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Preface

Thermodynamics is the physical theory originally developed to describe the con-
nection between temperature, energy, and heat. Nowadays, it is however better de-
fined by the efforts to identify features in the behavior of large systems, i.e. systems
composed of a large number of particles, that can be formulated as rules and laws.
The emergence of such rules in completely disordered systems can often be astonish-
ing, and will only be put on firm grounds by the theory of statistical physics presented
in part II of the script.

In chapter 1 we set the basis for a phenomenological approach to thermodynamics,
emphasizing the central role of the concept of equilibrium. In Chp. 2 we apply these
notions to physical, albeit often idealized, fluid and solid systems.

The script was developed for the course Physical Chemistry and Thermodynamics
o Solids (SFI5769) offered by the Institute of Physics of São Carlos (IFSC) of the
University of São Paulo (USP).

The course is intended for masters and PhD students in physics. The script
is a preliminary version continually being subject to corrections and modifications.
Error notifications and suggestions for improvement are always welcome. The script
incorporates exercises the solutions of which can be obtained from the author.

Information and announcements regarding the course will be published on the
website:
http://www.ifsc.usp.br/ strontium/ − > Teaching − > Semester

The student’s assessment will be based on written tests and a seminar on a special
topic chosen by the student. In the seminar the student will present the chosen topic
in 15 minutes. He will also deliver a 4-page scientific paper in digital form. Possible
topics are:
- The Bose-Einstein condensation,
- Ultracold Fermi-gases,
- Dicke phase transitions,
- The Ising model,
- Heat engines,
- Non-equilibrium thermodynamics,
- Brownian motion,
- The Debye model,
- The electron gas model.

The following literature is recommended for preparation and further reading:

Ph.W. Courteille, script on Classical Mechanics: Dynamics of Point Masses and
Rigid Bodies, Vibrations and Waves, Gravity (2025)

Ph.W. Courteille, script on Electrodynamics: Electricity, Magnetism, and Radiation
(2025)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ClassicalMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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Ph.W. Courteille, script on Thermodynamics & Statistical Physics: applied to Gases
and Solids (2025)

Ph.W. Courteille, script on Quantum Mechanics applied to Atoms and Light (2025)

Ph.W. Courteille, script on Optical Spectroscopy: A practical course (2020)

R.T. DeHoff, Thermodynamics in Material Science, Boca Raton: CRC/Taylor Fran-
cis (1985)

H.B. Callen, Thermodynamics, New York: Wiley (2006)

C. Kittel, Introduction to Solid State Physics, ed. Hoboken, New York: Wiley (2005)

A.R. West, Basic Solid State Chemistry, Chichester: Wiley (2006)

D. Mc Quarry, Statistical Thermodynamics, New York: Harper & Row (1973)

Philippe W. Courteille, São Carlos, March 2025

https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumOpticsLab.pdf
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Chapter 1

Foundations and
mathematical formalism

Thermodynamics is a central branch of modern science, and its general laws govern
the physical and chemical processes which occur in our world. An important early
application of thermodynamics dealt with steam engines, in which heat is converted
to mechanical energy. Phenomenological thermodynamics was developed in the nine-
teenth and in the beginning of the twentieth century by Watt, Carnot, Clausius,
Joule, von Helmholtz, Lord Kelvin, Nernst, Boltzmann, and Gibbs, culminating in
the discovery of the Laws of Thermodynamics. These laws set general limits for the
conversion of one form of energy, for example heat or chemical energy, to another one,
for example mechanical work.

Figure 1.1: Reaction of a system to a sudden change in its environment.

The generic question addressed by thermodynamics is, how a given system re-
sponds to environmental changes. Indeed, the sudden modification of an environment
will force the system to seek a new state of equilibrium, as illustrated in Fig. 1.1. On
the other hand, thermodynamics is limited to describing equilibrium. It does not tell
us step by step, how the new equilibrium is reached, only what the final state will be.
Nevertheless, this is sufficient to establish complete phase diagrams, which are maps
of equilibrium states. Fig. 1.2 shows as an example the phase diagram of water.

1.1 Phenomenological thermodynamics at equilib-
rium

To begin with, we consider each system as a structureless glop endowed with prop-
erties to be identified and defined, such as temperature, pressure, composition, heat
capacity, expansion coefficient, compressibility, entropy, and various measures of the
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2 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

system’s energy. The minimum set of properties on which information is necessary
to compute the state of the system depends on its complexity. For example, a unary
system, i.e. an ensemble of identical particles belonging to the same species, is com-
pletely characterized by its heat capacity, expansion coefficient, and compressibility,
while additional information is required for systems exhibiting several phases or made
up of several chemical components, or even subject to chemical reactions [12].

Figure 1.2: Phase diagram of water.

Fundamental concepts of thermodynamics, such as temperature, pressure, or heat
have been unraveled before the discovery, that any type of matter consist of smallest
components, atoms and molecules. The fact that heat flows from hot to cold bodies
brought into contact is an everyday experience. Joseph Michel and Jacques Etienne
Montgolfier demonstrated that hot air is lighter than cold air. And James Watt
invented the steam engine before Amedeo Avogadro and John Dalton reintroduced
the notion of the atom, which had initially been postulated by Democritus 500 A.C..
With the knowledge of the composition of any matter we could in principle give up the
phenomenologically derived laws that represent the framework of thermodynamics.
To characterize a system with N particles, we just need to specify the position and
velocity of each particle as well as the forces acting between them or exerted by
external fields. However, in the case of a macroscopic system, the number of particles
is extremely large and this task becomes very difficult.

An alternative approach to the problem is to work with averaged values, which
represent the behavior of a system as a whole. Let’s embark on this approach by
defining some macroscopic quantities that determine the state of the system. Let us
consider a gas made up of N molecules in a container of volume V . Microscopically,
the movement of each particle is rectilinear and uniform, until it collides with another
molecule or with the walls of the container. This type of movement is called Brow-
nian motion. The average distance that the particle travels between two successive
collisions is called the mean free path.

The collisions of the particles with the walls of the container result in momentum
transfers and, consequently, in an average force exerted onto the walls. Integrated over
a surface, this force generates a pressure that the gas exerts on the walls, and despite
its microscopic origin, the pressure represents a macroscopic quantity that describes
an average property of the global system. Apart from pressure, other macroscopic
quantities that are important for the description of a system are its volume, internal
energy and temperature, the two latter ones being associated with the translational,
vibrational and rotational movement of the particles. All these macroscopic quantities
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can be measured experimentally, and the objective of thermodynamics is to establish
relationships between them, in order to predict the behavior of some quantities when
other quantities are changed.

When the macroscopic properties of a system do not change over time, we call
it in thermodynamic equilibrium. In this case, the system of interest must be kept
in contact with a second system, called a reservoir or heat bath, which determines
the parameters of the equilibrium. The set of macroscopic quantities associated with
a system in equilibrium is called a macroscopic state. It should be noted that the
microscopic state of the system determines the macroscopic state, but the inverse
does not hold, because from average values it is impossible to find r and p for all
particles in the system.

Macroscopic quantities are somehow interconnected. To see this, we may consider
a piston containing a gas, as schematized in Fig. 1.3(a), and heat it. As a consequence,
the system temperature will increase. If we keep the position of the piston fixed, the
pressure will increase, as well. If, on the other hand, we leave the piston moveable
with friction, the volume will increase. Thus, both the increase in pressure and volume
are consequences of an increasing temperature, from which we conclude that these
quantities are, in some way, related.

Figure 1.3: (a) Cylinder with a piston containing a gas. (b) Interaction between two systems
through a wall.

If we have two systems in thermal contact, it is important to know in which way
they interact. An interaction is often made through walls, as shown in Fig. 1.3(b). If
the wall is at a fixed position and the temperature of one of the systems is varied,
either (i) the temperature of the other system does not change, which is the case of
a perfectly insulating wall (also called adiabatic wall) or (ii) the temperature of the
other system follows the changes of the first and, which is the case of a diathermal
wall. In case (ii), the temperatures of the two systems evolve, until they reach a
common value. When the temperatures of the two systems are equal, the systems are
considered to be at thermal equilibrium.

1.1.1 Temperature

Temperature is, in general, measured by observing some quantity which is sensitive
to its variation. Defining a temperature scale on this quantity in a particular sys-
tem, we construct a thermometer. An example is the mercury thermometer, where a
certain volume of liquid mercury is placed in a capillary glass tube and the thermal
expansion of mercury is observed as a function of temperature. The length L of the
mercury column (usually calibrated in degrees Celsius) varies approximately linearly
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with temperature T , that is, T = aL+b, where a and b are two constants that depend
on chosen reference temperatures. Conventionally, the melting temperatures of ice
(triple point) at 0 ◦C and the boiling temperature of water at 100 ◦C are used, so that,

a =
100

Lv − Lg
and b = − 100Lg

Lv − Lg
. (1.1)

The gas thermometer illustrated in Fig. 1.4 is another possible realization, in which
the volume of a gas is used as thermometric quantity.

Figure 1.4: (a) Gas thermometer.

The aforementioned Celsius temperature scale is widely used in everyday life.
In scientific applications, the Kelvin (or absolute) scale is mostly employed. We
will see later, that it is based on microscopic properties of matter. The zero on
this scale corresponds to the temperature at which all energy (except zero point
fluctuations) is removed from the system. The scale is related to the Celsius scale
through the expression: TK = 1K

1 ◦CTC + 273.15K. Another scale only used the USA
is the Fahrenheit scale, which is related to the Celsius scale through the expression:
TF = 9 ◦F

5 ◦CTC + 32 ◦F.

1.1.1.1 Ideal and real gases

The equation of state of a system is a mathematical relationship between the various
macroscopic quantities that define the state of the system. In general, knowing the
state equation allows to compute all thermodynamic properties of the system.

For gases with very low pressures, interactions between molecules in the system
can be neglected. In this case, the gas is called ideal and the relationship between
the macroscopic quantities that define its thermodynamic state is given by,

PV = NkBT . (1.2)

where T is the absolute temperature (in K), N is the number of molecules contained
in the volume V , and kB is the Boltzmann constant. This is the most famous equation
of state, and it is based on experimental observations of Boyle, Mariotte, and Gay-
Lussac. Eq. (1.3) can also be written in terms of the number of moles, which is a
quantity defined by n = N/NA, where NA is Avogadro’s number. In this case,

PV = nRgT , (1.3)
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where Rg = NAkB = 8.314 J/molK = 0.082 atm l/molK is called universal gas con-
stant.

The gas thermometer and the barometric formula are examples of the numerous
applications of the ideal gas law. In Excs. 1.1.4.1 and 1.1.4.2 we will study gas ther-
mometers and in Excs. 1.1.4.3 to 1.1.4.6 applications of the barometric formula. Real
gas models will be studied in Sec. 1.2.7.

1.1.2 Kinetic theory and microscopic interpretation of tem-
perature

We will now develop a microscopic theory of temperature following a line of thought
proposed by Maxwell. Let us consider a cubic box with volume V and surface A, and
let us suppose that

(i) the gas is made up of a large number N of particles that collide elastically with
each other and with the walls of the container;

(ii) there are no attractive forces between the particles (ideal gas approximation);

(iii) the movement is completely random, with no direction or position privileged.

We also disregard external forces. Since the movement is completely random, the
average velocities are the same in the x, y, and z directions, v̄x = v̄y = v̄z, so that we
may restrict our considerations to the x-direction.

Looking at a small portion of the gas in the vicinity of the wall (see Fig. 1.5), we
can imagine that a large number of particles will collide with this wall. We divide
the particles into i classes of velocities vxi, each one filled with Ni particles. Because
collisions with the wall are elastic, the momentum transferred when a single particle
encounters the wall of the box is,

∆pxi = 2mvxi . (1.4)

Since half of the particles move to the left, the number of collisions in the time interval
∆t is given by,

# =
1

2

Ni

V
Avxi∆t . (1.5)

The total change of momentum is,

∆I = ∆pxi# =
Nimv

2
xiA∆t

V
, (1.6)

and the pressure is,

Pi =
∆I

A∆t
=
Nimv

2
xi

V
. (1.7)

Hence, as the movement is isotropic,

P =
∑
i

Pi =
m

V

∑
i

Niv
2
xi ≡

m

V
v2x =

N

3V
mv2 =

2

3
NĒkin . (1.8)

See Excs. 1.1.4.7 to 1.1.4.8.
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Figure 1.5: Box with N molecules colliding with the wall of a container.

Using the ideal gas state equation (1.3), Eq. (1.8) yields,

3

2
kBT =

mv2

2
, (1.9)

from which we conclude that temperature is associated with translational energy of
ideal gas molecules. This expression is also known as the theorem of energy equipar-
tition. Generally speaking, we assign to each degree of freedom of a system the term
1
2kBT . In the example above, we have 3 degrees of freedom, which correspond to
translations in the x, y and z directions. If energy can be stored in vibrations or
rotations of a molecule, we also have to assign a term 1

2kBT to each of these degrees
of freedom.

Example 1 (Johnson noise): As an example demonstrating the usefulness of
the energy equipartition theorem, let us consider a resistor R subject to a certain
temperature T . If we associate 1

2
kBT with the average power P̄J dissipated by

the resistor within a time ∆t we have,

P̄J∆t =
Ū2

J

R
∆t =

1

2
kBT =⇒ ŪJ =

√
kBTR

2∆t
, (1.10)

that is, a small voltage ŪJ appears at the resistor terminals, which is known as

Johnson noise. For a 1Ω resistor at ambient temperature we find ŪJ ≈ 4.0 nV

averaged over 1 second. This voltage is small, but must be taken into account

in high precision measurements.

1.1.2.1 Thermal expansion

When we heat a solid, it generally changes size. This is due to the fact that the poten-
tial energy between its constituents, atoms or molecules idealized as being connected
by springs, has non-harmonic terms, as shown in Fig. 1.6(a). As we increase tempera-
ture, we give more energy to the system and the atoms of the solid vibrate with great
amplitude, producing on average a greater separation between the constituents of the
system.

The variation in the length of a solid along a direction i = x, y, z follows the law,

∆Li = αLi∆T , (1.11)

where α is called the linear expansion coefficient and characteristic for each material,
as shown in Tab. 1.1, although it generally also depends on temperature. Conse-
quently,

Li = Li0(1 + α∆T ) . (1.12)
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The surface expansion of a body is then, with A = L1L2 = L10L20 + 2αL10L20∆T +
L10L20α

2∆T 2 and assuming α to be very small,

∆A ≃ A02α∆T . (1.13)

Similarly, volumetric expansion is described by,

∆V ≃ V03α∆T . (1.14)

Figure 1.6: (a) Interaction energy between two atoms. (b) temperature-dependence of the
density of water.

Table 1.1: Expansion coefficient, compressibility, and heat capacity coefficients
(CP (T ) = a+ bT + c/T 2) for selected materials at 298K.

material α× 106 κ× 107 a b× 103 c× 10−5

(K-1) (bar-1) (J/K) (J/K2) (J K)

aluminum 23.5 12 20.7 12.3 -

silver - - 21.3 8.5 1.5

graphite - 340 - - -

diamond - - 9.12 13.2 -

steel 11 - - - -

invar 0.7 - - - -

silica glas 22.2 42 15.6 11.4 -

tungsten - 2.9 24.0 3.2 -

pyrex 32 - - - -

Liquids and gases also undergo volume variations with temperature. In this case,
it is quite common to work with the fluid density instead of volume:

ρ =
m

V
=⇒ ∆ρ = − m

V 2
∆V = − m

V 2
γV∆T , (1.15)

where γ is the volumetric expansion coefficient. Therefore, ∆ρ = −γρ0∆T . In general,
γ is positive, and the density of the fluid decreases with temperature. An exception
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to this rule is the case of water, as shown in Fig. 1.6(b), which below 4 ◦C it has γ < 0
and thus, between 4 ◦C and 0 ◦C the density increases with the temperature. This
explains why during winter lakes freeze starting from the surface. Do the Excs. 1.1.4.9
to 1.1.4.12.

1.1.3 Heat and work

When we place two bodies with different temperatures in thermal contact, there is a
transfer of energy from one body to the other so that the two temperatures evolve
towards a common value. The energy transferred is called heat. We cannot say that a
body at a given temperature contains a certain amount of heat. Heat is the change in
energy between one state and another. In this sense, heat is very similar to mechanical
work, and we will denote this fact by assigning to both the symbol δ, that is δQ for
heat changes and δW for work executed.

Analogously to mechanical inertia, a body has a certain heat inertia called heat ca-
pacity, which is the capacity of a body to retain thermal energy. The formal definition
of heat capacity is,

C ≡ δQ

dT
. (1.16)

The unit of heat is the Joule J, but it is also very common to use the calorie,
which is the amount of heat required to raise the temperature of 1 g of water from
14.5 ◦C to 15.5 ◦C. The mechanical equivalent of a calorie is 1 cal = 4.184 J. The unit
of heat capacity is therefore J/◦C. Do the Excs. 1.1.4.13 to 1.1.4.14.

Instead of heat capacity, it is common to use the specific heat defined as,

c ≡ C

m
, (1.17)

where m is the mass of the system. Hence,

δQ = mc dT , (1.18)

meaning that when a certain amount of heat is given to the system, this one increases
its temperature. This expression, however, is not always valid. For example, upon
phase transitions from solid to liquid or from liquid to gas, the temperature does not
change when heat is supplied to the system. For a certain mass m of material, the
heat supplied for the phase transition to occur is,

δQ = mL , (1.19)

where L is called the latent heat of fusion or evaporation.
When several bodies are placed in thermal contact, heat flows between them in

such a way that,
N∑
i=1

δQi = 0 . (1.20)

This is due to energy conservation, and this property is important for the determina-
tion of the specific heat of any of the bodies. When heat stops flowing, the bodies are
all in thermal equilibrium and, in this case, the 0th law of thermodynamics applies:
If a body A is in thermal equilibrium simultaneously with bodies B and C, then B is
in equilibrium with C.



1.1. PHENOMENOLOGICAL THERMODYNAMICS AT EQUILIBRIUM 9

1.1.3.1 Heat transport

Heat can be transported in three different ways: through conduction, radiation or
convection. In the case of conduction, although a material medium conducting the
heat is needed, no mass is transported. In a solid, molecules in the hot part of
the solid vibrate with large amplitudes and transmit this vibration via collision to
neighboring molecules. In metals, conduction electrons also participate in the heat
transport mechanism.

In the case of convection, heat is transported via displacement of masses. When
part of a fluid is heated, density and/or pressure variations cause matter to move and
carry heat from one volume to another. One already mentioned example is a freezing
lake, where cold and therefore less dense water moves to the surface. When the fluid
is forced to move due to the action of some external agent, for example a fan, we
speak of forced convection.

The third way of transporting heat is through radiation. In this case, the presence
of a material medium is not required to transmit energy. This transport is caused by
(mostly infrared) electromagnetic radiation, which is emitted from any hot body.

In the following we will concentrate on heat transport through conduction. Let
us consider a bar of cross section A and length L, whose ends are in thermal contact
with two bodies maintained at constant temperatures T1 and T2 < T1, as shown in
Fig. 1.7. For given position x along the bar, the amount of heat per unit of time
(thermal current) crossing the surface A at that position depends on the following
factors:

(i) Type of bar material. – There are materials that conduct heat better than
others, e.g. copper conducts heat better than steel. A measure is provided by
the thermal conductivity K.

(ii) The cross section A. – The larger it is, the greater the thermal current, as more
atoms are participating in the conduction process.

(iii) The temperature gradient. – The thermal current depends on the difference in
temperature between adjacent layers of atoms (left and right of the plane at
position x).

Based on the above considerations, we can write the following expression for the
thermal current H:

H =
δQ

dt
= −KAdT

dx
. (1.21)

If the bar is thermally insulated, as is the case in Fig. 1.7, the current is conserved,
that is, all the heat entering one end of the bar will come out at the other, as there are
no losses. In this situation, H is independent of x and, consequently, dT

dx is constant.
Hence,

dT

dx
=
T2 − T1

L
, (1.22)

and consequently,

H = KA
T2 − T1

L
. (1.23)

In this case, the temperature distribution is a straight line, as shown in Fig. 1.7(b).
On the other hand, if the lateral surface of the bar is not insulated, there will be heat
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losses by convection and the thermal current decreases as x increases. In this case,
dT
dx also decreases and, as a consequence, we have a temperature distribution like the
one illustrated by the dotted line in Fig. 1.7(b).

