Mach-Zehnder and Michelson-interferometer

Philippe W. Courteille, 05/02/2021

Solution: $B e I_{0}(0, t)=e^{\imath(k x-\omega t)}=e^{-i \omega t}$ the signal immediately in front of the first beam splitter. Immediately behind it we have two waves $I_{1,2}(0, t)=2^{-1 / 2} e^{\imath(k x-\omega t)}=$ $2^{-1 / 2} e^{-i \omega t}$. With the interferometer arm lengths $d_{1,2}$ we have, just in front of the second separator, the signals $I_{1,2}\left(d_{1,2}, t\right)=2^{-1 / 2} e^{\imath\left(k d_{1,2}-\omega t\right)}$. Immediately behind it we have the recombined wave,

$$
I_{s}(t)=2^{-1 / 2} e^{\imath\left(k d_{1}-\omega t\right)}+2^{-1 / 2} e^{\imath\left(k d_{2}-\omega t\right)}=2^{1 / 2} \cos k\left(d_{1}+d_{2}\right) e^{-i \omega t} .
$$

That is, after the second beam splitter the signal oscillates with an amplitude that depends on the length difference of the interferometer arms like $\cos k\left(d_{1}+d_{2}\right)$.

