Sonic Doppler effect

Philippe W. Courteille, 05/02/2021

Solution: a. The pendulum's oscillation frequency is,

$$
\omega=\sqrt{\frac{g}{L}}=2 \pi \cdot 0.5 \mathrm{~Hz}
$$

b. The energy of the oscillation is,

$$
E_{c i n}+E_{p o t}=\frac{m}{2} v^{2}+m g(L-L \cos \theta)=\frac{m}{2} v_{m}^{2}=m g\left(L-L \cos \theta_{m}\right)=0.149 \mathrm{~J} .
$$

c. Therefore, the maximum speed of the speaker is,

$$
v_{m}=\sqrt{2 g L\left(1-\cos \theta_{m}\right)}=54.6 \mathrm{~cm} / \mathrm{s} .
$$

d. The speed of sound being $v_{s}=340 \mathrm{~m} / \mathrm{s}$, the minimum and maximum sound frequencies are,

$$
\nu_{r}=\nu_{f} \frac{v_{s}}{v_{s} \pm v_{m}}=440 \mathrm{~Hz} \frac{340}{340 \pm 0.3}=439.3(440.7) \mathrm{m} / \mathrm{s} .
$$