Figure 1.7: (a) Heat conduction through a laterally insulated bar. (b) Temperature distri-
bution along an insulated bar (a) and not isolated (b) laterally.

We will now analyze two examples where the equation of conductivity (1.23) ap-
plies.

Example 2 (Thermal conduction along rods): In the first example, we will
consider two bars having the same cross-section, but made of different materials
and thus having different conductivities, as shown in Fig. 1.8(a). The bars are
thermally insulated on their (upper and lower) sides. We want to determine the
temperature at the junction between the two bars. As the bars are insulated,
the thermal current is constant and, therefore:

H = K1A
T1 − T

L1
= K2A

T − T2

L2
, (1.24)

yielding,

T =
K2L1T2 +K1L2T1

K2L1 +K1L2
. (1.25)

Substituting this in the expression for H we get,

H =
K1K2A

K2L1 +K1L2
(T1 − T2) . (1.26)

In the particular case in which K1 = K2 we recover the result (1.23) derived for

a single isolated bar. The temperature distribution along the bars depends on

the ratio between K1 and K2. If K1 > K2, we have the temperature distribution

shown in Fig. 1.8(b).

Example 3 (Thermal conduction in a hollow cylinder): As a second ex-
ample, let us consider a hollow cylinder with outer radius b and inner radius a.
The inner part of the cylinder is kept at a temperature T1, while the external
temperature is maintained at T2 (T2 < T1). The length of the cylinder is L
and the conductivity is K. The orientation of the thermal current is obviously
radial. The area is given by A = 2πrL and, therefore:

H = −KA
dT

dr
= −K2πrL

dT

dr
. (1.27)
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Figure 1.8: (a) Bars of different materials placed in series. (b) Temperature distribution
along two bars of different materials placed in series.

AsH is constant, since there are no losses, we can integrate this equality between
a ≤ r ≤ b assuming T1 ≥ T ≥ T2 . We find the result,

H =
2πLK

ln(b/a)
(T1 − T2) . (1.28)

Let us now briefly cover the other two types of heat transmission mentioned in the
beginning. In the case of convection, we are typically interested in the following type
of problem: given a body at a temperature T surrounded by atmospheric air colder
by an amount ∆T , how much heat does it lose per unit of time? The thermal current
from the body to the air is described by a similar formula as thermal conduction,

H = hA∆T , (1.29)

where A is the area through which heat is being lost and h is a number that depends
on ∆T (in general h ∝ ∆T 1/4), the geometry of the body and its orientation in space
(since convection is due to the fact that hot air rises). Therefore, a lying plate has a
different h as compared to a standing plate.

Heat transport by radiation is proportional to T 4, where T is the absolute tem-
perature (in Kelvin):

R = eσT 4 . (1.30)

Here, R is the thermal current emitted per unit area, e is the emissivity of the body
(0 ≤ e ≤ 1), and σ is the Stefan-Boltzmann constant. Do the Exc. 1.1.4.15 to 1.1.4.18.

1.1.3.2 Work

Heat can be injected into a system in various ways, e.g. via thermal contact with a
reservoir, via electrical dissipation or discharge, or by carrying out mechanical work.
The amount of energy (translational, rotational and vibrational) contained in a system
is called internal energy. The law of energy conservation demands that the heat
δQ supplied to a system is used to change its internal energy E and/or to perform
mechanical work δW . This principle is known as the 1st law of thermodynamics and
can be expressed mathematically as:

dE = δQ+ δW . (1.31)



12 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

Let us consider an ideal gas contained in a cylinder with a piston, as shown in
Fig. 1.3(a). By moving the piston, it is possible to compress or expand the gas, and in
this process there will be pressure and/or temperature variation, since these variables
are linked by the ideal gas equation (1.3).

Now, we imagine that the pressure P of the gas is greater than the atmospheric
pressure. In this situation, the gas will try to push the piston out of the cylinder. If
the piston slowly moves by a distance dx, the work done by the gas will be,

δW = Fdx = PAdx = PdV , (1.32)

where A is the cross area of the piston and dV = Adx is the variation of volume
during expansion. Thus, if the gas expands from a volume V1 to a volume V2, the
total work done is,

W =

∫ V2

V1

PdV . (1.33)

If we follow the evolution of pressure with volume on a PV diagram, as in Fig. 1.9(a),
the work done by the gas will be the area under the curve. This area obviously
depends on how the gas is taken from point 1 to point 2: the area under the path (i)
is different from that under the path (ii). This means that work can be done along
a closed path, as shown in Fig. 1.9(b): The system initially undergoes an isochoric
transformation (constant volume), followed by a isobaric one (constant pressure), then
again an isochoric, and finally an isobaric transformation. The area under the curve
(i) corresponds to the work P1(V2−V1), and the area under the curve (ii) to the work
P2(V1 − V2). Although the processes are different, they produce the same variation
in the internal energy of the gas ∆E = E2 − E1, as this only depends on the initial
and final states of the system. For a closed loop the total change in internal energy is
zero, ∆E = 0, and therefore, by the 1st law of thermodynamics, the transferred heat
must compensate the executed work,

δW = −δQ . (1.34)

Figure 1.9: (a) PV diagram of a gas showing work carried out in two different processes
leading from an initial state (1) to a final state (2). (b) Work performed in a complete gas
cycle.

The internal energy of an ideal gas, as we discussed previously, essentially comes
from the kinetic energy of its constituents,

E = 3
2NkBT , (1.35)
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that is, for processes maintaining the temperature constant, ∆E = 0. This relation-
ship was experimentally verified by Joule, who found that when a gas adiabatically
expands (without heat exchange nor work executed) its temperature stays constant.

After the warm-up provided by the previous sections, let us now start setting up
the framework of phenomenological thermodynamics in the following sections.

1.1.4 Exercises

1.1.4.1 Ex: Gas thermometer

A gas thermometer filled with an ideal gas and working at a constant volume is cali-
brated on the one hand in dry ice (carbon dioxide in its solid state at a temperature
of −80.0 ◦C) and on the other hand in boiling alcohol (78.0 ◦C). At these respective
temperatures, the pressure in the gas thermometer is 0.900 bar or 1.635 bar. At ab-
solute zero, the gas in the thermometer is still gaseous, but the pressure has dropped
to 0.000 bar.
a. At what ◦C is the absolute zero?
b. What is the pressure at the freezing point of water and what is it at the boiling
point?

1.1.4.2 Ex: Gas thermometer

A gas thermometer ’a is connected to a second gas thermometer ’b, which is kept in a
water bath at a constant temperature. The connecting capillary has a cross-sectional
area A and is filled with mercury (ρ = 13.5 g/cm3). At the same temperature T0 in
the two thermometers, the mercury level in both capillaries is the same. Now the
gas in thermometer ’a’ is heated by ∆T . This increases the pressure Pa and thus the
volume Va → Va +∆V . The mercury column is displaced accordingly.
a. What is the relationship between the volume increase ∆V and the temperature
increase ∆T in this setup?
b. To simplify, assume that the volumes Va = Vb = V0 and thus the particle numbers
Na = Nb = N0 are the same. How much has the temperature of the gas in ther-
mometer ’a’ increased if the following conditions exist in the coupled thermometer:
N0 = 1022, h = 5mm, T0 = 300K, V0 = 1000 cm3, A = 1 cm2?

Figure 1.10: Gas thermometer.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_GasThermometer01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_GasThermometer02.pdf
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1.1.4.3 Ex: Barometric formula

The air pressure P at a height h is equal to the weight mg of the air column, which
at this height rests on an (imaginary) horizontal base divided by the base area A of
the column [m = m(h): mass of the air column, neglect the curvature of the Earth
and the height dependence of the temperature]. Therefore, we have for the change
dP of the pressure upon a small change of height dh, with the local density ρ = ρ(h):

dP =
g dm

A
=
gρ dV

A
= −gρ dh . (1.36)

Here dV = −Adh is the change in volume of the air column (located above the base).
The air should be treated approximately as a substance with a uniform molar mass
M̃ .
a. Show with the help of the ideal gas equation that Eq. (1.36) can be cast into the
form dP = −kP dh under the given conditions with the constant k. Which is the
expression for k?
b. What is the integral relationship P = P (h)? At what height h is the air pressure
at T = 273K and M̃ = 29 g/mol only half the size of P (0)?
c. What is the air pressure on the Mont Blanc (4794m) and the Mount Everest
(8848m) at T = 273K as compared to P (0) at sea level? How big is the pressure
difference ∆P compared to normal zero on the Tübingen market place (h = 341m)?

1.1.4.4 Ex: Barometric formula

The barometric height formula is usually derived assuming constant temperature.
Now suppose that the temperature depends on the height h above the surface of the
Earth according to the relationship T = T0/(1 + αh).
a. Show that the pressure p then must satisfy the following differential equation,

dP

dh
= − mg

kBT0
(1 + αh)P .

b. Find the solution to this differential equation. What is the sign of the constant α?
Is the pressure at a fixed height larger or smaller than the value resulting from the
height formula at a fixed temperature?

1.1.4.5 Ex: Depth gauge

You want to build a depth gauge for diving operations and take advantage of the
compressibility of air. To do this, you take a glass cylinder with a movable flask
(volume V = Ax, footprint A) and a millimeter scale located in the flask. To what
water depth h can the device deliver the targeted measuring accuracy of ±1m, if the
piston position x can be read with an accuracy of ±1mm and x(P0) = 0.2m at the
water surface?

1.1.4.6 Ex: Scuba diving

A diver is at a water depth of h0 and breathes air from a compressed air bottle.
When exhaling, he creates (spherical) air bubbles with the volume V0. Assume that

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_BarometricFormula01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_BarometricFormula02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_BarometricFormula03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_BarometricFormula04.pdf
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the surface water temperature is T1 and decreases evenly to a depth of h0 by an
amount of temperature α per meter.
a. Assume a constant water density ρ and calculate the pressure P depending on the
water depth at an atmospheric pressure P1.

Figure 1.11: Jacques Mayol

b. Calculate the volume of the bubbles as a function of water depth. How big is the
volume just below the water surface? Why is it important for the diver to exhale
continuously as he ascends?
Numerical values: Water depth h0 = 40m, V0 = 1 cm3, T1 = 20 ◦C, α = 0.2 ◦C/m,
ρ = 1kg/L, and P1 = 1013 hPa.

1.1.4.7 Ex: Particle collisions with a container

How many particle collisions Z does a wall surface A = 1dm2 experience in ∆t = 1 s
at T = 298K and P = 1bar through the particles of an ideal gas, if ⟨|vx|⟩, the mean
value of the particle velocity in the x direction, has the value 330m/s?
Hint: Imagine a cuboid box in an xyz coordinate system and assume the wall surface
of interest as one of the cuboid surfaces perpendicular to the x-axis. The width of
the box is ∆x, so its volume is V = A · ∆x. There is a simple relationship for the
mean number ⟨νx⟩ of impacts that a single particle does exert on the wall within a
time ∆t depending on ∆x, ∆t and ⟨|vx|⟩. To get Z you have to consider that the gas
contains N particles.

1.1.4.8 Ex: Kinetic pressure

A closed box with end face A and side length L is divided into two equal halves by a
movable plate (see figure). Both halves contain one mole of helium under a pressure
of P0. The movable plate is now shifted to the right by the distance x. The shift
takes place at constant temperature T = 20 ◦C.
a. Give the volume of the right or left sub-box as a function of x. Give the pressure
in the right or left sub-box as a function of x.
b. Calculate the work W that needs to be done to move the plate from x = 0 to
x = L/4. Specify W in Joules.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_KineticPressure02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_KineticPressure03.pdf
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Figure 1.12: Ideal gas in a box.

1.1.4.9 Ex: Bi-metal

Two bars of different materials, with lengths, Young’s modules and thermal expansion
coefficients given respectively by L1, L2, Y1, Y2, α1, and α2, are pinched between two
walls, as shown in Fig. 1.13. Calculate the distance traveled by the junction point of
the bars when the system is heated by an amount ∆T . What is the tension on the
bars?

Figure 1.13:

1.1.4.10 Ex: Bi-metal

In the sketched construction two thin metal strips with different linear expansion
coefficients (aluminum and copper) αAl = 24 · 10−6 K-1 and αCu = 17 · 10−6 K-1

are connected to each other by L = 10 cm bars so that they have a fixed distance
d = 1mm. When the temperature increases, the two strips expand so that they form
circular segments with different radii, as shown in the figure. An angle of the circle
segment of ϕ = 1◦ is measured. How big is the temperature increase?

1.1.4.11 Ex: Linear expansion

The length of a 10 cm long spacer made of quartz glass with linear expansion coefficient
α1 = −1 cm/m/◦C is to be kept constant by using a spacer made of Invar steel with
a linear expansion coefficient α1 = 10 cm/m/◦C. How long must the spacer be?

1.1.4.12 Ex: Thermal expansion

Consider a solid body with momentum of inertia I. Show that due to a small tem-
perature variation ∆T , this momentum varies by ∆I = 2α∆T , where α is the linear

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalExpansion01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalExpansion02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalExpansion03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalExpansion04.pdf
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Figure 1.14: Bimetal.

expansion coefficient. With this result, calculate how much the period of a physical
pendulum varies when subject to a temperature variation ∆T .

1.1.4.13 Ex: Heat capacity and energy of air

a. How many air molecules are in one kilogram of air, knowing that air has the relative
molecular mass mair ≈ 29u.
b. Supposing air is essential composed of oxygen and nitrogen, what is are the relative
abundances of both elements.
c. Estimate the molar and specific heat capacities of air.
d. Calculate the kinetic energy as well as the average molecular velocity in 1 kg of air
at T = 300K.

1.1.4.14 Ex: Calorimetry

a. A calorimeter initially contains a volume of V1 = 100mL of water in thermal
equilibrium with the calorimeter at temperature T1 = 15 ◦C. Now we add a volume
V2 = 100mL of water at temperature T2 = 40 ◦C. After reaching thermal equilib-
rium again, the temperature becomes Tf = 25 ◦C. What is the heat capacity of the
calorimeter?
b. Starting from the final condition of the previous item, we add to the calorimeter
a metallic body with mass m3 = 80 g and temperature T3 = 90 ◦C. After reaching
thermal equilibrium again, the temperature becomes Tff = 35 ◦C. What is the specific
heat of the body?

1.1.4.15 Ex: Thermal conduction

Show that the thermal current in a substance of conductivity K located between the
surfaces of two concentric spheres is given by:

dQ

dt
= H = (T1 − T2)

4πkr1r2
r2 − r1

,

where r1 and r2 are respectively the radii of the inner and outer surfaces and T1 > T2.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCalorimetry01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCalorimetry02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalConduction01.pdf
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1.1.4.16 Ex: Thermal conduction

A bar with thermal expansion coefficient α and Young’s modulus Y
(
F
A = Y ∆L

L

)
is

stuck between two walls, as shown in Fig. 1.15. Calculate the stress in the bar when
the temperature is increased by ∆T .

Figure 1.15:

1.1.4.17 Ex: Thermal conduction

Find the temperature gradient and thermal current in a bar of conductivity K, length
L and irregular cross section, as shown in Fig. 1.16.

Figure 1.16:

1.1.4.18 Ex: Tramway

A tram with mass mB = 12500 kg brakes from a speed v = 57.6 km/h to standstill.
What is the temperature of the eight cast iron brake blocks when the mass of each
block is 9.0 kg and 60% of the kinetic energy flows into the heating of the blocks?

1.2 Canonical formulation of thermodynamics

Thermodynamics is different from other physical theories, such as classical mechanics,
electrodynamics or quantum mechanics, in the sense that it describes phenomena
emerging from the presence of large numbers of identical (microscopic) subsystems,
which are absent in the individual subsystems, in particular the tendency of large
(macroscopic) systems to evolve towards certain equilibrium states. This claim makes
thermodynamics pervasive and applicable to all kind of systems that can appear to
be completely different. Its task is to provide a way of organizing information on the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalConduction02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalConduction03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_ThermalConduction04.pdf
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behavior of systems, generating phase diagrams and data bases on their physical and
chemical properties.

Following textbook didactics we approach the area of thermodynamics in two main
steps. The first step, outlined in the present chapter 1, is known as phenomenological
thermodynamics. It ignores the microscopic composition as far as possible. We will,
however, see that certain features of the microscopic subsystems can have crucial
impact on the macroscopic behavior. This step attempts to structure the macroscopic
observations by identifying characteristic physical quantities and formulating laws
governing their dynamics.

In the second step, exposed in the subsequent chapter 4, is called statistical thermo-
dynamics. It aims at explaining the laws found in phenomenological thermodynamics
by deriving them from features of the microscopic subsystems. In particular, some
subsystems are small (or cold) enough to behave according to the rules of quantum
mechanics, and this can have an important impact on the macroscopic behavior. This
is studied in the field of quantum statistics exposed in Sec. 4.2.

The methods introduced in the first two chapters will be illustrated with simple
examples (mainly ideal gases and solids). In Chp. 2 we apply them to complex real
systems, e.g. multi-component, heterogeneous, or chemically interacting systems.

1.2.1 Tackling thermodynamic systems

The subject of thermodynamics are many-body systems the properties of which are
characterized by physical quantities, called thermodynamic variables, and their rela-
tionships. We will now attempt to structure the fundamental concepts of the field
following the textbook of DeHoff [12].

1.2.1.1 Classification of thermodynamic systems

Before starting to tackle a new unknown system, trying to characterize all of its
properties, it is always a good idea to classify them in order to identify those properties
which are essential for the information we want to extract from the system. This
prevents a waste of efforts into gathering irrelevant data and provides a guideline for
the system’s characterization. In general a system can be

1. unary or multicomponent (e.g. a gas of pure argon or atmospheric air),

2. homogeneous or heterogeneous (e.g. a single phase or two coexisting phases like
water and vapor),

3. closed or open (e.g. isolated from environment or exchanging energy or parti-
cles),

4. non-reacting or reacting (e.g. the molecules of a two-component system may
react to form a third component),

5. otherwise simple or complex.

At first we will exemplify the introduced concepts mostly restricting to unary,
homogeneous, closed, non-reacting, otherwise simple systems. In later sections, we
will turn our attention to complex systems.
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1.2.1.2 State functions and process variables

Thermodynamic variables fall into two distinct classes, process variables and state
functions.

The state of stationary thermodynamic systems may be expressed by state func-
tions (or state variables), whose values only depend upon the current state of the
system. The most common ones are temperature, pressure, entropy, volume, particle
number, chemical potential, and internal energy,

T, S, P, V,N, µ . (1.37)

The pressure and volume may be replaced by other mechanical variables. Their
equilibrium dynamics is confined to trajectories obeying so-called state equations,
that is, functional relationships such as,

f(T, S, P, ...) = 0 , (1.38)

or their illustration in phase diagrams, such as the one shown in Fig. 1.2. Such
state equations are obviously extremely useful, as they allow to abstract from the
physical process which led to a particular state of a system, and which might be very
complicated. In fact, their discovery represents one of the major achievements of
thermodynamics.

In contrast to state functions, the values of process variables depend upon the
path followed by the process. Consequently, they only have a meaning for changing
systems, i.e. for systems traversing a sequence of different states. The process variables
fall into two categories, mechanical work and exchanged heat,

δQ, δW . (1.39)

The concept of work is developed in classical mechanics as the path integral over a
force acting on a body along a given path, W =

∫
S F(s) · ds, and it can be brought

into the context of thermodynamics considering, e.g. a piston working against the
pressure of a confined gas, as illustrated in Fig. 1.3. Work depends on changes ds
and thus cannot be associated with stationary systems. Any of the forces known in
physics, inertial forces in accelerated or rotating systems, electromagnetic forces, or
molecular forces, can work.

Work is associated with a displacement of macroscopic matter, e.g. the movement
of a piston. Systems may, however, exchange energy without net displacement of
masses via the exchange of heat. By itself the notion of a ’quantity of heat’ in a
system is meaningless. Only the amount of heat exchanged with another system in a
given process can be quantified.

