Oscillation with coercive force

Philippe W. Courteille, 05/02/2021

Solution: The particular solution can be found by the ansatz $x_{p}(t)=b e^{-t / \tau}$ with $b=\beta \tau^{2} /\left(m-\gamma \tau+\kappa \tau^{2}\right)$. Depending on whether $\gamma^{2}-4 \kappa m>,=,<0$ we have for a. $\gamma^{2}-4 \kappa m \equiv \Gamma^{2}>0$

$$
x(t)=e^{-\frac{\gamma t}{2 m}}\left(A e^{-\frac{\Gamma t}{2 m}}+B e^{\frac{\Gamma t}{2 m}}\right)+\frac{\beta \tau^{2} m e^{-\frac{t}{\tau}}}{\left(m-\frac{\gamma \tau}{2}\right)^{2}-\frac{\Gamma^{2} \tau^{2}}{4}} ;
$$

for b. $\gamma^{2}-4 \kappa m=0$

$$
x(t)=e^{-\frac{\gamma t}{2 m}}(A+B t)+\frac{\beta \tau^{2} m e^{-\frac{t}{\tau}}}{\left(m-\frac{\gamma \tau}{2}\right)^{2}} ;
$$

for c. $\kappa m-\gamma^{2} \equiv \Omega^{2}>0$

$$
x(t)=e^{-\frac{\gamma t}{2 m}}\left(A \cos \frac{\Omega t}{2 m}+B \sin \frac{\Omega t}{2 m}\right)+\frac{\beta \tau^{2} m e^{-\frac{t}{\tau}}}{\left(m-\frac{\gamma \tau}{2}\right)^{2}+\frac{\Omega^{2} \tau^{2}}{4}} .
$$

Through the boundary conditions $x(0)=0, \dot{x}(0)=0$ we can determine A, B. Furthermore, we immediately see that $x(\infty)=0, \dot{x}(\infty)=0$ for all of the above mentioned solutions. Since the work of the two non-conservative forces equals the difference between the kinetic energy and the work for conservative forces, that is, $A=0$, the entire work of $F(t)$ has been dissipated by F_{R}.

