U-shaped water tube

Philippe W. Courteille, 05/02/2021

Solution: If A is the cross section, the total mass of the water is $M=\rho V=\rho A L$, where ρ is the density of water. When the column moves at velocity v, it has kinetic energy,

$$
E_{k i n}=\frac{M}{2} v^{2} .
$$

To put the mass $M_{z}=\rho V_{z}=\rho A z$ above the resting level of the water, such that the center of mass is a distance z above the low level, we need to provide the work,

$$
-W=g M_{z} z=g \rho A z^{2}=E_{p o t} .
$$

Energy conservation requires,

$$
E=E_{k i n}+E_{\text {pot }}=\frac{\rho A L}{2} \dot{z}^{2}+g \rho A z^{2}=\frac{M}{2} \dot{z}^{2}+\frac{2 g M}{2 L} z^{2}=\text { const } .
$$

Hence, comparing the coefficient of the potential energy with $\frac{M}{2} \omega_{0}^{2}$,

$$
\omega_{0}=\sqrt{\frac{2 g}{L}} .
$$