1.2.1.3 Extensive and intensive properties

State functions can further be classified into extensive and intensive variables of the
system. To understand the difference, we imagine the system under consideration
subdivided into smaller, identical and not interconnected subsystems. Now, an in-
tensive variable describes a global property, i.e. a property that does not depend on
the system size or the amount of material in the system, for example, temperature
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or the hardness of an object. No matter how small a diamond is cut, it maintains
its intrinsic hardness. Intensive variables are those which can be represented as a
field, such as the local temperature variation T (r) across the system or the pressure
variation in the barometric formula. Nevertheless, intensive properties can also be
derived from extensive ones via the concept of densities, e.g. the local particle density
n(r) ≡ dN/dV . In general, the ratio of two extensive properties is scale-invariant and
hence an intensive property.

Examples of intensive parameters are: the chemical potential, concentration, den-
sity (or specific gravity), ductility, elasticity, electrical resistivity, hardness, magnetic
field, magnetization, malleability, melting point and boiling point, molar absorptivity,
pressure, specific energy.

By contrast, an extensive variable adds up when independent, non-interacting
subsystems are combined. The property is proportional to the amount of material in
the system. For example, both the mass and the volume of a diamond are directly
proportional to the amount that is left after cutting it from the raw mineral. Mass and
volume are extensive properties. An extensive variable characterizes the system as a
whole, e.g. the volume of a recipient, the number of enclosed particles, the internal
energy or the entropy.

In uniform systems the value of intensive variables does not change, so that the
system is characterized by a unique value. This is useful for the description of systems
in equilibrium. However, it does not mean that intensive quantities turn into extensive
ones. Intensive properties cannot exclusively depend on extensive ones. For example,
in the ideal gas equation extensive and intensive quantities are interrelated in such
a way that the two intensive quantities P = P (r) and T = T (r) are proportional to
each other. Extensive properties can be expressed as integrals of intensive ones over
the extend of the system, e.g. N =

∫
V
n(r)d3r.

Examples of extensive parameters are: energy, entropy, Gibbs energy, length,
mass, particle number, momentum, number of moles, volume, magnetic moment,
electrical charge, weight.

1.2.1.4 Classification of thermodynamic relationships

The thermodynamic variables characterizing a system, the state function as well as
the process variables, are interrelated by mathematical expressions, and the apparatus
of thermodynamics allows to generate connections between new sets of variables, thus
leading to an unmanageable number of expressions. It is thus helpful to introduce a
classification of thermodynamic relationships into

1. thermodynamic laws forming the physical basis for all other relations;

2. definitions of new quantities expressed in terms of previously formulated vari-
ables with the motivation of simplifying the description of specific classes of
systems;

3. coefficient relations between differential forms emerging from the description of
changes in state function;

4. Maxwell relations relating second derivatives to one another and reflecting the
fact that the order of differential operators can be switched; and finally
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5. equilibrium conditions, which are sets of equations describing the relationships
between state functions to be satisfied in a system at equilibrium and used for
establishing maps and phase diagrams.

The concept of equilibrium is central to thermodynamics. It describes a situation
in which a system coupled to an environment does not change its state autonomously.
The situation is expressed by a set of equations called equilibrium conditions, relating
internal properties of the system.

Example 4 (Thermodynamic relationships): Examples for definitions are,

H ≡ E + PV or CP ≡
(
∂E

∂T

)
N,P

.

An example for a coefficient relation emanating from the real gas equation T =
T (P, V ) = 1

NkB
(P + P ∗)(V − V ∗) is,

dT = AdP +BdV =

(
∂T

∂P

)
V

dP +

(
∂T

∂V

)
P

dV =
V − V ∗

NkB
dP +

P + P ∗

NkB
dV .

An example for a Maxwell relation using the above example is,(
∂A

∂V

)
P

=

(
∂

∂V

(
∂T

∂P

)
V

)
P

=

(
∂

∂P

(
∂T

∂V

)
P

)
V

=

(
∂B

∂P

)
V

.

Finally, an example for an equilibrium condition considering a mixture of two

gases 1 and 2, is the request that their temperatures be equal, T1 = T2.

1.2.2 The laws of thermodynamics

The laws of thermodynamics are highly condensed expressions forming the basis of
empirical thermodynamics. Although not deduced from fundamental principles, they
are universal, general, and pervasive. Before discussing them in detail, let us enunciate
them altogether:

0. The zeroth law affirms that two systems each one in thermal equilibrium with
a third are in equilibrium themselves,

T1 = T2 ∧ T2 = T3 =⇒ T1 = T3 . (1.40)

1. The first law states that the total energy is always conserved,

dE = δQ+ δW . (1.41)

2. The second law states that the entropy of any closed system goes always in-
creasing,

dS ≥ 0 . (1.42)
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3. The third law states that for T → 0, the entropy difference between systems
connected by a reversible process vanishes,

lim
T→0

S = 0 . (1.43)

This last law has its origins in quantum mechanics.

1.2.2.1 The 0th law of thermodynamics

The zeroth law is a necessary assumption for the existence of a temperature scale
for all substances in nature and provides an absolute measure of their tendencies to
exchange heat, as already discussed in Sec. 1.1.3.

1.2.2.2 The 1st law of thermodynamics

According to the first law of thermodynamics, there is a property of the universe,
called energy, which cannot change no matter what process occurs. The energy can,
however, change its appearance (e.g. between kinetic, potential of internal energy), or
be exchanged between subsystems or between a system and its environment across the
system’s boundaries. Hence, defining a thermodynamic state function called internal
energy E of the system, the first laws states that this quantity can only increase by
working on the system or by transferring heat to it. Put in this way, the statement
also fixed the sign convention, see Fig. 1.17.

It its mathematical formulation the differential d represents a change in a state
function, while the prefix δ just denotes an infinitesimal quantity of work or heat, but
cannot be considered a differential: There is no mathematical state function W or Q
of which dW or dQ could be a differential.

Despite its fundamental importance, in its form (1.41) the first law is not ready
for use in practical applications, because it does not tell us how to evaluate δW or
δQ.

Figure 1.17: Any change of a system’s internal energy is due to either work done on it or
heat transferred through its borders.

1.2.2.3 The 2nd law of thermodynamics

Many processes in nature are irreversible. Although no fundamental law of physics
prevents heat to flow from cold to hot places or mixed gases to spontaneously separate
into the components, this is never observed. Time seems to flow in one direction.
The second law of thermodynamics distills this aspect of experience and states it
succinctly and quantitatively, albeit abstractly, introducing a state function called
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entropy. When summed up for a system and its surroundings, the entropy always
increases 1.

While the second law postulates that any closed system always produces (or main-
tains) entropy ∆Sprod, this does not preclude entropy reduction for this system, pro-
vided the entropy can be removed from the system via transfer ∆Strans through its
boundaries faster than being produced. The net entropy balance of the system is
then,

∆Ssyst = ∆Sprod +∆Strans ≤ 0 . (1.44)

Indeed, many practical applications are based on entropy reduction in subsystems,
e.g. lasers. Since entropy transfer between a system and its environment does not
change the overall entropy balance, the total entropy production of the universe,
consisting of the system plus its environment, must remain positive 2.

The concept of irreversibility is intrinsically connected to the notion of sponta-
neous breaking of time reversal symmetry, which plays a fundamental role e.g. in
quantum optics of open systems. Let us consider an atomic two-level system interact-
ing with a light mode. While coherent processes, such as absorption and stimulated
emission of a photon, maintain irreversibility, spontaneous emission into the reservoir
of electromagnetic vacuum modes cannot be undone. The size of the phase space
potentially occupied by the spontaneously emitted photon is simply too large to yield
any reasonable probability for spontaneous reabsorption.

Processes linking systems with a relatively small number of degrees of freedom
to much larger systems are called dissipative, and the rate of entropy production is
a quantitative measure for this dissipation. It not only depends on the strength of
the dissipation, but also on how far away the system is from equilibrium: the closer
to equilibrium, the smaller dissipation. A quantitative treatment of the correlation
between dissipation and distance from equilibrium is, however, very complicated.

For processes sufficiently slow never to move away very far from equilibrium the
entropy production is correspondingly small. It completely vanishes, when the system
is infinitesimally close to equilibrium, for example, exerting work in incremental steps
or adding heat in incremental portions always allowing the system to equilibrate
before applying the next change. Systems undergoing such processes can change
their entropy only via exchange with other systems, and as no entropy is produced
they are reversible. Obviously, the concept of reversibility represents an idealization,
since any real process is afflicted with dissipation.

In contrast, systems undergoing quick drastic changes instantaneously deviate
from equilibrium and transiently occupy states, in which entropy is produced, before
they return to equilibrium. Such processes are irreversible.

For reversible processes the process variables are readily calculated, since each in-
termediate state (red dashed line in Fig. 1.18) is described by just a few state functions,
e.g. temperature or pressure. In contrast, this is very complicated for irreversible pro-
cesses carrying the system to a state whose state functions depend on the trajectory
on which the state was reached.

On the other hand, changes of state functions are easy to calculate also for ir-
reversible processes, since these only depend on the initial and final states. Thus,

1Note that the sign of entropy increase is fixed by convention.
2We may formulate a continuity-type equation for entropy density and entropy flow.
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Figure 1.18: Illustration of (blue) an irreversible process forced through an inhomogeneous
parameter landscape and (red) a reversible sequence of infinitesimal irreversible processes
following a given path. As long as the infinitesimal processes do not recede much from
equilibrium (dashed red line), entropy production can be neglected.

changes in state functions for a given complex irreversible process may be calculated
by substituting the process by a reversible one. E.g. in Fig. 1.18 instead of following
solid red lines, we substitute them by dashed red lines connecting the same initial and
final states. This procedure illustrates the fundamental role of state functions and
reversible processes in thermodynamics.

Let us now analyze entropy transfer for reversible processes. Let δQrev be the
heat absorbed in an infinitesimal step and T the temperature of the system. Now,
although δQrev is a process variable, δQrev/T is the differential of a state function,
that is, the state function for an infinitesimal process. To prove this, it is sufficient
to show that for a general cyclic process, such as the Carnot cycle, the path integral∮

δQrev

T
= 0 (1.45)

vanishes. The state function δQrev/T is defined to be the entropy,

δQrev = TdS . (1.46)

The expression allows us to evaluate the heat absorbed during a reversible process by
integrating a combination of two state functions, Qrev =

∮
TdS. Note, that Qrev still

depends on the path and thus remains a process variable.
Since entropy is a state function, the entropy change for a process can not depend

on whether the process is reversible or not. That is,

∆Srev =

∮
δQrev

T
= ∆Sirr . (1.47)

However, an irreversible process will also produce entropy,

∆Srev = ∆Sirr,trans +∆Sirr,prod , (1.48)

with ∆Sirr,prod > 0. Associating the irreversible entropy change not due to entropy
production with irreversible heat transfer, we find,

∆Sirr,trans =

∮
δQirr

T
<

∮
δQrev

T
= ∆Srev , (1.49)
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which means that the maximum heat transport is observed for reversible processes.
Or in other words, heat transfer becomes irreversible in the presence of losses causing
entropy production.

An analogous treatment can also be done for work. We express reversible work
by a combination of state functions,

δWrev = −PdV . (1.50)

Combining the first and second law of thermodynamics Eqs. (1.41), (1.46), and (1.50),
we find for reversible processes,

dE = TdS − PdV . (1.51)

1.2.2.4 The 3rd law of thermodynamics

Experiments have shown that temperature, as defined in Sec. 1.1.1, does not go below
a certain value, consequently identified as absolute zero temperature. Experiments
have also shown that all substances in any thermodynamic state have the same entropy
at T = 0. This finding motivates the choice of setting the entropy at absolute zero
temperature to zero,

S(T → 0)→ 0 . (1.52)

Example 5 (Entropy change in chemical reactions): Experimentally, the
process of heating from T = 0 a mixture of two atomic species to a temperature
where they react to form molecules and then cooling the molecules down back
to T = 0 is found not to produce entropy, although the initial substances are
different from the final ones. This fact can be exploited for the determination of
the entropy balance in chemical reactions. For example, given that the absolute
entropy at 298K for the substances Al, O2, and Al2O3 are, respectively,

SAl = 28.3 J/mol K , SO2 = 205.03 J/mol K , SAl2O3 = 51.1 J/mol K ,

together with the stoichiometrically balanced reaction, 2Al + 3
2
O2 = Al2O3,

yields the entropy change,

∆S = SAl2O3 − (2SAl +
3
2
SO2) = −313.19 J/mol K .

1.2.3 Thermodynamic potentials

With the statements outlined in Secs. 1.2.1 and 1.2.2 we have laid the foundations
of a conceptual world of thermodynamics. Now, we need to show how to use it in
practice.

So far we defined the process variables

Q,W (1.53)

and the state functions
P, V, T, S,E (1.54)
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appearing in the laws of thermodynamics. In very simple systems, being in equilibrium
with themselves and with the environment, the state is completely fixed by two state
variables. This means that, if two of the five enumerated state functions are known, all
others can be expresses as their functions, for example, V = V (T, P ) or E = E(S, V )
for an ideal gas consisting of exactly N particles.

Furthermore, we already got in contact with material variables, such as thermal
expansion, compressibility, heat capacity at constant pressure or at constant volume,

α, κ, CP , CV . (1.55)

These material properties may also depend on temperature or pressure. For a given
substance the state equations can be computed from those properties.

The general procedure to tackle a problem is the following:

1. Identify the properties of the system about which information is available. These
are the independent variables, for example, T and P .

2. Identify the properties of the system about which information is requested.
This property is a dependent variable, which means that it is a function of the
independent variables, for example, V = V (T, P ).

3. Such functions will necessarily contain material properties, which will have to
be looked up from data bases.

The crucial step in this procedure is evidently the second one, which consists in finding
the appropriate state function.

Another class of thermodynamic relationships, falling under the category of defi-
nitions, is the introduction of state functions with the dimension of energy known as
thermodynamic potentials. Apart from internal energy, the potentials used in canoni-
cal ensembles are the enthalpy, the Helmholtz free energy, and the Gibbs free energy,

E,H,F,G . (1.56)

Which one of the defined potentials is used as a state function in a particular problem
is, in principle, arbitrary. However, some processes are easier to describe in terms
of particular potentials. Before we define them below, let us present a useful mathe-
matical framework facilitating the conversion between state functions called Legendre
transform.

1.2.3.1 Legendre transform in thermodynamics

Assume that for a system characterized by three state variables (X,Y, Z) we know
the state function W = W (X,Y, Z), so that for given system parameters (A,B,C),
we know how the system will evolve upon a set of variations (dX, dY, dZ),

dW =

(
∂W

∂X

)
Y,Z

dX +

(
∂W

∂Y

)
X,Z

dY +

(
∂W

∂Z

)
X,Y

dZ

≡ AdX +BdY + CdZ

. (1.57)



28 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

The partial derivatives A,B,C are evaluated assuming that the derived quantities do
not depend on other variables. Since the order of the derivatives can be inverted, we
know,(

∂A

∂Y

)
X,Z

=

(
∂

∂Y

(
∂W

∂X

)
Y,Z

)
X,Z

=

(
∂

∂X

(
∂W

∂Y

)
X,Z

)
Y,Z

=

(
∂B

∂X

)
Y,Z

(1.58)

(
∂A

∂Z

)
X,Y

=

(
∂

∂Z

(
∂W

∂X

)
Y,Z

)
X,Y

=

(
∂

∂X

(
∂W

∂Z

)
X,Y

)
Y,Z

=

(
∂C

∂X

)
Y,Z

,

and analogously for all other second derivatives. Applied to thermodynamic systems
these expression are called Maxwell relations.

Now, we want to predict how the system will evolve when a different set of varia-
tions is applied, for instance (dA, dY, dZ). To solve the problem we first define a new
state function V = V (A, Y, Z) via,

V ≡W −AX . (1.59)

This substitution is called Legendre transform. The new differential is,

dV = dW −AdX −XdA = −XdA+BdY + CdZ (1.60)

=

(
∂V

∂A

)
Y,Z

dA+

(
∂V

∂Y

)
A,Z

dY +

(
∂V

∂Z

)
A,Y

dZ ,

and each of these three partial derivatives has a physical meaning. The thermody-
namic potentials introduced in the next section will exemplify the procedure. Do the
Exc. 1.2.8.1.

Useful mathematical identities when working with partial derivatives are,(
∂X

∂Z

)
Y

(
∂Z

∂X

)
Y

= 1 ,

(
∂Z

∂X

)
Y

(
∂X

∂Y

)
Z

(
∂Y

∂Z

)
X

= −1 . (1.61)

1.2.3.2 Internal energy

Let us return to simple systems described by only two independent state variables,
for example, a unary gas with a fixed amount of atoms.

The first thermodynamic potential is the internal energy,

E , (1.62)

for which we already formulated the combined first and second law of thermodynamics
(1.51),

dE = TdS − PdV . (1.63)

Without heat production, dS = 0, and work done, dV = 0, the internal energy of a
systems remains unchanged, dE = 0.
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1.2.3.3 Enthalpy

The energy function called enthalpy is defined as,

H ≡ E + PV . (1.64)

With the expression (1.63) the differential enthalpy becomes,

dH = dE + PdV + V dP = TdS + V dP . (1.65)

It has the same level of generality as the combined first and second laws.

Historically, the enthalpy was introduced to simplify the description of heat engines
taken through cycles at atmospheric pressure, dP = 0. For isobaric processes in
simple systems, dHP = TdSP = δQrev,P , the enthalpy provides a direct measure of
the reversible heat exchange of the engine with the environment.

1.2.3.4 Helmholtz free energy

The energy function called Helmholtz free energy is defined as,

F ≡ E − TS . (1.66)

With the expression (1.63) the differential enthalpy becomes,

dF = dE − TdS − SdT = −SdT − PdV . (1.67)

It has the same level of generality as the combined first and second laws.

This function was devised to simplify the description of processes occurring at
a fixed (if necessary stabilized) temperature, dT = 0. For isothermal processes in
simple systems, dFT = −PdVT = δWrev,T , the Helmholtz free energy reports the
total reversible work done on the system.

1.2.3.5 Gibbs free energy

The energy function called Gibbs free energy is defined as,

G ≡ E + PV − TS . (1.68)

With the expression (1.63) the differential enthalpy becomes,

dG = dE + PdV + V dP − TdS − SdT = −SdT + V dP . (1.69)

It has the same level of generality as the combined first and second laws.

This function was introduced to simplify the description of processes occurring
at both temperature, dT = 0, and constant pressure, dP = 0. For isobaric and
isothermal processes in simple systems, dGT,P = 0. But in systems undergoing phase
transformations or chemical reactions, the Gibbs free energy yields the total work
other than mechanical work, dGT,P = δW non-mech.

T,P .
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1.2.3.6 Summary of thermodynamic potentials for canonical ensembles

The following list summarizes the thermodynamic potentials for canonical ensembles,
which are the total energy E, the free enthalpy H, the Helmholtz free energy F , and
the Gibbs free energy G,

δQrev = TdS

δWrev = −PdV

E = Qrev +Wrev =⇒ dE = TdS − PdV

H = E + PV =⇒ dH = TdS + V dP

F = E − TS =⇒ dF = −SdT − PdV

G = E + PV − TS =⇒ dG = −SdT + V dP

(1.70)

1.2.3.7 Material properties

Database variables are defined as conditional derivatives of the state functions or
thermodynamic potentials. Mechanical properties such as the compressibility κ, the
thermal expansion coefficient α, and the stress coefficient β are prominent examples.
In the case of a single substance system, they are defined by,

κ = − 1

V

(
∂V

∂P

)
T

, α =
1

V

(
∂V

∂T

)
P

, β =
1

P

(
∂P

∂T

)
V

. (1.71)

Table 1.1 lists the coefficient for several materials.

Example 6 (Links between material properties): Maxwell’s relations ap-
plied to the thermal expansion coefficient and the compressibility defined in
(1.71) immediately tell us, (

∂α

∂P

)
T

=

(
∂κ

∂T

)
P

, (1.72)

for any system.
Furthermore, using the rules (1.61) we calculate,

1 = −
(
∂V

∂P

)
T

(
∂P

∂T

)
V

(
∂T

∂V

)
P

= −
(
∂V
∂P

)
T

(
∂P
∂T

)
V(

∂V
∂T

)
P

=
κV βP

αV
.

Hence,

α = κβP . (1.73)

That is, the stress coefficient is not an independent quantity, but depends on

thermal expansion coefficient and the compressibility.

