Coupled springs

Philippe W. Courteille, 05/02/2021

Solution: Springs are arbitrarily compressible, i.e., $F_n = -k_n a_n$. Following the scheme, both the mass m and the connecting plate between the springs are in equilibrium, that is, $F_{34} = F_2 = F_1$. Since the springs $k_3 e k_4$ are mounted in parallel, their total spring constant is additive. Hence we have $(k_3+k_4)a_3 = k_2a_2 = k_1a_1$. Using the condition that the sum of the individual displacements of the spring is $a_1+a_2+a_3 = L$, we obtain:

$$a_1 = \frac{L}{1 + k_1/k_2 + k_1/(k_3 + k_4)}$$