## Oscillation of a half cylinder

Philippe W. Courteille, 05/02/2021

Solution: The mass of the half cylinder is,

$$
M=\int d m=\rho_{0} \int_{0}^{D} \int_{0}^{\pi} \int_{0}^{R} \rho_{0} r d r d \theta d z=\rho_{0} \pi D \frac{R^{2}}{2} .
$$

The moment of inertia about the symmetry axis of the cylinder, if it were complete, would be,

$$
I_{0}=\int r^{2} d m=\rho_{0} \int_{0}^{D} \int_{0}^{\pi} \int_{0}^{R} r^{2} \rho_{0} r d r d \theta d z=\rho_{0} \pi D \frac{R^{4}}{4}=M R^{2} / 2 .
$$

Following Steiner's theorem the moment of inertia with respect to support point of the half-cylinder is,

$$
I=I_{0}+M R^{2}=\frac{3}{2} M R^{2} .
$$

We calculate the center-of-mass of a half cylinder lying on its flat side. The definition of the center-of-mass is,

$$
\mathbf{r}_{c m}=\frac{1}{M} \int \mathbf{r} d m
$$

For symmetry reasons $x_{c m}=0$. Also,

$$
\begin{aligned}
y_{c m} & =\frac{\rho_{0}}{M} \int_{0}^{D} \int_{0}^{R} \int_{-\sqrt{R^{2}-y^{2}}}^{\sqrt{R^{2}-y^{2}}} y d x d y d z=\frac{\rho_{0} D}{M} \int_{0}^{R} 2 y \sqrt{R^{2}-y^{2}} d y=\frac{\rho_{0} D}{M} \int_{0}^{R^{2}} \sqrt{R^{2}-u} d u \\
& =-\left.\frac{2}{3} \frac{\rho_{0} D}{M}\left(R^{2}-u\right)^{\frac{3}{2}}\right|_{0} ^{R^{2}}=\frac{2}{3} R^{3} \frac{\rho_{0} D}{M}=\frac{4 R}{3 \pi} .
\end{aligned}
$$

Let $\theta$ be the angle of oscillation. Seen from the support point the center-of-mass is at,

$$
\mathbf{r}=\left(\begin{array}{c}
0 \\
R \\
0
\end{array}\right)-\left(\begin{array}{c}
y_{c m} \sin \theta \\
y_{c m} \cos \theta \\
0
\end{array}\right) .
$$

The equation of motion is,

$$
\begin{aligned}
m \ddot{x} & =-F_{a t} \ldots \\
I \ddot{\theta} & =\vec{\tau}=\mathbf{r} \times \vec{F}=\left(\begin{array}{c}
-y_{c m} \sin \theta \\
R-y_{c m} \cos \theta \\
0
\end{array}\right) \times\left(\begin{array}{c}
0 \\
-g M \\
0
\end{array}\right)=-y_{c m} g M \hat{e}_{z} \sin \theta \\
\ddot{\theta} & =-\frac{y_{c m} g M}{I} \sin \theta=-\frac{\frac{4 R}{3 \pi} g M}{\frac{3}{2} M R^{2}} \sin \theta=-\frac{8 g}{9 \pi R} \sin \theta .
\end{aligned}
$$

Hence, the period of oscillation is,

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{8 g}{9 \pi R}}}=\sqrt{\frac{9 \pi^{3}}{2}} \sqrt{\frac{R}{g}}
$$