Thermal properties are grasped by the concept of heat capacity. This quantity
is measured via the temperature rise of a substance due to reversible absorption
of a defined quantity of heat. Since heat is a process variable, the heat capacity
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measurement will depend on the circumstances, i.e. whether the pressure is kept
constant during the measurement or the volume. The heat capacity will be for the
respective cases,

CP ≡
(
δQrev

dT

)
P

or CV ≡
(
δQrev

dT

)
V

. (1.74)

Using the relationships listed in (1.70), we find immediately,

CP = T

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

or CV = T

(
∂S

∂T

)
V

=

(
∂E

∂T

)
V

. (1.75)

For a system held at constant pressure, absorption of heat will lead to both, an increase
in temperature but also an expansion of volume, which corresponds to work. For a
system held at constant volume, absorption of heat will only increase temperature,
hence, CP > CV .

Empirically, the heat capacities are found to depend on temperature. A frequently
used interpolation expression giving good results at temperatures above room tem-
perature is,

CP (T ) = a+ b T + c/T 2 + d T 2 , (1.76)

where the coefficients are listed in Tab. 1.1 for several materials.

1.2.3.8 Coefficient and Maxwell relations

The differential forms listed in (1.70) immediately allow to express state functions via
partial derivatives of thermodynamic potentials in the following coefficient relations,

T =

(
∂E

∂S

)
V

=

(
∂H

∂S

)
P

, − S =

(
∂F

∂T

)
V

=

(
∂G

∂T

)
P

(1.77)

−P =

(
∂E

∂V

)
S

=

(
∂F

∂V

)
T

, V =

(
∂H

∂P

)
S

=

(
∂G

∂P

)
T

.

Furthermore, taking the second derivatives of the expressions for the temperature
and the pressure, we find,

−
(
∂P

∂S

)
V

=

(
∂T

∂V

)
S

, (1.78)

and similarly for the other potentials.

1.2.4 Strategy for deriving thermodynamic relations

The conceptual framework of terms and definitions erected in the previous sections
allows us to derive general equations expressing any state variable as a function of
two (for simple systems) other state variables. For complex systems, more free state
variables may be necessary. Below we will provide a recipe for a rigorous general
procedure.

As a preparation for the employment of the procedure we will express all state
variables as functions of temperature T and pressure P , which are the most commonly
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used free variables. Once equations for volume V = V (T, P ) and entropy S = S(T, P )
are found, expressions for the four energy variables as functions of (T, P ) readily
follow. At the end, we will show how to convert functions of (T, P ) into functions of
any other pair of variables.

1.2.4.1 State variables as functions of T and P

The differential form of the function V = V (T, P ) is,

dV = AdT +BdP =

(
∂V

∂T

)
P

dT +

(
∂V

∂P

)
T

dP = αV dT − κV dP , (1.79)

where we used the definitions of the material coefficients (1.71). Analogously, the
differential form of the function S = S(T, P ) is,

dS = A′dT +B′dP =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP =
CP

T
dT − αV dP . (1.80)

For the first coefficient we used the definitions of the heat capacities (1.75). The
second coefficient follows from the Maxwell relation applied to the Gibbs free energy
differential, dG = −SdT + V dP , yielding,

−
(
∂S

∂P

)
T

=

(
∂V

∂T

)
P

. (1.81)

Inserting the expressions (1.79) and (1.80) into the differential forms (1.70) and
separating the coefficients of the differential dT ad dP , we immediately get,

V = V (T, P ) =⇒ dV = αV dT − κV dP

S = S(T, P ) =⇒ dS = CP

T dT − αV dP

E = E(T, P ) =⇒ dE = (CP − αPV )dT + (κP − αT )V dP

H = H(T, P ) =⇒ dH = CP dT + (1− αT )V dP

F = F (T, P ) =⇒ dF = −(S + αPV )dT + κPV dP

G = G(T, P ) =⇒ dG = −SdT + V dP

(1.82)

1.2.4.2 Recipe for change of variables

With the results (1.82) we may now devise the following recipe for changing the
independent variables,

1. Identify the new free and dependent state variables: W =W (X,Y ).

2. Write the differential form: dW = AdX +BdY .

3. Use the Eqs. (1.82) to express dX and dY in terms of the variables dT and dP :

dX =

(
∂X

∂T

)
P

dT+

(
∂X

∂P

)
T

dP , dY =

(
∂Y

∂T

)
P

dT+

(
∂Y

∂P

)
T

dP , (1.83)
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where the derivatives are the coefficients of dT and dP in the expressions for
dX and dY in (1.82).

4. Insert the expressions for dX and dY into the differential form dW and collect
terms:

dW =

[
A

(
∂X

∂T

)
P

+B

(
∂Y

∂T

)
P

]
dT +

[
A

(
∂X

∂P

)
T

+B

(
∂Y

∂P

)
T

]
dP . (1.84)

5. Obtain W =W (T, P ) from (1.82),

dW =

(
∂W

∂T

)
P

dT +

(
∂W

∂P

)
T

dP . (1.85)

6. By comparison of the coefficients of the equations (1.84) and (1.85),(
∂W

∂T

)
P

= A

(
∂X

∂T

)
P

+B

(
∂Y

∂T

)
P

,

(
∂W

∂P

)
T

= A

(
∂X

∂P

)
T

+B

(
∂Y

∂P

)
T

.

(1.86)

7. Solve the set of equations (1.86) by A and B,

A =

(
∂W
∂P

)
T

(
∂Y
∂T

)
P
−
(
∂W
∂T

)
P

(
∂Y
∂P

)
T(

∂X
∂P

)
T

(
∂Y
∂T

)
P
−
(
∂X
∂T

)
P

(
∂Y
∂P

)
T

, B =

(
∂W
∂T

)
P

(
∂X
∂P

)
T
−
(
∂W
∂P

)
T

(
∂X
∂T

)
P(

∂X
∂P

)
T

(
∂Y
∂T

)
P
−
(
∂X
∂T

)
P

(
∂Y
∂P

)
T

.

(1.87)

Example 7 (Relating entropy to temperature and volume): As an example
of the procedure developed in the previous sections, we will now express entropy
as a function of temperature and volume.

1. The wanted expression is: S = S(T, V ).

2. Its differential form is: dS = AdT +BdV .

3. Substituting dV from (1.82)(i): dS = AdT +B(αV dT − κV dP ).

4. Collecting terms: dS = (A+BαV )dT −BκV dP .

5. Obtain S = S(T, P ) from (1.82)(ii): dS = (CP /T )dT − αV dP .

6. Compare coefficients: A+BαV = CP /T and −BκV = −αV .

7. Solve by A and B: A = (CP /T )− (α2V/κ) and B = α
κ
.

The expression is thus,

dS =

(
CP

T
− α2V

κ

)
dT +

α

κ
dV . (1.88)

Example 8 (Relating entropy to pressure and volume): As second example
of the procedure developed in the previous sections, we will now express entropy
as a function of pressure and volume.

1. The wanted expression is: S = S(P, V ).
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2. Its differential form is: dS = AdP +BdV .

3. Substituting dV from (1.82)(i): dS = AdP +B(αV dT − κV dP ).

4. Collecting terms: dS = BαV dT + (A−BκV )dP .

5. Obtain S = S(T, P ) from (1.82)(ii): dS = (CP /T )dT − αV dP .

6. Compare coefficients: BαV = CP /T and A−BκV = −αV .

7. Solve by A and B: A = κCP
αT
− αV and B = CP

αV T
.

The expression is thus,

dS =

(
κCP

αT
− αV

)
dP +

CP

αTV
dV . (1.89)

1.2.5 Ideal gases

One of the most common systems to apply thermodynamic concepts are ideal gases,
for which we know that they obey the state equation,

PV = NkBT , (1.90)

where we consider for now a fixed number of particles N = const. The thermal expan-
sion coefficient and the compressibility are readily calculated from their definitions
(1.71),

αid =
1

V

(
∂V

∂T

)
P

=
1

V

(
∂NkBT/P

∂T

)
P

=
1

T
(1.91)

κid = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂NkBT/P

∂P

)
T

=
1

P

βid =
1

P

(
∂P

∂T

)
V

=
1

P

(
∂NkBT/V

∂T

)
V

=
1

T
.

The relationship between the heat capacities at constant volume and pressure (1.74)
is directly obtained from (1.88),

CV = T

(
∂S

∂T

)
V

= CP −
α2
idTV

κid
= CP −NkB . (1.92)

Hence, for an ideal gas, the heat capacities do not depend on T not P , but only on the
number of atoms N and their configuration in each gas molecule. With Eq. (1.35),

CV = 3
2NkB . (1.93)

We will see later, that for a molecular gas with f degrees of freedom (accessible at
the ambient temperature), the results must be generalized to,

CV = f
2NkB . (1.94)
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The differential form for the internal energy E = E(T, P ) is according to Eq.,(1.82)(iii),

dE = (CP − αidPV )dT + (κidP − αidT )V dP = (CP −NkB)dT = CV dT . (1.95)

Thus, E only depends on T , and since E is a state function, this holds for any process,
whether reversible or irreversible. For the other thermodynamic potentials we get,
exploiting the relationships (1.70),

E = CV T , F = (CV − S)T

H = CPT , G = (CP − S)T
(1.96)

Do the Excs. 1.2.8.2 to 1.2.8.12.

1.2.5.1 Adiabatic reversible processes

In thermodynamics adiabatic processes are called those in which no heat is exchanged
between the system and its environment,

δQadiab = 0 . (1.97)

If additionally a process is reversible,

δQadiab,rev = TdS = 0 , (1.98)

it is isentropic process, that is, entropy is neither produced nor transferred.
Let us compute the change in temperature of a reversibly and adiabatically com-

pressed ideal gas. As usual, we start identifying the relevant state variables, T =
T (S, V ). From (1.70)(iii), using the definition of the heat cavity at constant volume
CV , we find,

dT =
TdS − PdV

CV
, (1.99)

and since dS = 0,

dTS = − P

CV
dVS = −NkBT

CV V
dVS . (1.100)

Integrating this equation,∫ T2

T1

dT

T
= ln

T2
T1

= −NkB
CV

ln
V2
V1

= −NkB
CV

∫ V2

V1

dV

V
, (1.101)

we finally find,

T2
T1

=

(
V1
V2

)NkB/CV

=

(
P2

P1

)NkB/CP

or
P2

P1
=

(
V1
V2

)CP /CV

. (1.102)

The ratio

γ ≡ CP

CV
, (1.103)

is called the adiabaticity coefficient. For the ideal gas studied in the previous section
we have, γ = 5

3 , and for a molecular gas with f degrees of freedom γ = 1 + 2
f .
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With the adiabaticity coefficient the state functions for adiabatic reversible pro-
cesses can be written,

PV γ = const and TV γ−1 = const , (1.104)

where the second relation follows from the ideal gas equations (1.90). Such a process
is shown in the PV -diagram of Fig. 1.21.

Since the specific heat can be obtained from the heat capacity simply by dividing
by the mass, c ≡ C/m, the ratio of the specific heat at constant pressure and to the
specific heat at constant volume is also equal to the constant γ, that is, γ = cP /cV .
Do the Excs. 1.2.8.13 to 1.2.8.22.

1.2.5.2 Isothermal, isobaric, and isochoric processes

We consider an ideal gas confined in a rigid, thermally insulated box, so that all
processes occurring with the box are adiabatic, since no heat is exchanged with the
surroundings, δQext = 0. Now, we divide the box into two volumes separated by
a rigid wall but connected by a valve, which may be opened or closed, as shown in
Fig. 1.19. Initially, the entire gas is in volume V1, and when the valve is opened it
expands into the volume V2. Since, the walls of the box do not move, no work is done
on the surroundings, δWext = 0.

Figure 1.19: Free expansion of a gas.

Since no entropy can flow out of the system, any change in entropy must come
from local production arising from irreversible processes. The expansion of the gas is
a complicated process occurring far from equilibrium. Nevertheless, since entropy is
a state function, the gain in entropy is same as for a fictive reversible process leading
to the same final state. Since the initial state of the gas is known (V1, Ti) as well as
the final volume, Vf = V1 + V2, the final temperature Tf is determined. Now, since
the internal energy does not change during expansion, dE = δQ+ δW = 0, and since
for an ideal gas the internal energy is proportional to temperature, the temperature
doesn’t change,

PV = NkBT = const . (1.105)

Such a process is called isothermal and is shown in the PV -diagram of Fig. 1.21.
On an isotherm of an ideal gas, we have PdV + V dP = NkBT = 0 and therefore

δW = −PdV = V dP . Nonetheless,

P =
NkBT

V
⇒ dP = −NkBT

V 2
dV ⇒ δW = NkBT

dV

V
, (1.106)
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and so, the work done when the gas goes from V1 to V2 is,

∆W1−2 =

∫ V2

V1

NkBT
dV

V
= NkBT ln

V2
V1

. (1.107)

Similar considerations can be made for isobaric and isochoric processes. The results
are summarized in Tab. 1.2.

1.2.5.3 Entropy of ideal gases

As an example, let us consider entropy changes in PV space. Via Legendre transform
we derive from the relationships (1.82) obtained for S = S(T, P ),

S = S(P, V ) with dS =

(
κCP

αT
− αV

)
dP +

CP

αTV
dV (1.108)

ideal−→ CV
dP

P
+ CP

dV

V
,

where the last step holds for ideal gases. We can integrate this expression either
holding pressure or volume constant,

∆SP =

∫ Vf

Vi

CP
dV

V
= CP ln

Vf
Vi

or ∆SV =

∫ Pf

Pi

CV
dP

P
= CV ln

Pf

Pi
. (1.109)
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Figure 1.20: (code) (a) Qualitative behavior of the ideal gas law in TPV space. (b) The

meshed surface shows the qualitative behavior of the Sackur-Tetrode formula in TSV space

with planes corresponding to δQ = 0, δW = 0, and δQ+ δW = 0.

Since, entropy is a state function, it is possible to calculate the entropy at any
point S2 = S(P2, V2) from the entropy change along an arbitrary path starting from

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Fundaments_SackurTetrode.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Fundaments_SackurTetrode.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Fundaments_SackurTetrode.m
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any other point S1 = S(P1, V1), e.g.,

S(P2, V2) = S(P2, V1) + CP ln
V2
V1

(1.110)

= S(P1, V1) + CP ln
V2
V1

+ CV ln
P2

P1
= S(P1, V2) + CV ln

P2

P1
.

We conclude,

∆S1→2 = CP ln
V2
V1

+ CV ln
P2

P1
= CV ln

P2V
γ
2

P1V
γ
1

= CV ln
T2V

γ−1
2

T1V
γ−1
1

, (1.111)

using the definition (1.103) of the adiabaticity coefficient. Assuming a mono-atomic
gas, for which γ = 5

3 , we obtain,

∆S1→2 = NkB ln
V2T

3/2
2

V1T
3/2
1

, (1.112)

which is known as the Sackur-Tetrode formula plotted in Fig. 1.20(b).

1.2.5.4 Entropy, heat and work balance during reversible processes

The heat absorbed and work done during reversible processes can be computed via
integration of TdS or −PdV along the path of the process. The integration is sim-
plified if one of the state functions is kept constant during the process. We will
now study particularly simple cases, where one of the three variables T, S, P, V is
held constant. 12 combinations are possible: (i) isothermal process entropy change,
(ii) isothermal pressure change, (iii) isothermal volume change, (iv) isentropic process
temperature change, (v) isentropic pressure change, (vi) isentropic volume change,
(vii) isobaric process temperature change, (viii) isobaric entropy change, (ix) iso-
baric volume change, (x) isochoric process temperature change, (xi) isochoric entropy
change, and (xii) isochoric pressure change. If one of the six variables T, S, P, V µ,N
is held constant, there are 30 possible combinations.

Table 1.2 summarize the entropy, heat, and work balances for all 12 processes,
which will be derived in Exc. 1.2.8.23. Marked in red are those processes not requiring
Legendre transforms for calculating entropy, heat, and work changes. The arrows
indicate results obtained for ideal gases.
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Table 1.2: Summary of entropy, heat, and work balances upon various state changes.
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1.2.6 Cyclic processes

Thermal machines are based on cyclic processes. Examples are the Clément-Desormes
cycle studied in the next section, the Carnot cycle in Exc. 1.2.8.24, the Otto cycle
studied in Exc. 1.2.8.25, or the Diesel cycle studied in Exc. 1.2.8.26, and others studied
in Excs. 1.2.8.27 to 1.2.8.33.

From the first law of thermodynamics dE = δQ + δW we expect that for cyclic
processes going through a sequences of processes j the heat and work balances are
compensated, because E as a state variable may not change after an arbitrary excur-
sion through parameter space,

0 =

∮
TdS −

∮
PdV =

∑
j

∆Q>0
j→j+1 +

∑
j

∆Wj→j+1 . (1.113)

We define the efficiency of a cyclic process as the ratio between net work performed
and heat absorbed (not delivered),

η ≡
−
∑

j ∆Wj→j+1∑
j ∆Q

>0
j→j+1

. (1.114)

1.2.6.1 The Cléments-Desormes method for determining γ

The specific heat of solids and liquids is usually measured with samples under atmo-
spheric conditions and without control of the volume of the material, i.e. we generally
measure cP . In contrast, gases are easier to study when they are contained in a rigid
recipient, such as a glass bulb with little thermal expansion within the temperature
range of the experiment. Then, the specific heat is measured at constant volume cV .
The value cP of a gas is larger than cV because in the experiment, at constant pres-
sure, the heat delivered to the gas also causes its expansion, which means that part of
that energy is been converted into work and not into an increase the thermal energy
of the gas molecules. The ratio between the specific heats at constant pressure and
volume, γ = cP /cV , is a value that often appears in the description of thermodynamic
processes in gases. This ratio can be measured by isobaric and isochoric processes, re-
spectively measuring cP and cV . The first experiment to measure the factor γ in gases
was performed in 1819 by Desormes and Clément. The method consists in applying
to a gas (assume to be ideal), a sequence of three processes illustrated in Fig. 1.21:
an isothermal expansion from state (1) to (2), followed by an isochoric cooling from
(2) to (3), and finally an adiabatic compression from (3) back to (1). During the adi-
abatic process from (3) to (1) the relation between pressure and volume is described
by PV γ = const. Monitoring both during the process thus allows us to measure the
adiabaticity coefficient γ.

The heat and work balance of the Clément-Desormes cycle is summarized in the
following table. The heats and works exchanged with the reservoir can be looked up
in Tab. 1.2,

process ∆Qj→j+1 = ∆Wj→j+1 =

1→ 2 isotherm T1(S2 − S1) = NkBT1 ln
V2

V1
> 0 −∆Q1→2

2→ 3 isochor CV (T3 − T2) < 0 0

3→ 1 isentropic 0 CV (T1 − T3)

(1.115)
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Figure 1.21: PV -diagram (left) and TS-diagram (right) for the Clément-Desormes cyclic
process.

with T1 = T2 > T3. The efficiency is defined as,

η =
−
∑

∆Wj→j+1∑
∆Q>0

i→j

=
T1(S2 − S1)− CV (T1 − T3) + 0

T1(S2 − S1)
(1.116)

= 1− CV (T1 − T3)
NkBT1 ln

V2

V1

.

Example 9 (Rüchardt’s method for determining γ): Rüchardt’s method
shown in Fig. 1.22 allows the measurement of ratio γ = CP /CV of a gas. Let
us consider a gas confined in a large container with volume V . Connected
to this container is a tube with cross section A, inside which a metal ball of
mass m (which fits perfectly in the tube) can slide up and down thus acting
like a piston. Due to the compression and decompression of the gas, this mass
oscillates in around its equilibrium position (y = 0). The presence of the metallic
sphere increases the internal pressure to P = Pa+mg/A in equilibrium position,
where Pa is the external (atmospheric) pressure. We will call τ the period of
oscillation. See also Exc. 1.2.8.13. Given a displacement y on the sphere, the

Figure 1.22: Rüchardt’s method for determining γ.

change in the volume of the gas is ∆V = yA, so that there is a pressure variation
∆P accompanying ∆V . This increase in pressure produces a restoring force
F = ∆PA. Assuming that the process is nearly static and adiabatic, we have,

PV γ = const ⇒ γPV γ−1∆V + V γ∆P = 0 . (1.117)

Using ∆P = F/A and ∆V = yA, we obtain,

γPV γ−1yA+ V γF/A = 0 ⇒ F = −γPA2

V
y , (1.118)



42 CHAPTER 1. FOUNDATIONS AND MATHEMATICAL FORMALISM

which leads us to the following equation of motion for the sphere,

m
d2y

dt2
+

γPA2

V
y = 0 , (1.119)

which is the differential equation of a simple harmonic motion of frequency:

ω2
0 =

γPA2

mV
. (1.120)

In this way, knowing P , V , m and A, we can measure τ and obtain γ as,

τ = 2π

√
mV

γPA2
. (1.121)

1.2.6.2 Carnot cycle

A Carnot cycle is an ideal thermodynamic cycle providing, by Carnot’s theorem,
an upper limit on the efficiency of any classical thermodynamic engine during the
conversion of heat into work, or conversely, the efficiency of a refrigeration system in
creating a temperature difference through the application of work to the system.

