Physical pendulum
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Solution: a. We calculate the tensor of inertia 1;; for a coordinate system in the
center of the cube:
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Now we nail the cube to the wall. Here, the vertical distance b from the new axis of
rotation & = wés until the center of mass is given by,
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&, shows from the origin of the new coordinate system (around which the rotation
occurs) to the origin of the old coordinate system (the center-of-mass system), &, =
—&;1sin¢ — &y cos . With Steiner’s theorem, I, = IEOM + Mb?, we get the inertial
moment regarding the new rotation axis I, = 2M (%d2 —da + az). The torque s,
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The force of gravitational attraction Fy = —M gés cause, when displaced from the rest
position, a torque,
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Where ¢ is the angle between b and the azis €,, that is, the direction of gravitational
attraction. Since the torque has to be conserved (%L = 0), the sum of the torques
must be zero,

0=1,0+bMgsing .



