Coupled springs

Philippe W. Courteille, 05/02/2021

Solution: Springs are arbitrarily compressible, i.e., $F_{n}=-k_{n} a_{n}$. Following the scheme, both the mass m and the connecting plate between the springs are in equilibrium, that is, $F_{34}=F_{2}=F_{1}$. Since the springs k_{3} e k_{4} are mounted in parallel, their total spring constant is additive. Hence we have $\left(k_{3}+k_{4}\right) a_{3}=k_{2} a_{2}=k_{1} a_{1}$. Using the condition that the sum of the individual displacements of the spring is $a_{1}+a_{2}+a_{3}=L$, we obtain:

$$
a_{1}=\frac{L}{1+k_{1} / k_{2}+k_{1} /\left(k_{3}+k_{4}\right)} .
$$

