle periodically meets resonance, and

takes place. Note that, since atomic motion is not considered, the energy gap

due to the finite cavity detuning can only be bridged in resonance, µ2−µ1 = κ.

Oscillation simulates Doppler shift of thermal motion in Doppler cooling. Ra-

man scattering takes the role of spontaneous emission in the cooling process.

The only role of the cavity is to introduce irreversibility. Raman scattering is

only supported in one direction: However, it is not relevant to have a ring cavity.

47.5.4.3 Basic Josephson junction (case i)

To gain an understanding of the Eqs. (47.168), let us treat some special cases. Let us
first assume the absence of a driven auxiliary level, Ωlf ,Ωcv, gcv = 0. If

√
N1N2 ≃ 1

2N ,
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the last equations read,

Φ̇ = µ2 − µ1 −∆mw −
2Ωmw
N

PΦ cosΦ (47.173)

ṖΦ =
NΩmw

2
sinΦ .

To be able to draw an analogy between our system and the equations describing
Josephson Junctions we set u11 = u22. This assumption is questionable as in reality
u11 < u12 < u22 and thus µ2−µ1 ∝ N rather than µ2−µ1 ∝ N2−N1. All conclusions
based on this approximation should be taken with great caution.

Setting
√
N1N2 ≈ 1

2N so that µ2−µ1 = (u11−u12)(N2−N1)
∫
dr |φ4(r)| = 2ℏUPΦ

and furthermore assuming ∆cv = 0 and PΦ ≪ N ,

Φ̇ = 2UPΦ , ṖΦ =
NΩ

2
sinΦ . (47.174)

These equations are formally identical to those describing a Josephson junction in a
superconductor, if we interpret Φ as the voltage across the junction and PΦ as the
Josephson current.

47.5.4.4 Resistively shunted Josephson junction (case ii)

With the same approximations as above, but now including a driven auxiliary level,
Ωlf ,Ωcv, gcv ̸= 0,

Φ̇ = 2UPΦ −
4PΦ

N
Re

(
1
2Ωmw + gcvc

)
e−ıΦ ≈ 2UPΦ (47.175)

ṖΦ = −NIm
(
1
2Ωmw + gcvc

)
e−ıΦ ,

ċ = − ı
2gcvNe

ıΦ −
(
ı∆cv +

1
2κ
)
c .

We adiabatically eliminate c to second order, i.e. c̈ = 0 ,

c̈ = 1
2gcvN Φ̇eıΦ −

(
ı∆cv +

1
2κ
) [
− ı

2gcvNe
ıΦ −

(
ı∆cv +

1
2κ
)
c
]
= 0 (47.176)

c =
−ıgcvNeıΦ
2ı∆cv + κ

− 2gcvN Φ̇eıΦ

(2ı∆cv + κ)
2 .

Finally,

1

2U
Φ̈ = ṖΦ =

NΩmw
2

sinΦ +
g2cvN

2κ

4∆2
cv + κ2

− 8g2cvN
2∆cvκ

(4∆2
cv + κ2)2

Φ̇ (47.177)

defining a fictive mass M , a friction coefficient ar and a force Fd by,

M =
1

2U
, ar =

8∆cvg
2
cvN

2κ

(κ2 + 4∆2
cv)

2
, Fd =

g2cvN
2κ

κ2 + 4∆2
cv

, (47.178)

we obtain

M Φ̈ + arΦ̇− 1
2ΩmwN sinΦ = Fd . (47.179)
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This equation describes the motion of a fictitious phase particle. Another application
of this equation is a pendulum driven by a tangential force, subject to friction and
to gravitation. It is also used to describe a phase-locked loop or a resistively shunted
Josephson junction. In the absence of the inertial term, i.e. in the overdamped case
we obtain the so-called Adler equation. The force can be derived from a potential.
One can also write down the kinetic and potential energies,

Ekin =
P 2
Φ

2M
= U Φ̇2 , V = FdΦ+

ΩmwN

2
cosΦ . (47.180)

The washboard type potential is shown in Fig. 47.35(d). Hence, from the Hamiltonian
H = Ekin + Epot, we recover the equation of motion (without dissipation) using the
Ehrenfest correspondences,

Φ̇ =
∂H

∂PΦ
= PΦ/M , ṖΦ = −∂H

∂Φ
= Fd − 1

2ΩmwN sinΦ . (47.181)

With PΦ = −ı∂/∂Φ we find the commutator,

[Φ, PΦ] = ı . (47.182)

Stationary solutions, Φ̇ = 0, occur at the phases,

Ωmw sinΦ = −2Fd
N

. (47.183)

Fig. 47.35(b) shows the range of possible Ω for which stable phases exist. In or-
der to check if the solutions are stable, we expand Φ ≡ Φ0 + Φ1 with Φ̇ = 0 and
sin (Φ0 +Φ1) ≈ sinΦ0 +Φ1 cosΦ0, and get in first order

arΦ̇1 −
ΩmwN

2
Φ1 cosΦ0 = 0 . (47.184)

The solution Φ1 ∼ eεt with ε = ΩN/2ar cosΦ0 is stable only if ε < 0, which requires
Φ0 < 3π/2 and excludes the upper half of the branch. For simulations,

Φ̇ = Ψ (47.185)

Ψ̇ = ΩmwNU sinΦ− 2UarΨ+ 2UFd

c =
−igNeıΦ
2iν + κ

− 2gN Φ̇eıΦ

(2iν + κ)
2 .

47.5.4.5 Stationary solutions of full model (case iii)

We now come back to the Eqs. (47.168). They read at steady-state using c = |c|eıΦC ,

µ1 − µ2

ℏ
+∆mw =

−2PΦ√
N1N2

Re
(
1
2Ωmw + gcv|c|eıΦC

)
e−ıΦ (47.186)

0 = Im
(
1
2Ωmw + gcv|c|eıΦC

)
e−ıΦ

(
ı∆cv +

1
2κ
)
|c| = −igcv

√
N1N2e

ı(Φ−ΦC) .
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Figure 47.35: (code) Simulation of the shunted JJ model Eq. (47.179). (a) Damping of the

phase difference. (b) Stable branch from a linear stability analysis. (c) Photon number in

the cavity from Eq. (47.172)(c). (d) Washboard potential for the fictitious phase particle.

Setting ∆mw = 0 and evaluating real parts and imaginary parts separately, we arrive
at,

µ1 − µ2

ℏ
=
−2PΦ√
N1N2

(
1
2Ωmw cosΦ + gcv|c| cos(ΦC − Φ)

)
(47.187)

0 = − 1
2Ωmw sinΦ + gcv|c| sin(ΦC − Φ)

1
2κ|c| = gcv

√
N1N2 sin(Φ− ΦC)

∆cv|c| = −gcv
√
N1N2 cos(Φ− ΦC)

and

µ1 − µ2

ℏ
=
−2PΦ√
N1N2

(
1
2Ωmw cosΦ− ∆cv|c|2√

N1N2

)
(47.188)

κ|c|2 = −Ωmw
√
N1N2 sinΦ(

∆2
cv +

1
4κ

2
)
|c|2 = g2cvN1N2

yielding

Ωmw sinΦ = −4Fd
√
N1N2

N2
, |c|2 =

4FdN1N2

κN2
(47.189)

and

Ωmw cosΦ = −
√
N1N2

PΦ

(µ1 − µ2)

ℏ
+

2∆cv|c|2√
N1N2

(47.190)

Ω2 =

(
4Fd
√
N1N2

N2

)2

+

(
2
√
N1N2U +

8∆cv

√
N1N2Fd

κN2

)2

identify a bistable region
This yields if initially N1 = N2 = 1

2N and ∆ = 0,

Ω sinΦ = −2Fd
N

, |c|2 =
Fd
κ

(47.191)

Ω2 =

(
2Fd
N

)2

+

(
NU +

4∆cvFd
κN

)2

,

which confirms Eq. (47.184).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ShuntedJosephson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ShuntedJosephson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_ShuntedJosephson.m
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47.5.4.6 Paradox with fixed atom numbers

According to Pitaevskii a phase synchronization requires the exchange of atoms. If
we knew the exact atom number in each well, the relative phases had to be uncertain.
This is how the Mott-Insulator works. If no atoms are exchanged by Josephson
tunneling, we could measure Nj , and due to cavity coupling still know that the phases
are fixed. Probably Pitaevskii is right: It makes no sense talking of the de Broglie
phases of BECs at different antinodes, if the BECs are not coherently coupled. The
cavity mode do not couple the de Broglie phases. If this is true, then a cavity standing
wave can support two ground state BECs without a fixed relationship between them.
Any phase difference between them turn into excitations only as soon as the BECs
are directly coupled.

How about there is some coherence in the atom numbers (spin squeezing) like in
the Mott insulator. Then coherence would reappear as the BECs are melted.

On the other hand, if the BEC would decouple, sound could not propagate. Is Nj
the right quantum number, shouldn’t we rather consider atom-photon correlations,
polaritons, or what? Also the notion of well-known or fixed atom numbers has to be
clarified, because their location may change due to the displacement of the standing
wave. For example, we could say: fixed atom number at a given location, having in
mind a device that constantly and non-destructively measures the number of atoms
within a well-defined area of space. Or we could say: fixed atom number in a given
antinode and imagine a system, which tracks the antinodes’ location and constantly
and non-destructively measures the number of atoms within this antinode. Also we
can imagine a Gedankenexperiment were exactly two BECs produced in different
vacuum chambers are trapped in different antinodes of the same ring cavity standing
wave.

47.5.4.7 Simulation of the 1D coupled GPE equations

Our goal is to directly simulate the complete set of coupled GPEs (47.166). We
will however assume that the intermediate state of the two-photon coupling can be
adiabatically eliminated and we will restrict ourselves to one dimension.

In order to go to 1D, we first calculate the chemical potential of a cylindrically
symmetric BEC. In the Thomas-Fermi limit,

n(r) =
µ− U(r)

u
, (47.192)

The chemical potential follows from the normalization condition,

N =

∫

n(r)>0

n(r)d3r =
4π

u

4

15

√
2µ5/2

m3/2ω2
rωz

. (47.193)

We obtain,

µ =

(
15Nu√
216π

m3/2ω2
rωz

)2/5

, (47.194)

with u ≡ 4πℏ2as/m. The radial size of the BEC follows from n(rhw, 0) =
n(0,0)

2 and
reads,

rhw =

√
µ

mω2
r

. (47.195)
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Often it is a good approximation to assume condensates which are radially ho-
mogeneous two-dimensional condensates over a width rhw. This may be the case for
pancake shape traps. In this case we may neglect the radial kinetic energy. Since the
normalization then requires,

∫ rh

−rh

∫ rh

−rh

∫ ∞

−∞
|ψ(r)|2d3r = (2rhw)

2

∫ ∞

−∞
|ψ(z)|2dz = 1 , (47.196)

by substituting ψ(r) = ϕ(z)
2rhw

and u1D = u
(2rhw)2 , the GPE and the normalization

condition adopts a particularly simple form,

ıℏ
∂

∂t
ϕ(z) =

(
− ℏ2

2m

∂2

∂z2
+ Vtrap(z) +N u1D|ϕ(z)|2

)
ϕ(z) . (47.197)

Now applying the Thomas-Fermi approximation for a harmonic potential, we get,

|ϕ(z)|2 =
µ− m

2 ω
2
zz

2

N u1D
. (47.198)

with,

µ =
(

9
32u

2
1DN

2mω2
z

)1/3
. (47.199)

47.5.4.8 Finding the ground state with steepest descent

Characteristic length scale z ∈ [−7µm, 7µm], radial trap frequency ωz = 2π · 40Hz,
potential,

V1 = V2 =
m

2
ω2
zz

2 . (47.200)

We start with Gaussian density distribution assuming that all atoms are inthe ground
state,

ψ =
e−z

2/2z2ho

√∫
e−z

2/z2hodz
, (47.201)

with zho =
√

ℏ/mωz.
In reality the BEC is rather in the Thomas-Fermi limit. To calculate this, we

propagate the one-dimensional GPE,
[−ℏ2
2m
∇2 + V (z) +Nu1D|ψ|2

]
ψ = ıℏ

d

dt
ψ (47.202)

in imaginary time in order to find the ground state. Here u1D = πℏ2as
mr2hw

. The resulting

wavefunction is our starting point for all subsequent simulations.

47.5.4.9 Coupled condensates with cavity, Runge-Kutta method

The interaction strengths for the states |2, 1⟩ and |1,−1⟩ are (u11, u12, u22) = (0.97, 1, 1.03)u1D.
We take the equations of [663]. Defining the following spinor,

Ψ ≡



ψ1

ψ2

c


 , (47.203)
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and writing the coupled GPE equations like,

K[Ψ] ≡ − ı
ℏ
dt




(
−ℏ2

2m ∇2 + V1 +Nu11|ψ1|2 +Nu12|ψ2|2
)
ψ1 + ℏ

(
Ωmw

2 + gcvc
)
ψ2 + ℏ∆mwψ1(

−ℏ2

2m ∇2 + V1 +Nu22|ψ2|2 +Nu12|ψ1|2
)
ψ2 + ℏ

(
Ωmw

2 + gcvc
∗)ψ1

ℏ
∫
gcvψ1ψ

∗
2dz + ℏ

(
∆cv − ıκ2

)
c


 ,

(47.204)
we can employ the forth-order Runge-Kutta method via,

δψa = K[Ψ] , δψ1 = K
[
Ψ+ 1

2δψa
]

, (47.205)

δψC = K
[
Ψ+ 1

2δψ1

]
, δψd = K [Ψ + δψC ]

Ψ = ψ1 +
δψ1a

6
+
δψ1b

3
+
δψ1c

3
+
δψ1d

6
.
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Figure 47.36: (code) Ramsey cycle with intermediate cavity damping.

Even though better than the Euler method, the Runge-Kutta method diverges too
fast, and especially the calculation of the gradient is too slow.

47.5.4.10 Coupled condensates without cavity, time-splitting spectral al-
gorithm

An alternative method is the time-splitting spectral algorithm, which is more robust
for trap oscillation, because it accepts periodic boundary conditions. Write the one-
dimensional GPE in the form,

ıℏ
∂ψ(x, t)

∂t
= − ℏ2

2m
∆ψ(x, t) + V (x)ψ(x, t) +N

4πℏ2as
m(2rhw)2

|ψ(x, t)|2ψ(x, t) (47.206)

for a < x < b. Choose periodic boundary conditions, ψ(a, t) = ψ(b, t) and ψx(a, t) =
ψx(b, t). Various methods are known to solve the GPE numerically, such as the Crank-
Nicholson algorithm. The time-splitting spectral algorithm consists in solving the first
and the second of the following equations in two distinct steps [85, 84, 83, 486],

∂ψ(x, t)

∂t
= −ıV (x)

ℏ
ψ(x, t)− ıN u1D

ℏ
|ψ(x, t)|2ψ(x, t) (47.207)

∂ψ(x, t)

∂t
= ı

ℏ2

2m
ψxx(x, t) ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_Fusion.m
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i.e. we discretize in space using x = a + j(b − a)/M and k = 2πl/(b − a) such that
k(x− a) = 2πlj/M . We propagate half the way, ∆t/2, in time,

φx ≡ e−
ı
ℏ (V (x)+u1D|ψ(x,t)|2)∆t

2 ψ(x, t) (47.208)

for j = 0, ..,M−1. Now we propagate the spectral components, (Fφ)k ≡
∑M−1
j=0 φxe

−2πılj/M ,

in momentum space and transform back,
(
F−1φ

)
x
≡M−1∑M/2−1

l=−M/2 φke
2πılj/M ,

ϕx ≡ F−1
[
eı

ℏ
2mk2∆t(Fφ)k

]
. (47.209)

for l = −M/2, ..,M/2− 1. Finally, we propagate the remaining time, ∆t/2,

ψ(x, t+ dt) = e−
ı
ℏ (V (x)+u1D|ϕx|2)∆t

2 ϕx . (47.210)

Now we just have to generalize this method to coupled GPEs. We simplify the

notation by writing the wavefunction as a spinor, ψ⃗ ≡
(
ψ1

ψ2

)
. Now the non-kinetic

part of the coupled GPE can be written,

∂ψ⃗(x, t)

∂t
=Mψ⃗(x, t) (47.211)

with the matrix,

M =

(
− ı

ℏV (x)− ı
ℏu1D|ψ1(x, t)|2 − ı∆mw − ı

2Ωmw

− ı
2Ωmw − ı

ℏV (x)− ı
ℏu1D|ψ2(x, t)|2

)
(47.212)

and the solution
ψ⃗(x, t) = eMtψ⃗(x, 0) . (47.213)

Let us now abbreviate the matrix by,

M =

(
A B

B D

)
. (47.214)

The matrix is diagonalized with the unitary transforms,

U =
1√
2∆

(
A−D
2B +∆ A−D

2B −∆

1 1

)
and U−1 =

1√
2∆

(
1 −A−D2B +∆

−1 A−D
2B +∆

)
.

(47.215)
The eigenvalue matrix is,

U−1MU =

(
E1 0

0 E2

)
(47.216)

with E1,2 = 1
2A+ 1

2D±B∆. Here we used the abbreviation ∆ =

√(
D−A
2B

)2
+ 1. The

formal solution now reads,

ψ⃗(x, t) = exp

[
U

(
E1 0

0 E2

)
U−1t

]
ψ⃗ = U

(
eE1t 0

0 eE2t

)
U−1ψ⃗(x, 0) . (47.217)
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This formula can easily be computed, because the block matrices of transform U are
diagonal in x.

The next step is to propagate the spectral components in momentum space inde-
pendently for both states and transform back,

ϕx1 ≡ F−1
[
eı

ℏ
2mk2∆t (Fφx1)k

]
(47.218)

ϕx2 ≡ F−1
[
eı

ℏ
2mk2∆t (Fφx2)k

]
.

Finally, we propagate the remaining time, ∆t/2, using the same procedure as above.
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Figure 47.37: (code) Rabi flopping with oscillating BEC.

47.5.4.11 Experimental realization

To implement the proposed scheme, we need two stable ground states, e.g. hyper-
fine states coupled by a microwave radiation. The low field seeking states of 87Rb,
|2, 2⟩ and |1,−1⟩, cannot be coupled by a microwave single-photon transition, nor by
an optical two-photon transition. Furthermore, those states have different magnetic
trapping strength, which would reduce the spatial overlap of the clouds. There are
two options to circumvent the problem. Either, we transfer the atoms into an optical
trap and apply a magnetic offset field. In this case we could use for example the
|2,−1⟩ and |1,−1⟩ states and couple them by a microwave single photon transition.
Or we transfer the atoms to a superposition of the low field seeking states |2, 1⟩ and
|1,−1⟩. These states must then be resonantly coupled with a two-photon transition,
i.e. combination of a microwave and a radiofrequency. This is the option pursued in
our approach.

47.5.4.12 Preparation of the system

We start from an experimental setup used for the first studies of condensates inter-
acting with resonators [1217]. Atoms are trapped and precooled in magneto-optical
traps and then transferred via several intermediate traps to a Ioffe type magnetic
trap. Here a cloud of typically N = 2 · 105 87Rb atoms is Bose-condensed by forced
evaporation in the |2, 2⟩ hyperfine state.

Trap frequencies for atoms in the |mF | = 2 states are measured to be in radial
direction ωr = 2π ·281 Hz and in axial direction ωz = 2π ·41.3 Hz. In |mF | = 1 states
they are smaller by a factor of

√
2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_BecCoupling_TimeSplitSpectral.m
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47.5.4.13 Transfer of the atoms to the cavity mode

Due to a misalignment of the Ioffe wires with respect to the cavity mode a large
transverse homogeneous magnetic field must be applied ... compensation coils ...
current stabilization of Agilent supply. A TEM00 mode of the cavity is permanently
driven by a light field. In order to minimize heating and losses due to Rayleigh
scattering [224], the BEC is moved around, between and into the center of the lobes
of the TEM00 intensity distribution.

47.5.4.14 Transfer from |2, 2⟩ to |2, 1⟩

The atoms are transferred via the intermediate |1, 1⟩ state by means of two successive
adiabatic microwave sweeps. The duration of both sweeps is ∆t = 600 µs. Their
frequency span is ∆ν = 800 kHz. The efficiency for the transfer is about 80% and
heats the atomic cloud considerably. The populations of the various Zeeman states
are probed using the Stern-Gerlach technique.

The Rabi frequency of the microwave is determined by varying the sweep time,
measuring the transfer efficiency and fitting a Landau-Zener formula. The resulting
microwave Rabi frequency is Ωmi = 2π · 72 kHz. The adiabatic transfer achieved
with the frequency sweeps can be described and simulated with three-level Bloch and
Schrödinger equations.

47.5.4.15 Two-photon coupling |2, 1⟩ to |1,−1⟩

We label the interesting states |2⟩ ≡ |2, 1⟩ and |1⟩ ≡ |1,−1⟩. The hyperfine structure
splitting is νhf = 6 834 682 610.904 30 Hz, Zeeman-shift of the resonance frequency
according to the Breit-Rabi formula νzm = −4 kHz. The resonance frequency is at
νeg = νhf + νzm.
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Figure 47.38: (code) (a) Frequency difference between |2, 1⟩ and |1,−1⟩ as a function of

magnetic field.

The two-photon transition uses |i⟩ ≡ |2, 0⟩ as an intermediate state. The detuning
from this intermediate state is typically ∆is = ±2π · 200 kHz. The measured total

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_BreitRabi.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_BreitRabi.m
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Rabi frequency is then Ωmw =
ΩmiΩrf

2∆is
= 2π · 720 Hz. From this we derive the

radiofrequency Rabi frequency, Ωrf = 2π · 4 kHz.

47.5.4.16 Imaging

The populations of both states are measured independently by time-of-flight absorp-
tion imaging. First, a vertical probe beam resonant to the transition between the
S1/2, F = 2 levels and the P1/2, F

′ = 3 levels records the population in state |e⟩. Then,
a laser beam resonant to the repumping transition from S1/2, F = 1 to P1/2, F

′ = 2
pumps the |1⟩ atoms into the S1/2, F = 2 levels, where they are imaged by a horizon-
tal probe beam. This allows us to measure the populations Nk/(Ne +Ng) with low
noise. Purging pulse???

47.5.4.17 Rabi flopping and excitation spectra

With three-level Bloch or Schrödinger equations we can simulate the Rabi flopping
of the populations and the excitation spectra. However, we experimentally observe
damping of the coherence that is not understood within the three-level model. They
do not arise from the presence of the intermediate state |i⟩, which is not populated
during the interaction. To understand the damping we have to take into account
spatial inhomogeneities and interatomic interaction in the condensate.

47.5.4.18 Collapse and revival

We observe collapse and revivals.

47.5.4.19 Mean-field effects

The triplet scattering length of 87Rb is as = 99aB . The scattering lengths for the
useful low field seeking hyperfine states are a|1,−1⟩ = 1.03as, a|1,−1⟩|2,1⟩ = as, and
a|2,1⟩ = 0.97as. Because a|1,−1⟩|2,1⟩/

√
a|1,−1⟩a|2,1⟩ ≈ 1.0005 > 1 the BECs in the two

hyperfine states tend to demix [575].19

Raised questions:

1. Why is it important that the chemical potential and any magnetic field fluctu-
ations are small compared to the cavity linewidth, µ,∆B(t)≪ κ?

2. The large impact of the ring cavity seems surprising in view of the poor cavity
to free space ratio?

3. Why does it have to be a ”ring” cavity? Only to prevent the spatial structuring
of the BEC at the antinodes?

4. There are two phases, the de Broglie phase of the atomic motion (external
degree) of freedom and the Bloch vector phase of the electronic motion (internal
degree of freedom). Which one synchronizes? Both? Cool the atomic motion
via dissipation of internal energy.

19Note that Jaksch et al. assume a11 = a22 = 103aB .
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47.5.4.20 Laser locking scheme

The cloud can be overlapped with the modes of a ring cavity with finesse F = 150000,
which corresponds to the cavity linewidth κ = 2π × 10 kHz. The cavity has the
coupling strength gcv = 2π × 80 kHz.

An antenna couples a microwave frequency ωmw into the cloud. The frequency is
adjusted to resonance with the Zeeman-shifted hyperfine splitting, such that ωmw =
ωhf + ωzm = ω|2 1⟩ − ω1 −1⟩ +

1
2µBBoffset. A titanium-sapphire laser at λ = 797 nm

with frequency ω11 is tightly phase-locked to a TEM11 mode using the Pound-Drever-
Hall method. This laser continuously probes the cavity during a whole experimental
cycle. An AOM driven with a radiofrequency ωao shifts the laser frequency to ωpp =
ω11 + ωao. This frequency pumps the atoms transversally to the ring cavity’s optical
axis. The AOM frequency is chosen such, that the Raman condition is fulfilled with
the next but one cavity mode, i.e. ωpr + δκ = ω11 +2δfsr = ωmw +ωpp. Additionally,
the pump frequency is modulated creating sidebands at the frequency ωeo = ωpr+δκ,
which are resonant with the next but one cavity mode in order to probe right detuning.

EOM

TiSa

AOM

�mw

�pp �11 �pr

��

�eo

�11

�ao

�pp

�mw

�eo

�pr
�ao

�zm

�� fsr

�hf

Figure 47.39: (code) (a) Laser locking scheme for ring cavity-assisted cycling. (b) Level

scheme.

The Rabi frequency of the Raman laser ωpp can be tuned over wide ranges, as well
as its detuning from the auxiliary level. For example with Ωlf = Γ = 2π × 6 MHz
and ∆lf = 10Γ = 2π × 30 GHz the light-shift is g = ΩlfΩcv/2∆1f = 2π × 10 Hz.

Consequently, the Raman coupling strength is
√
Ng.

47.5.4.21 Time sequence

Let us now design the sequence and timing of a possible experiment. 1. Preparation
of a BEC inside the Ioffe wire trap. 2. Transfer to |21⟩ via |11⟩. 3. Irradiation of a
two-photon microwave π/2 pulse coupling the |21⟩ and |1− 1⟩ states. 4. Attenuated

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionScheme.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_CavityFusionScheme.m
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irradiation of the two-photon microwave frequency and transversal irradiation of an
external light field. 5. Phase-interferometry.

47.5.4.22 Phase measurement

To prove the fusion of the two BECs, it is necessary to measure the evolution of their
relative phase under the influence of the ring cavity-assisted cycling scheme. Internal
state Ramsey interferometer with BECs have been demonstrated [574]. We use the
definition of the two-species one-body density matrix,

ρkl(x,x
′) ≡ ⟨ψ̂†l (x′)ψ̂k(x)⟩ ≃

√
NlNkφ

∗(x′)φ(x)eıΦk−ıΦl (47.219)

and at x = 0,

ρ12(0, 0) =
√
N1N2|φ(0)|2eıΦ (47.220)

ρkk(0, 0) = Nk|φ(0)|2 .

The fringe visibility is,

v(x) =
2|ρ12(x,x)|

ρ11(x,x) + ρ22(x,x)
(47.221)

and at x = 0,

v(0) =
2
√
NlN2

Nl +N2
=

√
1− 4P 2

Φ

N2
. (47.222)

Probably one has to average over several initial phase randomly distributed over [0, 2π]
[663].

47.5.4.23 Undamped Josephson coupling

The basic equations for a Josephson type coupling of a BEC in two states are [1377],

ı

(
Ψ̇1

Ψ̇2

)
=

(
H0

2 +HMF
2 − δ

2 Ω

Ω H0
1 +HMF

1 + δ
2

)(
Ψ2

Ψ1

)
. (47.223)

From this follows with Nij =
∫
dzΨ∗i (z)Ψj(z),

Ṅ2 = −ıΩ(N21 −N12) (47.224)

Ṅ1 = +ıΩ(N21 −N12)

Ṅ21 = −ıδN21 + ıΛ(t)− ıΩ(N2 −N1) .

Here,

Λ(t) = −2z0
∫
dz zΨ∗2(z)Ψ1(z)

︸ ︷︷ ︸
+

∫
dz(HMF

2 −HMF
1 )Ψ∗2(z)Ψ1(z)

︸ ︷︷ ︸
. (47.225)

The first term in Λ(t) comes from the different positions of the two condensates and
is neglected here. The second term results from the mean-field energy difference. It
would vanish, when the scattering lengths would be the same for both states, because

HMF
2 −HMF

1 = (λ22 − λ21)|Ψ2|2 − (λ11 − λ21)|Ψ1|2 . (47.226)
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We now make the ansatz,

Ψj(z, t) =
√
Ni(t)e

ıϕi(t)Φi(z) . (47.227)

Here, we allow the phase and the atom number to evolve in time, while the spatial
evolution is separated. In Ref. [?] this spatial modulation is neglected!

By plugging into (1) we obtain the following equation of motion,

η̇ = −k(1− η2)1/2 sinϕ (47.228)

ϕ̇ = −[(µ2 − µ1)− δ] + kη(1− η2)−1/2 cosϕ .

with

η =
N2 −N1

N
=

2

N
PΦ (47.229)

ϕ = ϕ2 − ϕ1

k = 2Ω

∫
dzΦ2(z)Φ1(z)

︸ ︷︷ ︸
1

= 2Ω .

Comparison with Ref. [?] yields (setting the cavity coupling to zero, g = 0):

2

N
ṖΦ = −2Ω(1− 4

N2
P 2
Φ)

1/2 sinϕ (47.230)

ṖΦ = −(N2 − 4P 2
Φ)

1/2Im (
1

2
Ωe−ıϕ) .

This coincides except for a factor of − 1
2 ,

ϕ̇ = −[(µ2 − µ1)− δ] + kη(1− η2)−1/2 cosϕ (47.231)

ϕ̇ = −[µ2 − µ1 − δ] + 4Ω
PΦ√

N2 − 4P 2
Φ

cosϕ

ϕ̇ = µ2 − µ1 − δ −
4PΦ√

N2 − 4P 2
Φ

Re (
1

2
Ωe−ıϕ) .

This coincides except for a factor of − 1
2 in the last term.

47.5.4.24 Analytic estimations

Using Eq. (47.179) we calculate the friction coefficient ar = 56, the force Fd = 1125ω
and the critical Rabi frequency 2Fd/N = 0.38ω. Let us pick a point out of the
stable branch in Fig. 47.35(b), for Φ = 1.25ω we obtain from Eq. (47.184) Ω =
−2Fd sinΦ/N = 0.27ω. The stationary photon number in the cavity is then obtained
from the first Eq. (47.188), |c|2 = Fd/κ = 28.

For an atom number N = 6000 and a mean density of n = 1.8 × 1014 cm3 the
selfenergy is NU = 0.2ω ≈ h× 44 Hz and the mass of the phason is M = (2U)−1 =
15000ω−1. The real atom number will probably be 50 times higher.
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Figure 47.40: (code) Numerical simulation of the semiclassical two-mode model (47.172).

Time-dependence of (a) the relative phase, (b) the particle number difference, (c) the light

in the resonant cavity mode, and (d) the particle numbers in both modes. The parameters are

∆mw = 0, Ωmw = 2π×5 kHz, ∆lf = −2π×20 GHz, Ωlf = 2π×6 MHz, and ∆cv = ∆mw−κ/2.
(e) Fringe visibility.

47.5.4.25 Arrays of coupled Josephson junctions

One-dimensional arrays of coupled Josephson junctions have been realized with stand-
ing wave dipole beams [240]. By combining this idea and the internal states JJs it
may be possible to realize two-dimensional arrays of couples JJs. Is this useful for
quantum computing?

Imagine a standing wave, where one or more antinodes are filled each one with two
BEC species, i.e. BECs in different hyperfine levels. We couple the two levels with
Raman beams. The question is now, whether the ring cavity damping mechanism
allows to unite the BECs within every well. The idea of [663] of coupling via an
auxiliary level is replaced by the ring cavity cooling mechanism?

47.5.5 Exercises

47.5.5.1 Ex: BEC damping in cavities

Programs on BEC damping in cavities.

Solution: BecStandingWave1: periodic potential, steepest descent, then free expan-
sion.
BecStandingWave2: periodic potential, shifted after some time, shows Blochbands.
BecCavity0: Horak et al. PRA 61, 033609.
BecCavity1: steepest descent self-consistent with two stationary ring-cavity field modes.
BecCavity2: steepest descent self-consistent with two stationary ring-cavity field modes,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionJosephson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionJosephson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionJosephson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionJosephson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Radiation_FusionJosephson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_.pdf
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Figure 47.41: (a) Idea for a possible implementation of a 2D network of Josephson junctions.

correct norm, correct scaling.
BecCavity3: steepest descent followed by real-time propagation self-consistent with two
stationary ring-cavity field modes.
BecCavity4: steepest descent propagation self-consistent with two time-dependent ring-
cavity field modes.
BecCavity5: steepest descent self-consistent with two stationary ring-cavity field modes,
correct norm, correct scaling to wavelength.
BecCavity5b: real-time self-consistent with two stationary ring-cavity field modes, cor-
rect norm, correct scaling to wavelength.

47.5.5.2 Ex: Second-quantized CARL equations

Calculate the commutators [ψ̂j(r),H] and [â±,H], whereH is the Hamiltonian (47.145)

and ψ̂1 and ψ̂2 the ground and excited state wave functions, respectively.

Solution: Using the commutation rules (47.143) we immediately find, ignoring col-
lisions,

[ψ̂1(r),Hbec] =
(−∇2

2m
+ V1(r)

)
ψ̂1(r)

[ψ̂2(r),Hbec] =
(−∇2

2m
+ V2(r)−∆a

)
ψ̂2(r)

[ψ̂1(r),Hatom−cav] =
∑

±
gâ†±ψ̂2(r)e

∓ıkz

[ψ̂2(r),Hatom−cav] =
∑

±
gâ±ψ̂1(r)e

±ıkz

[â±,Hatom−cav] = g

∫
d3rψ̂2(r)e

∓ıkzψ̂†1(r)

[â±,Hcav] = −∆câ±
[â±,Hlaser−cav] = ıη± .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl01.pdf
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47.5.5.3 Ex: Second-quantized adiabatically approximated CARL Hamil-
tonian

a. Derive the adiabatically approximated CARL Hamiltonian in second quantization.
b. Derive the CARL equations of motion from the adiabatically approximated Hamil-
tonian in second quantization.
c. Show that the derived Hamiltonian simplifies to (42.26) in the single atom limit.

Solution: a. With the results derived in Exc. 47.5.5.2 the Heisenberg equation of
motion for the excited state field operator reads,

0
!
= ı

dψ̂2(r)

dt
= [ψ̂2(r),H]

=

(−∇2

2m
+ V2(r)−∆a

)
ψ̂2(r) +

∑

±
gâ±ψ̂1(r)e

±ık±·r .

We neglect the kinetic and potential energy of the center-of-mass motion, which are
small compared to ∆a, and resolve for ψ̂2,

ψ̂2(r,∞) =
g

∆a

(
â+ψ̂e

ıkr + â−ψ̂e
−ıkr

)
,

where we simplified the notation by setting ψ̂ ≡ ψ̂1. We insert this result into the

contributions to the Hamiltonian (47.145) containing ψ̂2,

Hatom =

∫
d3rψ̂†(r′)

(
p2

2m
+ V (r)

)
ψ̂(r′) +

∫
d3rψ̂†2(r

′)

(
p2

2m
+ V (r)−∆a

)
ψ̂2(r

′)

≃ Hbec +
g2

∆2
a

∫
d3r

(
â†+ψ̂

†e−ıkr + â†−ψ̂
†eıkr

)
(−∆a)

(
â+ψ̂e

ıkr + â−ψ̂e
−ıkr

)
= Hbec −NU0

(
â†+â+ + â†−â−

)
− U†0 â+â−

∫
d3rψ̂†e−2ıkrψ̂ − U0â+â

†
−

∫
d3rψ̂†e2ıkrψ̂ ,

and

Hatom−cav = g

∫
d3rψ̂†2(r

′)eıkrψ̂(r′)a+ + g

∫
d3rψ̂†2(r

′)e−ıkrψ̂(r′)â− + h.c.

= U0

∫
d3r

(
â†ψ̂†+ ψ̂ + â†−ψ̂ † e2ıkrψ̂

)
â+ + U0

∫
d3r

(
â†ψ̂†+ e−2ıkrψ̂ + â†−ψ̂ † ψ̂

)
â− + h.c.

= NU0

(
â†+â+ + â†−â−

)
+ U0â

†
+â−

∫
d3rψ̂†e−2ıkrψ̂ + U0â+â

†
−

∫
d3rψ̂†e2ıkrψ̂ + h.c.

= 2NU0

(
â†+â+ + â†−â−

)
+ 2U0a

†
+â−

∫
d3rψ̂†e−2ıkrψ̂ + 2U0â+â

†
−

∫
d3rψ̂†e2ıkrψ̂ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl02.pdf
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Finally,

H = Hatom +Hatom−cav +Hcav +Hlaser−cav

≃ Hbec + (N̂U0 −∆c)
(
â†+â+ + â†−â−

)

+ U0â
†
+â−

∫
d3rψ̂†e−2ıkzψ̂ + U0â+â

†
−

∫
d3rψ̂†e2ıkzψ̂ − ı

∑

±
η±(â± − â†±) .

This adiabatically approximated Hamiltonian looks very similar to (42.26).
b. The Heisenberg equations yield,

ı
dψ̂(r)

dt
= [ψ̂(r),H]

=

(
p̂2

2m
+ V (r) + un̂(r) + U0(â

†
+â+ + â†−â−) + â+â−e

−2ıkz + â+â−e
2ıkz

)
ψ̂(r) ,

and

ı
dâ±
dt

= [â±,H] = (NU0 −∆c)â± + U0â∓

∫
ψ̂†(r)e∓2ıkzψ̂(r)d3r + ıη± ,

c. The single atom limit can be expressed by
∫
d3rψ̂†(r)ψ̂(r) = 1.

47.5.5.4 Ex: BEC-CARL equations from the adiabatically approximated
CARL Hamiltonian

Derive the BEC-CARL equations from the adiabatically approximated CARL Hamil-
tonian (47.148).

Solution: The BEC-CARL equations are,

ıℏ
dψ̂(r)

dt
= [ψ̂(r),H]

=

(−ℏ2∇2

2m
+ V1(r) + ıℏU0(â

†
−e
−ık·r − â−eık·r) + ℏ(â†+â+ + â†−â−)U0

)
ψ̂(r)

ıℏ
dâ

dt
= [â,H]

= −ℏδ + ıU0

∫
d3rψ̂†1(r)e

−ık·rψ̂1(r) ,

where U0 ≡ g2/∆a.

47.5.5.5 Ex: Origin of quantum correlations

The BEC-CARL Hamiltonian has been shown to generate quantum correlations be-
tween optical and matter wave modes [918, 1036]. Discuss whether they are a many-
body effect (bosonic stimulation) or just due to coherences between motional states

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl04.pdf
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of single atoms.

Solution: CARL is not conditioned to bosonic stimulation and even works with
fermions. ???

47.5.5.6 Ex: Ultracold fusion

Derive from Eqs. (47.165) using the definitions (47.167) and (47.168) the Eqs. (47.168).

Solution: Substituting the definitions (47.167) into (47.165) we find,

√
N1φıΦ̇1e

ıΦ1 +
Ṅ1

2
√
N1

φeıΦ1 = −ı
(−∇2

2m
+ V + u11N1φ

2 + u12N2φ
2 + ℏ∆mw

)√
N1φe

ıΦ1

− ı
(
Ωmw
2

+ gcva

)√
N2φe

ıΦ2 (47.232)

√
N2φıΦ̇2e

ıΦ2 +
Ṅ2

2
√
N2

φeıΦ2 = −ı
(−∇2

2m
+ V + u22N2φ

2 + u12N1φ
2

)√
N2φe

ıΦ2

− ı
(
Ωmw
2

+ gcva
∗
)√

N1φe
ıΦ1

ȧ = −ı
∫
d3r gcv

√
N1N2φ

2eı(Φ1−Φ2) − (ı∆cv +
κ
2
)a .

We may eliminate the normalized wavefunction φ by multiplication it with φ and
integration

∫
d3r. Exploiting the definition of the chemical potential, we get,

N1ıΦ̇1 +
1
2Ṅ1 = −ı

(µ1

ℏ
+∆mw

)
N1 − ı

(
1
2Ωmw + gcva

)√
N1N2e

ı(Φ2−Φ1)

−N2ıΦ̇2 +
1
2Ṅ2 = ı

µ2

ℏ
N2 + ı

(
1
2Ωmw + gcva

)√
N1N2e

−ı(Φ1−Φ2)

ȧ = −ıgcv
√
N1N2e

ı(Φ1−Φ2) −
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The real parts of the sum 1
ıN1

(47.233)(a)+ 1
ıN2

(47.233)(b) and of the difference

(47.233)(b)−(47.233)(a) yield introducing Φ ≡ Φ1 − Φ2, PΦ ≡ 1
2 (N2 −N1),

Φ̇ =
µ2 − µ1

ℏ
−∆mw −

2PΦ√
N1N2

Re
(
1
2Ωmw + gcvc

)
e−ıΦ , (47.234)

ṖΦ = −2
√
N1N2Im

(
1
2Ωmw + gcvc

)
e−ıΦ

ċ = −ıgcv
√
N1N2e

ıΦ −
(
ı∆cv +

1
2κ
)
c .
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F. Riehle, Optical Ramsey Spectroscopy in a Rotating Frame: Sagnac Effect in a
Matter-Wave Interferometer [1095]DOI

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Radiation_BecCarl05.pdf
http://doi.org/10.1103/PhysRevLett.67.181


47.6. FURTHER READING 2799

M. Kasevich et al., Atomic Interferometry Using Stimulated Raman Transitions
[698]DOI

M. Kasevich, Measurement of the Gravitational Acceleration of an Atom with a
Light-Pulse Atom Interferometer [699]DOI

47.6.2 on BEC-light interaction

H.D. Politzer, Light incident on a Bose-condensed gas [1043]DOI

A. Görlitz et al., Enhancement and Suppression of Spontaneous Emission and Light
Scattering by Quantum Degeneracy [527]DOI

P.C. Bons et al., Quantum Enhancement of the Index of Refraction in a Bose-
Einstein Condensate [177]DOI

O. Zobay et al., Dynamics of matter-wave and optical fields in superradiant scattering
from Bose-Einstein condensates [1438]DOI

Y. Yoshikawa et al., Observation of Superradiant Raman Scattering in a Bose-
Einstein Condensate [1412]DOI

Y. Yoshikawa et al., Superradiant light scattering from thermal atomic vapors [1413]DOI

M.M. Cola et al., Theory of Collective Raman Scattering from a Bose-Einstein Con-
densate [282]DOI

M.M. Cola et al., Robust Generation of Entanglement in Bose-Einstein Condensates
by Collective Atomic Recoil [279]DOI

M.M. Cola et al., A Condensate in a Lossy Cavity: Collective Atomic Recoil and
Generation of Entanglement [280]DOI

M.M. Cola et al., Entanglement in a Bose-Einstein condensate by collective atomic
recoil [281]DOI

D.M. Stamper-Kurn et al., Spinor Condensates and Light Scattering from Bose-
Einstein Condensates [1238]DOI

D. Schneble et al., The Onset of Matter-Wave Amplification in a superradiant Bose-
Einstein-Condensate [1166]DOI

M.G. Moore et al., Quantum optics of a Bose-Einstein condensate coupled to a
quantized light field [920]DOI

M.G. Moore et al., Atomic Four-Wave Mixing Fermions versus Bosons [919]DOI

M.G. Moore et al., Optical control and entanglement of atomic Schroedinger fields
[918]DOI

W. Ketterle et al., Does Matter Wave Amplification Work for Fermions [713]DOI

N. Piovella et al., Quantum fluctuations and entanglement in the collective atomic
recoil laser using a Bose-condensate [1036]DOI

http://doi.org/10.1103/PhysRevLett.67.181
http://doi.org/10.1007/BF00325375
http://doi.org/10.1103/PhysRevA.43.6444
http://doi.org/10.1103/PhysRevA.63.041601
http://doi.org/10.1103/PhysRevLett.116.173602
http://doi.org/10.1103/PhysRevA.72.041604
http://doi.org/10.1103/PhysRevA.69.041603
http://doi.org/10.1103/PhysRevLett.94.083602
http://doi.org/10.1103/PhysRevA.70.045601
http://doi.org/10.1103/PhysRevA.70.043809
http://doi.org/10.1080/09500340410001664458
http://doi.org/10.1088/0953-4075/37/7/064
http://doi.org/
http://doi.org/10.1126/science.1083171
http://doi.org/10.1103/PhysRevA.60.1491
http://doi.org/10.1103/PhysRevLett.86.4199
http://doi.org/10.1103/PhysRevA.59.1754
http://doi.org/10.1103/PhysRevLett.86.4203
http://doi.org/10.1103/PhysRevA.67.013817


2800 CHAPTER 47. INTERACTIONOF BOSE-EINSTEIN CONDENSATESWITH LIGHT

D. Jaksch et al., Uniting Bose-Einstein condensates in optical resonators [663]DOI

S. Ritter et al., Dynamical Coupling between a Bose-Einstein Condensate and a
Cavity Optical Lattice [?]DOI

D. Schneble et al., Raman amplification of matter waves [1165]DOI

G.A. Prataviera et al., Trap environnement effects over quantum statistics and atom-
photon correlations in the collective-atomic-recoil laser [1050]DOI

S.A. Gardiner et al., Cavity-assited quasiparticle damping in a Bose-Einstein Con-
densate [490]DOI

P. Horak et al., Coherent Dynamics of Bose-Einstein Condensates in High-finesse
Optical Cavities [632]DOI

P. Horak et al., Dissipative Dynamics of Bose Condensates in Optical Cavities
[633]DOI

W. Ketterle et al., Collective Enhancement and Suppression in Bose-Einstein Con-
densates [709]DOI

W. Ketterle et al., Does Matter Wave Amplification Work for Fermions? [713]DOI

W. Ketterle, Comment on ’Electromagnetic Wave Dynamics in Matter-Wave Super-
radiant Scattering’ [708]DOI

http://doi.org/10.1103/PhysRevLett.86.4733
http://doi.org/10.1007/s00340-009-3436-9
http://doi.org/10.1103/PhysRevA.69.041601
http://doi.org/10.1103/PhysRevA.67.045602
http://doi.org/10.1103/PhysRevA.63.051603
http://doi.org/10.1103/PhysRevA.61.033609
http://doi.org/10.1103/PhysRevA.63.023603
http://doi.org/10.1063/1.1354359
http://doi.org/10.1103/PhysRevLett.86.4203
http://doi.org/10.1103/PhysRevLett.106.118901


Chapter 48

Bosons and fermions in
optical lattices and reduced
dimensions

48.1 Condensation in reduced dimensions

In highly anisotropic trapping potentials the behavior of condensates can be dra-
matically altered by freezing inaccessible dimensions. We consider, for example, a
condensate with the chemical potential µ trapped in the harmonic potential,

Vtrp =
∑

k=1,2,3

m
2 ω

2
kx

2
k . (48.1)

If one of the secular frequencies exceeds the chemical potential, ωk ≫ µ, the corre-
sponding degree of freedom is inaccessible to elementary excitations of the condensate
and can be regarded as frozen. We discuss, in the following, the cases of condensates
in one- and two-dimensional potentials.

48.1.1 Condensation in 1D

We first consider the case ωx, ωy ≫ ωz, such that the condensate is strongly com-
pressed in the radial direction (x and y), such that the condensate takes the shape
of a cigar. Then, deeply in the Thomas-Fermi regime, we can assume a radially
homogeneous density distribution, that is, we can make ansatz,

ψ̂(r) ≡ Cϕ̂(z) , (48.2)

where the constant is fixed by,
∫

R3

|ψ̂(r)|2d3r = C22πr2⊥

∫ ∞

−∞
|ϕ(z)|2dz = 1 . (48.3)

Requiring that the new one-dimensional wavefunction be normalized also, we conclude
C = (2πr2⊥)

−1/2. Inserting the ansatz (48.2) into the stationary Gross-Pitaevskii
equation we find immediately,

(
− ℏ2

2m

d

dz
+ Vtrp(z) +Ng1D|ϕ̂(z)|2

)
ϕ̂(z) = µϕ̂(z) , (48.4)
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where we introduced the abbreviation,

g1D ≡
g

(2rh)2
. (48.5)

This GPE describes a condensate called one-dimensional.
Now applying the Thomas-Fermi approximation to a harmonic potential, we ob-

tain,

|ϕ̂(z)|2 =
µ− m

2 ω
2
zz

2

g2D
. (48.6)

with
µ =

(
9
32g

2
2Dmω

2
z

)1/3
. (48.7)

48.1.2 Condensation in 2D

Now, we consider the case ωx, ωy ≪ ωz, such that the condensate is strongly com-
pressed in the axial direction (x and y), such that the condensate takes the shape
of apanqueca. Then, deeply in the Thomas-Fermi regime, we can assume a axially
homogeneous density distribution, that is, we can make ansatz,

ψ̂(r) ≡ Cϕ̂(x, y) , (48.8)

where the constant is fixed by,

∫

R3

|ψ̂(r)|2d3r = C22z⊥

∫

R2

|ϕ(x, y)|2dz = 1 . (48.9)

Requiring that the new one-dimensional wavefunction be normalized also, we con-
cludes C = (2z⊥)−1/2. Inserting the ansatz (48.2) into the stationary Gross-Pitaevskii
equation we find immediately,

(
− ℏ2

2m

d

dx
− ℏ2

2m

d

dy
+ Vtrp(x, y) +Ng2D|ϕ̂(x, y)|2

)
ϕ̂(x, y) = µϕ̂(x, y) , (48.10)

where we introduced the abbreviation,

g2D ≡
g

2z⊥
. (48.11)

This GPE describes a condensate called two-dimensional.
Now applying the Thomas-Fermi approximation to a harmonic potential, we ob-

tain,

|ϕ(x, y)|2 =
µ− m

2 ω
2
rr

2

g2D
. (48.12)

with

µ =
(g2D
π
mω2

r

)1/2
. (48.13)

We show a slightly stricter derivation of the results (48.4) and (48.10) in the
Exc. 48.1.4.1.
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48.1.3 Interacting gas in a cylindrical potential

Within a cylindrical potential V (r) = V (ρ, z) the wavefunction will be rotationally
symmetrical. With the replacement,

ψ(ρ, z, φ) ≡ ϕ(ρ, z)

ρ
, (48.14)

the Gross-Pitaevskii equation can be written in cylindrical coordinates as follows
[626],

iℏ
∂ϕ(ρ, z)

∂t
= − ℏ2

2m

[
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

1

ρ2
+

∂2

∂z2

]
ϕ(ρ, z)+Vtrap(ρ, z)ϕ(ρ, z)+g

|ϕ(ρ, z)|2
ρ2

ϕ(ρ, z) ,

(48.15)
with the normalization,

∫
|ψ(r)|2d3r = 2π

∫ ∞

−∞

∫ ∞

0

|ψ(r)|2ρdρdz = 2π

∫ ∞

−∞

∫ ∞

0

|ϕ(ρ, z)|2
ρ

dρdz = 1 .

(48.16)

48.1.4 Exercises

48.1.4.1 Ex: Derivation of the Gross-Pitaevskii equation in reduced
dimensions

In general, due to the nonlinear term in the Gross-Pitaevskii equation, the wavefunc-
tion can not be factorized. However, when the potential is extremely anisotropic, we
note that the dimensions of the wavefunction decouple: in the case of a cigar-shaped
condensate, the radial diameter does not depend on z and in the case of a pancake-
shaped condensate, the axial thickness does not depend on ρ.
Use this argument to derive the 1D and 2D Gross-Pitaevskii equations for cylindrical
harmonic potentials.

Solution: The Gross-Pitaevskii equation is in spherical coordinates,

[
− ℏ2

2m

(
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

)
+ V (ρ, z) + g|ψ̂(ρ, z)|2

]
= µϕ̂(ρ, z) .

With the given argument, we can make a separation ansatz,

ψ̂(r) ≡ ϕ̂ρ(ρ)ϕz(z) .

With this ansatz the GPE is,

− ℏ2

2m

1

ϕρ(ρ)

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
ϕρ(ρ)+

m

2
ω2
ρρ

2− ℏ2

2m

1

ϕz(z)

∂2

∂z2
ϕz(z)+

m

2
ω2
zz

2+g|ϕρ(ρ)ϕz(z)|2 = µ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Reduceddimensions_ReduceDimen01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Reduceddimensions_ReduceDimen01.pdf
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48.2 Tonks-Girardeau gas in 1D potentials

Preliminary investigations have been carried out on two-step condensation and re-
versible condensation [?]. Normal condensates in 3D have so strong interactions and
are trapped in so weak traps that ℏωtrap ≪ µ, which is equivalent to atrap ≫ ξ. One
may however realize very anisotropic traps where the above conditions are not satisfied
in some dimensions of space, for example in 1D one could think of ℏωz ≪ µ≪ ℏω⊥.
For n = 1014 cm−3 a typical values for the chemical potential is µ = gn = 2πℏ×800Hz.
Contrary to thermal gases which are always isotropic, the condensate freezes out of
the strongly confining dimensions [971, 1022, 536, 527, 200], i.e. the radial motion is
tightly confined to zero point oscillations.

One can define a 1D scattering length by,

a1D = −d
2
⊥
2a

(
1− C a

d⊥

)
, (48.17)

where C = −ζ( 12 ) ≃ 1.4603... and d⊥ =
√
ℏ/mω⊥,

g1D = − 2ℏ2

ma1D
=

g

πd2⊥ (1− Ca/d⊥)
, (48.18)

where g = 4πℏ2a/m. Introducing an effective scattering length aeff ≡ a(1−Ca/d⊥)−1,
we may write,

g1D =
4ℏ2aeff
md2⊥

. (48.19)

Or alternatively defining a 1D density via n1D ≡ πd2⊥n, we may write,

n1Dg1D =
gn

1− Ca/d⊥
. (48.20)

Such system are interesting for studying new phenomena like the expected phase do-
mains in quasi-condensates, the continuous cross-over of bosons to fermions in Tonks-
Girardeau gas [1312, 997, 998, 720]. Furthermore, some topological excitations are
predicted to be more stable in lower dimensions such as solitons ind 1D and vortices
in 2D.

Homogeneous BECs only exist in 3D. In 1D there is no finite transition temper-
ature. In trapped BECs however condensation can take place. For a 1D Bose gas
the degree of correlation depends on the ratio between the repulsive energy of uncor-
related atoms, Eunc = g1Dn1D, and the quantum kinetic energy needed to correlate
atoms by localizing them with respect to each other within the mean interparticle
distance d = n−11D, i.e. Ecor = ℏ2/2md2:

γ ≡ Eunc
4Ecor

=
mg1D
2n1Dℏ2

. (48.21)
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Or using the above relations,

γ =
2aeff
n1Dd2⊥

=
2aeff
πnd4⊥

(48.22)

according to the Lieb-Liniger model. When γ ≫ 1 the correlations overwhelm; it is
the Tonks-Girardeau regime or the regime of impenetrable bosons or fermionization.
In the other limit, γ ≪ 1, the mean-field regime, the GP equation is good.

For our lithium experiment, we have in the micro-trap for rubidium, ω⊥ = 2π ×
5 kHz and ω∥ = 2π× 10Hz. Thus a⊥ = 0.15aB with a = 3.4aB and aeff ≃ 1.06a and
γ ≃ 0.07 for n = 1014 cm−3.

48.2.1 Kosterlitz-Thouless transition in 2D potentials

bosonization, Luttinger liquid
Homogeneous BECs only exist in 3D. In 2D occurs a Kosterlitz-Thouless transi-

tion into a superfluid state. This proves that noncondensed superfluid exist. On the
other hand, nonsuperfluid condensates also exist, e.g. the Bose glass.

48.2.2 Mott insulator, Bose-Hubbard model

For a condensate in a periodic lattice superposed to an external potential Vtrap (taking
account of possible intensity gradients of the lattice beams) the Bose-Hubbard model
predicts the following Hamiltonian [982, 537],

H = −J
∑

(i,j)

â†i âj +
∑

i

εin̂i +
1
2U
∑

i

n̂i(n̂i − 1) , (48.23)

where J ≡
∫
d3x w∗(x−xi)

[
− ℏ

2m∆+ V0(x)
]
w∗(x−xi) and U ≡ 4πasℏ2

m

∫
d3x |w∗(x)|4

and εi ≡ 4πasℏ2

m

∫
d3x Vtrap(x)|w(x− xi)|2 ≈ Vtrap(x) and w(x) = w(x)w(y)w(z) are

single-particle Wannier functions. Let us assume for now a homogeneous conden-
sate. In the limit of strong tunneling and weak interactions, J ≫ U , the matterwave
function resembles a Bloch state,

|ψSF ⟩ ∼
(

M∑

i=1

â†i

)N
|0⟩ . (48.24)

The on-site particle number variance is Poissonian, σSF ∼
√
Ni, i.e. the on-site wave-

function is (quasi-)coherent. The total wavefunction is delocalized over all sites of
the lattice, the (sub-)BECs have a rigid phase relation and there is long-range phase
coherence. In the invers case, the matterwave function is a product of independent
Fock states,

|ψMI⟩ ∼
M∏

i=1

(â†i )
n|0⟩ . (48.25)

The atoms are localized in individual sites and there is a perfect correlation of the
particle number in each site, known as spin-squeezed state, i.e. the variance tends to
zero, σMI → 0. The Mott transition is characterized by σ = 1

2 . In a given site, the
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atom number and the phase of the wavefunction cannot be known simultaneously:
∆N∆ϕ < 1. Therefore, the on-site wavefunction loose their relative coherence and
capability to interfere. They cannot be described by a single global wavefunction and
do not follow the Gross-Pitaevskii equation. However, this state is not equivalent to a
completely randomized ensemble. Rather the coherence is transferred from inter-site
correlations to inner-site correlations (keep in mind that a Fock state is a complicated
superposition of Glauber states). This is somehow analogous to collaps and revival
in the Jaynes-Cummings model.

The Mott transition between the superfluid and the Mott insulator phase is a
quantum phase transition, since it is driven by quantum fluctuations rather than
themal noise. Thus it is a direct result of Heisenberg’s incertainty relation.

These features make optical lattices in the Mott insulating phase interesting for
spectroscopy at the Heisenberg limit and quantum computing.

Momentum distribution in terms of Wannier functions,

n(k) = |w(k)|2
∑

i,j

eik(ri−rj)⟨â†i âj⟩ . (48.26)

Practical Aspects Normal MOT loaded 3D lattices have filling factors of 1/10
per site. Sophisticated Raman-sideband cooling schemes are necessary (evtl. aided
by collisional cooling of optically uncooled dimensions). Alternatively, one may fill
1D or 3D lattices from a BEC, which offers low temperatures and high densities, so
large filling factors, but quantum generacy is not a requirement (what matters is that
only the lowest band is populated).

We may go to 1D configurations. In order to get good signal contrast despite the
small number of sites, large filling factors are necessary. Even though spin-squeezing
is possible, the weak lateral confinement makes it hard to reach the Mott insulating
regime. An improvement could be the use of 1D arrays of annular traps, because
of the tighter lateral confinement. Alternatively, we may fill a 3D lattice with 1
to 3 atoms per site and some 150000 sites. Low atom numbers make it easier to
resolve the Mott transition. Typical numbers are νtrap ≈ 50 Hz, νGauss ≈ 60 Hz,
νlattice ≈ 30 kHz ≈ 22Erecoil.

For quantum gate application, spin squeezing is important since the entangling

pulse area depends on the on-site interaction energy 4πasℏ2

m n, but it is not necessary
to have only a single atom per site. What is the deeper relationship of the Mott
spin-squeezing and the entanglement achievable by quantum gates [661]?

Probing is simply done by free expansion and observation of the interference pat-
terns as the image of the momentum space distribution. The periodic structure of
the density distribution causes a periodic pattern in momentum space, and since in
the superfluid phase the ....

For inhomogeneous systems, superfluid and Mott insulating phases with differ-
ent (integral atom number) populations may coexist. The Mott insulating phase is
characterized by a gap in the excitation spectrum (precisely the one that inhibits the
atomic mobility). This may be probed by applying potential gradients designed to
overcome the gap.

The Mott insulating phase is not equivalent to random dephasing in the sites. The
latter one causes a broadening of the interference patterns. If all atoms at all sites had
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the same phase (which is possible in a single realization, but highly unlikely, because
such a state cannot be generated on purpose since this would violate the uncertainty
principle) they could constructively interfere.

An important signature of is the incompressibility of a Mott insulator. This distin-
guishes it from a superfluid. Even more fundamental [502] is the fact that particle-hole
pairs are localized. The µ− J/U phase diagram is most significant...

48.3 Bose- and Anderson glasses

The Mott insulator gap plays quite a similar role as the photonic band gap. The col-
lectivity (or long-range correlation) resides in the fact that the band gap is global. The
particularity of Anderson localization and Bose glasses is that the gapless localization
[325, 1093].

In the presence of disorder the superfluid to Mott-insulator transition is supple-
mented by additional insulating phases called Bose glass and Anderson glass [782,
877, 325]. It may also allow the study of Anderson localization. Note that there are
links with Raizen’s dynamical localization of chaos and strong localization in photonic
bandgaps.

48.3.1 Condensates in speckle potentials

To generate disordered potentials optical speckles can be imaged into the trapping
region. Alternatively, one may consider using the fragmentation observed close to
microtraps. In any case the disordered potential must satisfy some conditions to make
localization interesting. In particular their should be global correlations. I.e. either
the atoms are condensed and form a coherent matter-wave; for example, µ > ⟨Vspckl⟩.
Then interesting effects occur for when the healing length exceeds the characteristic
length of the disorder, ⟨zspckl⟩ < ξ [829, 270]. Or the atoms are localized, µ < ⟨Vspckl⟩,
but exhibit long-range number correlations [782, 877, 325]. Than interesting effects
are expected when the tunneling rate is sufficiently strong.

Let us first discuss the first case. The disorder is characterized in terms of an
average potential depth ⟨Vspckl⟩ =

(
2Γ2/6δ

)
(σI/IS) and the correlation length is of

course diffraction limited ⟨zspckl⟩ = 1.22λl/D, as compared to the chemical potential

µ = (ℏωtrp/2) (15N0a/atrp)
2/5

and the healing length, ξ = (8πna)−1/2 = ℏ/
√
2mµ,

respectively. In the experiment [270] a magnetically trapped BEC with µ = 5 kHz and
ξ = 0.11 µm is suddenly released into a ⟨Vspckl⟩ = 0..0.7µ deep speckle. As the BEC
expands it reduces its µ until the atoms get localized as soon as µ < ⟨Vspckl⟩. Since
the speckle is too coarse, ⟨zspckl⟩ = 50ξ, tunneling is not possible; this localization
is thus not Anderson localization. The situation may be more interesting when the
kinetic energy dominates the chemical potential.

A BEC in a pure deep speckle potential is not Bose glass: A Bose glass is not just
several uncorrelated BECs, but rather several uncorrelated BECs despite the presence
of tunneling, or despite a large healing length, where the tunnelling is compromised by
interference, which because of disorder is destructive. The process must be reversible,
since T = 0. Just like Mott insulator.
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48.3.2 Bose glasses in mixtures of species

A possible realization implies double species: One species is trapped in a 3D optical
lattice, the other one is weakly trapped in a magnetic potential. For example, we
could load a cold 6Li gas in a lattice and study transport phenomena and localization
in a 87Rb Bose gas, i.e. Bose glasses. Or the transport of a 6Li Fermi gas in a 87Rb
lattice in analogy to solids [985].

In the case of Bose glass studies, to minimize the impact on 87Rb, the lattice
beams should be tuned close and red to the 6Li line and be weak. The lattice will be
blue-detuned for 87Rb, so that they will be kept away from the 6Li, if the potential
modulation is too deep. This is not desired, especially because the interspecies scat-
tering length is small. The scheme will not work when the 87Rb chemical potential is
lower than the trap depth. It might then be necessary to use a Feshbach resonance.

Concretely, we start cooling 6Li and 87Rb to a few µK. Then we load 6Li into a 2D
or 3D lattice produced at 680 nm. Estimate beam waists, powers, potential depths.
Think about acustic noise. Calculate interspecies collision rates (time scale of the ex-
periment), find signatures (interference with a reference BEC, inhibited transport....).

Using the quadrupolar magnetic fields it might be possible to address individual
lattice sites [24], which is useful to create disorder.

The following experiments will provide signatures:
1. Let the 87Rb BEC exposed to the 6Li lattice interfere with a non exposed BEC

[829, 270, 1093, 985].
2. Measure suppression of transport: Inhibited expansion (switch off magnetic

trap for Rb), or inhibited displacement (shift the trap sideways).
Some ideas:
1. Load 6Li into a 3D optical lattice, make it a band insulator or not, compare

the behavior of the 87Rb BEC for both cases.

48.3.3 Disorder in Mott-insulators

A more straightforward approach may thus be to directly localize the atoms, but
nevertheless ensure global correlations. To sort out the various superfluid-insulator
transitions, let us imagine a double potential V = Vlttc + Vspckl. The generalized
Bose-Hubbard Hamiltonian reads,

H = −
∑

(i,j)

(
J lttc0 + δJspcklij

)
â†i âj +

1
2U0

∑

i

n̂i(n̂i − 1) +
∑

i

εin̂i , (48.27)

with εi ≡ 4πasℏ2

m

∫
d3x Vspckl(x)|w(x− xi)|2 and

〈
δJspcklij

〉
= 0 can be neglected.

The dynamics is governed by the interplay between hopping (tunneling), J , interac-
tions, U , and disorder, ε. Let us call CF the condensed fraction and SF the superfluid
fraction. The onset of a small perturbation of the lattice potential may induce a
dynamical quantum phase transition from a superfluid to a Bose or Anderson glass.
This is studied [325] by preparing an ordinary superfluid BEC, transfering it into
a regular optical lattice such as to drive it to the Mott phase, where in principle,
CF = SF → 0. However, chosing small (or non-integer) filling factors, Υ < 1, there
will be a fraction of atoms hopping around. Let’s call this a pseudo-Mott insula-
tor (Note that this prohibits the use of strong confining potentials, which support
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the formation of various Mott insulator domains filled by different, but everywhere
integer numbers of atoms.) This mobility corresponds to a delocalization and thus
a superfluid fraction, 1 > CF = SF > 0. This is the ideal situation to study the
impact of additional disorder. With disorder both, the condensed and the superfluid
fraction are dramatically reduced, however while SF tends to zero, CF stays finite,
0 ̸= CF > SF → 0. This is what is interesting: Localization despite phase-coherence.
In such Bose glasses interactions and disorder both work to localize.

Mott insulator pseudo Mott insulator Bose glass Anderson glass

Hamiltonian Bose-Hubbard generalized Bose-Hubbard Anderson

filling factor Υ = 1, 2, .. Υ < 1, (non-integer) Υ

regime U0 ≫ J0 > Jspcklij , Vspckl → 0 U0 ≫ J0 > Jspcklij , Vspckl ̸= 0 J0 > Jspcklij , Vspckl ≫ U0 → 0

behavior for Vlttc →∞ CF = SF → 0 1 > CF = SF > 0 0 ̸= CF > SF → 0 CF = SF → 0

potential Vlttc, U0 U0 with Vspckl Vspckl localizes, but U0 works to delocalize

excitation spectrum gap no gap no gap

analogy Fock states strong localization

Two basic concepts must be distinguished: 1. Bose-condensation is understood as
phase-coherence, i.e. the capability of matter wave interference. Condensates have a
broken gauge symmetry, and thus a global phase. 2. Superfluidity is understood as
mobility, i.e. delocalization. All localizing effects reduce the superfluid fraction. The
two concepts are not equivalent. This is seen in the fact that there are non-condensed
superfluids in reduced dimensions, and non-superfluid condensates. A Bose glass is
such a non-superfluid condensate; it has a gapless excitation spectrum. A Mott-
insulator is neither a condensate nor a superfluid; it has a gap in the excitation
spectrum.

48.4 Fermi gases in optical lattices and reduced di-
mensions

48.4.1 Band insulator, Fermi-Hubbard model

The Pauli principle gives rise to an energy gap in a Fermi gas and makes it a band
insulator [735], antiferromagnetic phases.

48.4.1.1 Fermi gas in an optical lattice

Transfer a pure Fermi gas in an optical lattice [624].

48.4.2 Fermionic superfluidity in polarized samples

In solids, mixtures of spin states tend to adjust their respective chemical potentials,
e.g. at pn-junction or for Pauli paramagnetism [see Sec. 16.1.6]. In contrast, in polar-
ized gases where the collisions are elastic, no spin-flips occur and a chemical potential
imbalance can survive. Such polarized fermionic samples exhibit interesting superfluid
effects such as phase separation [1441, 1000]. This is not possible in superconductors
because of the Meissner effect for charged particles.
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Experimentally one creates an unbalanced mixture of 6Li |1/2,±1/2⟩ states. Above
a critical polarization P ∝ (P+ − P−)(P+ + P−), the excess cloud forms a polarized
shell around an unpolarized core of paired atoms. This occurs as a quantum phase
transition between a homogeneous superfluid and a phase-separated superfluid-normal
state.

The scattering length is (besides the polarization) a second important control
parameter and can be varied via a Feshbach resonance. On the BEC side of the
resonance (tight binding regime), kFa ≫ 1, the superfluid phase may coexist with
the polarized normal phase. On the BCS side (highly correlated multiparticle system
beyond mean-field) a Fermi sea is needed to stabilize the superfluid. There is a strong
repulsion between atoms and molecules leading to a phase separation. The pairing
gap ∆ prevents unpaired atoms from entering the superfluid. However, even further
on the BCS side, ∆ < |µ2 − µ1| the gap reduces

Unpaired atoms can perturb and disrupt the BCS state, once ∆ < |µ2 − µ1|.

48.4.3 Luttinger liquids in 1D optical lattices

Strong correlated systems, may exhibit their atomic quantum optics features beyond
mean-field physics better in reduced dimensions. The Kondo effect is in close rela-
tionship to a Luttinger liquid and the Anderson model.

A Luttinger liquid is a paramagnetic one-dimensional metal without Landau quasi-
particle excitations [1341]. All physical properties can be calculated, e.g. by bosoniza-
tion. The elementary excitations are collective charge and spin modes, leading to
charge-spin separation. Although charge-spin separation has been observed in semi-
conductors [740], some particularities have been elusive in solid state systems. Lut-
tinger liquids have been realized in ultracold gases [924, 1064]. This dilute system
might be suitable to probe above particularities.

1D BEC −→ Luttinger liquid −→ Lieb-Liniger, V = 0, or Mathieu, g = 0, or
Tonks-Girardeau, g = ∞ [1077]. Repulsive interactions between the spin states of
a two-component Fermi gas are treated by [1400, 1397]. For attractive interactions
one obtains a Luther-Emery liquid characterized by atomic density waves through
spin pairing [1399]. The complete phase diagram for a Fermi gas in a 1D optical
lattice contains metallic, Mott insulating and band insulating phases [687, 1096, 688].
Disorder influences phase transitions [1398].

48.4.3.1 Bose metals

Superconductivity obtains when all Cooper pairs lock into a single quantum state.
There are two cases: 1. The radius of gyration of the Cooper pairs is smaller than the
interpair spacing. The pairs are then bosons, whose condensation is possible. The
resulting phase coherence thwarts localization. Superconductivity can be thought of
as BEC. 2. The Cooper pair radius is larger than the interpair spacing. The mapping
of Cooper pairs and bosons then breaks down, nonetheless phase coherence exists.

A metal is characterized by mobile non-paired fermions. Theory predicts, [1029,
1172], that when fermions pair to bosons they loose their mobility, except if they
condense and form a superfluid. The Bose metal remains elusive.
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48.4.4 Kondo physics

The Kondo effect is known from solid state physics. It may also be investigated in
optical gratings [1076, 997]. Take two 1D BECs, one is a quantum liquid, the other
is in an optical lattice. Assume as ≪ aho =

√
ℏ/mω. Then gββ′ = 2πaββ′/aho. The

grating trapped atoms are then immersed in a magnetically trapped Bose-liquid. Just
like quantum dots immersed in a superconducting current of electrons.

48.4.5 Born-Oppenheimer systems

Keywords: ultracold Born-Oppenheimer gas, gaseous solid.
Idea: Mulding of a solid state consistent of bosons or fermions. Their quantum

nature does not matter, because the distance is large and the interatomic interaction
is strong. The crystal atoms are trapped in an optical lattice, evtl. a Mott insulator
phase to control the lattice populations.

Let a gaseous atomic Fermi gas flow around the atoms. This should hold the atoms
trapped together. Even if the optical lattice is turned down. There should form a
self-determined self-consistent lattice structure.

To make the problem treatable, one must be able to make the Born-Oppenheimer
approximation: me ≪ mlatt. LiRb could be a good toy model for metals mLi ≪ mRb.

Which type of crystals will form? With an optical we may easily form not fcc, but
bcc or sc cubes [Ashcroft and Mermin, ”Solid states physics”, p. 67] [1021, 798].

48.4.5.1 List of programs on thermalization of atomic clouds

• AtomicClouds1: Density in a harmonic potential.

• AtomicClouds2: Density in a quadrupole trap.

• AtomicClouds3: Sum and product density of two clouds in a quadrupole trap.

• AtomicClouds4: Thermalization of two clouds in a quadrupole trap.

• AtomicClouds5: Thermalization of two clouds in a quadrupole trap, collision
rate depends on overlap.

• AtomicClouds6: Thermalization of two clouds in a the real LiRb Ioffe trap.

48.5 Further reading

G.A. Prataviera et al., Trap environnement effects over quantum statistics and atom-
photon correlations in the collective-atomic-recoil laser [1050]DOI

http://doi.org/10.1103/PhysRevA.67.045602
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Chapter 49

Multicomponent BECs,
mixed species and fermionic
superfluids

49.1 Mixtures of boson condensates

49.1.1 Two-mode model

A quantum field can be composed of several distinguishable species, that is, species
with different internal states, for example, hyperfine or Zeeman substates [939, 1261,
214, 858, 574, 573, 891, 1239, 775]. These states may be coupled by different means, for
example, lasers in Raman configuration, microwaves, Feshbach resonances, Josephson
tunneling, etc.. The Rabi frequency λ describes such coupling:

ıℏ
∂

∂t
Ψ⃗(r, t) = ĤδΨ⃗(r, t) with Ψ⃗ ≡

(
ψa
ψb

)
, (49.1)

with the Hamiltonian,

Ĥ =
−ℏ2∆
2m

+ Vtrap(r) +Ng
[
|ψa(r, t)|2 + |ψb(r, t)|2

]
(49.2)

where Ĥδ =

(
H λ/2

λ/2 H − δ

)
.

Individual BECs or mixtures of uncoupled BECS called spinors exhibit U(1) sym-
metry (infinite cylinder). The components may interpenetrate, overlap and tunnel
through each other. In contrast, BECs with many coupled species exhibit SU(2)
(sphere) symmetry. This is important for creating vortices, since it is necessary to
first implement a SU(2) symmetry.

49.1.2 Spinores

To observe ferromagnetism: prepare a mF = −1, 0 BEC using B-field gradients and
observe how they change positions.

2813
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At long distance the total spins of the two atoms couple as (f1f2)f . The interaction
potential, therefore, is

V (r1 − r2) = δ(r1 − r2)

f1+f2∑

f=0,f even

gf P̂f (49.3)

f1f2 =

f1+f2∑

f=0,f even

1

2
[f(f + 1)− f1(f1 + 1)− f2(f2 + 1)] P̂f ,

with gf = 4πℏ2af/m e
∑
f even P̂f = 1 and P̂f = |f⟩⟨f |.

With the Zeeman states [775]

V (r1 − r2) = δ(r1 − r2)

f1+f2∑

f=0,feven

gf

f∑

mf=−f
P̂f,mf

. (49.4)

49.1.2.1 f = 1-states

For fj = 1

1 = P̂0 + P̂2 (49.5)

f1f2 = −2P̂0 + P̂2 .

we can express,

V (r1 − r2) = δ(r1 − r2)
(
g0P̂0 + g2P̂2

)
(49.6)

=
4πℏ2

m
δ(r1 − r2) [ā+ f1f2∆a] .

defining ā = 1
3 (2a2+a0) and ∆a = 1

3 (a2−a0). Therefore, the many-body Hamiltonian
is,

H =

∫
d3r () . (49.7)

Elastic and inelastic scattering [1238]

g|1,±1t⟩+|1,±1⟩ = g2 , a|1,±1⟩+|1,±1⟩ = ā+∆a (49.8)

g|1,0⟩+|1,0⟩ =
1
3 (2g2 + g0) , a|1,0⟩+|1,0⟩ = ā

g|1,±1⟩+|1,∓1⟩ =
1
6 (g2 + 2g0) , a|1,±1⟩+|1,∓1⟩ = ā−∆a

g|1,±1⟩+|1,0⟩ =
1
2g2 , a|1,±1⟩+|1,0⟩ = ā+∆a

g|1,+1⟩|1,−1⟩↔|1,0⟩|1,0⟩ =
1
3 (g2 − g0) , a|1,+1⟩|1,−1⟩↔|1,0⟩|1,0⟩ = ∆a .

49.1.2.2 f = 2-states

Para fj = 2

1 = P̂0 + P̂2 + P̂4 (49.9)

f1f2 = −6P̂0 − 3P̂2 + 4P̂4

(f1f2)
2 = 36P̂0 + 9P̂2 + 16P̂4 .
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P̂0 = − 2
15 − 1

90 f1f2 +
1
90 (f1f2)

2 (49.10)

P̂2 = − 8
21 − 8

63 f1f2 − 1
63 (f1f2)

2

P̂4 = 53
35 + 29

210 f1f2 +
1

210 (f1f2)
2 .

we can express,

V (r1 − r2) = δ(r1 − r2)
(
g0P̂0 + g2P̂2 + g4P̂4

)
(49.11)

=
4πℏ2

m
δ(r1 − r2)

[(
− 2

15a0 − 8
21a2 +

53
35a4

)
+ ..
]
.

