
Physical pendulum

Philippe W. Courteille, 05/02/2021

Solution: a. We calculate the tensor of inertia Iij for a coordinate system in the
center of the cube:
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Thus, ICM adopts the form:
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Now we nail the cube to the wall. Here, the vertical distance b from the new axis of
rotation ~ω = ωê3 until the center of mass is given by,
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êb shows from the origin of the new coordinate system (around which the rotation
occurs) to the origin of the old coordinate system (the center-of-mass system), êb =
−ê1 sinφ − ê2 cosφ. With Steiner’s theorem, Iω = ICMω0

+ Mb2, we get the inertial
moment regarding the new rotation axis Iω = 2M
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. The torque is,
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The force of gravitational attraction Fg = −Mgê2 cause, when displaced from the rest
position, a torque,

D = b× Fg = −bêb ×Mgê2 = bMg sinφê3 .

Where φ is the angle between ~b and the axis ê2, that is, the direction of gravitational
attraction. Since the torque has to be conserved ( ∂∂tL = 0), the sum of the torques
must be zero,

0 = Iωφ̈+ bMg sinφ .