In a Carnot cycle, an engine transfers energy in the form of heat between two
thermal reservoirs at temperatures Thot and Tcold, and a part of this transferred
energy is converted to the work done by the system. The cycle is reversible and hence
isentropic. In other words, entropy is conserved; it is only transferred between the
thermal reservoirs. When work is applied to the system, heat moves from the cold
to hot reservoir, which is exploited in heat pumps and refrigerators, depending on
whether the heat increase of the hot reservoir is exploited or the heat decrease of
the cold reservoir. When heat moves from the hot to the cold reservoir, the system
applies work to the environment, which can be exploited in heat engines.

The work W done by the system or engine to the environment per Carnot cycle
depends on the temperatures of the thermal reservoirs and the entropy transferred
from the hot reservoir to the system ∆S per cycle such as,

∆W = (Thot − Tcold)∆S = (Thot − Tcold)
∆Qhot

Thot
, (1.122)

where Qhot is heat transferred from the hot reservoir to the system per cycle.
The heat and work balance of the Carnot cycle is summarized in the following

table (see Fig. 1.23):

process ∆Qj→j+1 = ∆Wj→j+1 =

1→ 2 isotherm T1(S2 − S1) = NkBT1 ln
V2

V1
< 0 −∆Q1→2 > 0

2→ 3 isentropic 0 CV (T3 − T2) > 0

3→ 4 isotherm T3(S4 − S3) = NkBT3 ln
V4

V3
> 0 −∆Q3→4 < 0

4→ 1 isentropic 0 CV (T1 − T4) < 0

,

(1.123)
with T3 = T4 > T1 = T2 and S2 = S3 > S1 = S4. Because E is a state function a
cyclic process must necessarily satisfy, ∆E =

∑
∆Wj→j+1 +

∑
∆Qj→j+1 = 0. The
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Figure 1.23: PV -diagram (left) and TS-diagram (right) for the Carnot cycle.

efficiency is defined as,

η ≡ −
∑

∆Wj→j+1∑
∆Q>0

j→j+1

(1.124)

= −−T1(S2 − S1) + CV (T3 − T2)− T3(S4 − S3) + CV (T1 − T4)
T3(S4 − S3)

= 1− T1
T3

.

Example 10 (Efficiency of the Carnot cycle): According to Eq. (1.113) the
total work and heat balances of a cyclic process correspond to the enclosed areas
in the PV , respectively, TS-diagrams, and both areas are equal. As illustrated
in Fig. 1.24, for given temperatures of the hot and cold reservoir, the largest area
∆W = ∆Q =

∮
TdS is occupied by a rectangle corresponding to the Carnot

cycle. From Fig. 1.24 we see that the efficiency can be optimized by maximizing
the red area and minimizing the blue area,

η =
Thot∆S − Tcold∆S

Thot∆S
=

1

1 + ∆Qcold
∆Qhot−∆Qcold

. (1.125)

Figure 1.24: TS-diagram for an arbitrary cyclic process (left) and for the Carnot cycle
(right).

1.2.7 Real gases, liquids and solids

As long as real gases, liquids, and solids qualify as unary, homogeneous, closed, non-
reacting, and otherwise simple systems, the laws and procedures outlined in Secs. 1.2.1
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to Sec. 1.2.3 apply to them in the same way as for ideal gases. Additionally, in solids
and liquids the material constants α, κ, CP are generally to a good approximation
constant.

The ideal gas law (1.3) is only valid for non-interacting particles. In reality, inter-
particle interactions increase the effective pressure and the finite size of the molecules
reduces the effective volume. Indeed, even at T = 0 the volume V of a real gas cannot
be zero, because the molecules have their own volume V ∗. And as molecules interact
attract each other, the pressure is zero even before T = 0. In the van der Waals model
the ideal gas equation is generalized to,

(P +P ∗)(V −V ∗) = NkBT with P ∗ =
a

V 2

(
N

NA

)2

and V ∗ = b

(
N

NA

)
(1.126)

where a and b are empirical constants specifically depending on the gas. Using molar
functions denoted by a tilde (̃.), N → NA, NAkB → Rg, V

N
NA
→ Ṽ , etc.,(

P +
a

Ṽ 2

)
(Ṽ − b) = RgT . (1.127)
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Figure 1.25: (code) Phase diagrams of a real gas obtained from Eq. (1.133) for the parameters

a = 0.36 and b = 4.3 · 10−5. Panel (a) plots Tr(Pr, Vr) and panel (b) Pr(Tr, Vr).

1.2.7.1 State equation of a real gas

Van der Waals’ relationship (1.127) for a real gas is characterized by the existence of
a unique saddle point called the ’critical point’. It is defined by the conditions,

dP

dṼ
=
d2P

dṼ 2
= 0 . (1.128)

Resolving the real gas equation by the pressure,

P (Ṽ ) =
RgT

Ṽ − b
− a

Ṽ 2
, (1.129)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Fundaments_RealGas.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Fundaments_RealGas.m
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we obtain the derivatives,

dP

dṼ
= − RgT

(Ṽ − b)2
+

2a

Ṽ 3
and

d2P

dṼ 2
=

2RgT

(Ṽ − b)3
− 6a

Ṽ 4
. (1.130)

At the critical point, when Eqs. (1.134) are fulfilled, we find Tc and Ṽc as a function
of the material constants a and b,

Tc =
8a

27Rgb
and Ṽc = 3b . (1.131)

The pressure at the critical point Pc as a function of a and b is,

Pc =
Rg8a

27Rgb2b
− a

9b2
=

a

27b2
. (1.132)

The van der Waals formula in terms of rescaled parameters, Ṽr ≡ Ṽ /Ṽc, Tr ≡ T/Tc,
Pr ≡ P/Pc, reads,

Pr =
8

3

Tr

Ṽr − 1/3
− 3

Ṽ 2
r

, (1.133)

and is plotted in Fig. 1.25. In Exc. 1.2.8.34 we study another model for real gases, and
in Exc. 1.2.8.35 the van der Waals model is used to calculate isothermal expansion of
a real gas.

Example 11 (Critical point for CO2): For CO2 the values a = 3.6·10−6 bar m6 mol-2

and b = 4.3 · 10−5 m3 mol-1 are suitable parameters of the van der Waals equa-
tion. For one mole of CO2 the values for the critical point Ṽc, Tc and Pc are,

Ṽc = 12.9 · 10−5 m3/mol , Tc = 298.35K , Pc = 72.1 bar .

1.2.7.2 Joule-Thomson effect

The Joule-Thomson effect describes the temperature change of a real gas or liquid
(as differentiated from an ideal gas), when it is forced through a valve or porous plug
while keeping it insulated so that no heat is exchanged with the environment (see
Exc. 1.2.8.36).

The relationships (1.82)(ii) and (iii) express energy and entropy as a function of
temperature and pressure, Ẽ = Ẽ(T, P ) and S̃ = S̃(T, P ). Using the procedure
outlined in Sec. 1.2.4 to express energy and entropy as a function of temperature and
volume, Ẽ = Ẽ(T, Ṽ ) and S̃ = S̃(T, Ṽ ), we find,

dẼ =

(
C̃P + P − αPṼ − α2T Ṽ

κ

)
dT +

(
αT

κ
− P

)
dṼ (1.134)

dS̃ =

(
C̃P

T
− α2Ṽ

κ

)
dT +

α

κ
dṼ .
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Hence, (
∂Ẽ

∂Ṽ

)
T

= T

(
∂S̃

∂Ṽ

)
T

− P . (1.135)

From the Maxwell relation derived from, dF̃ = −S̃dT − PdṼ , we find,(
∂P

∂T

)
V

= −

(
∂

∂T

(
∂F̃

∂Ṽ

)
T

)
V

= −

(
∂

∂Ṽ

(
∂F̃

∂T

)
V

)
T

=

(
∂S̃

∂Ṽ

)
T

. (1.136)

Hence, (
∂Ẽ

∂Ṽ

)
T

= T

(
∂P

∂T

)
V

− P . (1.137)

Now, we consider a dense real van der Waals gas according to Eq. (1.127) but
neglecting the volume parameter, b = 0. The pressure P then behaves as a function
of temperature T and molar volume Ṽ according to the following state equation,

P =
RgT

Ṽ
− a

Ṽ 2
, (1.138)

where a is a positive constant and Rg is the universal gas constant. From the equation
of state we obtain, (

∂P

∂T

)
V

=
Rg

Ṽ
, (1.139)

which, replaced in the expression (1.137), gives,(
∂Ẽ

∂Ṽ

)
T

= T
Rg

Ṽ
− P =

a

Ṽ 2
. (1.140)

Integrating this equation yields,

Ẽ = − a
Ṽ

+K(T ) (1.141)

where K(T ) depends only on T . We now have the molar energy Ẽ expressed as a
function of molar volume Ṽ .

We now assume that the heat capacity C̃V be constant. Differentiating the ex-
pression (1.141) by temperature gives,

C̃V =

(
∂Ẽ

∂T

)
V

= K ′(T ) . (1.142)

Inserting the integral of (1.142), K(T ) = C̃V T +K0, into (1.141), we end up with,

Ẽ = − a
Ṽ

+ C̃V T +K0 . (1.143)
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In a process of free expansion, Ẽ remains invariant and Ṽ grows. Thus, resolving
(1.143) by temperature and deriving by volume,(

∂T

∂Ṽ

)
E

=

(
∂

∂V

Ẽ + a/Ṽ −K0

CV

)
E

=
−a

CV Ṽ 2
. (1.144)

For an ideal gas, a = 0, we expect no temperature change. For a gas with positive
(negative) a the variation (1.144) will be negative (positive).

Example 12 (Microscopic interpretation of Joule-Thomson cooling): In

the discussion of the the process illustrated in Fig. 1.19 we stated that an ideal

gas does not changes its temperature when it expands flowing through a nozzle

from one volume into another. This is in contrast to the behavior of a real gas.

Indeed, in a compressed gas the molecules are closer to each other and thus

feel attractive (or repulsive) van der Waals forces. When the gas expands, the

molecules must overcome these forces at the cost (gain) of kinetic energy.

1.2.8 Exercises

1.2.8.1 Ex: Material parameters

The compressibility κ, the thermal expansion coefficient α, and the stress coefficient β
are important material parameters. In the case of a unary system (single substance),
they are defined by,

κ = − 1

V

(
∂V

∂P

)
ν,T

, α =
1

V

(
∂V

∂T

)
ν,P

, β =
1

P

(
∂P

∂T

)
ν,V

.

Here ν is the number of moles.
a. Show that these relationships can be rewritten, using the molar volume Ṽ , to,

κ = − 1

Ṽ

(
∂Ṽ

∂P

)
T

, α =
1

Ṽ

(
∂Ṽ

∂T

)
P

, β =
1

P

(
∂P

∂T

)
Ṽ

.

b. Use the total differential of V = V (T, P, ν) to show that, in general,

β =
α

κP
.

c. Calculate κ, α and β for an ideal gas as functions of P and T . Show that the
relationship from (b) is also fulfilled.

1.2.8.2 Ex: 1. law of thermodynamics

In a thermally insulated container there is one mole of air at the temperature Ti =
400K. Now, it is reversibly compressed, doing the work W = 100 cal. Calculate the
ratio Vf/Vi between the final and initial volume. Assume that the air behaves like an
ideal gas and that the container itself does not absorb heat from the air.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_Legendre01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_FirstLaw01.pdf
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1.2.8.3 Ex: Specific heat

The specific heat for an isobaric transformation is defined as CP = Rg +CV . A mass
of mN2

= 10 g of nitrogen is heated at constant pressure P = 2atm and an initial
temperature of Ti = 20 ◦C until its volume increases by 20%. Calculate the initial
volume Vi, the final temperature Tf, and the heat supplied Q.

1.2.8.4 Ex: Volumetric thermal expansion of an ideal gas

a. Calculate the volumetric thermal expansion coefficient of an ideal gas at constant
pressure.
b. Calculate the volumetric thermal expansion coefficient of an ideal gas during an
adiabatic expansion.

1.2.8.5 Ex: Specific heat at constant volume/pressure

a. Explain why the specific heat at constant volume is less than the specific heat at
constant pressure.
b. Show that for a diatomic gas γ = CP

CV
= 7

5 .

1.2.8.6 Ex: Heat capacities

a. Two gas containers are brought into thermal contact. They contain gases with
the temperatures T1 and T2, as well as the heat capacities C1 and C2. The thermal
capacity of the containers is negligible. What is the temperature of the gases after an
equilibrium has been reached?
b. Now consider the temperature equilibrium of three containers, each with 100 g of
the gas H2 at the temperature TH2 = 10 ◦C, 50 g of the gas He at the temperature
THe = 15 ◦C, and 200 g of the gas N2 at temperature TN2

= 20 ◦C. What is the final
temperature?

1.2.8.7 Ex: Gas compression

Calculate the temperature change resulting from adiabatic compression of an ideal
gas of volume V (T1) to V (T2) = V (T1)/10.
Compare this with the temperature change through an analog isobaric compression
of an equally ideal gas. Note: γ = cP /cV = 1.4 (for air), T1 = 293K.

1.2.8.8 Ex: Gas compression

An oxygen bottle with the volume V2 = 40L contains a filling ex works that would
have the volume V1 = 6m3 at atmospheric pressure P1 = 101 kPa. The bottle, which
has been emptied to atmospheric pressure, is refilled at a constant temperature of
T1 = 18 ◦C. What mechanical work W must be added to the gas to compress it
isothermally from P1 to the filling pressure?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_FirstLaw02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_FirstLaw03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity04.pdf
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1.2.8.9 Ex: Gas expansion

1 kmol of nitrogen under normal conditions (P0 = 1.01 × 105 Pa, T = 0 ◦C) adiabat-
ically expands from V1 to V2 = 5V1. Calculate the change in the internal energy of
the gas and the amount of work the gas does as it expands.

1.2.8.10 Ex: Adiabatic expansion

a. During the adiabatic expansion of a gas the pressure P and the volume V of the
gas satisfy the relationship PV γ = α, where α is a constant, and γ is the factor
of the gas that gives the ratio between the specific heats at constant pressure and
volume, i.e. γ = cP /cV . A gas was placed in a cylinder with a movable (frictionless)
plunger completely insulated from the external environment. The assembly makes it
possible to measure the volume and pressure of the gas during its expansion and the
experimental values obtained are given in the table below.
a. From the values in the table below, and using the least squares method, deter-
mine the gas factor and the constant α. (Hint: To obtain a linear relationship, take
x = lg V and y = lgP .).
b. Determine, through the method of least squares, the uncertainties in the values
obtained for γ and α.
c. Using a log×log paper, prepare a graph P × V and determine the values of γ and
α. Compare with the results obtained by the least squares method.
Notes: When displaying the values of γ and α, be sure to indicate the units in which
they are expressed.
Display the values of Sx, Sy, Sx2 and Sxy used in the least squares method calcula-
tions.
V (L) P (atm)

40 1.20

41 1.16

43 1.10

44 1.05

46 0.98

47 0.96

49 0.90

50 0.87

1.2.8.11 Ex: 1. law of thermodynamics

In a thermally insulated container B there are n mol of an ideal gas and a body K
with the heat capacity C. Specify the relationship between pressure P and volume
V , whereby the change in V is carried out so slowly that the following always applies
to body and gas: TK = TG.
Note: Body and gas exchange heat. Assume that the container itself does not take
heat from the gas or the body.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity07.pdf
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dV

KB

Figure 1.26: Potato.

1.2.8.12 Ex: 1. law of thermodynamics

A container with 1mol helium and a container of the same size with 1mol nitrogen
are both heated with the same heating power PQ = 10W.
a. Calculate how long it takes to warm up the containers from T1 = 20 ◦C to T2 =
100 ◦C, if the thermal capacity of the container is Crec = 10 J/K.
b. How long does it take to warm up to 1000 ◦C assuming that the vibrational degrees
freedom of N2 molecules can be excited above 500 ◦C? Neglect heat loss.

1.2.8.13 Ex: Rüchardt’s calorimetric method

A mono-atomic ideal gas with the adiabatic coefficient γ = 1.4 is in a thermally
insulated bottle with a long neck. The total volume of the bottle and the neck is
V0 = 10L. At the beginning there is atmospheric pressure. A thermally insulating
ball with mass m = 20 g is now inserted into the neck (precision tube with a diameter
of d = 16mm), which hermetically seals the bottle to the outside. The ball can move
smoothly.
a. Determine the equilibrium position of the ball. What is the pressure and volume
in the part of the bottle sealed by the ball?
b. The ball is now pushed down slightly from the equilibrium position and then
released. With what period τ does the ball vibrate.
Help: Relate the instantaneous pressure p in the bottle to small volume changes ∆V
and linearize the expression using a Taylor expansion.

1.2.8.14 Ex: Calorimeter for mixtures

The specific heat capacity of platinum cPt is to be measured with a mixing calorimeter.
For this purpose, a platinum body is heated to 100 ◦C and then thrown into water
of 20 ◦C. To simplify the evaluation, the mass of the water is chosen to be that of
the platinum body. The heat absorption of the calorimeter body should be neglected.
The specific heat capacity of water is cH2O = 4.19 J/(gK), the relative atomic mass
of platinum is mPt = 195 u, the linear expansion coefficient α = 9.0 · 10−6 K-1.
a. The mixing temperature is 22.41 ◦C. What value follows for cPt?
b. What is the value for cPt when applying the Dulong-Petit rule?
c. The platinum body and the water have the same mass. What is the ratio of the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_HeatCapacity08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_Calorimeter01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_Calorimeter02.pdf
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number of platinum atoms to the number of water molecules?
d. How many degrees does the platinum body have to be heated to increase its volume
by 1 %?

1.2.8.15 Ex: Calorimeter for mixtures

Consider a system for which the equation of state of an ideal gas PV = NkBT applies
and the energy is given as E = CV T .
a. Show that for the entropy change of an ideal gas from state A with temperature
TA and volume VA to state B with temperature TB and volume VB holds: ∆S =
CV ln (TB/TA) +NkB ln (VB/VA).
b. Two insulated containers with the same volume V = 10 cm3, the same pressure
P = 1bar and the same temperature T = 100 ◦C are filled with nitrogen and oxygen,
respectively. Determine the change in entropy when connecting the containers so that
the gases can mix.

1.2.8.16 Ex: 2. law of thermodynamics

A thermally insulated container with a total volume of V = 10L is separated into two
equal parts by a plate. In each part there are 10mol of the same ideal atomic gas.
In one part the gas has the temperature T1 = 300K, in the other the temperature
T2 = 400K. Calculate the change in the total entropy ∆S of the system in the event
that:
a. the plate does not insulate heat;
b. a small hole opens in the disc through which the gases can mix slowly and which
at the end closes again;
c. the plate is suddenly removed and then put back in after some time without any
work being done.
In all three cases we wait for equilibrium to establish.
d. What changes in case the gases in both parts are different?

1.2.8.17 Ex: 2. law of thermodynamics

A heat engine works between two heat sources with temperatures T2 > T1. If we
take away the heat δQ from the second heat source, what is the maximum and min-
imum work δWmax and δWmin that the heating machine can do? What could the
corresponding processes look like?

1.2.8.18 Ex: Specific heat

Calculate the specific heat per mol of an ideal gas for a reversible process according
to the law PV γ = const with γ ∈ R. Can such specific heat be negative? Justify the
result.