49.2 Fermion-boson mixtures

Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases [568]
Degenerate Atom-Molecule Mixture in a Cold Fermi Gas [736]
Mixture of ultracold lithium and cesium atoms in an optical dipole trap [928]
Quasi-pure Bose-Einstein Condensate Immersed in a Fermi Sea [1168]

49.2.1 Sympathetic cooling

According to [935] the reduction factor due to the mass difference of the collision
partners is,

ξ =
4m1m2

(m1 +m2)2
. (49.12)

About 3/ξ collisions per atom are needed for complete thermalization of a gas. For
the Rb-Li combination this gives 3/ξ = 12.4. The collision rate,

Γcoll = σ12v̄

∫
n1(r)n2(r)d

3r , (49.13)

where the mean thermal relative velocity is,

v̄ =

√
8kB
π

(
T1
m1

+
T2
m2

)
. (49.14)

The instantaneous temperature is calculated via,

γtherm = − 1

∆T

d∆T

dt
, (49.15)

or for simulations: ∆T (t + dt) = ∆T (t) − ∆T (t)γthermdt. According to [346] the
rethermalization rate is connected to the collision rate via,

γtherm =
ξ

3

(
∆E1→2

N1kB∆T
+

∆E2→1

N2kB∆T

)
=
ξ

3

(
Γcoll
N1

+
Γcoll
N2

)
. (49.16)

For an isotropic harmonic trap we can derive analytic solutions. With the po-
tentials Vj(r) =

1
2mjω

2
rjr

2 + 1
2mjω

2
zjr

2 = kBTj
(
r2/2r̄2j + z2/2z̄2j

)
the densities read
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nj(r) = n0je
−r2/2r̄2j−z2/2z̄2j , and the integral becomes [927],

Γcoll = σ12v̄n01n02

∫
e−r

2/2r̄21−z2/2z̄21−r2/2r̄22−z2/2z̄22 d3r (49.17)

=
σ12v̄n01n02(2π)

3/2

√
(x̄−21 + x̄−22 )(ȳ−21 + ȳ−22 )(z̄−21 + z̄−22 )

=
σ12v̄N1N2

(2π)3/2
√

(x̄21 + x̄22)(ȳ
2
1 + ȳ22) (z̄

2
1 + z̄22)

,

setting N = n0(2π)
3/2x̄ȳz̄. Defining m2ω

2
2 = β2m1ω

2
1 ,

Γcoll =
(m1ω

2
1)

3/2σ12v̄N1N2

(2πkB)3/2(T1 + T2β−2)3/2
. (49.18)

Again according to [346] the rethermalization rate becomes,

γtherm =
ξ(N1 +N2)(m1ω

2
1)

3/2σ12
√
T1/m1 + T2/m2

3π2kB(T1 + T2β−2)3/2
. (49.19)

For an anisotropic trap take ω1 =
√
ω1xω1yω1z the geometric mean of the trap fre-

quencies. Then the scattering length follows from,

|a12| =
√
σ12/4π . (49.20)

49.2.1.1 Damped oscillations with two species

Damping is decribed by two coupled differential equations [439],

z̈1 = −ω2
1z1 −

4

3

m2

m

N2

N
γtherm(ż1 − ż2) (49.21)

z̈2 = −ω2
2z2 −

4

3

m1

m

N1

N
γtherm(ż2 − ż1)

or in matrix form,



ẏ1

ż1

ẏ2

ż2


 =




− 4
3
m2

m
N2

N Γ −ω2
1

4
3
m2

m
N2

N Γ 0

1 0 0 0
4
3
m1

m
N1

N 0 − 4
3
m1

m
N1

N Γ −ω2
2

0 0 1 0







y1

z1

y2

z2


 , (49.22)

where γtherm = n12σ12v with n12 =
(

1
N1

+ 1
N2

) ∫
n1n2d

3r. Thus,

γtherm =

(
1

N1
+

1

N2

)
Γcoll . (49.23)

49.2.1.2 Gravitational sag

The potential force for a species is |µ|/µB = gFmF . For 87Rb,2 S1/2, |2, 2⟩ we get 1,

for |1,−1⟩ we get 1
2 , for

6Li,2 S1/2, | 32 , 32 ⟩ we get 1, and for | 12 ,− 1
2 ⟩ we get 1

3 . The
gravitational sag for a harmonic trap is,

∆y = g/ω2
y . (49.24)
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49.2.1.3 Heating

Trap loss rate,

Ṅ = L− γN − β
∫
n2d3r − β3

∫
n3d3r . (49.25)

49.2.2 Cooling strategies

The Fermi exclusion principle introduces a cooling barrier at low temperatures be-
tween identical fermions. One strategies that circumvents the problem is the use of
fermionic spin mixtures [347] such as 6Li-7Li or 40K-41K. Cooling of fermions in dif-
ferent HFS levels is limited to ˜1 µK: If all states in the Fermi see are populated there
are no more unoccupied states necessary for rethermalizing collisions!

49.2.2.1 Sympathetic cooling

Another method for cooling fermions is sympathetic cooling with an actively cooled
bosonic cloud. Important issues are the optimum evaporation path, loss processes, ...

The Fermi temperature scales like the critical temperature, Tc ∝ TF , with,

TF =
ℏω̃
kB

(6NF )
1/3

and Tc =
ℏω̄
kB

(
NB
g3(1)

)1/3

, (49.26)

where g3(1) = 1.202. The secular frequencies for Li and Rb scale like ω̃ = ω̄
√
87/6

where ω̄ = (ωxωyωz)
1/3

. This means that the temperatures can only be tuned by
controlling the relative atom numbers.

49.2.2.2 Degrading heat capacity

To reach the Fermi regime with sympathetic cooling several conditions must be sat-
isfied: 1. The spatial overlap must be good. Large mass ratios lead to different cloud
sizes and different gravitational sagging. 2. The interspecies collision rate must be
high. 3. The Bose cloud should not be condensed, TF ≫ Tc. 4. The Bose cloud
should have a much higher heat capacity than the Fermi cloud, C87 ≫ 0.1C6 [202].

In a magnetic trap the secular frequencies ω̃ and ω̄ have a fixed ratio so that
condition 3. implies,

TF
Tc

=
√
87/6

(
6g3(1)

N6

N87

)1/3

≫ 1 , (49.27)

or 400N6 ≫ N87. In contrast in optical traps the secular frequencies depend on the
detuning from atomic resonances, and may be tuned.

How to achieve very low temperatures via sympathetic cooling [977], [1052], [202],
[295]?

49.2.2.3 Losses

To quantitatively study the impact of |2, 1⟩ atoms on the Li cloud lifetime, we write,

ṅ6 = −Gineln6n87,|2,1⟩ (49.28)
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Figure 49.1: Density of states and chemical potential for a harmonic (dashed lines) and a
Ioffe-Pritchard trap.

with the constraint N87,|2,1⟩−N6,|3/2,3/2⟩ = const, we obtain the spin relaxation rate
coefficient Ginel = 1.2(3) × 10−15 cm2/s. Spin-relaxation, the only allowed collision-
induced transitions are,

|2, 1⟩+ |3/2, 3/2⟩ → |2, 2⟩+ |3/2, 1/2⟩ (49.29)

|2, 1⟩+ |3/2, 3/2⟩ → |2, 2⟩+ |1/2, 1/2⟩+ ν6,hf

|2, 1⟩+ |3/2, 3/2⟩ → |1, 1⟩+ |3/2, 3/2⟩+ ν87,hf

|1,−1⟩+ |3/2, 3/2⟩ → |1, 0⟩+ |3/2, 1/2⟩+ ν87,rf + ν6,rf

|1,−1⟩+ |3/2, 3/2⟩ → |1, 0⟩+ |1/2, 1/2⟩+ ν87,rf + ν6,hf .

Three-body recombination,...

49.2.2.4 Dipolar relaxation of fully stretched 87Rb

The dipolar relaxation of the 87Rb, |2, 2⟩ state is on the order ofGdip = 2×10−15 cm3/s
[159]. We establish the following rate equations,

Ṅ|2,2⟩ = −Gdip
∫
n2|2,2⟩d

3r−Ginel
∫
n|2,2⟩n|2,1⟩d

3r (49.30)

Ṅ|2,1⟩ = Gdip

∫
n2|2,2⟩d

3r−Ginel
∫
n|2,2⟩n|2,1⟩d

3r .
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Using nj = n0je
−Uj/kBT with U|2,2⟩ =

m
2 ω

2
rr

2 + m
2 ω

2
zz

2 and U|2,1⟩ =
1
2U|2,2⟩, we get,

N|2,2⟩ =
∫
n|2,2⟩d

3r = n0|2,2⟩

∫
e−mω

2
xx

2/2kBT d3r = n0|2,2⟩

√
2πkBT

mω̃2

3

(49.31)

N|2,1⟩ =
∫
n|2,1⟩d

3r = n0|2,1⟩

∫
e−mω

2
xx

2/4kBT d3r = n0|2,1⟩

√
4πkBT

mω̃2

3

∫
n2|2,2⟩d

3r =

(
1

2

)3/2

n0|2,2⟩N|2,2⟩

∫
n|2,2⟩n|2,1⟩d

3r =

(
1

3

)3/2

n0|2,2⟩N|2,1⟩

finally,

Ṅ|2,2⟩ = −Gdip
(

mω̃2

4πkBT

)3/2

N2
2,2 −Ginel

(
mω̃2

6πkBT

)3/2

N2,2N2,1 (49.32)

Ṅ|2,1⟩ = Gdip

(
mω̃2

4πkBT

)3/2

N2
2,2 −Ginel

(
mω̃2

6πkBT

)3/2

N2,2N2,1 .

49.2.3 Mixed species experiments

The studied fermionic species are 40K and 6Li in combination with various other
fermionic or bosonic species to allow for cooling. Both species exhibit Feshbach reso-
nances: 40K has one between |9/2,−9/2⟩ and |9/2,−7/2⟩ at 202 G [1081]. 6Li has a
broad |1/2,±1/2⟩ interstate Feshbach resonance at 850 G [679, 311].

49.2.3.1 Bragg scattering at BECs in the Lamb-Dicke limit

Make very deep traps such as [1168] or optical confinement, such that ωvib ≫ ε.
Bragg scattering off such BECs should not destroy them. How steep can we make the
lithium surface trap? Everybody goes to the lower states: 7Li, |1,−1⟩-6Li, |1/2,−1/2⟩
or 23Na, |1,−1⟩-6Li, |1/2,−1/2⟩. How can we do this? Temperature determined from
spatial extend of bosonic cloud in-situ.

49.2.4 Collapse and demixing of mixed species

49.2.4.1 Collapse

The collisional properties of ultracold K-Rb mixtures may lead to the collapse of
a degenerate Fermi Gas [439, 905, 8, 262]. Until now we have neglected mean-
field interactions between fermions and bosons. With interspecies interaction gmx =
2πℏ2amx/mrd where m−1rd = m−16 +m−187 the GPEs read,

[
−ℏ2∇2

2m87
+ V87(r) + g|ϕ87|2 + gmx|ϕ6|2

]
ϕ87 = µ87ϕ87 (49.33)

[
−ℏ2∇2

2m6
+ V6(r) + gmx|ϕ87|2

]
ϕ6 = µ6ϕ6 .
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The solution of the fermionic density distribution at T → 0 is now,

n6 = κ (µ6 − V6 − gmxn87)3/2 , (49.34)

|∇ϕ6|2 = k26 =
(
6π2n6

)2/3
.

with κ = 21/2m
3/2
6 /3π2ℏ3. To get a temperature dependence [262] use the Sommerfeld

approximation. According to this the effective bosonic Hamiltonian including boson-
fermion interaction at T → 0,

Heff =

∫
dr

{
ℏ2

2m87
|∇ϕ87|2 + (V87(r)− µ87)|ϕ87|2 +

g

2
|ϕ87|4 + (V6(r)− µ6)|ϕ6|2 + gmx|ϕ87|2|ϕ6|2)

}

=

∫
dr

{
ℏ2

2m87
|∇ϕ87|2 + (V87(r)− µ87)|ϕ87|2 +

g

2
|ϕ87|4 − κ−2/3n5/36 )

}
.

(49.35)

We assume now that both species of atoms experience the same potential V (r) ≡
Vj(r) =

mj

2 ω
2
j,zz

2 +
mj

2 ω
2
j,rρ

2 =
mj

2 ω
2
j

(
λ2z2 + ρ2

)
. To find out the condition for

collapse we first determine µ6 via the normalization condition N6 =
∫
dr n6(r). This

is done by numerically integration Eq. (49.40). µ87 gives an offset and may be set to
zero. We now insert the ansatz of the wavefunction,

ϕ87 =

(
NBλ

w3a3π3/2

)1/2

exp

(
−ρ

2 + λ2z2

2w2a2

)
(49.36)

|∇ϕ87|2 =
ρ2 + λ4z2

w4a4
|ϕ87|2

using a =
√
ℏ/m87ω87 and a variational parameter w and integrate Eq. (49.41) nu-

merically.

49.2.4.2 Demixing

While collapse occurs for gmx < 0, for gmx > 0 the components may demix. For
homogeneous systems the condition for demixing is [232],

g2mx > g87gFF with gFF =
2

3κ2/3n
1/3
6

, (49.37)

so that,

gmx
g87

>

(
πm87

2m6(6π2n6)1/3a

)1/2

. (49.38)
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49.2.5 Fermion-boson collapse and demixing of 7Li-87Rb

49.2.5.1 Analytic estimation

An expansion of the interaction term in gmx up to third order,

gmx|ϕ87|2|ϕ6|2 = κ(µ6 − V )3/2gmxn87 −
3

2
κ(µ6 − V )1/2g2mxn

2
87 +

3

8

κ

(µ6 − V )1/2
g3mxn

3
87

(49.39)

≈ −3

2
κµ

1/2
6 g2mxn

2
87 +

3κ

8µ
1/2
6

g3mxn
3
87 ,

yields,

Heff ≡ C+
∫
dr

{
ℏ2

2m87
|∇ϕ87|2 + (Veff − µB)|ϕ87|2 +

geff
2
|ϕ87|4 +

κ

8µ
1/2
6

g3mx|ϕ87|6
}
,

(49.40)

where we used the definition Veff (r) ≡ V (r)
(
1− 3

2κµ
1/2
6 gmx

)
and geff ≡ g87 −

3
2κµ

1/2
6 g2mx. There is a problem with factor 3 in the last term as compared to [262].

This is due to the fact that they go back from (µ6 − V6 − gmxn87)3/2 to − 5
2 (µ6−V6−

gmxn87)
5/2 before doing the expansion and then neglect the zeroth order. We now

insert the ansatz of the wavefunction (49.42),

Heff =
2N87λ

π1/2

∫ ∞

0

dρ

∫ ∞

−∞
dz ρ

{
ℏ2

2m87

ρ2 + λ4z2

w2a2
e−ρ

2−λ2z2 + (Veff − µ87)e
−ρ2−λ2z2

(49.41)

+
N6λ

w3a3π3/2

geff
2
e−2ρ

2−2λ2z2 +

(
N87λ

w3a3π3/2

)2
κ

8µ
1/2
6

g3mxe
−3ρ2−3λ2z2

}
.

All integrals can be solved exactly, so that we get,

Heff

N87ℏω87
=

2 + λ

4w2
+
3

4

Veff
V

w2− µ87

ℏω87
+
geff
2

λ

(2π)3/2ℏω87a3
N87

w3
+

κ

8µ
1/2
6

g3mx
λ2

33/2π3ℏω87a6
N2

87

w6
.

(49.42)
Using 40K with as = 99.2aB and amx = −410aB and ω87,r = 2π × 215 Hz and

N87 = 50000 and N6 → N40 = 20000 this reproduces the results of [262]. For 6Li
with N87 = 50000 and N6 = 20000, we expect instability for amx < −240aB .

49.2.6 Ions in BECs

The hybrid system consistent of individual ions and Bose-condensed clouds of neutral
atoms opens up new horizons. Many novel phenomena, such as controlled atom-
ion collisions, charge transfer processes, polarization and structuring of an ultracold
atomic cloud by ions, etc. can be studied.

During elastic collisions between ions ant atoms electrons can be exchanged be-
tween the collision partners. This may lead to interesting effects, in particular when
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Figure 49.2: (code) Density of states and chemical potential for a harmonic (dashed lines)

and a Ioffe-Pritchard trap.

the atoms are delocalized in a Bose-condensate. The ions polarize their surrounding
atoms and induce an isotropic potential ∝ 1/r4, which has a much longer range than
the ∝ 1/r6 interatomic van der Waals potential. Atoms are attracted by an ion and
may be bound and form a giant molecular atom, whose nucleus is a single localized
ion and whose shell is a Bose-condensate of several 100 neutral atoms.

49.2.7 Exercises

49.2.7.1 Ex: Instable fermion-boson mixtures

Solution: InstableFermionBoson1: Analytic approximation from [Chui04] for 40-
K.
InstableFermionBoson1b: Analytic approximation from [Chui04] for 6-Li.
InstableFermionBoson2: Numerical integration, naive Hamiltonian.
InstableFermionBoson2b: Numerical integration, numerical integration, Hamiltonian
from [Molmer98].
InstableFermionBoson2c: Numerical integration, numerical integration, Hamiltonian
from [Capuzzi03].
InstableFermionBoson3: Numerical integration, instable 7-Li BEC.
InstableFermionBoson4: Numerical integration, repulsive mixtures.

49.3 Molecular BECs

49.3.1 Thermodynamics of trapped molecules

We consider a mixture of atomic fermions coupled to bosonic thermal molecules and
condensed molecules via a Feshbach resonance. The molecular distribution function,

gm(ϵ) =
1

eβm(ϵ+ϵres−µm) − 1
, (49.43)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_FB_InstableFermionboson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_FB_InstableFermionboson.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/AtomOptics/Sol_AO_Mixedspecies_.pdf
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takes into account the Feshbach-tunable internal energy of the molecules. It is now
possible to set up a coupled thermodynamics and to calculate the atomic, molecu-
lar and condensed fractions as a function of ϵres and T [1379]. It also possible to
determine trajectories in the phase diagrams for changes of ϵres starting at some
given initial temperature Ti. The treatment of [1379] is however limited to ideal
gases and probably will fails to quantitatively describe the BCS physics. The treat-
ment is however useful to predict the conversion efficiency from a cold Fermi gas to
molecules. This efficiency depends on the magnetic field ramp. Adiabatic ramps of
ϵres are characterized by a constant total entropy, sudden changes conserve total en-
ergy. The conversion efficiency upon adiabatic ramps is much higher. Hence, the fact
that molecular BECs have also been produced using fast ramps has been interpreted
as a proof for the preexistence of BCS pairs before the ramp [1444, 1080, 1442].
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Figure 49.3: (code) (a) Scattering length as a function of magnetic field strength near a

Feshbach resonance. (b) Energies of the bound state (solid) and the free channel (dashed).

An avoided crossing introduces a pairing gap.

In contrast, [431]Phys Rev Lett/PRL92,130401 claims that the total wave function
has molecular character even at detunings δ ≳ 0. For a(B) > 0 the molecular binding
energy is,

ϵm ≃ ℏ2/ma(B)2 . (49.44)

Cooper pairing and the BCS transition, analogous to electrons in solids, may be
studied in optical traps. Long lifetimes up to 3 min can be achieved with care-
ful control of the laser intensity [347, 966]. The absence of Coulomb interactions
makes atomic systems very pure. But the transition temperatures are low. Currently,
TBCS ≃ 0.2TF .

Note that a molecular BEC is unlike a BCS pair: in a molecular BEC, kFa < 1,
the molecules are delocalized in the BEC, but the atoms are localized within the
molecule. For Cooper-pairs the two atoms forming the pair are delocalized within the
BEC [1080, 1079].

49.3.2 Production of homonuclear BECs

Jin’s group [538, 1081]. Using the Feshbach resonance on fermions, aided by the Pauli
exclusion principle preventing relaxation, e.g. 40K2 has a relaxation of only 0.5 s.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_BecBcsCrossover.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_BecBcsCrossover.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_BecBcsCrossover.m
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Production of Li2 BECs, almost simultaneous detected at ENS, Innsbruck and
MIT [678, 311, 1443].

Na2 BECs were detected at MIT [1402] and Cs2 BECs at Innsbruck [612].

49.3.3 Molecular solitons in BECs

While the self-interaction in BECs ψ̂+
a ψ̂

+
a ψ̂aψ̂a corresponds to third-order nonlinear-

ities χ(3) in quantum optics, the second-harmonic generation of molecules ψ̂+
mψ̂aψ̂a

from atoms corresponds to second-order nonlinearities χ(2). The single-species Gross-
Pitaevski equation cannot produce solitons in three dimensions [391]. The free-bound
coupling of atoms and molecules at low densities is particle-like and only forms in-
dividual dressed molecules similar to Cooper-pairs. At high densities, χ(3) and χ(2)

interplay in such a way to make a coherent coupling between two BECs at the base
of strong, coherent, non-linear and interactions giving rise to a soliton matter wave.

49.4 Cooper pairing mechanisms and transition tem-
peratures

Valuable contribution to BCS theory for atomic Fermi gases have been made by
[93, 92, 87, 995, 160, 627, 600, 88, 599, 899, 408, 86, 1234, 431, 1023, 369, 564, 1015,
719, 1288]. See also Sec. 21.4.

Dynamics of the BCS-BEC Crossover in a degenerate Fermi Gas, experimental
work comes from [623, 539, 1078].

There are various options for Cooper pairing avoiding the Pauli principle:

49.4.1 BEC-BCS transition

The phenomena of superconductivity and superfluidity have fascinated physicists
since the 20th century. In 1911, superconductivity was discovered when resistance
of mercury was observed to vanish below a certain critical temperature [974]. In 1957
Bardeen, Cooper and Schrieffer (BCS) formulated the theory on superconductivity
[93, 94], which predicts that, in fermionic systems below a certain temperature, there
is formation of a gap of minimal excitation energy in the conductor. With this theory,
many properties of superfluids and superconductors can be explained, as we will see
in the following sections.

49.4.1.1 Pairing in a gas of fermionic atoms

Superfluids are fundamentally associated with the quantum properties of bosons.
Therefore, to create a superfluid from a fermionic system, it is necessary to pair the
fermions. The simplest way to imagine a pairing of fermions is to create a two-body
bound state of two fermions. For example, two paired fermionic spin-1/2 particles
form a single bosonic integer-spin particle. In recent experiments studying the BCS-
BEC transition, the fermionic particles are atoms (e.g. 40K) forced to form a diatomic
molecule. These diatomic molecules, below a critical temperature, will form a BEC
[1080]. Fig. 49.4(a) illustrates a superfluid containing such pairs.
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Figure 49.4: Illustration of fermion pairing in the BCS-BEC transition. The two colors
represent fermions in two different spins states. Two states are required if the fermions are
paired through s-wave (ℓ = 0) interaction.

In the other pairing process, the Cooper pairing, the basic nature of the fermionic
system is much more apparent. Cooper considered the problem of two fermions with
equal-sized but and opposite momenta outside a perfect Fermi sea [290] 1 and noted
that due to the Pauli exclusion principle, these two fermions are prevented from
occupying momentum states inside the so-called Fermi sea, that is k < kF where kF
is the Fermi wavevector. This fermion pair, which is prevented from penetrating the
Fermi sphere is called Cooper pair.

Now if only one electron pair were free to pair outside the Fermi sea, this would
not lead to superconductivity, since all fermions must be allowed to participate in the
pairing process. The superconductivity theory of Bardeen-Cooper-Schrieffer (BCS)
was able to link the many-body theory to this problem and succeeded in describing
the phenomenon of superconductivity [93, 94].

Qualitatively the BCS state results from a loss of correlations between fermions
on the Fermi surface in momentum space [see Fig. 49.4(c)]. Spatially, the pairs are
highly overlapping and can not simply be considered as bosons. Close to the BCS
limit the momentum distribution only changes to the usual Fermi sea, that is, an
exponentially small region near the Fermi surface.

It is interesting to consider what happens if diatomic molecules become increas-
ingly weakly bound, that is, when the binding energy Eb of the molecules becomes
smaller than the Fermi energy EF . We may also consider the increase in the in-
teraction energy of a Cooper-paired state up to EF . The essence of the BCS-BEC
transition is that these two possibilities describe the same physical state. As the
interaction between fermions is increased, there will be a continuous change (or tran-
sition) between a BCS state of a BEC state of diatomic molecules. The point where
two fermions in vacuum would have zero binding energy is considered the apex of the
transition. The pairing of such a state is represented in Fig. 49.4(b). These pairs share
some properties with diatomic molecules and some properties with Cooper pairs.

1The energy of the two fermions turns out to be smaller than the expected value of 2EF for
attractive and weak interactions. This finding contrasts with the behavior of two fermions in vacuum;
in this case, a bound state can not exist until the interaction strength reaches a certain value. The
main difference between the two situations arises from Pauli’s exclusion principle which, in the case
of Cooper pairs prevents the two fermions from occupying momentum states k < kF .
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49.4.1.2 Varying the interaction strength

It is instructive to consider a physical situation that allows for the pairing (see
Fig. 49.5). Suppose that we start with an attractive potential between two atomic
fermions in vacuum, e.g. a hard-core potential with characteristic length r0 shown
in Fig. 49.5. If this potential is very shallow, there will be a weak attractive inter-
action between the fermions. As we deepen the potential, the interaction between
the fermions becomes stronger and, when the attraction is strong enough, a bound
molecular state will appear. This molecule will become increasingly tightly bound as
the potential becomes deeper.

Figure 49.5: Scattering wavefunction in the presence of an attractive potential (b) and a
deeper attractive potential (a) in the regime where the potential of the bound state (dashed
line) is close to the threshold. Note that the scattering length changes sign when the bound
state moves through the threshold.

The interaction in this system can be characterized by the scattering length a.
The sign of a determines whether the interaction is attractive (a < 0) or repulsive
(a > 0). The quantity a is related to the collision cross-section through σ = 4πa2.
Figs. 49.5(a) and 49.5(b) show a pictorial representation of a. Before the bound state
appears, a is large and negative, which corresponds to a strong attractive interaction.
As the bound state passes through the threshold the value of a diverges and, beyond
the threshold, becomes larger and positive, which corresponds to a strong repulsive
interaction. When a is much greater than r0, the interaction independs on the shape
of the potential, and when a > 0, it is related to the two-body binding energy through

Eb =
ℏ2

ma2 , where m is the mass of one fermion [1129].
Now, if we consider an ensemble of many fermions under the situation depicted

in Fig. 49.5, we have a system that can be changed from BCS to BEC, by simply
tuning the attractive potential. To the far right of Fig. 49.5(c) we have a small and
negative a and, hence, we are in a BCS state. On the opposite side of the figure, we
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have an ensemble of diatomic molecules and therefore a BEC state. It is important to
note that although the interaction between fermion pairs is stronger in the BEC limit,
from the point of view of collisions in molecular gas, the BEC boundary is weakly
interacting because the molecule-molecule interaction is weak.

49.4.1.3 Simplified theory

The BCS theory was originally applied to the regime where the interaction energy is
extremely small compared to the Fermi energy. In this case, the chemical potential µ
can be set to EF , which simplifies the calculations reasonably. Leggett pointed out
that, examining the equation describing the BCS gap upon varying µ, this equation
becomes precisely the Schrödinger equation for a diatomic molecule in the limit where
µ dominates [784].

Let us consider a homogeneous Fermi system at T = 0 in three dimensions con-
sistent of a mixture with the same quantity of atoms in the two states. Applying the
usual BCS theory results in an equation for the gap,

∆k = −
∑

k′

Ukk′
∆k′

2Ek′
, (49.45)

where Ek =
√
ξ2k +∆2, ξk = ϵk − µ, and ϵk = ℏ2k2

2m . Ukk′ < 0 is the attractive
interaction for the scattering of fermions with momenta k′ and −k′ to momenta k
and −k. We can also obtain the equation for the total number of fermions in both
states, Ntot,

⟨Ntot⟩ =
∑

k

(
1− ξk

Ek

)
. (49.46)

To solve Eq. (49.45) in the BCS limit the standard approach is to assume that the
potential is constant with a value U < 0, which means that the gap is constant, i.e.,
∆k = ∆. In this case, the equation of the gap (49.45) becomes,

− 1

U
=
∑

k

1

2Ek
. (49.47)

We can see that this equation may diverge. In the BCS limit we also have µ = EF
and, given that there is the Debye energy limit ℏωD ≪ EF , the density of states is
constant with the value N(ξ = 0). The equation for the gap now becomes,

− 1

N(0)U
=

∫ ℏωD

−ℏωD

dξ

2
√
ξ2k +∆2

. (49.48)

Solving Eq. (49.48) we produce the BCS result: ∆ ≈ 2ℏωDe−1/N(0)|U |.
Extending this calculation to the transition in atomic systems, we can no longer

apply the cut-off ℏωD. The solution to the divergence problem, in this case, is not
trivial and requires a renormalization procedure, which can be found in the reference
[?].

The result of this procedure is a renormalized equation for the gap:

− m

4πℏ2a
=

1

V

∑

k

(
1

2Ek
− 1

2ϵk

)
, (49.49)
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where the interaction is now described by the s-wave scattering length a instead of U ,
and V is the volume of the system. In addition, for the transition we can not assume
µ = EF ; instead, we must solve simultaneously the equation of the gap (49.49) and
the equation of the number (49.46) in order to get µ and the gap ∆. This can be done
resolving as a function of the dimensionless parameter kFa, where ℏkF =

√
2mEF ,

as done in Ref. [846].

Figure 49.6: The gap, ∆, and the chemical potential, µ, of a homogeneous Fermi gas at
T = 0, as determined via the NSR theory. The red and blue lines show the BCS and BEC
theory. Note that the theories only deviate significantly from the complete theory inside the
interval −1 < 1

kF a
< 1 [1082].

The black lines in Fig. 49.6 show the result of the calculations of ∆ and µ. Also
are plotted the values of these two parameters calculated in the BCS and BEC limits,
where we find that the BCS-BEC transition occurs in a relatively small region of the
parameter 1/kFa, that is, between −1 < 1

kF a
< 1. In typical experiments studying

this transition (with 40K or 6Li) this interval corresponds to a ranging from −2000a0,
crossing the divergence (a→∞), until 2000a0, where a0 is the Bohr radius.

It is useful to understand explicitly the value and meaning of both ∆ and µ in
these two limits. µ is equal to EF in the BCS limit and equal to −Eb/2 = −( 1

kF a
)2EF

in the BEC limit. ∆ is equal to EF e
− π

kF |a| in the BCS limit and equal to EF

√
16
3π

1
kF a

in the BEC limit [846].

49.4.1.4 Beyond T = 0

A very important parameter for any superfluid system is the so-called phase transi-
tion temperature Tc. In the BCS-BEC transition Tc increases as the interaction is
increased, that is, it is lower in the BCS regime and higher in the BEC regime. For

a homogeneous system in the BCS regime Tc/TF = 8
π e

γ−2e−
π

2kF |a| , where γ = 0.58
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[588]. In the BEC regime Tc/TF = 0.22 [1017]. Note that in the BCS regime Tc can
be extremely small due to the exponential dependence on 1/kFa.

In the BCS regime pairing and phase transition to a superfluid state occur at the
same temperature. In the BEC regime this is not the case. It is natural to expect that
there should be a cross-over between these two behaviors in the BCS-BEC transition,
i.e. there should be a point in the transition, where the pairing temperature T ∗ is
distinct from Tc, but not much different.

The above discussions and calculations, while providing a basic introduction to
the BCS-BEC transition theory, are far from the current situation of this theory.
For example, the result for the chemical potential at the singularity (where 1/kFa =
0) is significantly different from the result of more accurate calculations based on
Monte Carlo simulations [234, 59]. Thus, it is clear that the addition of higher order
correlations in the theory of the BCS-BEC transition theory is required.

The BCS-BEC transition was studied in laboratory [1083] using 40K as the fermionic
sample, prepared in two hyperfine states |F = 9/2,mF = 9/2⟩ and |F = 9/2,mF =
7/2⟩. Other group also studied this transition in different fermionic species. Many
studies involving the BCS-BEC transition have been made, such as studies on the
change of momentum distribution in this transition [1078], studies of collective os-
cillations [428], the modification of the expansion of ultracold clouds [1426], and the
change of the critical velocity of the superfluid flow throughout the transition [894].

49.4.2 s- and p-wave pairing

Cooper pairing can occur between two fermions being in different spin states [87, 160].
For pure two-component Fermi systems the critical temperature follows to first order
from [995, 600],

gF

∫ ∞

0

p2dp

2π2ℏ3
1

εp

1

eεp/kBT
0
BCS + 1

= 1 , (49.50)

with εp = p2/2mF − µ i.e.,

kBT
0
BCS =

eCE

π

8

e2
εF exp

(
− π

2kF |as|

)
. (49.51)

However, spin- and density fluctuations in the Fermi cloud mediate an interaction be-
tween the fermions, which reduces T 0

BCS by a factor 2.2 in the case of two components
and increases T 0

BCS for several components. The critical temperature is then,

kBTBCS ≃ 0.3εf exp

(
− π

2kF |as|

)
, (49.52)

where εF = ℏ2k2F /2m. Therefore transfer half the population into an different Zeeman
state, e.g. state 6Li, |1/2, 1/2⟩|1/2,−1/2⟩ or 40K, |9/2,−9/2⟩|9/2,−7/2⟩. This is only
possible with optical traps. The s-wave scattering length for 6Li is as ≃ −2160aB ,
even in this channel.

Use p-wave collisions as pairing mechanism [408]. The critical temperature is then,

kBTBCS ≃ εF exp

(
− π

2(kF |ap|)3
)
. (49.53)

The p-wave scattering length for 6Li is ap ≃ −35aB .
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49.4.3 Resonance superfluidity and boson-induced interactions

In general kF |a| ≪ 1, so that the pairing temperature is way too low. There are
however two approaches to rise the critical temperature:

1. Increase the s-wave or the p-wave scattering length by a Feshbach resonance
[1426, 1084] (see also Sec. 33.4.2).

2. For a Fermi gas embedded in a Bose condensate, there can be boson-mediated
interaction, similar to phonon-mediated interaction in 3He-4He [144, 600]. This
can give rive to an effective fermion-fermion scattering length, i.e. a Rb Bose
gas may catalyse an enhancement of 6Li-6Li interactions. For a discussion on
how to reach very cold temperatures via sympathetic cooling see Sec. 49.2.2.

All experiments used s-wave pairing of spin-mixtures enhanced by Feshbach reso-
nances. BCS pairing has been observed in experiments by various methods: 1. Radio
frequency spectroscopy probes the excitations spectrum [539], which should show a
pairing gap [101, 256]. 2. Superfluidity is seen as the occurrence of vortices in a Fermi
gas [1444].

49.5 Controlling the interatomic interaction

Collisions play an important role in all areas of atomic physics. By elastic colli-
sions, an atom exchanges only kinetic energy, which is important, for example, for
the thermalization of atomic clouds upon evaporative cooling. During a collision, the
interatomic forces deform the electronic orbitals and displace energy levels and reso-
nances. This is a hindrance to applications in frequency standards (such as atomic
fountains), where the accuracy of the measurement of narrow resonances is limited
by these effects. On the other hand, controlled elastic collisions are the essential in-
gredient of some quantum computer schemes [661]. An inelastic collision involves the
internal degree of freedom of atoms, that is, the atoms modify their excitation levels.
The excess excitation energy is transferred to the atomic motion as kinetic energy,
which in turn, provided it is sufficiently high, can expel the atoms out of the trap.

Collisions can be classified by their energy: A cold collision is characterized by an
interaction time, which is so long, that absorption and photon emission processes can
occur during this period. This allows the manipulation of the collisions by irradiation
of resonant laser beams [1279]. A collision is called ultra-cold collision, when the
kinetic energy of the atoms lies below the photon recoil limit. At these temperatures,
only partial s-waves contribute to the collision. In general, ultra-cold collisions are
influenced by quantum statistics (bosonic or fermionic), whereas ’cold only’ collisions
can often be treated by classical theory.

49.5.1 Detection of Feshbach resonances

The spin structure of alkaline atoms is complex and results from a combination of
electron-exchange energy, hyperfine spin coupling and Zeeman interactions. This gives
rise to a multiplicity of energy levels, which increases the likelihood of an occurrence
of Feshbach resonances. There are several ways to detect a Feshbach resonance. An
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experiment done at the University of Texas at Austin used photoassociation spec-
troscopy with resolved Zeeman structure to prove the first Feshbach resonance in a
thermal cloud of 85Rb atoms [300]. An alternative method measures the influence
of the Feshbach resonance on the elastic collision section [1108]. A third detection
method, which proves the impact of a Feshbach resonance on a BEC, has been used
for 23Na [648]. Other Feshbach resonances were later found in 133Cs [1349] and many
other species or combinations of species [?].

49.5.2 Free-bound coupling by Feshbach resonances

First theoretical studies have been carried out by [1308, 391, 627]. The simplistic
image of the scattering length (see Sec. ??) is a good approximation for isolated atoms,
very diluted clouds or condensates far away from a Feshbach resonance, B −BFB →
∞. However, the divergence of the condensate’s mean field energy at B → BFB is not
a realist concept. In fact, the molecular state represents a separate species of particles
and a new thermodynamic fraction which, when the Feshbach resonance is excited in
a BEC, is expected to form a molecular condensate [1308]. The atomic BEC and the
molecular BEC are coupled by tunneling of atom pairs between them. This coupling
is described by the following contribution to the Hamiltonian:

H ∼ ψ̂2
atomψ̂

†
mol + (ψ̂†atom)2ψ̂mol . (49.54)

The signature of this new type of quantum tunneling can be observed in Josephson-like
oscillations as a response to an abrupt modification of the scattering length induced
by a sudden change of the magnetic field.

One problem with the mixed atomic-molecular system is the rapid relaxation of
the molecular states. In fact, bound states have high vibrational energy and can easily
relax by inelastic collisions with atoms or other molecules. Relaxation may make it
difficult to detect molecular condensates.

The coherent free-bound coupling has been studied in a series of theoretical and
experimental publications [1314, 668, 391, 1307, 1308, 648, 1108, 1349, 293]. The
chemical potential of a BEC in the Thomas-Fermi approximation depends on the
scattering length via µ = gn. The relationship may be useful to (a) study the collapse
of BECs and to make BECs with new species, (b) to study the phase separation of
BECs in different internal states tuning between miscible and non-miscible BECs,
(c) to study Josephson oscillations adjusting the difference of the chemical potentials
of two species, and (d) to study the dynamics of BECs.

But the physics of the BECs are considerably richer than that of a modified scatter-
ing length, due to the possibility of a free-bound coupling to a vibrational molecular
state. Josephson oscillations far away from resonance between states of molecular
and atomic BECs can be excited in response to an abrupt change of detuning. Near
resonance, the production of molecules induces a self-stabilization and a minimum in
energy dependence of the density. Consequently, the density is self-determined, which
is a property of rarefied liquids. Gases and liquids are both fluid. Their viscosity is
much lower than that of a solid. Gases are distinguished from liquids by their self-
diffusion and much greater compressibility, gases do not form surfaces. For liquids we
have almost (∂nlq/∂P ) ≈ 0, or in harmonic traps (∂nlq/∂ωtrap) ≈ 0.
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The treatment of the free-bound coupling introduced in the preceding section leads
to non-physical phenomena when applied in BECs. Therefore, we reformulate the
many-body problem allowing for the emergence of a separate molecular condensate
coherently coupled to the atomic one:

H =

∫

R3

u(r)d3r , (49.55)

n(r) = |ψ̂a|2 + 1
2 |ψ̂m|2,

ukin(r) = ψ̂+
a

(
−ℏ2

2M ∆+ Va(r)
)
ψ̂a + ψ̂+

m

(
−ℏ2

4M ∆+ Vm(r) + ∆E
)
ψ̂m ,

uself (r) = ψ̂+
a

(
gaa|ψ̂a|2

)
ψ̂a + ψ̂+

m

(
gmm|ψ̂m|2

)
ψ̂m ,

umutual(r) = gam|ψ̂a|2|ψ̂m|2 ,
uconv(r) =

α√
2

(
ψ̂2
aψ̂
†
m + (ψ̂†a)

2ψ̂m

)
,

whereM denotes the atomic mass, α the atom-molecule coupling αδK,k+k′ =
√
Ω⟨K,m|Vhfs|k,k′⟩.

The contribution uconv can be interpreted as second harmonic generation (SHG). With
the commutation rules:

[
ψ̂†j (r, t), ψ̂k(r

′, t)
]
= δjkδ

3(r− r′) , (49.56)
[
ψ̂j(r, t), ψ̂k(r

′, t)
]
= 0 ,

and the Heisenberg equations,

[
H, ψ̂j(r, t)

]
= iℏ∂tψ̂+

j (r, t) , (49.57)

we can calculate the dynamics of this coupled system.

The equilibrium situation is described by the atomic and molecular chemical po-
tentials to be balanced, µ = µa = µm. Expressing the BEC as a c-number and
defining n ≡ ϕ2:

µϕa(r) =
[
−ℏ2

2Ma
∆+ Va(r) + gaana(r) + gamnm(r)

]
ϕa(r) +

√
2αϕm(r)ϕa(r) ,

(49.58)

2µϕm(r) =
[
−ℏ2

4Mm
∆+ Vm(r) + gmmnm(r) + gamna(r)

]
ϕm(r) + 1√

2
αϕ2a(r) .

49.5.2.1 Bose-Einstein condensation of 85Rb

The scattering length of the isotope 85Rb in the ground state F = 2,mF = −2 is
negative, a|2,−2⟩ ≈ −400aB , which prevents the formation of stable condensates with
this atomic species. However, in the vicinity of a Feshbach resonance, the scattering
length is very sensitive to ambient magnetic fields B (see Fig. 33.30), and can change
its amplitude and even its sign.

Consequently, quantum degeneration was reached with 85Rb [293] operating in
a region, where the scattering length is positive. The evaporative cooling of a gas
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from this isotope is troubled by a minimum in the temperature dependence of the
cross section for elastic collisions around 350µK, which is a peculiarity of 85Rb. In
addition, inelastic two- or three-body collisions of are very common in some regimes
of the scattering length. Nevertheless, these difficulties can be avoided [293] using
relatively weak confinement potential to reduce the density of the atomic cloud. Also,
via a temporal control of the scattering length through a magnetic field a(B(t)), it is
possible to design a sophisticated evaporation trajectory avoiding the critical regimes.

The active control of the scattering length also allows to push a 85Rb condensate
into the ideal gas regime, a(B)→ 0, or toward the Thomas-Fermi limit of a strongly
interacting gas, a(B) > 10000aB , where the assumption of a very dilute gas, (46.3),
starts to fail and effects beyond the mean field approximation are expected. Since
the volume and shape of a condensate depend on its self-energy, their measurement
yields information about the actual value of the scattering length.

Near a Feshbach resonance, at an amplitude of the magnetic field of B = 166.8 G,
the scattering length changes from positive to negative (see Fig. 33.30). Crossing this
point, we observe a catastrophic dynamic behavior [1109]: The BEC tries to reduce its
self-energy by compressing its density until it succumbs emitting a jet of hot atoms.

49.5.2.2 Production of molecules inside condensates

The complicated ro-vibrational structure of molecules prevents their efficient cool-
ing by optical means. Nevertheless, some alternative techniques, such as supersonic
expansion, cryogenic cooling [387] and magnetic trapping [1365] managed to cool
molecular samples to temperatures around one Kelvin.

Photoassociation (PA) can be used [82] as a tool to convert a large number of
atoms to ultra-cold molecules. Based on this technique, molecules were synthesized
in the rotational ground state at temperatures of 100µK, but distributed over a large
number of highly excited vibrational states [445]. Alternatively, it is possible to con-
sider a coupling of atomic states to a single ro-vibrational molecular state using two
lasers in Raman configuration. This scheme is known as two-photon photoassoci-
ation (see Fig. 49.7). In equilibrium, the production of molecules by this method
depends on the entropies of the coupled system [668]. In a thermal atomic gas, the
(quasi-2) continuum of dissociated atomic states has a much greater entropy than
the discrete spectrum of bound vibrational molecular states. The equilibrium of the
free-bound coherent coupling, therefore, is biased toward the side of the continuum,
that is, molecules dissociate faster than they associate, and the molecular production
is negligible. However, when the atomic cloud approaches the quantum degeneracy
regime, the phase space is considerably reduced (a condensate has zero entropy), and
the free-bound coherent coupling can transform a considerable amount of condensed
atoms to a molecular condensate. The formation of molecules within a condensate
can be interpreted as a chemical process, where bosonic stimulation plays the role of
a catalyst. The dynamics of this process is induced by quantum statistics rather than
chemical forces between atoms.

The experimental procedure for synthesizing 87Rb is quite simple: A condensate of
some 105 atoms in the electronic ground state 2S1/2 (f = 1,mf = −1) and two laser

2The atoms are still confined to the trapping potential.
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beams in the Raman configuration are irradiated for some 100 ms. As shown on the
left side of Fig. 49.7, the first laser excites the transition between the ground state of
free atoms and a vibrational state of the excited interatomic interaction potential 0−g .
Its frequency is tuned ∆1 = −150 MHz below resonance. The second laser couples
the molecular state of the interatomic ground state potential (in this case, it is the
second vibrational state below the ionization threshold, v = −2, ℓ = 0) and the excited
molecular state of the 0−g potential (chosen for its large Franck-Condon overlap with
the molecular ground state). This laser is tuned to ∆2 = ∆1 + 636MHz. Since the
two frequencies are derived from a single laser using an acousto-optical modulator,
their phases are coherent, that is, the Raman frequency ∆1−∆2 is sufficiently stable
to couple only a single ro-vibrational state connected through a dark resonance to
the collision channel. The molecules are not directly detected, but at the end of the
Raman laser pulse, condensate losses due to the formation of molecules are measured
by time-of-flight imaging. The dark resonance is detected by repeating the sequence
with different laser detunings.

Figure 49.7: Free-bound-bound two-photon photoassociation in 87Rb. During the collision
of two atoms in their lower hyperfine level of the ground state, 2S1/2, f = 1,mf = −1,
collide, they undergo a photoassociative Raman transition to the bound vibrational state
v = −2, l = 0, F = 2,mF = −2 located 636.0094MHz below the ionization threshold. The
intermediate excited state is v, J = 0 at 12555 cm-1 of the 0−g potential connecting to the
asymptote 2S1/2 −2 P1/2. The levels are chosen for their large Franck-Condon overlap.

While in a thermal cloud, two-photon photoassociation resonances have widths
of some MHz (see Fig. 49.7 top right), the dark resonances measured in BECs have
widths less than 2 kHz, which clearly shows the coherence of the coupling in the latter
case. The narrowness of the dark resonance allows to measure the ionization energy of
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the molecular ground state, E = 2πℏ×636.0094 MHz, with unprecedented resolution,
only limited by the spatially inhomogeneous distribution of the condensate’s self-
energy. Molecules are created in a specific state and preselected: They are at rest
because the Raman process does not transfer momentum, the molecular state chosen
in this experiment [1396] has no rotation, but the energy of the vibrational excitation
is large (Rydberg’s molecular states).

It is natural to ask in what situation the molecules should form an molecular
condensate. In principle, for each ro-vibrational molecular state the lowest molecular
state of the confining potential can accommodate a molecular BEC. However, the
width of the dark resonance should be lower than the secular frequencies of the trap, to
selectively populate a single (fundamental) motional state. In addition, the molecules
should be reasonably stable. Unfortunately, molecules with highly excited vibrations
undergo inelastic collisions with atoms (or other molecules if their density is high),
which converts the vibrational excitation energy to kinetic energy for the atom and
the molecule resulting in losses for the confined cloud [77]. Fast inelastic relaxation
toward lower vibrational states limits the lifetime of the molecular Rydberg states
to some 100 µs [1396]. We might think of coupling lower vibrational states of the
molecular potential, provided the Franck-Condon overlap is sufficient. However, the
energies of these vibrational levels are so far apart, that the frequencies of the Raman
beams must be produced by different lasers. These lasers must be extremely stable,
that is, their spectral emission bandwidth must be less than the desired resolution of
the dark resonance.

49.6 Feshbach resonances in BECs

The equilibrium situation is described by the atomic and molecular chemical poten-
tials being balanced µ = µa = µm. If we express the BECs as c-numbers defining
n ≡ ϕ2:

µϕa(r) =
[
−ℏ2

2Ma
∆+ Va(r) + gaana(r) + gamnm(r)

]
ϕa(r) +

√
2αϕm(r)ϕa(r) ,

(49.59)

2µϕm(r) =
[
−ℏ2

4Mm
∆+ Vm(r) + gmmnm(r) + gamna(r)

]
ϕm(r) + 1√

2
αϕ2a(r) .

49.6.1 Thomas-Fermi limit

For weak coupling strength α → 0, the contributions of a single atom and a single
molecule to the total energy are:

1H =

∫

R3

(Ua(r)na(r) + Um(r)nm(r)) d3r , (49.60)

1Ua(r) =
−ℏ2

2Ma
∆+ Va(r) + gaana(r) + gamnm(r) ,

Um(r) = −ℏ2

2Mm
∆+ Vm(r) + gmmnm(r) + gamna(r) .
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For small molecular condensates, in the Thomas-Fermi limit:

Ua(r) = Va(r) + gaana(r) , (49.61)

Um(r) = Vm(r) + gamna(r) .

The elastic cold collision of two particles, atoms or molecules, i, j = a,m, can
be described by the real part of the scattering length aij = a′ij − ia′′ij , which is

related to the interparticle interaction strength gij = 4πℏ2a′ij/Mij , where we used the

reduced mass M−1ij = M−1i +M−1j of particle pairs, i.e. Maa = M/2, Mam = 2M/3
and Mmm = M . Similarly, inelastic collisions are described by the imaginary part

K
(inel)
ij = 4πℏ2a′′ij/Mij . Additionally we have the interspecies coupling strength α.

49.6.2 Off-resonant and resonant limit

Far from the Feshbach resonance, ∆E −→∞, in the Thomas-Fermi limit, g ≡ 2ga ≡
gm. The minimum energy density is,

umin = ϕ+a

(
ga
2 − α2

∆E

)
nϕa , (49.62)

and the equations (49.58) reduce to the well-known single-species GPE where the
scattering has changed to,

aeff = a0 −
M

4πℏ2
2α2

2µa − µm
1

B −BFB
. (49.63)

Tuning a from positive side into resonance, i.e. driving the scattering length from
positive values to 0 reduces the self-energy 4πℏ2a/M · na −→ 0, so that the BEC
must collaps according to the aeff description, unless it is stabilized by a confining
trap allowing a certain maximum na. However, in the correct two-species description,
the atoms can tunnel into molecular states thus reducing na to a number that can
actually be balanced by the confining trap. This effect stabilizes the BEC.

The aeff description also suggests unphysical divergences.

49.6.2.1 Decay

Collisions will induce a fast relaxation of highly excited molecular Rydberg states.
We have two competing time scales. Fast relaxation of high vibrational states by
inelastic (molecule-atom) 3-body collisions typically happens for n = 1014 cm−3 and
Γtypical within τrelax = 1 µs..1 ms. The condensate dynamics governed by self-

energy iℏ∂tψ = 4πℏ21
m nψ which happens within τcond =several 100 ms. It seems, that

adiabatic tuning into FBR may be barely feasible.
The decay gives rise to an irreversibility and thus to a dependence of the state on

history which is not included in the aeff description.

49.7 Raman photoassociation in BECs

49.7.1 Molecule production

Complicated ro-vibrational structure of molecules inhibits efficient laser cooling. Su-
personic expansion internally cold but translationally hot, cryogenic cooling [387] and
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magnetic trapping [1365] works down to K. Incoherent photoassociation has produced
molecules rotationally as cold as 100 µK, but still populates many excited vibrational
states and has a large energy spread [445]. Other work has been done by [82], [690],
[832], [669], [1396], [638].

In a BEC we can state-selectively (here: no rotation, high vibration, weakly bound)
create 87Rb molecules at rest (no motion). Raman dark resonance width of 1.5 kHz
influenced by molecule- atomic BEC interactions. The molecular binding energy is
precisely measurable ε = 2π×636.0094 MHz. Is useful for determining the potentials
even more accurately.

Procedure is very simple: Make a BEC of a few 105 atoms in the ground state 87Rb
52S1/2(f = 1,mf = −1) with variable densities n0 = 0.8...2.7 cm−3. Then irradiate
a collinear pair of laser beams for τ = 150...550 ms with ∆1 = 2π × −150 MHz and
detuned from an upper 0−g long range molecular state and ∆2 = ∆1+636 MHz phase
coherent to ∆1 within 1 kHz. The momentum transfer is neglegible, because k1 ≈ k2.
Neighboring atoms interact via Vg(R), the Raman beams couple the free collisional
channel via a dark resonance to a single ro-vibrational bound state. Finally measure
the losses N(τ)/N0 from the BEC via fluorescence TOF. The dark resonance is probe
by repeating the sequence with various detunings.

The width and shift of the resonance depends on the laser intensities I1 and I2 and
detuning ∆1 and on the peak density of the condensate. AC-Stark shift and power -
broadening due to spontaneous Raman scattering of molecules removing them from
the BEC. The dependence on the laser parameter can be removed by extrapolation
to 0.

The Doppler broadening is not important, because Ekin ≈ 6 nK and Epot ≈
100 nK. Zeeman brodening is neglegible, because µ⃗mol = 2µ⃗atom so that it is smaller
than1.5 kHz/G. No radiative decay? In the Thomas-Fermi limit the energy width of
the atomic BEC is strongly reduced, because of the large coordinate distribution and
the uncertainty relation. The resonance width is therefore attributed to molecule-
atom interactions.

To treat the problem, we can use equations (49.58), and set ukin → 0 and uconv →
0. In analogy to equation (49.60), we get,

H =

∫

R3

(Ua(r)na(r) + Um(r)nm(r)) d3r (49.64)

Ua(r) = Va(r) + gaana(r) = const

Um(r) = Vm(r) + gamna(r) ,

where gaa = 4πℏ2a′aa/M and gam = 3πℏ2a′am/M and Vm(r) = 2Va(r). We know
from earlier experiments that a′aa = 104aB and a′′aa ≈ 0. When converting a pair of
atoms into a molecule, we have to cross the energy gap ∆U(r) ≡ Um(r) − 2Ua(r) =
(gm−2ga)na(r). The coordinate dependence broadens the transition. A crude model
for the photoassociative loss rate ṅa(r, t) permits a rough estimate of a′am ≈ −180aB
and a′′am < 110aB , or equivalently gam and K

(inel)
am < 8 · 10−11cm3/s. That means

that at na(0) = 1014cm3 peak density the lifetime of the molecules lies at about
τinel = 0.1...0.5ms and much faster than the trap secular frequency, so that the
molecules can be considered at rest during the whole process. For longer vibrational
lifetimes, the inhomogeneous broadening transforms into an oscillator spectrum which
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could be resolved by the Raman transition. The lowest trap oscillation level for each
vibrational state can, in principle, accommodate a molecular ground state BEC.

Vibrationally excited molecules collide inelastically with atoms (or other molecules
if the density is high enough) converting their vibrational energy into kinetic energy
for the atom and the molecule resulting in trap loss. This process is very strong for
high vibrational excitation [77]. This process is also the reason for the observed strong
inelastic losses near Feshbach resonances. The analogy to Feshbach resonances comes
from the fact that they can be interpreted as coming from a transient intermediate
molecular state in a 2-atom collision. Both schemes of controlled molecule produc-
tion may be useful only if the lowest vibrational levels are populated or a level with
inhibited decay.

However, if the lifetime of the vibrational state τvib is long enough, both schemes
are not simply collision resonances (resonant modification of the scattering length),
but a separate population of the molecular state builds up and the cm- degree of
freedom interacts with the atomic BEC.

Outlook on reversible creation of molecular BECs with exotic phenomena provided
the vibrational relaxation by molecule-atom and molecule-molecule collisions can be
overcome. Molecular laser may be feasible by choosing laser geometries different from
parallel beams, so that the momentum transfer expulses the molecules from the atomic
BEC.

49.8 Production of heteronuclear molecules

Our main goal is the production of LiRb molecules. Two ways are possible: Using
Feshbach resonances or via Raman-Photoassociation. Stability issues: They might be
much more unstable then fermionic species molecules. Molecules may be short-lived
due to inelastic or reactive losses [315].

49.8.1 General production schemes

49.8.1.1 Photoassociation

Mixed species collisions have no resonant dipole-dipole interaction [707, 837]. There-
fore excited state collisions of different species are purely short-ranged. This makes
free-bound photoassociation more difficult, but enhanced bound-bound transitions to-
wards deeply bound vibrational states. For reasonable rates laser intensities on the
order of 100 W/cm2 are required. High densities more than 1011 cm−3 are desired.
The lowest fine structure dissociation limit is good to prevent predissociation [706]:
Li(2s)-Rb(5p1/2).

The ground state 3Σ potential supports around 60 vibrational levels. It is 300 cm−1

deep (or 20 nm at 795 nm).

49.8.1.2 Two-color photoassociation

For a coherent coupling via stimulated Raman photoassociation of those states sta-
ble lasers are necessary. Phase-locked stabilization either requires photonic fibres or
locking to a common cavity. The free-bound laser must be very strong.
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49.8.1.3 Feshbach resonance

Proposal for heteronuclear molecules via Feshbach resonances stem from [738, 1274].
Also heteronuclear Feshbach resonance has been observed for 6Li7Li [1327], 6Li23Na,
[1242], and 40K87Rb [?].

49.8.2 LiRb molecules

The LiRb sytem is interesting for its large permanent electric dipole moment. Also,
the combination LiRb has been shown advantageous for reaching low temperatures
due to the large mass difference (see Sec. 49.2.2). E.g. try boson-mediated s-wave
or p-wave Cooper pairing without no 6Li6Li Feshbach resonance enhancement. In
contrast, the 6Li87Rb interaction can be tuned by an interspecies Feshbach resonance
(tuning both resonances simultaneously does not work anyway). The predicted pairing
temperatures are very low [408], T ≪ 1 nK for abf ≫ 200aB and nf ≫ 1014 cm−3.

The idea for their production is to cool 6Li and 87Rb atoms down, excite a Feshbach
resonance and simultaneously a Raman transition.

49.8.2.1 Production scheme for LiRb molecules

• Step 1: Transfer atoms from the triplet scattering channel |2,−2⟩|3/2, 3/2⟩ to-
wards |1,−1⟩|1/2,−1/2⟩ via a combination of microwave pulses driving the hy-
perfine resonance and adiabatic radiofrequency sweeps, carefully designed to
populate the desired states.

• Step 2: The colliding channel is coupled to a low-lying bound vibrational level
via a Raman transition. An appropriate scheme has to be found, satisfying the
selection rules for radiative transitions, maximizing the Franck-Condon overlaps
and working at convenient transition wavelengths. The Raman transition must
be driven by a stabilized system of two lasers; their relative stability should be
high enough to allow for a resolution of the secular frequencies of the trapping
potential 3.

• Exciting Raman transitions, Scheme 1: The atoms collide in their fully stretched
|2, 2⟩|3/2, 3/2⟩ channel which only connects to the a3Σ+ potential. The ampli-
tude of the scattering wavefunction is enhance by a Feshbach resonance. A laser
at 1700 nm excites close to the outer turning point a level of the (1)3Π potential,
which mixes via spin-orbit coupling with the (2)1Σ+ potential to give rise to a
0+ level structure. The inner turning point has a good Franck-Condon overlap
with low-lying vibrational levels of the X1Σ+ ground state potential.

• Exciting Raman transitions, Scheme 2: The atoms collide in a channel which
has admixtures of the X1Σ+ ground state potential.

3Is PA coupling strong enough even in presence of spontaneous decay? What are the selection
rules for bound-bound transitions to deeply bound levels?



2840 CHAPTER 49. MULTICOMPONENT BECS, MIXED SPECIES AND FERMIONIC SUPERFLUIDS

49.8.3 Stability of LiRb Rydberg molecules

The heteronuclear 6Li87Rb molecules will be unstable against collisions with Li and
in particular bosonic Rb atoms, whose density is very high. However sufficiently
deep bound LiRb molecules are fermionic and thus stable against ultra-slow inelastic
collisions. In contrast, this is not true for highly excited vibrational states. Close to
dissociation the quantum statistics of the constituents is expected to dominate the
collision process, which leads to accelerated decay. How deep must the binding be for
stable LiRb clouds? What loss mechanisms are possible [44]?

49.8.3.1 Tuning the binding energy

There are two contradictory pictures. In a ’single-channel picture’, close to a FR the
bound states of potential Vb interacts with the collisional channel of another potential
Vc. This interaction deepens (or flattens) Vc and causes a continuum state of Vc to
move into a bound state of Vc. The binding energy then increases with the detuning.

In a two-channel picture, have [1242].
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Figure 49.8: (code) Tuning of scattering length (a,b) and bound state energies (c) near

Feshbach resonances for (a) as(0) > 0, (b) as(0) < 0. Here (1,3) as > 0, (2,4) as < 0.

49.8.4 Removing Li and Rb molecules

Nocif Li and Rb atoms can be removed by Stern-Gerlach separation. This may work
if the goal is separate imaging of atoms and molecules. It may however be too slow
to prevent collisions. Another option is resonant excitation of the atoms. But this
requires GHz far-detuned lasers.

We want to separate Rb atoms and LiRb molecules in time-of-flight. The clouds are
7µK hot. We want to apply a b = 40G/cm gradient force for less than ∆t = 500µs.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_LiRbCrossover.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_LiRbCrossover.m
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Figure 49.9: (code) (1,3) as < 0, (2,4) as > 0.

Hence, the thermal expansion velocity,

v̄ =

√
kBT

m87
≃
√
kBT

m93
≃ 2.5 cm/s (49.65)

must be smaller than the separation velocity,

∆v =

∫
F87

m87
dt−

∫
F93

m93
dt ≃ 2

F87

m87
∆t ≃ 2

µBb

m87
∆t ≃ 2.6 cm/s . (49.66)

49.8.4.1 Optical transitions in the Paschen-Goudsmith regime

There are cycling transitions out of the absolute ground state in the Paschen-Back
regime. For 87Rb the 2S1/2 ground state |F = 1,mF = 1⟩ connects to |m′J =

− 1
2 ,m

′
I = 3

2 ⟩. From here laser light can reach the excited 2P3/2 state |m′J =

− 3
2 ,m

′
I = 3

2 ⟩, which connects to |F ′ = 0,m′F = 0⟩. For 6Li the 2S1/2 ground state

|F = 1
2 ,mF = 1

2 ⟩ connects to |m′J = − 1
2 ,m

′
I = 1⟩. From here laser light can reach

the excited 2P3/2 state |m′J = − 3
2 ,m

′
I = 1⟩, which connects to |F ′ = 1

2 ,m
′
F = − 1

2 ⟩.
Note the latter transitions would be forbidden in the Zeeman regime, because ∆ > 1.

49.8.5 Detecting molecules

49.8.5.1 Ramping through a Feshbach resonance

A procedure could be

1. Create an ultracold mixture of atomic Li and Rb.

2. Quickly tune the magnetic field to 1080 nm above the Feshbach resonance at
1070 nm.

3. Ramp the magnetic field across the Feshbach resonance to 1060 nm such that
the binding energy ∆EB is increased, thus creating up to 40000 LiRb molecules.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/AtomOptics/AO_Mixedspecies_LiRbCrossover2.m
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Figure 49.10: Zeeman splitting in the Paschen-Back regime. (a) 87Rb 2S1/2, (b)
87Rb 2P3/2,

(c): 6Li 2S1/2, and (c): 6Li 2P3/2. The cycling transitions are marked by thick lines.

4. Immediately switch off the dipole trap to reduce the density and diminish the
collision rate between LiRb molecules and Rb atoms.

5. Ramp the homogeneous magnetic field back through the Feshbach resonance to
1080 nm, thus reconverting the molecules into atoms.

6. Switch off the homogeneous magnetic field.

7. Immediately absorption image the Li atoms. The visible Li atoms are those
that have been bound to Rb atoms previously.

8. Repeat the sequence 1. to 7. now skipping step 5. In this case no Li atoms
should be visible, because they are all bound to Rb atoms.

If the Li signal is too weak because the steps 5. and 6. take too much time, it may
be possible to watch the Rb cloud. In order to separate those Rb atoms which have
not been bound to a Li atom from those who have, one could apply a gradient field
to Stern-Gerlach separate LiRb from Rb. In this case the following sequence might
work:

1.-4. as above.
5. Apply a gradient field. It can be superposed to the homogeneous field provided

both are chosen collinear.
6. Ramp the homogeneous magnetic field back through the Feshbach resonance

to 1080 nm, thus reconverting the molecules into atoms.
7. Switch off all magnetic fields.
8. Immediately absorption image the Rb atoms. A bimodal distribution of Rb

atoms should be visible [402].
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49.8.5.2 Radiofrequency spectroscopy of molecules

Following [983] we could try to excite molecular resonances without any hope of de-
tecting them. It’s just an additional loss channel. It could reveal precious information
on the size of the scattering length.

How to predict the location of the binding energy peak? If we assume that the
measure trap loss width corresponds to the real width of the Feshbach resonance,
we can calculate the profile of the scattering length and the binding energy from

Eb =
ℏ2

2ma2s
.

1. Transfer Li atoms into |1/2,−1/2⟩ state (i.e. |mJ ,mI⟩ = |1/2,−1/2⟩).

2. Tune close to the Feshbach resonance of the |1/2, 1/2⟩ state.

3. Populate the |1/2, 1/2⟩ state by rf-spectroscopy.

4. Near the Feshbach resonance a second peak blue-detuned from the resonant en-
ergy for the population transfer should appear due to the formation of molecules
with a certain binding energy.

5. Image the atoms remaining in the |1/2, 1/2⟩ state.

6. Image the atoms in the |1/2,−1/2⟩ state together with the molecules.

7. The molecular decay is expected to be fast leading to important losses in the
image 6.. In contrast, it should not matter for the image 5.

The transition frequency is about 50 MHz. Note that the ∆mI ̸= 0 transition may
be very weak. Alternatively, one could probe from the 6Li|F = 3/2,mF = 3/2⟩ state
with a transition frequency of 500 MHz or from the 87Rb|F = 2,mF = 2⟩ state with
a frequency of 6.8 GHz.

49.8.6 Binding energy in the harmonic trap

One expects resonances of trap-assisted binding [219, 983, 360]. However, our weak
scattering length and the (relatively) weak trap mitigates this behavior. The spectrum
is given by,

Γ(−Eb/2ℏωho + 3/4)

Γ(−Eb/2ℏωho + 1/4)
=
aho
2as

, (49.67)

where aho =
√

ℏ/mωho. Making use of limx←∞
Γ(−x+3/4)
Γ(−x+1/4) →

√
x, we find for large

scattering lengths,

−Eb =
ℏ

2µas
. (49.68)

Within the Feshbach resonance |B −B0| ≪ ∆B,

Eb = −
ℏ2

2ma2bg

(
1− ∆B

B−B0

)2 ≃ −
ℏ2

2ma2bg

(
B −B0

∆B

)2

. (49.69)



2844 CHAPTER 49. MULTICOMPONENT BECS, MIXED SPECIES AND FERMIONIC SUPERFLUIDS

-0.04 -0.02 0 0.02

B (G)

-1

0

1

a
s

(a
B
)

×104

-0.04 -0.02 0 0.02

B (G)

4

4.5

5

σ
(c
m

2
)

×10−14

-5 0 5
as (104 aB)

-2

0

2

E
(h̄
ω
re
l)

-0.02 0 0.02
B (G)

-20

-10

0

E
(k
H
z)

Figure 49.11: Trap binding.

E.g. let us choose a detuning of B − B0 = −0.1∆B, where Eb = h × 8 MHz. Then
a magnetic field noise of dB ≈ 1 mG causes an inhomogeneous broadening of the

transition by dEb ≃ − ℏ2

ma2bg

B−B0

∆B2 dB ≈ h× 20 kHz. The broadening increases linearly

with detuning.

Thermal broadening may reduce the production efficiency of LiRb atoms. At 7 µK
the broadening is 146 kHz. It is recommended to have at least one species condensed
[623, 996].

49.8.7 Dipolar relaxation and three-body decay in mixed species

The rate equations for the collisional decay of a Li-Rb mixture are,

Ṅ6 =

∫
d3r

(
−γ6n6 −G6,6n

2
6 −G6,87n6n87 −K6,6,6n

3
6 −K6,6,87n

2
6n87 −K6,87,87n6n

2
87

)

(49.70)

Ṅ87 =

∫
d3r

(
−γ87n87 −G87,87n

2
87 −G6,87n6n87 −K87,87,87n

3
87 −K6,87,87n6n

2
87 −K6,6,87n

2
6n87

)
.

For a harmonic trap the densities are Gaussian function, nj = n0,je
−Uj/kBTj with

Uj =
mj

2 ω
2
r,jr

2+
mj

2 ω
2
z,jz

2. The masses, the trapping potentials and the temperatures
for the clouds may differ. We will however assume that the trap have identical shapes,
ωr,87/ωz,87 = ωr,6/ωz,6, so that the traps may be decribed by isotropic potentials with

an averaged secular frequencies, Uj =
mj

2 ω
2
jx

2 with ωj =
(
ω2
r,jωz,j

)1/3
. We define

ξ ≡ m6ω
2
6T87/m87ω

2
87T6 and the effective volumes V87 ≡

(
2πkBT87

m87ω̃2
87

)3/2
= ξ3/2V6. The
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integrals can analytically be evaluated,

Nj =

∫
njd

3r = n0,j

∫
e−mjω

2
jx

2/2kBTjd3r = n0,j

√
2πkBTj
mjω2

j

3

= n0,jVj

(49.71)∫
nkj d

3r = k−3/2nk0,jVj
∫
nk87n

l
6d

3r = (k + lξ)−3/2nk0,87n
l
0,6V87

finally,

Ṅ6

N6
= −γ6 −

G6,6

23/2
N6

V6
− ξ3/2G6,87

(1 + ξ)3/2
N87

V87
− K6,6,6

33/2
N2

6

V 2
6

− ξ3/2K6,6,87

(1 + 2ξ)3/2
N87N6

V87V6
− ξ3/2K6,87,87

(2 + ξ)3/2
N2

87

V 2
87

(49.72)

Ṅ87

N87
= −γ87 −

G87,87

23/2
N87

V87
− G6,87

(1 + ξ)
3/2

N6

V6
− K87,87,87

33/2
N2

87

V 2
87

− K6,87,87

(2 + ξ)3/2
N87N6

V87V6
− K6,6,87

(1 + 2ξ)3/2
N2

6

V 2
6

.

Trap loss due to collisions with the background gas is negligible, γ ≈ 0. Two-body
relaxation is impossible in the energetic ground state, Gx,y ≃ 0. Kx,y,z are the
rate coefficients for losses due to collisions involving atoms of species xyz. The Rb
density is overwhelming, n6 ≪ n87. Hence the rate equations can be simplified.
The terms in K6,6,87n

2
6 are explicitly retained, although they are small, in order to

permit a modeling of a resonant enhancement of K6,6,87 near a 6Li p-wave Feshbach
resonance. Else we may setK6,6,87 = 0. Approximating V ≃ 3×10−15 m3. Setting the
initial atom numbers to N6 = 50000 and N87 = 200 000 and assuming K87−87−87 ≃
K87−87−6 ≈ 2.8× 10−28 cm6/s [984], we get the following curves,

Ṅ6V
2
87 = −ξ

3K6,6,6(B)

33/2
N3

6 −
ξ3K6,6,87(B)

(1 + 2ξ)
3/2

N87N
2
6 −

ξ3/2K6,87,87(B)

(2 + ξ)
3/2

N2
87N6 (49.73)

Ṅ87V
2
87 = −K87,87,87(B)

33/2
N3

87 −
ξ3K6,6,87(B)

(1 + 2ξ)
3/2

N87N
2
6 −

ξ3/2K6,87,87(B)

(2 + ξ)
3/2

N2
87N6 .

Now we develop full rate equation model considering all possible processes, try

the ansatz K6,6,87 ≃ 10ℏ/m a
8/3
6,6 a

4/3
6,87 and K6,87,87 ≃ 10ℏ/m a

4/3
6,6 a

8/3
6,87, calculate rate

equations across Feshbach resonances,

Ṅ6 = −
10ℏ a8/36,6 a

4/3
6,87

mV 2
N2

6N87 −
10ℏ a4/36,6 a

8/3
6,87

mV 2
N6N

2
87 (49.74)

Ṅ87 = −10ℏ a487,87
mV 2

N3
87 −

10ℏ a4/36,6 a
8/3
6,87

mV 2
N6N

2
87 −

10ℏ a8/36,6 a
4/3
6,87

mV 2
N2

6N87 .

49.8.8 6Li87Rb X1Σ+(v = 0) ground state molecules

According to [1274] it should be possible to with heteronuclear dimers to convert free
atoms via a Feshbach resonance to a molecular BEC of weakly bound a3Σ+ molecules.
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Figure 49.12: (a) Simultaneous decay of Li and Rb, (b) decay of Rb when Li is absent from
the trap, (c) and decay of Li when Rb is absent from the trap.

Those are then excited to the outer turning point of the (1)3Π level, which mixes with
the A1Σ+ level to form a 0+ potential, which has 4 turning points. The molecules are
then deexcited at the inner turning point towards the absolute ground state X1Σ+.
Unfortunately, the laser wavelengths are difficult. For the pump at 1700 nm and for
the dump at 830 nmm (Fig. 49.13, left) or 693 nm and 495 nm (Fig. 49.13, right).

Other more sophisticated transitions towards higher levels or using more interme-
diate steps are possible.
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Figure 49.13: Scheme for deexciting 6Li87Rb molecules to low-lying vibrational states. Left:
λpump = 1707.592 nm and λdump = 862.4407 nm. Right: λpump = 701.7544 nm and λdump =
500.2802 nm.

49.9 Further reading

J. R. Abo-Shaeer et al., Coherent Molecular Optics Using Ultracold Sodium Dimers
[2]DOI

Zhao-Qing Zhang et al., Transition from an atomic to a molecular Bose-Einstein
condensate [1430]DOI

http://doi.org/10.1103/PhysRevLett.94.040405
http://doi.org/10.1038/s41586-021-03443-0
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49.9.1 on Fermi degeneracy

B. DeMarco et al., Onset of Fermi-Degeneracy in a Trapped Atomic Gas [347]DOI

, Pauli Blocking of Collisions in a Quantum Degenerate Atomic Fermi Gas [348]DOI

http://doi.org/10.1126/science.285.5434.1703
http://doi.org/10.1103/PhysRevLett.86.5409
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Chapter 50

Quantum theory of
non-relativistic fields

50.1 Quantizing the scalar field

50.1.1 States of individual atoms in a gas

To introduce the physical situation, we consider an external potential U(r) repre-
senting a cubic box of length L and volume V = L3. Introducing periodic boundary
conditions, ϕ(x+L, y+L, z+L) = ϕ(x, y, z), the Schrödinger equation for the spatial
motion of a single atom in the box can be written as,

− ℏ2

2m
∇2ϕk(r) = εkϕk(r) , (50.1)

where the eigenfunctions and corresponding eigenvalues are given by

ϕk(r) =
1√
V
eık·r and εk =

ℏ2k2

2m
. (50.2)

The wavefunctions ϕk(r) represent plane wave solutions, normalized to the volume of
the box, with k the wave vector of the atom, k = |k| = 2π/λdB the wave number,
and λdB the de Broglie wavelength. The periodic boundary conditions give rise to
a discrete set of wavenumbers, kα = (2π/L)nα with nα ∈ {0,±1,±2, ...} and α ∈
{x, y, z}.

50.1.2 Wave functions for pairs

The Hamiltonian for the motion of two atoms with interatomic interaction V(r12) and
confined by the cubic box potential U(r) defined above is given by

H =
∑

i=1,2

(
− ℏ2

2mi
∇2
i + U(ri)

)
+ V(r12) . (50.3)

When the cubic box U(r) is macroscopically large, the pair is in the extreme collision-
less limit and the dynamics may be described accurately by neglecting the interaction
V(r12), i.e., the Schrödinger equation takes the form

(
− ℏ2

2m1
∇2

1 −
ℏ2

2m2
∇2

2

)
ψk1,k2

(r1, r2) = Ek1,k2
ψk1,k2

(r1, r2) . (50.4)

2849
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In this limit we have complete separation of variables so that the pair solution can be
written in the form of a product wavefunction

ψk1,k2
(r1, r2) =

1
V e

ik1·r1eik2·r2 , (50.5)

with ki the wavevector of atom i, quantized as kiα = 2π
L niα with niα ∈ {0,±1,±2, ...}.

This wavefunction is normalized to unity (one pair). The energy eigenvalues are

Ek1,k2
=

ℏ2k21
2m1

+
ℏ2k22
2m2

. (50.6)

Note that in this case

Ek1,k2
̸= Ek2,k1

for k1 ̸= k2 . (50.7)

Importantly, only for pairs of unlike atoms the product wavefunctions (7.5) represent
uniquely defined quantummechanical eigenstates for the eigenvalues Ek1,k2 . By unlike
we mean that the atoms may be distinguished from each other because they are of
different species. For identical atoms, i.e., atoms of the same isotopic species, the
situation is fundamentally different. In this case the product wavefunctions (7.5) are
degenerate with pair wavefunctions in which the atoms are exchanged,

Ek1,k2 = Ek2,k1 also for k1 ̸= k2 . (50.8)

This implies that any linear combination of the type

ψk1,k2
(r1, r2) =

1

V

1

|c1|2 + |c2|2
c1e

ik1·r1eik2·r2 + c2e
ik2·r2eik1·r1 (50.9)

represents a properly normalized energy eigenstate of the pair. This is called exchange
degeneracy. As we shall see in the next section, this degeneracy gives rise to quantum
correlations in the motion of the atoms that depend on the quantum statistical nature
of the atoms as well as on their internal state.

50.1.3 Identical particles and exchange operator

Before starting the subject of many-body wavefunctions, we first recall the conse-
quences of the indistinguishability of identical particles in quantum mechanics. Par-
ticles are called identical if there is no physical way to establish whether or not two
particles have been exchanged. To describe the exchange we introduce the exchange
operator P. For two identical particles in an arbitrary pair state ψ(r1, σ1; r2, σ2) the
operator P is defined by

Pψ(r1, σ1; r2, σ2) ≡ ψ(r2, σ2; r1, σ1) , (50.10)

where r1 and r2 are the position coordinates and σ1 and σ2 the spin coordinates of the
particles 1 and 2, respectively. The effect of this operator is to exchange the particle
labels. Because P is a norm-conserving operator, ⟨ψ|P†P|ψ⟩ = 1, we have

P†P = 1 . (50.11)
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Furthermore, exchanging the particles twice must leave the pair state unchanged.
Therefore, we have

P2 = 1 . (50.12)

and writing P = P†PP = P, we see that P† is hermitian, i.e., the eigenvalues are
real and have to ±1 for the norm to be conserved.

Any pair state ψ(r1, σ1; r2, σ2) can be written as the sum of a symmetric (+) and
an antisymmetric (−) part (see Problem 7.1). Therefore, the eigenstates of P span
the full Hilbert space of the pair and P is not only hermitian but also an observable.
Remarkably, in nature particles of a given species are found to show always the same
symmetry under exchange, corresponding to only one of the eigenvalues of P. This
important observation means that for identical particles the pair wavefunction must
be an eigenfunction of the exchange operator. In other words: linear combinations of
symmetric and antisymmetric pair wavefunctions (like the simple product wavefunc-
tion) violate experimental observation. When the wavefunction is symmetric under
exchange of two particles the particles are called bosons, when antisymmetric the par-
ticles are called fermions. We do not enter in the relation between spin and statistics
except from mentioning that the bosons turn out to have integral total spin and the
fermions half-integral total spin.

Example 294 (Symmetry of wavefunctions): Any pair wavefunction can be

written as the sum of a part symmetric under exchange and a part antisymmetric

under exchange of the pair. To see this we write a pair wavefunction as |ψ⟩ =
1
2
(1+P)|ψ⟩+ 1

2
(1−P)|ψ⟩, where P is the exchange operator, P2 = 1. The first

term is symmetric, P(1 + P)|ψ⟩ = (P + P2)|ψ⟩ = (1 + P)|ψ⟩, and the second

term is antisymmetric, P(1− P)|ψ⟩ = (P − P2)|ψ⟩ = −(1− P)|ψ⟩.

50.1.4 Fermions and Pauli principle

Let us turn to the case of two fermions in the pair state ψ(r1, σ1; r2, σ2). As we are
dealing with fermions we know that P must have the eigenvalue −1,

Pψ(r1, σ1; r2, σ2) = −ψ(r1, σ1; r2, σ2) . (50.13)

Combining with the definition (7.10) we obtain the condition

ψ(r2, σ2; r1, σ1) = −ψ(r1, σ1; r2, σ2) . (50.14)

For fermions in the same spin state (σ1 = σ2 = σ) and at the same position
(r1 = r2 = r) this condition can only be satisfied if ψ(r, σ; r, σ) = −ψ(r, σ; r, σ).
Hence, two fermions in the same spin state have zero probability to be found at the
same position. Therefore, the fermions show correlated motion. Importantly, these
kinematic correlations occur irrespective of the presence or absence of forces between
the particles.

