Sound waves

Philippe W. Courteille, 05/02/2021

Solution: a. We have,

$$
v_{s}=\lambda_{n} f_{n}=\frac{2 L}{n} f_{n}=\frac{2 L}{n+1} f_{n+1}
$$

with $f_{n}=440 \mathrm{~Hz}$ e $f_{n+1}=610 \mathrm{~Hz}$. Portanto,

$$
\Delta f=f_{n+1}-f_{n}=\frac{n+1}{2 L} v_{s}-\frac{n}{2 L} v_{s}=\frac{v_{s}}{2 L}
$$

Finally, $L=\frac{v_{s}}{2 \Delta f}=1 \mathrm{~m}$.
b. We also know,

$$
n=\frac{f_{n}}{f_{n+1}-f_{n}}=2
$$

Hence, $v_{s}=\lambda_{n} f_{n}=\frac{2 L}{n} f_{n}=440 \mathrm{~m} / \mathrm{s}$.