1.2.8.19 Ex: Expansion of a gas

One mole of a simple ideal gas, defined by E = cRgT , PV = RgT , is contained in
a container of initial volume Vi and pressure Pi. The gas expands from that initial
state to the state corresponding to a final volume Vf = 2Vi, through several different

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_Calorimeter03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_SpecificHeat01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_SpecificHeat02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_SpecificHeat03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_SpecificHeat04.pdf
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processes. Determine the work δW done by the gas and the heat δQ received by the
gas for each of these processes. Final answers should be given only in terms of (Vi, Pi)
and the constant c.
a. Free expansion: also determine the temperature variation ∆T .
b. Isentropic expansion: also obtain the final pressure Pf, using the fact that in this
process for an ideal gas PV γ = constant, where γ = (c+ 1)/c.
c. Isobaric quasi-static expansion.
d. Isothermal quasi-static expansion.

1.2.8.20 Ex: Adiabatic expansion

A diatomic gas is initially maintained at a pressure of Pi = 4000 hPa in a piston of
volume Vi = 1L at temperature Ti = 100 ◦C. Now the gas pressure forces the piston
to move until it reaches half the pressure. Considering the expansion as an adiabatic
process,
a. calculate the number of moles η inside the piston;
b. calculate the thermal capacities at constant volume CV of the gas, as well as at
constant pressure CP , and determine the adiabatic coefficient γ;
c. calculate the final volume of the piston;
d. calculate the final temperature of the gas;
e. calculate the work done by the gas on the piston.
f. Now, the gas cools down gradually while the piston is held fix. Calculate the
pressure Pr when the temperature reached Tr = 20 ◦C.

1.2.8.21 Ex: Entropy changes

a. What entropy increase results when 200 g of (liquid) water at 0 ◦C and 200 g water
at 90 ◦C are mixed at constant pressure in a heat-insulated recipient? The molar heat
cp of the water should be 75.5 J/(mol K) regardless of the temperature.
b. 1 dm3 helium at P0 = 1bar and T0 = 0 ◦C are heated to the temperature T = 500K.
How big is the change in entropy upon isochoric and isobaric heating?

1.2.8.22 Ex: Heat capacity

When drilling a brass block of mass m = 500 g (c = 0.1 cal/(g K)), a power of 300W
is provided for 2 minutes. What is the temperature rise of the block, if 75% of the
heat generated warms it up? What happens to the remaining 25%?

1.2.8.23 Ex: Heat and work upon thermodynamic processes

Calculate the heat generated and the work executed for at least two (non-trivial)
equilibrium thermodynamic processes involving the active change of one of the state
variables T, S, P, V , while maintaining one other variable fixed. Consider the ideal gas
case as a limit of the general formulas. Check with the expressions listed in Tab. 1.2.

1.2.8.24 Ex: Heat power engine and heat pump based on Carnot cycle

Consider a heat power engine and a heat pump based on the Carnot cycle. Calculate
the efficiency and the generated, respectively, consumed power as a function of the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_SpecificHeat05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_SpecificHeat06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_SpecificHeat07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess03.pdf
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temperature difference between the hot and the cold bath.

��

�

�

Figure 1.27: Principle of a heat pump.

1.2.8.25 Ex: The Otto cycle

Calculate the yield η = ∆W/∆Q of the Otto cycle, where ∆Q is the heat received
by the system and ∆W the work executed, (see Fig. 1.28). Express the result as a
function of the compression k = V1/V2.

Figure 1.28: Otto cyclic process. The black branches are adiabatic processes.

1.2.8.26 Ex: The Diesel cycle

Calculate the yield η = ∆W/∆Q of the Diesel cycle, where ∆Q is the heat received
by the system and ∆W the work executed, (see Fig. 1.29).

1.2.8.27 Ex: Brayton cycle modeling a gas turbine

Calculate the efficiency of the Brayton cycle modeling a gas turbine, as shown in
Fig. 1.30.

1.2.8.28 Ex: Cyclic process

An ideal gas with N atoms and the heat capacities CV = 3
2NkB and CP = 5

2NkB
goes through the cycle shown in Fig. 1.31. For the starting point (1) its pressure P1,
volume V1, and thus also the temperature T1 are known.
a. Calculate P2, T2, P3 and T3, if V2 = V3 = 3V1.
b. Calculate the work done and the heat input for all three steps of the cyclic process,
as well as the efficiency.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess06.pdf
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Figure 1.29: PV -diagram (left) and TS-diagram (right) for the Diesel cycle. The black
branches are adiabatic processes.

Figure 1.30: PV -diagram (left) and TS-diagram (right) for the Brayton cycle.

1.2.8.29 Ex: Heat engine cycle with two isochoric phases

In a heat power machine (illustrated in Fig. 1.32), the working gas (helium) is sealed
off in a cylinder by a movable piston. The gas is alternately heated and cooled from
the outside. The piston moves back and forth periodically and drives a shaft. The
initial state is: P = 0.2 · 106 Pa, V = 150 cm3, T = 300K.
a. Calculate the mass of the enclosed helium and the adiabaticity coefficient.
b. During a complete work cycle, the gas undergoes the following changes in its state:
1→ 2 isochoric heating to twice the temperature,
2→ 3 isothermal expansion to twice the volume,
3→ 4 isochoric cooling to the initial temperature,
4→ 1 isothermal compression to initial volume.
Calculate the work done and the heat input for all three steps of the cyclic process.

1.2.8.30 Ex: Heat engine cycle with two isochoric phases

An engine, whose four work steps consist of two isothermal and two isochoric pro-
cesses, runs at a speed of N = 500min-1. There is ν = 0.5mol of an ideal, mono-
atomic gas in the volume of the engine. The parameters for the individually labeled
working steps are T1 = 50 ◦C, P1 = 2bar, and P2 = 5bar.
a. Determine the volumes V1 = V2 and V3 = V4, the pressure P4, and the temperature

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess08.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess09.pdf
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Figure 1.31: Cyclic process.

Figure 1.32: Cyclic process and scheme of a heat power engine

T2.
b. What efficiency η does the cycle have?
c. How high is the net power P of the engine?

Figure 1.33: Cyclic process.

1.2.8.31 Ex: Cyclic process

A thermodynamic system is brought from an initial state (1) to another state (2), then
to (3), and finally back to (1), as illustrated in the diagram in Fig. 1.34. Calculate
the work and heat balance for the entire cycle.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess10.pdf
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Figure 1.34: Cyclic process

1.2.8.32 Ex: Cyclic process

An ideal gas with N atoms and the heat capacities CV = 3
2NkB and CP = 5

2NkB
goes through the cycle shown in Fig. 1.35: First an isotherm from (1) to (2), then an
isobar from (2) to (3) and finally an isochor from (3) to (1). For the starting point
(1), the temperature T1 and the volume V1 are known, for (2) V2 is given.
a. Calculate the work done and the heat input for all three steps of the cyclic process,
as well as the efficiency as a function of V1 and V2 and alternatively of T1 and T3.
b. Calculate the total changes of internal energy and entropy. Show explicitly that
∆Q/T remains the same, regardless of whether we go from (1) to (2) via a reversible
isothermal process or first with a reversible isobaric process and then with a reversible
isochoric process.

Figure 1.35: Cyclic process.

1.2.8.33 Ex: Cyclic process

Calculate the yield η = ∆W/∆Q of the process depicted in Fig. 1.36).

1.2.8.34 Ex: Dieterici model for a real gas

Assume that one mole of a real gas satisfies the Dieterici equation of state (an alter-
native to the van der Waals equation),

Peα/(RgT Ṽ )(Ṽ − β) = RgT ,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess11.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_CyclicProcess12.pdf
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Figure 1.36: Cyclic process.

where α and β are parameters.
a. In what units α and β have to be specified? What sign do you expect for each
parameter?
b. Express the parameters of the critical point Tc and Vc by α and β.

1.2.8.35 Ex: Isothermal expansion

Calculate the work done during isothermal expansion from V1 to V2 of a real gas.

1.2.8.36 Ex: Joule-Thomson process

Here we study the Joule-Thomson effect. A gas is forced under constant pressure P1

from a container B1 through a porous partition into a container B2 with constant
pressure P2 < P1. The constancy of the pressures in the containers is ensured by
increasing or decreasing their volumes. Finally, it is assumed that the gas is adiabat-
ically isolated from the environment and therefore only exchanges with it energy in
the form of work.
a. Show that the enthalpy H remains constant in both recipients during this process.
b. Show that, (

∂T

∂P

)
H

=
1

CP

[
T

(
∂V

∂T

)
P

− V
]
,

and calculate (∂T/∂P )H explicitly for an ideal gas.
c. For a real gas, the so-called inversion curve P (T ) defined by (∂T/∂P )H is obtained
in the PT -plane. Physically interpret the areas above and below this curve. Calculate
the inversion curve for the van der Waals gas using the thermal equation of state for
real gases.
d. Discuss the behavior of entropy in this process.

1.3 Thermodynamic equilibrium

Until now, we always assumed a system to be in thermal equilibrium, but we did not
say how to determine what this state is. In the following, we will lay out general
criteria for equilibrium and devise strategies for the calculation of equilibrium maps
and phase diagrams.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_RealGas03.pdf
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Upfront let as note that in an isolated system, the entropy is maximum at equi-
librium. We will translate this principle into a mathematical language consisting in
a set of equations, called equilibrium conditions, which determine the relationships
that the internal properties of the system must satisfy to find itself in equilibrium.

To discuss equilibrium conditions for a system, we need to allow it to be out of
equilibrium. This obviously is not possible with the simple systems studied so far.
The mere fact that they can be fully described by a single state function is due to the
assumption that they are in equilibrium already, e.g. with the environment. We will
thus illustrate the equilibrium conditions at a unary, two-phase system.

The notion of equilibrium is introduced in classical mechanics as a balance of
forces. In thermodynamics the factors that influence the evolution of a systems are
more general: whatever is doing work, transferring heat, or providing matter can drive
a system out of equilibrium. To be at equilibrium a system must (i) be at rest and
(ii) be balanced. The first condition means that, if not perturbed by external factors,
the system does not change its state during time. The second condition means, that
after a transient perturbation driving the system out of equilibrium the system finds
back to its original state. The illustration in Fig. 1.37(a) shows on the left a situation
satisfying both conditions (i) and (ii) and on the right a situation only satisfying
condition (i).

Figure 1.37: (a) Stable and unstable equilibrium positions in a mechanical system. (b) A
thermally insulated copper rod conducting heat from a hot source to a cold sink develops a
stationary temperature profile across its length (solid line in c). However, when disconnected
from its surroundings (source and sink) it changes a temperature profile (dashed line in c).

A system can be at steady-state while being driven by external influences, as
illustrated in Fig. 1.37(b). We will, however, consider a system to be at equilibrium
only, when it is stationary while being isolated from the environment. In that case,
no entropy is exchanged with the environment, dStrans = 0, so that all changes in
entropy must result from internal production, dSprod > 0. And since in equilibrium
the entropy production comes to a halt, the state of equilibrium is necessarily the one
with the highest entropy. This principle will be used as a criterion to help us in the
quest for the equilibrium state of an isolated system 3.

1.3.1 Conditions for equilibrium

Mathematically, the first condition for equilibrium is spelled out by requesting the
state to sit at an extremum of the state function. For instance, the state function

3Note that it doesn’t matter how the equilibrium state was reached, e.g. whether it had interacted
transiently with some pump or sink. If it stays stationary once the pump or sink is removed, it should
be considered at equilibrium.
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W =W (X,Y ), whose differential is,

dW =

(
∂W

∂X

)
Y

dX +

(
∂W

∂Y

)
X

dY , (1.145)

will have minima at those points (X0, Y0) satisfying the conditions,(
∂W

∂X

)
Y=Y0

= 0 =

(
∂W

∂Y

)
X=X0

. (1.146)

The nature of the extrema, whether maximum, minimum, or saddle point, depends
on the second derivatives ofW at those points. The procedure can easily be extended
to state functions of more variables. This procedure holds for independent variables,
which generally is not the case. For instance, if the variables depend on each other,
Y = Y (X), we got a constraint.
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Figure 1.38: (code) Illustration of state function and constraints. The surface in (a) visualizes

a state function depending on two variables; the black curve illustrates a possible constraint

Y = Y (x) between the variables. Fig. (b) shows the same surface as in (a), now constrained

by and additional surface Z2 = Z2(X,Y ).

A general procedure to handle this is the following:

1. Consider the state function, W = W (X1, X2, ...), with the constraints Xk =
Xk(X1, X2, ...).

2. Write the differential forms for all equations, for the state equation:

dW = A1dX1 +A2dX2 + ... with Aj ≡
(
∂W

∂Xj

)
{Xi|i̸=j}

, (1.147)

and for the constraints:

dXk = B1kdX1 +B2kdX2 + ... with B1k ≡
(
∂Xk

∂Xj

)
{Xi|i̸=j}

. (1.148)

3. Substitute dXk in Eq. (1.147) and collect the coefficients Cl of the remaining
terms dXl|l ̸=k,

dW = C1dXl1 + C2dXl2 + ... . (1.149)
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4. Set the coefficients to zero, Cl = 0. The solution of the system of equations
yields the extremum under the constraint.

Example 13 (Equilibrium condition with four variables): To illustrate
the procedure, let us consider the state function W = W (U, V,X, Y ) with two
constraints, U = U(X,Y ) and V = V (X,Y ). The differential form are,

dW = AdU+BdV+CdX+DdY , dU = EdX+FdY , dV = GdX+HdY ,
(1.150)

where the coefficients A to H are the partial derivatives taken with all other
variables being constant. Substituting dU and dV and collecting terms, we get,

dW = A(EdX + FdY ) +B(GdX +HdY ) + CdX +DdY (1.151)

= (AE +BG+ C)dX + (AF +BH +D)dY .

Now, setting terms in the brackets to zero,

AE +BG+ C = 0 = AF +BH +D , (1.152)

we obtain the desired conditions for the extremum.

1.3.2 Entropy maximization in two-phase systems, chemical
potential

Let us consider a unary, two-phase, non-reacting, and otherwise simple system. Both
phases are characterized by their own set of extensive and intensive parameters. Now,
the values of the extensive properties of both systems sum up,

S1 + S2 = Stot , (1.153)

and analogously for the other state functions Vj , Ej , Hj , Fj , Gj with j = 1, 2, but
also for the number of particles Nj in each phase. If we now allow particles to move
between the phases, as the state functions depend on the particle number, we need
to consider this dependency,

Ej = Ej(Sj , Vj , Nj) , (1.154)

and so on for the other state functions. This leads to a generalization of the differential
form (1.70),

dEj = TjdSj − PjdVj + µjdNj , (1.155)

where we introduced the coefficient,

µj ≡
(
∂Ej

∂Nj

)
Sj ,Vj

, (1.156)

called chemical potential of the component j.
Resolving Eq. (1.155) by dSj , we may now calculate the total entropy change,

dStot = dS1+dS2 =
1

T1
dE1+

1

T2
dE2+

P1

T1
dV1+

P2

T2
dV2−

µ1

T1
dN1−

µ2

T2
dN2 . (1.157)
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The fact that the system is closed implies, dE1 + dE2 = 0, dV1 + dV2 = 0, and
dN1 + dN2 = 0. Using these constraints in (1.157) we get,

dStot =

(
1

T1
− 1

T2

)
dE1 +

(
P1

T1
− P2

T2

)
dV1 −

(
µ1

T1
− µ2

T2

)
dN1 . (1.158)

Hence, the systems comes to equilibrium once the following conditions are fulfilled,

T1 = T2 thermal equilibrium

P1 = P2 mechanical equilibrium

µ1 = µ2 chemical equilibrium

. (1.159)

Alternative formulations of the equilibrium criteria may be derived in terms of
other thermodynamic state functions. A quick look at the expressions (1.70) informs
us, that for systems constraint to

• S = const and V = const, E is minimum at equilibrium;

• S = const and P = const, H is minimum at equilibrium;

• T = const and V = const, F is minimum at equilibrium;

• T = const and P = const, G is minimum at equilibrium.

Application of any of these criteria leads to the same set of conditions for equilibrium.

1.3.3 Exercises

1.3.3.1 Ex: Gibbs free energy

Prove the relationship 4,(
∂G

∂T

)
V

=

(
∂G

∂T

)
P

+

(
∂G

∂P

)
T

(
∂P

∂T

)
V

.

1.4 Thermodynamic ensembles

When we introduced the main thermodynamic potentials for canonical ensembles
(1.70) we implicitly supposed that the particle number N is fixed. If we want to
consider N as an equilibrium parameter, it must be treated as an independent state
variable, as shown in Sec. 1.3.2, and consequently the thermodynamic potentials must
be generalized.

The following Eqs. (1.161) introduce several new energy state variables. The de-
fined potential Ω(T, V, µ) is the called the Landau grand canonical potential. The
potentials Ψ(S, V, µ) and Φ(S, P, µ) are not used in practice. The potential O(T, P, µ)

4Note that [12] claims on page 65 that this relationship holds for the enthalpy H, which is wrong.
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only depends on intensive variables and therefore cannot be a state energy, i.e. it must
be zero, O = 0. This is known as the Gibbs-Duhem equation, which will be treated in
Sec. 2.2. The potentials will be discussed briefly in Sec. 1.4.1 and in detail in Part 4.

δQrev = TdS

δWrev = −PdV
E =

∫
(TdS − PdV + µdN) =⇒ dE = TdS − PdV + µdN

Ψ = E − µN =⇒ dΨ = TdS − PdV −Ndµ
H = E + PV =⇒ dH = TdS + V dP + µdN

Φ = H − µN =⇒ dΦ = TdS + V dP −Ndµ
F = E − TS =⇒ dF = −SdT − PdV + µdN

Ω = F − µN =⇒ dΩ = −SdT − PdV −Ndµ
G = H − TS =⇒ dG = −SdT + V dP + µdN

O = G− µN = 0 =⇒ dO = −SdT + V dP −Ndµ

(1.160)

Example 14 (Thermodynamics of grand canonical ensembles): The goal
is here to represent the differentials of the extensive variables as functions of the
intensive variables,

S = S(T, P, µ) , V = V (T, P, µ) , N = N(T, P, µ) . (1.161)

For grand canonical ensembles we need to define additional material constants,

CP ≡ T
(
∂S
∂T

)
P,µ

−α = 1
V

(
∂S
∂P

)
T,µ

σ ≡ µ
(

∂S
∂µ

)
T,P

α ≡ 1
V

(
∂V
∂T

)
P,µ

κ ≡ − 1
V

(
∂V
∂P

)
T,µ

η ≡ 1
V

(
∂V
∂µ

)
T,P

σ = µ
(
∂N
∂T

)
P,µ

−η = 1
V

(
∂N
∂P

)
T,µ

κ ≡ 1
N

(
∂N
∂µ

)
T,P

(1.162)

where the relationships between corresponding off-diagonal elements are easily
derived as Maxwell equations via the second derivative of the thermodynamic
potential O = G− µN . Rearranging the matrix, we finally obtain,

dS = CP
T

dT− αV dP+ σ
µ
dµ

dV = αV dT− κV dP+ ηV dµ

dN = σ
µ
dT− ηV dP+ κNdµ

. (1.163)

The question is now, what are the additional material constants γ, κ, and η?

Do the Exc. 1.4.3.2.

1.4.1 Coupling of thermodynamic ensembles to reservoirs

Application of the thermodynamic apparatus on physical systems requests certain
idealizations. In the preceding sections, for instance, we studied the case of systems
in equilibrium with themselves, but insulated from the environment. Often, we also
tacitly assumed that the number of particles be fixed and termed this condition as
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canonical ensemble. There are, however, numerous real world situations deviating
from the above conditions, for example, when a system is held at a given temperature
via thermal contact with a ’reservoir’, or when chemical equilibrium is maintained via
particle exchange with a ’reservoir’.

Figure 1.39: Insulated or heat conducting, closed or open, rigid or working systems.