As the fermions are identical particles the pair hamiltonian H is invariant under
exchange of the two particles, i.e., the exchange operator P commutes with the hamil-
tonian and P and H share a complete set of eigenstates. Thus also the eigenfunctions
of the hamiltonian must be antisymmetric under exchange of the fermions.
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We first look at the symmetry of the spin states. With a (s1×s1) Clebsch-Gordan
decomposition,

|S,MS⟩ =
∑

mS1
,mS2

|s1,ms1 ; s2,ms2⟩⟨s1,ms1 ; s2,ms2 |S,MS (50.15)

we find for the case (1/2× 1/2), i.e., for two s = 1/2 fermions the spin states,

|1,+1⟩ = | ↑↑⟩
|1, 0⟩ = 1

2 (| ↑↓⟩+ | ↓↑⟩)
|1,−1⟩ = | ↓↓⟩





(S = 1)

|0, 0⟩ = 1
2 (| ↑↓⟩ − | ↑↓⟩) (S = 0)

(50.16)

Hence, presuming the fermion to be in a symmetric spin state, for instance the state
|1, 1⟩, the orbital wavefunction must be antisymmetric,

ψ−k1,k2
(r1, r2) =

1
V

√
1

2
(eik1·r1eik2·r2 − eik1·r2eik2·r1)| ↑↑⟩ . (50.17)

If the fermions are in different orbital states (k1 ̸= k2) this gives rise to the above
mentioned kinematic correlations. For two fermions in the same orbital state (k1 =
k2 = k) Eq. (7.17) yields identically zero,

ψ−k,k(r1, r2)|1, 1⟩ ≡ 0 . (50.18)

Table 7.1: In the ortho and para isomers of the hydrogen and deuterium molecule the
distribution over the rotational levels is affected by quantum statistics (only even or
odd levels).

symmetry

species J I ψnucl ψrot ψvib
1Σ+

g ψtot

ortho-H 2 1,3,5,.. 1 S A S A S

ortho-D 2 0,2,4,.. 1 A S S A A

para-H 2 0,2,4,.. 0 A S S A S

para-D 2 1,3,5,.. 0,2 S A S A A

(50.19)

Thus, also its norm |ψ−k,k(r1, r2)|2 is zero. Apparently two (identical) fermions
cannot occupy the same state; such a coincidence is entirely destroyed by interference.
Hence, the Pauli exclusion principle, holds for all fermionic particles and not only
for fermions. Starting from an anti-symmetric spin state the orbital part should
symmetric. An example is given by the state

ψ−k1,k2
(r1, r2)|0, 0⟩ = 1

V

√
1

2
eik1·r1eik2·r2(| ↑↓⟩ − | ↓↑⟩) . (50.20)

In this case no restriction is found for the relative positions of the fermions.
We found that the quantum mechanical indistinguishability of identical particles

affects the distribution of particles over the single-particle states. For fermions this is
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made explicit by the Pauli principle. Also the distribution in configuration space is
affected. Remarkably, these kinematic correlations happen in the complete absence of
forces between the particles: it is a purely quantum statistical effect. A consequence of
such correlations can be observed in the rotational properties of homonuclear diatomic
molecules: depending on the total spin of the molecules either the even or the odd
rotational levels are observed. This is illustrated in Table 7.1 for the ortho and para
isomers of hydrogen (bosonic atoms) and deuterium (fermionic atoms).

50.1.5 Spinorbitals and Slater determinants

Eq. (7.17) can be written in the form of a determinant,

ψ−k1,k2
(r1, r2)|1, 1⟩ =

√
1

2

∣∣∣∣∣
ϕk1↑(1) ϕk2↑(1)

ϕk1↑(2) ϕk2↑(2)

∣∣∣∣∣ , (50.21)

where,

ϕkj↑(i) =
1

V 1/2 e
ik1·riχ↑(σi) (50.22)

are called spin orbitals. Similarly, the symmetric spin state |1, 0⟩ in combination
with the antisymmetric orbital state ψ−k1,k2

(r1, r2) can be written as the sum of two
determinants,

ψ−k1,k2
(r1, r2)|1, 0⟩ =

1

2

∣∣∣∣∣
ϕk1↑(1) ϕk2↓(1)

ϕk1↑(2) ϕk2↓(2)

∣∣∣∣∣+
1

2

∣∣∣∣∣
ϕk1↓(1) ϕk2↑(1)

ϕk1↓(2) ϕk2↑(2)

∣∣∣∣∣ , (50.23)

where ϕkj↓(i) = ϕkj
(i)χ↓(σi) with i = 1, 2. The two-body state (7.19) consisting of

an antisymmetric spin state and a symmetric orbital state (k1 = k2) takes the form

ψ−k1,k2
(r1, r2)|0, 0⟩ =

√
1

2

∣∣∣∣∣
ϕk1↑(1) ϕk2↑(1)

ϕk1↑(2) ϕk2↑(2)

∣∣∣∣∣ . (50.24)

Indeed, the property of determinants to vanish when two columns or two rows are
equal assures that the wavefunction vanishes when two fermions are in the same state
α or share the same (position and spin) coordinates (i) = (ri, σi), while exchanging
two rows or two columns yields the minus sign required for anti-symmetric wavefunc-
tions. One can easily show that any two-body fermion state can be expressed as a
linear combination of determinantal spin-orbital states.

Slater generalized this approach to antisymmetrize N-fermion systems,

ψα(r1, σ1; ...; rN , σN ) =

√
1

N !

∣∣∣∣∣∣∣∣

ϕα1
(r1, σ1) · · · ϕαN

(r1, σ1)
...

. . .
...

ϕα1(rN , σN ) · · · ϕαN
(rN , σN )

∣∣∣∣∣∣∣∣
. (50.25)

In this form the determinant is called a Slater determinant. It is the simplest
generalization of the product wavefunction with the proper symmetry under inter-
change of any two fermions and consistent the Pauli principle. It is a true milestone
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in many-body physics. In Dirac notation the antisymmetrized form of N fermions in
states α1, ..., αN is given by

|α1, ..., αN ⟩ ≡ 1
N !

∑

P

(−1)pP |α1, ...αN ) , (50.26)

where |α1, ..., αN ) ≡ |α1⟩1 ⊗ |α2⟩2 ⊗ ...|αN ⟩N is the N -body product state of the
single-particle states |ακ⟩i, where κ = 1, .., N is the state index and i = 1, .., N is
the particle index. The sum runs over all permutations P of the particles, p being
the parity (number of transpositions; i.e., binary interchanges) required to realize the
permutation starting from an initial ordering fixed by convention. As the sum runs
over all permutations, it makes no difference whether we permute all particles or
permute all states of the particles. We choose the permutation operator P to act on
the state index (κ) and not on the particle index (i). With this choice, the interchange
of the states of particles 1 and 2 is written as

P |α1, ...αN ) = |α1, ...αN ) = |α1⟩1 ⊗ ...|αN ⟩N . (50.27)

To assure a uniquely defined sign of the Slater determinants we shall adopt the
standard ordering convention of atomic configurations (see below). The state la-
beling α1, ...αN represents both the orbital and the spin quantum numbers, e.g.
ϕακ

(ri, σi) = ϕk1↑(ri, σi). These functions are called spinorbitals.

50.1.6 Bosons and normalization

For bosons the energy eigenfunctions must be symmetric under exchange of the atoms.
For spinless bosons (like 4He atoms) or boson in symmetric spin states this suggests
to use Eq.(7.9) in the form

Ψk1,k2
(r1, r2) =

1
V

√
1
2! (e

ik1·r1eik2·r2 + eik1·r2eik2·r1) . (50.28)

For k1 ̸= k2 this form is appropriate because it is symmetric and also has the proper
normalization of unity, ⟨k1,k2|k1,k2⟩ = 1 (cf. Problem 7.2). For k1 = k2 = k the
situation is different. Eq. (7.28) yields norm 2 rather than the physically required
value unity. In this case the properly symmetrized and normalized wavefunction is
the product wavefunction

Ψk,k(r1, r2) =
1
V e

ik1·r1eik2·r2 , (50.29)

with ⟨k,k|k,k⟩ = 1. Explicit symmetrization is superfluous because the product
wavefunction is symmetrized to begin with. The general form (7.28) may still be used
provided the normalization is corrected for the degeneracy of occupation (in this case
we have to divide by an extra factor

√
2). For bosons in antisymmetric spin states

we require the motional wavefunction to be also antisymmetric. Like in the fermion
case this gives rise to kinematic correlations.

Example 295 (): Show that Eq. (7.28) has unit normalization for k1 ̸= k2,

N =
√

1
2
⟨k1,k2|k1,k2⟩ = 1 .
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By definition the norm is given by

N =
√

1
2
{(k1,k2|+ (k2,k1|}

√
1
2
{|k1,k2) + |k2,k1)}

= 1
2
{(k1,k2|k1,k2) + (k1,k2|k2,k1) + (k2,k1|k1,k2) + (k2,k1|k2,k1)} = 1 .

Here we used (k1,k2|k2,k1) = 0 = (k2,k1|k1,k2) because k1 ̸= k2. Further we

have (k1,k2|k1,k2) = 1 = (k2,k1|k2,k1).

50.1.7 Generalization of the symmetrization to many-body
states

We found from the analysis of two-body systems that the quantum mechanical in-
distinguishability of identical particles affects the distribution of particles over the
single-particle states. For fermions (antisymmetric under exchange) this is made ex-
plicit by the Pauli principle, which excludes double occupation of the same state. For
bosons (symmetric under exchange) double occupation affects the normalization of
the state. In both cases the distribution in configuration space is affected; kinematic
correlations happen between the particles in the complete absence of interatomic
forces: it is a purely quantum statistical phenomenon. The analysis of systems of two
identical particles can be extended to many-body systems of identical particles.

For each particle i we can define a Hilbert space Hi spanned by a basis consisting
of a complete orthonormal set of states {|ks⟩i},

i⟨ks′ |ks⟩i = δks,ks′ and
∑

ks

|ks⟩ii⟨ks| = 1 . (50.30)

where s ∈ {1, ..., N} is the state index and i ∈ {1, ..., N} the particle index. In prin-
ciple |ks⟩i stands for the full description of the eigenstates of the particle i, including
the internal state (for instance the hyperfine state in the case of atoms). The wave-
functions of the Schrödinger picture areobtained as the probability amplitude to find
the particle at position ri,

ψks(ri) = ⟨ri|ks⟩ ≡ ⟨ri|ks⟩i . (50.31)

For spinless particles (like 4He atoms) in the box potential U(r) introduced earlier,
these wavefunctions are best chosen to be the plane waves given by Eq. (7.2); for
harmonic trapping potentials they will be harmonic oscillator eigenstates; for electrons
in the Coulomb field of the nucleus they are the atomic spinorbitals, etc.. Also in the
presence of interactions such wavefunctions remain a good basis set but the simple
interpretation as single-particle eigenstates is lost.

For the N -body system we can define a Hilbert space as the tensor product space

HN = H1 ⊗H2 ⊗ ...⊗HN (50.32)

of the N single-particle Hilbert spaces Hi and represented by the orthonormal basis
{|k1, ...,kN )} where

{|k1, ...,kN )} ≡ |k1⟩1 ⊗ |k2⟩2 ⊗ ...⊗ |kN ⟩N (50.33)
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is the N-body tensor product state of the single-particle states |ks⟩i with normalization
condition (k′1, ...,k

′
N |k1, ...,kN ) = δk1,k′

1
...δkN ,k′

N
and closure,

∑

k1,...,kN

|k1, ...,kN )(k1, ...,kN | =
N∏

i=1

(∑

ks

|ks⟩ii⟨ks|
)

= 1 . (50.34)

The notation of curved brackets |k1, ...,kN ) is reserved for unsymmetrized many-
body states; i.e. product states written with the convention of referring always in the
same order from left to right to the states of particle 1 through N. Sometimes we shall
use an implicit definition of the N -body state |Nγ) by specifying the index γ as an
array of state indices,

|Nγ) = |k1, ...,kN ) for γ = {1, ..., N} . (50.35)

To deal with the indistinguishability of particles in the many-body case, we argue that
all dynamical properties must remain unchanged under an arbitrary permutation P
of these particles. This means that all operators representing a dynamical variable of
the system must be invariant under these permutations. This holds in particular for
the Hamilton operator and implies that P commutes with the hamiltonian, just as we
found for the exchange operator in the two-body case. This is of course not surprising
because any permutation can be realized by a sequence of binary interchanges of
particles. A many-body state |ψ(S)⟩ is called symmetric (bosonic) if it is invariant
under all permutations P ,

P |ψ(S) = |ψ(S) . (50.36)

Similarly, a many-body state |ψ(A)⟩ is called antisymmetric (fermionic) if it satisfies
the property,

P |ψ(A) = (−)p|ψ(A) . (50.37)

where (−)p = 1 for all even permutations and (−)p = −1 for all odd permutations, p
being the number of binary interchanges required to realize the permutation. We thus
can identify two orthogonal subspaces within the product space H(N): the symmetric
subspace H(S) (for bosons) and the antisymmetric subspace H(A) (for fermions),

H(A) ⊕H(A) ∈ H(A) . (50.38)

50.1.7.1 Fermions

For identical fermions in states k1, ...,kN theN -body state has to be antisymmetrized.
This is done by summing over all permutations using a plus sign for all even permu-
tations and a minus sign for all odd permutations,

|k1, ...,kN ⟩ ≡
√

1

N !

∑

P

(−1)pP |k1, ...,kN ⟩ . (50.39)

Note that this expression represents a Slater determinant and therefore satisfies the
condition (7.36). As the sum runs over all permutations, it makes no difference
whether we permute all particles or permute all states of the particles. We choose the
permutation operator P to act on the state index (s) and not on the particle index
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(i) as this allows us to conserve the ordering convention of the particle index. With
this choice, the interchange of the states of particles 1 and 2 is written as,

P|k1,k2, ...,kN ⟩ = |k2,k1, ..., kN ⟩ = −|k2⟩1 ⊗ |k1⟩2 ⊗ ..⊗ |kN ⟩N ⟩ . (50.40)

To assure a uniquely defined sign of the Slater determinants we need to define the
non-permuted state by adopting an ordering convention of the states. The quantity

A ≡
√

1

N !

∑

P

(−1)pP (50.41)

can be interpreted as the antisymmetrization operator that projects an arbitrary
unsymmetrized state |k1, ...,kN ⟩ onto the antisymmetric subspace H(A).

50.1.7.2 Bosons

For identical bosons the N -body state has to be symmetrized. This is done by sum-
ming over all permutations while correcting for the degeneracy of occupation (just
like in the two-body case) in order to maintain unit normalization. For a N -body
system with n1 particles in state k1, n2 particles in state k2, ... and nl particles in
state kl we obtain 1,

|k1,k1, ...,kN ⟩ ≡
√

1

N !n1!...nl!

∑

P

P |k1,k2, ...
n1

,k2, ...
n2

, ...
nl

,kN ⟩ , (50.42)

where N = n1 + n2 + ... + nl. In view of the symmetric form, in the bosonic case
there is no significance in the order in which the states are written. The quantity,

S ≡
∑

P

P (50.43)

can be interpreted as the symmetrization operator that projects an arbitrary unsym-
metrized state |k1, ...,kN ) onto the symmetric N -body subspace H(S).

As an example we consider the special case of N bosons in the same state,
|ks, ...,ks). Here all N ! permutations leave the unsymmetrized wavefunction un-
changed and we obtain N ! identical terms with normalization coefficient 1/N !, reflect-
ing the feature that the wavefunction was symmetrized to begin with; i.e. |ks, ...,ks⟩ =
|ks, ...,ks).

Problem 7.3. Show that for N > 2,

S +A ≠ I .

50.1.7.3 Anderson’s orthogonality theorem

Consider a system of N fermions in its ground state; i.e., all single-particle levels
are occupied up to the highest level (Fermi level). Let us denote the states of the

1We use the convention in which all classically defined permutations are included in the summa-
tion. In an alternative convention the permutations of atoms in identical states are omitted. This
results in a different normalization factor in the definition of the same symmetrized state.
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fermions by |αi⟩, with i ∈ {1, ..., N}. Next we introduce an impurity in the system.
This changes both the energies and the wavefunctions of all the fermions. These
distorted wavefunctions are denoted by |βi⟩. Anderson pointed out that the many-
body states |φα⟩ = |α1, ..., αN ⟩ and |φβ⟩ = |β1, ..., βN ⟩ are essentially orthogonal;
i.e., ⟨φα|φβ⟩ ≪ 1 irrespective of the strength of the perturbation. This feature is
fundamental because it represents a situation where perturbation theory works at the
two-body level but fails at the many-body level.

To demonstrate the validity of this theorem, we start by expressing the sym-
metrized states in terms of the unsymmetrized states,

⟨φα|φβ⟩ =
1

N !

∑

Pα

(−1)pαPα
∑

Pβ

(−1)pβPβ(α1, ..., αN |β1, ..., βN ) , (50.44)

where Pα and Pβ are the permutation operators of the bra and ket states, respectively,
To evaluate this expression we note that the perturbed states |βi⟩n of particle n, with
n ∈ {1, ..., N}, can be decomposed with respect to the unperturbed basis {|βi⟩n},

|βi⟩n =
∑

i

|αi⟩n n⟨αi|βj⟩n , (50.45)

where the states |αi⟩n, with i ≤ N , correspond to the occupied levels. Taking this
into account and using the orthonormality of the basis {|αi⟩}, we find,

(α1, ..., αN |β1, ..., βN ) =

N∑

i1=1

· · ·
N∑

iN=1

(α1, ..., αN |αi1 , ..., αiN )⟨αi1 |β1⟩1...⟨αiN |βN ⟩N = ⟨α1|β1⟩...⟨αN |βN ⟩ .

(50.46)
Note that the particle indices have been eliminated because the inner products are
independent of the particle considered. Thus, the inner product ⟨φα|ψβ⟩ can be
written as,

⟨φα|φβ⟩ =
1

N !

∑

Pα

(−1)pαPα
∑

Pβ

(−1)pβPβ⟨α1|β1⟩...⟨αN |βN ⟩ . (50.47)

Importantly, as the particle index has been removed the result of the second sum-
mation is not affected by the action of the operator (−1)pαPα. Hence, as there N !
possible permutations, the expression for ⟨φα|ψβ⟩ simplifies to,

⟨φα|φβ⟩ =
∑

Pβ

(−1)pβPβ⟨α1|β1⟩...⟨αN |βN ⟩ , (50.48)

which can be written as the determinant of the single-particle overlap matrix,

⟨φα|ψβ⟩ =

∣∣∣∣∣∣∣∣

⟨α1|β1⟩ · · · ⟨α1|βN ⟩
...

. . .
...

⟨αN |β1⟩ · · · ⟨αN |βN ⟩

∣∣∣∣∣∣∣∣
. (50.49)
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Specializing to the case |αi⟩ = |βi⟩ and using the orthonormality of the basis {|αi⟩}
we readily verify the normalization of the many-body state |φα⟩,

⟨φα|φα⟩ =

∣∣∣∣∣∣∣∣

1 · · · 0
...

. . .
...

0 · · · 1

∣∣∣∣∣∣∣∣
= 1 . (50.50)

On the other hand, if the two states are only approximately equal, |αi⟩ ≃ |βi⟩; we
have ⟨αi|βi⟩ = 1 − ε with ε ≪ 1, and ⟨αi|βi⟩ ≪ 1. In this case ⟨φα|ψβ⟩ −→ 0 for
N −→∞.

50.1.8 Occupation number representation

50.1.8.1 Introduction

The notation of the previous section calls for simplification. This is realized by in-
troducing construction operators which satisfy an algebra that enforces the quantum
statistics. The first construction operators were introduced by Paul Dirac in 1927
[371]. Starting from Maxwell’s equations, Dirac quantized the electromagnetic field
by treating the eigenmodes of the field as independent harmonic oscillators. The
excitation level of the oscillator represents the mode occupation of the field. The
raising (lowering) operators of the oscillator serve to construct the field by creation
(annihilation) of photons, the quanta of the radiation field, which occupy the modes.
The commutation relations between the operators define the algebra that enforces the
Bose statistics of the field. This marks the start of quantum field theory. In the same
year Pascual Jordan and Oskar Klein showed that the method could be extended to
describe quantum many-body systems of bosons satisfying the Schrödinger equation
[683]. Adapting the algebra, Jordan and Wigner further extended the method to
describe quantum many-body systems of interacting fermionic particles [684]. The
above sequence of seminal papers is not complete without the name of Vladimir Fock,
who emphasized in 1932 the use of field operators (construction operators for con-
figuration space) [459]. This approach leads to an operator identity resembling the
Schrödinger equation, which explains the unfortunate name second quantization for
the construction operator formalism. In following sections we give a concise introduc-
tion in the construction operator formalism for quantum many-body systems. For a
systematic introduction the lecture notes of Jan de Boer are recommended [335].

50.1.8.2 Number states in the N-body Hilbert space

The notation of the properly symmetrized states can be further compacted by listing
only the occupations of the states,

|ñγ⟩ = |n1, n2, ..., nl⟩ ≡ |k1,k1, ...︸ ︷︷ ︸
n1

,k2,k2, ...︸ ︷︷ ︸
n2

, ...,kl︸ ︷︷ ︸
nl

⟩ , (50.51)

where γ = {1, 1, ..., 2, 2, ..., nl} with l ≲ N . In this way the states take the shape of
number states, which are the basis states of the occupation number representation
(see next section). For the case of N bosons in the same state |ks⟩ the number state
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is given by |ns⟩ ≡ |ks, ...,ks⟩; for a single particle in state |ks⟩ we have |1s⟩ ≡ |ks⟩.
Note that the Bose symmetrization procedure puts no restriction on the value or
order of the occupations n1, ..., nl as long as they add up to the total number of
particles, n1 + n2 + ...+ nl = N . For fermions the notation is the same but because
the wavefunction changes sign under permutation the order in which the occupations
are listed becomes subject to convention (for instance in order of growing energy of
the states). Up to this point and in view of Eqs. (50.42) and (50.40) the number
states (50.51) have normalization,

⟨n′1, n′2, ...|n1, n2, ...⟩ = δn′
1,n1

δn′
2,n2

... (50.52)

and closure
′∑

n1,n2,...

|n1, n2, ...⟩⟨n1, n2, ...| = I , (50.53)

where the prime indicates that the sum over all occupations equals the total number
of particles, n1 + n2 + ...+ nl = N . This is called closure within HN .

50.1.8.3 Number states in Grand Hilbert space - construction operators

An important generalization of number states is obtained by interpreting the occu-
pations ns, nt, ... as the eigenvalues of number operators n̂s, n̂t, ... defined by

n̂s|ns, nt, ..., nl⟩ = ns|ns, nt, ..., nl⟩ . (50.54)

With this definition the expectation value of n̂s is exclusively determined by the occu-
pation of state |s⟩; it is independent of the occupation of all other states. Therefore,
the number operators may be interpreted as acting in a Grand Hilbert space, also
known as Fock space, which is the direct sum of the Hilbert spaces of all possible
atom number states of a gas cloud, including the vacuum,

HGr = H0 ⊕H1 ⊕ ...⊕HN ⊕ ... . (50.55)

By adding an atom we shift fromHN toHN+1, analogously we shift fromHN toHN−1
by removing an atom. As long as this does not affect the occupation of the single-
particle state |s⟩ the operator n̂s yields the same result. Hence, the number states
|ns, nt, ..., nl⟩ fromHN may be reinterpreted as number states |ns, nt, ..., nl, 0a, 0b, ..., 0z⟩
within HGr by specifying — in principle — the occupations

50.1.9 Field operators

Let us write the total number operator (7.98) in the position representation. Using
the closure relation I =

∫
dr|r⟩⟨r| we obtain,

N̂ =

∫
d3r

∑

s,s′

â†s′⟨s′|r⟩⟨r|s⟩âs =
∫
d3r

∑

s′

ϕ∗s′(r)â
†
s′

∑

s,s′

ϕs(r)âs , (50.56)

where the r|s⟩ = ψs(r) are the wavefunctions of an arbitrary single-particle basis
{|s⟩}. With this transformation we introduced two operator densities,

ψ̂(r) ≡
∑

s

ψ(r)âs and ψ̂†(r) ≡
∑

s

ψ∗(r)â†s , (50.57)
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which are called field operators in view of their dependence on position. In terms of
these field operators the total number operator takes the form,

N̂ =

∫
d3rψ̂†(r)ψ̂(r) =

∫
d3rn̂(r) , (50.58)

where we defined the density operator n̂(r) as the diagonal part of the density matrix
operator. The field operators are construction operators that create or annihilate
particles at a given position. Let us demonstrate this for ψ̂(r): This field operator is
a creation operator because it is defined in terms of creation operators,

ψ̂†(r)|0⟩ =
∑

s

ψ∗s (r)â
†
s|0⟩ =

∑

s

|s⟩⟨s|r⟩ = |r⟩ . (50.59)

Using the closure relation, we found that ψ̂†(r) creates from the vacuum a particle

in state |r⟩; i.e., a particle at position r. Similarly we can show that ψ̂(r) is the
corresponding annihilation operator,

ψ̂(r)|0⟩ = |0⟩ . (50.60)

The field operators are important quantities because (at least in principle) the po-
sitions of the particles can be measured to arbitrary accuracy in any many-body
system, also when the concept of stationary single-particle states has lost meaning
due to coupling by the interactions.

50.1.9.1 Position representation

50.1.10 Exercises

50.1.10.1 Ex: Atom-field coupling

We determine here the coupling Hamiltonian for an atom in a classical field under
two equivalent forms (we have only considered the quantum case in the course). We
consider the case of the simplest hydrogen atom, with a single electron (reduced mass
m, charge q = −e) bound to a proton by the Coulomb potential U . This atom
interacts also with a laser wave, whose potential and scalar vectors are V(r, t) and
A(r, t).
1. Derive the complete classical Hamiltonian of the atom from the standard form of
the classical Lagrangian of a charge in a field: L = T −q(V +U)+qv ·A. What is the
link between the electron’s velocity and its momentum (conjugate with its position)?
2. Show that the quantum hamiltonian is thus:

H =
1

2m
(P− qA(R, t))2 + qU(R) + qV (R) .

3. Show that in the Coulomb gauge, ∇ ·A = 0, V can be set to zero without loss of
generality.
4. Show that in the Coulomb gauge, A · P = P · A. Develop accordingly the full
Hamiltonian.
5. Under which hypotheses does H reduce to H = H0− (q/m)P ·A(0, t), where H0 is
the free atomic Hamiltonian?// We now transform the Hamiltonian under the more
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standard dipole form using the Göppert-Mayer transformation. We restart from the
full Hamiltonian, with all terms including V (r, t).
6. We neglect the terms quadratic in A. The atom being small compared to the opti-
cal wavelength, give the Hamiltonian obtained by expanding A and V to the lowest
relevant order. Use the notation D = qR.
7. Show that a proper gauge transformation cancels A(0, t).
8. Show that in this new gauge, the Hamiltonian reads H = H0 −D · E(0). Is this
result gauge-dependent?

Solution: 1. From classical dynamics (see Landau or Goldstein):

L = T − q(V + U) + qv ·A ,

where V + U is the total scalar potential seen by the electron. We use the standard
analytical mechanics approach to derive the Hamliltonian. The momentum is defined
as

p = ∇vL = mv + qA ,

and the Hamiltonian as:

H = v · ∇vL− L = m
2 v

2 + q(V + U) = 1
2m (p− qA)2 + q(U + V ) .

2. The quantum Hamiltonian follows by replacing all positions and momenta by non-
commuting operators.
3. Follows directly from the properties of the Fourier-transformed fields,

A(r, t) =
1

4π

∫
A(k, ω)ei(k·r−ωt)dkdω .

Longitudinal and transverse potentials w.r.t. k:

A(k, ω) = A(k, ω)∥ +A⊥ hence A(r, t) = A∥ +A⊥ .

The Fourier transform of r · A is ik · A hence A∥ = 0 = A∥. The electric field
is transverse also and hence V = 0 since ∇V is longitudinal (proportional to k in
Fourier space).
4. We have,

[Pi, f(R)] = −i ∂f
∂Ri

for i ∈ x, y, z
∑

i

[Pi, Ai] = −iℏ
∑

i

∂Ai
∂Ri

= −iℏ∇ ·A = 0

P ·A =
∑

i

PiAi =
∑

i

AiPi = A ·P .

And finally,

H =
p2

2m
+ qU(R)− q

m
P ·A+

q2

2m
A ·A .

5. Hypotheses:
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• Weak field (much lower than atomic field unit, 1011 V/m), A A ·A quadratic
term negligible compared to first order contribution.

• Radiation wavelength: about 1µ m; Atomic size: about 100 pm : Neglect spatial
variation of the vector potential across atomic orbit: A(R, t) = A(0, t) (dipole
approximation),

H = H0 −
q

m
P ·A(0, t) .

6. Restart from full Hamiltonian

H =
1

2m
(P− qA(R, t))2 + qU(R) + qV (R, t) ,

and perform dipole approximation first. For the vector potential

A(R, t) = A(0, t) ,

and (keeping first order)

V = V (0, t) +R · ∇V (0, t) ,

The space-independent term in V has no effect

H = H0 −
q

m
P ·A(0, t) +D · ∇V (0, t) ,

with

D = qR .

7. Perform a gauge transformation:

A→ A′ = A+∇χ(r, t)

V → V ′ = V − ∂χ

∂t

and choose

χ(r, t) = −r ·A(0, t) ,

so that A′(0, t) = 0. Then

V ′ = V + r · ∂A(0, t)

∂t

∇V ′(0) = V (0) +
∂A(0, t)

∂t
= −E(0) .

8. We got,

H = H0 −D ·E(0) .
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50.1.10.2 Ex: Atom and classical field

We consider a two-level atom coupled to a classical field E = E0exp[−i(ωt+ ϕ)]. We
examine the Rabi oscillation and the Ramsey separated oscillatory field spectroscopic
method. We use the two-level atom model (ground state |g⟩ and excited state |e⟩)
with a transition angular frequency ωeg and the Pauli matrices notations. We note
∆ ≡ ωeg − ω. The atom is initially in |g⟩.
1. Show that the atom-field Hamiltonian is H = H0+H1, where H0 = ℏω0σz/2 is the
free Hamiltonian and H1 = −ℏΩcos(ωt+ϕ)σx, where the Rabi frequency Ω = d·E0/ℏ
is assumed real.
2. Switch to an interaction representation with respect to H ′0 = ℏωσz/2. Show that
the Hamiltonian contains four terms and that two of them are negligible (RWA ap-
proximation).

3. Show finally that the new Hamiltonian is H = ℏΩ′

2 σn, where n is a unit vector
whose expression will be given.
4. Show that H generates a rotation of the Bloch vector around n. Discuss the in-
teresting limit cases. Give at resonance the probability pe for finding the atom in |e⟩
as a function of time.
5. Give the atomic state transformations performed by a resonant π/2-pulse such
that t = π/2Ω.
6. The atom is submitted to two very short nearly resonant π/2-pulses both with a
duration τ a phase ϕ = −π/2, separated by a long time interval T . In which condition
can we assume that these pulses are resonant?
7. Show that at the end of the second pulse, pe = (1 + cos∆T )/2. Comment.
8. We assume that the detection noise is only of statistical origin. Show that two ω val-

ues can be distinguished provided their angular frequency difference obeys δ >
√
2

T
√
N
,

where N is the total number of atoms detected.

Solution:

50.1.10.3 Ex: Optical Bloch equations

We consider the interaction of a damped two-level atom with a classical field. Show
that the evolution equations for the atomic density matrix read:

dρee
dt

=
d

ℏ
Im (ρegE

∗
1 )− Γρee

dρeg
dt

= −i∆ρeg −
d

2ℏ
E1(ρee − ρgg)− γ′ρeg ,

where Γ is the spontaneous emission rate, γ′ = γ + Γ/2, γ being the transverse re-
laxation rate and E1 = E0e

−iϕ (plus the notations of the previous exercise). Deduce
the evolution equations for the coordinates x, y and z of the Bloch vector. Give the
steady state solution of these equations in the simple situation when E1 is real and
atom and field are at resonance for an atom initially in |g⟩. Consider simple limit
cases.
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Solution:

50.1.10.4 Ex: Field algebra

We demonstrate here a few simple properties of the annihilation and creation oper-
ators, as well as of the coherent state. In the following, f(N) (e.g. sin(N) or

√
N)

represents an operator function of the photon number operator. We assume that f
can always be expanded in a power series. Results of questions 1-4 are used in the
problem.
1. Show that the eigenstates of f(N) are the Fock states |n⟩ with eigenvalues f(n).
2. Show that 1

N â
†|n⟩ = |n+ 1⟩.

3. Show that â 1
N â|n⟩ = |n− 1⟩.

4. Show that âf(N) = f(N + 1)â and f(N)â† = a†f(N + 1).
5. Show that the coherent states are an overcomplete basis of the single mode Hilbert
space: ⊮ = 1

π

∫
d2α |α⟩⟨α|. Hint: Use Fock state expansion and integration in polar

coordinates.
6. We couple a classical current at frequency ω with a field mode a frequency ω0. Give
the amplitude of the created coherent field as a function of time.

Solution:

50.1.10.5 Ex: Phase space distributions

1. Compute the three characteristic functions for the coherent state α⟩. 2. Show that
Q[ρ](α) = 1

π ⟨0|D(−α)ρD(α)|0⟩ = 1
πTr[|0⟩⟨0|D(−α)ρD(α)|0⟩]. Hint: use linearity of

the trace, the closure relations of coherent states.
3. Compute the Q function of a coherent state and of a Fock state.
4. Difficult: Show thatW (x, p) = 1

π

∫
du⟨u2 |D(−α)ρD(α)P|u2 ⟩ = 2

πTr[D(−α)ρD(α)P].

Solution:

50.1.10.6 Ex: Construction operators and occupation number represen-
tation

Many body quantum systems are described by symmetrized or antisymmetrized wave-
functions. To keep the calculations manageable this is done in the occupation number
representation. Below follows a series of questions with regard to the properties of
construction operators. Nota bene: With {a, b} we refer to anticommutator of a and
b. We presume that the standard ordering is represented by the alphabetic ordering
of the state indices.
1. For an arbitrary normalized one-body eigenstate |s⟩, i.e. ⟨s′|s⟩ = δs,s′ , we have by
definition |s⟩ ≡ |1s⟩ ≡ |1̄s⟩ = â†s|0⟩. Comment of the differences of notation.
2. Give the definition of the creation operator â†s acting on the number state |ns, nt, ..., nl⟩
for bosons.
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3. Give the definition of the annihilation operator âs acting on the number state
|ns, nt, ..., nl⟩ for bosons.
4. Evaluate â†s|0q, 0s, ...⟩ for fermions.
5. Evaluate â†s|1q, 0s, ...⟩ for fermions.
6. Evaluate â†s|1q, 1s, ...⟩ for fermions.
7. Show that also the vacuum state |0⟩ is normalized.
8. Calculate the norm ⟨2s|2s⟩ for bosons and fermions without using the fermion rule
â†s|1q, 1s, ...⟩ = 0.
9. Derive [â†q, â

†
s] = 0 for bosons.

10. Derive {â†q, â†s} = 0 for fermions.

11. Derive {âq, â†s} = δq,s for fermions.
12. Show that [n̂q, â

†
s] = +â†sδq,s for both bosons and fermions.

Solution: 1. By the ket |1s⟩ one means the number state in which one particle occu-
pies the state |s⟩. By the ket |1̃s⟩ one means the number state in Grand Hilbert space
consisting of only a single particle, a particle in state |s⟩.
2. The definition of the creation operator is â†s|ns, nt, ..., nl⟩ ≡

√
ns + 1|ns+1, nt, ..., nl⟩.

3. The definition of the annihilation operator is âs|ns, nt, ..., nl⟩ ≡
√
ns|ns−1, nt, ..., nl⟩.

4. â†s|0q, 0s, ...⟩ = |0q, 1s, ...⟩.
5. â†s|1q, 0s, ...⟩ = −|0q, 1s, ...⟩.
6. â†s|1q, 1s, ...⟩ = 0.
7. The normalization of the vacuum state is ⟨0|0⟩ = ⟨1s|â†sâs|1s⟩ = ⟨1s|n̂s|1s⟩ =
⟨1s|1s⟩ = ⟨s|s⟩ = 1.
8. The normalization of the state ⟨2s|2s⟩ is for bosons:

⟨2s|2s⟩ = 1
2 ⟨1s|âsâ†s|1s⟩ = 1

2 ⟨1s|â†sâs + 1|1s⟩ = 1
2 ⟨1s|n̂s + 1|1s⟩ = ⟨1s|1s⟩ = 1 .

For fermions (not using the fermion rule â†s|1q, 0s, ...⟩ = 0):

⟨2s|2s⟩ = 1
2 ⟨1s|âsâ†s|1s⟩ = 1

2 ⟨1s|â†sâs − 1|1s⟩ = 1
2 ⟨1s|n̂s − 1|1s⟩ = 0 .

9. First we consider q ̸= s:

[â†q, â
†
s]|ns, nq, ..., nl⟩ = ...

Next we consider the case q = s:

[â†q, â
†
s]|ns, nq, ..., nl⟩ = ...

10. First we consider q ̸= s. The creation operators can only yield a nonzero result if
ns = 0 and nq = 0. Thus we have:

{â†q, â†s}|0⟩ = ...

In the case q = s the anwer is trivially zero because no two fermions can occupy the
same state.
11. 12.
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50.1.10.7 Ex: Important commutation relations for boson field operators

Consider a many-body system of particles confined by on external potential U(r).
At sufficiently low densities this system may be described by the hamiltonian for a
pairwise interacting system,

H =
∑

i

H(i) + 1
2

∑

i,j

H(i,j) ,

where

H(i) =
p2
i

2m
+ U(ri)

is the free particle contribution of particle i and H(i,j) = V(ri, rj) represents the
potential energy of interaction between the particles i and j. At sufficiently low
temperatures this potential may be approximated by the expression

V(ri, rj) = gδ(ri − rj) ,

where g = (4πℏ2/m)a and a is called the s-wave scattering length. In the occupation
number representation for a system of identical particles the hamiltonian takes the
form

Ĥ = Ĥ(1) + Ĥ(2) ,

where
Ĥ(1) =

∑

s,s′

â†s′⟨s′|H(1)|s⟩âs ,

and
Ĥ(2) = 1

2

∑

t,t′

∑

s,s′

â†s′ â
†
t′⟨s′, t′|H(1,2)|s, t⟩âtâs ,

Here |s⟩, |s′⟩ ∈ {|s⟩}, and |t⟩, |t′⟩ ∈ {|t⟩} represent single particle eigenstates of the
Hamiltonians H(1) and H(2), respectively. Rewriting the hamiltonian in terms of field
operators we obtain

Ĥ(1) =

∫
drψ̂†(r)H0ψ̂(r)

with H0 = p2/2m+ U(r) and

Ĥ(2) = 1
2

∫
drdr′ψ̂†(r)ψ̂†(r′)V(r, r′)ψ̂(r′)ψ̂(r) .

Here r is the position coordinate of a single particle and r, r′ are the position coordi-
nates of a pair of particles. The total number operator is defined as the integral over
the density operator

N̂ =

∫
drn̂(r) .

Three commutation relations for boson field operators are crucial for the understand-
ing of the ground state of an interacting bosonic superfluid:

[ψ̂(r), Ĥ(1)] = H0(p, r)ψ̂(r)

[ψ̂(r), Ĥ(2)] = gn̂(r)ψ̂(r)

[ψ̂(r), N̂ ] = ψ̂(r) .
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Derive the above commutation relations.

Solution: a. First we recall N̂ =
∫
dr′n̂(r′) and write the commutator in the form,

[ψ̂(r), N̂ ] =

∫
dr′[ψ̂(r), n̂(r′)] ,

where n̂(r′) is the number-density operator. Using the commutation relation [n̂(r), ψ̂(r′)] =
−ψ̂(r′)δ(r− r′) we find by integration over r′,

∫
dr′[ψ̂(r), n̂(r′)] =

∫
dr′ψ̂(r′)δ(r− r′) = ψ̂(r) .

b. First we write the commutator in the form,

[ψ̂(r), Ĥ(2)] =

∫
dr′[ψ̂(r), Ĥ(2)(r′)] ,

where Ĥ(2)(r′) = g
2 ψ̂
†(r′)(̂r′)ψ̂(r′) is the construction operator density for the two-body

interaction V(r1, r2) = gδ(r1 − r2). Using the commutation relations [ψ̂(r), ψ̂†(r′)] =
δ(r−r′), [ψ̂(r), ψ̂(r′)] = 0, and [n̂(r), ψ̂(r′)] = −ψ̂(r′)δ(r−r′) we find after integration
over r′,
∫
dr′[ψ̂(r), Ĥ(2)(r′)] = g

2

∫
dr′[ψ̂(r)ψ̂†(r′)n̂(r′)ψ̂(r′)− ψ̂†(r′)n̂(r′)ψ̂(r′)ψ̂(r)]

= g
2

∫
dr′[ψ̂†ψ̂(r)(r′)n̂(r′)ψ̂(r′)− ψ̂†(r′)ψ̂(r)n̂(r′)ψ̂(r′) + 2δ(r− r′)n̂(r′)ψ̂(r′)]

= gn̂(r)ψ̂(r) .

50.1.10.8 Ex: Amplitude and phase of the order parameter

To analyze the deviations from the stationary state we write the order parameter in
a form separating the fluctuations of the amplitude from those of the phase,

Ψ(r, t) = |Ψ(r, t)|e−iµt/ℏ+iΦ(r,t) .

Using the Bogolubov ansatz the amplitude takes the form

|Ψ(r, t)| =
√
n0(r, t) .

The overall phase ϕ(r, t) is a real quantity defined as

ϕ(r, t) ≡ µt− Φ(r, t) .

The phase Φ(r, t) is called the fluctuating phase and represents the deviation from the
dynamical phase evolution µt/ℏ of the stationary state Ψ0(r, t). The current density
is defined as

j(r, t) =
iℏ
2m

(Ψ∇Ψ∗ −Ψ∗∇Ψ) .
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a. Derive the following expression for the current density,

j(r, t) =
ℏ
m
n0(r, t)∇Φ(r, t) .

b. Show that the time dependence of the phase of the order parameter can be expressed
in the form,

−ℏ∂ϕ
∂t

=
ℏ2

2m
(∇Φ)2 + U(r) + g|Ψ|2 − ℏ2

2m

1

|Ψ|∇
2|Ψ| .

Hint: Use the difference of time-dependent GP equation and its complex conjugate.

Solution:

50.2 Quantum statistics

To describe the time evolution of an isolated quantum gas, in principle, all we need
to know is the many-body wavefunction plus the hamiltonian operator. Of course,
in practice, these quantities will be known only to limited accuracy. Therefore, just
as in the case of classical gases, we have to rely on statistical methods to describe
the properties of a quantum gas. This means that we are interested in the occupa-
tion probability of quantum many-body states. In view of the convenience of the
occupation number representation we ask in particular for the occupation probability
Pγ of the number states |ñγ⟩. The canonical ensemble introduced in Section 1.2.4 is
not suited for this purpose because it presumes a fixed number of atoms N , whereas
the ensemble of number states {|ñγ⟩} is defined in Grand Hilbert space in which the
number of atoms is not fixed. This motivates us to introduce an important variant of
the canonical ensemble which is known as the grand canonical ensemble.

50.2.1 Grand canonical distribution

In the grand canonical approach we consider a small system which can exchange
not only heat but also atoms with a large reservoir. Like in the canonical case a
small system is split off as a part of a one-component gas of Ntot identical atoms
at temperature T (total energy tot). We can visualize the situation as a cloud of
trapped atoms connected asymptotically to a homogeneous gas at very low density, a
bit reminiscent of the conditions for evaporative cooling (see Section 1.4.1). We are
interested in conditions in which the quantum resolution limit is reached in the center
of the cloud and the cloud has to be treated as an interacting quantum many-body
system. In the reservoir the density can be made arbitrarily low, so the reservoir
atoms may be treated quasi-classically.

According to the statistical principle, the probability P0(E,N) that the trapped
gas (the subsystem) has total energy between E and E+δE and consists of a number
of trapped atoms between N and N+δN is proportional to the number Ω(0)(E,N) of
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states accessible to the total system in which the subsystem matches the conditions
for E and N ,

P0(E,N) = C0Ω
(0)(E,N) , (50.61)

where C0 is a normalization constant. Because the atoms of the subsystem do not
interact with the atoms of the reservoir (except for a vanishingly fraction of the atoms
near the edge of the trap) the probability P0(E,N) can be written as the product of
the number of quantum mechanical N -body states ΩN (E) with energy near E with
the number of microstates Ω(E∗, N∗) with energy near E∗ = Etot − E accessible to
the N∗ = Ntot −N atoms of the rest of the gas,

P0(E,N) = C0Ω(E,N)Ω(Etot − E,Ntot −N) , (50.62)

If the total number of atoms is very large (Ntot ≫ 1) the trapped number will always
be much smaller than the number in the remaining gas, N ≪ N∗. Similarly, the
amount of heat involved is small, E ≪ E∗. Thus the distribution P0(E,N) can
be calculated by treating the remaining gas as both a heat reservoir and a particle
reservoir for the small system. The ensemble of subsystems with energy near E and
atom number near N is called the grand canonical ensemble.

The probability Pγ that the small system is in a specific, properly symmetrized,
many-body energy eigenstate |ñγ⟩ is given by

50.2.2 Bose-Einstein condensation
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Chapter 51

Gaussian optics and the
polarization of light

The objective of this part of the course is to introduce the student into the basics
of Gaussian optics and polarizations optics. The student will learn how to transform
the diameter and the divergence of a Gaussian beam using lenses and telescopes and
to analyze and manipulate the polarization of a laser beam.

51.1 Some more basic notions

51.1.1 Definition of photometric quantities

The radiant energyW is the total energy emitted from a source. The radiant power P
(or radiant flux) is the total energy emitted per second. The radiance L(Ω) is defined
as the power radiated (emitted, reflected, transmitted or received) under an angle
θ through a surface element dA into a solid angle element dΩ = sin θdθdϕ. It is a
directional quantity indicating how much of the power will be received by an optical
system looking at that surface from a specified angle of view,

P =

∫
L(Ω)dAndΩ . (51.1)

Spectral densities are denoted by an index ν, e.g. P =
∫
Pν(ν)dν. In (51.1), dAn ≡

n̂ · dA = dA cos θ is the projection of the surface element onto the surface normal.
The quantity,

I∗ =
∫
L(Ω)dΩ (51.2)

is called radiant intensity.

Example 296 (Angular distribution of thermal radiation): In a black-
body in thermal equilibrium with its surroundings (e.g the walls of a cavity)
the radiation is isotropic with a spectral energy distribution given by Planck’s
law. This means that at any point of the volume of the blackbody radiator an
imaginary volume element radiates energy in all directions of space, such that
the radiance into a specific solid angle element is,

L(Ω) = ū
c

4π
. (51.3)

2875
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Radiation passing under an angle θ through a hole of size dA = dAn/ cos θ into
a specific solid angle element dΩ generates the radiance,

∂2P

∂Ω∂A
= L(Ω) cos θ . (51.4)

In any direction we get,

∂Pν
∂A

=

∫
half sphere

Lν(Ω) cos θdΩ = ū
c

4π

∫ 2π

0

dϕ

∫ π/2

0

cos θ sin θdθ =
cū

4
.

(51.5)
Summing up over all surface elements of a sphere of radius R,

P =

∫
∂P

∂A
dA =

cū

4
R2

∫ 2π

0

dϕ

∫ π

0

sin θdθ = πR2cū . (51.6)

Accordingly, the spectral distribution is, using Planck’s law,

Pν = P
8πhν3

c3
1

eβℏω − 1
=

8π2R2hν3

c2
1

eβℏω − 1
. (51.7)

A detector covers itself a finite solid angle dΩ = dA′ cos θ′

r2 . The radiant flux for
r2 ≫ dA, dA′ can then be expressed as,

dΦ = L(Ω)dA cos θdΩ = L(Ω)dA cos θ
dA′ cos θ′

r2
(51.8)

that is Φ =

∫

A

∫

A′

L(Ω)

r2
cos θ cos θ′dAdA′ .

Note that for isotropic sources (51.8) is symmetric upon interchanging emitter and de-
tector with regard to θ and θ′ or dA and dA′. Furthermore, the formula demonstrates
that the radiant flux emitted into the unit solid angle is proportional to cos θ (Lam-
bert’s law). An example for such a source is a hole with the area dA in a blackbody
radiation cavity (see Fig. 51.1). Solve Excs. 51.1.2.1 and 51.1.2.2.

Figure 51.1: Illustration of the radiance.

Note that it is impossible to increase the radiance of a source by any sophisticated
imaging optics [352]. This means that the image dA∗ of a radiation source dA never
has a larger radiance than the source itself. It is true that the flux density can be
increased by focussing the radiation. The solid angle, however, into which radiation
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from the image dA∗ is emitted is also increased by the same factor. Therefore, the
radiance does not increase. In fact, because of inevitable reflection, scattering, and
absorption losses of the imaging optics, the radiance of the image dA∗ is, in practice,
always less than that of the source. A strictly parallel light beam would be emitted
into the solid angle dΩ = 0. With a finite radiant power this would imply an infinite
radiance L, which is impossible. This illustrates that such a light beam cannot be
realized. The radiation source for a strictly parallel beam anyway has to be a point
source in the focal plane of a lens. Such a point source with zero surface cannot emit
any power.

Example 297 (Radiance of the sun): An area A = 1m2 of the Earth’s
surface receives at normal incidence from the sun about P/A = 1.35 kW/m2 of
intensity. Since the sun covers an angle of θ = 0.53◦ seen from the Earth, we
can estimate the sun’s radiance as,

L =
P

AΩ
=

P

A
∫ 2π

0

∫ θ
0
sin θdθdϕ

≃ P

Aπθ2
≈ 2 · 104 kW m-2 ster-1 .

The total power received by the Earth is P
A
πR2

Earth. The total power emitted

by the sun is P
A
4πd2sun−Earth.

Example 298 (Radiance of a HeNe laser): We consider a HeNe laser emit-
ting P = 1mW of power from a w0 = 1mm beam waist into an angle of
2θ = 0.067◦. With a typical emission bandwidth of ∆ν = 1MHz the spectral
radiance is,

Lν =
Pν
AΩ
≃ P

πw2
0 πθ

2 ∆ν
≈ 1 kWsm-2 ster-1 .

For comparison, the sun’s radiance at it’s surface (T = 6000K) at the same
wavelength as the HeNe laser is,

Lν =
Luν
ū
≈ 5 nWsm-2 ster-1 .

51.1.2 Exercises

51.1.2.1 Ex: Emission of an argon laser

The angular divergence of the output from a P = 1W argon laser is assumed to be
α = 4 · 10−3 rad.
a. Calculate the radiance L and the radiant intensity I1 of the laser beam and the
irradiance I (intensity) at a surface 1m away from the output mirror, when the laser
beam diameter at the mirror is 2ws = 2mm.
b. What is the spectral power density u(ν) if the laser bandwidth is 1MHz?

Solution: a. The spot size on the output mirror is A = πw2
s ≈ 3.1 · 10−2 cm2.

The radiant intensity at the mirror is then,

I1 =
P

A
≈ 32W/cm2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_LaserRadiance01.pdf
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The solid angle Ω into which the laser beam is emitted is,

Ω =

∫
dΩ =

∫ 2π

0

∫ α

0

sin θdθdϕ = 2π(1− cosα) ≃ πα2 .

The radiance L of the laser is then,

L =
P

AΩ
=

P

πw2
s πα

2
≈ 6.4 · 109 Wm-2 sr-1 .

At a surface a distance z = 1 m from the mirror, the spot size is:

A2 = dA+ z2dΩ ≈ 0.53 cm2 .

The intensity at the surface is:

I2 =
P

A2
≈ 1.9W/cm2 .

b. For a spectral width ∆ν = 1MHz, the spectral power density at the distant surface
is:

u2(ν) =
I2/c

∆ν
≈ 6.3 · 10−11 Ws2 m3 .

This should be compared with the visible part of the solar radiation on Earth (I ≈
103 W/m2 and ∆ν ≈ 3 · 1016 s-1), yielding uRS(ν) = 10−22 Ws2/m3, which is smaller
by 13 orders of magnitude.

51.1.2.2 Ex: Photosynthetically active radiation

The photon flux density and the photosynthetically active radiation (PAR) are defined
as,

ηphoton ≡
∫ λ2

λ1
u(λ, T ) λ

hcNA
dλ

∫ λ2

λ1
uPl(λ, T )dλ

and ηPAR =

∫ λ2

λ1
u(λ, T )dλ

∫∞
0
u(λ, T )dλ

,

where λ1 = 400 nm and λ2 = 700 nm delimit the range, where photosynthesis takes
place. Calculate both quantities for a blackbody at T = 5800K temperature. Plot
them as a function of temperature in the range T = 300..6000K.

Solution: The photon energy density in the case of blackbody radiation is,

uPl(λ, T )dλ = −8πch

λ5
1

eβhc/λ − 1
dλ .

With this we find βhν1 ≈ 5.99, and βhν2 ≈ 3.43, and,

ηphoton =

∫ λ2

λ1
uPl(λ, T )

λ
hcNA

dλ
∫ λ2

λ1
uPl(λ, T )dλ

=
β

NA

∫ βhν2
βhν1

x2

ex−1dx∫ βhν2
βhν1

x3

ex−1dx
≈ 0.394mol/(day W) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_LaserRadiance02.pdf
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Figure 51.2: Temperature dependence of photosynthetically active radiation.

Now,

ηPAR =

∫ λ2

λ1
uPl(λ, T )dλ∫∞

0
uPl(λ, T )dλ

=

∫ βhν2
βhν1

x2

ex−1dx∫∞
0

x3

ex−1dx
=

15

π4

∫ βhν2

βhν1

x2

ex − 1
dx ≈ 0.0878 .

The graphs are shown in Fig. 51.2.

51.2 Introduction to Gaussian optics

51.2.1 Wave equation and beam parameters

At first sight, one might think that the propagation of laser light is well described by
the laws of geometrical optics. On closer inspection it turns out, however, that laser
beams behave in many respects more like plane waves with their energy is concentrated
near an optical axis. The electro-magnetic fields satisfy the wave equation,

k2u+∇2u = 0 . (51.9)

For waves propagating in z direction, u = ψ(x, y, z)e−ıkz, one obtains a Schrödinger-
like equation [734],

2ık
∂ψ

∂z
− ∂2ψ

∂x2
− ∂2ψ

∂y2
= 0 , (51.10)

where ∂2ψ/∂z2 has been neglected.
To describe a Gaussian beam, we choose an exponential ansatz and introduce two

parameters, which can vary along the propagation axis z: P (z) is a complex phase
shift and q(z) a complex parameter, whose imaginary part describes the diameter of
the beam. The ansatz,

ψ = e−ı[P (z)+k(x2+y2)/2q(z)] (51.11)

leads to 1,

0 = (q′ − 1)
ık(x2 + y2)

q2
− 2ıP ′ +

2

q
. (51.12)

1See script on Electrodynamics (2023), Sec. 7.4.2..

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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In order for Eq. (51.12) to hold for all x and y, we need q′ = 1 and P ′ = −ı
q .

Integrating q′, we find

q = q0 + z . (51.13)

It is useful to introduce real beam parameters,

1

q
≡ 1

R
− ı λ

πw2
. (51.14)

Inserting these into Eq. (51.10),

ψ = e−ıP−ı
k(x2+y2)

2R − (x2+y2)

w2 , (51.15)

it becomes clear that R(z) is the radius of curvature and w(z) the beam diameter.
Evaluating q0 at the position of the focus (waist of the beam), where R = ∞, we
obtain from (51.13) and (51.14)

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]

and R(z) = z

[
1 +

(
πw2

0

λz

)2
]
. (51.16)

Normalizing the intensity to the total power, we may write the radial intensity dis-
tributions as,

Iz(x, y) =
2P

πw(z)2
e−2(x

2+y2)/w(z)2 . (51.17)

Figure 51.3: (Left) Propagation of the beam along the optical axis. (Right) Cross section of
a Gaussian laser beam.

51.2.2 Transfer matrices

For the practical work with Gauss beams it is helpful to introduce transfer matrices,
which describe the transformation of a Gauss beam through optical components along
the optical axis. The matrix

M =

(
a b

c d

)
(51.18)

transforms the beam parameter q in the following way:

q(z) =
aq(0) + b

cq(0) + d
. (51.19)
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Transfer matrices allow to calculate, how the parameters R and w transform along
the optical axis across the optical elements or in free space. The most common optical
elements are lenses, crystals, prisms, mirrors and cavities. For example, the matrix
for propagation in free space of a beam over a distance d is,

M =

(
1 d

0 1

)
(51.20)

and the matrix for transformation through a thin lens with focal distance f ,

M =

(
1 0

−1/f 1

)
. (51.21)

It is interesting to note that the transfer matrices are the same as those, which in
classical beam optics transform the vector, whose components are the distance of the
beam from the optical axis y and its divergence y′(z):

(
y(z)

y′(z)

)
= M

(
y(0)

y′(0)

)
. (51.22)

Figure 51.4: Coupling a Gaussian beam of light into cavity requires matching of the phase
fronts.

Fig. 51.4 shows that coupling a Gaussian beam of light into a cavity requires
matching of the phase fronts. Solve the Excs. 51.2.3.1 to 51.2.3.16 [352, 734, 1364].

51.2.3 Exercises

51.2.3.1 Ex: Imaging through a thin lens

In classical ray optics the equations describing the focusing of a thin lens are given
by,

1

f
=

1

g
+

1

b
and

b

g
=
B

G
,

where f is the focal distance of the lens, g the distance between the object and the
lens, b the distance between the image and the lens, G the size of the object, and B
the size of the image.
At what distance from an object of size G = 1 mm do you have to place a thin lens
with focal distance f = 100 mm in order to obtain a ten times larger image? Test
your result in practice.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics01.pdf
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Solution: From the lens equations,

1

f
=

1

g
+

1

b
=

1

g
+
G

B

1

g
=

1

g
+

1

10g
=

11

10g
.

Hence, g = 1.1f .

Figure 51.5: Ray optics.

51.2.3.2 Ex: Image of a convex lens

Show that with a convex lens of focal distance f the smallest distance between object
and image should be s = 4f .

Solution: The lens equation postulates,

1

f
=

1

b
+

1

g
,

such that

b+ g = b+
1

1
f − 1

b

=
b2

b− f .

Minimizing the distance between object and image,

0 =
∂(b+ g)

∂b
=

∂

∂b

b2

b− f = b
b− 2f

(b− f)2 ,

we get b = 2f = g and hence, b+ g > 4f .

51.2.3.3 Ex: Telescope with ray optics

In classical optics the transfer matrix for the propagation of a beam through free
space and through a thin lens are given, respectively, by

Mfree =

(
1 d

0 1

)
and Mlens =

(
1 0

−1/f 1

)
.

The transfer between a point z0 of the optical axis and a point z1 is described by
(
y(z1)

y′(z1)

)
=Mfree

(
y(z0)

y′(z0)

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics03.pdf
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Here, y is the distance of a beam ray from the optical axis and y′ = dy
dx its divergence.

Use this formalism to design a 3 times magnifying telescope with two lenses have,
respectively, the focal lengths f1 = 100mm and f2 = 300mm.

Solution: The total optical system is a concatenation of 3 matrices,

Mtot =Mlens,2MfreeMlens,1 =

(
1 0

−1/f2 1

)(
1 d

0 1

)(
1 0

−1/f1 1

)

=

(
1− d

f1
d

d
f1f2
− 1

f1
− 1

f2
1− d

f2

)
.

The variable parameter is the distance d between the two lenses, the condition of a
telescope is that a coaxial input ray, y′(z0) = 0, is transformed into a coaxial output
ray, y′(z1) = 0. Hence,

(
y(z1)

0

)
=Mtot

(
y(z0)

0

)
=




(
1− d

f1

)
y(z0)(

d
f1f2
− 1

f1
− 1

f2

)
y(z0)


 .

This can only be true if
d = f1 + f2 .

The magnification is then
y(z1)

y(z0)
= 1− d

f1
=
f2
f1

.

51.2.3.4 Ex: Ray tracing

Simulate the trajectory of a ray of light traversing under an angle a layer of a material
with a refraction index characterized by a Gaussian profile.

Solution: The simulation is shown in Fig. 51.6.

-5 0 5 10

x

-2

0

2

Figure 51.6: (code) Trajectory of a ray of light with 15◦ angle of incidence.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics035.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Gaussian_RayTracingThruCloud.m
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51.2.3.5 Ex: The eye

The effective distance between the cornea and the lens of the eye is 2.5 cm, and the
lens is in contact with the eye. To resolve two very close points, their images on
the retina must be on two non-adjacent cone cells (i.e. there must be at least one
non-activated cone cell between the images). The cone cells are about 1µm apart.
a. What is the smallest angle ϵ under which two points are still separately perceptible?
Assume that the direct beams P, P’ are not refracted.
b. How close can the two points P1 and P2 be, at a distance of 20m from the eye, so
that they are still separately perceptible?
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Figure 51.7: The eye.

Solution:

51.2.3.6 Ex: Microscope

A simple homemade microscope consists of two convex lenses, each one with a diffrac-
tive power of 20 dpt, fixed at the extremities of a 30 cm long tube.
a. Wie groß ist die Tubuslänge dieses Mikroskops?
b. Wie groß ist der Abbildungsmaßstab des Mikroskops?
c. Welche Vergrößerung erreicht das Mikroskop? Gehen Sie davon aus, dass die deut-
liche Sehweite 25 cm beträgt.
d. Wie weit muss sich der Gegenstand vor dem Objektiv befinden, damit er im Auge
des Betrachters scharf abgebildet wird?

Solution:

51.2.3.7 Ex: Classical cloaking with four lenses

Can you design a system of four lenses (focal distances f1, f2, f3 = f2, and f4 = f1)
separated by three distances t1 = f1 + f2, t2, and t3 = t1, such that the system
appears to be invisible for an observer looking through the lenses [258]?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics06.pdf
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Solution: The transfer matrix of this system is,

M =

(
1 0

− 1
f1

1

)(
1 f1 + f2

0 1

)(
1 0

− 1
f2

1

)(
1 t2

0 1

)(
1 0

− 1
f2

1

)(
1 f1 + f2

0 1

)(
1 0

− 1
f1

1

)

=

(
1 −f1 2f1f2+2f2

2−t2f1
f2
2

0 1

)
.

In order to obtain, that this matrix is equal to,

M =

(
1 L

0 1

)
,

with L = t1 + t2 + t3, the distance t2 be chosen such that,

t2 = 2f2
f1 + f2
f1 − f2

.

Choosing, for instance, 2f2 = f1 we get t2 = 3f1.
Comment: Works in practice with f1 = 2f2 = 2f3 = f4 = 50mm, t1 = t3 = 75mm,
and t2 = 150mm. However, lens aberrations spoil the visibility of the effect.

51.2.3.8 Ex: Diameter of a Gaussian beam

You are blocking part of a laser beam with a razor blade mounted on a translation
stage allowing you to vary the horizontal position. At the same time, you observe the
transmitted power P . You observe that, for varying the power between 16% and 84%,
you need to vary the translation by 140µm. What is the diameter of the Gaussian
beam?

Figure 51.8: Diameter of a Gaussian beam.

Solution: We calculate,

P̃ (x̃)

P
=

∫ x̃

−∞

∫ ∞

−∞

2

πw2
0

e−2r
2/w2

0dxdy =
1

π

∫ ∞

−∞
e−θ

2

dθ

∫ ξ̃

−∞
e−ξ

2

dξ = 1
2 erf

(
x̃
√
2

w0

)
+ 1

2 .

Hence, P̃ (−w0/2) = P · 16% and P̃ (w0/2) = P · 84%, which means that the value of
the translation corresponds precisely to the waist.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics07.pdf
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51.2.3.9 Ex: Diffraction of a Gaussian beam at a slit

a. Determine the power loss suffered by a Gaussian beam passing through a one-
dimensional slit, assuming that the beam hits the slit in its center.
b. Calculate the diffraction pattern produced by the slit.
c. A laser beam (λ = 633 nm) looses 50% of its power after being passed through a
slit. At a distance of L = 1m behind the slit appear diffraction patterns exhibiting
first minima at ∆x = 1mm to both sides of the central peak. Determine the diameter
of the Gaussian beam.

Solution: a. We have,

Ptr =

∫ ∞

−∞

∫ d/2

−d/2
I(x, y)dxdy =

∫ ∞

−∞

∫ d/2

−d/2

2P

πw2
e(−2x

2−2y2)/w2

dxdy = P erf

(
d

w
√
2

)
.

b. We let the slit be oriented in x-direction. The field is then obtained by Fourier
transformation,

u(θx, θy) ∝ F [χ[−d/2,d/2]] =
∫ ∞

−∞

∫ d/2

−d/2
dxdyeıkxx+ıkyy = 2πδ(ky)

2

kx
sin

kxd

2
,

where the diffraction angle is, θx ≃ sin θx = kx
k . The intensity is just the square,

I(θx) =

(
2πd

sin kd
2 θx

kd
2 θx

)2

.

We normalize via,

∫
I(θx)dθx =

∫ (
2πd

sin kd
2 θx

kd
2 θx

)2

dθx = (2πd)2
2

kd

∫ ∞

−∞

sin2 x

x2
dx = (2πd)2

2

kd
π ,

such that

I(θx, θy) =
I0

(2πd)2 2
kdπ

(
2πd

sin kd
2 θx

kd
2 θx

)2

= I0
kd

2π

(
sin kd

2 θx
kd
2 θx

)2

.

c. From
Ptr
P

= 50% = erf(0.477) = erf
(

d
w
√
2

)
,

we get

w =
d

0.477
√
2
.

The diameter of the slit can be determined by observing the interference fringes. The
first minimum is observed under the diffraction angle θx ≃ tan θx = ∆x

L , corresponding

to a zero passage of the diffraction function at kd
2 θx = π. Hence,

w =
d

0.477
√
2
=

1

0.477
√
2

2π

kθx
=

1

0.477
√
2

λ

∆x
L ≈ 938µm .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics08.pdf
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51.2.3.10 Ex: Diffraction of a Gaussian beam at a pinhole

a. Determine the power loss suffered by a Gaussian beam passing through the center
of a a pinhole of radius R.
b. A laser beam (λ = 633 nm) looses 50% of its power after being passed through a
slit. At a distance of L = 1m behind the slit appear diffraction patterns exhibiting
a first minimum at a distance ∆b = 1mm from the optical axis. Determine the di-
ameter of the Gaussian beam. Help: The first ring of destructive interference occurs
under an angle of sin θ = 1.22 λ

2R .

Solution: a. For a pinhole,

Ptr = 2π

∫ R

0

I(x, y)rdr = 2π

∫ R

0

2P

πw2
e−2r

2/w2

rdr = P (1− e−2R2/w2

) .

b. From
Ptr
P

= 50% = 1− e−2R2/w2

we get,

w = R

√
−2

ln
(
1− Ptr

P

) = 1.7R .

With R = 1.22λ
2 sin θ ≃ 1.22λ

2θ we get,

w = 1.7 · 1.22λ
2θ

= 1.7 · 1.22λL
2∆b

= 656µm .

51.2.3.11 Ex: Focusing a HeNe laser

The output beam from an HeNe laser with a confocal resonator (ρ = L = 30 cm) is
focused by a lens of f = 30 cm, 50 cm away from the output mirror. Calculate the
location of the focus, the Rayleigh length, and the beam waist in the focal plane.

Solution: The transfer matrix for half a round trip in a confocal cavity, ρ = L,
starting from the waist is,

Mcav =

(
1 L/2

0 1

)(
1 0

−2/ρ 1

)(
1 L/2

0 1

)
=

(
0 L/2

−2/L 0

)
.

Self-consistency of the beam parameter 1
q0

= 1
R0
− ı λ

πw2
0
= −ı/zR0 requires,

ızR0 = q0 =
M11q0 +M12

M21q0 +M22
= −L

2
− L2

4q(0)
= −L

2
− L2

4ızR0
.

The imaginary part of this equation yields the waist and Rayleigh length,

w0 =

√
λL

2π
≈ 174µm and zR0 =

πw2
0

λ
≈ 15 cm .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics09.pdf
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The beam diameter at the surfaces of the laser mirrors is,

wmir = w0

√
1 +

(
λz

πw2
0

)2

≈ 246µm .

To obtain the beam parameters at the location of the exterior focus we set up the
transfer matrix,

Mext =

(
1 d2

0 1

)(
1 0

−1/f 1

)(
1 d1

0 1

)
=

(
1− d2/f d1 − d1d2/f + d2

−1/f 1− d1/f

)
,

with d1 = z1 + L/2 where z1 = 50 cm. The beam parameter is now,

q2 =
M11q0 +M12

M21q0 +M22
=

(f − d2)q0 + fd1 − d1d2 + fd2
−q0 + f − d1

=
(f − d2)ızR0 + fd1 − d1d2 + fd2

ızR0 + f − d1
,

with the real part,

0 = Re q2 =
(f − d2)ızR0ızR0 + (fd1 − d1d2 + fd2)(f − d1)

z2R0 + (f − d1)2

=⇒ d2 = f
z2R0 + d1(d1 − f)
z2R0 + (d1 − f)2

≈ 51.72 cm ,

and the imaginary part,

zR2 = Im q2 =
1

ı

(f − d2)ızR0(f − d1) + (fd1 − d1d2 + fd2)ızR0

z2R0 + (f − d1)2
=

f2zR0

z2R0 + (f − d1)2
≈ 9.3 cm

=⇒ w2 =

√
λzR2

π
≈ 137µm .

Note that classical ray optics would have predicted,

0 ≃ 1

d1
+

1

d2
− 1

f
and w2 ≃ w1

d2
d1

,

giving with d1 = z1 + L/2,

d2 ≃
1

1
f − 1

z1+L/2

≈ 55.7 cm and w2 = w1

√
d2 − f
d1 − f

≃ w1
d2
d1
≈ 149µm

and zR =
πw2

2

λ
≈ 11 cm .

51.2.3.12 Ex: Spatial filtering

A nearly parallel Gaussian beam with λ = 500 nm is expanded by a telescope with
two lenses of focal lengths f1 = 1 cm and f2 = 10 cm, illustrated in the figure. The

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics11.pdf
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Figure 51.9: Beam-expanding telescope with an aperture in the focal plane.

spot size at the entrance lens is w = 1mm.
a. Why does an aperture in the focal plane improve the quality of the wave fronts
in the expanded beam by eliminating perturbations due to diffraction effects by dust
and other imperfections on the lens surfaces?
b. What is the diameter of this aperture, if 95% of the intensity is transmitted?

Solution: a. Dust particles on the lens L1 cause scattering of light in all directions.
This light is not focused by L1, and therefore only a tiny fraction can pass through
the aperture. The same is true for imperfections of lenses or mirror surfaces. With-
out the aperture the superposition of scattered light or light with deformed wavefronts
with the incident light causes interference patterns. The aperture therefore ’cleans’
the Gaussian laser beam.
b. The beam waist at the focus is

w0 =
fλ
πw

= 1.59µm .

The power transmitted through the aperture with radius a is Pt = Pi(1 − e−2a
2/w2

0 ).
For Pt/Pi = 0.95 we obtain a = 1.95µm = 1.22w0.

51.2.3.13 Ex: Transverse mode selection in an Ar laser

An argon laser oscillating at λ = 488 nm with resonator length d = 100 cm and two
mirrors with radius R1 = ∞ and R2 = 400 cm has an intracavity circular aperture
close to the spherical mirror to prevent oscillation on transversal modes. Estimate
the maximum diameter of the aperture that introduces losses γdiffr < 1% for the
TEM00 mode, but prevents oscillation of higher transverse modes, which without the
aperture have a net gain of 10%.

Figure 51.10: Transverse mode selection in an Ar laser.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_GaussOptics12.pdf
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Solution: The transfer matrix for the resonator,

M =

(
1 d

0 1

)(
1 0

−2/ρ 1

)(
1 d

0 1

)
=

(
1− 2d

ρ 2d
(
1− d

ρ

)

− 2
ρ 1− 2d

ρ

)

transforms the beam parameter like,

q(0) =
M11q(0) +M12

M21q(0) +M22
=

(
1− 2d

ρ

)
ızR0 + 2d

(
1− d

ρ

)

− 2
ρ ızR0 + 1− 2d

ρ

= ızR0 = ı
πw2

0

λ
.

The imaginary part of this equation yields,

z2R0 = ρd

(
1− d

ρ

)

or

w0 =

√√√√λ

π

√
ρd

(
1− d

ρ

)
≈ 519µm

for the beam waist. The beam diameter at the exit mirror is then,

w1 = w0

√
1 +

(
λz

πw2
0

)2

≈ 599µm .

The power transmitted through an aperture located at the exit mirror is,

Ptr =

∫ r0

0

2πI(r)rdr = 2π
2P

πw2
1

∫ r0

0

e−2r
2/w2

1rdr = P
(
1− e−2r20/w2

1

)
≡ P · 99% .

This gives r0 > w1

√
− 1

2 ln 0.01 ≈ 909µm. According to Demtröder, Fig. 5.12 the

Fresnel number NF should be smaller than 0.8, in order to increase the losses of the
TEM10 mode above 10%. The Fresnel number is defined as,

NF =
1

π

πa2

πw2
s

,

where ws is the beam waist of the fundamental mode. Therefore,

a2 < 0.8 · πw2
s ,

Yielding a ≤ 944µm. The radius of the aperture therefore must lie between a ∈
[904, 944]µm.
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51.2.3.14 Ex: Anamorphic prism

A prism can be used for expansion of a laser beam if the incident beam is nearly
parallel to the prism surface. Calculate the angle of incidence α for which a laser
beam transmitted through a rectangular glass prism with an ε = 45◦ base angle is
expanded tenfold.

Solution: From the figure we see,

cos ε =
d2
D

and cosα =
d1
D

.

Hence,
d2
d1

=
cos ε

cosα
≡ 10 ,

or, for ε = 45◦,

α = arccos
cos ε

10
≈ 85.9◦ .

The incident beam has an angle of 90◦ − α against the prism surface. From this we
can infer the required refractive index must be,

nrfr =
sinα

sin ε
≈ 1.41 .

Figure 51.11: Beam expanding prism.

51.2.3.15 Ex: Anamorphic prism pair

An anamorphic prism pair is a setup consisting of two prisms through which a laser
beam is passed under specific angles. The angles can be chosen such as to change the
beam diameter only in the p-plane.
a. Calculate, for a single prism with refractive index n = 1.5, the beam expansion for
an incidence angle of θ1 = 57◦ and an exit angle of 0◦. How large must the base angle
β of the prism be for this to be possible?
b. How must the second prism be aligned in order for the beam transmitted to this
second prism to remain parallel to the incident beam? Note, that an anamorphic
prism pair does not allow to correct for astigmatism. This requires cylindrical lenses.

Solution: a. From Snell’s law,

nrfr =
sin θ1
sin θ2

,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_SpectroMonochrom01.pdf
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Figure 51.12: (Left) Anamorphic prisms (Thorlabs, PS870). (Right) Geometry of
the beam transformation. The entrance side of a prism is often chosen close to the
Brewster angle, while the exit side treated carries an anti-reflexion coating.

we derive,

d2
d1

=
cos θ2
cos θ1

=

√
1− sin2 θ1/n2rfr√

1− sin2 θ1
≈ 1.5 .

The base angle under the given condition should be,

β = θ2 = arcsin(sin θ1/nrfr) ≈ 34◦ ,

which can be derived geometrically.
b. The incidence angle on the second (identical) prism is,

θ′1 = 90◦ − α2 − β .

From this xxx.

51.2.3.16 Ex: Beam steering with two wedged substrates

The wavevector of a laser beam is generally aligned with one or more adjustable re-
flective mirrors. Alternatively, one may use a pair of rotatable transmissive wedged
substrates. Calculate the wave vector of a laser beam after its transmission through
two ϵ = 3◦ wedged, 2mm thick, AR-coated substrates with the refraction index
nrfr = 1.5134 at 689 nm, each one rotated by θ1,2 from some normal position.

Solution: We assume the incident beam parallel to the optical axis, k0 = kêz. The
normal vectors of the wedges (wedge angle ε = 3◦) are,

ê⊥1 =




cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1







cos ε 0 sin ε

0 1 0

− sin ε 0 cos ε







0

0

−1


 =



− sin ε cos θm

sin ε sin θm

− cos ε




and ê⊥2 =



− sin ε cos θ2

sin ε sin θ2

cos ε


 .

https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=149
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Figure 51.13: Beam steering with two rotatable wedged substrates (see Thorlabs, PS810).

We also define normal vectors in the direction where the refraction plane cuts the
wedge surface,

ê∥1 =
ê⊥1 × (ê⊥1 × kα)

|ê⊥1 × (ê⊥1 × kα)|
and ê∥2 =

ê⊥2 × (ê⊥2 × kγ)

|ê⊥2 × (ê⊥2 × kγ)|
.

The refraction of a wavevector at a tilted interface between air and a dielectric with

-2 0 2
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-2
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2

α
y
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10
α
y

(◦
)

Figure 51.14: (code) Refraction angles that can be reached.

refractive index nrfr follows Snell’s law,

nrfr =
sinα

sinβ
=

sin δ

sin γ
,

where the angles are given by,

kα · ê⊥1 = −k cosα , kβ · ê⊥1 = −k cosβ
kγ · ê⊥2 = k cos γ , kδ · ê⊥2 = k cos δ .

With this we can derive coordinate-free notation,

kβ = −ê⊥1k cosβ − ê∥1k sinβ where sinβ =
sinα

nrfr
=

1

nrfr

√
1− (kα · ê⊥1)2

k2
.

https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=147
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Gaussian_CateyeCalc.m
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Concatenating two wedges by kγ = kβ and,

kδ = −ê⊥2k cos δ+ê∥2k sin η2 where sin δ = nrfr sin γ ≡ nrfr
√
1− (kγ · ê⊥2)2

k2
.

Fig. 51.14 shows the angles that can be reached after the first wedge by rotating θ1
(black curve) and after the second wedge by rotating θ1,2 (colored curves).

51.2.4 Experiment: Measuring the diameter of a Gaussian
laser beam

Most laser beams exhibit a Gaussian shape transverse intensity distribution, as we
will study in this experiment.

1. Measure the phase profile of a helium-neon laser. To this end fix a razor blade
on a translation stage and move it sideways into the beam. From the power
of the partially blocked beam

∫
F
I(x, y)dxdy, where F is the cross section of

the unblocked part of the beam, w(z) can be determined (see Excs. 51.2.3.8 to
51.2.3.10).

