Sonic Doppler effect

Philippe W. Courteille, 05/02/2021

Solution: a. First speaker (distance r_{1}):

$$
I_{1}=\frac{P}{4 \pi r_{1}^{2}}=19.9 \mu \mathrm{~W} / \mathrm{m}^{2}
$$

Second speaker (distance r_{2}):

$$
I_{2}=\frac{P}{4 \pi r_{2}^{2}}=8.849 \mu \mathrm{~W} / \mathrm{m}^{2}
$$

b. Knowing that the frequency is constant, and that the intensity I is proportional to the square of the amplitude A, it is possible to calculate the intensity when the interference is fully constructive (intensity is maximum) by: $A=C \sqrt{I}$. Since the frequency is constant, C will be the same value at any given point. Adding the amplitudes, we get,

$$
\begin{array}{r}
\sqrt{I_{\max }}=A / C=\sqrt{I_{1}}+\sqrt{I_{2}} \\
I_{\text {max }}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}=55.3 \mu \mathrm{~W} / \mathrm{m}^{2} .
\end{array}
$$

c. Same as for the previous item, however, knowing that in totally destructive interference, the intensity is minimal and its amplitudes are subtracted, we get,

$$
\begin{array}{r}
\sqrt{I_{\min }}=A / C=\sqrt{I_{1}}-\sqrt{I_{2}} \\
I_{\text {min }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}=2.21 \mu \mathrm{~W} / \mathrm{m}^{2}
\end{array}
$$

d. Knowing that these are incoherent waves, we just add the intensities:

$$
I=I_{1}+I_{2}=19.9 \mu \mathrm{~W} / \mathrm{m}^{2}+8.849 \mu \mathrm{~W} / \mathrm{m}^{2}=28.7 \mu \mathrm{~W} / \mathrm{m}^{2} .
$$

