Rocking chair

Philippe W. Courteille, 05/02/2021

Solution: The moment of inertia is $I=\frac{1}{3} M L^{2}$. The equation of motion is,

$$
I \vec{\alpha}=\vec{\tau}=\vec{L} \times \vec{F}_{m l}+(-\vec{L}) \times \vec{F}_{m l}=\vec{L} \times(-k \vec{x})+(-\vec{L}) \times k \vec{x} .
$$

Hence,

$$
\begin{aligned}
\frac{1}{3} M R^{2} \ddot{\theta} & =-2 L k x=-2 L k \ell \theta \\
\ddot{\theta}+\frac{6 k}{M} \theta & =0 \\
\omega_{0} & =\sqrt{\frac{6 k}{M}} .
\end{aligned}
$$

