## Physical pendulum

Philippe W. Courteille, 05/02/2021

Solution: Knowing that the period is proportional to the root of the distance between the point of suspension and the center of gravity of the body., $t_{k}=C \sqrt{L_{k}}$ with a constant $C$, we have

$$
t_{1}=C \sqrt{\Delta L+L_{1}} \quad, \quad t_{2}=C \sqrt{\Delta L+L_{2}}
$$

where $\Delta L$ is the distance between the center of gravity of the body and the attachment point on the rod. With this,

$$
C=\sqrt{\frac{t_{2}^{2}-t_{1}^{2}}{L_{2}-L_{1}}} \quad, \quad \Delta L=\frac{t_{1}^{2}}{C^{2}}-L_{1}
$$

and

$$
t_{3}=C \sqrt{\Delta L+L_{3}}=\sqrt{t_{1}^{2}+\left(t_{2}^{2}-t_{1}^{2}\right) \frac{L_{3}-L_{1}}{L_{2}-L_{1}}}=2.34 \mathrm{~s} .
$$