Example 299 (LOGaussian01): Example for the experimental determination
of a Gaussian beam. We fit the integral,

P̃

P
=

∫ x̃

−∞

∫ ∞
−∞

2

πw(z)2
e−2r2/w(z)2dxdy (51.23)

=
2√

πw(z)2

∫ x̃
√
2/w(z)

−∞
e−ξ

2

dξ = 1
2

[
erf
(
x̃
√
2

w(z)

)
+ 1
]

to the measured data by varying only w(z).
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Figure 51.15: (code) (a) Adjustment of an error function for a measured beam profile. (b)

Adjustment of a laser beam propagation using Gaussian optics.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Gaussian_GaussBeamFit.m
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51.2.5 Experiment: Measuring the parameters of a Gaussian
laser beam

Once a Gaussian beam has been characterized at a given position z, the transfer
matrix formalism allows us to calculate its shape at any position along the optical
axis. In this experiment, we will study the propagation of a Gaussian beam through
free space [see Eqs. (51.16)] and its transformation through a thin lens with focal
distance f . For the latter one, we obtain directly after the lens,

1

R(z ↘ 0)
=

1

R(z ↗ 0)
− 1

f
. (51.24)

1. Focus the beam with a lens. Measure the beam diameter at 3 different locations.
Compare with the prediction of Gaussian optics.

2. Set up a 1:3 telescope and verify that the outgoing beam is collimated.

51.2.6 Experiment: Spatial filtering with a pinhole

Laser light emitted from diode lasers is often astigmatic and has an irregular beam
profile. The beam profile can be purified by passing it through an optical fiber or a
pinhole, however, at the price of losing power.

1. Focus the beam of a HeNe laser with a lens of f = 100mm focal distance onto
a pinhole. Observe the interference fringes and, from their distance from the
optical axis, infer the diameter of the pinhole.

2. Remove the higher-order diffraction rings with an iris and compare the beam
profile with that of a Gaussian beam. What are the divergence and the waist
of the spatially filtered beam (see Exc. 51.2.3.10)?

51.3 Introduction to polarization optics

A laser usually has a well-defined polarization, e.g. , linear or circular. The polariza-
tions can be transformed into one another through a quarter waveplate (λ/4) or a half
waveplate (λ/2) by a Fresnel rhomb or other birefringent elements. Superpositions of
polarizations can be separated by a polarizing beam splitter.

Waveplates consist of thin sheets of birefringents crystals, which are transparent
material characterized by anisotropic refraction indices. Cut in a particular way, a
birefringent crystal can exhibit a polarization-dependent refraction index, allowing to
control the retardation of a light beam as a function of its polarization. The thickness
of a waveplate determines the retardation of one polarization axis with respect to the
other.

In practice, the degree of freedom of polarization is often used for separating coun-
terpropagating light fields, e.g. in ring lasers, by means of elements called optical diode
or optical isolator, which consist of a Faraday rotator and λ/2 waveplate. Another
practical example is the use of λ/4 in double passage. An incoming beam can be
separated from a returning beam by using a λ/4 waveplate and a polarizing beam
splitter.
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Figure 51.16: (Left) Transmission through a birefringent crystal. (Right) λ/2-waveplate
mounted in a rotation stage.

51.3.1 Jones matrices

The term polarization is defined in relation to a fixed coordinate system, while the
term helicity denotes the direction of rotation of the polarization vector with respect to
the direction of propagation of the light beam. The polarization of a beam propagating
in z-direction can easily be expressed by a vector of complex amplitude,

E⃗(r, t) =



a

b

0


 eıkz−ıωt =




1

e−ıϕ|b|/|a|
0


 |a|eıkz−ıωt . (51.25)

The angle ϕ = arctan Im ab∗

Re ab∗ determines the polarization of the light beam. A polar-
ization is linear when ϕ = 0 and circular when ϕ = π/2. |b|/|a| is, hence, the degree
of ellipticity. A polarization rotator for linearly polarized light (e.g., a sugar solution)
is described by the following Jones matrix (we will restrict to the x-y-plane)

Mrotator(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)
, (51.26)

where ϕ is the rotation angle. For the Faraday rotator the sign of the rotation angle
depends on the propagation direction of the laser beam. A polarizer projects the
polarization onto a specific axis. In the case of the x-axis Jones matrix is,

Mpolarizer =

(
1 0

0 0

)
. (51.27)

If the rotation angle is ϕ,

Mpolarizer(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)(
1 0

0 0

)(
cosϕ sinϕ

− sinϕ cosϕ

)−1
. (51.28)

Other components, such as electro-optical modulators or phase plates are birefringent
crystals, which act only on one of the two optical axes. If only the y axis is optically
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active, the Jones’ matrix is,

Mθ-waveplate =

(
1 0

0 eıθ

)
. (51.29)

For θ = 2π/n we obtain a λ/n-waveplate. When we rotate the waveplate and therefore
the optically inactive axis to an angle ϕ, the Jones matrices are,

Mθ-waveplate(ϕ) =

(
cosϕ sinϕ

− sinϕ cosϕ

)(
1 0

0 eıθ

)(
cosϕ sinϕ

− sinϕ cosϕ

)−1
(51.30)

=

(
cos2 ϕ+ eıθ sin2 ϕ − sinϕ cosϕ+ eıθ sinϕ cosϕ

− sinϕ cosϕ+ eıθ sinϕ cosϕ sin2 ϕ+ eıθ cos2 ϕ

)
.

In most cases, we use quarter waveplates λ/4,

Mλ/4(ϕ) =

(
cos2 ϕ+ ı sin2 ϕ (−1 + ı) sinϕ cosϕ

(−1 + ı) sinϕ cosϕ sin2 ϕ+ ı cos2 ϕ

)
(51.31)

and half waveplates λ/2,

Mλ/2(ϕ) =

(
cos 2ϕ − sin 2ϕ

− sin 2ϕ − cos 2ϕ

)
. (51.32)

Figure 51.17: (a) Rotation of the polarization by a birefringent waveplate. (b) Illustration
of a circularly polarized light wave.

Combinations of λ/2 waveplates and Faraday rotators are used as optical isolator,
also called optical diode.
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51.3.2 Fresnel formulae

Reflection and transmission of a beam of light at a surface depend on the polarization
of the light and the angle of incidence. They are described by the Fresnel formula:

(
I0t
I0i

)

s

= Ts =

(
2 sin θt cos θi
sin(θi + θt)

)2

(51.33)

(
I0r
I0i

)

s

= Rs =

(
− sin(θi − θt)
sin(θi + θt)

)2

(
I0t
I0i

)

p

= Tp =

(
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)

)2

(
I0r
I0i

)

p

= Rp =

(
tan(θi − θt)
tan(θi + θt)

)2

.

The angles of incidence and transmission are related by Snell’s law: n1 sin θi =
n2 sin θt.
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Figure 51.18: (code) (Left) Fresnel formulae showing the angular dependence of ts
(red solid), rs (green dash-dotted), tp (blue dashed), and rp (cyan dotted) for reflec-
tion from and transmission through a piece of glass-air interface. (Right) Interfaces
between optical media with different reflection indices can act like polarizers: Light
reflected from a glas surface under the Brewster angle is completely s-polarized, while
the transmitted light is partially p-polarized. The notation s comes from senkrecht,
i.e. perpendicular to the plane spanned by the incident and reflected light beams,
while p means parallel to this plane.

The Brewster angle θi,B is reached, when θi,B + θt = 90◦, i.e., when following
Snell’s law,

n1 sin θi,B = n2 sin(90
◦ − θi,B) = n2 cos θi,B . (51.34)

Hence, the Brewster angle is given by,

tan θi,B =
n2
n1

. (51.35)

Resolve the exercises 51.3.4.1 to 51.3.4.5.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Gaussian_FresnelFormulae.m
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51.3.3 Stokes parameters

In quantum mechanics the Stokes parameters of a light beam with horizontal and
vertical polarizations, âh and âv, satisfying,

[âk, â
†
m] = δkm , (51.36)

with k,m = h, v are defined by,

Ŝ0 ≡ â†hâh + â†vâv

Ŝ1 ≡ â†hâh − â†vâv

Ŝ2 ≡ â†hâve
ıθ + â†vâhe

−ıθ

Ŝ3 ≡ −ı(â†hâveıθ − â†vâhe−ıθ)

. (51.37)

The Stokes parameters exhaustively describe the polarization state of a light beam.
It is interesting, that the vector Ŝ with components Sj with j = 1, 2, 3 satisfies the
SU(2) spin algebra,

[Ŝk, Ŝm] = 2ıϵkmnŜn and Ŝ2 = Ŝ2
0 + 2Ŝ0 , (51.38)

as will be shown in Exc. 51.3.4.6. It is conveniently pictured on a Poincaré sphere or
as a polarization ellipse. In the classical limit we get,

Ŝ0 = I (51.39)

Ŝ1 = Ip cos 2ψ cos 2χ

Ŝ2 = Ip sin 2ψ cos 2χ

Ŝ3 = Ip sin 2χ ,

with I the light intensity (eventually normalized to the single-photon light intensity),
the degree of polarization p. Obviously,

Ŝ2
1 + Ŝ2

2 + Ŝ2
3 = p2Ŝ2

0 . (51.40)

51.3.4 Exercises

51.3.4.1 Ex: Light power control using polarization optics

The power of a laser beam can be regulated by a combination of a half-wave plate and
a polarizing beam splitter. By how many degrees do you have to rotate the waveplate
in order to reduce the light power by a factor of 2? Use the Jones matrices to justify
your response. Advice: Look up the Jones matrices (51.32) and (51.27). Test your
result in practice.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics01.pdf
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Solution: The action of the optical components on the polarization is described by,

(
Ex(z1)

Ey(z1)

)
=MpolMλ/2(ϕ)

(
Ex(z0)

Ey(z0)

)

=

(
1 0

0 0

)(
cos 2ϕ − sin 2ϕ

− sin 2ϕ − cos 2ϕ

)(
Ex(z0)

Ey(z0)

)
=

(
cos 2ϕ − sin 2ϕ

0 0

)(
Ex(z0)

Ey(z0)

)
.

We assume an initially linear polarization E(z0) = Ex(z0)êx, so that the initial in-
tensity is I(z0) ∝ Ex(z0)2,

(
Ex(z1)

Ey(z1)

)
=

(
cos 2ϕ − sin 2ϕ

0 0

)(
Ex(z0)

0

)
=

(
Ex(z0) cos 2ϕ

0

)
.

The final intensity is I(z1) = E2
x(z1) + E2

y(z1). Hence,

I(z1)

I(z0)
= cos2 2ϕ ≡ 1

2
,

gives ϕ = 22.5◦.

51.3.4.2 Ex: Jones matrices

Consider a linearly polarized laser beam passing twice through a λ/4, first in direc-
tion of the optical axis, the second time in opposite direction. Calculate the final
polarization.

Solution: The propagation direction of the beam doesn’t matter for the retardation.

We can show Mλ/4(ϕ)
2 =Mλ/2(ϕ) and Mλ/4(π/4) =

(
0 −1
−1 0

)
.

51.3.4.3 Ex: Intensity transmitted through a polarizer

Unpolarized light of intensity I0 is transmitted through a polarizer with thickness
d = 1mm. Calculate the transmitted intensity when the absorption coefficients for
the two polarizations are α∥ = 100 cm−1 and α⊥ = 5 cm−1.

Solution: Using the Lambert-Beer law, I = I0e
−αd, we have I∥ ≈ 4.5 · 10−5I0 and

I⊥ ≈ 0.6I0.

51.3.4.4 Ex: Thickness of a half-waveplate

A birefringent quartz crystal is characterized by different refraction indices of the
ordinary beam no = 1.544 and the extraordinary beam ne = 1.553. Calculate the
necessary thickness of a quartz waveplate to be used as a λ/2 retarder at 633 nm.
Choose an appropriate waveplate from the Thorlabs catalogue. How thick would a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics04.pdf
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calcite waveplate (no = 1.658, ne = 1.486)?

Solution: The phase difference is,

ϕ =
2πd(no − ne)

λ

!
= π .

Hence for quartz,

d =
λ

2(no − ne)
≈ 35.2µm .

The waveplate WPHSM05-633 would be a good choice. For calcite we would have,

d =
λ

2(no − ne)
≈ 1.84µm .

51.3.4.5 Ex: Faraday isolator

A Faraday rotator is a device exploiting the Faraday effect to rotate the polarization
of a light beam according to the Jones matrix,

MFaraday(ϕ) =

(
cosϕ −k · êz sinϕ

k · êz sinϕ cosϕ

)
, (51.41)

where k is the wavevector of the light beam. An optical diode is composed by a
ϕ = 45◦ Faraday rotor sandwiched between two polarizers rotated by ϕ = 45◦ with
respect to each other.
a. How is the polarization of a light beam changed after a double passage (back and
forth) through a Faraday rotator?
b. Calculate what happens to a light beam upon a single passage through a Faraday
rotator in either direction k and −k?

Solution: a. The polarization is unchanged, since,

(
cosϕ −k · êz sinϕ

k · êz sinϕ cosϕ

)(
cosϕ k · êz sinϕ

−k · êz sinϕ cosϕ

)(
a

b

)
=

(
a

b

)
.

b. We assume the entrance polarizer oriented along the êx axis and the exit polarizer
rotated by 45◦,

Min =

(
1 0

0 0

)
with Mrot(ϕ) =

(
cosϕ − sinϕ

sinϕ cosϕ

)
,

such that,

Mout =Mrot(
π
4 )MinMrot(

π
4 )
−1 =

(
1
2

1
2

1
2

1
2

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics05.pdf
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Without loss of generality we assume the light to be initially polarized as ε̂ = êx and
the entrance polarizer transmissive. Then for a propagation in k-direction,

MoutMFaradayMin

(
1 0

)
=

(
1
2

1
2

1
2

1
2

)(
cos π4 − sin π

4

sin π
4 cos π4

)(
1 0

0 0

)(
1

0

)
=

(
1√
2
1√
2

)
.

And for a propagation in −k-direction,

MinM
−1
FaradayMout

(
a

b

)
=

(
1 0

0 0

)(
cos π4 sin π

4

− sin π
4 cos π4

)(
1
2

1
2

1
2

1
2

)(
a

b

)
=

(
0

0

)
.

51.3.4.6 Ex: Stokes parameters

For the Stokes parameters defined in (51.43) prove the following relationships,

[Ŝk, Ŝm] = 2ıϵkmnŜn and Ŝ2 = Ŝ2
0 .

Solution: We calculate using [âh, â
†
h] = 1 = [âv, â

†
v] and [âv, â

†
h] = 0,

[Ŝ1, Ŝ2] = (â†hâh − â†vâv)(â
†
hâve

ıθ + â†vâhe
−ıθ)− (â†hâve

ıθ + â†vâhe
−ıθ)(â†hâh − â†vâv)

= â†h(âhâ
†
h − â

†
hâh)âve

ıθ + (â†hâh − âhâ
†
h)âhâ

†
ve
−ıθ

+ â†h
(
âvâ
†
v − â†vâv

)
âve

ıθ + âhâ
†
ve
−ıθ(â†vâv − âvâ†v)

= 2â†hâve
ıθ − 2âhâ

†
ve
−ıθ = 2ıŜ3 ,

and similarly for the other commutators. Also,

Ŝ2 = (â†hâh − â†vâv)2 + (â†hâve
ıθ + â†vâhe

−ıθ)2 − (â†hâve
ıθ − â†vâhe−ıθ)2

= (â†hâh − â†vâv)2 + 2â†hâvâ
†
vâh + 2â†vâhâ

†
hâv

= (â†hâh + â†vâv)
2 + 2â†hâh + 2â†vâv = Ŝ2

0 + 2Ŝ0 .

51.3.5 Experiment: Polarization of a helium-neon laser

We will now analyze and manipulate the polarization of a laser beam in practice.

1. Pass the beam of a helium-neon laser through a polarizer and a quarter- resp.
half-waveplate. Analyze the polarization using a rotatable second polarizer for
various rotation angles of the waveplate. Sketch the transmitted intensity as a
function of the rotation angle of the beamsplitter in a polar diagram. How good
can you achieve linear and circular polarization?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Gaussian_PolOptics06.pdf


51.3. INTRODUCTION TO POLARIZATION OPTICS 2903

2. Characterize the polarization of a helium-neon laser by sketching the transmit-
ted intensity through a polarizing beamsplitter as a function of the rotation
angle of the beamsplitter in a polar diagram. Now couple the laser beam to a
Fabry-Pérot interferometer. What do you observe? Place a quarter-waveplate
at the output of the helium-neon laser and characterize again the polarization.
What do you observe at the Fabry-Pérot interferometer?

3. Use a quarter-waveplate to separate a beam of light from a counterpropagating
beam according to Fig. 51.19.

Figure 51.19: (a) Power control of a light beam and (b) separation of counterpropagating
beams through polarization optics.

4. Characterize an optical insulator. Optimize its extinction.

51.3.6 Experiment: Measuring the Brewster angle

Any interface between two transparent materials with different refraction indices re-
flects a part of incident light depending on the polarization and the angle of incidence,
as predicted by Fresnels formulae (51.33).

1. Measure the transmission by a glass plate as a function of the angle of incidence
for two orthogonal polarizations and determine the Brewster angle.

2. Mirrors can change the polarization of a light beam and, for example, transform
a linear polarization into elliptical. Determine the degree of ellipticity for a given
mirror.

3. How does a mirror transform the polarization and the helicity of a reflected
laser beam?

Figure 51.20: Measuring the Brewster angle by varying the tilt of a glas plate.
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51.3.7 Experiment: Pockels cell

Pockels cells are birefringent crystals allowing to manipulate the polarization of a
laser beam by application of a voltage.

1. Prepare a laser beam by passing it through a polarizer followed by a half-
waveplate and a second polarizer. Observe the intensity transmitted and re-
flected through the last polarizer as a function of the rotation angle of the
half-waveplate.

2. Use the EOM as a Pockels cell by placing it between the half-waveplate and
the second polarizer. Supply a voltage between 0V and 350V to the EOM.
Measures the intensity of reflected and transmitted light as a function of the
supplied voltage and prepare a diagram. What do you observe when you rotate
either the half-waveplate or the EOM?

Figure 51.21: Scheme for using an EOM as a Pockels cell.

51.4 Laguerre-Gaussian light modes

Light beams not only possess polarization, but can also have orbital angular momen-
tum. This property of light can impressively demonstrated at the so-called Laguerre-
Gaussian modes.

These modes can be produced by means of masks resembling Fresnel zone plate.
Fresnel zone plates are masks consisting of concentric sequences of bright (transmit-
ting) and dark (absorbing) rings. The diameters of the rings are selected in such a
way that the diameters of the rings defined by the bright rings interfere constructively
at a certain distance f1 on the optical axis and form a ’focus’ there. For this purpose,
the distance dn of the nth ring must satisfy the condition,

dn =
√
(f1 + nλ)2 − f21 ≃

√
2f1nλ . (51.42)

For a given zone plate there are other focuses at smaller distances,

fk =
d2n − k2n2λ2

2knλ
≃ d2n

2knλ
=
f1
k
. (51.43)

In order to separate the beams diffracted by the zone plate into a given focus from
those diffracted into other focuses or not being diffracted at all, we pass the beam
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through an iris diaphragm localized at the desired focus and recollimate the beam by
means of a lens, as shown in Fig. 51.22.

The phase profile of the beam can be viewed interferometrically (see Fig. 51.22)
by overlapping a plane wave laser beam. With a neutral density filter the intensities
of the overlapping beams can be adjusted to maximize the contrast.

Zonenplatte

Laser

f 50 f 250

f 50 f 100

f 100

Lochblende
Schirm

Graukeil

Figure 51.22: Creation of Laguerre-Gaussian modes.

Now, for realizing Laguerre-Gaussian light modes, we use Fresnel zone plates
with spiral patterns, instead of concentric rings. In contrast to the Gaussian mode,
the Laguerre-Gauß modes exhibit an intensity minimum on the optical axis (doonat
mode). Their phase profiles can be viewed by interferometry [21].

51.4.1 Experiment: Generating a Laguerre-Gaussian mode

In this experiment, we will...

1. Construct the interferometer sketched in Fig. 51.22 using adequate Fresnel zone
plates. What do you observe in the diffracted beam and in the interferogram,
when instead of filtering the principal focus f1 you filter a higher order focus?

2. Pass a Laguerre-Gauß laser beam through a λ/2 waveplate. How does the an-
gular orbital momentum change when you change the rotation? What happens
upon reflection from a mirror?

3. Slightly misalign the mode-matching between the Laguerre-Gauß beam and the
Gaussian reference beam until you observe multiple fringes. What do you ob-
serve?

51.5 Further reading

M. Born, Principles of Optics [180]ISBN

H. Kogelnik et al., Laser Beams and Resonators [734]DOI

W. Demtröder, Atoms, Molecules and Photons: An Introduction to Atomic, Molec-
ular, and Quantum Physics [352]ISBN

http://isbnsearch.org/isbn/978-1-108-47743-7
http://doi.org/10.1364/AO.5.001550
http://isbnsearch.org/isbn/978-3-642-10298-1
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J. Weiner et al., Light-matter interaction, Fundamentals and applications [1364]DOI

G.A. Fowles, Introduction to Modern Optics [464]ISBN

J.S. Choi et al., Paraxial ray optics cloaking [258]DOI

51.5.1 on Stokes parameters

W.P. Bowen et al., Polarization Squeezing of Continuous Variable Stokes Parameters
[185]DOI

51.5.2 on Laguerre-Gauss modes

L. Allen et al., Orbital Angular Momentum of Light and the Transformation of
Laguerre-Gaussian Laser Modes [21]DOI

http://doi.org/10.1002/9783527617883
http://isbnsearch.org/isbn/978-0-486-65957-2
http://doi.org/10.1364/OE.22.029465
http://doi.org/10.1103/PhysRevLett.88.093601
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Chapter 52

Electronics and
radiofrequency

For the control and regulation of important quantum optical devices, such as EOMs,
AOMs, laser diodes, photodiodes, piezos etc., electronic circuits are necessary. The
aim of this chapter is to provide practical know-how in the basics of electronics.

52.1 Introduction to electronic circuits

52.1.1 Passive electronic components

Electronic components which are characterized by a fixed impedance are called pas-
sive. The most common devices are resistors, capacitors, and inductances. For their
handling, it is useful to be able to identify their impedance from their labeling.

The values of the resistances of resistors are generally codified by colored rings.
The first ring to be considered is the one closest to a terminal. In case of 4 rings, the
first two rings are to be considered as digits, the third ring gives the exponent 10.
With five rings, the first three are digits and the forth gives the exponent of 10. The
last ring, in both cases specifies the tolerance of the value of the resistance.

There are various types of capacitors depending on the employed materials for
the dielectric medium (paper, ceramics, polyester, electrolyte made of aluminum and
electrolyte made of tantalum). Electrolyte capacitors have a defined polarity, and an
reversion of their voltage supply can result in their explosion. The value of the capac-
itance is generally written on their body, as well as their maximum allowed operating
voltage. Also the polarity of electrolyte capacitors is always indicated (although there
can be some confusion with regard to the physical and technical direction of the cur-
rent flow). Ceramic and polyester capacitors can have their values either written in
letters or color coded. The color code sequence is similar to that of resistors, with the
first two digits devoted to the digits, the third to the multiplier exponent, the forth
to the tolerance, and the fifth for the maximum voltage. In case of printed numbers,
the first two numbers represent the first two digits, and the third one represents the
numbers of 0 before the decimal point. In all cases (colors or digits), the value is given
in picoFarads. With more modern serigraphic techniques, some capacitors have their
values printed directly in Farads (micro, nano and pico). In these cases, the letter
denoting the unit also serves to mark the decimal point. For example, 2n2 means
2.2 nF.

2907
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Figure 52.1: Color code for resistors with 4 and 5 rings.

Figure 52.2: (Left) Electrolyte aluminum capacitors. (Center) Polyester capacitor and color
code. (Right) Ceramic capacitor.

52.1.2 Active electronic components and the pn-junction

Diodes, transistors, photodiodes, operational amplifiers are called active components,
because their current-to-voltage curve is non-linear, their response I = I(U) cannot
be described by a single constant value, but depends on the applied voltage.

During this course we will work a lot with operational amplifiers (OpAmp), which
are integrated circuits designed to amplify input signals with characteristics that are
entirely determined by external components. This feature makes them easy to use
and extremely versatile.

OpAmps are generally found encapsulated in DIL type housings (dual in line),
which means that they have two lines of 4 pins. The sequence of pins is numerated
in counter-clockwise orientation, and they have a mark on the side of pin 1. It is
always recommend to obtain the datasheet of the OpAmp since, despite a usual pin
compatibility ensured by the various OpAmp manufacturers, deviations are frequent.
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Figure 52.3: (Left) Schematic symbol of an OpAmp; (Right) Pin layout of a standard
OpAmp.

52.1.3 Electronic circuits

Amplification or control circuits are nowadays mostly realized with operational ampli-
fiers (OpAmp). The advantage of an OpAmp compared to circuits based on transistors
is, that their properties are almost independent of their internal structure. Hence,
their properties can be personalized via an external feedback realized with external
components. The input of an OpAmp does not require current. OpAmps amplify
the voltage difference between the non-inverting input (+) and the inverting (-). For
most practical matters we can assume, that the OpAmp has infinite amplification and
negligible input impedance.

Figure 52.4: (Left) Principle scheme of a standard OpAmp. (Center) Non-inverting amplifier.
(Right) Inverting amplifier.

OpAmps can be used as inverting amplifiers or non-inverting amplifiers. Using
Kirchhoff’s rules for the loops and nodes of the circuit, we find for a non-inverting
amplifier,

Ue
R1

= − Ua
R1 +Rn

, G = 1 +
Rn
R1

. (52.1)

This becomes clear noting that, since no voltage is dropped between the inputs (+)
and (-), the input voltage must be equal to the voltage drop at R1. And since the
non-inverting input does not deliver current, the currents traversing the resistances
Rn and R1 must be equal. For the inverting amplifier, we find,

Ua
Rn

= −Ue
R1

, G = −Rn
R1

. (52.2)

This becomes clear noting that, since the input (-) does not drag current, the currents
traversing the resistances Rn and R1 must cancel each other.
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Changing the resistances R to inductances L or capacitances C, it becomes possible
to influence the frequency response of the amplifying circuit. The impedance are,

ZL = ıLω , ZC =
1

ıCω
. (52.3)

For the calculation of the amplification wit complex impedances, we just take the
absolute value of the gain G.

52.1.4 The thermoelectric effect

52.1.4.1 Seebeck effect

The Seebeck effect is a classic example of an electromotive force (EMF) and leads to
measurable currents or voltages in the same way as any other EMF. The local current
density is given by,

J = σ(−∇V +Eemf ) , (52.4)

where V is the local voltage, and σ is the local conductivity. In general, the Seebeck
effect is described locally by the creation of an electromotive field,

Eemf = −S∇T , (52.5)

where S is the Seebeck coefficient (also known as thermopower), a property of the
local material, and ∇T is the temperature gradient.

The Seebeck coefficients generally vary as function of temperature and depend
strongly on the composition of the conductor. For ordinary materials at room tem-
perature, the Seebeck coefficient may range in value from −100µV/K to +1000µV/K.

If the system reaches a steady state, where J = 0, then the voltage gradient is
given simply by the emf:

−V = S∆T . (52.6)

This simple relationship, which does not depend on conductivity, is used in the ther-
mocouple to measure a temperature difference; an absolute temperature may be found
by performing the voltage measurement at a known reference temperature. A metal
of unknown composition can be classified by its thermoelectric effect if a metallic
probe of known composition is kept at a constant temperature and held in contact
with the unknown sample that is locally heated to the probe temperature. It is used
commercially to identify metal alloys. Thermocouples in series form a thermopile.
Thermoelectric generators are used for creating power from heat differentials.

Figure 52.5:
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52.1.4.2 Peltier effect

When an electric current is passed through a circuit of a thermocouple, heat is evolved
at one junction and absorbed at the other junction. This is known as Peltier Effect
and is named after a physicist. The Peltier effect is the presence of heating or cooling
at an electrified junction of two different conductors. When a current is made to
flow through a junction between two conductors, A and B, heat may be generated or
removed at the junction. The Peltier heat generated at the junction per unit time is,

Q̇ = (ΠA −ΠB)I , (52.7)

where ΠA and ΠB are the Peltier coefficients of conductors A and B, and I is the
electric current (from A to B). The total heat generated is not determined by the
Peltier effect alone, as it may also be influenced by Joule heating and thermal-gradient
effects (see below).

The Peltier coefficients represent how much heat is carried per unit charge. Since
charge current must be continuous across a junction, the associated heat flow will
develop a discontinuity if ΠA and ΠB are different. The Peltier effect can be considered
as the back-action counterpart to the Seebeck effect (analogous to the back-EMF in
magnetic induction): if a simple thermoelectric circuit is closed, then the Seebeck
effect will drive a current, which in turn (by the Peltier effect) will always transfer heat
from the hot to the cold junction. The close relationship between Peltier and Seebeck
effects can be seen in the direct connection between their coefficients [635, 1306]:

Π = TS . (52.8)

Figure 52.6: (a) Peltier cooler, (b) voltage generator or heat sensor, and (c) heat or radiation
sensor with thermocouples connected in parallel.

52.1.5 Exercises

52.1.5.1 Ex: Integrator with operational amplifier

Based on the two golden rules for operational amplifiers, (1) I+ = I− = 0 A and (2)
U+ = U−, show that the output voltage Ua at the integrated circuit shown in the
figure is: Ua = 1

RC

∫
Uedt.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_OpAmp01.pdf
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Figure 52.7: Integrator with operational amplifier.

Solution: Using the golden rule, we get:

Ue = RIR and IR = IC and Ua =
1

C

∫
IC dt .

From this follows,

Ua =
1

RC

∫
Ue dt .

52.1.5.2 Ex: Low-pass filter using an OpAmp

Using an inverting operational amplifier design a simple low-pass filter with a constant
amplification of 10 at low frequencies and diminishing gain above 10 kHz. Calculate
the Bode diagram (i.e. the frequency-dependent gain and phase-shift of your circuit.
What is the gain reduction per octave?

Solution: Choosing a circuit like in Fig. 52.3(b) with an impedance in parallel
Rn = R2 ∥ 1/ıCω, we find a gain curve of,

G(ω) = − 1
1
R2

+ ıCω

1

R1
,

that is,

|G(ω)| = R2

R1

√
1

1 + (R2Cω)2
and arctanϕ =

Im G(ω)

Re G(ω)
= −R2Cω .

The reduction per octave is,

∣∣∣∣
G(2ω)

G(ω)

∣∣∣∣ =
√

1 + (2ωR2C)2

1 + (ωR2C)2
ω→∞−→ 3 dB .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_OpAmp02.pdf
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52.1.6 Experiment: Amplifiers and active filters

Here, we will learn how to use OpAmps: We will start mounting a 10-fold inverting
amplifier on a breadboard and then modify the external passive components, such as
to build a low-pass filter.

1. Assemble on a breadboard a simple inverting amplifier using an OpAmp. Use
10 kΩ resistors at the input aim for an amplification factor of 10.

2. Test the circuit with a frequency generator and an oscilloscope.

3. Modify the circuit such as to obtain a low-pass filter with fg = 50 kHz bandwidth
and test the circuit again.

52.1.7 Experiment: Peltier element and thermistor

Here, we will learn how to use a Peltier element and a thermistor. A thermistor
is nothing else than a well-calibrated resistor with temperature-dependent resistance
(see Fig. 52.9).

Figure 52.8: Pictures of Peltier elements, a thermistor, and an AD590 temperature trans-
ducer.

1. Connect a Peltier element to a 1A current source and bring one of the two
surfaces of the Peltier element into thermal contact with a heat sink. What do
you observe?

2. Bring a 10 kΩ thermistor in thermal contact with either of the two surfaces of
the Peltier element and measure its resistance. What do you observe?

3. Can you imagine a feedback logic evaluating the measured resistance in order to
control the current applied to the Peltier element such as to maintain constant
the temperature of the surface not connected to the heat sink.
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Figure 52.9: Calibration curve for a 10 kΩ thermistor from Thorlabs.

52.2 Detectors

52.2.1 Photodiodes

Most active components are many of semiconductor characterized by a relatively large
band gap between the valence band and the conduction band. By appropriate doping
of the material with donors (p-type) or acceptors (n-type) a semiconductor can be
made conductive. The most basic semiconductor element, which is the diode consists
of a junction of two types of semiconductors, as shown in Fig. 52.10.

Figure 52.10: Joining a p-type and a n-type doped semiconductor (left) one observes a charge
carrier redistribution across the pn transition (right).

Our first task will be to construct a photo detector. The central part of a pho-
todetector is the photodiode. We have at our disposal silicium pin-photodiodes of the
type C30822E of the company Perkin Elmer and of the type FFD100.
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Figure 52.11: Circuit with photodiode.

Photodiodes exploit an intrinsic photoeffect of semiconductor pn-junctions. In the
transition region, free electrons of the n-type semiconductor and excess holes of the
p-type semiconductor are drifting into the respective opposite semiconductor, where
they recombine. The consequence is a transition zone with a charge carrier depletion,
which acts as a barrier and has an intrinsic capacitance. The charge carrier imbalance
gives rise to an electric field across the junction. The energy liberated during the
recombination process can be dissipated via emission of light.

The reverse process is also possible: Via the intrinsic photoeffect, light irradiated
into the pn-junction can lift electrons from the valence into the conduction band, thus
generating pairs of charge carriers. Under the influence of the electric field across the
junction, the holes flow to the edge of the p domain and the electrons flow to the n
domain. This part of the current is called drift current. A smaller part, called the
diffusion current, has its origin in the diffusion of the electron-hole pairs formed in
the edge regions. Since these minority charge carriers have only a limited lifetime
before they recombine, only the part of the current generated within a few units
of the diffusion lengths near the charge carrier zone contributes. This results in an
external photovoltaic voltage at the electrodes of the photodiode. If the photodiode
is connected to a load, a photocurrent will flow, which is composed, as mentioned
above, by the drift current of the charge carrier zone and the diffusion current from
its edges.

The principal scheme of a pin diode is illustrated in Fig. 52.12(left): A weakly
doped intrinsic layer separates the p and the n conductor. This reduces the capacity
of the barrier. The current at short circuit is proportional to the light power. A
photodiode is always operated in blocking direction. A negative offset voltage reduces
the capacity of the pn-junction.

Figure 52.12: (code) U -I dependence of a photodiode.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_PhotodiodeKennlinie.m
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Despite all measures the pn-junction capacity remains finite. One can model the
impact of the pn-junction capacity via a replacement diagram. The voltage drop is

U(ω)

U0
=

RL|| 1
ıωC

Ri +
(
RL|| 1

ıωC

) =

Ri||RL

Ri

1 + ıωC(Ri||RL)
. (52.9)

For high load resistances the frequency response obviously becomes load-independent.
For small loads, RL < Ri, the band width of the photodiode is dramatically increased
to ωg = 1/RLC. In the same time, however, the amplification drops to V = RL/Ri.

52.2.2 Exercises

52.2.2.1 Ex: Photomultiplier

The anode of a photomultiplier tube is connected by a resistor of R = 1kΩ to ground.
The stray capacitance is 10 pF, the current amplification 106, and the anode rise time
1.5 ns. What is the peak amplitude and the halfwidth of the anode output pulse pro-
duced by a single photoelectron? What is the dc output current produced by 10−12 W
cw radiation at λ = 500 nm, if the quantum efficiency of the cathode is η = 0.2 and
the anode resistor R = 106 Ω? Estimate the necessary voltage amplification of a
preamplifier (a) to produce 1V pulses for single-photon counting; and (b) to read 1V
on a dc meter of the cw radiation?

Solution: The anode voltage pulse is,

Ua(t) =
Q(t)

C
=

(
1

C

∫ ∆t

0

iph(t)dt

)
· e−t/RC .

a. The time constant τ = RC = 10−8 s, which governs the decay of the voltage at C,
is long compared with the rise time ∆t = 1.5 ns. Therefore we can neglect the decay
during the rise time and obtain for the pulse maximum,

Ua =
1

C
· 106e = 1

C
· 1.6 · 10−13 C

with C = 10−11 F we obtain Ua(t) = 1.6 · 10−2 · e−t·108 V. The peak amplitude is

Umax = 16mV. The halfwidth of the pulse is obtained from e−10
8t = 1

2 , yielding
∆t1 = 6.9 · 10−9 s.
b. For P = 10−12 W cw radiation power at λ = 500 nm, the number of photoelectrons
per second is,

nPE = η
P

hν
= 4.5 · 105 s-1 .

With an amplification factor M , the anode current is: ia = nPE · e ·M . The voltage
across the anode resistor R is Ua = iaR = RnPEeM = 72µV. Note that for cw
measurements, a larger resistance of R ≈ 1MΩ is used, because the time resolution
is not important here. For R = 106 Ω, we get Ua = 72mV. In order to produce 1V
output pulses for single photoelectrons, an amplification ofM2 ≈ 62 of the preamplifier
is required.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_Demtroeder4_14.pdf
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52.2.2.2 Ex: Optical image intensifier

A manufacturer of a two-stage optical image intensifier states that incident intensities
of 10−17 W at λ = 500 nm can still be ’seen’ on the phosphor screen of the output
state. Estimate the minimum intensity amplification, if the quantum efficiency of the
cathodes and the conversion efficiency of the phosphor screens are both 0.2 and the
collection efficiency of light emitted by the phosphor screens is 0.1. The human eye
needs at least 20 photons/s to observe a signal.

Solution: For 10−17 W at λ = 500 nm, 25 photons/s fall onto the first cathode. The
human eye can see 20 photons/s, which corresponds to 8 · 10−18 W. With a collection
efficiency of 0.1 the last phosphor screen has to emit at least 8 · 10−17 W. With a
conversion efficiency of 0.2, the intensity amplification has to be

VI =
8 · 10−17

1 · 10−17 · 0.23 = 1000 .

52.2.2.3 Ex: Photovoltaic detector

Estimate the maximum output voltage of an open photovoltaic detector at room tem-
perature under 10µW irradiation when the photocurrent of the shortened output is
50µA and the dark current is 50 nA.

Solution: With Iph = 50µA and Id = 50nA we get,

Uph(I = 0) =
kBT

e

[
ln

(
Iph
I

)
+ 1

]
= 0.2V .

52.2.3 Experiment: Taking the response function of a pho-
todiode

In this part of the lab course, we will learn to solder and set up simple electronic
circuits. We will also learn how to identify the connections of a photodiode and
mount into a case with BNC connectors. Finally, we will characterize the photodiode
for use in future applications. Initially, we will work without offset voltage, later we
will apply a voltage and identify its impact 1.

1. Connect an LED to a function generator and make it blink at low frequencies
adjusting the offset and the amplitude of the output voltage. Shine the light
onto your photodiode and monitor the signal on an oscilloscope. Explain your
observations.

1Datasheet for the Photodiode FFD100 see appendix Fig. 56.21,
data sheet for the Photodiode C30822E see appendix Fig. 56.22.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_Demtroeder4_15.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_Demtroeder4_16.pdf


2918 CHAPTER 52. ELECTRONICS AND RADIOFREQUENCY

2. Reduce the amplitude and adjust the offset until you observe a sinusoidal signal.
Increase the frequency and explain your observations. (Note that the response
of LEDs is extremely fast (MHz).) Determine the bandwidth of your detector.

3. Measure the current at short circuit. Connect a R = 10 kΩ resistive load in
parallel to the photodiode output and measure the voltage drop into this load.

4. Characterize the photodetector with respect to its sensitivity (in A/W) by vary-
ing the load.

5. How is the frequency response of the photodiode modified by the load? Measure
bandwidth as a function of the load. Adjust the load until the detector (circuit
including photodiode and resistor) has a bandwidth of 10 kHz (which is sufficient
for many applications).

6. Apply a 10V voltage in reverse direction and analyze again the sensitivity and
the bandwidth of your photodetector. Note that the blinking LED can be
replaced by a rotating chopper wheel.

Example of a measured characterization of a photodiode.
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Figure 52.13: (a) Calibration of a photodiode, measured voltage as a function of the incident
light power. (b) Low-pass behavior of a resistive charge of 90 kΩ.

52.3 Introduction to radiofrequency components

52.3.1 VCOs and the generation of rf-sidebands

Voltage-controlled oscillators (VCO) serve to generate variable radiofrequencies. They
are the basis for most function generators. A useful particularity of VCOs is the
possibility modulate the frequency and phase of an optical carrier wave by modulating
the control voltage of a VCO at low frequency.

The modulation of the carrier wave generates sidebands. This can be seen by
expanding the signal which carries the phase modulation into a Fourier series,

Aeıωt+ıβ sinΩt = Aeıωt
∞∑

k=−∞
Jk(β)e

ıkΩt ≃ Aeıωt + J1(β)Ae
ıωt+ıΩt + J−1(β)Ae

ıωt−ıΩt

(52.10)
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when the modulation index β is small. Here, J−k(β) = (−1)kJk(β) are the Bessel
functions. This is in contrast to amplitude modulation, which is described by only
two symmetric sidebands,

A(1 + β sinΩt)eıωt = Aeıωt
(
1 +

β

2ı
(eıΩt − e−ıΩt)

)
. (52.11)

For amplitude modulation (AM) the beat signals between the carrier frequency and
the two sidebands are in phase, i.e.,

∣∣∣eıωt + eı(ω±Ω)t
∣∣∣
2

= 2 + eıΩt + e−ıΩt . (52.12)

For phase modulation (PM) the beat signal are in counter-phase, i.e.,
∣∣∣eıωt + eı(ω±Ω)t+ıπ/2

∣∣∣
2

= 2 + ıe±ıΩt − ıe∓ıΩt . (52.13)

In the case of AM, the amplitude is blurred, but the phase at zero-crossing is well
defined. In the case of PM, the amplitude in the antinode is sharp, but the phase of
the zero-crossing is blurred.

It is not easy to transform AM into PM, and vice versa. In fact, the phase
between carrier and sidebands can be varied, for example by adding an AC voltage,√
2eıωt+3ıπ/4 to the signal; however, it is not easy to transform synchronized phases

into opposite phases.
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Figure 52.14: (code) Frequency spectra of a phase-modulated carrier frequency for ∆ω =

5MHz modulation excursion and (red) ω = 100 kHz modulation frequency (β = ∆ω
Ω

= 50)

and (green) ω = 10MHz modulation frequency (β = 0.5). Furthermore, a γ = 100 kHz

resolution linewidth is assumed.

As shown in Eq. (52.10), the spectrum of a signal with phase modulation (PM)
consists of discrete lines, called sidebands, whose amplitudes are given by Bessel
functions,

S(ω) =

∞∑

k=−∞
|AJk(β)|2δ(ω + kΩ) . (52.14)

In real systems, the sidebands have finite widths γ due to frequency noise or the finite
resolution of the detectors. In the case of Lorentzian line profiles, we have,

S(ω) =

∞∑

k=−∞
|AJk(β)|2

β2

(ω − kΩ)2 + β2
. (52.15)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Electronics_Modulationsindex.m
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52.3.2 Mixers

A frequency mixer is a nonlinear electrical circuit that creates new frequencies from
two input signals, e.g. the sum and difference of the input frequencies. A device that
has a non-linear (e.g. exponential) characteristic can act as a mixer. Passive mixers
use one or more diodes and rely on their non-linear relation between voltage and
current. Active mixers use an amplifying device (such as a transistor) to increase the
strength of the product signal.

Mixers may be classified by their topology: An unbalanced mixer, in addition to
producing a product signal, allows both input signals to pass through and appear as
components in the output. A single-balanced mixer is arranged with one of its inputs
applied to a balanced (differential) circuit so that either the local oscillator (LO) or
signal input (RF) is suppressed at the output, but not both. A double-balanced mixer
has both its inputs applied to differential circuits, so that neither of the input signals
and only the product signal appears at the output. Double balanced mixers are more
complex and require higher drive levels than unbalanced and single-balanced designs.

In practice, mixers are widely used to shift signals from one frequency range to
another, a process known as heterodyning, in order to facilitate signal transmission or
further signal processing. Frequency mixers are also used to modulate a carrier signal
in radio transmitters, as product detectors, phase detectors, or frequency multipliers.

52.3.2.1 Diode

The non-linearity (or non-Ohmic behavior) of a diode can be used to create a simple
unbalanced mixer producing the original frequencies as well as their sum and their
difference. The current I through an ideal diode as a function of the voltage U across
it is given by an exponential function,

I = I0(e
qU/kBT − 1) . (52.16)

The exponential can be expanded as ex−1 ≃ x+ x2

2 . Suppose that the sum of the two
input signals U1 + U2 is applied to a diode, and that an output voltage is generated
that is proportional to the current through the diode [e.g. by providing the voltage
that is present across a resistor in series with the diode, as shown in Fig. 52.15(a)].
Then, disregarding the constants in the diode equation, the output voltage will have
the form,

U0 = (U1 + U2) +
1
2 (U1 + U2)

2 + ... (52.17)

= (U1 + U2) +
1
2 (U

2
1 + 2U1U2 + U2

2 ) + ... .

The ellipsis represents all the higher powers of the sum which we assume to be negli-
gible for small signals.

Suppose that two input sinusoids of different frequencies, U1 = sinω1t and U2 =
sinω2t are fed into the diode. The signal U0 becomes:

U0 = (sinω1t+ sinω2t) +
1
2 (sin

2 ω1t+ 2 sinω1t sinω2t+ sin2 ω2t) + ... . (52.18)

Ignoring all terms except for the sinω1t sinω2t term we get,

U0 = 2 sinω1t sinω2t+ ... = cos(ω1t− ω2t)− cos(ω1t+ ω2t) + ... , (52.19)

demonstrating how new frequencies are created from the mixer.
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Figure 52.15: (a) Mixing two signal at a diode. (b) Schematic diagram of a double-balanced
passive diode mixer (also known as a ring modulator). There is no output unless both f1
and f2 inputs are present, though f2 (but not f1) can be DC.

52.3.2.2 Switching

Another form of mixer operates by switching, with the smaller input signal being
passed inverted or non-inverted according to the phase of the local oscillator (LO).
This would be typical of the normal operating mode of a packaged double balanced
mixer, with the local oscillator drive considerably higher than the signal amplitude.

The aim of a switching mixer is to achieve linear operation over the signal level by
means of hard switching, driven by the local oscillator. Mathematically, the switching
mixer is not much different from a multiplying mixer. Instead of the LO sine wave
term, we would use the signum function. In the frequency domain, the switching mixer
operation leads to the usual sum and difference frequencies, but also to further terms,
e.g. ±3fLO, ±5fLO, etc.. The advantage of a switching mixer is that it can achieve
(with the same effort) a lower noise figure and larger conversion gain. This is because
the switching diodes or transistors act either like a small resistor (switch closed) or
large resistor (switch open), and in both cases only a minimal noise is added. From
the circuit perspective, many multiplying mixers can be used as switching mixers,
just by increasing the LO amplitude.

52.3.2.3 Modulation and demodulation

Mixers are often used for modulation or demodulation purposes. Suppose we have on
one hand a carrier signal, Ucarrier = cosωt, also called local oscillator. This may be a
constant radiofrequency emitted by an antenna or a microwave. On the other hand,
we have a reference signal which we want to transport somewhere else, Uref = cosΩt.
Used as a modulator the mixer will simple multiply,

Umod = UcarrierUref = cosωt cosΩt = 1
2 cos[(ω − Ω)t] + 1

2 cos[ω +Ω)t] . (52.20)

Thus the mixer output contains two frequencies, the sum and the difference. Sup-
posing that ω is a frequency in a range that can be radiated by antenna and Ω an
acoustic frequency, both frequency components ω ± Ω ≃ ω will be radiated.

On the side of the receiver, who also has access to a synthesizer generating a signal
Ucarrier = cosωt, we will use the mixer as a demodulator,

Udemod = UcarrierUmod = cos2 ωt cosΩt = 1
2 (cos 2ωt+ 1) cosΩt . (52.21)
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Figure 52.16: Picture of a radiofrequency mixer.

If ω ≫ Ω, the carrier oscillation can easily be removed by a low-pass filter,

Ufiltered =
1
2 cosΩt ∝ Uref . (52.22)

That is, we recover the original information. And this holds even when the reference
signal is (slowly) varying in amplitude or frequency, such as in the case of an acoustic
signal 2. Resolve Exc. 52.3.3.1.

52.3.2.4 Filtering with a mixer

Suppose we have a signal containing many frequency components (which may vary
slowly in time), Unoisy(t) =

∑
nA(ωn)e

ıωnt in complex notation, and that the sig-
nal we are interested in is an amplitude at a known particular frequency ω0. By
demodulating,

Usig(t) = Unoisy(t)e
−ıω0t =

∑

n

A(ωn)e
ıωnte−ıω0t =

∑

n

A(ωn)e
ı(ωn−ω0)t , (52.23)

and low-pass filtering the lowest frequency component, i.e. ωn − ω0 ≃ 0,

Ufiltered = A(ω0) . (52.24)

This even holds for continuous noise spectra, Unoisy(t) =
∫
A(ω)eıωtdω, since,

Usig(t) = Unoisy(t)e
−ıω0t =

∫ ∞

−∞
A(ω)eıωte−ıω0tdω =

∫ ∞

−∞
A(ω+ω0)e

ıωtdω , (52.25)

and low-pass filtering with a filter bandwidth ∆ω,

Ufiltered =

∫ ∆ω

−∆ω
A(ω + ω0)e

ıωtdω ≃ A(ω0)2∆ω . (52.26)

Such techniques are widely used in lock-in amplifiers (see Sec. 52.4.3).

2In complex notation, Uin = eıωt, Umod = Uine
ıΩt = eı(ω+Ω)t, Udemod = Umode

−ıωt = eıΩt.
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52.3.3 Exercises

52.3.3.1 Ex: Phase modulation

a. Show that it is not possible to construct a periodic phase modulation function such
that the signal has only two sidebands.
b. Compare the spectra

∑∞
k=−∞ Jk(M)eıkΩt = eıM sinΩt and

∑∞
k=−∞ |Jk(M)|eıkΩt.

Can you detect phase modulation of a photodetector signal on a spectrum analyzer?
How about amplitude modulation?

Solution: a. The question is whether there is a periodic function f(t) such that,

eıωt+ıf(t) = eıωt +Meı(ω+Ω)t −Meı(ω−Ω)t

or equivalently eif(t) = 1 + 2ıM sinΩt. Such a function would have to satisfy,

1 = |1 + 2ıM sinΩt|2 = 1 + 4M2 sin2 Ωt ,

which only holds for M = 0. In contrast, a sinusoidal phase modulation satisfies,

1 = |eıM sinΩt|2 =

∣∣∣∣∣
∞∑

k=−∞
Jk(M)eıkΩt

∣∣∣∣∣

2

=

∞∑

k,m=−∞
Jk(M)Jm(M)eı(k−m)Ωt =

∞∑

k=−∞
|Jk(M)|2 .

b. Phase modulation cannot be seen by a spectrum analyzer, simply because the signal
recorded by a photodetector is,

|Epm|2 = |eıωt+ıM sinΩt|2 = 1 .

On the other hand, amplitude modulation is visible, since,

|Eam|2 = |(1 +M cosΩt)eıωt|2 = 1 + M2

2 + 2M cosΩt+ M2

2 cos 2Ωt .

52.3.4 Experiment: Creating sidebands on a radiofrequency

In this exercise, we will understand the origin of sidebands as we’ll see them emerge
from a modulation spectrum when we gradually increase the modulation index 3.

1. Take a VCO, for example, ZOS-100+ from MiniCircuits. Study the datasheet
and drive the VCO with an AC voltage. Vary the amplitude and the frequency
of the voltage and observe the output signal of the VCO on a spectrum analyzer.

2. Try to understand the spectrum observing the limiting cases Ω ≫ ∆ω and
Ω≪ ∆ω. How can you read Ω and ∆f from the spectra in both cases?

3. Write a MATLAB program to simulate the spectrum.

3Datasheet for the VCO see appendix Fig. 56.16,
data sheet for the variable attenuator see appendix Fig. 56.17,
data sheet for the mixer see appendix data sheet Fig. 56.19.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Electronics_DifferentPhaseModulation.pdf
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52.4 Measurement instrumentation

52.4.1 Sample-and-hold circuit

sample-and-hold circuit Solder on euroboard

52.4.2 Box-car integrator

box-car integrator Solder on euroboard

52.4.3 Lock-in amplifier

An lock-in amplifier (also called a phase-sensitive rectifier or mixer) is an amplifier
that can measure a weak electrical signal by modulating the signal by a reference
signal with a known frequency and phase. The device represents a bandpass filter
with an extremely narrow bandwidth and, therefore, improves the signal-to-noise
ratio (SNR). DC or AC noise components are efficiently filtered.

Download an illustration of the working principle of a lock-in amplifier here.

52.4.4 Experiment: Building a lock-in amplifier

Let’s now build a lock-in amplifier. The principle is illustrated in Fig. 52.17(a). The
sinusoidal signal discriminated at a non-linear line is switched on and off in the lock-
in by a switch. At the same time, the inverted signal (i.e., phase shifted by 180◦) is
turned off and on. Both signals are combined and low-pass filtered. As Fig. 52.17(b)
shows, the sign of the filtered signal depends on the phase between the discriminator
and the TTL signal controlling the switch 4

Figure 52.17: (a) Principal scheme of a lock-in amplifier. (b) Mode of operation.

4Datasheets for the operational amplifier see appendix Fig. 56.24,
data sheet for the switch see appendix Fig. 56.23.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Electronics_LockInIllustration.m.


52.5. FURTHER READING 2925

1. Create the circuit sketched in Fig. 52.17(a) on a circuit board and test it by
varying the phase between the modulated output signal and the TTL signal
provided by a function generator.

52.5 Further reading

P. Horowitz et al., The art of electronics [635]DOI

U. Tietze et al., Halbleiterschaltungstechnik [1306]DOI

http://doi.org/
http://doi.org/
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Chapter 53

Quantum optics and optical
interferometry

The objective of this chapter is to introduce the basics of optical interferometry. We
will see, how to match the light modes in optical cavities and fibers, and to phase-
match the wavefronts of two laser beams in order to detect their frequency beating
with a photodetector. Furthermore, he will learn how to handle essential tools of
quantum electronics, such as a piezo-electric transducer, an electro-optic modulator,
and an acousto-optic modulator, used in interferometry, as discussed in Secs. 53.4.1
to 53.4. Interferometers have versatile applications such as 1. for the detection of very
small length variations (as for example caused by gravitational waves), 2. as vibration
and inertial sensors, or in 3. the transmission of information (radio).

53.1 Introduction to interferometry

53.1.1 Beam splitter

The essential component of any interferometer is the (non-polarizing) beam splitter.
We consider a classical lossless beam splitter with electric fields incident at both

its inputs. The two output fields Ec and Ed are linearly related to the inputs through

(
Ec
Ed

)
=

(
rac tbc

tad rbd

)(
Ea
Eb

)
, (53.1)

where the 2× 2 element is the beam splitter matrix. r and t are the reflectance and
transmittance along a particular path through the beam splitter, that path being
indicated by the subscripts.

Figure 53.1: Beam splitter.

2927
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Assuming the beam splitter removes no energy from the light beams, the total
output energy can be equated with the total input energy, reading

|Ec|2 + |Ed|2 = (|rac||Ea|+ |tbc|Eb|)2 + (|tad||Ea|+ |rbd||Eb|)2 = |Ea|2 + |Eb|2 . (53.2)

This can only be true for any field amplitudes, if the following relationships between
reflectance and transmittance are satisfied,

|rac|2 + |tad|2 = 1 = |rbd|2 + |tbc|2 and ract
∗
bc + tadr

∗
bd = 0 . (53.3)

We write each r and t as a complex number having an amplitude and phase factor
accounting for possible phase shifts of a beam as it reflects or transmits at the beam
splitting surface. From the second equation (53.3) we obtain,

|rac|
|tad|

= −|rbd||tbc|
eı(ϕad−ϕbd+ϕbc−ϕac) (53.4)

which is true when ϕad − ϕbd + ϕbc − ϕac = π. Squaring both sides of the expression
(53.4) and comparing this with the first equation (53.3) we obtain the result

|tad| = |tbc| ≡
√
T and |rac| = |rbd| ≡

√
R . (53.5)

It follows that
R+ T = 1 . (53.6)

The above result holds for any type of beam splitting device. For beam splitting
at dielectric interfaces in particular we know that the electric field amplitude does
not suffer phase shifts upon transmission and no phase shifts upon reflection at an
optical more dilute medium. But it suffers a 180◦ phase shift upon reflection at an
optical denser medium. For the situation depicted in Fig. 53.1, we conclude ϕac =
ϕbd = ϕbc = 0 and ϕad = π. With this constraints the matrix describing a lossless
beam splitter reads, (

Ec
Ed

)
=

( √
R

√
T

−
√
T
√
R

)(
Ea
Eb

)
. (53.7)

53.1.2 Piezo-electric actuator

The piezo-electricity effect describes the reciprocal action between mechanical pres-
sure (from Greek: piézein - press) and electrical voltage in solids. It is based on the
phenomenon that occurs in the regular deformation of certain piezoelectric materials:
at the surface occur displacements of electric charges creating microscopic dipoles
inside the unit cells. The sum over all the unit cells of the crystal leads to a macro-
scopically measurable electrical voltage. The deformation should be directed, which
means, that the pressure is not applied from all sides on the crystal, but for example
only on opposite sides.

On the other hand, by applying an electric voltage, a crystal (or piezo-ceramic
element) may be deformed. Like any other solid body, piezo-electric crystals can
execute mechanical vibrations. In a piezo-electric actuator (or piezo transducer PZT),
these vibrations can be electrically excited. The frequency of the vibrations depend
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only on the speed of sound (which is a constant of the material) and the dimensions
of the actuator. Therefore, actuators are also suitable for realizing oscillators (for
example, quartz crystals). The piezo-electric effect can only occur in non-conductive
materials (e.g., lead titanate zirconate).

When a voltage is applied to the piezo-ceramic in the direction of polarization, we
observe an expansion in this direction and a perpendicular contraction. Depending
on the employed material and the coefficient for piezo-electric strain d, stretches up
to ∆l/l = 0.15% can be obtained:

∆l = dEl0 , (53.8)

where l0 is the length of the actuator and E = U/l0 the amplitude of the electric
field. The elongation effect is therefore proportional to the field strength and the
overall length of the actuator. To achieve large stretches with manageable electrical
voltages, actuator discs are often stacked (mechanical circuit in series and electric
circuit in parallel).

piezo
mirror

U

piezo
mirror

U

ll

Figure 53.2: (Left) Scheme of mirrors mounted on a piezo actuator having the shape
of a disc or a ring. (Right) Photos of a ring piezo and a piezo stack.

Negative voltages with respect to the orientation of the discs cause a contraction.
However, negative voltages can also cause a change in the polarization state of the
piezo and should therefore be avoided! In electrical circuits, piezoelectric actuators
introduce a capacitance with a relative dielectric constant between 600 and 5000 and
an internal resistance of about 108 Ω depending on the material. See Exc. 53.1.10.1.

53.1.3 Michelson and Mach-Zehnder interferometer

Interferometry is a technique exploiting the interference of waves coherently split and
recombined by beam splitters. Sufficiently stable interferometers allow to visualize
variations of the path lengths of two or more partial waves following different pathways
as an alteration of constructive and destructive interference.

The two most common types of interferometers are the Michelson interferometer
and theMach-Zehnder interferometer are depicted in Fig. 53.3. The advantages of the
Michelson interferometer are an easy alignment and the need of only one beamsplitter.
The advantage of the Mach-Zehnder interferometer is a direct optical access to both
output ports of the interferometer. The following treatment applies to both types.

The field amplitude of a laser beam, Ei, with frequency, ω = ck, is divided by a
beam splitter (reflectivity

√
R) into a transmitted Et and a reflected beam Er,

Er =
√
R1Ei and Et =

√
1−R1Ei , (53.9)

where we disregard possible phase-shifts upon reflection at optically dilute interface.
The energy is obviously conserved, |Er|2 + |Et|2 = E2i .
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Figure 53.3: Principle of a two-beam interferometer: (a) Michelson interferometer and (b)
Mach-Zehnder interferometer using non-polarizing beamsplitters. (c) Michelson interferom-
eter using a polarizing beamsplitter.

We consider the Mach-Zehnder interferometer sketched in Fig. 53.3 with one arm
of length Lr, which can be varied by a piezo, and the other arm of length Lt,

E ′r = Ere2ıkLr and E ′t = Ete2ıkLt . (53.10)

The beams are recombined on a second beam splitter and sent to a photodetector,
whose signal is,

I ∝ |
√
R2E ′r +

√
1−R2E ′t|2 (53.11)

= |
√
R2

√
R1e

2ıkLr +
√

1−R2

√
1−R1e

2ıkLt |2E2i .

Hence,

I ∝ R2R1+(1−R2)(1−R1)+2
√
R2

√
R1

√
1−R2

√
1−R1 cos[2k(Lt−Lr)] . (53.12)

For reflectivities of R1 = R2 = 50%, we get,

I ∝ 1
2 + 1

2 cos[2k(Lt − Lr)] . (53.13)

It is important to realize that, while superpositions of light field amplitudes in
the same mode interfere, superpositions of light field amplitudes in different modes
do not. For example, the superposition of two plane waves with equal frequency and
polarization interferes,

∣∣∣∣∣

(
E1 + E2

0

)∣∣∣∣∣

2

= |E1 + E2|2 , (53.14)

while the superposition of two plane waves with equal frequency but different polar-
izations does not,

∣∣∣∣∣

(
E1
0

)
+

(
0

E2

)∣∣∣∣∣

2

= |E1|2 + |E2|2 . (53.15)

Solve the Excs. 53.1.10.2 to 53.1.10.4.
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53.1.4 Coherence and spectrum of a light field

We have seen above that interferometers probe the electric field amplitude rather than
the intensity. For this reason, they are suited to measure the first-order correlation
function g(1)(τ) and the emission spectrum, which are defined by,

g(1)(τ) ≡ ⟨E
−(t)E+(t+ τ)⟩
⟨E−(t)E+(t)⟩ and SE(ω) ≡ F [g(1)(τ)] . (53.16)

As an example, Fig. 53.4 shows the aurocorrelation function and spectrum of a si-
multaneously amplitude- and phase-modulated laser beam, E(t) = (1+n cosωnt)e

ım sinωmt.
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Figure 53.4: (code) (a) Amplitude and (b) phase of the electric field, with n = 0.2, m = 1,

and ωn = ωm = (2π) 1Hz. (c) Aurocorrelation function and (d) spectrum of the light field.

53.1.5 Birefringent interferometer

A birefringent interferometer or Lyot filter consists of one or more birefringent crystals
mounted onto a rotation frame between two polarizers. Let no and ne = no + ∆n
be the refractive indices of the normal and the extraordinary axis, respectively. The
corresponding Jones matrix is then,

M =

(
1 0

0 0

)(
cosϕ sinϕ

− sinϕ cosϕ

)(
eık0L 0

0 eıkeL

)(
cosϕ − sinϕ

sinϕ cosϕ

)(
1 0

0 0

)
,

(53.17)
Such that,

(
Eout
0

)
=M

(
Ein
0

)
=

((
eık0L cos2 ϕ+ eıkeL sin2 ϕ

)
Ein

0

)
. (53.18)

By trigonometric transformations it is possible to show, that the transmission T ≡
|Eout/Ein|2 is,

T (λ, ϕ) = |eık0L cos2 ϕ+ eıkeL sin2 ϕ|2 = 1− sin2 2ϕ sin2 πL∆nλ . (53.19)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_G1Spectrum.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_G1Spectrum.m


2932 CHAPTER 53. QUANTUM OPTICS AND OPTICAL INTERFEROMETRY

For ϕ = 45◦ the transmission becomes simply,

T (λ, π4 ) = cos2 πL∆nλ . (53.20)

In practice Lyot filters are often used, placed under the Brewster angle inside ring cav-
ity lasers, as frequency selective elements. Frequently, birefringent plates of different
thicknesses are stacked,

T (λ) = T1(λ)T2(λ) , (53.21)

in order to increase the frequency selectivity. Furthermore, when the axis of the
birefringent plates are rotated by fixed angles ∆α with respect to each other,

T (λ, α) = T1(λ, α)T2(λ, α+∆α) , (53.22)

the frequency of maximum transmission can be tuned by simply rotating the stack as
a whole by an angle α. See 53.1.10.5.

A Lyot filter can be considered an interferometer, because it splits and recombines
the polarization vector of a light beam in two parts following the ordinary and the
extraordinary axis of the birefringent crystal. This is somewhat analogous to the
Michelson interferometer depicted in Fig. 53.3(c).

53.1.6 Optical resonators

Optical cavities consist of an arrangement of mirrors reflecting the light beams in such
a way, that they form a closed path. Since light that entered the cavity is performing
there many round trips before it is transmitted again or absorbed, the light power is
considerably enhanced, i.e. cavities can store light.

Light which is to resonate in the cavity must satisfy the boundary condition,
that the mirror surfaces coincide with standing wave nodes. Therefore, in a cavity
with length L only a discrete spectrum of wavelengths N λ

2 = L can be resonantly
amplified, where N is a natural number. Because of this property, cavity are often
used as frequency filters or optical spectrum analyzers: Only frequencies ν = Nδfsr
are transmitted, where

δfsr = c/2L (53.23)

is the free spectral range of the cavity.

Figure 53.5: Multiple interference in an optical cavity.

Cavities are characterized on one hand by their geometry, i.e. the curvature and
the distance of their mirrors, and on the other hand by their finesse, which is given by
the reflectivity of their mirrors. Let us first study the finesse. Regarding the cavity
as a multipass interferometer [351], we can derive expressions for the reflected and
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transmitted intensity as a function of frequency 1. The so-called Airy formula for
transmission and reflection are,

Erefl
Ein

= r1 −
t21r2e

2ıkL

1− r1r2e2ıkL
and

Etrns
Ein

=
t1t2e

ıkL

1− r1r2e2ıkL
. (53.24)

In terms of intensity, assuming identical mirrors, r1 = r2 =
√
R and t1 = t2 =

√
T ,

and neglecting possible absorptive losses, A = 1−R− T = 0,

Irefl
Iin

=
( 2Fπ )2 sin2 ∆

2δfsr

1 + ( 2Fπ )2 sin2 ∆
2δfsr

and
Itrns
Iin

=
1

1 + ( 2Fπ )2 sin2 ∆
2δfsr

, (53.25)

where R is the reflectivity of a mirror and δ = 4πL/λ = 2πν/δfsr. The transmission
curve of a cavity has a finite transmission bandwidth ∆ν, which depends on the
reflectivity of the mirrors. The finesse of a cavity is defined by

F ≡ 2πδfsr
κ

=
π
√
R

1−R . (53.26)
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Figure 53.6: (code) Transmission and reflection through a resonator.

Note that factors others than the finite reflectivity may degrade the finesse of a
cavity. For example, an imperfect mirror flatness (commonly specified as λ/Fsurf )
reduces the finesse to [351],

Ftot =

(
1

F
+

1

Fsurf

)−1
. (53.27)

.
The geometry of a cavity must satisfy certain conditions, in order to be stable

[734]. Besides the main longitudinal modes a cavity possesses transverse modes of the
order TEMmn, whose frequencies are given by 2,

ν/δfsr = (q + 1) +
m+ n+ 1

π
arccos

√(
1− L

ρ1

)(
1− L

ρ2

)
. (53.28)

1See script on Electrodynamics (2023), Exc. 7.3.6.16.
2See script on Electrodynamics (2023), Sec. 7.4.2.2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_AiryFormel.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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A confocal cavity with degenerate transverse modes, ρ1 = ρ2 = L, is particularly
suited as optical spectrum analyzer.

The diameter of the beam waist in the cavity is,

w0 =
4

√(
λ

π

)2
L(ρ1 − L)(ρ2 − L)(ρ1 + ρ2 − L)

(ρ1 + ρ2 − 2L)2
. (53.29)

For an optimal coupling of the light into the cavity the Gaussian laser beam must be
matched to the cavity’s geometry of the cavity, i.e. diameter and divergence of the
laser beam must be adapted to the cavity mode with a suitable arrangement of lenses
[352, 734]. See Excs. 53.1.10.6 to 53.1.10.11.

53.1.7 Dielectric mirrors and filters

Dielectric mirrors and filters are multiple beam interferometers in a similar sense as
Fabry-Pérot cavities. They consist of stacks of thin dielectric layers with alternating
refraction indices 3.

500 600 700 800
λ (nm)

0

0.5

1
R

Figure 53.7: (code) Reflection by a high reflecting mirror made of 10 layers with
n1 = 2.4 and ∆z1 = 80nm alternating with 10 layers with n2 = 1.5 and ∆z2 = 500 nm.
The absorption coefficient for each layer is supposed to be α = 0.2%. The beam
impinges from vacuum, n0 = 1.

Reflections ofR = 99.999% can be reached which, applied of superpolished mirrors,
allow for the construction of cavities with finesse F > 300000. On the other anti-
reflection coatings can be applied to surfaces reducing their reflections to below R =
0.1%. See Excs. 53.1.10.12 and 53.1.10.13 [352, 800].

53.1.8 Optical fibers

An optical fiber is a waveguide in which light is guided by internal total reflection.
The total reflection occurs between layers with different refractive indices called fiber
core and fiber cladding. The core is the central region of the optical fiber where the
light is guided. In order to create guiding conditions, the refractive index of the core
must be higher than the one of the cladding. The cladding diameter is typically 8 to
10 times the mode field diameter (MFD) of the fundamental mode. In general, MFD

3See script on Electrodynamics (2023), Sec. 7.1.7.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Interferometry_MultiHR.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf


53.1. INTRODUCTION TO INTERFEROMETRY 2935

is greater than the physical diameter of the fiber core, which means that some optical
power is always guided by the fiber cladding as an evanescent wave.

The cut-off wavelength λco of an optical fiber is the wavelength above which a
guided mode of a waveguide ceases to exist. For wavelength longer than λco an
optical fiber becomes single-mode. At wavelengths shorter than λco several optical
modes may propagate and the fiber becomes multi-mode. The cut-off wavelength is
directly related to the core diameter of the fiber λco ∝ ∅. For

λ
2 < ∅ < λ or equivalently ∅ < λ < 2∅ (53.30)

the fiber is single-mode. For λ > 2∅ no guided mode exists and for ∅ > λ the fiber
becomes multimode.

Figure 53.8: Mono-mode waveguiding by optical fibers.

The numerical aperture is a measure of the acceptance angle of the fiber. It is
very important because it determines how strongly a fiber guides light, and so how
resistant it is to bend-induced losses. The numerical aperture can be defined by the
acceptance angle of the fiber, though as this is highly diverging in space it is rather
complicated to reach a simple definition. It is most convenient to define the NA in
terms of the relative indices of core and cladding glass forming the fiber waveguide:

NA = sin θa
2 =

√
n2core − n2clad ≃

√
2n2coreδn , (53.31)

where δn is the index difference between the core and cladding. An optical fiber with
’high’ numerical aperture will confine light more strongly in the core, and so support
guidance further above cut-off. This attribute has two important effects: (a) it will
be single-mode over a greater range of wavelengths than is possible with a fiber with
a ’low’ numerical aperture fiber and (b) it will still guide a single-mode when coiled
or bent to a smaller diameter.

53.1.8.1 Multi-mode, mono-mode, and polarization maintaining fibers

Many types of fibers are currently available for a large variety of applications.

53.1.9 Laser gyroscope and the Sagnac effect

Gyroscopes are based on the Sagnac effect. They are based on a ring cavity mounted
on a rotating stage, as shown in Fig. 53.10(a). Let us, for simplicity first consider a
circular path for the light beam (e.g. a fiber-based ring cavity) rotating at an angular
velocity Ω. Then the time needed for the light beam to travel in either one of the two
directions is,

t± =
(2π ± Ωt±)r

c
=

2πr

c∓ Ωr
, (53.32)
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Figure 53.9: (Left) Fiber patch cord, (center) cross section of a bow-tie polarization main-
taining fiber, and (right) cross section of a photonic crystal fiber.

Figure 53.10: (a) Principle scheme of a fiber-based Sagnac interferometer. (b,c) Laser
gyroscope realized with a HeNe gain tube.

that is,

∆t ≡ t+ − t− =
4πr2Ω

c2 − Ω2r2
≃ 4πr2Ω

c2
≡ 4AΩ

c2
, (53.33)

where A is the area enclosed by the path. This formula can be generalized to arbitrary
paths.

For example, assuming an interferometer with A = 1m2 at rest in an Earth-based
system, Ω ≃ 2π/24 h, the time difference for light propagating along the two directions
is ∆t ≈ 3 · 10−21 s and the path difference ∆L = c∆t ≈ 100 fm. The frequency shift
is,

∆v = k(v+ − v−) = k(2Ωr) =

√
4πAΩ

λ
, (53.34)

yielding for the given example of an Earth-based interferometer ∆ν ≈ 400Hz.
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53.1.10 Exercises

53.1.10.1 Ex: Characterizing a piezo actuator

In order to characterize a recently purchased piezo actuator (Thorlabs, TA0505D024W)
a Scientific Initiation student sets up a Michelson interferometer driven by a HeNe
laser beam. Scanning the voltage applied to the piezo through the entire permitted
range, he observes 8.8 oscillations of the interference fringes. What is the piezo dis-
placement per volt?

Solution: The allowed voltage range is ∆U = 0 .. 75V. With N the number of
observed oscillations, the piezo displacement per volt is,

∆z

∆U
=
Nλ/2

∆U
= 37.3 nm/V .

53.1.10.2 Ex: Michelson interferometer

The figure 53.11 shows a Michelson interferometer containing in one arm an airtight
5 cm long cell with glass windows. Light with wavelength λ = 500 nm is used. After
the cell has been evacuated, the interference pattern shifts by 60 fringes. Use this
information to calculate the refractive index of air at atmospheric pressure. With
what accuracy can you determine the refractive index with this method?G ��HI�J�!�K	Ì9
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Figure 53.11:

Solution: The variation of the path length of the interferometer arm containing
the cell due to the refractive index is, after the passage of N = 60 fringes,

N
λ

2
= nrefrL− L .

Hence,

nrefr − 1 =
Nπ

kL
≈ 3 · 10−4 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter02.pdf
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Assuming that the uncertainty of ∆N = 1 fringe, the refractive index can be measured
with an precision of,

∆nrefr =
∂nrefr
∂N

∆N =
π

kL
≈ 5 · 10−6 .

53.1.10.3 Ex: Michelson interferometer

Assume that a signal-to-noise ratio of 50 has been achieved in measuring the fringe
pattern of a Michelson interferometer with one continuously moving mirror. Estimate
the minimum path length ∆L that the mirror has to travel in order to reach an ac-
curacy of ∆λ = 10−4 nm in the measurement of a laser wavelength at λ = 600 nm.

Solution: The spectral resolution is,

λ

∆λ
= 50

∆L

λ

yields ∆L = 7.2 cm.

53.1.10.4 Ex: Rotating the polarization with a Mach-Zehnder interfer-
ometer

Using the Jones matrix formalism demonstrate how to use the Mach-Zehnder inter-
ferometer setup sketched in the figure to rotate the polarization of a linearly polarized
laser beam in an electronically controlled way using a piezo actuator mounted in ones
of the interferometer arms.

Figure 53.12:

Solution: We assume initially linearly polarized light,

(
1

1

)
. The x and y-components,

having been separated by a PBS and passed through the same λ/4-plate, yield contrary
circular polarizations σ±. If one of the polarizations is phase-shifted by a piezo, the
recombined field reads,

(
1

ı

)
+

(
1

−ı

)
eıϕ = 2eıϕ/2

(
cosϕ

sinϕ

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter04.pdf
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The fact that the polarization vector is purely real shows that the polarization is linear
and can be rotated by simply varying the piezo voltage.

53.1.10.5 Ex: Lyot filter

Consider a Lyot filter with two plates (L1 = 1mm and L2 = 4mm) with the refrac-
tion indices no = 1.40 in the fast axis and ne = 1.45 in the slow axis.
a. Calculate the transmission peaks of the Lyot filter as a function of λ for the rotation
angle ϕ = 45◦.
b. Determine the transmitted intensity I(ϕ) as a function of the rotation angle ϕ for
a fixed wavelength λ. What is the contrast of the transmitted intensity for arbitrary
values of λ if the absorption losses are 2%?

Solution: a. From (53.20) we have for ϕ = 45◦,

T (λ) = T0 cos
2 π∆nL1

λ
cos2

π∆nL2

λ
,

with 2% absorption losses T0 = 0.98. Transmission peaks appear for the condition,

π∆nL1

λ
= m1π and

π∆nL2

λ
= m2π ,

with m1,m2 ∈ N. For λ = 500 nm we obtain m1 = 100 and m2 = 400. For m1 = 101
we get λ = 495 nm, such that the thin plate has a free spectral range ∆λfsr = 5nm.
For m2 = 401 we get λ = 498.75 nm, such that the thick plate has ∆λfsr = 1.25 nm.
b. From (53.19) we have,

T (ϕ, λ) = T0

[
1− sin2

(
2π

λ
∆nL

)
sin2 2ϕ

]
,

where λ = 2∆nL/m m is the first factor 0 and T (ϕ, λmax) has a maximum trans-
mission T0, independent of ϕ. For λ = 2∆nL/(m+ 1

2 ) this factor becomes 1 and the

transmission is T (ϕ) = T0(1− sin2 2ϕ). The contrast is then:

Tmax
Tmin

=
1

1− sin2 2ϕ
.

53.1.10.6 Ex: Wedge-shaped etalon

A beam of light of wavelength λ = 683 nm with large diameter is incident perpendic-
ularly on the first of two quadratic plates. Each plate has the edge length 120mm;
at the left edge the plates touch each other, at the right edge they are separated by a
wire of dw = 0.048mm in diameter. The air between the plates acts as a thin layer.
a. How many interference fringes does an observer see from above this arrangement?
b. Now suppose that the incident light be white. Will the interference pattern at the
far left be bright or dark?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GuiaOnda06.pdf
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Figure 53.13: Transmission curve of a Lyot filter for (blue) α = 5◦, (green) α = 20◦, and
(red) α = 45◦.
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Figure 53.14:

c. Starting from the left edge there will be a series of interference minima, whose
position depend on the wavelength of the light. For what light color (blue or red) will
the minimum be closer to the edge?

Solution: a. Light is only transmitted when the distance between the plates (as a
function of the x-position) is close to d(z) ≃ N λ

2 . Therefore, we see in reflection

alternating as a function of z, between 0 and Nmax = 2dwλ ≈ 140 fringes.
b. At the left end, where the distance is less than λ/2, the reflection has a minimum,
because 5% of the light (in case of a glas-air surface) are reflected at the interface upper
plate-gap with no phase-shift and another 95% × 5% at the interface gap-lower plate
with 180◦ phase shift. If the distance between the reflective layers is much smaller
than λ/2, the two reflected beams will interfere destructively. However, the contrast
will not be perfect, because the two reflected intensities are not exactly equal. In any
case, at least 95%2 of the intensity are transmitted at any distance fro the edge.
c. For blue light, the first minimum is closer to the edge.
Note added:
This can be calculated explicitly using the transfer matrix formalism 4. The T -matrix
Minter(n0, n1) for transfer through an interface between two layers with different
refractive indices n0 and n1 and the T-matrix Mprop(n1) for propagation within a

4See script on Electrodynamics (2023), Sec. 7.1.7.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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medium with a given refractive index n1 are,

Minter(n0, n1) =
1

2n1

(
n1 + n0 n1 − n0
n1 − n0 n1 + n0

)
and Mprop(n1) =

(
eın1kL 0

0 e−i̸l1kL

)
.

