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Solution: The mass of the half cylinder is,
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The moment of inertia about the symmetry axis of the cylinder, if it were complete,
would be,

I0 =
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Following Steiner’s theorem the moment of inertia with respect to support point of the
half-cylinder is,

I = I0 +MR2 = 3
2MR2 .

We calculate the center-of-mass of a half cylinder lying on its flat side. The definition
of the center-of-mass is,
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rdm .

For symmetry reasons xcm = 0. Also,
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Let θ be the angle of oscillation. Seen from the support point the center-of-mass is at,

r =

0
R
0

−
ycm sin θ
ycm cos θ

0

 .

The equation of motion is,

mẍ = −Fat...

Iθ̈ = ~τ = r× ~F =

 −ycm sin θ
R− ycm cos θ

0
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 0
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0
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4R
3π gM
3
2MR2

sin θ = − 8g
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Hence, the period of oscillation is,
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