Physical pendulum

Philippe W. Courteille, 05/02/2021

Solution: a. We calculate the tensor of inertia $I_{i j}$ for a coordinate system in the center of the cube:

$$
I_{i j}=\int_{V} \rho(\mathbf{r})\left[\delta_{i j} \sum_{\alpha=1}^{3} x_{\alpha}^{2}-x_{i} x_{j}\right] d V
$$

Hence,

$$
\begin{aligned}
I_{11} & =\int_{V} \rho(\vec{r})\left[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{1}\right] d V=\rho \int_{-d / 2}^{d / 2}\left(x_{2}^{2}+x_{3}^{2}\right) d x_{1} d x_{2} d x_{3} \\
& =\frac{\rho d^{5}}{6}=\frac{M d^{2}}{6}=I_{22}=I_{33} \\
I_{\imath \neq j} & =\int_{V} \rho(\mathbf{r}) x_{i} x_{j} d V=\rho \int_{-d / 2}^{d / 2} x_{i} x_{j} d x_{i} d x_{j} d x_{k}=0 .
\end{aligned}
$$

Thus, $I^{C M}$ adopts the form:

$$
I^{C M}=\left(\begin{array}{ccc}
M d^{2} / 6 & 0 & 0 \\
0 & M d^{2} / 6 & 0 \\
0 & 0 & M d^{2} / 6
\end{array}\right)
$$

Now we nail the cube to the wall. Here, the vertical distance b from the new axis of rotation $\vec{\omega}=\omega \hat{\mathbf{e}}_{3}$ until the center of mass is given by,

$$
\mathbf{b}=\sqrt{2}\left(\frac{d}{2}-a\right) \hat{\mathbf{e}}_{b} .
$$

$\hat{\mathbf{e}}_{b}$ shows from the origin of the new coordinate system (around which the rotation occurs) to the origin of the old coordinate system (the center-of-mass system), $\hat{\mathbf{e}}_{b}=$ $-\hat{\mathbf{e}}_{1} \sin \phi-\hat{\mathbf{e}}_{2} \cos \phi$. With Steiner's theorem, $I_{\omega}=I_{\omega_{0}}^{C M}+M b^{2}$, we get the inertial moment regarding the new rotation axis $I_{\omega}=2 M\left(\frac{1}{3} d^{2}-d a+a^{2}\right)$. The torque is,

$$
\mathbf{D}=\frac{\partial}{\partial t} \mathbf{L}=\frac{\partial}{\partial t} I \vec{\omega}=I_{\omega} \ddot{\phi} \hat{\mathbf{e}}_{3} .
$$

The force of gravitational attraction $F_{g}=-M g \hat{e}_{2}$ cause, when displaced from the rest position, a torque,

$$
\mathbf{D}=\mathbf{b} \times \mathbf{F}_{g}=-b \hat{\mathbf{e}}_{b} \times M g \hat{\mathbf{e}}_{2}=b M g \sin \phi \hat{\mathbf{e}}_{3} .
$$

Where ϕ is the angle between \vec{b} and the axis $\hat{\mathbf{e}}_{2}$, that is, the direction of gravitational attraction. Since the torque has to be conserved $\left(\frac{\partial}{\partial t} \mathbf{L}=0\right)$, the sum of the torques must be zero,

$$
0=I_{\omega} \ddot{\phi}+b M g \sin \phi .
$$