In our case, we have two layers n2 = n0 separated by an air-gap n1 = 1. Hence,

Mtotal =
1

2n0

(
n0 + 1 n0 − 1

n0 − 1 n0 + 1

)(
eıkL 0

0 e−ıkL

)
1

2

(
1 + n0 1− n0
1− n0 1 + n0

)

=
1

n0

(
n0 cos kL+ (1 + n20)

ı
2 sin kL − ı

2 (n
2
0 − 1) sin kL

ı
2 (n

2
0 − 1) sin kL n0 cos kL− (1 + n20)

ı
2 sin kL

)
,

yielding the reflection,

R =
E−0
E+0

= −M21

M22
=

ı(1− n20) sin kL
2n0 cos kL− (1 + n20)ı sin kL

kL→0−→ 0 .

53.1.10.7 Ex: Fabry-Perot interferometer

The dielectric coatings of each plate of a Fabry-Perot interferometer have the follow-
ing specifications: R = 98%, A = 0.3%. The flatness of the surfaces is λ/100 at
λ = 500 nm.
a. Estimate the finesse from (53.24) and (53.27), the maximum transmission, and the
spectral resolution of the FPI for a plate separation of 5mm.
b. Show that, for a given absorption, the transmitted intensity decreases with in-
creasing reflectivity. Explain why. Note: A trade-off between high finesse and high
transmission at a given absorption A > 0, called impedance matching, is reached by
maximizing the intracavity intensity. For a symmetric cavity, it can be shown that
impedance matching is reached for A = T .

Solution: a. The field transmitted through the two mirrors of the cavity is,

Etrns = Ein
t1t2e

ıkL

1− r1r2e2ıkL
.

Assuming r1 = r2 and t1 = t2 and T = t1t2 = 1−R−A, the transmitted intensity is,

Itrns
Iin

=

∣∣∣∣
Etrns
Ein

∣∣∣∣
2

=
(1−R−A)2

1 +R2 − 2R cos 2kL

kL=nπ−→ (1−R−A)2
(1−R)2 .

With R = 0.98, A = 0.003, we get Itrns/Iin = 0.72. The reflectivity finesse is

FR = π
√
R

1−R = 155.5. The flatness finesse per mirror is: Ff = 100. The total finesse
is,

Ftot =

(
1

FR
+

1

Ff

)−1
≈ 60.9 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GuiaOnda07.pdf
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The cavity line width is,

κ

2π
=
δfsr
F

=
1

F

c

2L
= 492MHz .

Hence, for d = 5 nm and we get the spectral resolution,

κ

2πν
=

κλ

2πc
=

λ

F2L
≈ 8.2 · 10−7 .

b. Absorption eats intensity upon each reflection. As the number of cavity round trip
with reflections increases with R, the intensity eaten by absorption increases with R,
as well.

53.1.10.8 Ex: Confocal and concentric cavities

a. Calculate the spectrum of longitudinal and transverse modes for (i) a confocal cav-
ity (ρa = ρb = L) and (ii) a concentric cavity (ρa = ρv = L/2). Interpret the results.
b. Assuming radii of curvature ρa = ρb = 5 cm and a finesse of F = 500 for the
cavity, how precise must the length of the cavity be adjusted in order to observe only
longitudinal modes in the transmission spectrum?

Figure 53.15: (a) Confocal cavity and (b) concentric cavity.

Solution: a. For the case (i) the formula (53.28) gives,

ν

δfsr
= N + 1 +

m+ n+ 1

π

π

2
.

For the case (ii) the formula (53.28) gives,

ν

δfsr
= N + 1 +

m+ n+ 1

π
0 .

In case (i) an additional semi-integer mode appears. It is due to the fact that in this
geometry, the complete ’round-trip’ is doubled.
b. From (53.28) we derive the longitudinal and transverse spectrum of a symmetric
cavity,

ν = δfsr

[
(q + 1) + 1

π (m+ n+ 1) arccos
(
1− L

ρ

)]
.

We now ask, how much we may vary L in order for the frequency shift of the trans-
verse mode TEM01 with respect to any (half-)longitudinal mode to be smaller than κ.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GaussCavity01.pdf
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Expanding the arccos term for small deviations of L = ρ +∆L from ρ we obtain for
case (i):

κ

2π
>

2δfsr
π

arccos

(
1− ρ+∆L

ρ

)
≃ δfsr

(
1 +

2∆L

πρ

)
,

that is,

∆L <
κ

4δfsr
ρ =

π

2F
ρ ≈ 160µm .

And for case (ii) expanding the arccos term for small deviations of L = ρ/2 + ∆L
from ρ/2 we obtain:

κ

2π
>

2δfsr
π

arccos

(
1− 2ρ+∆L

ρ

)
≃ δfsr

2

π

√
2∆L

ρ
,

that is,

∆L <
ρ

2

(
κ

4δfsr

)2

=
π2ρ

8F 2
≈ 25µm .

53.1.10.9 Ex: Thermal drift of a laser cavity

Estimate the frequency drift of a laser oscillating at λ = 500 nm because of ther-
mal expansion of the resonator at a temperature drift of 1◦C/h, when the resonator
mirrors are mounted on distance-holder rods a. made of invar and b. made of fused
quartz.

Solution: We have,
∆ν

ν
=

∆d

d
= αT .

A temperature drift of 1C/h gives, for invar rods (α = 1.2 · 10−6 K-1), a frequency
drift per hour of ∆ν

ν = 1.2 · 10−6. For ν = c/λ = 6 · 1014 s-1, hence ∆ν = 720MHz/h.
For fused quartz (α = 0.4 − 0.5 · 10−6 K-1 the drift is three times smaller, while for
Zerodur it is more than 12 times smaller.

53.1.10.10 Ex: Stability of a supercavity

Consider a non-confocal optical cavity of 10 cm length whose spacer is made of
(i) aluminum, (ii) stainless steel, (iii) invar steel, (iv) fused quartz, (v) Zerodur,
and (vi) ULE. The cavity is maintained at constant temperature with a precision of
0.001C. What maximum drift do you estimate for its resonance frequency at 633 nm?

Solution: The resonance frequency is a multiple of the FSR, ν = Nδfsr = Nc/2L.
Hence, it depends on length variations like,

∆ν =
∂ν

∂L
∆L = − Nc

2L2
∆L = − ν

L
∆L ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_GaussCavity02.pdf
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which in turn depend on temperature variation like,

∆L = Lα∆T ,

where α is the thermal expansion coefficient. Hence,

∆ν = −να∆T .

The thermal expansion coefficients for the specified materials are:

material α [10−6 K-1] ∆ν

Al 23.1 11MHz

steel 11.0..13.0 ≈ 5.7MHz

invar 1.2 570 kHz

fused quartz 0.59 280 kHz

Zerodur 0.007..0.1 3.3..47 kHz

ULE 0 0

53.1.10.11 Ex: Fabry-Perot interferometer as optical spectrum analyzer

A confocal FPI shall be used as optical spectrum analyzer, with a free spectral range
of δfsr = 3GHz. Calculate the mirror separation L and the finesse that is necessary
to resolve spectral features in the laser output within ∆ν = 10MHz. What is the
minimum reflectivity R of the mirrors, if the surface finesse is FS = 500?

Solution: For a radius of curvature much smaller than the radius of the mirror
ρ≪ r the free spectral range of a confocal cavity is ∆ν = c/4L, hence,

L =
c

4δfsr
≈ 2.5 cm .

From this we obtain the total finesse,

F ∗ =
δν

∆ν
≈ 300 ,

and with,
1

F ∗2
=

1

F 2
R

+
1

F 2
S

,

the reflectivity finesse becomes, FR = 375. Finally, the reflectivity must be chosen
R > 1− π/F ∗ ≈ 99.16%.

53.1.10.12 Ex: Interference and colors filters

Strontium atoms resonantly driven by two lasers at 461 nm and 689 nm emit fluores-
cence light at both wavelengths. Because the red transition is 5000 times narrower
than the blue one, the red fluorescence is much weaker and difficult to detect. Find

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter07.pdf
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a suitable low-pass filter in the Thorlabs R⃝ catalogue suppressing the blue light suffi-
ciently to be sure that any fluorescence recorded after the filter must be resulting from
the red transition. What signal ratios can you achieve with a single filter? Consider
interference filters as well as color filters.

Solution: Our best choice would be the model FELH0650 long pass filter at 650 nm
with 0.0000872186% transmission at 461 nm and 96.5242% transmission at 689 nm.

53.1.10.13 Ex: Interference filter

An interference filter shall be designed with peak transmission at λ = 550 nm and
a bandwidth of 5 nm. Estimate the reflectivity R of the dielectric coatings and the
thickness of the etalon, if no further transmission maximum is allowed between 350
and 750 nm.

Solution: The free spectral range must be chosen such that 2∆λfsr > 750 nm−350 nm.
Hence,

∆λfsr ≥ 200 nm .

This corresponds to a free spectral range of,

δfsr =
c

2L
=
∂ν

∂λ
∆λfsr = −

c

λ2
∆λfsr = −198THz ,

or to an etalon thickness of L ≤ 756 nm. If the bandwidth is ∆λ = 5nm, the finesse
must be F = δfsr/∆ν = |∆λfsr/∆λ| = 40. If the finesse is solely determined by the
reflectivity R, then,

F =
π
√
R

1−R ,

that is, R = 0.9245.

53.1.10.14 Ex: Cut-off wavelength of a single-mode fiber

You want to transport 461 nm light via a polarization maintaining single-mode fiber.
How do you need to choose the cut-off wavelength of the fiber? Assuming a 50%
coupling efficiency, how much power can you get through the 5 nm long fiber? Choose
a model from the Thorlabs catalog and justify your choice.

Solution: The cut-off wavelength must be somewhere between λ/2 and λ in order
to prevent the formation of a transverse standing wave other than the fundamental
mode λ/2. In our case, λco = 230..460 nm.
A possible model would be ’P1-405B-FC-5’, Single Mode Patch Cable, 405− 532 nm,
FC/PC, ∅3mm Jacket, 5m Long.
The typical insertion loss (connector to connector) is specified as 2.5 dB, the attenua-
tion is something like 40 dB/km. Hence, we expect (2.5+0.2) dB total loss. However,
the free space to fiver coupling is generally less efficient.

https://www.thorlabs.com/thorproduct.cfm?partnumber=FELH0650
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter09.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter10.pdf


2946 CHAPTER 53. QUANTUM OPTICS AND OPTICAL INTERFEROMETRY

53.1.10.15 Ex: Exc Numerical aperture of a fiber

Calculate the numerical aperture of a step-index fiber with core refraction index ncore
and cladding refraction index ncladding considering the scheme 53.16.

Figure 53.16:

Solution: The numerical apertures is defined by,

NA = sin θi .

Snell’s law hold for the incoupled beam,

sin θi
sin θr

=
ncore
n0

= ncore .

Total internal reflection occurs between core and cladding,

sin 90◦

sinϕ
=

ncore
ncladding

.

With sin θr = cosϕ we finally get,

NA = ncore sin θr = ncore cosϕ = ncore

√
1− sin2 ϕ =

√
n2cladding − n2core .

53.1.10.16 Ex: Tuning by tilting an etalon

a. It is a common method to tune an etalon (or dielectric mirror or waveplate) to a
certain transmission wavelength by tilting it as a whole with respect to the optical
axis (without changing its intrinsic alignment. Does the tilt increase or decrease the
wavelengths of the transmission peaks? Justify your answer. What is the implication
for a dielectric mirror to be used under a non-normal angle of incidence?
b. A narrow band interference filter consisting of a glas plate coated on both surfaces
has the following characteristics: thickness L = 0.5mm, refractive index nrfr = 1.45,
central wavelength λeff = 706 nm, and bandwidth ∆λ = 0.3 nm. Considering the
filter as Fabry-Pérot etalon, calculate its free spectral range, its finesse, and the re-
flectivity of its surfaces.
c. Assuming that the filter of part (b) can be tilted from normal incidence up to an
angle θmax = 35◦, how far will the center frequency shift. Prepare a graph showing

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_InterferoMeter13.pdf
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λeff as a function of θ.

Solution: a. A seemingly plausible but wrong argument is, that tilting makes the
beam path longer, and that this must be compensated by a longer wavelength. A closer
look shows, where the above argument is wrong. Following a ray from one layer to
the next one under some angle, and back to the first layer along a ’reflected’ beam,
we actually don’t get back to the place where we started, but rather to some offset
position. But it doesn’t make sense to compare the phases of two beams as measured
at two different positions. A correct way to understand the issue is to consider the
phase shift along a direction perpendicular to the coating layers, which is obviously
reduced for tilted incidence, as illustrated in Fig. 53.17(a).
Dielectric multilayer mirrors can be highly reflecting only in a limited spectral band-
width. When such a mirror, designed for use with normal incidence of the light, is
tilted against an incident beam, the reflection features are shifted toward shorter wave-
lengths.
b. From the given characteristics we calculate,
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λ
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Figure 53.17: (a) Reducing the effective phase shift in a tilted air-spaced etalon. (b)
Reducing the effective phase shift in a tilted dielectric etalon. (c) Tuning range of a
tilted interference filter.

δfsr =
c

2Lnrefr
≈ 207GHz ,

κ

2π
=
c∆λ

λ2
≈ 190GHz , F =

2πδfsr
κ

= 1.1 =
π
√
R

1−R ,

from which we get R = 10%.
c. By geometry the effective resonant wavelength of a tilted etalon is reduced. For an
air-spaced etalon, λeff = λ cos θ, as seen in Fig. 53.17(b) For a dielectric etalon, we
have to take into account Snell’s law,

nrfr =
sin θ

sinβ
=

λ

λn
.

Hence, we expect the tuning curve exhibited in Fig. 53.17(c), and parametrized by,

λeff = λn cos θ =
λ

nrfr
cos

(
arcsin

sin θ

nrfr

)

=
λ

nrfr

√
1− sin2

(
arcsin

sin θ

nrfr

)
= λmax

√
1− sin2 θ

n2rfr
.
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53.1.10.17 Ex: Double MZI as a model for Coherent Back-Scattering

Consider the setup shown in Fig. 53.18 and calculate the signal observed on the
photodetector for arbitrary phase shifts ϕ and arbitrary rotation angles α by the λ/2-
waveplate.

Figure 53.18: Double Mach-Zehnder interferometer.

Solution: The electric field reaching the detector is the superposition of 4 paths.
Without waveplate (α = 0),

Ed
E0

=
√
1−R1e

ıkL+(−
√
R2)e

ıkL+(−
√
R1)

+
√
R1e

ıkL−
√
1−R2e

ıkL+(−
√
R1)

+
√
1−R1e

ıkL+
√

1−R2e
ıkL−

√
1−R1

+
√
R1e

ıkL−
√
R2e

ıkL−
√
1−R1

= eıkL
[
2
√
1−R1

√
R1

√
R2 cos 2k∆L+ (1− 2R1)

√
1−R2

]

introducing the abbreviation L± ≡ L/2±∆L. In particular, for R1 = 50% we get,

Ed
E0

=
√
R2e

ikL cos 2k∆L .

For R2 = 0 the double MZI is a model for CBS, because all the light reflected from
the setup is going into backward direction.
With the λ/2-waveplate described by the Jones-matrix,

Mλ/2(α) =

(
cos 2α − sin 2α

− sin 2α − cos 2α

)
with Mλ/2(α)

2 = I ,
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we can generalize the ansatz:

(
E⊥
E∥

)
=
√
1−R1e

ıkL+(−
√
R2)e

ıkL+(−
√
R1)

(
E0⊥
E0∥

)

+
√
R1e

ıkL−Mλ/2(α)e
ıϕ
√

1−R2e
ıkL+(−

√
R1)

(
E0⊥
E0∥

)

+
√
1−R1e

ıkL+
√
1−R2e

ıϕMλ/2(α)e
ıkL−

√
1−R1

(
E0⊥
E0∥

)

+
√
R1e

ıkL−Mλ/2(α)e
ıϕ
√
R2e

ıϕMλ/2(α)e
ıkL−

√
1−R1

(
E0⊥
E0∥

)

= eıkL+ıϕ

(
E⊥
E∥

)[
2
√
1−R1

√
R1

√
R2 cos(2k∆L− ϕ) + (1− 2R1)

√
1−R2Mλ/2(α)

]
.

In particular, for R1 = 50% the setup becomes insensitive on the polarization of the
waveplate: (

E⊥
E∥

)
= eıkL+ıϕ

√
R2 cos(2k∆L− ϕ)

(
E0⊥
E0∥

)
.

53.1.11 Experiment: Mach-Zehnder interferometer

The Mach-Zehnder interferometer and the Michelson interferometer are the two most
common two-beam interferometers. For the realization of the following project prior
knowledge of 1. Gaussian beams (see Sec. 51.2), 2. photodetectors (see Sec. 52.2.1),
and 3. piezo-electric transducers (see Sec. 53.1.2) is required.

1. Set up a Mach-Zehnder interferometer with a piezo in one of the arms accord-
ing to Fig. 53.3(a). Optimize the phase matching of the two beams onto a
photodetector and the rotation of the λ/2-waveplates until you obtain visible
interference patterns.

2. Vary the length of one arm of the interferometer using the piezo. Measure
the contrast of the interference fringes and discuss from which parameters it
depends and how it can be maximized.

3. Rotate the first λ/2-waveplate (behind the laser). What do you observe? Ex-
plain the observation!

4. Remove the PBS in front of the photodetector. What do you observe? Explain
the observation!

5. If a piezo is used, vary the voltage applied to the piezo-electric actuator and
measure the voltage expansion coefficient d.
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Figure 53.19: Setup for (a) a Mach-Zehnder interferometer or (b) a Michelson in-
terferometer. (BS) non-polarizing beamsplitter, (PBS) polarizing beamsplitter. (c)
Signal on the photodetector as a function of the length variation of an arm of the
interferometer.

53.1.12 Experiment: Fabry-Pérot cavity

A Fabry-Pérot cavity is a typical multi-beam interferometer.

1. Set up a Fabry-Pérot cavity according to Fig. 53.20 and mode-match a laser
beam into the cavity. Scan the cavity length using a piezo and observe the
transmitted spectrum on an oscilloscope. What do you observe?

2. If an ECDL is used, vary the current and the temperature of the laser diode.
What do you observe? Vary the frequency of the diode laser by scanning the
piezo transducer of the laser cavity. Observe the mode spectrum of the laser
in the transmission signal of the cavity. Measure its free spectral range, the
transmission linewidth, and the finesse of the cavity.

Optical cavities are frequently used as optical spectrum analyzers. For this application,
it is helpful to simplify the intrinsic mode spectrum of the cavity by using a confocal
design, where all transerse modes are degenerated. We will now set up an optical
cavity and characterize it by its free spectral range and its finesse. Then we will
analyze its mode spectrum and modify its geometry to make it confocal.

1. Couple a laser beam into a cavity as shown in Fig. 53.20. The cavity provided
by this tinker course consists of a plane incoupler (ρ1 = ∞, R1 = 98%) and
a high reflector (ρ2 = 25mm, R2 = 99.8%). Position the mirror at a distance
L, where the cavity is stable. Calculate the free spectral range, the finesse, the
diameter of the beam waist.

2. Optimize the phase-matching of the laser beam to the cavity. In order to do
this, (a) measure the diameter of the diode laser beam, (b) determine the lens
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Figure 53.20: (a) Setup for aligning a confocal resonator. (b) Transmission spectrum of the
cavity for non-confocal alignment. (c) Same as (b) but for the case of confocal alignment.

which can be used to focus down to the beam waist of the cavity. How does the
transmission spectrum change upon the beam matching?

53.1.13 Experiment: Fizeau interferometer

A Fizeau interferometer is a device allowing to analyze the rugosity of surfaces.

1. Set up a Fizeau interferometer according to Fig. 53.20.

Figure 53.21: Principle of operation of a Fizeau interferometer.

53.1.14 Experiment: Coupling light into an optical fiber

Coupling a laser beam into an optical fiber is a delicate task, requiring a good col-
limation optics and full control over the 6 degrees of freedom defining a laser beam:
horizontal and vertical position, horizontal and vertical tilt, beam diameter and di-
vergence.
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1. Redirect the light of a HeNe laser via two adjustable mirrors into a fiber colli-
mator in such a way that the beam is not deviated from the optical axis by the
collimator.

2. Now connect (a) a multimode fiber and (b) a single mode fiber to the collimator.
Optimize the coupling by walking the laser beam and by adjusting the focus
of the fiber collimator. What differences do you observe for multi- and single
mode fibers?

53.2 Conventional light sources and lasers

For the first half of the 20-th century these assumptions matched the available light
sources, usually incandescent, arc or plasma discharge lamps. After the invention
of the laser in 1958, single mode and pulsed lasers quickly replaced the lamps as a
source for optical excitation. These new light sources initiated a revolution in optical
science, the consequence of which continue to reverberate through modern sciences
and applied technologies. The characteristics of laser sources are far superior to the
old lamps in all respects. They are intense, collimated, spectrally narrow and phase
coherent. The laser gave rise to a multitude of new spectroscopic techniques and new
disciplines, such as quantum electronics, the study of statistical properties of light in
quantum optics, optical cooling and trapping of microscopic particles, the control of
chemical reactivity, and new technologies for imaging and high resolution microscopy.
The impact the laser had on technology is only comparable to that of to the invention
of the transistor. See also (watch talk).

The laser produces light through an optical quantum amplification process based
on the stimulated emission of electromagnetic radiation. The term ’laser’ is an
acronym for ’Light Amplification by Stimulated Emission of Radiation’. A laser
differs from other light sources in that it emits coherent light. Its spatial coherence
allows the light to be focused on a very tiny spot, where the concentration of energy is
sufficient for applications such as laser cutting and lithography. The spatial coherence
also allows it to collimate a laser beam over large distances, that is, the light forms
a concentrated beam propagating in a straight line. Lasers can also have a very high
temporal coherence, which corresponds to a very narrow spectrum, that is, lasers
usually emit a single very well defined color of light. The extreme temporal coherence
can be used to produce pulses of light as short as a femtosecond. In addition, laser
light is polarized.

In 1917, Albert Einstein established the theoretical foundations of the laser in an
article ’Zur Quantentheorie der Strahlung’ through a rederivation of Max Planck’s ra-
diation law. He proposed a mechanism explaining how light is absorbed and emitted
from atoms. The fundamental ingredient is that the photon can be emitted in two
different ways, by spontaneous emission, an indeterministic process that occurs with-
out physical reason, or by stimulated emission. This latter emission process occurs
because of stimulation by light, which is already present in the system and represents
the fundamental mechanism of the laser. In the following decade German and Amer-
ican researchers experimentally confirmed the phenomena of stimulated emission and
negative absorption, that is, gain. In 1950, Alfred Kastler (French physicist and No-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/Lasers
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bel Prize in Physics of 1966) proposed the method of optical pumping, confirmed
experimentally two years later by other French physicists.

In 1953, Charles Townes produced the first microwave amplifier called maser, a
device that operates similarly to the laser but amplifies microwave radiation instead
of visible or infrared radiation. However, Townes’ maser was unable to emit light
continuously. In 1955, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov
solved the problem of continuous operation using atoms with more than two energy
levels. These level systems were able to sustain a permanent population inversion of
an energetic level decaying to a less energetic system by releasing light via stimulated
emission. Despite the fact that several prominent physicists, including Niels Bohr,
John von Neumann, and Isidor Rabi, argued that the maser violates Heisenberg’s
uncertainty principle and therefore could not work, in 1964, Charles Townes, Nikolay
Basov and Aleksandr Prokhorov shared the Nobel Prize in Physics for fundamental
work in the field of quantum electronics that led to the realization of oscillators and
amplifiers based on the maser principle.

In 1957, Charles Townes and Arthur Schawlow, from the Bell labs, began to seri-
ously study feasibility of an ’optical maser’. In 1958, the Bell labs submitted a patent
proposing a scheme for optical radiation, and Schawlow and Townes presented a sci-
entific paper. Simultaneously, at the Columbia University, the PhD student Gordon
Gould was working on the energy levels of excited thallium. In 1957-8, Gould and in-
dependently Prokhorov, Schawlow and Townes proposed the use of an open resonator,
which later became an essential component of the laser. Gould also proposed several
possible applications for a laser, such as spectrometry, interferometry, the radar, and
nuclear fusion. He continued to develop the idea, and filed a patent application in
April 1959. The United States Patent Office dismissed his application, and granted
a patent to the Bell Labs in 1960. Gould won his first minor patent in 1977 after
a 28-year fight, and it took him until 1987 to win his first significant process in the
struggle, when a federal judge ordered the United States Patent Office to issue to
Gould patents for optical pumping and the invention of a laser based on the principle
of electrical gas discharge.

It was Theodore Maiman, who on May 16, 1960, operated the first working laser at
the Hughes Research Laboratories, Malibu, California, evincing several other research
teams, including the ones of Townes at Columbia University, of Schawlow at Bell Labs,
and Gould at the company TRG (Technical Research Group). Maiman’s laser used a
synthetic solid-state ruby crystal pumped by a flash lamp to produce red laser light
at 694 nm wavelength; however, the device was only capable of pulsed operation due
to its three-level pumping scheme. Later in 1960, the first gas laser was built, using
a helium-neon mixture, which was capable of continuous operation in the infrared
spectrum. Basov and Javan proposed the concept of a semiconductor laser diode.
In 1962, the first laser diode device, made of gallium arsenide, was realized emitting
near-infrared light. Nowadays, laser diodes are available in various spectral regimes
up to the UV.

Interestingly, despite many attempts, it has not yet been possible to manufacture
yellow or green laser diodes.
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Figure 53.22: First suggested application in 1964 of a (left) HeNe laser and (right) a
diode laser.

53.2.1 Features and operation of lasers

To understand how a laser operates, we consider the process of absorption and emis-
sion of light by an atom. Following Bohr’s model an absorbed photon raises an
electron from a lower orbit to a higher orbit, and when the electron returns back to
the ground state, it re-emits a photon in an arbitrary direction.

When we illuminate a sample of N atoms, N1 atoms of which are in the ground
state, by a radiation field, the absorption rate depends on the field intensity I(ν) and
a constant B12, which is characteristic for the transition,

Rabs ∝ B12I(ν)N1 . (53.35)

Figure 53.23: Bohr’s model of photon absorption.

The emission rate depends on the number of atoms N2 in the excited state, such
that,

Rsp ∝ A21N2 . (53.36)

As the excited state has more energy, it can decay by itself (i.e. spontaneously) to
a lower energy state. Einstein’s brilliant idea now was to postulate a third process,
which he called stimulated emission,

Rst ∝ B21I(ν)N2 . (53.37)
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In this process, an incident photon stimulates an excited atom to transfer the electron
to a lower orbit. The released energy is then used to form a second photon, which
is in all respects identical to the first. This process is necessary to ensure that, in
thermal equilibrium, the population of the states follows Boltzmann’s law.

Figure 53.24: Einstein’s model of absorption and spontaneous and stimulated emission.

Obviously, absorption decreases the intensity of a light beam crossing the atomic
sample, while stimulated emission amplifies it. In order to amplify incident light,
the gain in intensity must overcome the losses. Therefore, we need the absorption
processes to be less frequent than the stimulated emission processes, i.e. the number
of atoms in the excited state N2 must exceed the number of atoms in the ground state
N1 < N2.

We can easily write the rate equation,

dN2

dt
= −A21N2 −B21I(ν)N2 +B21I(ν)N1 = −dN1

dt
, (53.38)

with N = N1 +N2. It is easy to solve this equation. The result is,

N2 =
I(ν)B21N

A+ 2B21I(ν)
[1− e−(A21+2B21I(ν))t] < N1 . (53.39)

The graphical representation 53.25 shows the temporal behavior of the populations
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Figure 53.25: (code) Impossibility of achieving inversion in a two-level system.

N1 (in green in the figure) and N2 (in blue), reaching a state of equilibrium after a
certain time. By increasing the intensity of the incident light, we observe that the
curves approach each other but never cross. That is, in a two-level system, we always
get N1 > N2 and the populations are never inverted. Therefore, amplification of light
as in the laser does not happen.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_LaserPumping.m
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Fortunately, we can resort to a trick by inserting a third level. Ensuring that the
decay rate of the (metastable) state E3 is much slower than the optical pumping to
this state via the driven transition E1 → E2 followed by a rapid decay E2 → E3,
we can reach the situation N3 > N1. Now it is possible to amplify light, which is
resonant with the transition E2 → E3.

Figure 53.26: Basics of a laser: (a) Level system and (b) principle scheme.

What are the minimum requirements for the realization of a laser? The first
condition is that the pumping cycle is irreversible to ensure that the processes of
stimulated emission and absorption do not compensate. Spontaneous emission is
irreversible and can be incorporated into a three-level system.

The second condition is the existence of a stimulated emission process, because we
want the amplified photon to be an exact copy of the incident photon.

The third requirement is a feedback mechanism that synchronizes the amplification
processes by different atoms in a disordered environment, such as a gas. Mirrors are
ideal because they increase the effective gain path, i.e. the distance within which
inverted atoms can amplify light. Also, the mirrors define the phase of the light wave,
since the standing wave formed by the counterpropagating light fields must have nodes
on the surfaces of the mirrors.

53.2.1.1 Threshold condition

According to the Lambert-Beer law the intensity of a monochromatic laser beam
evolves, on its way through a gas of two-level atoms with energies E2−E1 = ℏω0 like,

I(z, ν) = I(0, ν)e−α(ν)z , (53.40)

where the frequency-dependent absorption coefficient,

α(ν) = [N1 − g1
g2
N2]σ(ν) , (53.41)

is determined by the absorption cross section σ(ν) for the transition and by the
inversion,

∆N ≡ g1
g2
N2 −N1 , (53.42)

which determines whether stimulated emission prevails or absorption: For ∆N > 0,
the absorption coefficient α(ν) becomes negative and the incident wave is amplified
instead of attenuated [351].

If the active medium is placed between two mirrors [Fig. 53.26(b)], the wave is
reflected back and forth, and traverses the amplifying medium many times, which
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increases the total amplification. With the length L of the active medium the total
gain factor per single round-trip without losses is,

G(ν) =
I(ν, 2L)

I(ν, 0)
= e−2α(ν)L . (53.43)

A mirror with reflectivity R reflects only the fraction R of the incident intensity.
The wave therefore suffers at each reflection a fractional reflection loss of (1 − R).
Furthermore, absorption in the windows of the cell containing the active medium,
diffraction by apertures, and scattering due to dust particles in the beam path or due
to imperfect surfaces introduce additional losses. When we summarize all these losses
by a loss coefficient γ, which gives the fractional energy loss ∆W/W per round-trip
time T , the intensity I decreases without an active medium per round-trip as,

I(2d, ν) = I(0, ν)e−γ . (53.44)

Including the amplification by the active medium with length L, we obtain for the
intensity after a single round-trip through the resonator with length d, which may be
larger than L:

I(2d, ν) = I(0, ν)e−2α(ν)L−γ . (53.45)

The wave is amplified if the gain overcomes the losses per round-trip. This implies
that,

−2Lα(ν) = 2L∆Nσ(ν) > γ , (53.46)

which yields the threshold condition for the population difference,

∆N > ∆Nthr =
γ

2Lσ(ν)
. (53.47)

If the inverted population difference ∆N of the active medium is larger than
∆Nthr, a wave that is reflected back and forth between the mirrors will be amplified
in spite of losses, therefore its intensity will increase.

The wave is initiated by spontaneous emission from the excited atoms in the active
medium. Those spontaneously emitted photons that travel into the right direction
(namely, parallel to the resonator axis) have the longest path through the active
medium and therefore the greater chance of creating new photons by induced emission.
Above the threshold they induce a photon avalanche, which grows until the depletion
of the population inversion by stimulated emission just compensates the repopulation
by the pump. Under steady-state conditions the inversion decreases to the threshold
value ∆Nthr, the saturated net gain is zero, and the laser intensity limits itself to a
finite value IL. This laser intensity is determined by the pump power, the losses γ,
and the gain coefficient α(ν).

The frequency dependence of the gain coefficient α(ν) is related to the line profile
g(ν − ν0) of the amplifying transition. Without saturation effects (i.e. for small
intensities), α(ν) directly reflects this line shape, for homogeneous as well as for
inhomogeneous profiles. According to (53.41) and (22.87) we obtain with the Einstein
coefficient Bik,

α(ν) = ∆Nσ(ν) = −∆N(hν/c)B12(ν − ν0) , (53.48)
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which shows that the amplification is largest at the line center ν0. For high inten-
sities, saturation of the inversion occurs, which is different for homogeneous and for
inhomogeneous line profiles.

The loss factor γ also depends on the frequency ν because the resonator losses are
strongly dependent on ν. The frequency spectrum of the laser therefore depends on
a number of parameters.

53.2.1.2 Applications of lasers in industry and fundamental research

Among their many applications, lasers are nowadays used in compact disc players,
laser printers, and bar code scanners, optical fibers and optical communication, laser
surgery and skin treatments, welding, cutting and machining, military devices, dis-
tance and velocity measurements, projectors, laser pointers, etc..

In fundamental research (in particular on atomic gases, metamaterials, etc.), the
laser plays elementary roles in the areas of photonics, quantum computers, metrology,
frequency combs, and atomic clocks (laser-based clocks are up to 1000 times more
stable than the best state-of-the-art microwave clocks).

We all know that light is a wave. With the invention of the laser we found a process
and a device to make this light coherent. On the other hand, since de Broglie’s
assertion we know that matter is a wave, as well. Is it conceivable to construct a
matter laser? Yes, it is! The first coherent matter wave was in fact observed in 1995.
This state of matter, also called Bose-Einstein condensate, was predicted by Bose
and Einstein in 1924. To create a Bose-Einstein condensate, we need, similarly to the
laser, that the matter waves interfere constructively in a way that they amplify each
other. For this, the Broglie wavelength of the particles, which constitute the matter,
must be longer than the distance between them. Assuming a typical average distance
on the order of µm, this corresponds to an average velocity of the particles of mm/s
or a temperature of some 100 nK.

53.2.2 HeNe laser

HeNe lasers are gas lasers, whose gain medium consists of a mixture of 90% helium and
10% neon at a total pressure of about 1Torr excited by a small electrical discharge.
The most widely used transition wavelength is at 632.8 nm.

Fig. 53.27(a) shows the principle scheme of a commercial HeNe laser. The distance
between the high-reflecting mirror (Rhr) and the output coupler (Roc) determines the
free spectral range δfsr. Typically, a HeNe laser operates on two or three longitudinal
modes separated by δfsr. As illustrated in Fig. 53.27(b), the numbers of lasing modes
above threshold depends on the ratio of gain-to-loss. Fig. 53.27(c) shows the optical
pumping scheme to reach inversion on three of the lasing transitions at 632.8 nm,
1.15µm, and 3.39µm.

53.2.3 Diode laser

A laser diode is electrically a pin-diode. The active region of the laser diode is in
the intrinsic (i) region, and the carriers (electrons and holes) are pumped into that
depletion region from the n- and p-doped regions respectively. The depletion region,
devoid of any charge carriers, forms as a result of the difference in electrical potential
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Figure 53.27: (a) Construction scheme of a HeNe laser. (b) Gain and emission profile. (c)
Optical pumping scheme.

between n- and p-type semiconductors wherever they are in physical contact. Unlike
a regular diode, the goal for a laser diode is to recombine all carriers in the i region,
and produce light.

Figure 53.28: (Left) Laser diode with protective housing removed, e.g. using a can
opener. (Right) Laser diode collimator.

53.2.3.1 Generation of light

Electrons and holes present in the same region may recombine or ’annihilate’ by spon-
taneous emission of photons with energy equal to the difference between the electron’s
original state and hole’s state (see Fig. 52.10). This is in contrast to a conventional
semiconductor junction diode, where the energy released from the recombination is
carried away as phonons, i.e. lattice vibrations. Spontaneous emission below the lasing

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1830
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1830
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threshold is the operating mode of an LED. While spontaneous emission is necessary
to initiate laser oscillation, it contributes to reduce the efficiency of a laser operating
above threshold.

One condition for lasing is that, in the absence of stimulated emission, electrons
and holes may coexist in proximity to one another without recombining immediately.
For typical diode laser materials the ’upper-state lifetime’ or ’recombination time’ is
on the order of a nanosecond. A nearby photon with energy equal to the recombina-
tion energy can cause recombination by stimulated emission. This generates another
photon of the same frequency, polarization, and phase, traveling in the same direction
as the first photon. In this way stimulated emission will cause gain for an optical wave
in the injection region, and the gain increases as the number of electrons and holes
injected across the junction increases.

53.2.3.2 Optical cavity and laser modes

As in other lasers, the gain region needs to be surrounded by an optical cavity pro-
viding optical feedback. In its simplest form, a laser diode is made in the shape of a
narrow optical waveguide on a the surface of a crystal. The two ends of the crystal
are cleaved to form perfectly smooth, parallel edges, forming a Fabry-Pérot resonator.
Emitted photons will travel along the waveguide, be amplified by stimulated emission
and reflected several times from each end face before exiting. If the losses due to
absorption and incomplete reflection from the end facets are smaller than the gain,
the diode begins to ’lase’.

Important properties of laser diodes are determined by the geometry of the optical
cavity. If the waveguide is thick compared to the wavelength of the light, it can
support higher-order transverse optical modes. The laser is then called ’multi-mode’.
These transversely multi-mode lasers are adequate for application where high power
is needed, for example, in printing, activating chemicals, or pumping other types of
lasers.

Figure 53.29: Typical beam profile of a multimode laser diode (Thorlabs, L450P1600MM.

For applications requesting small focused beams the waveguide must be made
narrow, on the order of the optical wavelength, such that only a single transverse
mode is supported, and one ends up with a diffraction-limited beam. Such single
spatial mode devices are used for optical storage, laser pointers, and fiber optics.
Note that these lasers may still support multiple longitudinal modes, and thus can
lase simultaneously at multiple wavelengths. The wavelength emitted is a function of
the band-gap of the semiconductor material and the modes of the optical cavity. In

https://www.thorlabs.com/thorproduct.cfm?partnumber=L450P1600MM
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general, the maximum gain will occur for photons with energy slightly above the band-
gap energy, and the modes nearest the peak of the gain curve will lase most strongly.
The width of the gain curve will determine the number of additional ’side modes’
that may also lase, depending on the operating conditions. Single spatial mode lasers
that can support multiple longitudinal modes are called Fabry-Pérot (FP) lasers. A
FP laser will lase at multiple cavity modes within the gain bandwidth of the lasing
medium. The number of lasing modes in an FP laser is usually unstable, and can
fluctuate due to changes in current or temperature.

Single spatial mode diode lasers can be designed so as to operate on a single lon-
gitudinal mode. These single frequency diode lasers exhibit a high degree of stability,
and are used in spectroscopy and metrology, and as frequency references. Single
frequency diode lasers are classed as either distributed feedback (DFB) lasers or dis-
tributed Bragg reflector (DBR) lasers.

Due to diffraction, the beam diverges (expands) rapidly after leaving the chip,
typically at 30 degrees vertically by 10 degrees laterally. A lens must be used in order
to form a collimated beam like that produced by a laser pointer. If a circular beam is
required, cylindrical lenses and other optics are used. For single spatial mode lasers,
using symmetrical lenses, the collimated beam ends up being elliptical in shape, due
to the difference in the vertical and lateral divergences.

53.2.3.3 Distributed Bragg reflector lasers and distributed feedback lasers

The simple diode described above has been heavily modified in recent years to ac-
commodate modern technology, resulting in a variety of types of laser diodes. One
example is the distributed Bragg reflector laser (DBR). It consists of a monolithic
single frequency laser diode, characterized by an optical cavity consisting of an elec-
trically or optically pumped gain region between two mirrors to provide feedback.
One of the mirrors is a broadband reflector and the other mirror is wavelength se-
lective so that gain is favored on a single longitudinal mode, resulting in lasing at
a single resonant frequency. The broadband mirror is usually coated with a low re-
flectivity coating to allow emission. The wavelength selective mirror is a periodically
structured diffraction grating with high reflectivity. The diffraction grating is etched
into the semiconductor within a non-pumped, or passive region of the cavity.

A distributed feedback laser (DFB) is a monolithic single frequency laser diode
with a diffraction grating etched close to the pn-junction of the diode aiming at
stabilizing the lasing wavelength. This grating acts like an optical filter, causing
a single wavelength to be fed back to the gain region and lase. Since the grating
provides the feedback that is required for lasing, reflection from the facets is not
required. Thus, at least one facet of a DFB is anti-reflection coated. The DFB laser
has a stable wavelength that is set during manufacturing by the pitch of the grating,
and can only be tuned slightly with temperature. DFB lasers are widely used in
optical communication applications, where a precise and stable wavelength is critical.

53.2.3.4 ECDL

An extended-cavity diode laser (ECDL) is an optical setup based on a laser diode
chip, which typically has one end anti-reflection (AR) coated, and the laser resonator
is completed with a collimating lens and a mirror, as shown in Fig. 53.30(a). The
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extended external laser resonator introduces various new features and options: Com-
pared to a standard laser diode, the longer resonator increases the damping time of the
intracavity light according to Eq. (53.26), and thus allows for lower phase noise and
a smaller emission linewidth (in single-frequency operation). Furthermore, it opens
the way for inserting frequency-selective optical components into the extended laser
resonator, such as narrow-band Fabry-Pérot etalons or diffraction gratings, which can
further reduce the linewidth and even allow to tune and control the frequency of the
laser.

Figure 53.30: (a) ECDL with an AR-coated laser diode and an external mirror. (b) Littrow
configuration. (c) Littmann configuration.

Tunable ECDLs based on diffraction grating as the wavelength-selective element
are also called grating-stabilized diode lasers. The common Littrow configuration
Fig. 53.30(b) generates optical feedback to the laser diode chip by retro-reflecting the
first-order diffracted beam from the grating. The emission wavelength can be tuned
by slightly tilting the diffraction grating. A disadvantage of this configuration is, that
the tilt also changes the direction of the output beam, which is inconvenient for many
applications.

In the Littman-Metcalf configuration Fig. 53.30(c), the grating angle is held fixed,
and an additional mirror is used to reflect the first-order beam back into the laser
diode. The wavelength can be tuned by rotating that mirror. This configuration offers
a fixed direction of the output beam, and also tends to exhibit a smaller linewidth, as
the wavelength selectivity is stronger, because the wavelength-dependent diffraction
occurs twice per resonator round trip. A disadvantage is that the zero-order reflection
of the beam reflected by the tuning mirror is lost, so that the output power is lower
than that of a Littrow laser.

New concepts have recently become popular, such as the so-called cat-eye laser
[75, 510, 124], where the frequency-selective element is an extremely narrow-band
(0.3 nm) optical filter 5.

By adjusting the tilt angle of a grating or a narrow-band filter by means of a piezo
an extremely fine tuning of the emission frequency is possible, while coarse tuning of
the frequency over a range of several nanometers is typically achieved by changing

5Available from Semrock or Laseroptik.

https://www.semrock.com/
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Figure 53.31: (Left) Side view of a ’free-running’ laser diode mounted in a collimator
(Thorlabs, LT110P-B) clamped in an aluminum block cooled by a Peltier element
(Thorlabs, TEC3-6) and whose temperature is measured by a thermistor (Thorlabs,
TH10K). (Right) Top view of a home-built ECDL laser in Littrow configuration. The
diode collimator is clamped into the left mount. a holographic grating (Newport,
10HG2000-475-1) is glued to the right mount, whose angle can be adjusted mechani-
cally and via a piezo. The whole setup is cooled by a Peltier element mounted on the
bottom of the base plate.

the temperature and the laser current. Typical linewidths of free-running ECDLs are
well below 5MHz. Controlling the laser temperature, current, and piezo voltage by
active feedback circuits (e.g. within a Pound-Drever-Hall servo electronics) emission
bandwidths in the milliHertz range have been achieved, which corresponds to quality
factors of the laser oscillator of up to 1018.

Figure 53.32: (Left) Construction plan of a home-built ECDL lasers in cat-eye config-
uration. (Right) Side view of the cat-eye laser.

In comparison to other laser types, a diode laser exhibits, the advantage of a very
small size and a compact design. They are, in general, easy to handle and can be
controlled conveniently via current and temperature. However, they also have the
disadvantage of a large beam divergence and a broad emission spectrum. The beam
divergence can be compensated by a collimation optics in front of the laser diode.

The temperature has an impact on the band structure of the pn-transition of
the laser diode and hence on the frequency. Therefore, it is stabilized via a Peltier
element, which is mounted underneath the laser diode holder. The degree of freedom
is used for tuning the laser frequency in wide steps.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1379
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=305
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=305
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=305
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53.2.3.5 Pulsed diode lasers

Diode lasers can be used for generating ultrashort pulses either with various techniques
of mode locking or with gain switching. Typically, pulses with durations between
0.5 and 5 ps and pulse repetition rates between 1 GHz and hundreds of giga-Hertz
are generated with mode locking. In extreme cases, the repetition rate can even
be above 1 THz. The main application of ultrafast diode lasers is in optical fiber
communications systems, where such lasers function as pulse sources of fast data
transmitters or for all-optical signal processing.

Common techniques for mode locking of diode lasers are active ore passive mode
locking. Active mode locking can be accomplished with an optical modulator in the
laser resonator. This is usually either an electro-absorption modulator in the form of
an unpumped region with some modulated voltage, or an amplifying section where
the drive current is modulated. Passive mode locking relies on a saturable absorber in
the resonator. This can simply be an unpumped section of the device. It is common to
apply an electrical bias for adjusting the absorber properties. However, the recovery
time of that kind of absorber is fairly long. Shorter recovery times are achieved e.g.
by implanting nitrogen (N+ or N+

2 ) ions from one facet. This introduces crystal
defects, where carriers can recombine. The absorber is often placed at a resonator
end, but it can also be placed somewhere within the resonator so that different pulses
can meet in the absorber (colliding pulse mode locking).

For pulse repetition rates roughly below 10 GHz, an external cavity setup is usually
required, as a monolithic device would become too long. The extended cavity may be
an ECDL setup. Another technical approach is to incorporate the semiconductor chip
into a ring laser resonator made of optical single-mode fiber. In the latter case, the
resonator is typically much longer, and allows the use of fiber-optic components. The
semiconductor device may then be a fiber-coupled semiconductor optical amplifier
(SOA).

External-cavity lasers have various advantages: The pulse repetition rate can be
chosen in a wide range, and can easily be tuned e.g. by moving the end mirror, or with
a fiber resonator by stretching a piece of fiber with a piezo transducer. It is possible
to insert an optical filter for fixing the emission wavelength, or use a diffraction
grating as the end mirror (Littrow configuration; see the article on external-cavity
diode lasers). Even for higher pulse repetition rates, where harmonic mode locking is
required, external-cavity devices can be advantageous, because they have a potential
for lower laser noise, e.g. in the form of timing jitter. Therefore, mode-locked external-
cavity diode lasers sometimes compete with mode-locked fiber lasers in areas where
monolithic laser diodes would not be suitable. On the other hand, a monolithic setup
with fundamental mode locking can be very compact, much cheaper to manufacture,
and can exhibit very robust pulse emission.

On the other hand, mode-locked diode lasers are subject to various limitations,
which do not allow them to reach the full performance potential of, e.g., mode-locked
fiber lasers: The pulse energy is fairly limited often far below 1 pJ. Average output
powers are often below 1 mW. Due to the short upper-state lifetime, ultrafast semi-
conductor lasers are generally not suitable for lower repetition rates of e.g. well below
1 GHz, except with synchronous pumping. Although the gain bandwidth of semicon-
ductors would be compatible with pulse durations of a few tens of femtoseconds, the
pulse durations achieved are usually much longer at least hundreds of femtoseconds,
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and often picoseconds. The pulse formation dynamics are relatively complicated,
e.g. due to nonlinear phase changes associated with gain saturation, and difficult to
optimize. The pulse quality is normally not as good as e.g. for mode-locked fiber
lasers. In particular, there are often additional satellite pulses, caused e.g. by im-
perfections of the anti-reflection coating. Also, the pulses are often chirped, i.e. they
are not bandwidth-limited. The timing jitter and the noise of other pulse parameters
are higher than for other mode-locked lasers. This is partly a consequence of the low
power level.

53.2.3.6 Tapered amplifiers and injection locking

Other ways to amplify a the power of a laser without altering its coherence properties
are using a tapered amplifier or via injection locking also called master-slave locking
[208, 807] (see Fig. 53.33).

Figure 53.33: (a) Tapered amplifiers are available e.g. from Eagleyard. (b) Principle of
injection locking.

The description presented here uses semi-classical laser rate equations [806]. As-
suming that the master and the slave laser field are given by, respectively,

Einj = Ainje
−ıωinjteıϕinj(t) and E = Ae−ıωsteıϕs(t) , (53.49)

The phase difference between the both fields is denoted by ϕ(t) = ϕs(t)−ϕm(t). Now,
Considering the semi-classical laser rate equations we can describe the impact of the
master laser field in the slave laser,

dA(t)

dt
=

1

2
g[N(t)−Nth]A(t) + κAinj cosϕ(t) (53.50)

dϕ(t)

dt
=
α

2
[N(t)−Nth]− κ

Ainj
A(t)

sinϕ(t)−∆ω

dN(t)

dt
= J − γNN(t)− [γp + g[N(t)−Nth]A(t)2 ,

where A(t) is the field amplitude normalized as A2(t) = S(t), and S(t) is the photon
number. N(t) is the number of carriers in the slave laser, and the other parameters
are g laser gain coefficient, Nth threshold carrier number, κ coupling coefficient, α
linewidth enhancement factor, γp photon decay rate, N carrier recombination rate,

https://www.eagleyard.com/products/tapered-amplifiers/
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J pump current normalized by electron charge, ∆ω frequency difference between the
master and the free running slave ωm − ωs. The parameter κ describes the rate at
which the photons of the master laser enter into the slave laser cavity and is given in
terms of the cavity quality factor,

κ =
ωs
2Q

. (53.51)

From the steady state solutions of above equations, we can obtain the frequency
locking range,

−κ
√
(1 + α2)

√
Pinj
Ps

< ∆ω < κ

√
Pinj
Ps

, (53.52)

where Pinj/Ps is the master laser fraction power used for the injection locking and Ps
is the power of slave laser. From equation 4.25 we can see that the locking range is
determined by the amplitude ratio between the fields and by the cavity quality factor
since κ ∝ Q−1. Therefore, lasers with low Q are easier to lock. On the other hand,
this leads to increased laser linewidth that reduces the phase noise performance of the
injection locking systems. For higher injection ratio Pinj/Ps also results in a large
locking range, which also makes the lock easier to achieve.

53.2.4 Exercises

53.2.4.1 Ex: Conventional light sources and lasers

Compare the properties of an incandescent light and a laser.

Solution:

53.2.4.2 Ex: Threshold inversion for lasing 1

Calculate the necessary threshold inversion of a gas laser transition at λ = 500 nm
with the transition probability Aik = 5·107 s-1 and a homogeneous linewidth ∆νhom =
20MHz. The active length is L = 20 cm and the resonator losses per round-trip are
γ = 5%.

Solution: The inversion nthr is the density of excited atoms producing gain by stim-
ulated emission. According to (53.46), this inversion is at threshold, when the gain
along the optical path equalizes the losses,

2Lnthrσ = γ ,

where 2L is the round trip length. The absorption cross-section is related to the
Einstein coefficient Bik by Eq. (22.87),

Bik =
c

hν

∫
σdν ≃ c

hν
σ̄∆νhom ,

With Bik = c3

8πhν3Aik we obtain,

σ̄ =
hν

c∆νhom
Bik =

λ2

8π∆νhom
Aik ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight02.pdf
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and finally,

nthr =
8π∆νhomγ

2λ2LAik
≈ 5 · 106 cm-3 .

53.2.4.3 Ex: Threshold inversion for lasing 2

A laser medium has a Doppler-broadened gain profile of halfwidth δν = 2GHz and
central wavelength λ = 633 nm. The homogeneous width is 50MHz, and the transi-
tion probability Aik = 108 s-1. Assume that one of the resonator modes (L = 40 cm)
coincides with the center frequency ν0 of the gain profile. What is the threshold in-
version for the central mode, and at which inversion does oscillation start on the two
adjacent longitudinal modes if the resonator losses are 10%?

Solution: The spacing of the longitudinal modes is,

δfsr =
c

2L
= 375MHz .

The population density due to thermal broadening is,

n(vz) = n(vz = 0)e−(ν−ν0)
2/δν2

.

At ν = ν0 ± δfsr the population density for the adjacent modes has decreased to
n1 = 0.83n0. We already verified in Exc. 53.2.4.2 that the threshold inversion is,

∆nthr =
8πνhomfsrγ

2λ2LAik
≈ 3.9 · 106 cm-3 .

Oscillation begins at the adjacent modes if threshold is reached for this mode. Then
the inversion at the central mode is (without saturation) n0 = n1/0.83.

53.2.4.4 Ex: Mode pulling in an active resonator

The frequency of a passive resonator mode (L = 15 cm) lies 0.5∆νD away from the
center of the Gaussian gain profile of a gas laser at λ = 632.8 nm. Estimate the mode
pulling if the cavity resonance width is 2MHz and ∆νD = 1GHz.

Solution: The mode pulling is weighed with the quality factors of the resonances
∆νcav/∆νgain and the distance between the centers of the resonator mode and the
gain curve:

νpulled = νcav +
∆νcav
∆νgain

(νcav − νgain) = νcav +
∆νcav
∆νgain

0.5∆νD ≈ νcav + 1MHz .
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53.2.4.5 Ex: Spatial hole-burning

Assume a laser transition with a homogeneous width of 100MHz, while the inhomo-
geneous width of the gain profile is 1GHz. The resonator length is d = 200 cm and
the active medium with length L≪ d is placed a = 20 cm from one end mirror. Esti-
mate the spacing of the spatial hole-burning modes. How many modes can oscillate
simultaneously if the unsaturated gain at the line center exceeds the losses by 10%?

Solution: We have,

δνspa =
2L

ap
δfsr ,

with p = 2, 3, 4, .. and δfsr = c/2d = 150MHz. Hence, for p = 2 we expect δνspa =
1.5MHz. For p = 3 we get δνspa = 1.0GHz. For a Doppler width of δνD = 1GHz the
gain at the first adjacent spatial hole burning mode is g = g0e

−1/0.36 = 0.06g0. This
mode does not reach the threshold. The adjacent resonator mode is 150MHz away
from the line center. Its unsaturated gain is g = g0e

−0.152/(0.36·1) = 0.94g0. Here, the
net gain is 0.94 · 1.1 = 1.03 without mode competition. The two adjacent resonator
modes reach the threshold. Therefore three longitudinal modes can oscillate.

53.2.4.6 Ex: Optimizing the transmission of laser output mirrors

Estimate the optimum transmission of the laser output mirror if the unsaturated gain
per round trip is 2 and the internal resonator losses are 10%.

Solution: The total output intensity of a laser with unsaturated gain g0, internal
cavity losses γ0, length L of the active medium, and mirror losses T+A = 1−R = γM
is:

Iout = γM

[
2g0L

γ + γM
− 1

]
Isat
2

.

Differentiating gives,

dIout
dγM

=

[(
2g0L

γ + γM
− 1

)
− γM

2g0L

(γ + γM )2

]
Isat
2

= 0 .

This yields,
γoptM =

√
2g0Lγ0 − γ0 .

With γ0 = 0.1 and 2g0L = 2 follows,

γoptM = 34.7% = 1−R .

The output mirror should have a reflectivity of R = 65.3%.

53.2.4.7 Ex: Mode selection in a HeNe laser

A HeNe laser with an unsaturated gain of G(ν0) = 1.3 per round trip at the center
of the Gaussian gain profile with halfwidth ∆νD = 1.5GHz has a resonator length

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight05.pdf
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of d = 50 cm and total losses of 4%. Single-mode operation at ν0 is achieved with a
coated tilted etalon inside the resonator. Design the optimum combination of etalon
thickness and finesse.

Solution: The axial modes are separated by δfsr = c/2L = 300MHz. The gain
factor G follows the Doppler profile,

G(ν) = G(ν0)e
−(ν−ν0)2/(0.36∆ν2

D) .

such that at ν1 = ν ± δfsr the gain is G(ν1) = 0.896G(ν0) = 1.16. With 4% losses
the net gain at ν1 is reduced to 1.12. Hence, the losses of the etalon at ν1 must be at
least 12% in order to prevent laser oscillation. The transmission of the etalon with
thickness t and refractive index nrefr = 1.4 is,

T =
1

1 + F sin2 ϕ2
,

with ϕ = 2πν∆s
c = 2πν

c 2nrefrt. For ν = ν0 we get T = 1 and ϕ/2 = mπ = 2πν0
c nrefrt.

For ν = ν1 we get T ≤ 0.88 and sin ϕ1

2 ≥
√

0.12/F . We have ϕ1 = ϕ0 + ∆ϕ
or ∆ϕ = 1

c4π(ν1 − ν0) = 2π · 10−4nrefrt. The thickness t of the etalon should be
small in order to minimize walk-off losses by the tilted etalon. If we assume as a
reasonable number t = 0.5 cm, we get, ∆ϕ = 2.5◦. Hence, sin ∆ϕ

2 = sin ϕ1

2 = 0.044

and F ≥ 0.12
0.0442 = 63. With F ∗ = π

2

√
F , we obtain for the necessary finesse F ∗ the

relation F ≥ 12.5. Since F ∗ = π
√
R

1−R , web get RE ≥ 0.78, i.e. the etalon reflectivity
should be larger than 78%.

53.2.4.8 Ex: Mode hopping in a HeNe laser

A single-mode HeNe laser with resonator length L = 15 cm is tuned by moving a
resonator mirror mounted on a piezo. Estimate the maximum tuning range before a
mode hop will occur, assuming an unsaturated gain of 10% at the line center and res-
onator losses of 3%. What voltage has to be applied to the piezo (expansion 1 nm/V)
for this tuning range?

Solution: The free spectral range is δfsr = c/2L = 109 GHz, so that only one mode
can oscillate if this mode is close to the center of the gain profile. The unsaturated
gain at ν0 is 10%. With losses of 3% the net gain is 7%, hence, G(ν0) = 1.07. When
tuning away from the gain center, the net gain factor should always be > 1. Hence,

G = 1.1 · e−(ν−ν0)2/(0.36∆ν2
D) − 0.03 ≤ 1 .

With ∆νD = 1.5GHz we estimate ν − ν0 ≤ 213MHz. The maximum tuning range is
from ν0− 213MHz up to ν0+213MHz. In order to tune over one free spectral range,
the mirror separation must change by ∆L = λ/2 Hence,

∆L =
λ

2

2(ν − ν0)
δfsr

= 135 nm

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight08.pdf
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at 633 nm. The required voltage is,

∆U =
dU

dx
∆x = 135V .

53.2.4.9 Ex: Mode selection with an intracavity etalon

Mode selection in an argon laser is often accomplished with an intracavity etalon.
What is the frequency drift of the transmission maximum
a. for a solid fused quartz etalon with thickness d = 1 cm due to a temperature change
of 2◦C?
b. For an air-space etalon with d = 1 cm due to an air pressure change of 4mbar?
c. Estimate the average time between two mode hopes (cavity length L = 100 cm) for
a temperature drift of 1◦C/h or a pressure drift of 2mbar/h.

Solution: a. For the solid etalon (nrefr = 1.4, α = 4 · 10−7 K-1), we estimate,

∆ν

ν
=

∆d

d
+

∆nrefr
nrefr

.

The second term is small and can be neglected,

∆ν = να∆T ≈ 4.9 · 107 Hz .

b. For an air-spaced etalon we can neglect the first term if the spacers are made of
Zerodur or the distance is temperature-compensated. The optical path due to air at a
pressure p is, for a length d equal to s = nd with nrefr(air at p = 1 bar)=1.00028.
The change in s is,

∆s = (n− 1)d
∆p

p
.

Hence, ∣∣∣∣
∆ν

ν

∣∣∣∣ =
∆s

s
=
nrefr − 1

nrefr

∆p

p
= 1.12 · 10−6 .

For ν = 6 · 1014 s-1 follows ∆ν = 6.72 · 108 s-1 = 672MHz. This illustrates that an
air-spaced etalon is less stable than a solid etalon.
c. With L = 100 cm the mode spacing is δν = 150MHz. For a temperature drift of
1◦ /h the solid etalon has a frequency drift of 336MHz/h.

53.2.4.10 Ex: Frequency and intensity noise of a laser

A single-mode laser is frequency stabilized onto the slope of the transmission max-
imum of an external reference Fabry-Perot interferometer made of invar with a free
spectral range of 8GHz. Estimate the frequency stability of the laser
a. against temperature drifts, if the FPI is temperature stabilized within 0.01◦C,
b. against acoustic vibrations of the mirror distance L in the FPI with amplitudes of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_LaserLight09.pdf
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100 nm.
c. Assume that the intensity fluctuations are compensated to 1% by a difference
amplifier. Which frequency fluctuations are still caused by the residual intensity fluc-
tuations, if a FPI with a free spectral range of 10GHz and a finesse of 50 is used for
frequency stabilization at the slope of the FPI transmission peak?

Solution: The length of the etalon is,

L =
c

2δfsr
≈ 1.8 cm .

a. The change of L with temperature is for invar (α = 1.2 · 10−6 K-1),

∆L = dα∆T ,

hence, ∣∣∣∣
∆ν

ν

∣∣∣∣ =
∆L

L
= 1.2 · 10−8 .

For ν = 5 · 1014 s-1 (λ = 600 nm) we get ∆ν = 6MHz.
b. If L changes by 1 nm due to acoustic vibrations,

∆L

L
= 5.8 · 10−8 =

∣∣∣∣
∆ν

ν

∣∣∣∣ .

Hence, ∆ν = 28MHz.
c. With a free spectral range δνFPI = 10GHz of the FPI and a finesse F ∗ = 50,
the full halfwidth of the transmission peak is ∆νFPI = δνFPI/F

∗ = 200MHz. The
transmitted intensity is,

It = I0T = I0
1

1 + F sin2 ϕ2
,

with F = ( 2πF
∗)2 = 1000. The stabilization system interprets an intensity change of

1% as a transmission change ∆T , i.e., a change ∆ϕ of ϕ, and because ϕ = 2π
λ ∆s we

get ∆ϕ = 2π
c ∆s∆ν also as a change of ν. A rough estimation of ∆ν goes as follows.

A frequency change of 100MHz changes (at a fixed plate separation L = 0.5∆s) the
transmission by 100% from 0 to 1. A transmission change of 1% therefore corresponds
to a frequency change of 0.01 · 100MHz = 1MHz. A more elaborate calculation uses
the relation,

∆T =
dT

dϕ
∆ν ,

because ∆T = 0.01. Now, we just need,

dT

dϕ
=

F sin ϕ
2 cos ϕ2

(1 + F sin2 ϕ2 )
2

and
dϕ

dν
=

2π∆s

c
.



2972 CHAPTER 53. QUANTUM OPTICS AND OPTICAL INTERFEROMETRY

53.2.5 Experiment: Analyzing the mode structure of a HeNe
laser

Here we will analyze the mode structure of a HeNe laser via (i) an optical spectrum
analyzer and (ii) a radiofrequency spectrum analyzer. We will also try to unravel the
polarization of the laser light.

1. Couple the light of a HeNe laser simultaneously into an optical spectrum ana-
lyzer and a radiofrequency spectrum analyzer. What do you observe when you
slightly heat the laser housing? Calculate from your observations the length of
the laser cavity.

2. Pass the light through a λ/4-plate and then through a polarizing beam splitter.
What do you observe in the two output ports of the PBS?

53.2.6 Experiment: Adjusting the threshold of an ECDL laser

Here we will construct a diode laser in Littmann configuration.

1. Take a laser diode, a Peltier cooler, a thermistor, a piezo transducer, and a
diffraction grating. Put everything together.

2. Optimize the threshold. Analyze the emission spectrum with an optical spec-
trum analyzer.

53.3 Introduction to optical phase and frequency
modulation

53.3.1 Acousto-optic modulator

The acousto-optic modulator AOM permits fast frequency and amplitude variations
of a laser beam. Because it does not incorporate mechanical parts, it works without
fatigue. AOMs are used, for instance, in laser printers, where the gray tone of a
pixel can be adjusted via the intensity of the laser beam, while its position (rows and
columns) is varied by a rotating mirror and the drum propagating the paper sheet. In
quantum optics labs they are frequently used for fast (down to µs) switching on and
off, intensity control, and super-fine frequency-tuning of laser beams. The angular
deflection of the first-order diffracted beam upon frequency tuning, which is often
perceived as an inconvenience, can be circumvented by double-passage through the
AOM.

The acousto-optic modulator consists of a piece of crystal (or glass) excited by an
acoustic wave with frequency f produced by a piezo-electric transducer (see Sec. 53.3.1)
mounted perpendicularly to propagation direction of the laser beam. The sound
waves propagate through the crystal as density fluctuations periodically changing the
refraction index n. The incident light is diffracted through Brillouin scattering at
the spatial modulation of the refraction index. In a wave picture, the process can be
interpreted as Bragg scattering of a light wave (with its wavelength inside the crystal
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Figure 53.34: (a) Principle of the acousto-optic modulator. (b) Scheme of the diffraction
in an acousto-optic modulator: A photon with wavevector k is scattered by a phonon with
wavevector k1 resulting in a photon with wavevector kf .

λn = 2π/kn = c/nν) from a density grating. c/n is the propagation velocity of light
inside the crystal. Since phonons (with their wavelength λf = 2π/kf = cf/f , where
cf is the sound velocity in the crystal) are quantized and can only be emitted and
absorbed entirely, the frequency of the first-order diffraction is ν1 = ν + f . In case
of an ideal adjustment of the Bragg angle, the Bragg condition results in θ1 = θ (see
Fig. 53.34),

sin θ =
kf
2k

=
fλn
2cf

. (53.53)

Since the laser beam is refracted when it enters the crystal, the relation between
the incidence and exit angle is given by Snell’s law, sinα = n sin θ. With this, the
Bragg condition can be written,

sinα =
fλ

2cf
. (53.54)

The angle between the 0th and the 1st order is, hence, 2α.
In a corpuscular picture, the process can be understood as a four-wave mixing

(4WM) between photons and phonons. The deflection of the laser beam is a con-
sequence of momentum, k1 = k + kf . The frequency shift corresponds exactly to
the Doppler shift induced by the Brillouin scattering (absorption and reemission of a
phonon in reverse direction), and we obtain a relationship that is equivalent to the
Bragg condition,

f = ν1 − ν = 2ν
cf sin θ

c/n
. (53.55)

From the Bragg condition, knowing the deflection angle and the (fixed) frequency
shift, we can calculate the sound velocity. A typical value is cf ≃ 4200 m/s 6

An AOMworks best (highest diffraction efficiency in to the first Bragg order, which
may reach more than 90%) at a specific radiofrequency, which typically is located

6The result (53.55) can be derived from conservations laws for energy ω1 = ω+ωf and momentum
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Figure 53.35: Image of an AOM without cover.

somewhere in the range f = 40...800MHz, the most common one being 80 MHz.
Deviations from this ’center frequency’ are possible within a range of typical ±10%
of the center frequency.

53.3.2 Electro-optic modulator

An electro-optic modulator is an optical device with which, by an applied voltage, the
phase, frequency, amplitude or direction of a light beam can be modulated. Modu-
lation bandwidths in the GHz regime are possible. In the simplest case, the EOM
consists of a crystal (e.g., lithium niobate), whose refractive index depends on the am-
plitude of the local electric field. That is, when a lithium niobate crystal is exposed
to an electric field the speed of light propagation is reduced. One can thus control the
phase of a light beam at the output of a crystal by inserting it into a plate capacitor
and applying a voltage. The phase shift of the light depends linearly on the applied
voltage.

Figure 53.36: Electro optic modulator.

EOMs are often used to generate sidebands in a monochromatic laser beam. They
are also used as Pockels cell, i.e., as a voltage-controlled phase-plate. The Pockels
effect produces in a medium a birefringence, which depends linearly on the applied
electric field. This is in contrast to the Kerr effect, in which the birefringence depends
in a quadratic form of the electric field.

k1 = k+ kf . Defining ω ≡ 2πν, ω1 ≡ 2πν1 and ωf ≡ 2πf we find,

ω2
f

cf
= k2

f = (k1 − k)2 = k21 + k2 − 2k1 · k =
ω2
1

c2n
+
ω2

c2n
− 2ωω1

c2n
cos(2θ) ≃ 4ωω1

c2n
sin2 θ .

With ω1 ≃ ω we reproduce the result [1407, 1408].
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Suppose the optically inactive axis is x. In this case, the influence of EOM on the
polarization of a laser beam is described by

MEOM (θ) =

(
1 0

0 eıθ

)
. (53.56)

For operation as a Pockels cell, the EOM is inserted between two crossed polarizers
oriented, e.g., along the x and y axis. The EOM itself is rotated by an angle ϕ,

MPockels(θ, ϕ) =

(
0 0

0 1

)(
cosϕ sinϕ

− sinϕ cosϕ

)(
1 0

0 eıθ

)(
cosϕ − sinϕ

sinϕ cosϕ

)(
1 0

0 0

)

= 2ıeıθ/2 sin θ
2 sinϕ cosϕ

(
0 0

1 0

)
, (53.57)

For ϕ = π/4 we get,

MPockels(θ,
π
4 ) = ıeıθ/2 sin θ

2

(
0 0

1 0

)
. (53.58)

That is, an incident beam of light, E = Eêx, linearly polarized in x-direction is rotated
into the y-direction and, depending on the phase shift θ, it is completely blocked or
transmitted through the Pockels cell [see Fig. 53.37(a)],

Itr = I0 sin
2 θ

2 . (53.59)
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Figure 53.37: (code) (a) Effect of a Pockels cell. The solid line was calculated with the

Eq. (53.57), the dotted was measured experimentally. (b) Lowest-order Bessel functions.

53.3.3 Optical phase modulation

The frequency and the phase of a laser beam can be influenced and modulated sim-
ilarly to radiofrequency signals. We can therefore use the calculation of Sec. 52.3.1
completely, only changing the carrier frequency to be the frequency of the light: The

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_EOMJonesMatrizen.m
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Fourier expansion of a complex-valued periodic function s(x) into a series is defined
as,

sN (x) =

N∑

k=−N
cke

ıkx where ck =
1

2π

∫

2π

s(x)e−ıkxdx . (53.60)

Applying this to the modulated phase shift factor s(Ωt) = eıθ(t) with θ(t) ≡ β sinΩt,
we get,

sN (Ωt) =

∞∑

k=−∞
cke

ıkΩt where ck =
1

2π

∫ π

−π
eıβ sinΩte−ıkΩtdΩt , (53.61)

but the Fourier coefficients are nothing else than the integral definition of the k-th
order Bessel function,

Jk(β) ≡
1

2π

∫ π

−π
eı(β sin τ−kτ)dτ , (53.62)

where J−k(β) = −Jk(β). Hence, we may write the electric field,

E(t) = eı[kz−ωt+ıθ(t)] = eı(kz−ωt)
∞∑

k=−∞
Jk(β)e

ıkΩt

≃ J0(β)e
ıωt + J1(β)e

ıωt+ıΩt + J−1(β)eıωt−ıΩt

. (53.63)

For small modulation indices β only the lowest-order Bessel function contribute no-
ticeable amplitudes, as illustrated in Fig. 53.37(b).

The interpretation of this is, that phase modulation imprints sidebands onto a
monochromatic laser beam. These sidebands are independent modes which can be
resolved, e.g. with an optical spectrum analyzer, as illustrated in Fig. 53.38.
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Figure 53.38: (code) Phase modulation sidebands with high (left) and low (right) modulation

index resolved by a narrow (red) or broad (blue) filter.

Technically the phase can be modulated by means of an electro-optical modulator,
as shown in Fig. 53.39(b). Alternatively, one may apply a periodic modulation of the
current which controls a diode laser, as shown in Fig. 53.39(a), which can be done
e.g. by inductive coupling using a bias-T.

From (53.63) we immediately see that phase modulation remains invisible for a
photodetector measuring |E(t)|2. Imagine, however, that the light passes through a

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Interferometry_Sidebands.m
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Figure 53.39: (a) Scheme for phase modulation of a diode laser by modulating the drive cur-
rent. (b) Phase modulation with an external EOM followed by frequency-selective absorption
of the lower sideband.

frequency-selective absorber, as illustrated in Fig. 53.39(b), such that the sidebands
suffer unequal losses. Then the photodetector will record (apart from a constant
offset) a signal oscillating at the frequency Ω,

|E(t)|2 =
∣∣J0(β)eıωt + aJ1(β)e

ıωt+ıΩt + bJ−1(β)e
ıωt−ıΩt∣∣2 (53.64)

= J0(β)
2 + (a+ b)J1(β)

2 + (a− b)J0(β)J1(β)2 cosΩt+ ... .

This idea is at the heart of powerful spectroscopic techniques, such as frequency
modulation spectroscopy, modulation transfer spectroscopy, and the Pound-Drever-
Hall frequency stabilization technique.

53.3.4 Exercises

53.3.4.1 Ex: Response time of an AOM

A beam of light at 689 nm focused to a waist of 100µm passes through the crystal of
an 80MHz AOM, characterized by a sound velocity of cs = 4200m/s.
a. By how much the first diffraction order is deflected by the AOM? Regarding the
beam divergence of the Gaussian beam, will it be possible to spatially separate the
diffraction orders?
b. An experimentalist ramps the driving frequency between 70 and 90MHz by means
of a voltage-controlled oscillator. What is the range of diffraction angles covered?
c. Estimating the response time of the AOM by the time that the traveling sound
wave needs to cover a distance corresponding to the focus of the light beam, how fast
can the experimentalist switch off the light beam by suddenly interrupting the driving
signal? What is the modulation bandwidth of the AOM?
d. The light beam passes through the AOM at a distance of d = 2mm from the piezo
transducer generating the sound wave. How will this fact limit response time?

Solution: a. The deflection angle is given by,

sinα =
fλ

2cf
≈ 0.376◦ .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation00.pdf
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The divergence angle of the Gaussian beam is,

w0

zR
=

λ

πw0
≈ 0.126◦ .

Hence, the beams can still be separated.
b. The deflection angle varies between 0.329◦ and 0.423◦.
c. The response time would be,

τ =
w0

cf
≈ 23.8 ns ,

and the bandwidth correspondingly τ−1 ≈ 42MHz.
d. The response time would be then limited to,

τ =
d

cf
≈ 476 ns .

53.3.4.2 Ex: Intensity stabilization with a Pockels cell

Assume that the output power of a laser shows random fluctuations of about 5%.
Intensity stabilization is accomplished by a Pockels cell with a halfwave voltage of
600V. Estimate the ac output voltage of the amplifier driving the Pockels cell that is
necessary to stabilize the transmitted intensity if the Pockels cell is operated around
the maximum slope of the transmission curve.

Solution: The Jones matrix for the Pockels cell is,

(
Ex

Ey

)
= (1− eıθ)

(
1 −1
1 −1

)(
Ex0

Ey0

)
= (1− eıθ)(Ex0 − Ey0)

(
1

1

)
.

Hence, the transmitted intensity is,

I = |Exêx + Eyêy|2 = 2(Ex0 − Ey0)2(1− eıθ)(1− e−ıθ)

= 4(Ex0 − Ey0)2(1− cos θ) = 8(Ex0 − Ey0)2 sin2
θ

2
.

The transmission of the Pockels cell is,

T = T0 cos
2 aU ,

where V is the applied voltage and a is a constant which depends on the electro-
optic coefficient and the dimensions of the modulator. If for U0 = 0 we have total
transmission, T (U0) = T0, and for Um = 600V zero transmission, T (Um) = 0, then
aV = π/2. The system should operate at the maximum slope of dT/dV . Then,

∆T =
∂T

∂U
∆U = −2aT0 cos aU sin aU∆U .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation01.pdf


53.3. INTRODUCTION TOOPTICAL PHASE AND FREQUENCYMODULATION2979

For a fluctuation in intensity of 5% the transmission must change by ∆T = −0.05T0
in order to compensate for the fluctuations. Hence,

∆U =
0.05

2a cos aU sin aU
.

The maximum slope is realized for aV = 45◦. Hence, U = 19V.

53.3.4.3 Ex: Generating sidebands with an EOM

An EOM (e.g. Thorlabs, EO-PM-NR-C1) characterized by a half-wave voltage of
Uhwv = 230V at 689 nm is to be used to generate optical sidebands at 20MHz.
a. Estimate numerically, how much voltage amplitude at what frequency a frequency
generator must provide in order to generate optical sidebands having half the light
power as the carrier?
b. How high must the finesse of a 5 cm confocal Fabry-Pérot spectrum analyzer be in
order to resolve the sidebands.

Solution: a. The height of the sidebands is given by the Bessel functions. The ratio
between the first-order sidebands and the carrier is given by,

∣∣∣∣
J1(β)

J0(β)

∣∣∣∣
2

!
=

1

2
,

with the modulation index β = U/Uhwv where U is the voltage provided by the fre-
quency generator. Numerically one finds that β ≈ 1.16 solves the above condition.
This corresponds to,

U = βUhwv ≈ 267V .

b. The free spectral range of the etalon being δfsr = c/2L, the resolution must be,

20MHz >
κ

2π
=
δfsr
F

.

Hence, F > 150.

53.3.4.4 Ex: Reflection of a phase-modulated signal from an optical
cavity

A phase-modulated light beam (modulation frequency f = 20MHz) is reflected from
an optical cavity and recorded by a fast photodetector, whose bandwidth is larger
than f . Using the Airy formulae for the electric field of a light beam reflected from a
cavity (53.24) calculate the reflection spectrum, that is, the intensity of reflected light
as a function of detuning ∆ = ω − ωc, where ω is the frequency of the light and ωc a
resonant frequency of the cavity. What frequency components does the photodetector
signal contain.

Solution: See Sec. 55.3.3.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation02.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=EO-PM-NR-C1
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation03.pdf
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53.3.5 Experiment: Characterizing an AOM

Fig. 53.40 illustrates the setup, use, and test of an AOM. It is recommended fa-
miliarizing with the operation principle of a voltage-controlled oscillator (VCO) (see
Sec. 52.3.1) and a voltage-controlled variable attenuator. We will also learn how to
use a spectrum analyzer 7.

1. Optimize a diffraction efficiency of the AOM. What are the impacts of the Bragg
angle, the radiofrequency power, and the laser beam diameter.

2. Measure the deflection angle as a function of the applied radiofrequency. Based
on this result, calculate the sound velocity in the crystal.

3. Measure the diffraction efficiency as a function of the applied radiofrequency
power at a fixed Bragg angle. Repeat the measurement optimizing the Bragg
angle for every value of the radiofrequency.

4. Reduce the radiofrequency power using the variable voltage-controlled attenua-
tor. Determine the diffraction efficiency as a function of radiofrequency power.

Figure 53.40: Setup for testing an acousto-optic modulator.

See Fig. 53.41.

53.3.6 Experiment: EOM in a Mach-Zehnder interferometer

Here we will learn to operate an EOM as Pockels cell and as phase modulator.

1. Align a laser beam through an electro-optic modulator. Supply a voltage be-
tween 0V and 500V to the EOM. Test its operation by beating the ordinary
with the extraordinary beam. Modulate the supply voltage at a low frequency.

7Data sheet for the VCO see appendix Fig. 56.16,
data sheet for the AOM see appendix Fig. 56.20
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Figure 53.41: Example of measured efficiency curves.

2. Set up a Mach-Zehnder interferometer by phase-matching the exit beam of the
EOM with a part of the input beam.

3. The interferometer provides a mean to convert a phase modulation into an
amplitude modulation. Describe this feature theoretically using the Eqs. (52.12)
and (52.13).

