Saturation broadening and Autler-Townes splitting

Philippe W. Courteille, 24/02/2023

Solution: a. The eigenvalues of the effective Hamiltonian (1.38) excited in resonance,

$$E = -\frac{i}{4}\Gamma \pm \frac{i}{4}\sqrt{\Gamma^2 - 4\Omega^2} \; ,$$

describe possible effects of line broadening and/or shift due to the coupling. Two cases are interesting: In the case $\Gamma > 4\Omega$ we get,

$$E = \mathfrak{Re} \ E = 0$$
 , $\Gamma_{eff} = -2\mathfrak{Im} \ E = \frac{1}{2}\Gamma \mp \frac{1}{2}\sqrt{\Gamma^2 - 4\Omega^2}$.

That is, the resonance is not shifted or split, but undergoes a line broadening, as already shown in (2.76). In the case $\Gamma < 40$

In the case $\Gamma < 4\Omega$,

$$E = \mathfrak{Re} \ E = \pm \frac{1}{2} \sqrt{\Omega^2 - \frac{1}{4} \Gamma^2} \quad , \qquad \Gamma_{eff} = -2 \mathfrak{Im} \ E = \frac{1}{2} \Gamma \ .$$

we observe an splitting of the line called Auther-Townes splitting. When saturation is strong, the two new lines are separated by Ω , each having the natural width Γ . Figs. 2.15(a,b) show the bifurcation of the spectrum at the point $\Omega_{12} = \frac{1}{2}\Gamma$.

b. The Liouville matrix can be found in the numerical MATLAB code in given in the file 'LM_Bloch_AutlerTownes.m'.

c. Fig. 2.15(c) shows the results of the simulations. The laser Ω_{23} probes the population ρ_{22} by excitation to a higher level, that is, the fluorescence emitted by the population ρ_{33} is representative for the population ρ_{22} .

Figure 2.15: (code for download) (a) Autler-Townes splitting and (b) linewidths as a function of the Rabi frequency. (c) Population of the excited state in a three-level system in cascade configuration, as shown in Fig. 2.3(c) in a function of the Rabi frequencies Ω_{23} and Ω_{12} . The parameters are, $\Gamma_{23} = 0.5\Gamma_{12}$, $\Gamma_{13} = 0.01\Gamma_{12}$, $\Omega_{23} = 0.1\Gamma_{12}$.