A reservoir is here regarded as a system with infinite resources of heat, work,
and particles. Thermal, mechanical, or chemical contact with a reservoir will thus
force any finite system to equilibrate to the conditions imposed by the reservoir. In
practice, the details of the coupling between system and reservoir may however vary,
as illustrated in Fig. 1.39. With respect to coupling to a reservoir a system may be
insulated (dS = 0) or heat conducting (T → Teq), rigid (dV = 0) or compressible
(P → Peq), closed (dN = 0) or open to particle exchange (µ → µeq). From the
intensive parameters (T, P, µ) only those parameters whose extensive counterpart are
NOT held constant may act as equilibrium parameters. For example, holding S fixed
the variable T cannot be an equilibrium parameter, and the system will be unable
to exchange heat with the reservoir; holding V fixed the variable P cannot be an
equilibrium parameter, and the system will be unable to work; holding N fixed the
variable µ cannot be an equilibrium parameter, and the system will be unable to
assimilate particles. This is summarized in Tab. 1.3.

Table 1.3: Various types of couplings to a reservoir.

type of coupling equilibrium parameter

insulated dS = 0 -

heat conducting dS ̸= 0 T

rigid dV = 0 -

compressible dV ̸= 0 P

closed dN = 0 -

open dN ̸= 0 µ
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1.4.2 Thermodynamic potentials associated to specific ensem-
bles

The choice of which parameters are held fixed and which are treated as equilibrium
parameters depends on the properties of the system under consideration. Idealized
theoretical models have been developed in the past by Helmholtz, Gibbs, and Landau,
among others, for several paradigmatic physical situations. These models are called
thermodynamic ensembles. They are named after the variables considered as invariant
within this model. For example, assuming that holding the entropy, the volume, and
the particle number constant is a good description of a particular physical system,
we will model it by a NV S-ensemble. This frequently used model is also called
microcanonical ensemble. From Eqs. (1.161) we see that if dS = dV = dN = 0, then
the internal energy as well cannot change, dE = 0. That is, E is the characteristic
energy associated to the microcanonical ensemble 5. Do the Exc. 1.4.3.1.

Analogous statements hold for other ensembles, as summarized in Tab. 1.4. The
most common ones are the microcanonical, the canonical, and the grand (or macro-)
canonical ensembles. We will briefly introduce them in the following and postpone
an in-depth discussion to Chp. 4. It is important, however, to keep in mind that all
those ensembles only are approximative models for particular physical situations. The
predictions obtained from these ensembles will only be as good as the assumptions
they are based on represent a realistic image of the physical reality.

Table 1.4: Various thermodynamic ensembles.

ensemble name const.param. extensive parameter assoc.pot. equil.param.

microcanonical NV S dS = dV = dN = 0 dE = 0 -

µV S dS = dV = 0 dΨ = 0 µ

isenthalpic-isobar NPS dS = dN = 0 dH = 0 P

µPS dS = 0 dΦ = 0 P, µ

canonical NV T dV = dN = 0 dF = 0 T

grand canonical µV T dV = 0 dΩ = 0 T, µ

isotherm-isobar NPT dN = 0 dG = 0 T, P

µPT dO = 0 T, P, µ

The various canonical ensembles are important for being starting points for sta-
tistical approaches, which will be developed in Part 4.

1.4.3 Exercises

1.4.3.1 Ex: Thermodynamic potential

What is the most suitable thermodynamic potential to describe a compressible system
(compressible in the sense that the systems always adjusts its pressure to that of

5For this reason, the microcanonical ensemble is also called NV E-ensemble.
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a large environment) with fixed particle number held at constant temperature via
thermal contact with a large reservoir. How is the corresponding ensemble called?

1.4.3.2 Ex: Thermodynamic potential

a. Derive the differential forms for the relationships S = S(T, V, µ), P = P (T, V, µ),
and N = N(T, V, µ) from (1.163) via Legendre transform.
b. Derive the differential forms for the relationships S = S(T, P,N), V = V (T, P,N),
and µ = µ(T, P,N).
c. For V = V (T, P,N) calculate dV for the case of an ideal gas. Determine the
material constants σ, η, and κ by comparison with (b).

1.5 Further reading

H.M. Nussenzveig, Edgar Blucher (2014), Curso de F́ısica Básica: Fluidos, Vibrações
e Ondas, Calor - vol 2 [ISBN]

R. DeHoff, Thermodynamics in Material Science [ISBN]

H.B. Callen, Thermodynamics [ISBN]

C. Kittel, Introduction to Solid State Physics [ISBN]

A.R. West, Basic Solid State Chemistry [ISBN]

D. Mc Quarry, Statistical Thermodynamics [ISBN]

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Fundaments_Thermoquants02.pdf
http://isbnsearch.org/isbn/978-8-521-20801-2
http://isbnsearch.org/isbn/978-0849340659
http://isbnsearch.org/isbn/978-0471862567
http://isbnsearch.org/isbn/978-0471415268
http://isbnsearch.org/isbn/978-0471987567
http://isbnsearch.org/isbn/978-0935702187
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Chapter 2

Thermodynamics applied to
fluids and solids

In the present chapter we will apply the notions in thermodynamics acquired in Chp. 1
to various physical systems including multi-component, heterogeneous, chemically
reacting gases and solids.

2.1 Unary heterogeneous systems

Let us first focus on unary systems, i.e. samples composed by a single species of
molecules, e.g. H2O, which nevertheless may be encountered in different states of
aggregation: solid, liquid, gaseous, also called phases. We call homogeneous a system
consisting of a single such phase and heterogeneous, when two or three phases coexist.
Note that the list of phases is not exhaustive, as solids can exist in various allotropic
phases depending on how the atoms arrange into a crystalline structure. For example,
solid carbon may be exist as graphite or diamond.

2.1.1 Unary phase diagrams in PT -space

Allotropic phases are typically represented in phase diagrams, such as the one shown
in Fig. 1.2. They are characterized by lines dividing PT -space into domains:

• Every area corresponds to a stability domain of each single phase.

• Every line corresponds to a stability domain for two phases coexisting in equi-
librium.

• Every point corresponds to a stability domain for three phases coexisting in
equilibrium.

• There are no regions where more than three phases coexist at equilibrium.

Heterogeneous systems may evolve between different phases when thermodynamic
variables are changed in a process called phase transition. If such a system is taken
through a reversible process represented by a path in the PT -diagram, when that path
intersects a phase boundary, the change on pressure and temperature will be arrested
while the phase transformation occurs. When the allotropic change is complete, the
path may resume.

67
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2.1.1.1 Molar quantities

Let us define intensive variables as extensive ones per particle (or per mole) 1,

X̃ ≡
(
∂X

∂N

)
T,P

, (2.1)

from now on we designate intensive properties which have been converted from ex-
tensive ones by a tilde (̃.). With the Gibbs free energy G = E + PV − TS defined in
(1.68) we find the differential form (1.161),

dG = −SdT + V dP + µdN , (2.2)

from which we get the Gibbs free energy per particles,

µ =

(
∂G

∂N

)
T,P

= G̃ , (2.3)

with its differential form,

dG̃ =

(
∂G̃

∂G

)
T,P

dG+

(
∂G̃

∂N

)
T,P

dN =
1

N
dG− G

N2
dN (2.4)

= − S
N
dT +

V

N
dP + µ

1

N
dN − G̃

N
dN = −S̃dT + Ṽ dP ,

or

dµ = −S̃dT + Ṽ dP . (2.5)

This result only contains intensive quantities. Comparing it with Eq. (2.2) we note
that we got rid of the differential dN , which is nice as long as we are not interested
in particle number fluctuations.

For heterogeneous systems, the relations

µα = µα(Tα, Pα) and µβ = µβ(T β , P β) . (2.6)

describe surfaces in TPµ-space. Where those surfaces intersect, as illustrated in
Fig. 1.38, the phases can coexist. That is, if,

Tα = T β ∧ Pα = P β =⇒ µα(Tα, Pα) = µβ(T β , P β) , (2.7)

or simply µα(T, P ) = µβ(T, P ), then the two phases α and β coexist.
Analogously, the coexistence of three phases, α, β, γ, is described by the intersec-

tion of three surfaces in PTµ-space.

1The definition per particle is more intuitive when discussing the connection to statistical physics.
We then interpret N as particle numbers. The definition per mole is more interesting in the context
of solutions and chemical reactions. We then interpret N as number of moles. Both definitions are
related by,

Nmolar = Nparticle/NA and X̃molar = X̃particleNA .

We will, however, drop the distinction molar/particle when it is clear from the context.



2.1. UNARY HETEROGENEOUS SYSTEMS 69

2.1.1.2 Calculation of the chemical potential surface for a single phase

Because the chemical potential is a state function, if it is known at a reference point
µ(T0, P0), its value at any other point µ(T, P ) is determined, and we may parametrize
an arbitrary path to go from one point to the other. For example, we may first hold
T constant and integrate dµ given by Eq. (2.5) until reaching an intermediate point
µ(T0, P ). In a second step, we hold P constant and continue integrating dµ until
teaching the end point µ(T, P ). Repeating this procedure for all T and P , we generate
a chemical potential surface.

For a particular phase γ, we first need to derive the functional dependency of the
entropy on T , which can be integrated from Eq. (1.75)(i),

S̃γ(T ) = S̃γ(T0) +

∫ S̃γ(T )

S̃γ(T0)

dS̃γ = S̃γ(T0) +

∫ T

T0

Cγ
P (T

′)

T ′ dT ′ . (2.8)

Then, holding the pressure fixed, dP = 0, and exploiting Eq. (2.5), we integrate the
chemical potential over temperature,

µγ(T ) = µγ(T0) +

∫ µγ(T )

µγ(T0)

dµγ (2.9)

= µγ(T0)−
∫ T

T0

(
S̃γ(T0) +

∫ T ′′

T0

Cγ
P (T

′)

T ′ dT ′

)
dT ′′ .

Similarly, we derive the functional dependency of the volume on P , which can be
integrated from Eq. (1.71)(i),

ln Ṽ γ(P ) = ln Ṽ γ(P0) +

∫ Ṽ γ

Ṽ γ
0

d ln Ṽ γ = ln Ṽ γ(P0)−
∫ P

P0

κγ(P ′)dP ′ . (2.10)

Then, holding the temperature fixed, dT = 0, and exploiting Eq. (2.5), we integrate
the chemical potential over pressure,

µγ(P ) = µγ(P0) +

∫ P

P0

Ṽ γ(P ′)dP ′ (2.11)

= µγ(P0) +

∫ P

P0

Ṽ γ(P0)e
−

∫ P ′′
P0

κγ(P ′)dP ′
dP ′′ .

All we need to do, is choose a reference temperature T0 and pressure P0, where
we can look up in data bases the molar entropy S̃γ(T0), the heat capacity Cγ

P , and
the compressibility κγ . Note, that in general the heat capacity may be temperature-
dependent. See Excs. 2.1.4.1 to 2.1.4.2.

Example 15 (Chemical potential surface for constant heat capacity): For
example, let us consider an ideal gas in a single phase γ, whose heat capacity
does not depend on T nor P . Then, the two-step path integral can be solved
analytically. The functional dependence of the volume on (T, P ) is given by the
ideal gas equation,

Ṽ γ(T, P ) =
RgT

P
. (2.12)



70 CHAPTER 2. THERMODYNAMICS APPLIED TO FLUIDS AND SOLIDS

The functional dependence of the entropy on T can be integrated from Eq. (1.75)(i),

S̃γ(T ) = S̃γ(T0) +

∫ T

T0

Cγ
P

T
dT = S̃γ(T0) + Cγ

P ln
T

T0
. (2.13)

Now, we first hold the temperature fixed, dT = 0, and exploiting Eq. (2.5)
integrate the chemical potential over pressure,

µγ(T0, P ) = µγ(T0, P0)+

∫ P

P0

Ṽ γ(T0, P
′)dP ′ = µγ(T0, P0)+RgT0 ln

P

P0
. (2.14)

Then we hold the pressure fixed, dP = 0, and exploiting the same Eq. (2.5)
integrate the chemical potential over temperature,

µγ(T, P ) = µγ(T0, P )−
∫ T

T0

S̃γ(T ′)dT ′ (2.15)

= µγ(T0, P )− S̃γ(T0)(T − T0) + Cγ
P (T ln T

T0
− T + T0) ,

inserting the expression (2.13) for the entropy.

2.1.1.3 Chemical potential change upon crossing a phase transition

The integration demonstrated in the example 15 may be repeated for different phases.
However, in order to refer a chemical potential in an arbitrary phase to a single
specified set of reference temperature and pressure (T0, P0), we may have to cross
intersections of surfaces. That is, we must know how to handle the behavior of the
chemical potential upon phase transitions.

If the temperature-dependent heat capacities of two phases γ = α, β, that is Cα
P

and Cβ
P , are known, as well as the entropy change,

∆Sα→β(Tm) ≡ Sβ(Tm)− Sα(Tm) (2.16)

upon a phase transition at a specific temperature Tm, then the entropy difference
between two states in different phases and at different temperatures is simply,

S̃β(T ) = S̃α(T0) +

∫ Tm

T0

Cα
P (T

′)

T ′ dT ′ +∆S̃α→β(Tm) +

∫ T

Tm

Cβ
P (T

′)

T ′ dT ′ , (2.17)

now allowing for temperature-dependent heat capacity. Such a path is illustrated in
Fig. 2.1.

In order to determine the change in chemical potentials between states localized
at different phases and at different temperatures T0 and T , we need to integrate
µα(T, P0) from T0 to the phase boundary at Tm and continue integrating µβ(T, P0)
from Tm to the end point Tm. We calculate,

µβ(T ) = µα(T0) +

∫ µα(Tm)

µα(T0)

dµα +

∫ µβ(T )

µβ(Tm)

dµβ

= µα(T0)−
∫ Tm

T0

(
S̃α(T0) +

∫ T ′′

T0

Cα
P (T

′)

T ′ dT ′

)
dT ′′ −

∫ T

Tm

(
S̃β(Tm) +

∫ T ′′

Tm

Cβ
P (T

′)

T ′ dT ′

)
dT ′′ ,
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Figure 2.1: (code) Intersecting chemical potential surfaces. The points (Tj , P0) can be

related to each other (see text).

where we used the result (2.9) for both phases. Now, substituting the entropy in
phase β at the temperature Tm by the the entropy in phase α using the formula (2.16),
we continue,

µβ(T ) = µα(T0)− S̃α(T0)(Tm − T0)− S̃α(Tm)(T − Tm)−∆S̃α→β(Tm)(T − Tm)

−
∫ Tm

T0

∫ T ′′

T0

Cα
P (T

′)

T ′ dT ′dT ′′ −
∫ T

Tm

∫ T ′′

Tm

Cβ
P (T

′)

T ′ dT ′dT ′′

= µα(T0)− S̃α(T0)(T − T0)−

(
∆S̃α→β(Tm) +

∫ Tm

T0

Cα
P (T

′′)

T ′′ dT ′′

)
(T − Tm)

−
∫ Tm

T0

∫ T ′′

T0

Cα
P (T

′)

T ′ dT ′dT ′′ −
∫ T

Tm

∫ T ′′

Tm

Cβ
P (T

′)

T ′ dT ′dT ′′ . (2.18)

Hence, knowing entropy S̃α(T0) at a specific temperature in one of the phases, the
entropy change between the phases at a specific temperature, ∆S̃α→β(Tm), and the

temperature-dependent heat capacities on both phases, Cα
P (T ) and Cβ

P (T ), we can
relate the chemical potentials at any temperature of both phases.

2.1.2 The Clausius-Clapeyron equation, latent heat

Let us have another look at the three equations (2.7) ruling two-phase coexistence,

Tα = T β =⇒ dTα = dT β ≡ dT (2.19)

Pα = P β =⇒ dPα = dP β ≡ dP
µα = µβ =⇒ dµα = dµβ ≡ dµ .

From (2.5) we conclude,

−S̃αdT + Ṽ αdP = dµ = −S̃βdT + Ṽ βdP , (2.20)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_ChemicalPhaseTransition.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_ChemicalPhaseTransition.m
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This expression can be rewritten as,

dP

dT
=

∆S̃α→β

∆Ṽ α→β
, (2.21)

which is one form of the Clausius-Clapeyron equation. It states that state changes
along a phase coexistence curve (red line in Fig. 2.1) are ruled by the ratio between
the molar entropy change and the molar volume change. Knowing this ratio, we can
integrate the P (T ) dependence.

In practice, ∆S̃α→β is not measured in experiments, but rather the heat produced
or absorbed under the transformation (e.g. condensation or evaporation). Since, trans-
formation occurs isobarically under reversible conditions, consulting (1.70) we find,

δQα→β = ∆Hα→β . (2.22)

The molar enthalpy change ∆H̃α→β is also called latent heat. Sometimes, however,
the term latent heat is used for the enthalpy change per mass unit, L ≡ ∆Hα→β/m.

Recalling that G = H − TS and Gα = Gβ , we have,

∆H̃α→β = T∆S̃α→β , (2.23)

so that

dP

dT
=

∆H̃α→β

T∆Ṽ α→β
, (2.24)

which is the most frequently used form of the Clausius-Clapeyron equation.

2.1.2.1 Integration of the Clausius-Clapeyron equation

Integrating Eq. (2.24) requires knowledge of,

∆Hα→β = ∆Hα→β(T, P ) . (2.25)

From (1.82) we know,

dH̃ = CP dT + (1− αthT )Ṽ dP . (2.26)

Hence,

d∆H̃α→β = dH̃β − dH̃α (2.27)

= Cβ
P dT − C

α
P dT + (1− αβ

thT )V
βdP − (1− αα

thT )Ṽ
αdP

= ∆Cα→β
P dT + [(1− αβ

thT )Ṽ
β − (1− αα

thT )Ṽ
α]dP .

In practice, it turns out that the prefactor of the pressure differential is zero for
pressure changes below 100000 bar, so that the enthalpy becomes almost pressure-
independent and the enthalpy change is very well approximated by,

d∆H̃α→β(T, P ) = ∆Cα→β
P dT . (2.28)
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Often the enthalpy change can be considered as almost temperature-independent,
∆H̃α→β = ∆H̃(0). Then, the Clausius-Clapeyron equation (2.24) can be rewritten
as,

dP

P
=

∆H̃α→β

∆Ṽ α→β

dT

PT
=

∆H̃α→β

Rg

dT

T 2
, (2.29)

using the approximation (2.34). The solution is,

ln
P

P0
= −∆H̃α→β

Rg

(
1

T
− 1

T0

)
. (2.30)

and represents a good estimation for phase transitions between gases and fluids or
solids.

Figure 2.2: (a) PT -phase diagram. (b) Stable and metastable equilibrium lines near a triple
point.

Example 16 (Empirical model for heat capacities): Using an empirical fit
equation to describe the heat capacities in both phases γ = α, β,

Cγ
P = aγ + bγ T + cγ T−2 + dγ T 2 , (2.31)

we find,

∆H̃α→β(T, P ) =

∫ T

T0

(∆a+∆b T +∆c T−2 +∆d T 2)dT (2.32)

= ∆a T + 1
2
∆b T 2 −∆c T−1 + 1

3
∆d T 3 +∆H̃(0) .

To evaluate the volume change,

∆Ṽ α→β = ∆Ṽ α→β(T, P ) , (2.33)

let us consider a fluid-gas phase transition. Then, to a good approximation, we
may neglect the volume change of the fluid phase, Ṽ β ≫ Ṽ α,

∆Ṽ α→β = Ṽ β =
RgT

P
. (2.34)
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In this case,

dP

P
=

∆H̃α→β

∆Ṽ α→β

dT

PT
=

1

Rg

[
∆a

T
+

∆b

2
− ∆c

T 3
+

∆d

3
T +

∆H(0)

T 2

]
dT (2.35)

with the solution,

ln
P

P0
(2.36)

=
1

Rg

[
∆a ln

T

T0
+

∆b

2
(T − T0) +

∆c

2

(
1

T 2
− 1

T 2
0

)
+

∆d

6
(T 2 − T 2

0 )−∆H(0)

(
1

T
− 1

T0

)]
.

Good as long the empirical approximation formula (2.31) holds and gas remains

ideal, this formula describes well gas-fluid coexistence curves.

2.1.2.2 Triple points

Three chemical potential surfaces intersect in a point called triple point. The point
(Pt, Tt) is also the intersection of three equilibrium lines, as illustrated in Fig. 2.2(b),
and thus simultaneously satisfies three Clausius-Clapeyron equations.