4. Use the EOM as a Pockels cell. Rotate the EOM by 45◦ around the optical
axis. Probe the polarization of the outgoing beam with a polarization filter.

5. Modulate the EOM and show that the light acquires sidebands.

53.3.7 Experiment: Creating sidebands with an EOM

EOMs can be used to generate optical sidebands 8.

1. Apply the required voltages to a VCO (MiniCircuits, ZOS100), until it generates
a variable frequency between 40 and 60MHz. Attenuate the power with a
variable attenuator up to −20 dBm. Check the amplitude and frequency with a
spectrum analyzer.

2. Add a bias-T to the power supply of a laser diode. Observe the transmission
spectrum of a Fabry-Pérot cavity for various frequencies and modulation am-
plitudes. Determine the modulation index. Use the known distance of the
sidebands to estimate the finesse of the Fabry-Pérot cavity.

53.4 Radiofrequency techniques and the transfer of
information

It often happens that information is coded within a frequency band corresponding to
wavelengths which are not easily transported to other locations. For example, audio

8Datasheet for the VCO see appendix Fig. 56.16,
data sheet for the power divider see appendix Fig. 56.18,
data sheet for the mixer see appendix Fig. 56.19
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frequencies (speech or music), ones they are converted to electromagnetic vibrations,
correspond to wavelengths of hundreds of kilometers. Such waves are very difficult to
radiate and are subject to diffraction.

For this reason, audio frequencies are often used to modulate so-called carriers,
which in turn are chosen in frequency ranges which are easy to radiate by antennas.
This is the basic idea of the radio, where the carrier frequencies are typically chosen
in the MHz regime. But information can as well be encoded into laser beams, as
illustrated in Fig. 53.42.

Figure 53.42: Analogy between radio transmission (a) and heterodyne techniques with a
laser (b).

53.4.1 Measurement of a frequency beat

Interferometry is always based on the splitting and recombination of a wave, e.g., a
laser beam or a matter wave. The recombination of laser beams is always a little
technical challenge, as it requires a perfect phase matching of the Gaussian laser
modes. Let us consider two plane waves E1 = Aeıω1t and E2 = Aeıω2t impinging on
a photodiode. We suppose that they are phase-matched, such that their wavevectors
are parallel. The photodiode then generates a beat signal,

I = |E1 + E2|2 = AB[2 + 2 cos(ω1 − ω2)t] . (53.65)

In practice, laser beams are usually not plane waves, but have a finite diameter
and radius of curvature. In order to get a high contrast signal, a good phase-matching
of the beams is important in order to obtain a strong photodiode signal.
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Figure 53.43: Principle of a beat frequency measurement.

53.4.2 Homodyne method

For the homodyne method the field amplitude of a laser beam, Ei, with frequency,
ω = ck, is divided by a beam splitter (reflectivity R = |η|2 ≃ 50%) into a reference
beam (reflection at an optically dilute medium) and a probe beam, exactly as we have
done for the Michelson interferometer in Sec. 53.1.3, when we obtained the formula
(53.13) 9,

I ∝ 1 + cos[k(Lt − Lr)] . (53.66)

However, we will now modulate the path length of one interferometer arm, e.g. using
an EOM, Lr = Lr(t). The modulation can, but does not need to be sinusoidal. In
fact it may be an arbitrary radiofrequency signal, e.g. generated by acoustic sound.
Restricting to small modulation amplitudes, kLr ≪ π, and choosing the length of the
interferometer arms such that,

I(t) ∝ sin kLr ≃ kLr(t) , (53.67)

we see, that the photodetector signal will reproduce the modulation signal. In other
words, we encoded information on a laser beam, which carries it (e.g. through an
optical fiber) to another place.

53.4.3 Heterodyne method

The heterodyne method is similar to the homodyne one, except that the probe beam
is frequency-shifted (e.g., by the passage through an AOM operated at frequency Ω),

E ′t = EteıkLt+ıΩt . (53.68)

The photodetector signal generated by the beams after their recombination at the
beam splitter is,

I ∝
∣∣(1− η)EreıkLr + ηEteıkLt+ıΩt

∣∣2 (53.69)

=
∣∣−(1− η)ηEieıkLr + η(1− η)EieıkLt+ıΩt

∣∣2

= |(1− η)ηEi|2
∣∣−e2ıkLr + eıkLt+ıΩt

∣∣2 .

9Here, we call Lt,r the total length of the interferometer arm (back and forth for Michelson,
one-way for Mach-Zehnder).
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Figure 53.44: Principle scheme of the (a) homodyning and (b) heterodyning technique at
the example of a Mach-Zehnder interferometer. The components in the yellow area of (b)
constitute a Lock-In amplifier.

This signal is now demodulated with the AOM frequency,

IeıΩt ∝
∣∣−eıkLr + eıkLt+ıΩt

∣∣2 eiΩt = e2ıΩt − eık(Lt−Lr)+2ıΩt − e−ık(Lt−Lr) . (53.70)

A low-pass filter cuts all ac-components of the signal,

Ifiltered(t) ∝ −e−ık(Lt−Lr) ≃ −1 + ık[Lt − Lr(t)] , (53.71)

for small signal amplitudes Lr(t).

53.4.4 Measuring the quadrature components of an electric
field

Photodetectors measure intensities I ∝ |E⃗|2. Sometimes, however, we are interested
in the electric field itself, for example, when we want to get the correlation function
g(1)(τ) and the spectrum SE(ω) of a signal. A frequently used procedure consists in
beating the signal of interest with a frequency-shifted local oscillator and demodulat-
ing the quadrature components of the beat signal.

Let us consider a signal of interest Esig(t) = |Esig|eıϕ(t) with information encoded
in the temporal behavior of the phase ϕ(t). The first step consists in beating this
signal on a photodetector with a frequency-shifted local oscillator Elo(t) = |Elo|eıωlot,
yielding a photocurrent,

S ∝ |Esig + Elo|2 = |Esig|2 + |Elo|2 + 2|Elo||Esig| cos[ωlot− ϕ(t)] . (53.72)

Now, demodulating this signal simultaneously with the local oscillator frequencies
cosωlot and sinωlot, we get,

Uc = S cosωlot = |Elo||Esig| cosϕ(t) + oscillating terms (53.73)

Us = S sinωlot = |Elo||Esig| sinϕ(t) + oscillating terms ,
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where the oscillating terms can be removed by a low-pass filtering. Finally, we calcu-
late,

|Esig| =
√
U2
c + U2

s

|Elo|
and tanϕ(t) =

Us
Uc

, (53.74)

and obtain the electric field via,

Esig = |Esig|eıϕ(t) =
√
U2
c + U2

s

|Elo|
eı arctan

Us
Uc . (53.75)

53.4.5 Exercises

53.4.5.1 Ex: Pound-Drever-Hall signal

Consider the photodetector signal of Exc. 53.3.4.4. What signal do you observe when
demodulating the signal with an oscillation of frequency f? Calculate the derivative
of the signal close to resonance; from which parameters does the slope depend, and
how must you choose the modulation index to maximize it?

Solution: As shown in Sec. 55.3.3, the reflection profile of a cavity is (ω in radians
and δfsr in Hertz),

Er(ω) = Ein(ω)
√
R

1− eı2kL
1−Reı2kL = Ein(ω)

√
R

1− eı∆/δfsr

1−Reı∆/δfsr
,

where ω = N2πδfsr and kL = kc
2δfsr

= ω
2δfsr

= πN + ∆
2δfsr

. The sideband spectrum,

eı(ωt+β sinΩt) ≃ eıωt
[
J0(β) + J1(β)e

ıΩt + J−1(β)e
−ıΩt]

reflected from the cavity generates in the photodetector, among others, frequency com-
ponents oscillating with e−ıΩt,

|Er|2 = e−ıΩtJ0(β)J1(β)Er(ω)E∗r (ω +Ω) + e−ıΩtJ0(β)J−1(β)E∗r (ω)Er(ω − Ω) + ...

Demodulation with eıΩt+ıθ yields,

S ≡ c|Er|2eıΩt+ıθ ≃ Re eıθJ0(β)J1(β) [Er(ω)E∗r (ω +Ω)− E∗r (ω)Er(ω − Ω)]

= Re eıθJ0(β)J1(β)Ein(ω)R×

×
(

1− eı∆/δfsr

1−Reı∆/δfsr

1− e−ı(∆+Ω)/δfsr

1−Re−ı(∆+Ω)/δfsr
− 1− e−ı∆/δfsr

1−Re−ı∆/δfsr

1− eı(∆−Ω)/δfsr

1−Reı(∆−Ω)/δfsr

)

close to resonance we expand the exponential,

1− eı∆/δfsr

1−Reı∆/δfsr
≃ −ı∆/δfsr

1−R− ıR∆/δfsr
=

1

R+ ıT δfsr/∆
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Interferometry_PhaseModulation04.pdf
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Hence, approximating R ≃ 1, we get,

S = Re eıθJ0(β)J1(β)Ein(ω)R×

×
(

1

R+ ıT δfsr/∆

1

R− ıT δfsr/(∆ + Ω)
− 1

R− ıT δfsr/∆
1

R+ ıT δfsr/(∆− Ω)

)

≃ Re eıθJ0(β)J1(β)Ein(ω)
(

1

ıT δfsr/∆

1

1− ıT δfsr/Ω
− 1

−ıT δfsr/∆
1

1 + ıT δfsr/(−Ω)

)

= Re eıθJ0(β)J1(β)Ein(ω)
∆

ıT δfsr

2

1− ıT δfsr/Ω
.

Choosing θ = π/2 and using Tδfsr = κ/2, we finally get,

S ≃ J0(β)J1(β)Ein(ω)
∆

κ/2

2

1 + κ2/4Ω2
≃ J0(β)J1(β)Ein(ω)

4∆

κ
.

Therefore, the slope of the PDH error signal is simply the inverse cavity linewidth.

53.4.6 Experiment: Beating two lasers

In this exercise, we will ...

1. Take two independent lasers operating at nearly the same frequency (within
∼ 1GHz) and overlap them at a (non-polarizing) beam splitter.

2. Focus one of the ports of the beam splitter on a photodetector with large band
width (∼ 1GHz).

3. Analyze the beat signal on a spectrum analyzer.

4. Focus a helium-neon laser onto a fast photodetector and determine the free
spectral range of the laser resonator.

53.4.7 Experiment: Homo- and heterodyning with a Michel-
son interferometer

In this exercise, we will ...

1. Set up a Michelson interferometer.

53.5 Further reading

C.J. Buczek et al., Laser injection locking [208]DOI

Zhixin Liu et al., Optical Injection Locking: From Principle to Applications [807]DOI

H. Kogelnik et al., Laser Beams and Resonators [734]DOI

A. Yariv, Quantum Electronics [1407]DOI

http://doi.org/10.1109/PROC.1973.9294
http://doi.org/10.1109/JLT.2019.2945718
http://doi.org/
http://doi.org/
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Figure 53.45: Homo- and heterodyning with a Michelson interferometer.

A. Yariv et al., Optical waves in crystals [1408]DOI

W. Demtröder, Atoms, Molecules and Photons: An Introduction to Atomic- Molecular-
and Quantum Physics [352]DOI

W. Lichten, Precise Wavelength Measurements and Optical Phase Shifts: I. General
Theory [800]DOI

W.W. Chow, The ring laser gyro [260]DOI

http://doi.org/
http://doi.org/
http://doi.org/
http://doi.org/10.1103/RevModPhys.57.61
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Chapter 54

Optical spectroscopy

Modern ’optics’ is to be understood as ’physics of light-matter interaction’ in the
optical energy regime. In this sense, this area of physics comprises quantum optics,
photonics, atomic physics, and atom optics. Since the invention of the laser the
field of optics has seen a huge technological progress leading to the development of
extremely powerful and precise tool for investigating and manipulating matter. The
femtosecond laser, the frequency comb, atomic interferometers and clocks, and Bose-
Einstein condensation are just a few examples.

Spectroscopy is the art of taking and interpreting spectra, i.e. frequency-dependent
response functions. The variety of spectroscopic techniques is so overwhelming that
a survey is hopeless. As the course also aims at familiarizing the student with ap-
plications, a major part of this course will concentrate on techniques employed and
available in quantum optics labs. These techniques are mostly oriented toward ultra-
high resolution spectroscopy and techniques of manipulating the motion of atoms.

In Sec. 54.1 to 54.4.3, we will try various spectroscopic techniques applied to atomic
or cavity resonances.

54.1 Spectrometer and monochromator

Typical dispersive devices are prisms and gratings.

• lateral displacement as a function of λ

• spectral resolving power R = |λ/∆λ| = |ν/∆ν|

• Rayleigh criterion

54.1.1 Prism spectrometer

For a symmetrical arrangement (α1 = α2 = α) it is easy to see from Fig. 54.1 that,
β = 1

2ϵ and θ = 2(α− β). Snell’s law the yields,

n =
sinα

sinβ
=

sin 1
2 (θ + ϵ)

sin 1
2ϵ

. (54.1)

Hence,
dn

dθ
=

1

2

cos 1
2 (θ + ϵ)

sin 1
2ϵ

, (54.2)

2989
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or
dθ

dn
=

sin 1
2ϵ

1− n2 sin 1
2ϵ

. (54.3)

The angular dispersion is therefore,

dθ

dλ
=

sin 1
2ϵ

1− n2 sin 1
2ϵ

dn

dλ
. (54.4)

The spectral dispersion of typical transparent materials is on the order of −dn/dλ ≈
10−4.

Figure 54.1: Illustration of (a) the prism spectrometer and (b) the grating spectrometer.

Example 300 (Prism spectrometer): We calculate the angular dispersion for
an equilateral prism (sin 1

2
ϵ = 0.5) made of BK7 for two superposed wavelength

λ1 = 461 nm (nλ1 = 1.5243) and λ2 = 633 nm (with nλ2 = 1.5151) to be,

dθ =
1√

1− (n/2)2
dn ≈ 0.8◦ .

The resolving power can be calculated, once we have expressed the limiting aper-
ture a = d cosα where d = g/(2 sin ϵ

2 ),

∣∣∣∣
λ

∆λ

∣∣∣∣ = a
dθ

dλ
=

g cosα

1− n2 sin 1
2ϵ

dn

dλ
= g

dn

dλ
. (54.5)

Solve Exc. 51.2.3.14.

54.1.2 Grating spectrometer

Destructive interference occurs for,

∆s = mλ = a− b = d sinα− d sinβ . (54.6)

Frequently used is the so-called Littrow configuration for which α = −β.
The grating represents a multiple beam interferometer, because the beams reflected

from every groove of the grating are phase-shifted by amounts (setting α = 0,

δ = 2π
λ ∆s = −2π d

λ
sinβ . (54.7)
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The sum of the reflections from N grooves of an incident plane wave Ein = E0e
ı(k·r−ωt

is therefore,

Er =
√
RE0

N∑

m=0

eıkr·r−ωteimδ =
√
RE0e

ıkr·r−ωt 1− eıNδ
1− eıδ . (54.8)

Consequently, the intensity is,

Ir = RI0
sin2 N2 δ

sin2 1
2δ

. (54.9)
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Figure 54.2: (code) Reflection curve of a diffraction grating.

The angular dispersion is, using Eqs. (54.7) and (54.6),

dβ

dλ
=

(
dλ

dβ

)−1
= − m

d cosβ
= − sinα− sinβ

λ cosβ
. (54.10)

The resolving power is,
∣∣∣∣
λ

∆λ

∣∣∣∣ =
Nd(sinα− sinβ)

λ
= mN . (54.11)

Solve Exc. 54.1.3.1, 54.1.3.2, and 54.1.3.3.

54.1.3 Exercises

54.1.3.1 Ex: Resolution of a grating spectrometer

Calculate the spectral resolution of a grating spectrometer with an entrance slit width
of 10µm, focal lengths f1 = f2 = 2m of the mirrors M1 and M2, a grating with
1800 grooves/mm and an angle of incidence α = 45◦. What is the useful minimum
slit width if the size of grating is 100× 100mm2?

Solution: From the equation
λ

∆λ
= mN

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_DiffractionGrating.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom02.pdf
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we obtain with N = 1800 · 100 and m = 1, λ/∆λ = 1.8 · 105. However, this does not
take into account the finite width b of the entrance slit s1. The two spectral lines at
λ1 and λ2 can be resolved if the images s2(λ1) and s2(λ2) can be resolved. The width
of these slit images is

∆s2 = f2λ/a+ bf2/f1 .

For a = 10 cm, f2 = f1 = 2m, hence ∆s2 = 20λ + 10µm. For λ = 500 nm, hence
∆s2 = 20µm. The separation of s2(λ1) and s2(λ2) is:

∆s2 = f2
dβ

dλ
∆λ

with β being the diffraction angle. From the grating equation for m = 1: d(sinα +
sinβ) = λ we get,

dβ

dλ
=

(
dλ

dβ

)−1
=

1

d cosβ
.

Now cosβ =
√
1− sin2 β =

√
1−

(
λ
d − sinα

)2
, such that,

∆s2 =
f2∆λ

d cosβ
≥ ∆s2 or ∆λ ≥ ∆s2d cosβ

f2
.

For α = 45◦, λ = 500 nm, d = (1/18000) cm = 0.56µm, cosβ = 0.9825, we get

β = 11◦. Now, ∆λ ≥ 1.1 · 10−11 m, that is λ
∆λ = 500·10−9

1.1·10−11 = 4.5 · 104. This is three
times smaller than mN. The useful minimum entrance slit width is given by,

bmin =
2f1
d
λ =

2

0.1
· 5 · 10−7 m = 10µm .

54.1.3.2 Ex: Grating spectrometer

The spectrometer in Exc. 54.1.3.1 shall be used in first order for a wavelength range
around 500 nm. What is the optimum blaze angle, if the geometry of the spectrometer
allows an angle of incidence α about 20◦?

Solution: The optimum blaze angle is θ = (α− β)/2. With α = 20◦, λ = 500 nm, β
can be obtained from the grating equation with m = 1:

d(sinα+ sinβ) = λ .

With d = 1/18000 cm we get β = −33.5◦ and then θ = 26.7◦.

54.1.3.3 Ex: Littrow grating

Calculate the number of grooves/mm for a Littrow grating for a 25◦ incidence at
λ = 488 nm (i.e., the first diffraction order is being reflected back into the incident
beam at an angle α = 25◦ to the grating normal).

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom04.pdf
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Solution: The condition for a Littrow grating to first order is:

2d sinα = λ ,

from which d = 580.9 nm. Hence, the number of grooves is 1721 /mm.

54.1.3.4 Ex: Combining spectrometers

A fluorescence spectrum shall be measured with a spectral resolution of 10−2 nm. The
experimenter decides to use a crossed arrangement of grating spectrometer (linear dis-
persion: 0.5 nm/mm) and FPI of Exc. 53.1.10.7. Estimate the optimum combination
of spectrometer slit width and FPI plate separation.

Solution: For ∆λ = 10−2 nm and λ = 500 nm the spectral resolution has to be
at least:

λ

∆λ
≥ 5× 104 .

The effective finesse of the FPI in Exc. 53.1.10.7 is F ∗total = 47.6. The plate separation
then has to be,

d = 1
2∆s =

1

2

λ2

∆λ
F ∗ = 0.26mm .

The free spectral range is ∆ν = c/2d, hence,

|δλ| = +
c

ν2
|δν| = λ2

2d
= 0.38 nm .

The spectral interval δλ transmitted by the spectrograph should be smaller than δν in
order to avoid the overlap of different orders. This means that the spectral resolution
of the spectrograph δλ = dλ/dx ∆s ≤ 0.38 nm with a linear dispersion of dλ/dx =
5× 10−2 nm/mm. Therefore, ∆s ≤ 0.38mm /5× 10−1 = 0.76mm.

54.1.4 Experiment: Separating bichromatic light by prisms
and gratings

In this experiment we will study the dispersive power of a prism and a grating.

1. Combine the beams of a helium-neon laser and a laser at 461 nm via a beam-
splitter. Pass this combination through a prism and quantify the dispersion.

2. Calculate the minimum angle between the two beams.

3. Shine the combination onto a reflection grating and quantify the dispersion.

54.1.5 Experiment: Thorlabs optical spectrum analyzer

CCS175, characterization, Thorlabs R⃝ tour.
Czerny-Turner CCD spectrometer

1. Irradiate light on OSA and observe the spectrum.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_SpectroMonochrom05.pdf
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3482
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Figure 54.3: Principle of operation of a Czerny-Turner monochromator.

54.1.6 Experiment: HighFinesse wavemeter

Wavemeters measure the wavelength of monochromatic light sources by interference.
One type of wavemeter is based on a Michelson interferometer, where the length of one
interferometer arm is uniformly increased while the interference fringes are counted.
Counting the fringes of a known reference laser simultaneously and comparing the
counts of the unknown and the reference laser, the wavelength of the unknown laser
can be determined with high precision (down to 2MHz resolution).

Figure 54.4: Principle of operation of a Michelson-type wavemeter.

1. HighFinesse WSU30, characterization.
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54.2 Fluorescence, excitation, and absorption spec-
troscopy

Depending on the information we want to extract from a sample and on the available
instrumentation various types of spectroscopic techniques are possible, which will be
discussed on the following sections.

54.2.1 Classification of spectroscopic methods

It is important to distinguish fluorescence spectra from excitation spectra: Fluores-
cence spectra are taken by processing the light emitted from a radiator in a monochro-
mator. That is, the light is shone onto a spectral band filter, which only transmits
a narrow fraction of the fluorescence spectrum. The power of the transmitted light
is measured with a detector. Upon changing the center frequency of the band filter,
different components of the fluorescence spectrum are measured, thus yielding a curve
u(ν), which represents the spectral energy density of the radiator [see Fig. 54.5(a,d)].

Figure 54.5: (a) Taking a fluorescence spectrum, (b) an excitation spectrum, and (c) an ab-
sorption spectrum. Typical level schemes for (d) fluorescence spectroscopy and (e) excitation
or absorption spectroscopy.

In contrast to fluorescence spectroscopy, excitation or absorption spectra are taken
by varying the frequency of the light exciting a sample. The reemitted light is then
measured by a detector without discriminating its frequency components. Obviously,
both method yield very different information about the scatterer [see Fig. 54.5(b,c,e)].
Depending on whether the scattered of the transmitted light is detected, we speak of
excitation and absorption spectroscopy.

54.2.2 Saturated absorption spectroscopy

One of the most popular spectroscopic technique is saturation spectroscopy, as it is
simple, robust, and allows to avoid Doppler-broadening. There are, however, many
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Figure 54.6: (a) Experimental scheme for saturated absorption spectroscopy. (b) Spectral
hole burning by the counter-propagating saturation and probe beams for (red) detuned and
(blue) resonant light.

possible implementations of saturation spectroscopy, f.ex. frequency modulation spec-
troscopy or modulation transfer spectroscopy, which we will present in the following.

54.2.2.1 Calculation of the Lamb-dip

The scheme known as Lamb-dip spectroscopy and which is illustrated in Fig. 54.6(a),
consists in a cell filled with a gas [for example, atomic rubidium whose resonance
frequency is ω0 = ck = 2πc/780 nm and decay rate is Γ = (2π) 6MHz] and two laser
beams with the same frequency ω, but propagating in opposite directions. One is
called the saturating beam, the other probe beam.

The basic idea is that, if the laser frequency is detuned from resonance, ω ̸= ω0,
the counter-propagating beams will interact with different velocity classes (i.e. atomic
velocities projected on the optical axis, v = v ·êk), which results in two distinct ’holes’
in the excitation profile [red curve in Fig. 54.6(b)]. Only for resonant light, ω = ω0,
will the counter-propagating beams interact with the same velocity class (i.e. atomic
velocities with v = 0). The ’holes’ in the excitation profile then overlap thus leading
to a deeper depression called Lamb-dip [blue curve in Fig. 54.6(b)].

For a quantitative description of the Lamb-dip we consider Maxwell’s one-dimensional
and normalized velocity distribution,

ρ(v)dv =

√
m

2πkBT
e−mv

2/2kBT dv . (54.12)

As an example, we consider a gas at T = 300K temperature, where the partial
pressure of rubidium is about P = 10−1 mbar, such that the particle density is,

n(T ) =
P

kBT
. (54.13)

We also assume a cell length of L = 10 cm.
The probe laser intensity is below saturation, such that the optical cross section

for an atom moving with velocity v, is,

σ(v) =
6π

k2
Γ2

4(ω − ω0 − kv)2 + Γ2
, (54.14)
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where we considered the fact that the atoms moving with the velocity v along the
optical axis perceive the probe laser beam as Doppler-shifted by an amount kv.

The saturating laser now has high intensity. Let us suppose here, Ω ≡ 10Γ, where
Ω is the Rabi frequency caused by the saturating laser. In this way, it creates a
population of Ne atoms in the excited state. Since this population is missing in the
ground state, Ng = N−Ne, the absorption is reduced for the probe beam by a factor,

Ne
N

=
Ω2

4(ω − ω0 + kv)2 + 2Ω2 + Γ2
. (54.15)

In contrast to (54.14), we now have to consider saturation broadening.
We will now calculate the spectrum of the optical density for the probe laser,

OD(ω), and the light intensity transmitted through the cell, I
I0

= e−OD , according to
the Lambert-Beer law.
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Figure 54.7: (code) (a) Optical density and (b) absorption. (Blue) Integral formula and

(green) approximation for high temperature and high saturation.

The optical density with Doppler broadening is,

OD(T, ω) = Ln(T )

∫ ∞

−∞

Ng−Ne

N σ(v)ρ(v)dv (54.16)

= L
P

kBT

√
m

2πkBT

6π

k2

∫ ∞

−∞

(
1− 2Ω2

4(∆ + kv)2 + 2Ω2 + Γ2

)
Γ2

4(∆− kv)2 + Γ2
e−mv

2/2kBT dv ,

with ∆ ≡ ω − ω0 and substituting Ng − Ne = N − 2Ne. The widths of the three
distribution functions are, respectively,

δνsat =
√

1
2Ω

2 + 1
4Γ

2 ≈ (2π) 68MHz for the saturating beam

δνDpp = k
√

kBT
m ≈ (2π) 217MHz for the Doppler broadening

δνprb = 1
2Γ ≈ (2π) 3MHz for the probe beam

(54.17)

where v̄ =
√
kBT/m is the mean atomic velocity (or the rms width) of Maxwell’s

distribution. Since the spectral width of the probe laser spectrum is much smaller,
we can replace it by a δ-function,

Γ2

4(∆− kv)2 + Γ2
−→ πΓ

2
δ(∆− kv) , (54.18)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_LambDip.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_LambDip.m
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which gives,

OD(T, ω) ≃ L
P

kBT

√
m

2πkBT

6π

k3

∫ ∞

−∞

(
1− 2Ω2

4(∆ + kv)2 + 2Ω2 + Γ2

)
× (54.19)

× πΓ

2
δ(∆− kv)e−mv2/2kBT dkv

= L
P

kBT

√
m

2πkBT

6π

k3
πΓ

2

(
1− 2Ω2

8∆2 + 2Ω2 + Γ2

)
e−m(∆/k)2/2kBT .

The Lamb dip is the narrow (Doppler-free) feature in the center of the the spectrum
exhibited in Fig. 54.7. Lamb-dip spectra are commonly serve as frequency references
for laser frequency stabilization schemes.

54.2.3 Frequency modulation and modulation transfer spec-
troscopy

Variations of the saturation spectroscopic idea are the frequency modulation spec-
troscopy (FMS) and the modulation transfer spectroscopy (MTS). The basic scheme
of those techniques is shown in Fig. 54.8. As in saturation spectroscopy, two coun-
terpropagating beams interact with the same atoms of a molecular gas, but now one
of the beams is frequency-modulated (e.g. using an electro-optic modulator). In the
FMS configuration, the probe beam is modulated, and the sidebands are discrimi-
nated at the spectral feature generated by the saturation beam in a very similar way
as for the Pound-Drever-Hall technique. The profile of the FMS signal is calculated
in Exc. 54.2.4.3 [795, 147, 576, 1225, 692, 231, 393, 1201, 1153, 628, 831].

In the MTS configuration, the saturation beam is modulated, and the sidebands
are transferred to the probe beam via nonlinear four-wave mixing processes. In both
cases, the sidebands are demodulated with the local oscillator frequency driving the
EOM.

Figure 54.8: Schemes of frequency-modulation and modulation transfer spectroscopy.

The advantages of both techniques is, that they generate dispersive Doppler-free
lineshapes. The FMS signal appears as a sharp feature on top of a large Doppler
background (similarly to the Lamb-dip). In contrast, the MTS signal is free from
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Doppler background. The MTS signal recorded by the photodetector is given by,

I(∆) =
∑

a,b

µ2
ab

γj + ıδ

(
1

γab + ı(∆ + δ/2)
− 1

γab + ı(∆ + δ)
(54.20)

+
1

γab − ı(∆− δ)
− 1

γab − ı(∆− δ/2)

)
,

where a and b denote the lower and upper levels, µ2
ab is the electric dipole moment,

γab is the optical relaxation rate, γj is the decay of the energy level j of the molecule,
and δ is the modulation frequency. Behind the mixer we see the electric signal,

S(∆, ϑ) = Re [I(∆)e−ıφ] , (54.21)

where ϑ is the demodulation phase [830]. The curves are shown in Fig. 54.8.
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Figure 54.9: (code) (a) Calculated FMS signals and (b) MTS signals as a function of detuning

for various modulation indices.

Example 301 (Modulation transfer spectroscopy): Modulation transfer
spectroscopy is caused by four-wave mixing (4WM) processes, which have the
general form P (ω+Ω) = χ(3)(ω+Ω)Es(ωs)Ep(ωs)E

∗
s (ωs−Ω), or similar. When

the beams ω and ωs are counter-propagating, and the atoms are moving, their
resonances shift toward ω∓k·v, respectively in the atomic rest system. Resonant
enhancement of 4WM occurs, when one of the intermediate levels coincides with
ω0:

ω − k · v = ω0

(ω − k · v)− (ω + k · v − Ω) = 0

(ω − k · v)− (ω + k · v − Ω) + (ω + k · v) = ω0

(ω − k · v)− (ω + k · v − Ω) + (ω + k · v)− (ω − k · v +Ω) = 0 .

Assuming ω = ωs = ω − 0, these resonances reduced to,

k · v = 0,±Ω ,

and similarly for the other 4WM processes. This means, that the saturation

beam burns holes in the velocity distribution at k · v = 0,± 1
2
Ω,±Ω, which

modulate the probe beam.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_FMSandMTSCalcs.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_FMSandMTSCalcs.m
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Figure 54.10: Levels involved in 4WM upon MTS.

54.2.4 Exercises

54.2.4.1 Ex: Width of the absorption band

The resonator of a dye laser with a large emission bandwidth additionally contains an
absorbing (dense) gas. The absorption spectrum of the gas is Lorentzian with a width
of 3GHz, and the absorption coefficient has, in the middle of the absorption line (at
600 nm), the value of 0.2. What are the maximum and minimum relative spectral
distances ∆f/∆f0 of the axial modes within the spectral range of the absorption,
compared to the distances ∆f0 of the empty resonator?

Solution: The susceptibility of the absorption line can also be described as complex
refractive index,

n = n′ + ın′′ = 1 + C

[
(ν0 − ν) 12∆ν

(ν0 − ν)2 +
(
1
2∆ν

)2 + ı

(
1
2∆ν

)2

(ν0 − ν)2 +
(
1
2∆ν

)2

]
,

where n′ is the dispersion and n′′ the absorption. In resonance the dispersion dis-
appears, therefore C = 0.2 is the absorption. The real part of the refraction index
gives the dispersion, such that the distances of the modes is, νn+1 − νn = c

n2L . The
relationship between the mode distances in the full resonator and the empty resonator
is ∆f

∆f0
= 1

n .

54.2.4.2 Ex: Lorentz and Gaussian profiles

At which detuning is a Doppler-broadened line dominated by Lorentzian profile of
the transition?

Solution: We consider a cell of length L at temperature T . With the optical cross
section,

σ =
6π

k2
Γ2

4(ω − ω0 − kv)2 + 2Ω2 + Γ2

and the Maxwell-Boltzmann distribution,

ρdv =

√
m

2πkBT
e−mv

2/2kBT dv

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_Transiclassica02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_LorentzGauss01.pdf
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Figure 54.11: (code) Refraction index (red,–) and mode distance (green, +) as a function of

the detuning.

the optical density is,

OD(T, ω) = L
P

kBT

√
m

2πkBT

6π

k2

∫ ∞

−∞
e−mv

2/2kBT
Γ2

4(ω − ω0 − kv)2 + 2Ω2 + Γ2
dv .

We consider the normalized spectra,

σ =
a/π

x2 + a2
and ρ =

1

b
√
π
e−x

2/b2 .

54.2.4.3 Ex: Frequency-modulation spectroscopy

Calculate the FMS spectrum for a rubidium gas (describing the atoms as a two-level
system) under the conditions specified in Sec. 54.2.2 and assuming a modulation fre-
quency of f = 10MHz and a modulation index of β = 1.

Solution: The optical density derived in (54.19),

OD(∆) = C

(
1− η 2Ω2

8∆2 + 2Ω2 + Γ2

)
e−∆

2/2δ2Dpp ,

describes the Lamb-dip spectrum, where we now additionally account for imperfections
in the saturation (misalignment, time-of-flight broadening, etc.) by a factor η ∈ [0, 1].
The probe beam is now frequency-modulated,

Eprb,0(∆) = J0(β)e
ı∆t + J1(β)e

ı(∆+f)t + J−1(β)e
ı(∆−f)t ,

and transmitted through the cell, counter-propagating to the (unmodulated) saturation
beam, where the sidebands suffer different frequency-dependent attenuations,

Eprb(∆) = Eprb,0(∆)e−
1
2OD(∆) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_Dispersao.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_Dispersao.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Spectroscopy_LorentzGauss02.pdf


3002 CHAPTER 54. OPTICAL SPECTROSCOPY

The photodetector records the signal,

Iprb(∆) = |Eprb(∆)|2

= |J0(β)e−
1
2OD(∆)eı∆t + J1(β)e

− 1
2OD(∆+f)eı(∆+f)t + J−1(β)e

− 1
2OD(∆−f)eı(∆−f)t|2

= J0(β)
2e−OD(∆) + J0(β)J1(β)e

− 1
2OD(∆)− 1

2OD(∆+f)(eıft + e−ıft)

+ J0(β)J−1(β)e
− 1

2OD(∆)− 1
2OD(∆−f)(eıft + e−ıft) + ... .

The demodulated signal is,

S(∆) = Iprb(∆)e−ıft+ıφ ,

which, after low-pass filtering, becomes,

S(∆) = J0(β)J1(β)e
ıφe−OD(∆/2)

[
e−

1
2OD(∆+f) − e−

1
2OD(∆−f)

]
.

The FMS spectrum is shown in Fig. 54.9(a).

54.2.5 Experiment: Rubidium Lamb-dips

In this exercise, we will spectroscopically identify the various lines of the rubidium
D2-transition of the isotopes 87Rb and 85Rb. The hyperfine splittings of the ground
and excited states are reproduced in Fig. 54.12.

1. Set up the optics for a Lamb-dip spectroscopy as shown in Fig. 54.12.

Figure 54.12: Saturation spectroscopy.

2. Fig. 54.13 shows a typical spectrum recorded with a rubidium gas cell. Find an
interpretation for the various lines of the spectrum.

54.3 Polarization spectroscopy

The Hänsch-Couillaud technique uses the birefringence of certain materials, devices,
or gases.
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Figure 54.13: (Black) Lamb-dip spectroscopy of a rubidium gas (natural isotope mixture of
85Rb and 87Rb) showing the hyperfine structure transitions of the D2-line. (Red) Derivative
of the spectrum in (a).

54.3.1 Birefringent cavity

We consider a birefringent cavity exhibiting slightly different path lengths for two
axis that we will call, respectively, ordinary andextraordinary. Fig. 54.14(a) shows
the optical setup. The detector signals may be calculated via a concatenation of
the Jones matrices for a λ/2-plate, the transmissive response of the cavity, another
λ/2-plate, and finally a polarizing beam splitter,
(
Eo

Ee

)
=M

(
1

0

)
with (54.22)

M ≡
(

cosβ sinβ

− sinβ cosβ

)(
T

1−Re2ıkoL 0

0 T
1−Re2ıkeL

)(
cosα sinα

− sinα cosα

)
. (54.23)

For the particular polarization angles α = π
4 and β = 0, we derive the difference of

the photodetector signals,

∆I = |Eo|2 − |Ee|2 = T 2

2

[
1

1−R2 − 2R cos 2koL
− 1

1−R2 − 2R cos 2keL

]
. (54.24)

As Fig. 54.14(b) demonstrates, the spectra corresponding to the axis, obtained by
ramping the laser frequency are slightly shifted with respect to each other. Their
subtraction leads to a dispersive lineshape that suits for laser locking purposes in the
so-called Hänsch-Couillaud stabilization.
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Figure 54.14: (code) (a) Generating a Hänsch-Couillaud error signal by transmission
of a birefringent linear cavity. (b) Signals recorded by the two photodetectors (blue
and green) and their difference (red).

54.3.2 Experiment: Birefringence of a ring cavity

Birefringence automatically occurs in a ring cavities. In this exercise, we will analyze
the birefringence observed in reflection of a such a ring cavity. In a ring cavity, the
resonance frequencies of the s-polarized and the p-polarized modes are slightly shifted
from one another due to the different penetration depth of the s- and p-polarized light
modes into the layers of the dielectric mirrors. For a moderate finesse of the cavity
(say F = 2000), the modes actually overlap. This leads to a birefringence used in the
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Figure 54.15: (code) (a) Generating a Hänsch-Couillaud error signal by (a) reflec-
tion from a ring cavity and (b) transmission of a linear cavity containing a Brew-
ster plate. (b) Signals recorded by the two photodetectors (blue and green) and
their difference (red). (a) Reflection signals |Es|2 and |Ep|2 from a birefringent
cavity with δfsr = 8.2GHz, φs = 0, Rhr,s = 99.97%, Ric,s = 99.74%, Fs =
π(R2

hr,sRic,s)
1/6/[1 − (R2

hr,sRic,s)
1/3], φp = 0.01, Rhr,p = 99.92%, Ric,p = 99.34%,

and Fp = π(R2
hr,pRic,p)

1/6/[1− (R2
hr,pRic,p)

1/3]. (b) Difference |Es|2 − |Ep|2.

famous Hänsch-Couillaud locking scheme. The detector signal in the scheme shown
in the figure may calculated via a concatenation of the Jones matrices for a λ/2-plate,
the reflective response of the ring cavity, another λ/2-plate, and finally a polarizing

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Spectroscopy_BirefringentCavityCalcs.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LO_Spectroscopy_BirefringentRingcavityCalcs.m
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beam splitter,

(
Es

Ep

)
=M

(
1

0

)
with (54.25)

M ≡
(

cosβ sinβ

− sinβ cosβ

)


1−e−2πıω/δfsr+ıϕs

1−Rse−2πıω/δ+ıϕs
0

0 1−e−2πıω/δfsr+ıϕp

1−Rpe
−2πıω/δ+ıϕp



(

cosα sinα

− sinα cosα

)
.

Calculating |Es|2 and |Ep|2 as a function of the laser frequency ω reproduces the
curves plotted in Fig. 54.15(a).

1. x

54.4 Other spectroscopic techniques

54.4.1 Mode-locked femtosecond laser

Mode-locking is a technique in optics by which a laser can be made to produce pulses
of light of extremely short duration, down to the order of femtoseconds. The basis of
the technique is to induce a fixed-phase relationship between the longitudinal modes
of the laser’s resonant cavity. Constructive interference between these modes can
cause the laser light to be produced as a train of pulses.

In a simple laser, each of these cavity modes amplified within the bandwidth of
the gain medium oscillates independently, with no fixed relationship between each
other. The individual phase of the light waves in each mode is not fixed, and may
vary randomly due to such things as thermal changes in materials of the laser. In
lasers with only a few oscillating modes, interference between the modes can cause
beating effects in the laser output, leading to fluctuations in intensity; in lasers with
many thousands of modes, these interference effects tend to average to a near-constant
output intensity.

If instead of oscillating independently, each mode operates with a fixed phase rela-
tion to the other modes. Instead of a random or constant output intensity, the modes
of the laser will periodically constructively interfere with one another, producing an
intense burst or pulse of light. Such a laser is said to be mode-locked or phase-locked.
These pulses occur separated in time by τ = 2L/c, where τ is the laser cavity round
trip time and corresponds to the cavity’s inverse free spectral range.

54.4.1.1 Active mode-locking

The most common active mode-locking technique places a standing wave electro-optic
modulator (EOM) into the laser cavity. When driven with a sinusoidal electrical
signal, this produces an amplitude modulation of the light in the cavity. Considering
this in the frequency domain, if a mode has optical frequency ν, and is amplitude-
modulated at a frequency f , the resulting signal has sidebands at optical frequencies
ν ± f . The modulation frequency is now chosen to coincide with the cavity’s free
spectral range, f = δfsr, and since the sidebands are driven in-phase, the central
mode and the adjacent modes will be phase-locked together. Further operation of the
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modulator on the sidebands produces phase-locking of the ν ± 2f modes, and so on
until all modes in the gain bandwidth are locked.

This process can also be considered in the time domain. The amplitude modulator
acts as a weak ’shutter’ to the light bouncing between the mirrors of the cavity,
attenuating the light when it is ’closed’, and letting it through when it is ’open’. If
the modulation rate f is synchronized to the cavity round-trip time τ , then a single
pulse of light will bounce back and forth in the cavity. The actual strength of the
modulation does not have to be large; a modulator that attenuates 1% of the light
when ’closed’ will mode-lock a laser, since the same part of the light is repeatedly
attenuated as it traverses the cavity.

Related to this amplitude modulation (AM), active mode-locking is frequency
modulation (FM) mode-locking, which uses a modulator device based on the acousto-
optic effect. This device, when placed in a laser cavity and driven with an electri-
cal signal, induces a small, sinusoidally varying frequency shift in the light passing
through it. If the frequency of modulation is matched to the round-trip time of the
cavity, then some light in the cavity sees repeated upshifts in frequency, and some
repeated downshifts. After many repetitions, the upshifted and downshifted light is
swept out of the gain bandwidth of the laser. The only light which is unaffected is
that which passes through the modulator when the induced frequency shift is zero,
which forms a narrow pulse of light.

The third method of active mode-locking is synchronous mode-locking, or syn-
chronous pumping. In this, the pump source (energy source) for the laser is itself
modulated, effectively turning the laser on and off to produce pulses.

54.4.1.2 Passive mode-locking

Passive mode-locking techniques are those that do not require a signal external to the
laser to produce pulses. Rather, they use the light in the cavity to cause a change in
some intracavity element, which will then itself produce a change in the intracavity
light. A commonly used device to achieve this is a saturable absorber.

A saturable absorber is an optical device that exhibits an intensity-dependent
transmission. For passive mode-locking, ideally a saturable absorber will selectively
absorb low-intensity light, and transmit light which is of sufficiently high intensity.
When placed in a laser cavity, a saturable absorber will attenuate low-intensity con-
stant wave light (pulse wings). However, because of the somewhat random intensity
fluctuations experienced by an un-mode-locked laser, any random, intense spike will be
transmitted preferentially by the saturable absorber. As the light in the cavity oscil-
lates, this process repeats, leading to the selective amplification of the high-intensity
spikes, and the absorption of the low-intensity light. After many round trips, this
leads to a train of pulses and mode-locking of the laser.

Considering this in the frequency domain, if a mode has optical frequency ν, and is
amplitude-modulated at a frequency nf , the resulting signal has sidebands at optical
frequencies ν ± nf and enables much stronger mode-locking for shorter pulses and
more stability than active mode-locking, but has startup problems.

Saturable absorbers are commonly liquid organic dyes, but they can also be made
from doped crystals and semiconductors. Semiconductor absorbers tend to exhibit
very fast response times (∼100 fs), which is one of the factors that determines the
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final duration of the pulses in a passively mode-locked laser. In a colliding-pulse
mode-locked laser the absorber steepens the leading edge while the lasing medium
steepens the trailing edge of the pulse.

There are also passive mode-locking schemes that do not rely on materials that di-
rectly display an intensity dependent absorption. In these methods, nonlinear optical
effects in intracavity components are used to provide a method of selectively ampli-
fying high-intensity light in the cavity, and attenuation of low-intensity light. One of
the most successful schemes is called Kerr-lens mode-locking (KLM), also sometimes
called ’self mode-locking’. This uses a nonlinear optical process, the optical Kerr ef-
fect, which results in high-intensity light being focussed differently from low-intensity
light. By careful arrangement of an aperture in the laser cavity, this effect can be
exploited to produce the equivalent of an ultra-fast response time saturable absorber.

54.4.2 Frequency comb

In optics, a frequency comb is a laser source whose spectrum consists of a series of
discrete, equally spaced frequency lines. Frequency combs can be generated by a
number of mechanisms, including periodic modulation (in amplitude and/or phase)
of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of
the pulse train generated by a mode-locked laser. The invention of the frequency comb
represents a breakthrough in ultrahigh resolution spectroscopy, which was honored
with the Nobel price attributed to Theodor Hänsch in 2005 [1411, 681, 629, 630, 934,
11, 1294].

The frequency domain representation of a perfect frequency comb is a series of
delta functions spaced according to,

fn = fceo + nfrep , (54.26)

where n is an integer, frep is the comb tooth spacing (equal to the mode-locked laser’s
repetition rate or, alternatively, the modulation frequency), and fceo is the carrier
offset frequency, which is less than frep. Combs spanning an octave in frequency (i.e.,
a factor of two) can be used to directly measure (and correct for drifts in) fceo. Thus,
octave-spanning combs can be used to steer a piezoelectric mirror within a carrier-
envelope phase-correcting feedback loop. Any mechanism by which the combs’ two
degrees of freedom (frep and fceo) are stabilized generates a comb that is useful for
mapping optical frequencies into the radio frequency for the direct measurement of
optical frequency.

54.4.2.1 Spectrum of a frequency comb

The field emitted by a pulsed laser characterized by its pump laser frequency ν, the
repetition rate frep, and the pulse width T , can be given as a temporal sequence of
Gaussian shaped pulses. The repetition is mathematically described as a convolution
of the Gaussian profile with a sum of temporal δ-functions displaced in time,

E(t) = cos 2πνt

(∑

n

δ(t− n
frep

) ⋆ e−t
2/T 2

)
= cos 2πνt

∑

n

e
−(t− n

frep
)2/T 2

. (54.27)



3008 CHAPTER 54. OPTICAL SPECTROSCOPY

0 10 20 30 40 50

t (ns)

-1

0

1

E
(t
)

(a)

3.999 3.9995 4 4.0005 4.001

t (ns)

-1

0

1

E
(t
)

(b)

0 5 10

ν (THz)

0

1

2

3

E
(ν
)

×10−3(c)

4.999 4.9995 5 5.0005 5.001

ν (THz)

0

1

2

3

E
(ν
)

×10−3(d)

Figure 54.16: (code) Pulse train (a,b) and spectrum (b,c).

The carrier under each pulse is phase-shifted with respect to the adjacent pulse, except
when the laser is mode-locked, that is, when,

cos 2πνt = cos 2πν(t+ 1
frep

) . (54.28)

The Fourier transform of the laser field (54.27) is,

F [E(t)] =

∫ ∞

−∞
e−ıωt cos 2πνt

∑

n

e−(t−n/frep)
2/T 2

dt (54.29)

= 1
2

∑

n

∫ ∞

−∞
e−ı(ω−2πν)te−(t−n/frep)

2/T 2

dt ,

where neglect negative frequency components. Using the rules,

F [f(t)eıΩt] =
∫ ∞

−∞
e−ıωtf(t)eıΩtdt = (Ff)(ω − Ω) (54.30)

and F [f(t− T )] =
∫ ∞

−∞
e−ıωtf(t− T )dt = e−ıωT (Ff)(ω)

and F [e−t2/T 2

] =

∫ ∞

−∞
e−ıωte−t

2/T 2

dt = T
√
πe−T

2ω2/4

we get,

E(ω) = F [E(t)] = 1
2T
√
πe−T

2(ω−2πν)2/4∑

n

e−ı(ω−2πν)n/frep . (54.31)

We now write the pump laser frequency as,

ν ≡ mfrep + fceo , (54.32)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Spectroscopy_FrequencyComb.m
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where we set m ∈ N and call |fceo| < frep the carrier envelope offset. We also express
the Fourier frequency by,

ω ≡ 2π(ηfrep + fceo) , (54.33)

firstly without specifying that η be an integer number. The spectrum is,

|E(ω)|2 = 1
4πTe

−T 2(ω−2πν)2/2
∣∣∣∣∣
∑

n

e−2πın(η−m)

∣∣∣∣∣

2

, (54.34)

which only gives contributions for,

η =
ω − 2πfceo
2πfrep

∈ N . (54.35)

I.e. the spectrum of comb frequencies is,

|E(ω)|2 = 1
4πTe

−T 2(ω−2πν)2/2∑

n

δ[ω − (nfrep + fceo)] . (54.36)

The δ-function comes from the fact that the sum of (54.35) over many oscillations
e−2πin(η−m) vanishes by destructive interference, except when they are in phase, which
is just the case when ω = nfrep + fceo.

Figure 54.17: (a) Scheme and (b) operation principle of a frequency comb with control of
the repetition rate and the carrier envelope offset.

54.4.2.2 Mode-locking of a frequency comb

From Eq. (54.28) we see that mode-locking is achieved when,

ν

frep
= m+

fceo
frep

∈ N , (54.37)

which implies fceo = 0. Eq. (54.36) then becomes,

|E(ω)|2 =
πT

4
e−T

2(ω−2πν)2/2∑

n

δ(ω − nfrep) , (54.38)

which means that all comb frequencies are locked.
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54.4.2.3 Referencing radio and optical frequencies

In a frequency comb frep is easy to measure, as one just has to filter the beat of the
comb light with a low pass filter cutting off frequency components higher than frep,
as illustrated in Fig. 54.17. In contrast, measuring fceo is more complicated. Unless
we have an octave spanning frequency comb, i.e. there are two frequencies in the
comb,

ν1 = m1frep + fceo and ν2 = m2frep + fceo , (54.39)

such that ν2 = 2ν1 +∆ν with |∆ν| < |fceo|, i.e. m2 = 2m1. We get,

m2frep + fceo = 2m1frep + 2fceo +∆ν , (54.40)

or,

fceo = −∆ν . (54.41)

54.4.2.4 Dual comb spectroscopy

Optical sensors are based on the interaction of light with matter and are often im-
plemented like some kind of spectrometer. The ideal sensor should detect a given
substance with great sensitivity, identify it (especially in the presence of many other
substances or a noisy background) and quantify it. Add to these features the ability
to perform measurements in real time, if possible remotely, in a compact and easy-
to-use assembly at affordable price, and we have an absolutely non-trivial problem.
Broadband sources allow to detect multiple substances, but have limitations in reso-
lution, calibration or acquisition time. Monochromatic sources allow good resolution,
but in general have limitations on tunability and spectral coverage. The sensitivity
can be increased by increasing the optical path of interaction, requiring multi-pass
cells or resonant optical cavities, which augment the complexity of the setup. Finally,
the detection method places limits on the acquisition rate and also on the sensitiv-
ity. Particularly the Fourier transform spectroscopy uses broadband incoherent light
sources and the time of acquisition and resolution are limited by the speed of trans-
lation of a mechanical stage, as well as the range of its displacement. Here, the use of
optical frequency combs replacing the incoherent sources, combined with dual comb
spectroscopy, brings important advantages [1337, 613].

54.4.3 Multi-photon spectroscopy

54.4.4 Raman spectroscopy

Raman spectroscopy is a spectroscopic technique typically used to determine vibra-
tional modes of molecules, although rotational and other low-frequency modes of
systems may also be observed. Raman spectroscopy is commonly used in chemistry
to provide a structural fingerprint by which molecules can be identified. Raman spec-
troscopy relies upon inelastic scattering of photons, known as Raman scattering. A
source of monochromatic light, usually from a laser in the visible, near infrared, or
near ultraviolet range is used, although X-rays can also be used. The laser light inter-
acts with molecular vibrations, phonons or other excitations in the system, resulting
in the energy of the laser photons being shifted up or down. The shift in energy
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Figure 54.18: Principle of dual comb spectroscopy.

gives information about the vibrational modes in the system. Infrared spectroscopy
typically yields similar, complementary, information.

Figure 54.19: Energy-level diagram showing the states involved in Raman spectra.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation
from the illuminated spot is collected with a lens and sent through a monochromator.
Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh
scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter,
while the rest of the collected light is dispersed onto a detector.

Spontaneous Raman scattering is typically very weak; as a result, for many years
the main difficulty in collecting Raman spectra was separating the weak inelastically
scattered light from the intense Rayleigh scattered laser light (referred to as ’laser re-
jection’). Historically, Raman spectrometers used holographic gratings and multiple
dispersion stages to achieve a high degree of laser rejection. In the past, photomul-
tipliers were the detectors of choice for dispersive Raman setups, which resulted in
long acquisition times. However, modern instrumentation almost universally employs
notch or edge filters for laser rejection. Dispersive single-stage spectrographs, for
example Czerny-Turner (CT) monochromators (see Sec. 54.1.5), paired with CCD
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detectors are common.
The name ’Raman spectroscopy’ typically refers to vibrational Raman using laser

wavelengths which are not absorbed by the sample. Raman spectroscopy is used
in chemistry to identify molecules and study chemical bonding and intramolecular
bonds. Because vibrational frequencies are specific to a molecule’s chemical bonds
and symmetry (the fingerprint region of organic molecules is in the wavenumber range
500− 1500 cm−1, Raman provides a fingerprint to identify molecules.

In solid-state physics, Raman spectroscopy is used to characterize materials, mea-
sure temperature, and find the crystallographic orientation of a sample. As with single
molecules, a solid material can be identified by characteristic phonon modes. Informa-
tion on the population of a phonon mode is given by the ratio of the Stokes and anti-
Stokes intensity of the spontaneous Raman signal. Raman spectroscopy can also be
used to observe other low frequency excitations of a solid, such as plasmons, magnons,
and superconducting gap excitations. Distributed temperature sensing (DTS) uses
the Raman-shifted backscatter from laser pulses to determine the temperature along
optical fibers.

54.4.5 Time-resolved spectroscopy

pump-probe spectroscopy
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Chapter 55

Locking circuits

In a laboratory we are often confronted with the need to control the value of a physical
parameter, f.ex., room temperature, currents and voltages, or the frequency and in-
tensity of laser beams. The physical discipline dealing with the fundamental concepts
of this field is called control theory and its application to development of automatic
control systems is called control engineering.

In this chapter, after a brief introduction into control theory, we will design and
construct a few automatic control systems, which are common in quantum optics labs.

55.1 Introduction to control theory

The minimum ingredients of a control system are 1. a sensor measuring the actual
value of the parameter to be controlled (e.g., a thermometer), 2. an actuator capable
of correcting the value (e.g., a heater or cooler), and 3. a suitable controller (servo
system) linking sensor and actuator thus providing a feedback.

The controller comprises a comparator comparing the measured value with a ref-
erence and delivers the difference to a controller, which may be implemented elec-
tronically by proportional control, PID control, bistable hysteretic control, or pro-
grammable logic control. Older controller units have been mechanical, as in a carbu-
retor. Finally, the value computed by the controller is delivered to an actuator, which
manipulates and changes a variable in the controlled system (or plant).

55.1.1 Open- and closed-loop control

Fundamentally, there are two types of control loop: open loop control, and closed loop
(feedback) control.

In open loop control, the control action from the controller is independent of the
’process output’ (or ’controlled process variable’). An example of this is a central
heating boiler controlled only by a timer, so that heat is applied for a constant time,
regardless of the temperature of the building. The control action is the switching
on/off of the boiler. The process output is the building temperature.

In closed loop control, the control action from the controller is dependent on the
process output. In the case of the boiler analogy, this would include a thermostat
to monitor the building temperature, and thereby feed back a signal to ensure the
controller maintains the building at the temperature set on the thermostat. A closed
loop controller therefore has a feedback loop which ensures the controller exerts a

3015
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control action to give a process output the same as the ’reference input’ or ’set point’.
For this reason, closed loop controllers are also called feedback controllers.

The definition of a closed loop control system is a control system capable of cancel-
ing the deviation of a system variable from a reference value by means of a feedback
signal computed from a measured value of the variable and used to act on the system
in a controlled way [1249]. Automatic feedback control has revolutionized all areas of
human activities.

To overcome the limitations of the open-loop controller, control theory introduces
feedback. A closed-loop controller uses feedback to control states or outputs of a
dynamical system. Its name comes from the information path in the system: process
inputs (e.g. voltage applied to an electric motor) have an effect on the process outputs
(e.g. speed or torque of the motor), which is measured with sensors and processed
by the controller; the result (the control signal) is ’fed back’ as input to the process,
closing the loop.

Closed-loop controllers have the following advantages over open-loop controllers:

• disturbance rejection (such as hills in the cruise control example above)

• guaranteed performance even with model uncertainties, when the model struc-
ture does not match perfectly the real process and the model parameters are
not exact

• unstable processes can be stabilized

• reduced sensitivity to parameter variations

• improved reference tracking performance

In some systems, closed-loop and open-loop control are used simultaneously. In such
systems, the open-loop control is termed feedforward and serves to further improve
reference tracking performance.

55.1.1.1 Closed-loop transfer function

Due to noise the variables of the system become time-dependent. The output of the
system y(t) is fed back through a sensor measurement F to a comparison with the
reference value r(t). The controller C then takes the error e(t) (difference) between
the reference and the output to change the inputs u(t) to the system under control
P . This is shown in the figure. This kind of controller is a closed-loop controller or
feedback controller. We will restrain here to single-input-single-output control systems
(SISO) disregarding the possibility of having multiple and interdependent inputs and
outputs.

If we assume the controller C, the plant P , and the sensor F are linear and time-
invariant (i.e. elements of their transfer function C(s), P (s), and F (s) do not depend
on time), the systems above can be analyzed using the Laplace transform on the
variables, U(s) = Lu(t), Y (s) = Ly(t), and R(s) = Lr(t). Here,

s ≡ ıf (55.1)

is an abbreviation for the imaginary Fourier frequency component f of the noise. In
the following sections we will, however, characterize the transfer functions in terms
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Figure 55.1: (a) General schematic diagram of a feedback loop. (b) Possible implementation
for the frequency stabilization of a laser to a cavity resonance,

of real Fourier frequencies. The theoretical foundation of Linear Time-Independent
(LTI) systems is outsourced to Sec. 56.2.

For a control to work, it needs to know in which direction to act and when the
control point is reached. Therefore, each control needs a slope (discriminator) cross-
ing zero. This can be implemented by comparing the signal Y (f) delivered by the
detector (for simplicity assumed to be frequency-independent) with a reference sig-
nal R. The error signal E(f) = R(f) − Y (f) is then processed by a controller C,
and the control signal U(f) is passed, via an actuator (for simplicity assumed to
be frequency-independent), to the controlled device P . The controlled device (and
obviously all other components of the circuit) are subject to perturbations Z. The
transfer functions form a closed control circuit described by the following relations:

Y (f) = P (f)U(f) and U(f) = C(f)E(f) and E(f) = R(f)−Y (f) . (55.2)

Solving the system of equations (55.2) for Y (f) in terms of R(f) gives,

Y (f) =
P (f)C(f)

1 + P (f)C(f)
R(f) ≡ H(f)R(f) . (55.3)

H(s) is referred to as the closed-loop transfer function of the system. The numerator
V (f) ≡ P (f)C(f) is called the forward gain (open-loop gain) from R to Y , and the
denominator is one plus the gain in going around the feedback loop, the so-called
loop gain. If |P (f)C(f)| ≫ 1, i.e. it has a large norm with each value of f , and then
Y (f) ≃ R(f) and the output closely tracks the reference input.

55.1.1.2 Noise reduction via feedback circuits

We have seen that the idea of locking, whether mechanical or electronic, is to bring
a given physical signal Y to a predetermined value R and lock it there, which is the
role of the control circuit or regulator. Now, considering a possible perturbation of
the plant (see Fig. 55.1) by noise Zp and also of the regulator by noise Zc, the result
(55.3) must be generalized,

Y (f) =
P (f)C(f)

1 + P (f)C(f)
R(f) +

P (f)C(f)

1 + P (f)C(f)
Zc(f) +

1

1 + P (f)C(f)
Zp(f) , (55.4)
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or,

Y (f) =
1

1 + V (f)−1
[R(f) + Zc(f)] +

1

1 + V (f)
Zp(f) . (55.5)

This shows that, provided the open loop gain is high enough, perturbations affecting
the plant can be efficiently be neutralized. In contrast, noise entering via the control
cannot be suppressed, and this fact is independent on the chosen controller transfer
function: Perturbations entering between the measurement point and the input of the
regulator are not eliminated ! Consequently, the detector (which generally works with
very low signals) should not introduce or let penetrate noise, because this affects the
variable to be controlled: Any variation of the steering variable at the regulator will
be transmitted 1 to 1.

In the following, we will discuss the most common controller called PID-servo.

55.1.2 PID feedback control

A PID controller continuously calculates an error value e(t) as the difference between
a desired setpoint and a measured process variable and applies a correction based
on proportional, integral, and derivative terms. PID is an acronym for Proportional-
Integral-Derivative, referring to the three terms operating on the error signal to pro-
duce a control signal.

Figure 55.2: A block diagram of a PID controller in a feedback loop, r(t) is the desired
process value or ’set point’, and y(t) is the measured process value. A proportional-integral-
derivative controller (PID controller) is a control loop feedback mechanism control technique
widely used in control systems.

The theoretical understanding and application dates from the 1920s, and they
are implemented in nearly all analogue control systems; originally in mechanical con-
trollers, and then using discrete electronics and latterly in industrial process comput-
ers. The PID controller is probably the most-used feedback control design.

If u(t) is the control signal sent to the system, y(t) is the measured output and
r(t) is the desired output, and tracking error e(t) = r(t)− y(t), a PID controller has
the general form,

u(t) = KP e(t) +KI

∫
e(τ)dτ +KD

de(t)

dt
. (55.6)
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The desired closed loop dynamics is obtained by adjusting the three parameters KP ,
KP , and KI , often iteratively by ’tuning’ and without specific knowledge of a plant
model. Stability can often be ensured using only the proportional term. The integral
term permits the rejection of a step disturbance (often a striking specification in
process control). The derivative term is used to provide damping or shaping of the
response 1.

Applying Laplace transformation results in the transformed PID controller equa-
tion,

U(f) =

(
KP +KI

1

ıf
+KDıf

)
E(f) ≡ C(f)E(f) , (55.7)

defining the PID controller transfer function C(f).

From equations (55.6) or (55.7) we immediately see that the PID transfer functions
can readily be implement in electronic circuits using resistors (P), capacitors (I), and
inductances (D).

Example 302 (Comparing servo controllers): We now assume a low-pass
behavior for the plant,

P (f) =
1

1 + ıf/fc
,

and analyze the feedback circuit for four cases.

• The first one is that of a proportional servo, C(f) = KP . Then, Eq. (55.5)
reads,

Y =
KP

1 + ıf/fc +KP
(R+ Zc) +

1 + ıf/fc
1 + ıf/fc +KP

Zp{
s→0−→ KP

1+KP
(R+ Zc) +

1
1+KP

Zp
s→∞−→ KP fc

ıf
(R+ Zc) + Zp

.

We see that, for limited open-loop gain, noise affecting the plant Zp is not
eliminated at low frequencies. Additionally, at high frequencies, the gain
for the error signal R drops like −6dB/oct.

• The second case is that of an integral servo C(f) = KI/ıf . Then Eq. (55.5)
reads,

Y =
KI/ıf

1 + ıf/fc +KI/ıf
(R+ Zc) +

1 + ıf/fc
1 + ıf/fc +KI/ıf

Zp{
f→0−→ R+ Zc +

ıf
KI
Zp

→∞−→ KIfc
(ıf)2

(R+ Zc) + Zp
.

Apparently, the noise Zp is now eliminated at low frequencies. However,
the gain for R drops even faster at high frequencies.

1PID controllers are the most well established class of control systems: however, they cannot be
used in several more complicated cases, especially if MIMO systems are considered.
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• The third case is that of a PI-servo, C(f) = KP +KI/ıf . Then Eq. (55.5)
reads,

Y =
KP +KI/ıf

1 + ıf/fc +KP +KI/ıf
(R+ Zc) +

1 + ıf/fc
1 + ıf/fc +KP +KI/ıf

Zp
f→0−→ R+ Zc +

ıf
KI
Zp

f→∞−→ fcKP
ıf

(R+ Zc) + Zp
,

which represents a viable compromise, since it has the same low-frequency
behavior as the I-servo, but at high frequencies the gain for R drops only
like −6dB/oct.

• Finally, the forth case is that of a PID-servo, C(f) = KDıf +KP +KI/ıf .
Then Eq. (55.5) reads,

Y =
KDıf +KP +KI/ıf

1 + ıf/fc +KDıf +KP +KI/ıf
(R+ Zc) +

1 + ıf/fc
1 +KDıf +KP +KI/ıf

Zp
f→0−→ R+ Zc +

ıf
KI
Zp

f→∞−→ 1
1+1/fcKd

(R+ Zc) +
1

fcKD
Zp

.

The low-frequency behavior remains still the same, but at high frequencies
the gain for R stays constant.

A time domain analysis shows that P regulators have little phase lag, but the
controlled variable can not be zeroed. On the other hand, I regulators have finite
control bandwidth, but the controlled variable can be zeroed. PI regulators (parallel
circuit of P and I regulators) have a reaction time Tn = KP /KI ; that is, the jump
response is advanced by Tn in comparison to the regulator I.

In the time domain we can summarize that regulators

• D are characterized by the absence of memory, but they are very fast,

• P have no idea of the strength of their impact,

• I increase their impact in time until the error disappears.

For practical PID controllers, a pure differentiator is neither physically realizable nor
desirable due to amplification of noise and resonant modes in the system. Therefore,
a phase-lead compensator type approach is used instead, or a differentiator with low-
pass roll-off [635, 461, 462, 1306]. See Excs. 55.2.3.1 and 55.2.3.2.

Like any real system, the controlled device behaves as a low-pass for manipulations
or perturbations at high frequency. In other words, the device can only respond to
external perturbations with finite speed. This delay of the response leads to a phase
shift that can reverse the sign of the error signal E(f) and transform a negative
feedback into a positive feedback. Now, in the case that there are high frequency
perturbations, for which the amplification of the closed control circuit is > 1, these
perturbations can be amplified to form oscillations. These oscillations, which occur
at the bandwidth of the closed loop gain are called servo oscillations.
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Fig. 55.3 illustrates the necessity of optimizing the gain and the frequency response
of the servo circuit: A proportional servo simply providing a frequency-independent
gain C(f) = KP will lead to a forward gain R(f) ∝ P (f) exhibiting a low-pass
behavior, i.e. a phase-shift ϕ = −π/2 transforming negative to positive feedback.
The gain at the frequency where this happens need to be lower than 1, otherwise
the feedback servo will generate servo-oscillations, i.e. it will oscillate at the lowest
Fourier frequencies where noise is amplified. A PI-servo alleviates this problem by a
phase shift in opposite direction.
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Figure 55.3: (code) Bode diagram for a plant subject to low-pass behavior and for a PI-servo.

(blue solid) Low-pass filter with 100 Hz bandwidth; (blue dash-dotted) another low-pass filter

at 100 kHz; (cyan) same as blue, but amplified by 20 dB; (red) PI-servo; (magenta) open-loop

amplification.

55.1.3 Noise transfer in feedback loops

In order to develop a model for noise transfer we must understand what noise is and
how it can be measured. This is not a simple task and we therefore outsourced a
proper discussion to Sec. 56.3. Here, we will only use the information that noise
affecting a signal y(t) is quantified by a spectral noise density defined as the Fourier
transform of the signal’s autocorrelation function (56.59),

Sy(f) ≡ F [y∗(t)y(t+ τ)] . (55.8)

Now, we can see how noise is transmitted through an LTI device P (f):

Y (f) = P (f)X(f) ⇒ Sy(f) = |P (f)|2Sx(f) . (55.9)

This result can be applied to our formula (55.5) describing a feedback loop,

Sy(f) =

∣∣∣∣
1

1 + V (f)−1

∣∣∣∣
2

Sc(f) +

∣∣∣∣
1

1 + V (f)

∣∣∣∣
2

Sp(f) . (55.10)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PIDidea.m
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This formula describes how a servo control shapes the noise spectrum of a feedback-
controlled variable y(t).

Example 303 (Noise reduction by feedback): As an example, let us study
the control circuit for stabilizing a laser to a cavity mode depicted in Fig. 55.1(b)
using the following additional background information: The laser frequency ω
be perturbed by 1/f noise described by the power spectral density,

Sp(f) ≡ 2 · 10−24/f .

This noise enters the feedback loop via the fluctuations zp(t) depicted in
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Figure 55.4: (code) Spectral density of frequency fluctuations of the servo system exhibited in

Fig. 55.2. Shown is the spectral noise density Sy(f) of the laser light for 4 different feedback

gain curves: (black solid) no feedback control C(f) = 0, (blue) P-regulator with C(f) = 4,

(red) I-regulator with C(f) = 5 · 106/ıf , and (green) PI-regulator C(f) = 4 + 5 · 106/ıf .

Fig. 55.1(a). The black solid line in Fig. 55.4 traces the noise spectrum Sp(f),
which is also the noise expected for the laser without feedback loop. Further-
more the optical cavity, which constitutes the essential part of the regulator,
is itself afflicted by acoustic noise and thermal drifts which, for simplicity, we
describe by a white Fourier frequency spectrum given by,

Sc(f) ≡ 2 · 10−30 Hz-1 ,

and represented by the black dotted line in Fig. 55.4. As we have seen, servos
systems always have a finite bandwidth beyond which noise is fully coupled to
the system. For example in laser frequency locks, the weakest point of a servo
chain is often the small bandwidth of a piezo transducer used to correct the
length of the laser cavity. We describe this behavior by a low-pass filter for the
transfer function of the laser,

P (f) =
1

1 + ıf/fc

with a bandwidth of fc = 10 kHz.

Fig. 55.4 demonstrates how the 1/f noise Sp(f) can be efficiently suppressed at

frequencies below the low-pass filter cut-off fc to a value limited by the white

noise Sc(f) entering through the regulator. As predicted by the formula (55.10),

the suppression of the noise Sp(f)becomes all the better, as the open-loop gain

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_WholeModelNoise.m
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V (f) gets higher. However, with the amplification of the controller, also the

gain of the closed control circuit increases, and this necessarily causes phase

shifts, which lead to (servo-)oscillations in the circuit appearing as a strong

peak of strong noise around a certain Fourier frequency fbw characterizing the

bandwidth of the closed loop servo system. Note that high-frequency noise, to

which the cavity might be subject, is not coupled to the laser, because it is

filtered by the low-pass filter P (f) to the same extend as the error signal itself.

The next example, exhibited in Fig. 55.5, shows the experimental characterization
of a dye laser locked via the Pound-Drever-Hall technique (see Sec. 55.3.3) to an
optical cavity.
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Figure 55.5: Characterization of a Pound-Drever-Hall stabilization of a dye laser. (a) PDH
error signal (red) and cavity transmission signal (blue), (b) spectral density of frequency
fluctuations, (c) Allan variance. (d-e) Beat signals of Mach-Zehnder interferometers. In (d)
one interferometer arm is passed through an optical fiber attached to a piezo transducer
to which a sinusoidal 5 kHz modulation of is applied. This demonstrates the sensitivity of
optical fibers to acoustic noise. In (e) one interferometer arm is send to another optical table
and back. This demonstrates how mechanical vibrations of optical components in the beam
path can broaden the spectrum of a laser field.

55.2 Amplitude stabilization circuits

55.2.1 Laser intensity stabilization with an AOM

The light emitted from lasers is generally subject to frequency fluctuations and in-
tensity fluctuations, which are unacceptable for many applications. In this section we
will construct an intensity stabilization for a laser beam.
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One way of stabilizing the light intensity of a laser beam consists in using the an
acousto-optic modulator, as shown in Fig. 55.6. The first Bragg diffraction order (see
Sec. 53.3.1) is focused onto a photodiode. Intensity fluctuations of the light recorded
by the photodiode are converted into voltage fluctuations, processed by an electronic
circuit fed back to the AOM. The intensity of light diffracted into the first order can
be controlled via the power of the radiofrequency alimenting the AOM. The control
circuit can now be conceived such as to neutralize the intensity fluctuations recorded
by the photodiode.

Figure 55.6: (a) Layout of the intensity control. The variable attenuator controls the am-
plitude of the radiofrequency driving the AOM: low voltage (0V) increases the attenuation,
high voltage (+16V) reduces it. The sketched control circuit realizes a negative feedback,
when the photodetector produces a positive signal. (b-d) Signals recorded at the test points
of the circuits shown in (a). See text for explanations.

55.2.1.1 Operation principle and adjustment procedure

The idea of the intensity stabilization is illustrated in Fig. 55.6(b-d): The laser inten-
sity scattered into the first diffraction order is recorded by a photodiode (test point
1 in the figure). The signal is then amplified (and inverted) by a first OpAmp (test
point 2). The trimmer T1 (test point 3) is now adjusted to a positive voltage com-
pensating the DC part of the signal (2), i.e., the sum (2+3) after being inverted and
amplified by the second OpAmp (test point 4), should be around zero DC. The signal
(2+3) is called error signal, since it is this signal which tells us in which direction
the control circuits has to work to counteract the power fluctuation. In the present
design, the second OpAmp also incorporates the PI servo (see Sec. 55.1), which can
be adjusted via the amplification of the trimmer T2 and the capacity C.
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It is now important to realize, that the variable attenuator works best around a
given control voltage, which is provided by adding via the trimmer T3 (test point
5) and a third OpAmp an appropriate offset. Furthermore, we note that variable
attenuator reduces its attenuation with increasing control voltage. Thus, the control
signal (test point 6) works to enhance the efficiency of the AOM, when the photodiode
signals a power drop, and vice versa. As a result, the light power in the first diffraction
order is stabilized, however, at a level inferior to the unstabilized power [1306, 462].

The trimmers of the servo circuits can be adjusted using the following procedure:

1. Observe the light intensity and its fluctuations at test point (1), set test point
(4) to ground (e.g. short-circuiting the trimmer T2), and adjust trimmer T3 until
the light intensity level is at bit lower than the lowest fluctuations.

2. Reconnect test point (4) to the circuit and adjust trimmer T1 until the voltage
at test point (4) cancels to zero.

55.2.2 PI servo for a current stabilization

Many applications in quantum optics require very stable high currents, for instance, in
coils generating magnetic field for atomic trapping potentials. Here, we will construct
a PI servo to para realize a current stabilization.

1k
1k

BC107

R L

Figure 55.7: Current stabilization.

55.2.3 Exercises

55.2.3.1 Ex: Integrator

Determine the transfer function of the circuit depicted in Fig. 55.8. What kind of
control circuit is it?

Solution: The transfer function is that of a PI-servo,

G(ω) = − 1

R1

(
Rn +

1

ıfC

)
.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Control_ServoLoop01.pdf
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55.2.3.2 Ex: PID controller

Consider the PID controller transfer function in series,

C(f) = K

(
1 +

1

ıfTI

)
(1 + ıfTD) ,

a first-order low-pass filter in the feedback loop,

F (f) =
1

1 + ıfTF
,

and a linear actuator with low-pass behavior,

P (f) =
A

1 + ıfTP
.

How do you have to choose the various time constants in order to let the closed-loop
transfer function be H(f) = 1.

Solution: Insert the components C, F , and P into the expression for closed-loop
transfer function H(f), then tuning is very easy simply choosing,

K =
1

A
, TI = TF , TD = TP

and get H(f) = 1 identically.

55.2.4 Experiment: Development of an intensity stabiliza-
tion

We will now set up up an intensity stabilization. For the realization of the project
prior knowledge of 1. photodetectors (see Sec. 52.2.1), 2. acousto-optic modulators
(AOM) (see Sec. 53.3.1), 3. electronic circuits (see Sec. 52.1.3), and 4. control circuits
(see Sec. 55.1) is required.

1. Realize the optical setup illustrated in Fig. 55.6. Optimize the alignment of the
AOM (in particular, the focus and the Bragg angle) in order to maximize the
efficiency of the AOM. Take care not to saturate the photodiode, if necessary
adapt the load resistance (see Sec. 52.1.). Study the data sheet of the variable
attenuator.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Control_ServoLoop02.pdf
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2. Derive and plot the transfer function for ac-signals of the electronic circuit.
What kind of control circuit is it?

3. Set up the electronic circuit exhibited in Fig. 55.6. Test it by observing the
signals at the six test points marked in the circuit diagram. Understand and in-
terprete the roles of the three adjustable parameters: input offset, amplification,
and output offset.

4. Incorporate the servo circuit into the optical setup as shown in Fig. 55.6. How
to make sure the circuit is operating properly? 2.

55.2.5 Experiment: PI servo for a current stabilization

How to control high currents? How to dramatically increase the switching speed
despite inductive loads and eddy currents?

1. Connect a resistive charge to a voltage source. Insert a MOSFET into the
circuit and a small resistor. Control the gate of the MOSFET with a voltage
and measure the current of the circuit via the voltage drop at the small resistor
as a function of the gate voltage.

2. Now control the gate voltage via the voltage measured at the small resistor and
measure again the dependency voltage-to-current.

55.3 Frequency stabilization circuits

Although lasers are often monochromatic, they generally have a poor intrinsic fre-
quency stability, that is, the frequency of the light field E(t) = sinωt drifts in time,
ω = ω(t) on a time scale, which is slow in comparison to the oscillation period 1/ω.
The reasons for these drifts are typically acoustic noise or thermal drifts to which the
laser device is subject and which are difficult to avoid.

Often it is much easier to guarantee the mechanical and thermal stability of a
passive device exhibiting resonances, such as an optical cavity. Furthermore, nature
provides intrinsically stable resonances, such as narrow atomic transitions. These
resonances can be used to actively stabilize the frequency of lasers via feedback servo
circuits. In the following sections we will present a few common techniques.

55.3.1 Side-of-fringe stabilization to/of a Fabry-Pérot cavity

Resonances are generally characterized by peaked profiles symmetrically centered
about a resonance frequency ω0. Excited by a laser field of frequency ω, they respond
by an oscillation whose amplitude depends on the detuning ω − ω0. Unfortunately,
the amplitude of the response signal does not tell us, whether the detuning is positive

2Datasheet for the VCO see appendix Fig. 56.16,
data sheet for the variable attenuator see appendix Fig. 56.17,
data sheet for the amplifier see appendix Fig. 56.15.
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or negative. We have to invent techniques allowing us to extract this information
from the response signal and to generate a true error signal.

One of these techniques is the side-of-fringe stabilization technique illustrated in
Fig. 55.9. Here, the laser tuned to one side of the optical resonance such that, when
the laser frequency drifts, the response signal increases or decreases correspondingly.
Technically, this is achieved by comparing (i.e. subtracting) the response signal with
a stable reference signal.

Figure 55.9: (a) Frequency stabilization to a cavity using the side-of-fringe method. (b) The
laser is tuned to rising (or falling) slope of a transmission curve of a Fabry-Pérot cavity. The
error signal is compared with reference voltage.

