Fourier expansion

Philippe W. Courteille, 05/02/2021

Solution: Trigonometric rules allow us to calculate,

$$
f(\xi)=\sin ^{3} \xi=\frac{3}{4} \sin \xi-\frac{1}{4} \sin 3 \xi
$$

But the same result can be obtained by Fourier expansion. For symmetry reasons it is clear that $a_{0}=0=a_{n}$. The coefficients,

$$
b_{n}=\frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} \sin ^{3} \xi \sin n \xi d \xi=\frac{12 \sin n \pi}{n^{4}-10 n^{2}+9}
$$

only do not disappear for $n=1$ and $n=3$. The graph on the left of the figure shows the two expansion terms separately, while the graph on the right shows the sum $f(\alpha)$.

Figure 2.21: (code)

