Lorentz model of light-atom interaction

Philippe W. Courteille, 05/02/2021

Solution: a. The differential equation is,

$$
m \ddot{x}+m \omega_{0}^{2} x=-e \mathcal{E} \sin \omega t .
$$

b. Entering the solution into the differential equation makes it easy to verify that the solution satisfies the differential equation.
c. Entering the initial conditions,

$$
x(0)=A=0 \quad, \quad \dot{x}(0)=\frac{-e \omega \mathcal{E}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}+B \omega_{0}=0 .
$$

Hence,

$$
x(t)=\frac{e \mathcal{E}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}\left(\frac{\omega}{\omega_{0}} \sin \omega_{0} t-\sin \omega t\right) .
$$