55.3.2 Lock-in method for frequency stabilizing to/of a cavity

One method of stabilizing a laser on a resonator consists in modulating the frequency
slightly and then demodulating the transmission signal of the resonator at the same
frequency. This is the so-called lock-in method. Frequency modulation of the laser
beam can be done by modulating the laser diode feed current, the piezo of the extended
laser cavity or using an AOM. Fig. 55.10 shows the layout of the optical assembly.

Figure 55.10: (a) Frequency stabilization to a cavity using the lock-in method. (b)
Frequency-modulated signals applied to a resonance suffer a period doubling, when the
signal frequency is close to resonance. By demodulating the signals discriminated at the
resonance profile, we obtain, after averaging over a period, a DC voltage that is proportional
to the frequency detuning. The yellow area denotes the components constituting the lock-in
amplifier.
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The principle of control through modulation is explained in Fig. 55.10(a). A
laser beam passes twice (round-trip) through an acousto-optic modulator fed by a
radiofrequency voltage with modulated frequency, ω(t) = ωc +M cos ft. Here, the
modulation frequency is much lower than its amplitude (or frequency excursion),
f ≪ M . The laser beam is now injected into an optical cavity and the frequency of
the laser tuned near a resonance of the cavity. The dependence of the transmission on
the frequency is described in good approximation of the Airy formula by a Lorentzian,

I(ω) =
γ2

4(ω − ω0)2 + γ2
. (55.11)

The signal transmitted through the cavity [see Fig. 55.10(b)],

Ud(t) = I(ω(t)) =
γ2

4 (ωc +M cos ft− ω0)
2
+ γ2

, (55.12)

is demodulated by a lock-in amplifier [see Fig. 55.10(c)],

Us(t) = Ud(t) cos(ft+ ϕ) , (55.13)

integrated with a locking electronics [see Fig. 55.10(d)]

Ūs(t) =
1

T

∫ T

0

Us(t)dt . (55.14)

and used to control the piezo of the laser’s extended cavity.

55.3.3 Pound-Drever-Hall stabilization

When the frequency of a carrier wave ω is modulated by a frequency Ω 3, the spectrum
consists of sidebands the frequencies and phases of which can be calculated from an
expansion of the wave in Bessel functions. Let N be the modulation excursion and
Jk(x) the Bessel function of the order k. Higher-order sidebands k > 1 are usually
dropped in the calculation,

eı(ωt+N sinΩt) = eıωt[−J1(N)eıΩt + J0(N) + J1(N)e−ıΩt] . (55.15)

From the latter expression, it can be seen that the spectrum of sidebands is formed

Figure 55.11: Frequency stabilization to a cavity using the Pound-Drever-Hall method.

by the frequencies ω and ω ± Ω. A resonator responds to a field of incident light

3Remember that we specify all frequencies except the free spectral range δfsr in radians.
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E0(ω) oscillating with frequency ω by reflecting the field (R: reflectivity of mirrors,
δfsr: free spectral range)

Er(ω) = E0(ω)
√
R

1− e−ıω/δfsr

1−R e−ıω/δfsr
, (55.16)

where the amplitude and the phase of the reflected light field follow from the relation
Er(ω) = |Er(ω)|eıϕ(ω). Obviously the field of the reflected light is strong only, when
the laser frequency is close to one mode of the resonator (when ω/δ is an integer
number). By inserting Eq. (55.16) into Eq. (55.15), we obtain the response of the
resonator to a field containing sidebands as a function of the frequency of light ω, of
the modulation frequency Ω, and of the cavity finesse,

|Etot|2 = |eıωt[J1(N)Er(ω +Ω)eıΩt + J0(N)Er(ω)− J1(N)Er(ω − Ω)e−ıΩt]|2

= J0(N)J1(N)Er(ω +Ω)eıΩt + J0(N)J1(N)E∗r (ω − Ω)eıΩt + ...+ c.c. . (55.17)

The contributions of the reflected field to the current in the photodetector, |Er|2,
oscillating with frequency Ω and extracted by the alternating current e−iΩt+iθ (θ is
an arbitrarily chosen phase angle), are

SPDH = |Etot|2e−iΩt+iθ (55.18)

= J0(N)J1(N)Re {eıθ[E∗r (ω)Er(ω +Ω)− Er(ω)E∗r (ω − Ω)]}+ ... .
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Figure 55.12: (code) (Left) Pound-Drever-Hall reflection signal for θ = 0, π/2. (Right)

Transmission signal.

By a suitable choice of the modulation index, the pre-factor containing Bessel
functions (and therefore the signal amplitude) can be maximized. That is the case,
for M ≃ 1.1 (see Exc. 53.4.5.1). Each of the two parts of the summation in the above
equation is the result of a beating of the carrier Er(ω) with one of the sidebands
Er(ω ± Ω). Only those optical sidebands being close to a mode of the resonator
provide, along with the radiofrequency sidebands, contributions to the reflection signal

The dependence of the reflection signal SPDH on the frequency ω is shown in
Fig. 55.12(a). The antisymmetric shape and the zero-crossing slope are ideal for
use as a discriminator generating an error signal for a frequency stabilization. This
method is called Pound-Drever-Hall method.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PoundDreverHallSignal.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_PoundDreverHallSignal.m


55.3. FREQUENCY STABILIZATION CIRCUITS 3031

55.3.4 Phase stabilization of standing waves

For the stabilization of the phase of a standing wave one can use the following scheme.
It is similar to the homodyne method used with the Michelson interferometer with the
difference that laser beam separation and recombination are done at different beam
splitters.

Figure 55.13: Phase stabilization.

55.3.5 Frequency-offset locking with phase-locked loops

Many application in spectroscopy require two stable lasers emitting at different but
well-defined and tunable frequencies. Examples are stimulated Raman transitions, or
the spectroscopy of atoms interacting with optical cavities [224]. In the following we
will discuss and compare different approaches to locking one laser to another laser
using a phase-locked loop (PLL). See also (watch talk).

55.3.5.1 VCO and mixing

In a phase-locked loop one tries to synchronize a self-sustained oscillator, in general
realized by a VCO, with a local oscillator. The VCO generates an ac-voltage Urf ,
whose frequency is tuned via a dc-control-voltage Uct around a center frequency ω0,
as shown in Fig. 55.14(a). It can be modeled by,

Urf (t) = 2B cosϕ(t) with
dϕ

dt
= ω0 +KUct(t) . (55.19)

The local oscillator produces an ac-voltage, Ulo(t) = A sinϕlo(t). A mixer multiplies
both signals,

Ud(t) = AB (sin[ϕlo(t)− ϕ(t)] + sin[ϕlo(t) + ϕ(t)]) . (55.20)

See also Exc. 55.3.7.1.

55.3.5.2 Low-pass filtering

The multiplied signal Ud contains all information about frequency deviations of the
VCO from the LO. To extract them, we low-pass filter this signal, cutting off all high
frequency components, i.e. apply the filter transfer function,

F (f) = (1 + sRC)−1 . (55.21)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Talks/PhaselockedLoop
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Figure 55.14: (a) PLL to lock a VCO to a reference oscillator LO. (b) PLL to lock the
difference frequency of two lasers to a LO.

The signal of the filter is Ulp(f) ≡ F (f)Ud(f). In time domain, which is obtained by
a Laplace transform, F (t) = (RC)−1θ(t)e−t/RC , such that

Ulp(t) = F ⋆ Ud(t) =

∫ ∞

−∞
F (t− τ)Ud(τ)dτ =

e−t/RC

RC

∫ t

−∞
eτ/RCUd(τ)dτ . (55.22)

The derivative is obviously,

dUlp
dt

+
Ulp
RC

=
Ud(t)

RC
=
AB

RC
sin [ϕlo(t)− ϕ(t)] , (55.23)

inserting the above expression for Ud. Note, that we would have obtained the same
result using control theory (see Sec. 55.1).

55.3.5.3 Phase synchronization

The phase synchronization servo is closed by setting Uct = Ulp. Thus we may substi-
tute Ulp(t) and define ψ ≡ ϕ− ϕlo,

d2ψ

dt2
+

1

RC

dψ

dt
+
KAB

RC
sinψ = −d

2ϕlo
dt2

− 1

RC

(
dϕlo
dt
− ω0

)
. (55.24)

In most cases the LO frequency varies slowly, so that we may assume ˙ϕlo = ωlo,

d2ψ

dt2
+

1

RC

dψ

dt
+
KAB

RC
sinψ = − 1

RC
(ωlo − ω0) . (55.25)

Hence, a PLL generates a signal Urf (t) having approximately the same (time-dependent)
frequency as the local oscillator Ulo(t). The equation is identical to that of an over-
damped rotator or a resistively shunted Josephson junction [1031].

We observe that the PLL is locking to servo oscillations. The spectrum of signal
produced by the VCO exhibits sidebands as soon as the loop is closed. Their ampli-
tude depends on the gain, their frequency varies with the offset voltage controlling
the VCO.



55.3. FREQUENCY STABILIZATION CIRCUITS 3033

0 5 10

t (ms)

0

2

4

6

Δ
ψ
/2
π

(a)

0 5 10

t (ms)

0

2000

4000

6000

Δ
ω
/2
π

(b)

Figure 55.15: (code) Simulation of (a) the phase and (b) frequency difference in a PLL for

(red) ωlo − ω0 = (2π) 2 kHz and (blue) 4 kHz.

55.3.6 Frequency-offset locking using transfer cavities

Sometimes we want to take a ultra-high resolution spectrum in a frequency region,
where there is no reference frequency available nearby. By nearby we mean frequency
regimes which can be reached by PLLs based on frequency beats on fast photodetec-
tors, as studied in Sec. 55.3.5. A possible method consists in the use of an optical
transfer cavity.

Here, a reference laser stabilized to a known frequency ωref , e.g. via a saturation
spectroscopy to an atomic transition, is used to lock a piezo-tunable optical cavity
(called transfer cavity), as shown in Fig. 55.16. The cavity in turn is used to lock the
spectroscopy laser ωblu−las, e.g. via the Pound-Drever-Hall method.

Figure 55.16: Schematic view of a transfer cavity locking system involving three cascaded
servo systems for (i) the stabilization of the reference laser to a known frequency; (ii) of the
transfer cavity to the reference laser, and (iii) of the spectroscopy laser to the transfer cavity.

Two issues need to be considered when using the transfer cavity scheme:

• The scheme does not permit tuning of the spectroscopy laser; this feature
must be included using, e.g. AOMs (see Sec. 53.3.1) of PLL offset locks (see
Sec. 55.3.5).

• The use of piezo in the transfer cavity is incompatible with its high-level thermal
and mechanical stabilization. This means that special care must be taken in

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_LaserServoOscillations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Control_LaserServoOscillations.m
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the design of the reference laser in order to avoid degradation of the stability of
the transfer cavity via the servo lock.

The whole locking scheme consists of three cascaded servo loops (see Fig. 55.16).
To model the transfer of stability from the reference to the spectroscopy laser, we
write down the following relations,

ωred−las = Hsat(f)ωref (55.26)

Nred−trnsδfsr = Htrns(f)ωred−las
ωblu−las = Hpdh(f)Nblu−transδfsr .

In the absence of noise or for perfect servos, Hx → 1, we get,

ωblu−las =
Nblu−trans
Nred−trans

ωred−las . (55.27)

We assume specific transfer functions for the closed-loop gains of the three servos
and describe the impact of noise by adding frequency deviations ∆ω entering at
various points.

55.3.7 Exercises

55.3.7.1 Ex: Schemes for laser tuning

Discuss the two PLL-setups shown in Fig. 55.17.

Figure 55.17: Two schemes for laser tuning.

Solution:

55.3.8 Experiment: Stabilizing a laser to a cavity

Here is, how we are going to stabilize a laser to a cavity:

1. Stabilize a helium-neon laser to a Fabry-Pérot cavity, generating a frequency
modulation by modulating the laser diode current or the piezo of the extended

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Control_PLLTuning01.pdf
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cavity. Choose a modulation frequency in the range of f ≃ 1 kHz and a modu-
lation amplitude in the range of M ≃ 5 MHz. Adjust the reference voltage of
the control electronics until the error signal is symmetrical.

2. If you do not have a lock-in amplifier available, construct one following the
project Sec. 52.4.3.

3. Now, do the opposite, stabilizing the optical cavity to the laser frequency using
the resonator piezo as control element.

4. Vary the optical setup now modulating the frequency using an AOM (see Fig. 55.18).

Figure 55.18: Variations on the same theme: (a) Frequency stabilization of a cavity to a
laser frequency using the lock-in method. This method is often used for spectral filtering of a
laser beam by a transmission etalon. (b) Frequency stabilization of a laser to a cavity using
an AOM. The advantage of using an AOM compared to the scheme shown in Fig. 55.10 is,
that only the beam injected into the cavity is modulated, but not the beam used for the
main experiment.

55.3.9 Experiment: Pound-Drever-Hall locking

Now we will stabilize a laser to a cavity using the Pound-Drever-Hall technique [180,
388]:

1. Consider the reflected signal. To do this, separate the beam injected into the
resonator from the reflected beam by means of a λ/4 waveplate and a polarizing
beam splitter.

2. Now analyze the reflected signal with a fast photodetector at a spectrum ana-
lyzer.

3. Demodulate the signal with the modulation frequency. Vary the length of the
cables. Optimize the slope of the error signal by a suitable choice of frequency
and modulation excursion 4.

4Datasheet for the VCO see appendix Fig. 56.16,
data sheet for the power splitter see appendix Fig. 56.18,
data sheet for the mixer see appendix Fig. 56.19.
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Figure 55.19: Setup of a frequency regulator following Pound-Drever-Hall. VCO: Voltage-
Controlled Oscillator, LT: power splitter, dB: variable attenuator, LP: low-pass filter.
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L. Couturier et al., Laser frequency stabilization using a commercial wavelength me-
ter [?]DOI

K. Huang et al., Microcontroller-based locking in optics experiments [?]DOI

Shun Wu et al., Direct fiber comb stabilization to a gas-filled hollow-core photonic
crystal fiber [?]DOI

Y.N. Zhao et al., Sub-Hertz frequency stabilization of a commercial diode laser [?]DOI

R.W.P. Drever et al., Laser Phase and Frequency Stabilization Using an Optical
Resonator [388]DOI

D. Budker et al., Obtaining frequency markers of variable separation with a spherical
mirror Fabry-Perot interferometer [209]DOI

55.4.3 on control theory

U. Tietze et al., Halbleiterschaltungstechnik [1306]ISBN
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Chapter 56

Appendices to
’Instrumentation of a
Quantum Optics Lab’

DATE: 12/10/91 

TO: J. Barnes 

FROM: W. Riley 

SUBJECT: Items we discussed at the PTTI Meeting last week 

(1) Typo in J.A. Barnes, "The Measurement of Linear Drift in Oscil- 
lators'l, Proc. 15th PTTI Meetinq, 1983, p. 566 (p. TN-279 of NIST 
Technical Note 1337): 

The.expression for A is missing the term N after the 2nd 3. See 

Pa 568 (TN-281) for the correct expression. 

NON SEQUITUR by Wiley 

Figure 56.1: At the National Institute for Standards and Technology (NIST).

56.1 Calculating the uncertainty of measured quan-
tities

56.1.1 Mean value and standard deviation

Mean value and standard deviation are defined by,

x̄ ≡ 1

N

∑

k

xk and σx̄ ≡
√

1

N − 1

∑

k

(xk − x̄)2 . (56.1)

The standard deviation can be weighed by a confidence parameter,

x̄ ≡
∑
k wkxk∑
k wk

and σx̄ ≡
1√∑
k wk

(56.2)

Weighing by individual standard deviation,

wk ≡
1

σ2
k

for σk = σ0 (56.3)
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gives,

x̄ ≡
∑
k
xk

σ2
k∑

k
1
σ2
k

= σ2
x̄

∑

k

xk
σ2
k

σk=σ0−→ 1

N

∑

k

xk with σx̄ ≡
1√∑
k

1
σ2
k

σk=σ0−→ σ0√
N

(56.4)

or,

σ̂x̄ ≡ σx̄χv σk=σ0−→
√

1

N − 1

∑

k

(xk − x̄)2 (56.5)

χv =

√
1

N − 1

∑

k

(xk − x̄)2
σ2
i

.

From error propagation

∆x̄ ≡
√

1

N

∑

k

∆x2k . (56.6)

56.1.1.1 χ2-fit

The χ2-fit of a constant of a function y = f(x) to a measured data set (xk, yk) is,

χ2 =
1

N(N − 1)

∑

k

[f(xk)− yk]2 . (56.7)

The above formula suggest that, increasing the number of measurements N →∞ we
could pull the error to zero. This, however, is NOT TRUE. If the standard deviation
is smaller than the precision ∆ of the measurement tool, the error will be limited by
∆,

ȳ ±max (σ,∆) . (56.8)

56.1.2 Error propagation

The error propagation for a function f(x1, x2, ..) is given by,

∆f =

√(
∂f

∂x1

)2

∆x21 +

(
∂f

∂x2

)2

∆x22 + ... <

∣∣∣∣
∂f

∂x1

∣∣∣∣∆x1 +
∣∣∣∣
∂f

∂x2

∣∣∣∣∆x2 + ... . (56.9)

Calculations can often be simplified by noting that the four fundamental operations,
f = x1 ± x2, f = x1x2, and f = x1

x2
allow us to simply add the relative errors,

∆f

f
=

∆x1
x1

+
∆x2
x2

. (56.10)

Alternatively, we may use the following quick rules,

sum : f ±∆f = (x±∆x) + (y ±∆y) = (x+ y) ± (∆x+∆y)

subtraction : f ±∆f = (x±∆x)− (y ±∆y) = (x− y) ± (∆x+∆y)

multiplication : f ±∆f = (x±∆x) · (y ±∆y) = (x · y) ± (x∆y + y∆x)

division : f ±∆f = x±∆x
y±∆y = x

y ± 1
y2 (x∆y + y∆x)

power : f ±∆f = (x±∆x)n = xn ± nxn−1∆x

.

(56.11)
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Example 304 (Error propagation): Let us study the following example,

f =
x1

x2 + a

=⇒ ∆f = f
∆x1
x1

+ f
∆(x2 + a)

x2 + a
= f

∆x1
x1

+ f
∆x2
x2 + a

.

56.1.3 Fitting a curve

We start defining the following prescription to calculate mean values,

x̄ ≡ 1

N

N∑

k=1

xk , xy ≡ 1

N

N∑

k=1

xkyk . (56.12)

For a fit of a linear curve f(x) = ax + b to a data set {xk, yk}k∈[1,N ], we calculate
(see also Exc. 27.2.3.3),

f(x) = ax+ b , a =
xy − x y
x2 − x2

=
(x− x̄)y
(x− x̄)2

, b =
y x2 − xy x
x2 − x2

= y − ax .

(56.13)
The uncertainties are obtained via,

∆y =

√
N

N − 2
(ax+ b− y)2 , ∆a = ∆y

√
1

N (x2 − x2)
=

∆y√
N x− x̄

(56.14)

, ∆b = ∆y

√
x2

N x2 − x2
= ∆y

√
x2

N x− x̄ .

To fit an exponential curve f(x) = βeαx, we simply convert the data set {xk, vk} ≡
{xk, lg yk}, calculate the mean values of the decadal logarithm using the recipe (56.12),
and fit a linear curve f̃(x) = lg f(x) = α

ln 10x + lg β ≡ ax + b in a semi-logarithmic
scale to the data set {xk, vk}. This gives,

f(x) = βeαx ,
α

ln 10
= a =

x lg y − x lg y

x2 − x2
, lg β = b =

lg y x2 − x lg y x
x2 − x2

.

(56.15)
To fit a power law curve f(x) = βxα, we simply convert the data set {uk, vk} ≡

{lg xk, lg yk}, calculate the mean values of the decadal logarithm using the recipe
(56.12), and fit the linear curve f̃(x) = lg f(x) = α lg x + lg β ≡ ax + b in a double-
logarithmic scale to the data set {uk, vk}. This gives,

f(x) = βxα , α = a =
lg x lg y − lg x lg y

lg x2 − lg x
2 , lg β = b =

lg y lg x2 − lg x lg y lg x

lg x2 − lg x
2 .

(56.16)
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56.1.4 Probability density

Consider a function P (x) having the meaning of a probability depending on a variable
x ∈ [−∞,∞]. The probability density ρ(x) is defined as its derivative, ρ(x) = P ′(x),
such that,

P (x) =

∫ ∞

−∞
ρ(t)dt with P (−∞) = 0 and P (∞) = 1 . (56.17)

Every probability must have the same likeliness, i.e.,

P (x) = ζn , (56.18)

where ζn ∈ [0, 1] is a uniformly distributed random variable. In order to numerically
generate a stochastic distribution, we have to invert the distribution function, i.e. when
ζn is generated by a computer, then

xn = P−1(ζn) (56.19)

is the distribution of the random variable xn. In other words, a histogram of xn
reproduces the probability density ρ(x).

Let us, for example, consider the Boltzmann distribution,

P (x) ≡ 1− e−βx . (56.20)

Probing the probability with a random number, as in (56.18), we obtain the random
variable via (56.19),

xn = P−1(ζn) = −
1

β
ln(1− ζn) . (56.21)

The histogram of this random variable xn can directly be compared with the proba-
bility density ρ(x) given by,

ρ(x) = P ′(x) = βe−βx . (56.22)

This is illustrated in Fig. 56.2(a).

Example 305 (Probability density of a Gaussian distribution): Another
example is the error function given by,

erf(x) ≡ 2√
π

∫ x

0

e−t
2

dt .

By define the probability function,

P (x) ≡ 1

2
[erf(x)− erf(−∞)] =

1√
π

∫ x

−∞
e−t

2

dt .

Probing the probability with a random number, as in (56.18), we obtain the
random variable via (56.19),

xn = P−1(ζn) = erf−1(2ζn − 1) .

The histogram of this random variable xn can directly be compared with the
probability density ρ(x), which is nothing else than the Gauss function,

ρ(x) = P ′(x) =
1√
π
e−x

2

= 2erf′(x) .

This is illustrated in Fig. 56.2(b).
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Figure 56.2: (code) (a) Boltzmann distribution simulated by random numbers (histogram).

The numerical derivative of this distribution is shown as a blue dotted line, and the proba-

bility density as a green solid line. (b) Error function probability distribution simulated by

random numbers (histogram). The numerical derivative of the error function is shown as a

blue dotted line, and the Gauss function as a green solid line.

56.2 Deepening control theory

The variation of a physical quantity (e.g., a voltage or a temperature) in time is called
signal. In a specific environment or technical device, such a variation may cause other
physical quantities to change as well. For example, the rise in temperature of an
optical cavity may modify its length and its resonance frequency, while the inverse
is not true. This feature is illustrated by a block diagram as shown in Fig. 56.3,
where x(t) denotes the variation of a physical quantity (called input) that causes the
variation of another quantity y(t) (called output). The precise way how y(t) depends
on x(t) depends on the particularities of the device, which is labeled by a symbol T
called transfer function. T is in fact an operator acting on functions and transforming
input signals into output signals.

Figure 56.3: Transfer and modification of a time-dependent signal.

While we have described above the transfer of (time-varying) signals, the same
feature can be treated in frequency domain via Fourier or Laplace-transforms. This
script is not the right place to recapitulate the mathematics of these transforms, and
we will restrict ourselves to reproducing some on the most fundamental results, as we
may need them in the following.

56.2.1 Analysis techniques - frequency domain and time do-
main

Mathematical techniques for analyzing and designing control systems fall into two
different categories:

Frequency domain: In this type the values of the state variables, the mathemat-
ical variables representing the system’s input, output and feedback are represented

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_RandomVariable.m


3044 CHAPTER 56. APPENDICES TO ’INSTRUMENTATION OF A QO LAB’

as functions of frequency. The input signal and the system’s transfer function are
converted from time functions to functions of frequency by a transform such as the
Fourier transform, Laplace transform, or Z transform. The advantage of this tech-
nique is that it results in a simplification of the mathematics; the differential equations
that represent the system are replaced by algebraic equations in the frequency domain
which are much simpler to solve. However, frequency domain techniques can only be
used with linear systems, as mentioned above.

Time-domain state space representation: In this type the values of the state vari-
ables are represented as functions of time. With this model the system being analyzed
is represented by one or more differential equations. Since frequency domain tech-
niques are limited to linear systems, time domain is widely used to analyze real-world
nonlinear systems. Although these are more difficult to solve, modern computer sim-
ulation techniques such as simulation languages have made their analysis routine.

In contrast to the frequency domain analysis of the classical control theory, mod-
ern control theory utilizes the time-domain state space representation, a mathematical
model of a physical system as a set of input, output and state variables related by
first-order differential equations. To abstract from the number of inputs, outputs and
states, the variables are expressed as vectors and the differential and algebraic equa-
tions are written in matrix form (the latter only being possible when the dynamical
system is linear). The state space representation (also known as the ’time-domain ap-
proach’) provides a convenient and compact way to model and analyze systems with
multiple inputs and outputs. With inputs and outputs, we would otherwise have to
write down Laplace transforms to encode all the information about a system. Un-
like the frequency domain approach, the use of the state-space representation is not
limited to systems with linear components and zero initial conditions. ’State space’
refers to the space whose axes are the state variables. The state of the system can be
represented as a point within that space.

56.2.1.1 Signal transfer through LTI systems without delay

For an operator T transforming a temporal signal x(t) into a signal y(t),

y(t) = T x(t) , (56.23)

to be linear and time-independent, we require,

T [αx1(t) + βx2(t)] = αT [x1(t)] + βT [x2(t)] (56.24)

T [x(t− τ)] = T [x(t)] ⋆ δ(t− τ) ,

where the ⋆ denotes a convolution,

(f ⋆ g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ . (56.25)

Such system are called Linear Time-Independent LTI systems 1.

1To be more general, also the derivative and integral of the output signal must be included (see
later sections).



56.2. DEEPENING CONTROL THEORY 3045

56.2.1.2 Laplace transform

We define the Laplace transform L as a linear operator acting on a signal x(t) defined
through,

L... ≡
∫ 0

−∞
...estdτ . (56.26)

The frequency variable is denoted by the imaginary quantity s = ıf . The question is
now, what is the meaning of the Laplace operator?

To answer this question, we start introducing the pulse response h(t) via

h(t) = T [δ(t)] (56.27)

as the reaction of a system T to a pulse δ(t). Now, it is easy to see, that the operator
P defined as,

P... ≡ h(t) ⋆ ... , (56.28)

and which describes the convolution of an arbitrary input signal with the pulse re-
sponse, satisfies the above linearity condition. Now calculating,

Pest = h(t) ⋆ est =

∫ 0

−∞
h(τ)es(t−τ)dτ = L[h(t)] · est = (Lh)(s) · est , (56.29)

we find that the functions est are eigenfunctions of the operator P with the eigenvalues
L[h(t)], which are just the Laplace transforms of the pulse response.

We can now expand arbitrary functions x(t)θ(t) in a Laplace series and obtain,

L[h(t) ⋆ x(t)] =
∫ 0

−∞
h(t) ⋆ est x(t)dt = (Lh)(s)

∫ 0

−∞
estx(t)dt = (Lh)(s) · (Lx)(s) .

(56.30)
The convolution on the left-hand side is in time domain, while the product on the
right-hand side is in frequency domain.

56.2.1.3 Pulse and jump response from a transfer function

The transmission of a signal by an element of a control loop can be described in the
temporal or spectral domain [462, 496, 839], and we can switch from one representa-
tion to another via Laplace transformation. Operators of LTI systems T are repre-
sented by products with spectral functions in frequency-domain, F̃ (s)·... = (LF )(s)·...
or convolutions with time-varying functions in time-domain, F (t) ⋆ ...,

y(t) = T x(t) (56.31)

Laplace−→ ỹ(s) = F̃ (s) · x̃(s)
inverse Laplace−→ y(t) = F (t) ⋆ x(t) .

In practice, the function F̃ (f) can be determined by feeding a sinusoidal signal
with amplitude x(s) into the system, measuring y(s) (which is a complex number) 2,

2From now on, we will drop the tilde ∼ on transfer functions and amplitudes, when it is clear
that we are in frequency-domain.
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and calculating

F (s) =
y(s)

x(s)
. (56.32)

The transitory behavior F (t) can in practice be extracted via an adequate choice
of the test function, f.ex., the response to a pulse:

x(t) = δ(t) (56.33)

Laplace−→ y(s) = F (s)

inverse Laplace−→ y(t) = F (t) ,

or to a sudden jump:

x(t) = θ(t) (56.34)

Laplace−→ y(s) = F (s)/s

inverse Laplace−→ y(t) =

∫ t

0

F (τ)dτ .

Here, θ(t) denotes the Heavyside function, which is 1 for t > 0 and 0 else. The time-
dependent function, which describes the pulse response is often used as a symbol for
a specific control loop element.

The pulse response works in a similar way as the Green’s function procedure:
Wanting to know how a loop control element F transforms a given input signal x(t)
into an output signal y(t), i.e., y(t) = F (t) ⋆ x(t), we produce a rapid pulse leading
to the output,

yδ(t) = F (t) ⋆ δ(t) = F (t) . (56.35)

Now, once we know F (t), the response to arbitrary input signals can be computed
via,

y(t) = yδ(t) ⋆ x(t) . (56.36)

56.2.1.4 Bode diagram and polar diagram

The Bode diagram illustrates the transfer function in the spectral domain on a biloga-
rithmic scale separating the amplitude spectrum from the phase spectrum [see Fig. 56.4(a-
b)]. Frequency regions, where |F (s)| or φ(s) vary particularly strongly are nicely
emphasized in the polar representation [see Fig. 56.4(c-d)].

For LTI systems F (s) is always a rational function and can, hence, be represented
by its poles and zeros in the complex plane,

F (s) = A
(s− a1)(s− a2)...(s− an)
(s− b1)(s− b2)...(s− bn)

. (56.37)

With this, F (s) is analytical and conform, i.e., multiple curves in the s-plane are
represented in an isogonal way in the F (s)-plane. In order to avoid that the eigen-
functions est oscillate and diverge, it is necessary that all the poles and zeros are in
the left halfplane.
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Figure 56.4: (code) Bode diagram.

56.2.2 Algebra of transfer circuits

A technical realization of a signal transfer circuit is illustrated by a signal flux diagram,
which itself corresponds to the formalism of linear operators. As shown in Fig. 56.5,
signals can be

• (a) added (f1 + f2)(t) ≡ f1(t) + f2(t),

• (b) multiplied (f1 · f2)(t) ≡ f1(t) · f2(t),

• (c) combined f1(t) = f2(t),

• (d) transformed f2(t) = F [f1](t) ≡ F (f1(t)),

• (e) connected in parallel (F1 + F2)[f(t)] ≡ F1[f(t)] + F2[f(t)],

• (f) connected in series (F1 ◦ F2)[f(t)] ≡ F1[F2[f(t)]],

Mathematically, the functions f(t) form a vector space and the operators F [f ] a
ring. The linear operators generally are defined implicitly by a system of differential
equations. The particular case of linear systems is considerably simpler. The general
circuit shown in Fig. 56.5(g) corresponds to the differential equation,

0 = F [x1, .., xk, ∂tx1, .., ∂txk, y1, .., yj ] . (56.38)

The linearity F [λf1 + µf2] = λF [f1] + µF [f2] warrants that this equation becomes,

0 = [1 + ∂t + ...+

∫
dt+ ...]yk = [1 + ∂t + ...+

∫
dt+ ...]xj . (56.39)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_Controle.m
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Figure 56.5: LTI circuits.

Note that the multiplication, the derivation, and the integration are linear operators
in the same sense as the Fourier and the Laplace transformation.

Linear differential equations can be Laplace transformed. The corresponding
transfer function is,

F (s) = F (−δ + ıω) ≡ Ly(t)Lx(t) . (56.40)

In the Laplace-transformed space the operations multiplication, derivation, and inte-
gration are all replaced by multiplications:

L[λ+ ∂t + ...+

∫
dt+ ...] = λ+ s+ ...+

1

s
. (56.41)

With this, the control loop elements and the additive nodes can be used to completely
represent a control circuit.

The characteristic responses of components are frequently non-linear (e.g. transis-
tor). For small signal amplitudes, these response functions, and also multiplication
points (e.g. mixers) can be linearized by Taylor expansion up to first order,

y0 +∆y = F [x01 +∆x1, ..., x0k +∆xk] (56.42)

= F [x01, ..., x0k] +

(
∂F

∂x1

)

0

∆x1 + ...+

(
∂F

∂xk

)

0

∆xk ,

with y0 = 0 = F [x01, ..., x0k] giving,

∆y =

(
∂F

∂x1

)

0

∆x1 + ...+

(
∂F

∂xk

)

0

∆xk . (56.43)

For example for a multiplication point,

∆y = K1∆x1 +K2∆x2 . (56.44)
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Figure 56.6: Transfer function h(t) = y(t)
xw

, Bode diagram amplitude L(ω) = 20 lg |FR| and
phase φ = arctan Im FR

Re FR
, and polar representation F (iω) = Re FR + ıIm FR of the most

common regulators. With delay time (—), T2 = T1 = 0, first order with delay time (- - -),
T2 = 0 ̸= T1, and second order (· · ·), T2 ̸= 0 ̸= T1. From top to bottom, the diagrams show
the regulators P , I, D, PI, PD, and PID, described by the equations (56.45) and (56.46).

56.2.2.1 Regulators

For many circuits, it is sufficient to restrict to combinations of resistive (proportional),
capacitive (integral), and inductive (differential) circuits. Then, the general case of a
control regulator is that of a PID − T1...Tn-element, meaning that:

T 2
2 ÿ + T1ẏ + y = KDẋ+KPx+KI

∫
dtx = KP

(
x+ Tvẋ+

1

Tn

∫
dtx

)
, (56.45)

corresponding to the transfer function,

F (s) =
KDs+KP +KI/s

1 + T1s+ T 2
2 s

2
=

(1 + Tvs+ 1/Tns)

1 + T1s+ T 2
2 s

2
. (56.46)

In literature, two notations are used for the constants. They are linked via: KD ≡
KPTv and KI ≡ KP /Tn. The stationary behavior is obtained setting the delays to
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zero: Tn ≡ 0.

Example 306 (PID regulators): For example, for a proportional regulator,
we have,

y = KPxw and FR = KP , (56.47)

for an integral regulator with time delay T1, we have,

T1ẏ + y = KI

∫
xwdt and FR =

KI

s(1 + sT1)
, (56.48)

or for a PID regulator without delay, we have,

y = KPxw +KDẋw +KI

∫
xwdt and FR = KP +

KI

s
+KDs . (56.49)

Since there are three basic operations (multiplication with 1, s and 1/s), in the
end, all rational circuit elements can be reduced to an addition and concatenation of
proportional F (s) = KP , integral F (s) = KI/s, and differentials elements, F (s) =
KDs. In particular, PID−T1...Tn circuits can be constructed by putting in parallel P ,
I, and D regulators concatenated with delay elements T1. The possibility of feedback
opens other possibilities [see Fig. 56.7(a)].

Figure 56.7: (a) Circuit with feedback, (b) low-pass filter circuit.

Example 307 (Low-pass filter and time delays): We consider the example
of a low-pass filter exhibited in Fig. 56.7(b) and described by the equation,

F (ıω) =
R+ ıωL+ 1/ıωC

Ri +R+ ıωL+ 1/ıωC
. (56.50)

I.e., we have a PID − T1T2 circuit.
Another example, is the dead time circuit,

y(t) = x(t− Tt) and F (s) = e−sTt . (56.51)

We have,

F (ıω) = e−ıωTtF0 and |F (ıω)| = F0 and φ(ıω) = −ωTt . (56.52)

Hence, dead time circuits produce phase shifts, which are proportional to the

dead time interval Tt.

56.2.2.2 Heuristic rules for the Bode diagram

Any deviation of the amplitude spectrum from n · 6dB/octave to (n+1) · 6dB/octave
causes a retardation in the phase spectrum of 90◦. At the cut-off frequency, where
the inclination changes its behavior, the phase shift is just 45◦. A deviation to
higher/lower inclinations shifts the phase by ±90◦. (This does not hold for some
phase-shifting circuits).
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56.2.2.3 Transfer function of feedback circuits

Fig. 56.7 shows the idea underlying the feedback,

F (s) =
1

1/FR − Ffb
. (56.53)

For example, for FR = 1/T1s and Ffb = −1 we have,

F (s) =
1

1 + T1s
, (56.54)

which corresponds to a delay element (or high-pass filter).
For Fr being a proportional element, we say that the feedback rigid, for Fr being

differential, the feedback is anticipating, and for Fr being integral, the feedback is
delaying.

56.2.3 Stability of feedback circuits

As discussed above, the transfer function of the feedback circuit is,

H(s) =
F (s)

1 + F (s)Ffb(s)
. (56.55)

The open loop gain is V (s) = F (s)Ffb(s). The circuit is stable, when for all the
eigenfunctions est, that do not decay with Re s ≥ 0, the transfer function of the
feedback circuit is finite, H(s) <∞.

An equivalent criterion is the Nyquist criterion: The curve V (ıω) to ω ∈ [0;∞[
must always bypass the point of instability at Re s = −1 leaving it on the left
side. That is, considering negative frequencies, the curve should not circle this point.
Fig. 56.9 shows an example.

56.2.4 Further topics in control theory

56.2.4.1 Nonlinear control theory

Linear control theory applies to systems made of devices which obey the superposition
principle, which means roughly that the output is proportional to the input. They
are governed by linear differential equations. A major subclass is systems which in
addition have parameters which do not change with time, called linear time invariant
(LTI) systems. These systems are amenable to powerful frequency domain mathemat-
ical techniques of great generality, such as the Laplace transform, Fourier transform,
Z transform, Bode plot, root locus, and Nyquist stability criterion. These lead to a
description of the system using terms like bandwidth, frequency response, eigenvalues,
gain, resonant frequencies, poles, and zeros, which give solutions for system response
and design techniques for most systems of interest.

Nonlinear control theory covers a wider class of systems that do not obey the su-
perposition principle, and applies to more real-world systems, because all real control
systems are nonlinear. These systems are often governed by nonlinear differential
equations. If only solutions near a stable point are of interest, nonlinear systems
can often be linearized by approximating them by a linear system using perturbation
theory, and linear techniques can be used.
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Figure 56.8: Some examples for feedback regulators. The columns show from left to right:
the nomenclature, the circuit diagram, the behavior, and the constants of the LTI system.

56.2.4.2 MIMO control systems

In this script we restrict to single-input single-output control systems (SISO), which is
the simplest and most common type, in which one output is controlled by one control
signal. Examples are the temperature control or an audio system, in which the control
input is the input audio signal and the output is the sound waves from the speaker.

In contrast, multiple-input multiple-output control systems (MIMO) are found in
more complicated systems. For example, modern large telescopes such as the Keck
and MMT have mirrors composed of many separate segments each controlled by
an actuator. The shape of the entire mirror is constantly adjusted by a MIMO
active optics control system using input from multiple sensors at the focal plane, to
compensate for changes in the mirror shape due to thermal expansion, contraction,
stresses as it is rotated and distortion of the wavefront due to turbulence in the
atmosphere.
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Figure 56.9: Illustration of the Nyquist criterion.

Another example are ultra-stable laser systems stabilized by combinations of fast
actuators with low dynamic range and slow actuators with large dynamic range.

56.2.5 Exercises

56.2.5.1 Ex: Step response

Calculate the step response of a low-pass filter using the Laplace transform formalism.

Solution:

56.3 Characterization of stability

The quality factor of a resonance measured with an oscillator in its function as a
measuring apparatus for the resonance frequency is named precision. The precision
also includes the perturbations to which the controlled oscillator is exposed and can be
understood as the standard deviation of the frequency realized by the standard. The
temporal or spectral behavior of precision, i.e. the stability can e.g. measured directly
by comparing similar but independent standards. The reciprocal of the spread of the
frequency realizations of an ensemble of similar standards is called reproducibility.
The term reproducibility is also used to compare the frequencies of an individual
standard before and after readjustment of all its technical parameters.

The accuracy is defined as the degree of agreement between the frequency realized
by the standard and the defined standard frequency, i.e. the frequency that would be
displayed in the fault-free ideal case 3. The accuracy is always less than the quality
of the resonance and the certainty of it center frequency. It includes the precision
and limits the reproducibility [19]. The fact that the accuracy is related to the ideal
case of absent errors implies that it cannot be measured directly. It must be inferred
indirectly through model assumptions regarding the measuring apparatus estimating
the probability for presumed or possible errors. We then speak of the uncertainty of
the measured value [275].

The temporal or spectral behavior of accuracy is called stability. It is measur-
able and is quantified in the frequency domain by the spectral density of fluctuations

3For example, when a measurement apparatus for the constant π provided the value x =
3.141 59 (12), then the accuracy is x− π and the precision 0.000 12.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_ControlTheory01.pdf
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and in the time domain best by the Allan variance. The noise is now the physical
phenomenon that manifests itself as a deviation from the optimal stability.

The stability that an ideal frequency standard can achieve in principle is propor-
tional to quality factor of the resonance ω/(∆ωnat+∆ωbroaden) and the signal-to-noise
ratio of the control signal S/N . Hence, the stability can be optimized by choosing
atomic transitions with small spontaneous decay rates ∆ωnat. Appropriate techniques
for the experimental preparation of the resonance limit the influence of line broaden-
ing mechanisms ∆ω. According to the Fourier theorem, the resolution of narrow lines
requires long observation times. Now, the control signal of a feedback regulator can
only be determined after a whole observation period. This means that the appara-
tus already must have an intrinsic stability good enough that the frequency does not
leave the control range during a period of observation. Furthermore, a better signal-
to-noise ratio can improve the precision with which the line center of the resonance
can be determined.

Ultimately, the most promising way to increase the accuracy of a frequency stan-
dard seems to be to choose the highest possible transition frequencies ω, provided that
the oscillations can still be counted electronically, or be linked in a phase-coherent
way to oscillators generating countable oscillations, e.g. using frequency combs. The
requirement of phase coherence at optical frequencies puts the laser in the focus of
interest in metrology.

56.3.1 Quantifying frequency fluctuations

The following sections deal with perturbation-induced fluctuations of the laser fre-
quency, i.e. frequency noise. To characterize the behavior of an oscillator (especially
when used as a frequency standard), it is necessary to introduce some concepts that al-
low the quantitative description of the noise. The most important are reproducibility,
stability, spectral density of fluctuations, Allan variance, and emission bandwidth.
The basic work on this has been carried out at the National Bureau of Standards
(NBS) in Boulder, Co, USA [18, 19, 97, 314].

56.3.1.1 Stability in the frequency domain, spectral fluctuation density

The instantaneous amplitude of an oscillator, e.g. the electric field of a laser radiation,
can be written,

E(t) = E0(t)eıϕ(t) . (56.56)

noise afflicts phase and amplitude. In the following we will neglect amplitude noise,
E0(t) = E0, and if the frequency fluctuations only deviate slightly from a mean value,
ω0 ≫ |φ̇(t)|, we may write,

ϕ(t) ≡ ω0t+ φ(t) . (56.57)

In the following, we will often consider normalized frequency fluctuations,

y(t) = φ̇(t)/ω0 . (56.58)

When measuring stability, one must differentiate between deterministic fluctua-
tions and stochastic noise. Deterministic fluctuations are usually due to inadequate
control of equipment parameters. They generate systematic errors and slow drifts
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ysys(t) which, if one recognizes them as such in time domain measurements (mea-
sure for sufficiently long times!), can be subtracted and disregarded. Stochastic noise,
however, is stationary:

ysto(t) = y(t)− ysys(t) = 0 defining y(t) ≡ lim
T→∞

1

T

∫ T

0

y(t)dt (56.59)

as the time average. In the following only stationary stochastic fluctuations are con-
sidered.

Let us take a look at the autocorrelation function of the phase defined as,

Ry(τ) ≡ y∗(t)y(t+ τ) = lim
T→∞

1

T

∫ T

0

y∗(t)y(t+ τ)⟩dτ (56.60)

and the spectral density of phase fluctuations which, according to theWiener-Khintchine
theorem, can be obtained as the Fourier transform of the autocorrelation function,

Sy(f) ≡ FRy(τ) =
∫ ∞

−∞
Ry(τ)e

−2πıfτdτ . (56.61)

The normalized density of frequency fluctuations Sy(f) is a spectral quantity with
the unit 1/Hz. Frequency and phase fluctuations are linked by:

Sẋ(f) = f2Sx(f) , (56.62)

as will be shown in Exc. 56.3.3.1. Also,

Sax(f) = a2Sx(f) , (56.63)

If the integral of the spectral fluctuation density is finite it corresponds, according to
the definition (56.62), to the noise power or the mean square deviation of a measured
variable: ∫ ∞

0

Sy(f)df = Ry(0) = |y(t)|2 <∞ . (56.64)

56.3.1.2 Model of noise

Measurements seem to confirm today that stochastic fluctuations in frequency stan-
dards can be traced back to a few additive noise processes with different physical
origins and different frequency responses [18]:

Sy(f) =

2∑

β=−2
hβf

β . (56.65)

The table below lists the most common ones.
This noise model is based on the assumption that the noise processes it describes

operate in all Fourier frequency ranges, which violates the requirement (56.64). The
dilemma does not arise in experiment, since the integration over an unlimited Fourier
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noise type Sy(f) σ2
y(τ)

white phase noise h2f
2 ∝ h2

τ2

flicker phase noise h1f
1 ∝ h1

τ2

white frequency noise h0f
0 h0

2τ

flicker frequency noise h−1f−1 h−12 ln 2

random walk frequency drifts h−2f−2 h−2
(2π)2

6 τ

Table 56.1: Spectral fluctuation density and Allan-variance for common noise pro-
cesses [97].
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Figure 56.10: Noise model according to (56.65).

frequency range is not a realistic concept in that each measurement only takes a finite
time τ , so that very low frequencies below a cut-off frequency fmin = 2π/τ are not
perceived. In addition, every real data acquisition system has a low-pass behavior
with a cut-off frequency fmax, so that high frequencies also do not contribute to the
integral. These bandwidth constraints enforce the condition (56.64) for the five noise
processes assumed by (56.65) [794]. The measure for the noise power in any case has

the form:
∫ fmax

fmin
Sy(f)df .

56.3.1.3 Description of stability in the time domain, Allan variance

Temporal frequency fluctuations of an oscillator can be measured by discriminating
the frequency fluctuations at the dispersive profile of a resonance (or error signal)
and convert it into voltage fluctuations. It is just the curve exhibited by a spectrum
analyzer to which the error signal is fed, as illustrated by the left setup of Fig. 56.12.

Like any physical quantity, frequency fluctuations can only be measured as an
average over an integration time interval τ imposed by the measuring apparatus.
The k-th measurement of the quantity y at the time tk results in the measured value:

yk(τ) =
1

τ

∫ tk+τ

tk

y(t)dt . (56.66)
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Assuming that the dead time of the measuring apparatus is negligible (if necessary,
technical precautions must be taken to meet this requirement approximately), the
variance of stochastic noise can be expressed as follows:

σ2
y(τ) =

1

N − 1

N∑

k=1

y2k where yk = 0 . (56.67)

The variance is a direct measure of the stability of an oscillator in time domain. It
is measured from a discrimination of the error signal in a similar way as the fluctuation
density Sy(f). However, as illustrated by the left setup of Fig. 56.12, the discriminated
signal is recorded in time domain, e.g. by an oscilloscope.

The variance can be linked to the spectral density of frequency fluctuations in
frequency domain by Fourier transformation. With the Heaviside step function Θ the
following relationship can be given [314, 18, 61],

σ2
y(τ) =

∫ ∞

0

Sy(f)|Fζ1(f)|2df where ζ1(t) =
1

τ
Θ[−τ,0](t) , (56.68)

is the area-normalized jump function, which models the duration of the integration
time τ . Its Fourier-transform is the transfer function of the equivalent filter.

Figure 56.11: (a) Noise can exhibit very different short and long time behavior. (b) Any
measurement needs a minimum integration time.

It turns out that the variance for 1/f noise and for stochastic drifts (1/f2 noise)
diverges at the lower limit, i.e. this variance is not useful for practical applications.
The divergence comes from the fact that for longer and longer measurements (N →
∞), respectively, smaller and smaller Fourier frequencies (f → 0), longer and longer
periodic fluctuations can be identified as such, while for shorter measurements they
appear as linear drifts. One way out is to calculate the variance for a limited number
k of measurement data and to average the variances of M of such data sets of length
k. This variance converges for a larger number of noise processes. This so-called pair
variance (k = 2) or Allan variance is widely used:

σ2
y(τ) =

1

2M

M∑

j=1

(y2j − y2j−1)2 . (56.69)

Like the normal variance, the Allan variance can also be related to the spectral density
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of frequency fluctuations:

σ2
y(τ) =

∫ ∞

0

Sy(f)|Fζ2(f)|2df where ζ2(t) ≡ 1√
2
[ζ1(t)− ζ1(−t)] . (56.70)

The Fourier transforms of the step functions ζ1(t) and ζ2(t) will be calculated in
Exc. 56.3.3.2, as well as the variances for white noise.

56.3.2 Power spectral density

It is important not to confuse the spectral density of frequency fluctuations with the
power spectral density of the oscillator defined via the autocorrelation function of the
field amplitude 4,

RE(τ) ≡ ⟨E∗(t)E(t+ τ)⟩ = E20 ⟨eı[ϕ(t+τ)−ϕ(t)]⟩ = E20eıω0τ ⟨eı[φ(t+τ)−φ(t)]⟩ , (56.71)

as its Fourier transform,

SE(ω) = FRE(τ) . (56.72)

The power spectral density is typically measured as the beat frequency of two inde-
pendent oscillators. It is just the curve exhibited by a spectrum analyzer to which
the beat signal is fed, as illustrated in the right setup of Fig. 56.12.

Figure 56.12: (left) Setup for measuring the spectral density of frequency fluctuations Sy(f)
and the Allan variance σ2

y(τ) of laser 1 discriminating it at the slope of transmission signal of
an optical cavity. (right) The power spectral density SE(ω) can be found as the beat signal
between two lasers and either be exhibited on a spectrum analyzer SE(ω) or counted and
processed to an Allan variance σ2

y(τ).

The beat spectrum is the convolution of the emission bandwidth of the two oscil-
lators,

SE(ω) = SE,laser1(ω) ∗ SE,laser2(ω) . (56.73)

4Note that the first-order coherence is just the normalized autocorrelation,

g(1)(τ) ≡ ⟨E∗(t)E(t+ τ)⟩
⟨E∗(t)E(t)⟩ =

RE(τ)

RE(0)
.

.
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In particular, for the case that we have good reasons to believe that one laser is much
narrower than the other, the power spectral density SE(ω) will reflect the emission
spectrum of just the broader laser. Note that the power spectral density derived
from a beat of two independent (uncorrelated) oscillators gives us information on
their true emission bandwidths, which is relevant e.g. for resolving narrow atomic
transitions. On the other hand, the stability measures Sy(f) and σ

2
y(τ) derived from

a discriminated error signal (left setup in Fig. 56.12) only tell us the stability of an
oscillator with respect to the reference from which the error signal was derived, e.g. the
transmission slope of an optical cavity.

56.3.2.1 Spectral noise power density in the case of white noise

The spectral noise power density SE(ω) of the field E(t) of an oscillator can, in the
case of white frequency noise, be related to the spectral density of its frequency
fluctuations. In the case of a laser oscillator, the half-width half maximum of the
spectral noise power density, i.e. the emission bandwidth, is often specified. We will,
in the following, derive the emission spectrum for the case of white Gaussian noise
[1264, 414, 381].

In Exc. 56.3.3.3 we show that for a Gaussian noise process holds [326, 414],

〈
e−ı[φ(t)−φ(t+τ)]

〉
= e−⟨[φ(t)−φ(t+τ)]2⟩/2 . (56.74)

Now we set φ(t) = ω0

∫ t
0
y(t′)dt′ using (56.58) and obtain,

〈
[φ(t)− φ(t+ τ)]2

〉
=

〈
ω2
0

[∫ τ

0

y(t′)dt′
]2〉

= ω2
0

∫ τ

0

∫ τ

0

⟨y(t′)y(t′′)⟩ dt′dt′′ (56.75)

= ω2
0

∫ τ

0

∫ τ

0

Ry(t
′ − t′′)dt′dt′′ = 2ω2

0

∫ τ

0

(τ − t)Ry(t)dt .

Using (56.61), we now substitute the autocorrelation function by its Fourier transform,
the spectral fluctuation density, Ry(t) =

∫∞
0
Sy(f)e

2πıftdf :

〈
[φ(t)− φ(t+ τ)]2

〉
= 2ω2

0

∫ ∞

0

Sy(f)

∫ τ

0

(τ − t)e2πıftdtdf (56.76)

= 2ω2
0

∫ ∞

0

Sy(f)

(
sinπfτ

2πf

)2

df + imaginary part .

We neglect the imaginary part.
For Markovian white noise the phase fluctuations are δ-distributed, which means,

Ry ≡ ⟨y∗(t)y(t+ τ)⟩ = h0δ(τ) and Sy(f) = h0 = const. (56.77)

I.e. the so-called white noise is characterized by a constant spectral density of phase
fluctuations. Carrying on the calculation (56.76) for the case of white frequency noise
we get,

〈
[φ(t)− φ(t+ τ)]2

〉
=
h0ω

2
0 |τ |
π

∫ ∞

0

(
sinx

x

)2

dx =
h0ω

2
0 |τ |
2

. (56.78)
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With this result, we can undertake to calculate the autocorrelation function of the
field amplitude (56.71),

RE(τ) = E20eω0τe−h0ω
2
0 |τ |/2 . (56.79)

The resulting power spectral density (56.72) is 5:

SE(ω) = E20
∫ ∞

−∞
RE(τ)e

−ı(ω−ω0)τdτ =
2h0ω

2
0

4∆2 + (h0ω2
0/2)

2
, (56.80)

where ∆ ≡ ω − ω0 is the deviation of the oscillator frequency from the center fre-
quency ω0. Thus, the the emission spectrum for the case of white Gaussian noise is a
Lorentzian profile with the laser emission bandwidth,

β = 1
2h0ω

2
0 . (56.81)
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Figure 56.13: (code) Allan variance (b) and spectral density of frequency fluctuations (c)

calculated from a randomly generated data set (a).

The Lorentz shape of the emission profile of an oscillator or a resonance always
indicates white noise of the underlying frequency fluctuation density. In this sense,
the Lorentz form of the natural broadening of an atomic resonance can also be traced
back to the white noise of the vacuum fluctuations. Here, the emission bandwidth
has to be replaced by the natural linewidth. The Allan variance in this case is:

σ2
y(τ) =

h0
2τ

=
1

Q2

1

Γ

1

τ
. (56.82)

with the linewidth (FWHM) Γ = h0ω
2
0/2 and Q = ω0/Γ and indicates the maximum

achievable stability for a frequency standard that is coupled to the resonance ω0.

5Using F [e−a|x|] =
∫∞
−∞ e−a|t|e−ıωtdt = 2a

a2+ω2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_AllanVarianceSpectralDensity.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LabOptics/LO_Appendix_AllanVarianceSpectralDensity.m
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56.3.2.2 Spectral noise power density in case of periodic phase perturba-
tion

The momentary deflection of the oscillator can be described in the case of a harmonic
phase disturbance by equation (56.60) with the additional condition: ϕ(t) = N sinΩt.
The frequency fluctuation density and the Allan variance are obtained in this case:

Sy(f) =

(
fN

2ω0

)2

δ(f − Ω) resp. σ2
y(τ) =

(
ΩN

2ω0

)2
sin2 Ωτ/2

Ωτ/2
. (56.83)

The spectral noise power density consists of a discrete spectrum of sidebands, the
number and height of which is given by the modulation index N :

SE(ω) =
∞∑

n=−∞
|Jn(N)|2δ(ω − ω0 − Ω) . (56.84)

A full width at half maximum of the spectral noise power density cannot be specified.
However, as a measure of the emission bandwidth of the oscillator, the frequency
spacing of the sideband of the highest order can be understood, the height of which
corresponds to at least half the height of the carrier frequency ω0.

56.3.3 Exercises

56.3.3.1 Ex: Spectral density of frequency fluctuations

Prove the relationship Sẋ(f) = f2Sx(f).

Solution: We start showing (Ff ′)(ω) = 2πıω(Ff)(ω). First we define u = e−2πıωt

and v = f(t) such that du = −2πıωe−2πıωtdt and dv = f ′(t)dt. Then we integrate by
parts,

(Ff ′)(ω) =
∫ ∞

−∞
f ′(t)e−2πıωtdt = f(t)e−2πıωt

∣∣∞
−∞ −

∫ ∞

−∞
(−2πıω)e−2πıωtf(t)dt

= 2πıω

∫ ∞

−∞
e−2πıωtf(t)dt = 2πıω(Ff)(ω) .

Furthermore,

[F(f ′g′)](ω) = [(Ff ′) ∗ (Fg′)](ω) = (2πıω)2[F(fg)](ω) .
Now, writing spectrum as,

Sẋ(f) =

∫
Rẋ(τ)e

−2πifτdτ =

∫ [
lim
T→∞

1

T

∫ T

0

ẋ(t)ẋ(t+ τ)dt e−2πifτ
]
dτ

= lim
T→∞

1

T

∫ T

0

[∫
ẋ(t)ẋ(t+ τ)e−2πifτdτ

]
dt ,

and identifying f(t) ≡ ẋ(t) and g(t) ≡ ẋ(t+ τ) we get,

Sẋ(f) = f2Sx(f) .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_SpectralNoise01.pdf
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56.3.3.2 Ex: Allan variance for white noise

a. Calculate the Fourier transform of step function ζ1(t) and the one-point variance
for white noise from its definition (56.68).
b. Repeat the calculation for the step function ζ2(t) and the Allan variance as defined
in (56.70).

Solution: a. The Fourier transform of step function ζ1(t) =
Θ[−τ,0](t)

τ is,

(Fζ1)(f) =
∫ ∞

−∞
ζ1(t)e

2πıftdt =
1

τ

∫ 0

−τ
e2πıftdt =

1− e−2πıfτ
2πifτ

,

such that,

|(Fζ1)(f)|2 =
sin2 πfτ

(πfτ)2
.

The one-point variance is now,

σ2
y(τ) =

∫ ∞

0

Sy(τ)|Fζ1(f)|2df = h0

∫ ∞

0

sin2 πfτ

(πfτ)2
df =

h0
2|τ | .

b. The Fourier transform of the step function ζ2(t) =
ζ1(t)−ζ1(−t)√

2
is,

(Fζ2)(f) =
∫ ∞

−∞
ζ2(t)e

2πıftdt =
1√
2

(
1− e−2πıfτ

2πıfτ
− e2πıfτ − 1

2πıfτ

)
.

such that,

|(Fζ2)(f)|2 = 2
sin4 πfτ

(πfτ)2
.

The Allan variance is now,

σ2
y(τ) =

∫ ∞

0

Sy(τ)|Fζ2(f)|2df = h0

∫ ∞

0

2 sin4 πfτ

(πfτ)2
df =

h0
2|τ | .

56.3.3.3 Ex: Gaussian noise process

Prove the relationship (56.75) for a Gaussian noise process characterized by,

⟨A2n⟩
(2n)!

=
⟨A2⟩n
2nn!

and ⟨A2n−1⟩ = 0 .

Solution: We calculate,
〈
e−ı[φ(t)−φ(t+τ)]

〉
=
∑

n

1

(2n)!

〈
−ı2n[φ(t)− φ(t+ τ)]2n

〉

=
∑

n

1

n!

〈
− 1

2 [φ(t)− φ(t+ τ)]2
〉n

= e−⟨[φ(t)−φ(t+τ)]2⟩/2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_SpectralNoise02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/LabOptics/Sol_LO_Appendix_SpectralNoise04.pdf
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56.4 Data sheets

The following pages contain the data sheets of the main components used in this
course.
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HL6722G 
AlGaInP Laser Diode 

 
ODE-208-220E (Z) 

 
Rev.5 

Mar. 2005 

Description 

The HL6722G is a 0.67 µm band AlGaInP index-guided laser diode with a multi-quantum well (MQW) 
structure.  It is suitable as a light source for bercode scanner, and various other types of optical equipment.  
Hermetic sealing of the package assures high reliability. 

Features 

• Visible light output at wavelengths up to 680 nm 
• Single longitudinal mode 
• Continuous operating output:  5 mW CW 
• Low voltage operation:  2.7 V Max 
• Low current operation:  32 mA Typ 
• Built-in monitor photodiode 
 

LDPD

1 3

Internal CircuitPackage Type
•  HL6722G: G2

2  

Figure 56.14: Data sheet for the diode laser from Thorlabs, model Hitachi HL6722G.
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Features
• wideband, 10 to 1000 MHz
• high IP3, +38 dBm typ.
• medium high power, 29 dBm min.

Applications
• VHF/UHF
• test equipment
• cellular
• instrumentation
• laboratory

* Heat sink not included
Open load is not recommended, potentially can cause damage. 
With no load derate max input power by 20 dB

To order without heat sink, add suffix X to model number.  Alternative heat sinking and heat 
removal must be provided by the user to limit maximum temperature to 65°C,  in order to ensure 
proper performance.  For reference, this requires thermal resistance of user’s external heat sink 
to be 1.35°C/W Max.

MODEL
NO.

FREQ.
(MHz)

GAIN 
(dB)

MAXIMUM POWER 
OUTPUT

(dBm)

DYNAMIC 
RANGE

VSWR 
(:1)

Max.

DC
POWER

fL fU

Flatness (1 dB Compr.)  Input 
(no damage)

NF
(dB)

IP3
(dBm)

Volt
(V)

Nom.

Current
(A)

Max.Min. Typ. Max. Min. Typ. Typ. In Out
ZHL-2-8 10 1000 31 35 ±1.0 +29 +5 10.0 +38 2.0 2.0 24 0.6
ZHL-2-8X* 10 1000 31 35 ±1.0 +29 +5 10.0 +38 2.0 2.0 24 0.6

ISO 9001  ISO 14001  AS 9100 CERTIFIED
Mini-Circuits®

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500  Fax (718) 332-4661  The Design Engineers Search Engine                 Provides ACTUAL Data Instantly at 
®

Notes: 1. Performance and quality attributes and conditions not expressly stated in this specification sheet are intended to be excluded and do not form a part of this specification sheet.   2. Electrical specifications 
and performance data contained herein are based on Mini-Circuit’s applicable established test performance criteria and measurement instructions.   3. The parts covered by this specification sheet are subject to 
Mini-Circuits standard limited warranty and terms and conditions (collectively, “Standard Terms”); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard 
Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits’ website at www.minicircuits.com/MCLStore/terms.jsp.

For detailed performance specs 
& shopping online see web site

 minicircuits.com
IF/RF MICROWAVE COMPONENTS

Maximum Ratings
Operating Temperature  -20°C to 65°C

Storage Temperature  -55°C to 100°C

DC Voltage +25V Max.

Electrical Specifications

REV. C
M133857
ZHL-2-8
110929
Page 1 of 2

Amplifier
50Ω     Medium High Power     10 to 1000 MHz

Coaxial

ZHL-2-8

SMA version shown

CASE STYLE: T34
Connectors Model Price  Qty.
BNC ZHL-2-8 $525.00 ea. (1-9)
BNC ZHL-2-8X $515.00 ea. (1-9)
SMA ZHL-2-8-S $535.00 ea. (1-9)
SMA ZHL-2-8X-S $525.00 ea. (1-9)

ZHL-2-8ZHL-2-8X

Outline Dimensions  (     )inch
mm

Outline Drawing

A B C D E F G H J K L M N P Q R S T wt
4.75 2.00 2.12 .19 4.375 .23 1.540 .144 .58 .34 .50 1.50 1.00 .12 .38 4.00 .30 2.60 grams*

120.65 50.80 53.85 4.83 111.13 5.84 39.12 3.66 14.73 8.64 12.70 38.10 25.40 3.05 9.65 101.60 7.62 66.04 440.0
*325 grams without heatsink

Permanent damage may occur if any of these limits are exceeded. 

 
 Outline Dimensions 

M OUNT I NG  I NF OR M A T I ON F OR  M ODE L S W I T H OUT  H E A T SI NK

Figure 56.15: Data sheet for the rf-amplifier from MiniCircuits, model ZHL-2-8.
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FREQUENCY
(MHz)

POWER
OUTPUT

(dBm)
Typ.

TUNING
VOLTAGE

(V)

PHASE NOISE
(dBc/Hz)

SSB at offset frequencies: 
Typ.

PULLING
(MHz)
pk-pk

(open/short)

PUSHING
(MHz/V)

TUNING
SENSITIVITY

(MHz/V)

HARMONICS
(dBc)

3 dB
MODULATION
BANDWIDTH

(MHz)

DC
OPERATING

POWER

Vcc
(volts)

Current
(mA)
Max.Min. Max. Main Aux. Min. Max. 10 kHz 100 kHz 1 MHz Typ. Typ. Typ. Typ. Max. Typ.

50 100 +9 -12 1 16 -111 -131 -143 0.026 0.25 4.5 -29 -20 0.1 12 140

ISO 9001  ISO 14001  AS 9100 CERTIFIED
Mini-Circuits®

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500  Fax (718) 332-4661  The Design Engineers Search Engine                 Provides ACTUAL Data Instantly at 
TM

Notes: 1. Performance and quality attributes and conditions not expressly stated in this specification sheet are intended to be excluded and do not form a part of this specification sheet.   2. Electrical specifications 
and performance data contained herein are based on Mini-Circuit’s applicable established test performance criteria and measurement instructions.   3. The parts covered by this specification sheet are subject to 
Mini-Circuits standard limited warranty and terms and conditions (collectively, “Standard Terms”); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard 
Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits’ website at www.minicircuits.com/MCLStore/terms.jsp.

For detailed performance specs 
& shopping online see web site

 minicircuits.com
IF/RF MICROWAVE COMPONENTS

Coaxial

ZOS-100+

Maximum Ratings
Operating Temperature -55°C to 85°C

Storage Temperature  -55°C to 100°C

Absolute Max. Supply Voltage (Vcc) +16V

Absolute Max. Tuning Voltage (Vtune) +18V

Electrical Specifications

REV. B
M113397
ZOS-100+
SK/TD/CP/AM
091223

Outline Drawing

Dual Output     50 to 100 MHz

Features
• octave bandwidth
• linear tuning, 4.5 MHz/V typ.
• excellent harmonic suppression, -29 dBc typ.
• rugged shielded case
• protected by US Patent, 6,943,629

Applications
• auxiliary output freq. monitoring
• load insensitive source

Voltage Controlled Oscillator

Outline Dimensions  (     )inch
mm

electrical schematic

ZOS-100+
FREQUENCY vs.TUNING VOLTAGE

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
V TUNE(V)

FR
E

Q
U

E
N

C
Y

 (M
H

z)

CASE STYLE: BR386
Connectors Model Price Qty.
SMA ZOS-100+ $119.95     (1-9)

all specifications: 50 ohm system
Permanent damage may occur if any of these limits are exceeded.

A B C D E F G H J K L M N P Q R wt
3.25 1.38 1.25 .71 1.13 .125 2.25 .71 .41 .98 1.28 2.950 .15 1.100 .14 .150 grams

82.55 35.05 31.75 18.03 28.70 3.18 57.15 18.03 10.41 24.89 32.51 74.93 3.81 27.94 3.56 3.81 180

+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)
The +Suffix has been added in order to identify RoHS 
Compliance.  See our web site for RoHS Compliance 
methodologies and qualifications.

Figure 56.16: Data sheet for the Voltage-Controlled Oscillator (VCO) from Minicir-
cuits, model ZOS-100+.
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Figure 56.17: Data sheet for the voltage-controlled variable attenuator from Minicir-
cuits, model ZX73-2500+.
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L = low range [fL to 10 fL]      M = mid range [10 fL to fU/2]      U= upper range [fU/2 to fU]

FREQ. 
RANGE
(MHz)

ISOLATION
(dB)

INSERTION LOSS (dB)
ABOVE 3.0 dB

PHASE 
UNBALANCE

(Degrees)

AMPLITUDE
UNBALANCE

(dB)

fL-fU

L M U L M U L M U L M U

Typ. Min Typ. Min Typ. Min Typ. Max. Typ. Max. Typ. Max. Max. Max. Max. Max. Max. Max.

0.1-400 20 15 25 20 25 20 0.2 0.6 0.4 0.75 0.6 1.0 2.0 3.0 4.0 0.15 0.2 0.3

ISO 9001  ISO 14001 CERTIFIED
Mini-Circuits®
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RF/IF MICROWAVE COMPONENTS

 minicircuits.com
ALL NEW 

A B C D E F
.770 .800 .385 .400 .370 .400

19.56 20.32 9.78 10.16 9.40 10.16
G H J K wt

.200 .20 .14 .031 grams
5.08 5.08 3.56 0.79 5.2

Typical Performance Data

Electrical Specifi cations

Maximum Ratings

Pin Connections
SUM  PORT 1 

PORT 1   5

PORT 2   6

GROUND   2,3,4,7,8

CASE GROUND 2,3,4,7,8

Operating Temperature  -55°C to 100°C

Storage Temperature  -55°C to 100°C

Power Input (as a splitter) 1W max.

Internal Dissipation  0.125W max.

PSC-2-1+
PSC-2-1

2 Way-0°     50Ω       0.1 to 400 MHz 

Power Splitter/Combiner

REV. A
M98898
PSC-2-1
HY/TD/CP
070202

Plug-In

Features
• wideband, 0.1 to 400 MHz
• low insertion loss, 0.4 dB typ.
• rugged welded construction

Applications
• VHF/UHF
• federal & defense communications

CASE STYLE: A01
PRICE: $14.20 ea.  QTY. (1-9)

PSC-2-1
INSERTION  LOSS
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PSC-2-1
VSWR

1.0
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1.4

1.5
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FREQUENCY (MHz)

V
S
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R

#S-VSWR #1-VSWR #2-VSWR
electrical schematic

Outline Drawing

Outline Dimensions  (     )inch
mm

Frequency
(MHz)

Insertion Loss
(dB)

Amplitude
Unbalance

(dB)

Isolation
(dB)

Phase
Unbalance

(deg.)

VSWR
S

VSWR
1

VSWR
2

S-1 S-2

+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)

The +Suffi x identifi es RoHS Compliance. See our web site 
for RoHS Compliance methodologies and qualifi cations.

 
 0.10 3.23 3.23 0.00 24.82 0.01 1.16 1.37 1.37
 5.00 3.14 3.14 0.00 35.64 0.01 1.10 1.11 1.11
 20.00 3.18 3.17 0.00 35.33 0.03 1.11 1.10 1.10
 40.00 3.18 3.18 0.00 34.39 0.02 1.12 1.10 1.10
 60.00 3.22 3.22 0.00 33.16 0.02 1.12 1.09 1.09 
 80.00 3.24 3.24 0.00 31.85 0.04 1.13 1.09 1.09
 100.00 3.24 3.24 0.00 30.68 0.05 1.13 1.09 1.09
 150.00 3.28 3.27 0.00 28.37 0.04 1.14 1.08 1.08
 175.00 3.31 3.30 0.01 27.46 0.07 1.14 1.07 1.07
 200.00 3.32 3.31 0.01 26.72 0.05 1.15 1.07 1.07 
 225.00 3.32 3.31 0.01 26.14 0.02 1.15 1.06 1.06
 250.00 3.37 3.36 0.01 25.65 0.05 1.15 1.06 1.06
 300.00 3.41 3.38 0.03 24.88 0.10 1.15 1.06 1.06
 350.00 3.47 3.44 0.03 24.40 0.06 1.16 1.08 1.07
 400.00 3.50 3.46 0.04 23.86 0.05 1.18 1.10 1.09

Figure 56.18: Data sheet for the power divider from Minicircuits, model PSC-2-1.
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ISO 9001  ISO 14001 CERTIFIED
Mini-Circuits®

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500  Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site

The Design Engineers Search Engine  Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

RF/IF MICROWAVE COMPONENTS

 minicircuits.com
ALL NEW 

Page 1 of 2

Level 7  (LO Power +7 dBm)   5 to 1000 MHz

Frequency Mixer
Plug-In

CASE STYLE: A01
PRICE: $18.20 ea.  QTY (1-9)

Outline Dimensions  (      )inch
mm

Maximum Ratings

Pin Connections
LO 8

RF 1

IF 3,4^

GROUND 2,5,6,7

CASE GROUND 2,5,6,7

Outline Drawing

Electrical Specifications

REV. A
M98898
SRA-2CM+
DJ/TD/CP/AM
061211

1 dB COMP.:  +1 dBm typ.

FREQUENCY 
(MHz)

CONVERSION LOSS
(dB)

LO-RF ISOLATION
(dB)

LO-IF ISOLATION
(dB)

LO/RF IF
Mid-Band

m Total 
Range
Max.

L M U L M U

fL-fU
—
X σ Max. Typ. Min. Typ. Min. Typ. Min. Typ. Min. Typ. Min. Typ. Min.

5-1000 DC-1000 5.27 .04 7.0 8.5 60 50 35 30 30 25 50 45 30 25 25 20

Frequency
(MHz)

Conversion 
Loss 
(dB)

Isolation 
L-R
(dB)

Isolation
L-I

(dB)

VSWR 
RF Port

(:1)

VSWR 
LO Port

(:1)

RF LO
LO

+7dBm
LO

+7dBm
LO

+7dBm
LO

+7dBm
LO

+7dBm

Typical Performance Data

Electrical Schematic

SRA-2CM+

L = low range [fL to 10 fL]           M = mid range [10 fL to fU/2]      U = upper range [fU/2 to fU]
m= mid band [2fL to fU/2]

Features
• excellent conversion loss, 5.27 dB typ.
• good L-R isolation, 35 dB typ. L-I isolation, 30 dB typ.
• rugged welded construction
• hermetic

Applications
• VHF/UHF
• cellular
• defense & federal communications
• ISM/GSM

Operating Temperature  -55°C to 100°C

Storage Temperature  -55°C to 100°C

RF Power  50mW

IF Current 40mA

^ pins must be connected together externally

A B C D E F
.770 .800 .385 .400 .370 .400

19.56 20.32 9.78 10.16 9.40 10.16
G H J K wt

.200 .20 .14 .031 grams
5.08 5.08 3.56 0.79 5.2

+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)

The +Suffix has been added in order to identify RoHS 
Compliance. See our web site for RoHS Compliance 
methodologies and qualifications.

 5.00 35.00 7.36 67.00 67.00 5.03 4.09 
 38.13 68.13 5.59 54.82 53.34 1.40 3.04 
 71.27 41.27 5.30 49.15 48.13 1.31 2.99 
 137.53 107.53 5.33 46.10 45.22 1.27 2.83 
 200.00 170.00 5.35 42.68 41.91 1.24 2.82 

 236.93 206.93 5.27 41.09 40.29 1.24 2.72 
 303.20 273.20 5.28 39.42 38.94 1.24 2.76 
 336.33 306.33 5.42 39.72 36.88 1.26 2.77 
 402.60 372.60 5.63 38.13 35.49 1.30 2.85 
 468.86 438.86 5.62 37.15 35.09 1.37 2.84 

 535.13 505.13 5.87 35.49 32.57 1.45 2.97 
 568.26 538.26 6.01 35.26 31.27 1.50 2.96 
 634.53 604.53 6.17 36.03 29.46 1.61 3.10 
 700.79 670.79 6.68 38.00 30.29 1.70 3.21 
 767.06 737.06 6.49 38.00 29.92 1.85 3.09 

 800.19 770.19 6.11 39.26 28.34 2.01 3.03 
 833.33 803.33 6.37 39.87 27.52 2.08 3.08 
 899.59 869.59 6.80 40.23 26.99 2.32 3.39 
 965.86 935.86 6.86 42.61 25.65 2.53 3.58 
 1000.00 969.00 7.10 44.90 24.17 2.76 3.76 

Figure 56.19: Data sheet for the mixer from Minicircuits, model SRA-2CM+.
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W/mm

Optical Ghosting Due To Acoustic Reflection 0.5% Maximum.
Notes:

99-48201-11

Crystal Technology, Inc.
DESCRIPTION:

PART NUMBER: REV:

MATERIAL:

FINISH:

TOLERANCES:

DR

CHK

APP

APP SHEET   1 OF  1

3080-120

Outline Drawing: AOMO 3080-120Package

F

AOMO

Polarization

Acoustic Velocity

Active Aperture*

Center Frequency (Fc)

RF Bandwidth

Input Impedance

VSWR @ Fc

Wavelength

Insertion Loss

Reflectivity per Surface

Anti-Reflection Coating

Optical Power Density

Contrast Ratio

Return Loss

AO Medium TeO2

4.2

80

20

50

442-633

MIL-C-48497

250

1000

90

mm/µs

MHz

MHz @

nm

:1  Min

°

Ohms Nominal

-10

1.3

4

1

dB

:1  Max

% Max

% Max

To Mounting Plane

Wavelength (nm) 442 488 515 633
0.27 0.33 0.36 0.55

Bragg Angle (mr)
Beam Separation 8.4 9.2 9.8 12

Beam Diameter (µm) 200 300 500

Diffraction Efficiency (%) 80 83 85
Rise Time (nsec) 34 49 80

15.9 10.6 6.3
10 5 1

PERFORMANCE VS WAVELENGTH

PERFORMANCE VS BEAM DIAMETER

SPECIFICATIONS

A. Campi
6/17/2002

(mr)

mm 'L'

at Wavelength (nm) 633 633 633

4.2 4.6 4.9 6

X mm 'H'2.5 1

*Active Aperture: Aperture over which performance specifications apply.

.XX
.XXX

± .01
± .005

Saturation RF Power (W)

THIS DOCUMENT IS THE PROPERTY OF CRYSTAL TECHNOLOGY, INC.  IT IS NOT TO BE REPRODUCED OR
DISCLOSED IN WHOLE OR IN PART OTHER THAN BY EMPLOYEES CRYSTAL TECHNOLOGY AND ITS
CONTRACTED REPRESENTATIVES AND DISTRIBUTERS.  ANY EXCEPTION REQUIRES THE WRITTEN
CONSENT OF AN AUTHORIZED REPRESENTATIVE OF CRYSTAL TECHNOLOGY.

 

2

Figure 56.20: Data sheet for the acousto-optic modulator (AOM) from Crystal Tech-
nologies, model AOMO 3080-120.

Silicon PIN Photodiodes - Standard N-Type – 400 nm to 1100 nm

The C308XX series devices are high-quality N-type Si PIN photodiodes in hermetically sealed TO packages designed for the 400 nm to 1100
nm wavelength region.

Si PINs – Standard N-Type
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)        Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

(fA/√Hz)

C30807E A 1 0.6 1 18 2.5 3 30 45

C30808E B 2.5 0.6 3 31 6 5 52 45

C30822E C 5 0.6 5 40 17 7 67 45

C30809E C3 8 0.6 7 47 35 10 79 45

C30810E D 11.4 0.6 30 98    70 12 163 45

Typical Applications
Laser detection systems, photometry, data transmission, instrumentation, and high-speed switching.

Silicon Epitaxial PIN Photodiodes  - High Speed – 400 nm to 1100 nm

The C30736 series of high-speed epitaxial silicon PIN photodetectors provide fast response and good quantum efficiency in the spectral
range between 400 nm and 1100 nm.  These devices are optimized for high-speed, high volume and low cost applications.  Standard sizes
include 0.25 mm, 0.5 mm, 1.0 mm, 1.5 x 1.5 mm, and custom sizes can be accomodated depending on volume required.  Available in plastic
surface mount packages and in chip form. 

