Pendulum carousel

Philippe W. Courteille, 05/02/2021

Solution: The retroactive force is,

$$F_R = -mg\sin\phi + \frac{mv^2}{R'}\cos\phi \ .$$

We have $v(x) = (R + x)\omega = (R + l\sin\phi)\omega$ and R' = R + x. Hece,

$$F_R = -mg\sin\phi + m\omega^2(R + l\sin\phi)\cos\phi.$$

The equation of motion, hence, is,

$$m\ddot{s} = -mg\sin\phi + m\omega^2(R + l\sin\phi)\cos\phi.$$

Since $s = l\phi$, $\ddot{s} = l\ddot{\phi}$, follows $l\ddot{\phi} = -g\sin\phi + \omega^2(R + l\sin\phi)\cos\phi$ or,

$$\ddot{\phi} + \frac{g}{l}\sin\phi - \omega^2(\frac{R}{l} + \sin\phi)\cos\phi = 0.$$

For small displacements we have, $\cos \phi \approx 1 \ e \sin \phi \approx \phi$, d.h.

$$\ddot{\phi} + \left(\frac{g}{l} - \omega^2\right) - \omega^2 \frac{R}{l} = 0 .$$

The solution of the homogeneous differential equation is,

$$\phi_h = \sin\sqrt{\frac{g}{l} - \omega^2}t$$

A particular solution of the inhomogeneous differential equation is,

$$\phi_i = \frac{\omega^2(R/l)}{g/l - \omega^2}$$

The total solution is $\phi = \phi_h + \phi_i$. The oscillation period is,

$$T = \frac{2\pi}{\sqrt{q/l - \omega^2}}$$

For large angular velocities, $\omega = \sqrt{g/l}$, the period of oscillation tends to infinity because the centrifugal force dominates.