Swing modes

Philippe W. Courteille, 05/02/2021

Solution: a. Be x_{1} and x_{2} the independent rest positions of the two springs, such that the independent restorative forces are,

$$
F_{1}=-k_{1}\left(x-x_{1}\right) \quad \text { and } \quad-F_{2}=-k_{2}\left(x_{2}-x\right) .
$$

The resting position of the springs acting jointly x_{0} follows from,

$$
0=F_{1}+F_{2}=-k_{1}\left(x_{0}-x_{1}\right)-k_{2}\left(x_{0}-x_{2}\right),
$$

giving,

$$
x_{0}=\frac{k_{1} x_{1}+k_{2} x_{2}}{k_{1}+k_{2}} .
$$

The equation of motion is now,

$$
M \ddot{x}=F_{1}+F_{2}=-k_{1}\left(x_{0}-x_{1}\right)-k_{2}\left(x_{0}-x_{2}\right)=-\left(k_{1}+k_{2}\right)\left(x-x_{0}\right) .
$$

Hence,

$$
\omega_{0}=\sqrt{\frac{k_{1}+k_{2}}{M}} .
$$

b. The same argument can be used to treat springs in parallel. We have $k=k_{1}+k_{2}$, hence,

$$
\omega_{0}=\sqrt{\frac{k_{1}+k_{2}}{M}} .
$$

c. For springs in series the derivation is more complicated. We call y and y_{1}, respectively, the current position and the resting position of the connection point between the springs and x and x_{2}, respectively, the current position and the resting position of the mass. Since the connection point has no mass, we have an equilibrium between the forces exerted by the two springs,

$$
0=F_{1}+F_{2}=-k_{1}\left(y-y_{1}\right)+k_{2}\left(x-x_{2}-y+y_{1}\right),
$$

yielding,

$$
y-y_{1}=\frac{k_{2}}{k_{1}+k_{2}}\left(x-x_{2}\right) .
$$

The equation of motion is now,

$$
M \ddot{x}=F_{M}=-F_{2}=-k_{2}\left(x-x_{2}-y+y_{1}\right)=-\frac{k_{1} k_{2}}{k_{1}+k_{2}}\left(x-x_{2}\right) .
$$

Hence, $k=\left(k_{1}^{-1}+k_{2}^{-1}\right)^{-1} e$,

$$
\omega_{0}=\sqrt{\frac{\left(k_{1}^{-1}+k_{2}^{-1}\right)^{-1}}{M}} .
$$