Silicon Epitaxial PIN Photodiodes Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 870 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 870 nm   Bias Volt
Package Diam. (mm)  (A/W) @2V Id (nA)     Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

In (fW/√Hz)

C30736-1 Chip form 0.20 0.55                    0.05 6 0.75 0.3 11 2

C30736-2 Chip form 0.50 0.55 0.10 10 1.5                      0.5 18 2

C30736-3 Chip form 1.5 x 1.5 0.55  0.50           50 14 0.3 91 2

6

Detectors

Silicon PIN Photodiodes  - Large Area, Fast Response Time – 400 nm to 1100 nm

The FFD series devices are high-quality, large-area, high-speed, N-type Si PIN photodiodes in hermetically sealed TO packages designed for 
the 400 nm to 1100 nm wavelength range.  The FND-100Q has a quartz window to enhance UV responsivity.

Preamplifiers
Preamplifier modules incorporating these photodiodes are available on a custom basis.

Si PINs – Large Area, Fast Response
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)         Curr. Dens.          Cd (pF)                 tr (ns)              (fW/√Hz) (V)

In (fW/√Hz)

FFD-040B Y 1 0.58 1 18 1.8 2 31 15

FFD-100 B 2.5 0.58 2 25 8.5 3.5 44 15

FFD-200 C3 5.1 0.58 4 36 30 5 62 15

FND-100Q B 2.5 0.58 10 60 8.5 2 100 90

Typical Applications
Laser detection systems, fast pulse detection, instrumentation, and high-speed switching.

Figure 56.21: Data sheet for the photo diode from Perkin Elmers FDD100.
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Silicon PIN Photodiodes - Standard N-Type – 400 nm to 1100 nm

The C308XX series devices are high-quality N-type Si PIN photodiodes in hermetically sealed TO packages designed for the 400 nm to 1100
nm wavelength region.

Si PINs – Standard N-Type
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)        Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

(fA/√Hz)

C30807E A 1 0.6 1 18 2.5 3 30 45

C30808E B 2.5 0.6 3 31 6 5 52 45

C30822E C 5 0.6 5 40 17 7 67 45

C30809E C3 8 0.6 7 47 35 10 79 45

C30810E D 11.4 0.6 30 98    70 12 163 45

Typical Applications
Laser detection systems, photometry, data transmission, instrumentation, and high-speed switching.

Silicon Epitaxial PIN Photodiodes  - High Speed – 400 nm to 1100 nm

The C30736 series of high-speed epitaxial silicon PIN photodetectors provide fast response and good quantum efficiency in the spectral
range between 400 nm and 1100 nm.  These devices are optimized for high-speed, high volume and low cost applications.  Standard sizes
include 0.25 mm, 0.5 mm, 1.0 mm, 1.5 x 1.5 mm, and custom sizes can be accomodated depending on volume required.  Available in plastic
surface mount packages and in chip form. 

Silicon Epitaxial PIN Photodiodes Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 870 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 870 nm   Bias Volt
Package Diam. (mm)  (A/W) @2V Id (nA)     Curr. Dens.           Cd (pF)                tr (ns)              (fW/√Hz)            (V)

In (fW/√Hz)

C30736-1 Chip form 0.20 0.55                    0.05 6 0.75 0.3 11 2

C30736-2 Chip form 0.50 0.55 0.10 10 1.5                      0.5 18 2

C30736-3 Chip form 1.5 x 1.5 0.55  0.50           50 14 0.3 91 2

6

Detectors

Silicon PIN Photodiodes  - Large Area, Fast Response Time – 400 nm to 1100 nm

The FFD series devices are high-quality, large-area, high-speed, N-type Si PIN photodiodes in hermetically sealed TO packages designed for 
the 400 nm to 1100 nm wavelength range.  The FND-100Q has a quartz window to enhance UV responsivity.

Preamplifiers
Preamplifier modules incorporating these photodiodes are available on a custom basis.

Si PINs – Large Area, Fast Response
Typical Characteristics @ T = 22º C

Part #           Standard Photo Sens. Resp. @ 900 nm Dark Current   Spect. Noise Cap. @ 100 kHz   Response Time   NEP @ 900 nm   Bias Volt
Package Diam. (mm)  (A/W) Id (nA)         Curr. Dens.          Cd (pF)                 tr (ns)              (fW/√Hz) (V)

In (fW/√Hz)

FFD-040B Y 1 0.58 1 18 1.8 2 31 15

FFD-100 B 2.5 0.58 2 25 8.5 3.5 44 15

FFD-200 C3 5.1 0.58 4 36 30 5 62 15

FND-100Q B 2.5 0.58 10 60 8.5 2 100 90

Typical Applications
Laser detection systems, fast pulse detection, instrumentation, and high-speed switching.

Figure 56.22: Data sheet for the photo diode from Perkin Elmers C30822E.
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_______________General Description
The MAX320/MAX321/MAX322 are precision, dual,
SPST analog switches designed to operate from ±3V to
±8V dual supplies. The MAX320 has two normally open
(NO) switches and the MAX321 has two normally
closed (NC) switches. The MAX322 has one NO and
one NC switch.  Low power consumption (1.25mW)
makes these parts ideal for battery-powered equip-
ment. They offer low leakage currents (100pA max) and
fast switching speeds (tON = 150ns max, tOFF = 100ns
max).

The MAX320 series, powered from ±5V supplies, offers
35Ω max on-resistance (RON), 2Ω max matching
between channels, and 4Ω max RON flatness.

These switches also offer 5pC max charge injection
and a minimum of 2000V ESD protection per Method
3015.7.

For equivalent devices specified for single-supply oper-
ation, see the MAX323/MAX324/MAX325 data sheet.
For quad versions of these switches, see the
MAX391/MAX392/MAX393 data sheet.

________________________Applications
Battery-Operated Systems Sample-and-Hold Circuits

Heads-Up Displays Guidance and Control Systems

Audio and Video Switching Military Radios

Test Equipment Communications Systems

±5V DACs and ADCs PBX, PABX

____________________________Features
♦ Low On-Resistance, 35Ω max (16Ω typical)

♦ RON Matching Between Channels <2Ω
♦ RON Flatness <4Ω
♦ Guaranteed Charge Injection <5pC

♦ Bipolar Supply Operation (±3V to ±8V)

♦ Low Power Consumption, <1.25mW

♦ Low Leakage Current Over Temperature, 
<2.5nA at +85°C

♦ Fast Switching, tON <150ns, tOFF <100ns

♦ Guaranteed Break-Before-Make (MAX322 only)

______________Ordering Information

M
A

X
3

2
0

/M
A

X
3

2
1

/M
A

X
3

2
2

Precision, Dual-Supply, SPST 
Analog Switches

________________________________________________________________ Maxim Integrated Products 1

SWITCHES SHOWN FOR LOGIC "0" INPUT

MAX321
LOGIC SWITCH

0
1

ON
OFF

TOP VIEW

DIP/SO/µMAX

MAX320
LOGIC SWITCH

0
1

OFF
ON

MAX322
LOGIC SWITCH 1

0
1

OFF
ON

SWITCH 2

ON
OFF

8

7

6

5

1

2

3

4

V+

IN1

COM2

NO2V-

IN2

COM1

NO1

MAX320

DIP/SO/µMAX

8

7

6

5

1

2

3

4

V+

IN1

COM2

NC2V-

IN2

COM1

NC1

MAX321

DIP/SO/µMAX

8

7

6

5

1

2

3

4

V+

IN1

COM2

NC2V-

IN2

COM1

NO1

MAX322

_____________________Pin Configurations/Functional Diagrams/Truth Tables

Call toll free 1-800-998-8800 for free samples or literature.

19-0350; Rev 0; 12/94

Ordering Information continued at end of data sheet.
*  Contact factory for dice specifications.
** Contact factory for availability.

8 CERDIP**-55°C to +125°CMAX320MJA
8 CERDIP**-40°C to +85°CMAX320EJA
8 SO-40°C to +85°CMAX320ESA
8 Plastic DIP-40°C to +85°CMAX320EPA
Dice*0°C to +70°CMAX320C/D

8 SO0°C to +70°CMAX320CSA

8 Plastic DIP0°C to +70°CMAX320CPA

PIN-PACKAGETEMP. RANGEPART

8 µMAX0°C to +70°CMAX320CUA

Figure 56.23: Data sheet for the digital switch MAX322 from Maxim.
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LM741
Operational Amplifier
General Description
The LM741 series are general purpose operational amplifi-
ers which feature improved performance over industry stan-
dards like the LM709. They are direct, plug-in replacements
for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their appli-
cation nearly foolproof: overload protection on the input and

output, no latch-up when the common mode range is ex-
ceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741/LM741A except that
the LM741C has their performance guaranteed over a 0˚C to
+70˚C temperature range, instead of −55˚C to +125˚C.

Features

Connection Diagrams

Metal Can Package Dual-In-Line or S.O. Package

00934102

Note 1: LM741H is available per JM38510/10101

Order Number LM741H, LM741H/883 (Note 1),
LM741AH/883 or LM741CH

See NS Package Number H08C

00934103

Order Number LM741J, LM741J/883, LM741CN
See NS Package Number J08A, M08A or N08E

Ceramic Flatpak

00934106

Order Number LM741W/883
See NS Package Number W10A

Typical Application

Offset Nulling Circuit

00934107

August 2000

LM
741

O
perationalA

m
plifier

© 2004 National Semiconductor Corporation DS009341 www.national.com

Figure 56.24: Data sheet for the operational amplifier LM741 from National Semicon-
ductor.
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REV. A

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.

a
OP27

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 www.analog.com

Fax: 781/326-8703 © Analog Devices, Inc., 2002

Low-Noise, Precision
Operational Amplifier

PIN CONNECTIONS

TO-99
(J-Suffix)

V+

OUT

NC

4V– (CASE)

BAL

BAL 1

–IN 2

+IN 3

OP27

NC = NO CONNECT

FEATURES

Low Noise: 80 nV p-p (0.1 Hz to 10 Hz), 3 nV/√Hz
Low Drift: 0.2 �V/�C
High Speed: 2.8 V/�s Slew Rate, 8 MHz Gain

Bandwidth

Low VOS: 10 �V

Excellent CMRR: 126 dB at VCM of ±11 V

High Open-Loop Gain: 1.8 Million

Fits 725, OP07, 5534A Sockets

Available in Die Form

GENERAL DESCRIPTION
The OP27 precision operational amplifier combines the low
offset and drift of the OP07 with both high speed and low noise.
Offsets down to 25 µV and drift of 0.6 µV/°C maximum make
the OP27 ideal for precision instrumentation applications.
Exceptionally low noise, en = 3.5 nV/√Hz, at 10 Hz, a low 1/f
noise corner frequency of 2.7 Hz, and high gain (1.8 million),
allow accurate high-gain amplification of low-level signals. A
gain-bandwidth product of 8 MHz and a 2.8 V/µsec slew rate
provides excellent dynamic accuracy in high-speed, data-
acquisition systems.

A low input bias current of ± 10 nA is achieved by use of a
bias-current-cancellation circuit. Over the military temperature
range, this circuit typically holds IB and IOS to ±20 nA and 15 nA,
respectively.

The output stage has good load driving capability. A guaranteed
swing of ±10 V into 600 Ω and low output distortion make the
OP27 an excellent choice for professional audio applications.

(Continued on page 7)

V–

V+

Q2B

R2*

Q3

Q2AQ1A Q1B

R4

R1*

R3
1 8

VOS ADJ.

R1 AND R2 ARE PERMANENTLY
ADJUSTED AT WAFER TEST FOR
MINIMUM OFFSET VOLTAGE.

*

NONINVERTING
INPUT (+)

INVERTING
INPUT (–)

Q6

Q21

C2

R23 R24

Q23 Q24

Q22

R5

Q11 Q12

Q27 Q28

C1

R9

R12

C3 C4

Q26

Q20 Q19

Q46

Q45

OUTPUT

Figure 1. Simplified Schematic

8-Pin Hermetic DIP
(Z-Suffix)

Epoxy Mini-DIP
(P-Suffix)
8-Pin SO
(S-Suffix)

8

7

6

5

1

2

3

4

NC = NO CONNECT

VOS TRIM

–IN

+IN

VOS TRIM

V+

OUT

NCV–

OP27

Figure 56.25: Data sheet for the operational amplifier OP27 from Analog Devices.
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[143] T. Bienaimé, N. Piovella, and R. Kaiser, Controlled Dicke subradiance from a
large cloud of two-level systems, Fortschr. Phys. 108 (2012), 123602.

[144] M. J. Bijlsma, E. Zaremba, and H. T. C. Stoof, Condensate growth in trapped
bose gases, (2000), cond-mat/0001323.

[145] M. Bindhani, B. K. Behera, and P. K. Panigrahi, Quantum simulation of
Jaynes-Cummings model on ibm q-system, (2020), ⊙.

[146] G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D. Phillips, Bragg
sccattering from atoms in optical lattices, Phys. Rev. Lett. 75 (1995), 2823, ⊙.

[147] G. C. Bjorklund, Frequency-modulation spectroscopy: A new method for mea-
suring weak absorptions and dispersions, Opt. Lett. 5 (1980), 15.

[148] P. B. Blakie and R. J. Ballagh, Mean-field treatment of bragg scattering from
a Bose-Einstein condensate, J. Phys. B 33 (2000), 3961, ⊙.
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Zürich, 2005.

https://isbnsearch.org/isbn/
https://doi.org/10.1103/PhysRevA.85.013817
https://doi.org/10.1103/PhysRevLett.88.203902
https://doi.org/10.1080/09500340.2011.594911


BIBLIOGRAPHY 3085

[152] D. Bloch and M. Ducloy, Atom-wall interaction, physics/0503146 (2005), ⊙.

[153] I. Bloch, Ultracold quantum gases in optical lattices, Nature Physics 1 (2005),
23, ⊙.
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in trapped fermionic superfluids, Science 305 (2005), 1131, ⊙.

[720] T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional
Tonks-Girardeau gas, Science 305 (2004), 1125.

[721] , A quantum newton’s cradle, Nature 440 (2006), 900, DOI.

[722] K. Kirsten and D. J. Toms, Bose-Einstein condensation of atomic gases in a
general harmonic-oscillator confining potential trap, Phys. Rev. A 54 (1996),
4188.

[723] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre, Introduction to
the Dicke model: From equilibrium to nonequilibrium, and vice versa, Adv.
Quantum Technol. 2 (2019), 1800043, ⊙DOI.

https://doi.org/10.1103/PhysRevLett.106.118901
https://doi.org/10.1063/1.1354359
https://doi.org/10.1103/PhysRevLett.86.4203
https://doi.org/10.2172/5537535
https://doi.org/10.1038/nature04693
https://doi.org/10.1002/qute.201800043


3122 BIBLIOGRAPHY

[724] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A 47 (1993), 5138,
⊙DOI.

[725] J. Kitching, S. Knappe, and E. A. Donley, Atomic sensors - a review, IEEE
Sensors J. 11 (2011), 1749, ⊙DOI.

[726] C. Kittel, Elementary statistical physics, John Wiley and Sons, 1976, ISBN.

[727] J. Klaers, J.Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation
of photons in an optical microcavity, eprints 1007.4088 (1999), ⊙.

[728] B. G. Klappauf, W. H. Oskay, D. A. Steck, and M. G. Raizen, Observation
of noise and dissipation effects on dynamical localization, Phys. Rev. Lett. 81
(1998), 1203.

[729] , Quantum chaos with cesium atoms: pushing the boundaries, Physica
D 131 (1999), 78, ⊙.

[730] B. Kneer, T. Wong, K. Vogel, W. P. Schleich, and D. F. Walls, Generic model
of an atom laser, Phys. Rev. A 58 (1998), 4841, ⊙.

[731] A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savastra, and F. Nori, Ul-
trastrong coupling between light and matter, Nature Rev. Phys. 1 (2019), 19,
⊙DOI.

[732] B. Koczor, R. Zeier, and S. J. Glaser, Continuous phase-space representations
for finite-dimensional quantum states and their tomography, Phys. Rev. A 101
(2020), 022318, ⊙DOI.

[733] A. F. Koenderink and W. L. Vos, Light exiting from real photonic band gap
crystals is diffuse and strongly directional, Phys. Rev. Lett. 91 (2003), 213902.

[734] H. Kogelnik and X. Y. Li, Laser beams and resonators, Appl. Opt. 5 (1966),
1550, DOI.
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F. X. Kärtner, Self-referenced 200 mhz octave-spanning ti:sapphire laser with
50 attosecond carrier-envelope phase jitter, Opt. Exp. 13 (2005), 5163, ⊙.

[935] M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, and M. Weidemüller,
Sympathetic cooling with two atomic species in an optical trap, Phys. Rev. Lett.
88 (2002), 253001.

[936] H. W. Mueller and et al., Phys. Rev. Lett. 78 (1997), 2357.

[937] T. Mukaiyama, H. Katori, T. Ido, Ying Li, and M. Kuwata-Gonokami, Recoil-
limited laser cooling of 87sr atoms near the Fermi temperature, Phys. Rev.
Lett. 90 (2003), 113002, ⊙DOI.

[938] A. E. Muryshev, H. B. Van Linden Van Den Heuvell, and G. V. Shlyapnikov,
Stability of standing matter waves in a trap, Phys. Rev. A 60 (1999), 2665, ⊙.

[939] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Pro-
duction of two overlapping Bose-Einstein condensates by sympathetic cooling,
Phys. Rev. Lett. 78 (1997), 586, ⊙DOI.

https://doi.org/10.1103/PhysRevLett.88.093003
https://isbnsearch.org/isbn/
https://doi.org/10.1103/PhysRevLett.90.113002
https://doi.org/10.1103/PhysRevLett.78.586


3136 BIBLIOGRAPHY

[940] E. Pedrozo-Pe nafiel, S. Colombo, Chi Shu, A. F. Adiyatullin, Zeyang Li,
E. Mendez, B. Braverman, A. Kawasaki, D. Akamatsu, Yanhong Xiao, and
V. Vuletic, Entanglement on an optical atomic-clock transition, Nature 414
(2016), 588, ⊙DOI.

[941] S. B. Nagel, C. E. Simien, S. Laha, P. Gupta, V. S. Ashoka, and T. C. Killian,
Magnetic trapping of metastable 3p2 atomic strontium, Phys. Rev. A 67 (2003),
011401(R), ⊙DOI.
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C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, and T. Monz, Compact
ion-trap quantum computing demonstrator, Phys. Rev. X 2 (2021), 020343,
⊙DOI.

[1043] H. D. Politzer, Light incident on a Bose-condensed gas, Phys. Rev. A 43
(1991), 6444.

[1044] , Bose-stimulated scattering off a cold atom trap, Phys. Rev. A 55
(1997), 1140, ⊙.

[1045] A. K. Popov and V. M. Shalaev, Negative-index metamaterials: second-
harmonic generation, manley-rowe relations and parametric amplification,
Appl. Phys. B 84 (2006), 131, ⊙.

https://doi.org/10.22331/q-2022-01-04-617
https://doi.org/10.1103/PhysRevB.86.035148
https://doi.org/10.1103/PRXQuantum.2.020343


BIBLIOGRAPHY 3143

[1046] U. V. Poulsen and K. Mølmer, Atomic reflection from a magnetic mirror:
Beyond the adiabatic approximation, Eur. Phys. J. D 11 (2000), 151, ⊙.

[1047] E. A. Power, Effect on the lifetime of an atom undergoing a dipole transition
due to the presence of a resonating atom, J. Chem. Phys. 46 (1967), 4297, ⊙.

[1048] W. L. Power, L. Allen, M. Babiker, and V. E. Lembessis, Atomic motion in
light beams possessing orbital angular momentum, Phys. Rev. A 52 (1995),
479.

[1049] S. Prasad and R. J. Glauber, Coherent radiation by a spherical medium of
resonant atoms, Phys. Rev. A 82 (2010), 063805, ⊙DOI.

[1050] G. A. Prataviera, Trap environnement effects over quantum statistics and
atom-photon correlations in the collective-atomic-recoil laser, Phys. Rev. A
67 (2003), 045602, ⊙.

[1051] G. A. Prataviera and M. C. de Oliveira, Continuous measurement of atom-
number moments of a Bose-Einstein condensate by photodetection, Phys. Rev.
A 70 (2004), 011602(R), ⊙DOI.

[1052] C. Presilla and R. Onofrio, Cooling dynamics of ultracold two-species Fermi
bose mixtures, Phys. Rev. Lett. 90 (2003), 030404, ⊙.

[1053] J. Preskill, Magnetic monopole, Ann. Rev. Nucl. Part. 34 (1984), 461, ⊙.

[1054] J. D. Prestage, G. J. Dick, and L. Maleki, New ion trap for frequency standard
applications, J. Appl. Phys. 66 (1989), 1013.

[1055] J. D. Prestage, R. L. Tjoelker, R. T. Wang, G. J. Dick, and L. Maleki, Hg+
trapped ion standard with the superconducting cavity maser oscillator, IEEE
Trans. Instr. and Meas. 42 (1993), 200.

[1056] M. Prevedelli, F. S. Cataliotti, E. A. Cornell, J. R. Ensher, C. Fort, L. Ricci,
G. M. Tino, and M. Inguscio, Trapping and cooling of potassium isotopes in a
double-magneto-optical-trap apparatus, Phys. Rev. A 59 (1999), 886, ⊙.

[1057] I. Prigogine, Non-equilibrium statistical mechanics, Monographs in Statistical
Physics, vol. 1, John Wiley and Sons, 1973, ISBN.

[1058] D. E. Pritchard, Cooling neutral atoms in a magnetic trap for precision spec-
troscopy, Phys. Rev. Lett. 51 (1983), 1336, ⊙.

[1059] D. E. Pritchard, R. A. Rubenstein, A. Dhirani, D. A. Kokorowski, E. T. Smith,
T. D. Hammond, and B. Rohwedder, Longitudinal atom optics using localized
oscillating fields: A fully quantum-mechanical treatment, Phys. Rev. A 59
(1999), 4641.

[1060] A. M. Eds. Prokhorov et al., Laser cooling and trapping, Laser Physics 4 (1994),
829.

[1061] Han Pu, Weiping Zhang, and P. Meystre, Wave mixing of optical pulses and
Bose-Einstein condensates, Phys. Rev. Lett. 91 (2003), 150407, ⊙.

https://doi.org/10.1103/PhysRevA.82.063805
https://doi.org/10.1103/PhysRevA.70.011602
https://isbnsearch.org/isbn/


3144 BIBLIOGRAPHY

[1062] Ravinder Puri, Mathematical methods of quantum optics, Springer Series in
Optical Sciences (2000).

[1063] N. Quesada, J. M. Arrazola, and N. Killoran, Gaussian boson sampling using
threshold detectors, Phys. Rev. A 98 (2018), 062322, ⊙.

[1064] S. De Palo R. Citro, E. Orignac and M. L. Chiofalo, Evidence of luttinger-liquid
behavior in one-dimensional dipolar quantum gases, Phys. Rev. A 75 (2007),
051602(R), ⊙.

[1065] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Prichard, Trapping
of neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59 (1987),
2631, ⊙FndDoi10.1103/PhysRevLett.59.2631.

[1066] A. Rai and G. S. Agarwal, Possibility of coherent phenomena such as Bloch
oscillations with single photons via w states, Phys. Rev. A 79 (2009), 053849,
⊙DOI.

[1067] G. Raithel, G. Birkl, W. D. Phillips, and S. L. Rolston, Compression and
parametric driving of atoms in optical lattices, Phys. Rev. Lett. 78 (1997),
2928, ⊙.

[1068] M. G. Raizen, J. Koga, B. Sundaram, Y. Kishimoto, H. Takuma, and
T. Tajima, Stochastic cooling of atoms using lasers, Phys. Rev. A 58 (1998),
4757, ⊙DOI.

[1069] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J.
Carmichael, Normal-mode splitting and linewidth averaging for two-state atoms
in an optical cavity, Phys. Rev. Lett. 63 (1989), 240.

[1070] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Optical prop-
erties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37
(1998), 5271, ⊙DOI.
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Archimedes’ principle, 351
Aristotle, 1199
Arnold tongue, 2086
atom laser, 2549, 2707
atom optics, 2549
atomic orbital, 1616
atomic units, 1495
Autler-Townes splitting, 1717, 1791, 1830

autocorrelation function, 3055
avoided crossing, 1453, 1695, 1792, 2171,

2591
axial vector, 829
axicon, 1017
azimuthal equation, 1376

Bénard
estruturas de, 2532

Bénard instability, 441
bad cavity limit, 2757
Baker-Campbell-Hausdorff formula, 1297
band insulator, 2811
Bargmann state, 1349
baryon, 1546
baryons, 455
basic unit, 9
basis, 1258
BCS pair, 2825
BCS transition, 2825
beam splitter, 903, 1952, 2929

polarizing, 2897
beat signal, 259, 2984
BEC

molecular, 2825
Bell

John Stewart, 2367
Bell state, 2362
Bell’s inequality, 2364, 2374
Berry

Sir Michael Victor, 2016
Berry connection, 2016
Berry phase, 2016
Bessel beam, 1013

frozen, 1014
Bessel function, 1034, 1382, 1497

spherical, 1498
Bethe-Peierls boundary condition, 1667
bias-T, 2978
big bang, 5, 452
Bijl-Feynman formula, 1720
binding energy, 1636, 1668
binomial distribution, 468
Biot-Savart’s law, 827, 1529
birefringence, 903, 2976, 3004
birefringents crystal, 2897
bistability, see optical bistability
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black-body, 1733
black-body radiation, 1218, 1705
Bloch

Felix, 1251
Bloch equation

optical, 1765
Bloch frequency, 1433, 1436
Bloch function, 1426
Bloch model, 2174
Bloch oscillation, 1432
Bloch state, 1431, 1437, 2717, 2807
Bloch theorem, 1426
Bloch vector, 1251, 1768

generalized, 1820
Bloch-Lindbladt equation, 1922
Bloch-Siegert relation, 1913
Bloch-Siegert shift, 1766, 1855, 2155
Bode diagram, 3046
Bogolubov prescription, 2659, 2668
Bogolubov spectrum, 2669
Bogolubov transform, 1881, 2668
Bogolubov-de Gennes equations, 2668,

2711
Bohr

magneton, 1207
Niels, 1198, 1208
postulates, 1208

Bohr magneton, 1211, 1519
Bohr radius, 1387
Boltzmann

Ludwig, 1218
Boltzmann distribution law, 1222
Boltzmann factor, 1219
Boltzmann gas, 2636
Boltzmann Stoßzahlansatz, 434
Boltzmann transport equation, 434
bomb testing problem, 1995
Boolean algebra, 2384
Born

Max, 1242, 1247
Born approximation, 1204, 1679, 1998,

2658
Born series, 1679
Born-Oppenheimer approximation, 1613,

1630, 1635
Born-Oppenheimer gas, 2813
Born-Oppenheimer potential, 1615

Bose function, 2625
Bose glass, 2717, 2809
Bose metal, 2812
Bose-Einstein condensation, 2549, 2624
Bose-Einstein distribution, 2623
Bose-Hubbard model, 2716, 2807
boson, 1578, 2623, 2646
boson sampling, 2399
bosonic mode, 2299
bosonic stimulation, 426, 2464, 2623,

2707, 2725, 2728, 2730
bosonization, 2807, 2812
bosons, 2853
box-car integrator, 2926
Boyle

Robert, 372
bra, 1248
Bragg condition, 2046, 2743, 2975
Bragg diffraction, 2740, 2753, 2760
Bragg reflection, 1436
Bragg scattering, 2453
Braun’s tube, 700
breathing mode, 2671
Breit-Wigner formula, 451, 1665
Bremsstrahlung, 1600
bremsstrahlung, 1064, 1220
Brewster

Sir David, 2900
Brewster angle, 913, 2900
Brian Josephson

David, 1173
bright soliton, 2703
Brillouin

Léon, 1470
Brillouin scattering

stimulated, 2045
Brillouin zone, 282, 1426, 2714
bunching, 1908
bunching parameter, 2432
buoyancy, 351

canonical ensemble, 427, 428
canonical momentum, 1135
capacitance, 654
capacitor, 654
CARL, 2431
Carnot
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Sadi, 381
Carnot cycle, 381
carrier, 2923
carrier envelope offset, 3011
Cartesian basis, 47
Cartesian diver, 352
Casimir

Hendrik Brugt Gerhard, 2273
Casimir effect, 1640
cat-eye laser, 2964
Cauchy formula, 956
Cauchy principal value, 961
Cauchy’s residue theorem, 961
Cauchy-Schwartz relation, 2369
cavity decay rate, 2189
cavity QED, 2495
cavity-cooling, 2447
Celsius

Anders, 360
centrifugal barrier, 1626
centrifugal potential, 1378
CGS units, 1181
chaos

classical, see deterministic chaos,
2094

deterministic, 440, 2094
quantum, 2095

chaotic light, 1913
characteristic function, 1865
charge conjugation, 1304
charge conservation, 852, 1303
charge density, 538

linear, 539
surface, 539

charge of the vortex, 2698
charge-spin separation, 2812
chemical potential, 1595, 2661
Cherenkov radiation, 1064
chiral medium, 996
circle map, 2085
circulation, 2698
Clément

Nicolas, 381
classical turbulence, 2704
Clausius-Clapeyron, 411
Clausius-Mossotti formula, 650, 772, 2156
Clebsch-Gordan coefficient, 1411, 1496

clock, 2026
atomic, 2027

closed loop, 3015
coaxial waveguide, 989
coherence, 1765
coherence length, 2722
coherent anti-Stokes Raman scattering,

2041
coherent atom optics, 2707
coherent backscattering, 2158
coherent spin state, 2292
coherent state, 1349
cold collision, 1689, 2832
collapse and revival

quantum, 1892
collective atomic recoil laser, 2431, 2451
collision, 1327

controlled, 2375
fine changing, 1703
hyperfine changing, 1703

collision radius, 1803
collision rate, 1803
collision-less regime, 2673
column-integrated, 2613
common velocity, 1111
commutator, 1245, 1257
comparator, 3015
complete, 1258
complete set of commuting operators,

1261
completeness relation, 1750
complex envelope, 532
composite particle, 2646
compressibility, 236
compression oscillation, 2671
Compton

Arthur Holly, 1114
Compton effect, 1221
Compton scattering, 948, 1221, 1926,

2069, 2743
Compton wavelength, 1114, 1506, 1531
computing

classical, 2384
quantum, 2384

Condon point, 1694
conductivity, 675, 779, 839
confocal cavity, 1012, 2936
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conservation law, 851, 1301
conservative field, 485
conservative potential, 59, 589
constant of motion, 1301
contact potential, 425, 1692
continuity equation, 675, 1243, 1303,

2517, 2697
electrodynamical, 852

continuous density approximation, 2133
continuous variable, 2304
contraction of space, 1098
contrast, 1320
contravariant, 518, 1094
control engineering, 3015
control theory, 3015
controlled NOT, 2382
controlled NOT gate, see XOR gate
controlled not gate, 2374
controller, 3015
convection, 441
convolution, 1188
Cooper pair, 2827
Cooper pairing, 2825
cooperative enhancement, 2729
cooperativity, 2072, 2103, 2207
cooperativity parameter, 2210, 2213,

2217
Copenhagen interpretation, 1983
Copernicus

Nicolaus, 297
Coriolis

Gaspard Gustave de, 116
Coriolis force, 116
correlated

quantum jump, 2337
correlated spontaneous emission, 2043
correlated spontaneous emission laser,

2089
correlation, 1185

classical, 2369
quantum, 2370

correlation function, 1907, 1928
second order, 2722

correlation index, 2369
correspondence principle, 1289, 1984
cosmic velocity, 301
Coulomb

Charles Augustin de, 538
Coulomb force, 538, 884
Coulomb gauge, 728, 873, 1852
Coulomb integral, 1583, 1621
Coulomb law, 538
Coulomb operator, 1598
Coulomb potential, 1529
Coulomb’s law, 827, 873
coupled

oscillators, 223, 1963
coupled channels, 1672
coupled-dipoles model, 1085
covalent bond, 1613
covalent configuration, 1619
covariant, 518, 1094
Crank-Nicholson algorithm, 2685, 2687,

2788
creation operator, 1852
critical, 1966
critical atom number, 2217
critical equation, 1898
critical phenomena, 440
critical temperature, 2624
cross section

differential effective, 1677
effective partial, 1682
total effective, 1677

cross-correlation, 2369
crossing

avoided, 1549
crossover

real, 1549
CSCO, 1261
cumulant expansion, 2326, 2427
Curie law, 770
Curie temperature, 771
current, 675
current density, 675
current source, 680
current stabilization, 3025
cut-off frequency, 989
cut-off wavelength, 2937
cyclotron, 700
cyclotron frequency, 1562

d’Alembert
Jean le Rond, 873
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d’Alembert operator, 873
dark resonance, 1830, 1833, 2042
dark soliton, 2702
dark-ground imaging, 2612
dark-state polariton, 2044
Darwin

Sir Charles Galton, 1531
Darwinism, 440
de Broglie

Louis, 293, 1240
de Broglie wave, 2551
de Broglie wavelength

thermal, 1649, 2552, 2623
de Haas-van Alphen effect, 1563
Debye law, 1230
Debye length, 458
Debye model, 1228
Debye temperature, 1230
Debye-Hückel equation, 459
Debye-Hückel length, 459
Debye-Waller factor, 2163
decay rate of the cavity, 2193
decoherence, 1984
decoherent histories, 1987
degeneracy, 1259
degenerate Fermi gas, 2635
degree of freedom, 224
degrees of freedom, 1261
Dehmelt

Hans, 1990
delayed choice, 2367
delta-kicked rotor, 2090
Democritus, 1197, 1199
density functional, 1592
density functional theory, 1592
density of states, 1482, 1729, 2554, 2625,

2757
density operator, 1748, 1860
Desormes

Charles-Bernard, 381
detailed balance, 426, 435, 1728
deterministic fluctuation, 3054
detuning, 1480
devil’s staircase, 1176, 2086
diamagnetic term, 1552
diamagnetism, 766, 842
Dicke cooperativity, 1407

Dicke model, 2286
Dicke state, 2217, 2290
Dicke superradiance, 2755
dielectric, 643
dielectric filter, 2936
dielectric mirror, 2936
dielectrics

master equation for, 2175
Diesel

Rudolf Christian Carl, 381
Diesel cycle, 381
differential operator, 874
diffraction, 267, 1084
diffraction theory, 264
diffuse scattering, 2158
diffusion coefficient, 2514
diffusion current, 2917
dilatation of time, 1098
dilution, 2694
diode, 2916

optical, 2897
diode laser, 2965
dipolar approximation, 1731
dipolar force, 2555
dipolar gradient force, 2061, 2062
dipole moment

electric, 623
magnetic, 738, 1399

Dirac
Paul, 1248, 1399

Dirac equation, 1134, 1527
Dirac function, 528
Dirac string, 848
direct, 2385
Dirichlet boundary condition, 600
discriminator, 3017
dispersion, 233

abnormal, 241
normal, 241

dispersion coefficient, 956, 2609
dispersion relation, 239, 1433, 2669
dispersive imaging, 2612
dispersive optical bistability, 2042
displacement current, 828
displacement operator, 1295, 1348, 2417
dissipative structure, 437, 2523, 2532
dissociation limit, 1628
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divergence, 474
Doppler

Christian Andreas, 247
Doppler broadening, 1804, 1912
Doppler cooling, 2556
Doppler cooling limit, 2556
Doppler effect, 1801, 2074

first-order, 1115
relativistic, 1115
sonic, 247

Doppler limit, 2551
Doppler shift, 1804

second order, 1121
Doppler-free spectroscopy, 1801
doppleron, 2452
dressed atom, 2757
dressed state, 1851, 1856
drift current, 2917
Drude

Paul Karl Ludwig, 957
Drude model, 957, 982
dual comb spectroscopy, 3012
duality principle, 1199, 2549
duality transform, 846
Dulong-Petit law, 1229
dynamic Stark shift, 1792, 2065
dynamic variable, 1249
dynamical localization, 2090
Dyson series, 1478

Eötvös
Loránd, 308

ECDL, 2963
effective Hamiltonian, 1791, 1797, 1988,

2491
effective potential, 1592
Efimov state, 1699
Ehrenfest

Paul, 1246
Ehrenfest classification, 422
Ehrenfest principle, 1984
Ehrenfest theorem, 1246, 1289
eigenfunction, 1258
eigenvalue, 225, 1244, 1258
eigenvector, 225, 1258
Einstein

Albert, 251, 858, 1094, 1102

sum rule of, 518, 1094
Einstein coefficients, 1733
EIT, 1830
elastic collision, 96, 1802, 2832
elastic scattering, 1926, 2069
electric charge, 471
electric dipole moment, 1037, 1705, 1731

permanent, 2055
electric displacement, 648, 835
electric field, 538
electric flux, 553
electric polarizability, 948
electric potential, 576
electric quadrupole transition, 1737
electric susceptibility, 648
electrical energy, 238, 901
electro-optic modulator, 2976
electroaffinity, 1612
electromagnetic field tensor, 1125
electromagnetic force, 2053
electromagnetic wave, 237, 899, 901
electromagnetically induced absorption,

1830
electromagnetically induced transparency,

1830
electromotive force, 675
electron radius

classical, 595, 949
electronegativity, 1612
electronic circuit, 2909
electrostatic pressure, 593
electrostatics, 537
electrostriction, 1719, 2045
electrostrictive strain, 2045
elementary excitation, 2669
Elitzur and Vaidman bomb testing prob-

lem, 1971
emission, 1727
emission rate

spontaneous, 1222
stimulated, 1222

energy conservation, 176, 853
energy density, 590, 802, 852, 1216
energy flux, 852
energy functional, 2662
entanglement, 2361

quantum, 2009



3176 INDEX

entropy, 1749
entropy production, 436
envelope, 532
Eotvos, 308
EPR paradox, 2361
equipartition theorem, 2642
equivalence principle, 336, 1145, 2027
Ernst

Ising, 2339
error function, 3042
error propagation, 3040
error signal, 3024, 3030
Erwin

Schrödinger, 1283
escape velocity, 302
Euler equation, 2697
Euler-Lagrange equation, 1135
evanescent wave, 914, 943
evaporation, 2585
evaporative cooling, 2589
evolution operator, 1293
Ewald-Oseen theorem, 2132
exchange degeneracy, 1578
exchange energy, 1585
exchange integral, 1586, 1621
exchange operator, 1598, 2852
exchange symmetry, 1578
excitation

gap, 2809
exciton, 2622
exit work, 424
exotic atom, 1545
exponential gain, 2046
extended-cavity diode laser, 2963
extensive parameter, 2646
external product, 2385

Förster transfer, 2276
Fabry-Pérot etalon, 2416
Fabry-Perot cavity, 990
Fahrenheit

Daniel Gabriel, 360
Fano resonance, 1830
far field, 266
far off-resonance optical trap, 2571
far-field zone, 1036
Faraday

Michael, 781
Faraday crispation, 441
Faraday effect, 972
Faraday rotator, 903, 2899
Faraday’s cage, 592
Faraday’s law, 238, 827, 901
feedback, 3016
FEL, 2457
Fermi

Enrico, 1483
Fermi contact term, 1536
Fermi energy, 1593
Fermi function, 2625
Fermi gas model, 1593
Fermi sea, 2827
Fermi temperature, 2819
Fermi’s Golden rule, 1052, 1483, 1485
Fermi-Dirac distribution, 2623
fermion, 1578, 2623, 2646
fermionic inhibition, 2730
fermionization, 2807
fermions, 2853
ferromagnetism, 770, 2339, 2815
Feshbach

Herman, 1708
Feshbach resonance, 1708, 1709, 2704

p-wave, 1712
heteronuclear, 2841
optical, 1719

Feynman diagram, 2152
Feynman propagator, 1485
fiber

optical, 2936
fiber cladding, 2936
fiber core, 2936
field line, 553
field operator, 2655
field theory, 471
fine structure, 1505, 1516
fine structure constant, 1505
finesse, 991
first sound, 2673
first-order coherence, 3058
fit, 3041
Fizeau interferometer, 2953
fluctuation-dissipation theorem, 443, 2513
fluctuations
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frequency, 3023
intensity, 3023

flux of electromagnetic energy, 1216
flux operator, 2713
flux quantum, 1563
FM, 205
Fock

Vladimir Aleksandrovich, 1341, 1391
Fock state, 1341, 1851, 2008, 2717
Fock states, 2807
Fokker-Planck equation, 2065, 2513, 2517
Fokker-Planck equations, 435
fonon, 2669
forced evaporation, 2589
form factor, 1687
FORT, 2572
forward gain, 3017
forward scattering, 2726
Foucault, 122

Léon, 122
four-wave mixing, 2041, 2711, 2757, 2975
Fourier expansion, 1187
Fourier grid method, 1331, 1637
Fourier reconstruction, 2613
Fourier theorem, 276
Fourier transform, 1186

discrete, 1186
Fourier’s theorem, 240
Franck-Condon factor, 1630, 1632
Franck-Condon overlap, 2076
Franck-Condon principle, 1631
Franck-Condon transition, 2079
Franck-Hertz experiment, 1220
Fraunhofer diffraction, 268
freak wave, 441
free electron laser, 2457
free path, 2673
free spectral range, 990, 1011, 2193
frequency, 174

angular, 174
frequency comb, 3009
frequency modulation, 205
frequency modulation spectroscopy, 2979,

2997, 3000
Fresnel

Augustin-Jean, 2900
Fresnel diffraction, 268

Fresnel formula, 912, 1320, 2900
Fresnel integral, 266
Fresnel number, 268, 1017
Fresnel zone plate, 1159, 2906
Fresnel-Fizeau effect, 956
Friedel interaction, 458
Frisch

Otto Robert, 2060
fugacity, 2624
FWM or 4WM, 2711, 2975

g-factor, 1519
Gal, 306
Galilei

Galileo, 251, 306, 1102
Galilei boost, 1298, 1303
Galilei invariance, 1100, 1303
Galilei invariant, 249
Galilei transform, 59, 249, 1096, 1100,

1298
Gamma function, 1500
gap

pairing, 1172
gaseous solid, 2813
Gauß theorem, 489
Gauß’ law, 554, 827
gauge field, 1300
gauge invariance, 872
gauge transform, 872, 1125, 1303
gauge transformation, 1300
Gaussian, 1189
Gaussian beam, 2881
Gaussian noise process, 3059, 3062
Gaussian optics, 2877
Gaussian units, 1181
Gay-Lussac

Louis Joseph, 372
Gedankenexperiment, 1301
general relativity, 336, 1145
geodesic equation, 522, 1148
geometric phase, 2015
geometrical optics, 1009
Gerlach

Walther, 1207, 1399
GHZ state, 2366
Glauber

Roy, 1297
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Glauber formula, 1297
Glauber state, 1349
Glauber-Sudarshan representation, 1861
Goos

Gustav, 914
Goos-Hänchen shift, 914, 1149
GPE, 2659
gradient, 473
grand canonical ensemble, 421
grating, 2991
gravimetry, 2028
gravitational acceleration, 58
gravitational force, 2053
gravitational potential, 305
gravitational red-shift, 336, 2027
gravitational sag, 2818
gravity, 301
gravity gradient, 308
gravity gradient instrument, 326
Green

George, 1676
green flash, 2160
Green’s function, 265, 874, 1189, 1676,

2327
Green’s method, 1676
Green’s tensor, 976
Gross-Pitaevskii equation, 1333, 2659,

2703
Grotrian diagram, 1764
group velocity, 240, 945

superluminal, 2044
gyromagnetic ratio, 1519, 1771
gyroscope, 2937

H-theorem, 434
Hänchen

Hilda, 914
Hänsch-Couillaud technique, 3004
Hadamard gate, 2384
Hadamard product, 1268
hadron, 1546
hadronic atom, 1546
hadrons, 455
Hall effect, 701

quantum, 1563
Hall voltage, 702
Hamilton

William Rowan, 1135
Hamilton operator, 1245
Hamiltonian, 1245
Hanbury-Brown-Twiss experiment, 1908
Hankel function, 1034, 1382, 1497

spherical, 1498
Hanle effect, 1833
hard core approximation, 1803
hard sphere collision, 2658
harmonic distortion, 278
harmonic oscillator, 1339
harmonic wave, 239
Hartree

Douglas Rayner, 1597
Hartree method, 1597
Hartree-Fock equation, 1598
Hartree-Fock method, 1597, 2683
Hartree-Fock-Bogolubov method, 2658
healing length, 2675, 2693, 2698
heat capacity, 421, 2628
heat engine, 382
heat pump, 382
heating rate, 2573
Heavyside function, 528
Heisenberg equation, 1285, 1785
Heisenberg limit, 2008, 2716, 2808
Heisenberg picture, 1284
Heisenberg’s uncertainty relation, 240
helicity, 903, 1832, 2898
helium, 1582
Helmholtz coils, 718

anti-, 718
Helmholtz equation, 238, 251, 902, 1089,

1102, 2135
inhomogeneous, 976

Helmholtz theorem, 829, 830
Hermite polynomials, 1498
Hermitian operator, 1249, 1257
Hesse

Otto, 520
Hessian, 520
heterodyne method, 2985
heterodyning, 2922
hidden variables, 2362
Hilbert space, 1249, 1257, 1258
Hilbert transform, 530, 531
hole heating, 2649
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Holstein-Primakoff transformation, 2300
homodyne detection, 1961
homodyne method, 2985
homodyne tomography, 1962
homogeneity, 2693

spatial, 1302
temporal, 1301

homogeneous broadening, 1801
Hooke’s law, 176
Hopf bifurcation, 2095
Hund’s cases, 1642
Husimi representation, 1861
Huygens principle, 266
Huygens-Fresnel principle, 1015
hydrodynamic regime, 2673
hyperfine splitting, 1535
hyperfine structure, 1534, 1535, 1740

Paschen-Back effect of the, 1558
Zeeman effect of the, 1558

hysteresis curve, 771

image charge, 599
image reconstruction, 2613
impedance

vacuum, 901, 1038
impedance matching, 917, 1006, 2943
impedance of free space, 1216
impenetrable bosons, 2807
impulse response, 265
indeterminism, 6
induced dipole, 643
induced dipole moment, 1733
induced emission, 1733
inelastic collision, 2832
inelastic scattering, 1926, 1934
inertial system, 50
infinitesimal generator, 1103
information entropy, 1749, 2368
Inglis-Teller limit, 1549
inhomogeneous broadening, 1801, 1805
injection locking, 2967
input, 3043
integral regulator, 3050
intensity, 906, 1216
intensive parameter, 2646
interaction picture, 1286, 1477, 1755,

1765

interaction-free measurement, 1966
interferometer

birefringent, 2933
interferometry, 2929
intermediate coupling, 1605
interval factor, 1538
interval rule, 1538
inverting amplifier, 2911
Ioffe-Pritchard trap, 2581, 2583
Ioffe-Regel criterion, 2160
ionic bond, 1612
ionic condensate, 2608
ionization energy, 1612
irreducible matrix element, 1572, 1737
irreversible process, 435
irrotational superfluid flow, 2697
Ising model, 2339
isolator

optical, 2897
isotropy

spatial, 1302

Jacobi
Carl Gustav Jacob, 519

Jacobian, 519
Jacques

Hadamard, 1268
Jaynes-Cummings model, 1886, 2417
Jefimenko

Oleg, 880
jj-coupling, 1413
Jones

Robert Clark, 2898
Jones matrix, 903, 2898
Joseph John

Thomson, 947
Josephson junction, 1173, 1432, 2713,

2783
Josephson tunneling, 2713
Joule-Thompson effect, 417
Joule-Thomson effect, 420
jump operator, 2001

Kamiltonian, 2656
Kapitza-Dirac scattering, 2751
Kelvin

William Thomson, 360
Kepler
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Johannes, 297
kernel, 265, 1262
Kerr

John, 2976
Kerr effect, 2976
ket, 1248
kick, 1351
kick operator, 1295
kinetic energy, 59
Kirchhoff

Gustav Robert, 2911
Kirchhoff’s rule, 2911
Klein-Gordon equation, 1134, 1241, 1506
Kondo effect, 458, 2812
Koopman’s theorem, 1599
Kosterlitz-Thouless transition, 2807
Kramers

Hendrik Anthony, 960, 1470
Kramers-Heisenberg formula, 1485, 1947
Kramers-Kronig relation, 960
Kraus operator, 1994
Kronecker symbol, 476, 1095
Kronig

Ralph, 960
Kronig-Penney model, 1441, 2169
Kuramoto

modelo de, 2523
Kuramoto equation, 2527
Kuramoto model, 436, 2086, 2527

l’Hôpital
Guillaume Francois Antoine de, 468

l’Hôpital’s rule, 468
Lagrangian, 1135
Laguerre

Edmond, 1388
Laguerre polynomials, 1388, 1499
Laguerre’s associated differential equa-

tion, 1388
Laguerre-Gaussian mode, 1159, 2906
Lamb

Willis Eugene, Jr., 1533
Lamb dip, 3000
Lamb shift, 1533, 2155

cooperative, 2211
Lamb-Dicke parameter, 1353, 2563
Lamb-Dicke regime, 1353, 2073, 2074

Lamb-dip, 1801
Lamb-dip spectroscopy, 2998
Lamb-shift

collective, 2109
Lambert-Beer law, 954, 1226, 2158, 2609,

2958
Landé factor, 1555, 1558, 2056
Landau classification, 422
Landau criterion, 2669
Landau diamagnetism, 765
Landau gauge, 1562
Landau level, 1562
Landau velocity

critical, 2694
Landau-Zehner transitions, 1718
Landau-Zener, 1695
Landau-Zener formula, 2592
Langevin diamagnetism, 765
Langevin equation, 1785, 2513

quantum, 2420
Laplace equation, 578
Laplace operator, 262
Laplace transform, 962, 1185, 3045
large component, 1507
Larmor formula, 949, 1033, 1062, 1065
Larmor frequency, 1206, 1772, 2582
laser, 1909

state of a, 1868
laser emission bandwidth, 3060
laser gyroscopes, 2226
laser without inversion, 2043
lattice

direct, 2162
least squares fit, 1463
left-handed medium, 984
Legendre

Adrien-Marie, 1377
Legendre operator, 1376
Legendre polynomial, 1035
Legendre polynomials, 617, 1377, 1500
Legendre transform, 1135
Leibniz, 5
lens

thin, 1017
Lenz’s rule, 781
lepton, 1546
LeRoy-Bernstein method, 1636
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Leucippus, 1197
Levi-Civita tensor, 476
Liénard formula, 1063
Liénard-Wiechert potentials, 882
Lie algebra, 1256
Lieb-Liniger model, 2807
light shift, 1792, 1830, 2065
limit-cycle oscillation, 2088
Lindblad

Göran, 1818
Lindblad operator, 1999, 2001, 2065,

2189, 2678
linear algebra, 2384
linear cavity, 2416
linear combination of atomic orbitals,

1616
linear momentum conservation, 857
linear momentum space, 1262
linear operator, 3044
linear stability analysis, 437
Liouville equation, 1755
Liouville operator, 1755, 1818
Lippmann-Schwinger equation, 1677, 1720
liquid-vapor transition, 422
Lissajous figure, 202
Littrow configuration, 2992
local causality, 2362
local density approximation, 2658
local density of states, 2172
local oscillator, 2923
local realism, 2367
localization

gapless, 2809
localization energy, 1313, 1635
localization of light

strong, 2159
weak, 2159

lock-in amplifier, 2926
lock-in method, 3028
locking, 3017
London

Fritz and Heinz, 1169
London equation, 1169
long-range interaction, 444
longitudinal

current, 874
longitudinal mode, 991

loop, 2911
loop gain, 3017
Lorentz

Hendrik Antoon, 251, 1102, 1520
Lorentz boost, 1104, 1299
Lorentz distribution, 1730
Lorentz force, 700, 884, 1128
Lorentz force density, 852, 1128
Lorentz gauge, 872, 1125, 2020
Lorentz invariant, 1094
Lorentz model, 948, 1735, 2061
Lorentz transform, 252, 1096, 1103, 1299
Lorentz-Lorenz shift, 650, 2156, 2157
Lorentzian, 1188
Loschmidt’s reversibility paradox, 435
low-pass filter, 3031
lowering operator, 1398
LS-coupling, 1412, 1604
LTI, 3044
Luther-Emery liquid, 2812
Luttinger liquid, 2649, 2807, 2812
Lyapunov exponent, 2095, 2159
Lyot filter, 2933

Mößbauer
Rudolf Ludwig, 2074

Mößbauer effect, 1354, 2074, 2564
Mach

Ernst Waldfried Josef Wenzel, 2931
Mach-Zehnder interferometer, 2931
macromotion, 2603
magnetic bottle, 2581, 2583
magnetic charge, 829
magnetic dipole moment, 1040
magnetic dipole transition, 1737
magnetic energy, 238, 901
magnetic excitation, 768, 837
magnetic field, 700
magnetic flux, 716
magnetic monopole, 829
magnetic quantum number, 1376
magnetic susceptibility, 768
magnetic trap, 2056
magnetization, 767, 838

intrinsic, 1048
magneto-optical trap, 2567
Magnus effect, 2700
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main quantum number, 1387
Majorana spin-flip, 2582
many-body Hamiltonian, 2656
map

dissipative, 2093
Mariotte

Edme, 372
Markov approximation, 1087, 1924, 1999
Markovian process, 1929
maser, 2955
master equation, 1790, 1897, 1922, 1991,

2001, 2418
Mathieu equation, 2603
matrix element, 1727
matter wave

soliton, 2826
superradiance, 2463

matter wave amplifier
coherent, 2758

matter wave superradiance, 2462, 2756
Maxwell equations, 238, 828, 899, 1126,

2020
Maxwell stress tensor, 852, 855, 1128,

2061
Maxwell’s law, 828
Maxwell-Bloch equation, 2482
Maxwell-Boltzmann distribution, 434,

2552
Maxwell-Boltzmann law, 2552, 2623
mean-field approximation, 2289, 2775
mean-field theory, 2658
measurement, 1753, 1983
mechanics

wave, 1251
mechanics of matrices, 1251
Meissner-Ochsenfeld effect, 1169
mesh rule, 680
meson, 1546
mesons, 455
metal, 643, 2812
metamaterial, 984
meter, 1985
metric, 520

Minkowski, 1094
metrology, 2028
Michelson

Albert Abraham, 1093

Michelson interferometer, 1093, 2931
Michelson-Morley experiment, 1093
microcanonical ensemble, 425
micromotion, 2603
microwave-optical double-resonance, 2009
Mie

Gustav Adolf Feodor Wilhelm Lud-
wig, 1091

Mie regime, 2144
Mie scattering, 950, 1091, 1382, 2133
MIMO, 3052
minimal coupling, 1134, 1300, 1512, 1552
Minkowski

Hermann, 251, 1094, 1102
Minkowski force, 1116
Minkowski momentum density, 852, 855
mixer, 2926

frequency, 2922
mode, 917
mode competition, 439
mode density, 1218
mode field diameter, 2936
mode volume, 2194
mode-locked laser, 2709, 3007
mode-locking, 3011
modulation index, 206, 2921
modulation transfer spectroscopy, 2979,

2997, 3000
molasses

optical, 2512
molecular condensate, 2833, 2835, 2838
molecular orbital, 1617
molecular orbital method, 1616
molecular orbital model, 1615
molecular Rydberg states, 2838
Mollow gain, 2043
Mollow triplet, 1932
moment

first, 1244
momentum density, 906
momentum of inertia, 1379
momentum space, 1244
monopole moment, 622
Monte Carlo simulation, 1333
Monte Carlo wavefunction simulation

quantum, 1896, 1989, 2491
Morley
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Edward Williams, 1093
Morse potential, 1628, 1640
MOSFET, 3027
MOT, 2567
Mott insulator, 2009, 2295, 2716, 2808

incompressibility of a, 2809
Mott transition, 2716
Movre-Pichler potential, 1641
multiple scattering, 2151
multiple worlds, 1987
multiple-input multiple-output control

system, 3052
multipolar expansion, 621
muonic hydrogen, 1546
mutual inductance, 782

nabla, 473
natural science, 4
near field, 266
near-field zone, 1035
nearly-degenerate, 2454
negation, 2385
Neumann function, 1382
neutral density filter, 2907
Newton

Isaac, 298
Newton friction, 87
Newton method, 1333
Newton’s law, 1116, 1246
no free lunch theorem, 1993
node, 2911
node rule, 680
Noether

Emmy, 1140
Noether’s theorem, 1300
non-additivity, 445
non-inverting amplifier, 2911
non-linear Schrödinger equation, 2659
non-observation, 1989
nonlinear atom optics, 2706
nonlinear optics, 2037
NOON state, 2373
normal coordinate, 224
normal dispersion, 946
normal mode, 224, 280, 1963, 2669
normal mode splitting, 2222, 2229
normal order, 1861

normal tuning, 279
normalization, 1243, 1248
nuclear magnetic resonance, 1559, 1771
nuclear magneton, 1535
nuclear model, 1202
number state, 1341, 1851
numerical aperture, 2937
nutation, 1769
Nyquist criterion, 3051

observable, 6, 1249
octave, 279
off-diagonal long-range order, 2660
Ohm’s law, 675, 1168, 1169, 2158
one-axis twisting, 2346
OpAmp, 2911
open

Dicke model, 2322
open loop, 3015
open loop gain, 3051
open-loop gain, 3017
operational amplifier, 2910, 2911
operator, 1249

unitary, 1257
optical bistability, 2042, 2442

absorptive, 2042
dispersive, 2042

optical branch, 283
optical cross section, 1223
optical cross-section, 1790
optical density, 2610, 2647
optical diode, 2899
optical isolator, 2899
optical lattice, 1433, 2161
optical parametric amplifier, 2041
optical parametric oscillator, 2041
optical resonator, 990
optical suppression, 1718
optical theorem, 1683, 2609
optical tweezer, 2571
orbital angular momentum, 1296, 1396
orbital magnetic moment, 1206
order parameter, 439, 2526, 2659, 2697
orientation, 1833
orientation polarization, 643
ortho-helium, 1587
orthogonal, 1257
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orthogonalization by Schmidt, 1259
oscillator

damped, 207
limit-cycle, 2086
self-sustained, 2086

oscillator strength for absorption, 1735
oscillator strength for emission, 1735
Otto

Nikolaus August, 381
Otto cycle, 381
outer tensorial product, 1267
output, 3043
output coupler, 2709

P-function, 1861
p-polarization, 912
para-helium, 1587
paramagnetism, 764
parametric oscillator

optical, 2375
paraxial approximation, 264
paraxial wave equation, 268
parity, 1261, 1737, 2856
parity conservation, 1302
parity inversion, 1304
partial wave, 1680

amplitude of the, 1681
particle index, 2856
particle-like excitations, 2670
Paschen-Back effect, 764, 1556
Paschen-Goudsmith effect, 1558
passive component, 2909
passive device, 2759
path integral, 485
Paul

Wolfgang, 2602
Paul trap, 2602

linear, 2604
Pauli

Wolfgang, 1250
Pauli blocking, 2648
Pauli equation, 1518
Pauli exlusion principle, 2648
Pauli paramagnetism, 765, 770
Pauli spin matrices, 1250, 1399, 1507,

1768, 1886, 2287, 2419
Pauli vector, 1251

Pauli’s exclusion principle, 2623
Pauli’s strong exclusion principle, 1580
Pauli’s weak exclusion principle, 1580
Peltier

Jean Charles Athanase, 2913
pendulum

ideal, 178
mathematical, 178
physical, 178

Penning trap, 2602
perfect lens, 984
period, 173
permanent dipole, 643
permeability, 238, 768, 839

negative, 1830
vacuum, 901

permittivity, 238, 648, 839
negative, 1830
vacuum, 901

perturbation theory
time-dependent, 1477
time-independent, 1445

phase conjugation, 2711
phase contrast imaging, 2612
phase front, 263
phase gate, 2374, 2383, 2385
phase matching, 917
phase matching condition, 2726
phase modulation, 2921, 2978
phase shift, 175
phase space, 425
phase space density, 2552
phase transition

CARL, 2528
Ehrenfest classification, 422
Landau classification, 422

phase velocity, 240, 263, 945, 2044
superluminal, 2044

phase-conjugation, 2041
phase-locked laser, 2043
phase-locked loop, 3031
phase-locking, 3007
phase-sensitive detection, 1961
phasor, 530
phonon, 1344, 1851, 2045
phonon-like excitation, 2669
phonons, 1228
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phosphorescence, 1737
photo association, 1632
photo detector, 2916
photoassociation, 1693, 1699, 2835, 2840

stimulated Raman, 2840
photoelectric effect, 1220, 1483
photon, 1215, 1344, 1851
photon condensation, 2654
photon echo, 1783
photon echo method, 1771
photonic band gap, 917, 2714
photonic bands

forbidden, 2161
photonic crystal, 2174, 2714
photonic density of states, 1442
photonic recoil, 2551
photons, 1134
pi (π)-pulse, 1488
PI servo, 3025
PID control, 3015
PID controller, 3018
PID regulator, 3050
piezo-electric actuator, 2930
pinhole, 1017
Planck

Max, 858, 1198
Planck’s constant, 1219
plane wave, 262
planetary model, 1205
plant, 3015
plasma, 458
plasma frequency, 959
plasmon, 980
PLL, see phase-locked loop
PM, 2921
Pockels

Friedrich Carl Alwin, 2906
Pockels cell, 2906, 2976
Poincaré

Henry, 251, 1102
Jules Henry, 1094

Poincaré map, 2084
Poisson distribution, 468, 1348
Poisson equation, 459, 578, 873
Poisson’s law, 827, 1676
polar coordinates, 49
polar equation, 1377

polar vector, 829
polariton scattering, 2045
polarizability, 645, 951
polarization, 646, 838, 903, 1832, 2898
polarization contrast imaging, 2613
polarization gradient cooling, 2557
polarization vector, 900
polarizations optics, 2877
polarizer, 904, 2898
ponderomotive force, 2457
Popper

Karl, 4
population, 1765
population inversion, 1769
position space, 1262
positive operator valued (probability)

measurement, 1994
positive side, 2838
potential energy, 59
Pound-Drever-Hall, 2979
Pound-Drever-Hall method, 3030
power broadening, 1786
power spectral density, 3060
Poynting

John Henry, 852
Poynting theorem, 852, 853
Poynting vector, 238, 852, 906, 1216
precession, 153, 1769, 1770
precision, 6, 3053
predator-prey model, 441
pressure broadening, 1911
prism, 2991
probability, 3042
probability charge, 1243
probability current, 1243
probability density, 1242, 3042
probability distribution, 1242
probability flux, 1321
probability wave, 1243
product state, 2292
projection noise, 2009
projection of the wavefunction, 1252
projector, 1250, 1266
propagation, 233
propagator, 265

photon, 1950
proper velocity, 1111
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proportional regulator, 3050
pseudo potential, 1671
pulse response, 875
Purcell

Edward Mills, 2273
Purcell factor, 2213
pure state, 1748
purity, 1749

Q-function, 1861, 1894
quadrature component, 2304, 2986
quadri-scalars, 1099
quadri-vectors, 1099
quadrupolar electron-nucleus interaction

constant of the, 1539
quadrupolar interaction, 1538
quadrupole moment

electric, 623
quality factor, 210, 212
quantization

first, 1208, 1363
of phase space, 425
second, 1362

quantized vortex, 2697
quantum amplifier, 1959, 1988, 1990
quantum beat, 1945
quantum communication, 2393
quantum computing, 2393
quantum confinement, 2579
quantum cryptography, 2362
quantum decoherence, 1987
quantum defect, 1549, 1602
quantum depletion, 2671
quantum electrodynamics, 1067, 1729
quantum electronics, 2929
quantum entanglement, 2381
quantum Fourier transform, 2395
quantum gate, 2375
quantum information, 2383, 2393
quantum information content, 2369
quantum jump, 1830, 1989
quantum Langevin equation, 2189
quantum measurement, 1252
quantum number, 1313

good, 1307
quantum phase transition, 2716, 2808
quantum processing, 2393

quantum projection noise, 2006, 2009,
2295

quantum reflection, 1320
quantum resonance, 2090
quantum sensing, 2029, 2393
quantum signal, 1959
quantum simulation, 2393
quantum state endoscopy, 1962
quantum synchronization, 2090
quantum trajectory, 1988, 1995
quantum transport, 2713
quantum turbulence, 2704
quantum volume, 2394
quantum Zeno effect, 1991
quart, 280
quasi-condensates, 2806
quasi-particle, 2668, 2669
qubit, 2375
qubits, 2375
QUEST, 2606
quint, 279

Rüchardt
Eduardt, 381

Rabi frequency, 1228, 1480, 1766, 1854,
2055

generalized, 1481, 1766
Rabi splitting

vacuum, 1892, 2229
radiance, 2877

spectral, 1220
radiant energy, 2877
radiant intensity, 2877
radiant power, 2877
radiation collapse, 1206
radiation pressure, 858, 906, 1221, 2061,

2063, 2555
radiation reaction, 1065
radiation trapping, 2159, 2570
radiative escape, 1703
radiofrequency trap, 2602
radon transform, 1962
Raman scattering, 1436, 1926

stimulated, 2045
Raman sideband cooling, 2563
Raman-Nath regime, 2751
Raman-scattering, 2045
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Ramsey interferometry, 2710
Ramsey method, 1770
Ramsey-Bordé interferometer, 1305
random variable, 3042
random walk, 2512
rarefied liquid, 2833
Rayleigh

JohnWilliam Strutt, 3. Baron, 1462
Rayleigh fraction, 1462
Rayleigh length, 1008, 2572
Rayleigh range, 266
Rayleigh scattering, 948, 950, 1926, 1934

superradiant, 2462
Rayleigh-Debye-Gans regime, 2144
Rayleigh-Jeans law, 1218
Rayleigh-Ritz method, 1463
Rayleigh-Sommerfeld impulse response,

1015
Rayleigh-Sommerfeld transfer function,

1015
reactive losses, 2840
real gas, 417
reciprocal lattice, 1426
recoil frequency, 1434
recoil-induced resonances, 2453, 2743
reduced dimensions, 2803
reduced mass, 182, 1626
reduced matrix element, 1737
reflection, 1321

law of, 911
total internal, 914

refraction, 2065
law of, 911
negative, 984

refraction coefficient, 956
refraction index, 954
refractive index

complex, 984
negative, 1830

refractive index of air, 945
refrigeration, 382
register

quantum, 2375
regression theorem

quantum, 1929
regularization of the interaction, 2658
regulator, 3017

relative permeability, 770
relative permittivity, 649
relative phase, 2717
relativistic linear momentum, 1113
relativistic mechanics, 251, 1102, 1111
relativistic potential, 1125
relativity

special, 1094
relaxation explosion, 2582
release energy, 2629
remanescence, 771
Renyi entropy, 1749
repetition rate, 3009
representation, 1247
reproducibility, 3053
reservoir, 1251, 1733
residue

theorem, 961
resistance, 677
resistively shunted junctions, 1173
resistivity, 676
resolution parameter, 2218
resolved sidebands, 2074
resonance fluorescence, 1929
resonance integral, 1616
restoring force, 173
retardation, 1720
retarded position, 881
retarded potential, 876, 1034
reversible process, 435
rhythmic phenomena, 436
Ricci-Curbastro

Gregory, 251, 1102
Riemann zeta-function, 1500, 2625
right-handed medium, 984
rigid rotation, 1626
rigid rotor, 1379, 1769
ring

non-commutative, 1256
ring cavity, 2417, 3006
ringing, 2190
rising operator, 1398
RKKY interaction, 458
Rodrigues formula, 617
rogue wave, 441
rotating wave approximation, 1086, 1480,

1756, 1766, 2104
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rotation, 33, 475
rotation number, 2085
rotation operator, 1295
rotational constant, 1634
rotator

forced, 2088
roton, 1720
rotor

δ-kicked, 2090
rubidium hyperfine structure, 1544
run-away evaporation, 2590
Runge-Kutta method, 1333, 2514
Russel-Saunders coupling, 1604
Rutherford

Ernest, 947, 1201
Rutherford scattering, 1201
Rydberg atom, 1547
Rydberg blockade, 2338
Rydberg series, 1548

S-matrix, 1717
s-polarization, 912
s-wave collision, 1689
s-wave scattering, 2657
Sagnac

Georges, 2937
Sagnac effect, 2937
sample-and-hold circuit, 2926
saturation, 2109
saturation broadening, 1786, 1791
saturation intensity, 1228, 1802
saturation parameter, 1227, 1786, 1802,

2217, 2556
saturation spectroscopy, 2997
scalar field, 294, 472
scalar potential, 831, 871
scalar product, 1257
scalar triple product, 33
scattering, 1084
scattering amplitude, 1675, 1677, 2657
scattering cross section, 949, 1201

differential, 1928
scattering length, 1688, 2657

interspecies, 2592
scattering matrix, 1319
scattering phase, 1681
Schawlow-Townes limit, 2009, 2195, 2709

Schlieren method, 2612
Schrödinger cat, 1984
Schrödinger cat state, 1350, 1869
Schrödinger equation, 293, 1240
Schrödinger kitten, 2744
Schrödinger picture, 1283, 1755, 1765,

1766
Schrieffer-Wolff transformation, 1286
Schwartz inequality, 1262
Schwarzschild metric, 1147
Schwarzschild radius, 1147
scissor mode, 2697
screening, 1204
second harmonic generation, 2834
second quantization, 2655
second sound, 2673
second-harmonic generation, 2711
secular determinant, 1449
secular equation, 1449
selection rule, 1587
selection rules, 1737
self-consistency, 1593
self-defocusing, 2711
self-energy divergence, 596
self-focusing, 2711
self-inductance, 783
self-organization, 439
self-similarity, 2095
semi-classical, 2055
semiconducting materials, 2916
sensor, 2028, 3015
servo oscillations, 3020
servo system, 3015
shaking mode, 2671
shape oscillation, 2671
shape resonance, 451, 1694, 1708
Shapiro steps, 1174
SHG, 2711
shielding, 1718
short-range interaction, 444
shot noise, 1958, 2006, 2009
Shubnikov-de Haas effect, 1563
SI units, 1181
side-of-fringe stabilization, 3028
sideband cooling, 2564
signal, 3043
signal velocity, 2044
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significant digits, 6
single, 2837
single-input single-output control sys-

tem, 3052
single-input-single-output control, 3016
single-particle tunneling, 1173
SISO, 3052
skin depth, 942
skin effect, 592
Slater

John Clarke, 1580
Slater determinant, 1580, 2855
small component, 1507
small system, 445
smooth density approximation, 2133
Snell’s law, 911, 2975
Snellius

Willebrord van Roijen, 911
solid-liquid transition, 422
Sommerfeld

Arnold Johannes Wilhelm, 1208,
1533

Sommerfeld expansion, 1501
Sommerfeld fine-structure formula, 1516
sound, 2673
sound velocity, 2669
space, 5
space-time vectors, 251, 1102
spatial coherence, 2722
spatial patterns, 436
specific heat, 1229

negative, 445
speckle pattern, 2158
spectra

excitation, 2997
spectral density of fluctuations, 3053
spectral density of modes, 1218
spectral density of phase fluctuations,

3055
spectral energy density, 1218
spectral noise density, 3021
spectrum, 1909

fluorescence, 2997
harmonic, 278

spherical harmonics, 1377, 1500
spherical wave, 262
spin, 764, 1399, 1511

spin exchange, 1698
spin flip, 2592
spin orbitals, 2855
spin relaxation, 2571
spin squeezing, 2716
spin-charge separation, 2649
spin-orbit interaction, 1529, 1700
spin-squeezed state, 2009, 2713, 2807
spinning top, 1769
spinor, 2815
spinorbital, 2856
spontaneous breaking of gauge symme-

try, 2659
spontaneous emission, 1729, 2155
spring constant, 175
squeezed state, 1884, see squeezing
squeezed vacuum, 1882
squeezing, 1884

multimode, 1963
spin, 2295, 2713

squeezing operator, 1881, 2297
SQUID, see superconducting quantum

interference device
stability, 3053
stability diagram, 2603
stabilization

intensity, 3023
standard, 7
standard deviation, 1804, 3039
standard model, 1506
Stark

Johannes Nikolaus, 1571
Stark effect, 1571

linear, 1449, 1571
quadratic, 1449, 1571

Stark shift, 1549
state function, 1247
state index, 2856
state reduction, 1252, 1989
statistical mixture, 1750
statistical operator, 1748
steepest descent method, 1333, 2663
Stefan-Boltzmann law, 1231
Steiner’s law, 180
Steiner’s theorem, 151
Stern

Otto, 1207, 1399
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Stern-Gerlach experiment, 1399, 2056
Stern-Gerlach separation, 2842
stimulated Brillouin scattering, 2045
stimulated emission, 1728
STIRAP, 1830
stochastic distribution, 3042
stochastic error, 6
stochastic noise, 3054
stochastic resonance, 440, 2044
Stokes

George Gabriel, 87
Stokes friction, 87, 207
Stokes parameters, 2901
Stokes’ theorem, 488
stretched Zeeman state, 1560
strong binding regime, 1354
strong causality, 6
strong coupling, 2605
structural science, 4
structure coefficient, 2103, 2117, 2163
structure factor, 2162, 2195

dynamic, 2078, 2102, 2722
static, 2102, 2722

subradiance, 226, 2337
subspace, 1266
superconducting quantum interference

device, 1173
superconductivity, 1168
supercurrent, 1173
superfluidity, 2693
superfluorescence, 2337
superluminal group velocity, 2044
superoperator, 1754, see Louville op-

erator1818, 1999
superposition principle, 201, 538, 1247
superradiance, 226, 1783, 2337, 2466
superradiant extinction, 2160
superradiant laser, 2326
superradiant lasing, 2326
superradiant Rayleigh scattering, 2756
supersolid phase, 2717
surface excitation, 2671
surface integral, 485
surface plasmon polariton, 980
surface wave, 441
susceptibility, 1789, 2039

nonlinear, 2039

SWAP-gate, 1269
swirling mode, 2671
symmetric order, 1863
symmetric ordering, 1873
symmetrized wavefunction, 1578
symmetry, 851, 1139
symmetry breaking, 439
symmetry transformation, 1140, 1301
sympathetic cooling, 2586, 2592, 2819
synchrotron radiation, 1064
synergetics, 439
systematic error, 7

tapered amplifier, 2967
Tavis-Cummings model, 2290, 2326, 2375
temperature reservoir, 2189
temporal phase transition, 435
tensor

Einstein, 1148
Ricci, 1148

tensorial external product, 1269
thermal bath, 1733
thermal de Broglie wavelength, 424
thermal equilibrium, 1733
thermal excitations, 2659
thermalization, 2586
thermistor, 2915
thermodynamic ensemble, 428
thermodynamic limit, 2625
thermodynamic variables, 421
thermoionic emission, 425
thermopile, 2912
theta (θ)-transform, 1304
Thomas

Llewellyn, 1520
Thomas factor, 1520, 1530
Thomas precession, 1107, 1520
Thomas-Fermi energy, 1594
Thomas-Fermi equation, 1595
Thomas-Fermi limit, 2662
Thomas-Fermi model, 1592
Thomas-Reiche-Kuhn sum rule, 1736
Thomson

Joseph John, 1201
Thomson cross section, 950
Thomson scattering, 947, 1926
three-level system, 1990
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three-phase current, 697
threshold behavior, 2046
time, 5
time reversal, 1301
time-dependent perturbation theory, 1726
time-of-flight, 2609
time-orbiting potential, 2589
time-reversal invariance, 1954
time-splitting spectral algorithm, 2398,

2685, 2687, 2788
timed Dicke state, 2107, 2116
Toffoli gate, 2388
Tonks-Girardeau gas, 2806
topological mode, 2697, 2703
topological phase, 2016
trace, 1272, 1751
transfer cavity, 3033
transfer matrix, 1009
transfer matrix formalism, 915
transformation matrix, 1260
transit time broadening, 1801
transition dipole moment, 1631
transition rate, 1483
translation, 33
translation operator, 1293
translation polarization, 643
transmission, 1321
transposition, 1095
transverse

current, 874
transverse electric wave, 988
transverse electro-magnetic wave, 988
transverse magnetic wave, 988
transverse mode, 991
transverse radiation field, 2155
truth table, 2387
turbulence, 439
twin paradox, 1098
two-body problem, 1373
two-photon photoassociation, 2835

ultra-cold, 2832
ultraviolet catastrophe, 1218
uncertainty, 3053
uncertainty principle, 1262, 1313
undulator, 2457
uniqueness theorem, 603

unitarity limit, 1690, 1717
unitary operator, 1293
unitary transformation, 1293
universality, 1690

vacuum fluctuation, 1342
valence bond, 1619
valence bond model, 1615
van der Waals coefficients, 1640
van der Waals force, 1626, 1640
van der Waals potential, 1693
variable attenuator, 2982
variational method, 1462, 2663
variational principle, 2659
VCO, 2920, 2982
vector field, 294, 472
vector operator, 474
vector potential, 728, 831, 871
vector space, 1248, 1256
vector spherical harmonics, 1044, 1500
vector triple product, 33
velocity, 45

angular, 174
Verdet constant, 974
vibration, 1626

molecular, 182
virial theorem, 1391
virtual photon, 2155
viscosity, 2694
Vlasov equation, 2513
Voigt profile, 1805
voltage, 654
voltage source, 680
voltage-controlled oscillator, 2920, 2982
volume integral, 485
von Neumann

John, 1252
von Neumann boundary condition, 600
von Neumann entropy, 1749, 2368
von Neumann equation, 1755, 1818, 1922
von Neumann function, 1497

spherical, 1498
von Neumann postulate, 1252
vortex pattern, 442

Wannier function, 2716
wave

standing, 257
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wave equation, 235, 239, 293, 899, 1240,
2881

wave front, 263
wave mechanics, 293
wave packet, 240, 946, 1678
wave vector, 1215
wavefunction, 1242, 1247

photonic, 1859
waveguide, 987
wavepacket, 242
waveplate, 904

half, 2897
quarter, 2897

wavevector, 263
weak causality, 6
weak interaction, 1994
weak localization of light, 2159
Wehnelt’s cylinder, 700
Weiss domains, 771
Weisskopf-Wigner theory, 1086, 1923
Weizsäcker

Carl Friedrich von, 4
Weizsäcker’s droplet model, 448
Wentzel

Gregor, 1470
Werner

Heisenberg, 1284
Weyl ordering, 1873
white noise, 3059
white phase noise, 1910
Wien

Wilhelm, 1231
Wien’s displacement law, 1231
Wiener-Khintchine theorem, 1909, 3055
Wigner

Eugene Paul, 1572
Wigner {3j}-symbol, 1496
Wigner {6j}-symbol, 1496, 1739
Wigner {9j}-symbol, 1497
Wigner function, 1863, 2065
Wigner rotation, 1106
Wigner threshold law, 1690
Wigner-Eckart theorem, 1572, 1635, 1737
Wigner-Seitz cell, 2181
WKB approximation, 1470

XOR, 2383

XX-Heisenberg model, 2346

Young’s experiment, 1908
Yukawa potential, 1506

Zeeman
Pieter, 1554

Zeeman effect, 764, 1206
anomalous, 1555
normal, 1555

Zeeman slower, 1801, 2575, 2651
Zeeman splitting, 1554
Zeno

de Elea, 2004
Zeno effect, 2004
zero point energy, 1313
zero sound, 2673
zero temperature reservoir, 2779
Zitterbewegung, 1509, 1531
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