Oscillation with coercive force

Philippe W. Courteille, 05/02/2021

Solution: The particular solution can be found by the ansatz $x_p(t) = be^{-t/\tau}$ with $b = \beta \tau^2/(m - \gamma \tau + \kappa \tau^2)$. Depending on whether $\gamma^2 - 4\kappa m > = , < 0$ we have for a. $\gamma^2 - 4\kappa m \equiv \Gamma^2 > 0$

$$x(t) = e^{-\frac{\gamma t}{2m}} \left(A e^{-\frac{\Gamma t}{2m}} + B e^{\frac{\Gamma t}{2m}} \right) + \frac{\beta \tau^2 m \ e^{-\frac{\tau}{\tau}}}{(m - \frac{\gamma \tau}{2})^2 - \frac{\Gamma^2 \tau^2}{4}} ;$$

for b. $\gamma^2 - 4\kappa m = 0$

$$x(t) = e^{-\frac{\gamma t}{2m}} (A + Bt) + \frac{\beta \tau^2 m \ e^{-\frac{t}{\tau}}}{(m - \frac{\gamma \tau}{2})^2} ;$$

for c. $\kappa m - \gamma^2 \equiv \Omega^2 > 0$

$$x(t) = e^{-\frac{\gamma t}{2m}} \left(A \cos \frac{\Omega t}{2m} + B \sin \frac{\Omega t}{2m} \right) + \frac{\beta \tau^2 m \ e^{-\frac{t}{\tau}}}{(m - \frac{\gamma \tau}{2})^2 + \frac{\Omega^2 \tau^2}{4}}$$

Through the boundary conditions x(0) = 0, $\dot{x}(0) = 0$ we can determine A, B. Furthermore, we immediately see that $x(\infty) = 0$, $\dot{x}(\infty) = 0$ for all of the above mentioned solutions. Since the work of the two non-conservative forces equals the difference between the kinetic energy and the work for conservative forces, that is, A = 0, the entire work of F(t) has been dissipated by F_R .