Rotational oscillation of a disk

Philippe W. Courteille, 05/02/2021

Solution: The angular acceleration of the disc M the inertial moment of which is $I=\frac{M}{2} R^{2}$, is given by,

$$
\frac{M}{2} R^{2} \vec{\alpha}=I \vec{\alpha}=\vec{\tau}_{m}+\vec{\tau}_{k}=\mathbf{R} \times m \mathbf{g}-\mathbf{R} \times k \mathbf{x}=(R m g-R k x) \hat{\mathbf{e}}_{\theta}
$$

As the body does not slide, the angle of the disc is linked to the mass displacement, $x=R \theta$. We get,

$$
\alpha=\ddot{\theta}=\frac{2 m g-2 k x}{M R}=\frac{2 m g}{M R}+\frac{2 k}{M} \theta .
$$

Substituting $\theta \equiv \tilde{\theta}-\frac{m g}{k R}$:

$$
\ddot{\tilde{\theta}}=\frac{2 m g}{M R}-\frac{2 k}{M}\left(\tilde{\theta}-\frac{m g}{k R}\right)=-\frac{2 k}{M} \tilde{\theta} .
$$

That is, we have a harmonic oscillation around the angle $\theta_{0}=\frac{m g}{k R}$ with frequency $\omega_{0}=\sqrt{\frac{2 k}{M}}$.