It is an important characteristic of a triple point, that property changes across
phase boundaries sum up, when several boundaries are crossed. It is ultimately a
corollary of the fact that properties are state functions. For example,

∆Ṽ α→γ = Ṽ γ − Ṽ α = Ṽ β − Ṽ α + Ṽ γ − Ṽ β = ∆Ṽ α→β +∆Ṽ β→γ , (2.37)

and the same holds for S̃ and H̃. E.g. the enthalpy change upon fusion and vapor-
ization sum up to the enthalpy change upon sublimation,

∆H̃sub = ∆H̃ fus +∆H̃vap . (2.38)

The sublimation curve [red line in Fig. 2.2(a)] and the vaporization curve [blue
line in Fig. 2.2(b)] both share a boundary to the gaseous phase, to that we may use
the solution (2.30) of the Clausius-Clapeyron relation for both,

Pvap(T ) = P0e
(∆H̃vap/Rg)(1/Tvap−1/T ) (2.39)

Psub(T ) = Pte
(∆H̃sub/Rg)(1/Tt−1/T ) .

If the boiling temperature Tvap is known, setting P0 = 1bar obviously fully determines
the vapor curve Pvap = Pvap(T ). In contrast, the sublimation curve Psub = Psub(T ) is
not fully determined as long as the triple point is unknown. However, approximating,

Tt = Tfus (2.40)

and relating the enthalpy change via (2.38), we are a good step further. We just need
to find the triple pressure Pt using the information, that both curves share the triple
point,

Pvap(Tt) = Pt = Psub(Tt) = Psub(Tfus) . (2.41)

With this we find,

Pt = P0e
(∆H̃vap/Rg)(1/Tvap−1/Tt) , (2.42)
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and finally,

Psub(T ) = Pte
(∆H̃sub/Rg)(1/Tt−1/T )

= P0e
(∆H̃vap/Rg)(1/Tvap−1/T )+(∆H̃fus/Rg)(1/Tfus−1/T )

. (2.43)

See Excs. 2.1.4.3 to 2.1.4.9.

Example 17 (Vapor pressure of strontium): Eq. (2.43) can be used to obtain

the vapor pressure of substances, for example, the partial pressure of metals

contained in a cell under vacuum at a fixed volume. All one need to know is

the set of data ∆H̃ fus, ∆H̃vap, Tfus, and Tvap, which is specific for the metal.

As an example, the curve in Fig. 2.3(a) shows the vapor pressure of strontium

as a function of temperature. The triple point and the vaporization point are

marked with green circles in Fig. 2.3. See also Sec. 3.1.1.
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Figure 2.3: (code) (a) Vapor pressure of strontium obtained with ∆H̃ fus = 144 kJ/mol,

∆H̃vap = 8.3 kJ/mol, Tfus = 1050K, and Tvap = 1650K. The solid lines corresponds to a

path along the phase transition [(see arrow in Fig. 2.2(a)]. The sublimation curve (marked

in red) and the vaporization curve (blue) correspond to those emphasized in Fig. 2.2(a) by

the same colors. The dash-dotted lines show extensions of the phase boundaries beyond

the sublimation curve, respectively, vaporization curve helping to visually emphasize the

discontinuity at the triple point. (b) Density of the strontium vapor corresponding to the

partial pressure according to the ideal gas law: n = P/kBT .

2.1.3 Vacuum technology

Many experiments can only be performed under vacuum, because air molecules could
interact with the material under study (pure gases, clean surfaces, etc.) or limit the
free path for cold atoms, electron beams in vacuum tubes, epitaxial beams, etc.. In
view of the importance of vacuum technology for modern laboratories ranging from
material science to quantum optics, we include here a short section summarizing basic
notions.

We define here vacuum as a space in which the pressure is below surrounding at-
mospheric pressure. The origins of vacuum science go back to Aristotle, who stated

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_StrontiumVaporPressure.m
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the 4-th century that ’nature abhors vacuum’, meaning that pressure voids are un-
natural. This belief was shaken in the 17th century when Gasparo Berti created the
first verifiable vacuum. The scientific and technological use of vacuum science only
began in the 20th century driven by the advent of vacuum tubes used in radio and
television. Since then, the applications of vacuum science and technology have grown
almost exponentially. Nowadays, vacuum technology is used in a wide range of indus-
trial processes including semiconductors, packaging, drying, degassing, distillation,
coating, evacuation, or insulation, etc.. Scientific applications range from analytical
and medical instrumentation to the use of vacuum in particle physics, space research,
nuclear fusion, material sciences, biology and chemistry. A large panoply of vacuum
pumps and pressure sensors are nowadays available for a multitude of applications.

We will restrict to ideal gas mixtures with given partial pressures. In the following,
we will only introduce some additional practical concept which are often required in
the lab equipped with vacuum systems.

2.1.3.1 Flow and loading rates through apertures and pipes

Vacuum pumps are characterized by their pumping speeds specified in units of L/s.
For example, a small ion getter pump may have a pumping speed of Spmp = 2L/s.
The pumping speed is defined as the volume of gas passing the cross section of the
pump’s inlet port per unit time. Of course, the gas removal rate also depends on the
pressure Pchm in the vacuum chamber,

Qpmp = PchmSpmp . (2.44)

The efficient pump rate, however, also depends on the design of the vacuum sys-
tem. For example, pumping a vacuum chamber through a small aperture will be less
efficient. The flow rate through a circular aperture of diameter Dapp is,

Sapp = v̄π
D2

app

4
, (2.45)

where v̄ is the mean velocity of gas at room temperature v̄ =
√
kBT/2m ≃ 120m/s.

The flow rate through a tube of length Ltub with diameter Dtub is,

Stub = v̄π
D3

tub

Ltub
. (2.46)

The calculation of the flow rate through subsequent apertures/tubes is obtained
by concatenation,

Snet =
(
S−1
app + S−1

tub

)−1
. (2.47)

Example 18 (Inefficient pumping): Let us, as an example, check whether
the pumping speed of a Spmp = 2L/s ion pump connected to a vacuum chamber
is reduced when the pumping is done through a flexible bellow of Ltub = 1m
length and Dtub = Dapp = 16mm diameter (norm CF16). The impedance of
the tube is,

Snet =

(
4

v̄πD2
app

+
Ltub

v̄πD3
tub

)−1

≃ v̄πD3
tub

Ltub
≈ 0.65L/s .

Hence, the pumping speed of the ion pump is reduced below its capacity by the

long and thin bellow.
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The gas loading rate of a vacuum chamber through a tube (or a leak) is given by
the pressure Pres in the reservoir behind the tube and the net flow rate Snet across
the tube,

Qtub = PresSnet . (2.48)

Other processes may contribute to loading gas into the chamber. For instance,
objects placed into the vacuum chamber may outgas at a certain rate. Even the
chamber material itself can outgas. The gas loading rate due to outgassing depends
on the material’s characteristic outgassing rate Rout and on its surface Asrf, e.g. the
inner surface of the vacuum chamber,

Qout = RoutAsrf . (2.49)

Obviously the gas loading rate due to possible leaks Qlea and due to outgassing add
up to a total feeding rate,

Qfed = Qlea +Qout . (2.50)

Do the Excs. 2.1.4.10 to 2.1.4.11.

Figure 2.4: Typical scheme for a vacuum system with preparation chamber (or oven), science
chamber, and pump.

Example 19 (Outgassing of steel): According to [47], typical outgassing
rates of electro-polished steel are Rout = 5 × 10−12 mbarL/(s cm2). For 316
steel after 20 h baking at a temperature of 250 ◦C the outgassing rate drops
to Rout = 1.2 × 10−12 mbarL/(s cm2), and baking for 2 weeks at 250 ◦C will
decrease the rate even more to Rout = 3 × 10−13 mbarL/(s cm2). For this last
situation a typical chamber with surface Asrf = 600 cm2 will outgas at a rate,

Qout = RoutAsrf ≈ 1.8× 10−10 mbarL/s .

The pressure change caused by feeding or pumping is simply,

Ṗchm =
Qfed −Qpmp

V
. (2.51)

Hence, the pumping comes to a halt when the feeding speed (2.50) and the pumping
speed Qpmp equilibrate, Qfed = Qpmp, from which we can estimate the final pressure
in the vacuum chamber,

Pchm =
Qfed

Spmp
. (2.52)

Note that the feeding rate can be measured by turning off the pump while recording
the pressure increase.
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2.1.3.2 Vacuum pumps and pressure measurement

Various types of pumps are commonly used in quantum optics laboratories (see
Tab. 2.1 and Fig. 3.2). Every pump is not only characterized by its pumping speed,
but also by the pressure range where it is operational. The pumping speed indeed
depends on the pressure. It can also depend on the type of gas, for instance, noble
gases are harder to remove with ion pumps [35].

Table 2.1: Types of vacuum pumps, their typical pumping speed and operational
pressure range.

type pumping speed pressure range

rotary pumps 103..106 L/s 103..10−3 mbar

oil diffusion pumps 102..104 L/s 10−3..10−8 mbar

turbo pumps 50..3000L/s 10−1..10−9 mbar

ion getter pumps 0.2..500L/s 10−5..10−10 mbar

titanium sublimation pumps 400..3000L/s 10−2..10−12 mbar

The same holds for vacuum gauges, which exist in a large variety of technologies
(see Tab. 2.2 and Fig. 3.3).

Table 2.2: Types of vacuum gauges and their operational pressure range.

type pressure range

Pirani 10−4..103 mbar

Bayerd-Alpert 10−9..10−3 mbar

cold cathode 10−10..102 mbar

hot cathode 10−10..102 mbar

2.1.4 Exercises

2.1.4.1 Ex: Chemical potential surface

Compute and plot the chemical potential surface: (T, P ) for a monatomic ideal gas
in the range 5K < T < 1000K and 10−5 bar < P < 10 bar. Suppose the gas is
helium with the entropy S298 = 126.04 J/(mol K) at room temperature and CP =
5193.2 J/(kg K).

2.1.4.2 Ex: Clausius-Clapeyron relationship

Show that the Clausius-Clapeyron equation,

dP

dT
=

mL

T (Vgas − Vfl)
,

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_UnarySystem01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_UnarySystem02.pdf
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where L is the latent heat and m the mass of the component undergoing a phase
transition from fluid to gas, can also be derived via a cycle analogous to Carnot’s
cycle. The working fluid is an evaporating liquid, and the efficiency of this fictitious
machine is dT/T , because the temperature difference between the two isotherms is
dT . From the heat Q used upon evaporation and the work done

∮
PdV , which are

related on one hand to the latent heat L and on the other to the volume difference of
Vfl and Vgas, results a rise in vapor pressure dP/dT [see Eq. (1.122)].

2.1.4.3 Ex: Measurement of latent heat upon water condensation

A calorimeter with thermal capacity C = 209 J/K initially contains m1 = 250 g of
water in thermal equilibrium at a temperature of T1 = 20 ◦C. Now, an amount of
m2 = 40 g of water vapor is added. After reaching thermal equilibrium again, the
temperature is Tf = 92 ◦C. Calculate the latent heat of water condensation.

2.1.4.4 Ex: Latent heat in a sauna

A Finnish sauna of 10m3 volume is heated to 95 ◦C. To increase the thermal con-
ductivity of the air, 100ml of water at a temperature of 20 ◦C is added to the oven
container, where the water is evaporated. How does the temperature of the sauna
evolve if, for simplicity, the impact of the oven on the temperature is disregarded.

2.1.4.5 Ex: Latent heat

How much heat is needed to transform 1 g of ice at −10 ◦C (cice = 0.55 cal/g/K,
Lfus = 80 cal/g) in a vapor at 100 ◦C (caq = 1 cal/g/K, Lvap = 540 cal/g)?

2.1.4.6 Ex: Latent heat

A metal bar with specific heat capacity cmt = 0.2 cal/g/K at 100 ◦C is placed on a
large block of ice at 0 ◦C. What is the mass of the bar if, when the system reaches
thermal equilibrium, maq = 500 g of ice have melted?

2.1.4.7 Ex: Latent heat

An ice block with the mass mice = 500 g and the temperature −20 ◦C is put in an
airtight container together with mvap = 200 g of water vapor at 100 ◦C. What will be
the final temperature of the system?

2.1.4.8 Ex: A lake in winter

How long does it take at an air temperature of −6 ◦C to form a d = 4 cm thick layer of
ice on the surface of a lake (thermal conductivity of ice: κ = 1.7× 10−2 J /(s cm K);
density of ice: ρ = 0.92 g/cm3; latent heat per mass that must be dissipated to form
ice: Lfus = 334 J/g)
Note: First consider a layer of ice of thickness z, and then think about how much
heat has to be dissipated from the lake in order to to form additional layer of thickness
dz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_LatentHeat01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_LatentHeat02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_LatentHeat03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_LatentHeat04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_LatentHeat05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_LatentHeat06.pdf
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2.1.4.9 Ex: Equations of state for fluids

a. Find in literature a representation of the PV T -diagram for water or carbon dioxide
and discuss it.
b. Find in literature a parametrization of the equation of state for fluid water or
carbon dioxide.

2.1.4.10 Ex: Vacuum chambers

a. Estimate the vacuum pressure in a cubic 1 L science chamber made of baked steel
and pumped by a 8L/s vacuum pump.
b. The science chamber is linked to a preparation chamber maintained at Ppre =
10−7 mbar via a differential vacuum tube with 2 cm length and 2mm diameter. Re-
estimate the vacuum in the science chamber.

2.1.4.11 Ex: Pumping speed in vacuum chambers

Solve the differential equation (2.51) and plot the time evolution of the pressure in
a 10L vacuum chamber pumped by a 1L/s and a 2L/s ion pump assuming feeding
rates of 2 · 10−10 mbarL/s and 4 · 10−10 mbarL/s.

2.2 Multi-component, homogeneous, non-reacting
systems

In this section we will analyze systems made of more than one independent chemical
component, in particular, mixtures or solutions. The chemical content of such a
system is described by specifying the number of particles Nj (or moles nj) of each
component j, which is an extensive property. In order to handle the multi-component
system, we introduce independent chemical potentials µj for every component, which
are intensive variables.

The composition of a system Nj can vary due (i) to exchange with reservoir or
(ii) to conversion via chemical reactions. In this section concentrate on case (i).

2.2.1 The Gibbs-Duhem equation

In Sec. 1.4 we already argued that the energy defined as,

O = G−
∑
j

µjNj =⇒ dO = −SdT + V dP −
∑
j

Njdµj (2.53)

being by definition an extensive variable, cannot be a state potential because it would
only depend on intensive variables. Hence, O = 0 = dO, or,

G =
∑
j

µjNj =⇒ − SdT + V dP =
∑
j

Njdµj . (2.54)

This important result is termed the Gibbs-Duhem equation. This equation shows that
intensive properties are not independent but related. When pressure and temperature

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_LatentHeat07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_VacuumTech01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_VacuumTech02.pdf
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are variable, for a system with J components only J−1 components have independent
values of chemical potential 2.

Example 20 (Derivation of the Gibbs-Duhem equation): Another way
to derive the Gibbs-Duhem equation is by noticing that, as an extensive state
function, the Gibbs potential should satisfy λG(X) = G(λX) for any extensive
variable λ. In particular, it should be linear in the particle numbers, so that,

G =
∑
j

Nj
∂G

∂Nj
=
∑
j

µjNj or dG =
∑
j

µjdNj +
∑
j

Njdµj .

Comparing this to the definition of the Gibbs potential (1.160)(ix),

dG = −SdT + V dP +
∑
j

µjdNj

we must conclude,

−SdT + V dP =
∑
j

Njdµj .

2.2.2 Partial molal properties

We already mentioned that the number of particles Nj (or moles nj) of each com-
ponent j are extensive properties. Corresponding intensive properties that can be
defined are the fractions of particles Nj/Ntot with Ntot =

∑
j Nj (or the molar frac-

tions nj/ntot). Now, for any arbitrary extensive property X = X(T, P,N1, N2, ...) of
the system, which can be any of the state functions X = E,S, V,H, F,G, we may
define a corresponding partial molal property of only the component j,

X̄j ≡
(
∂X

∂Nj

)
P,T,Nk ̸=j

, (2.55)

by holding pressure, temperature, and the number of moles of all other components
fixed. Note that, in contrast to the previous decoration (̃.), which referred to mo-
lar quantities per total number of particles, the new decoration (̄.) refers to molal
quantities per number of particles of that species. Then, the total differential form is,

dX =

(
∂X

∂T

)
P,{Nj}

dT +

(
∂X

∂P

)
T,{Nj}

dP +
∑
j

X̄jdNj . (2.56)

Example 21 (Partial molal volume): Considering, for example, volume V =
V (T, P,N1, N2, ...). Then,

dV =

(
∂V

∂T

)
P,{Nj}

dT +

(
∂V

∂P

)
T,{Nj}

dP +
∑
j

(
∂V

∂Nj

)
P,T,Nk ̸=j

dNj (2.57)

= αV dT − V κ dP +
∑
j

V̄j dNj .

2The Gibbs-Duhem equation cannot be used for small thermodynamic systems due to the influence
of surface effects and other microscopic phenomena.
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with the definitions (1.71) of the thermal expansion coefficient and the com-
pressibility,

α ≡ 1

V

(
∂V

∂T

)
P,{Nj}

, κ ≡ − 1

V

(
∂V

∂P

)
T,{Nj}

. (2.58)

The quantity V̄j is called partial molal volume, and analogous procedures can

be followed for Ēj , S̄j , V̄j , H̄j , F̄j , Ḡj .

For the particular extensive property X → G and X̄j → µj we derived the Gibbs-
Duhem equation (2.54), but the result holds for any extensive property satisfying
(2.55). E.g. holding temperature and pressure constant, (2.56) becomes,

dXT,P =
∑
j

X̄jdNj . (2.59)

That is, changes of the partial molal properties of the components add up to a total
change of the system. The value of the extensive state function XT,P is obtained
by integrating (2.59). Fortunately, as an intensive property, X̄j can only depend on
other intensive properties, that is, it cannot depend on Nj . Furthermore, changes of
state functions are path-independent. Hence, the total state XT,P reached by adding
all the components is,

XT,P =
∑
j

∫ Nj

0

X̄jdNj =
∑
j

X̄j

∫ Nj

0

dNj =
∑
j

X̄jNj . (2.60)

When we differentiate (2.60),

dXT,P =
∑
j

X̄jdNj +
∑
j

NjdX̄j , (2.61)

which only coincides with Eq. (2.59), if the second term vanishes. Hence,∑
j

NjdX̄j = 0 . (2.62)

Substituting X̄j → µj , we recover the Gibbs-Duhem equation (2.54) for the case
T, P = cnst.

The important message of the Gibbs-Duhem equation is, that the partial molal
properties are not all independent. Its integration provides a recipe, how to cal-
culate values of partial molal properties of one component from those of the other
components, as we will see later.

2.2.2.1 The mixing process

Temperature, pressure, volume and, according to the third law of thermodynamics,
entropy, all have absolute non-zero values. In contrast, the energy functions E,H,F,G
are only defined with respect to some reference state, i.e. only their changes are really
of interest.
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Figure 2.5: Initial ’reference state’ and final mixture.

We will now study the mixing process resulting from putting together several
components at constant pressure and temperature and waiting for them to form a
homogeneous solution. In order to guarantee that only the mixing process by itself
is studied, we start from a ’reference state’ in which all components are spatially
separated and held at the same temperature and pressure, as illustrated in Fig. 2.5,

X0 =
∑
j

X̄0
jNj . (2.63)

Mixing changes the value of state functions,

X0 ↷ Xsol = X0 +∆Xmix . (2.64)

Now,

∆Xmix =
∑
j

(
X̄sol

j − X̄0
j

)
Nj =

∑
j

∆X̄mix
j Nj . (2.65)

∆X̄mix
j measures the change per particle of type j that the state function suffers from

being put into the surrounding composed by all other particle types, and ∆Xmix is
the weighted sum of all these changes. Differentiating Eq. (2.65),

d∆Xmix =
∑
j

∆X̄mix
j dNj +

∑
j

Nj d∆X̄
mix
j . (2.66)

For the second term of the right hand side we find,∑
j

Nj d∆X̄
mix
j =

∑
j

Nj dX̄
sol
j −

∑
j

Nj dX̄
0
j , (2.67)

Here, the second term of the right hand side is zero because X̄0
j are properties of the

reference state, which is fixed by definition. The summation over the first term of the
right hand side is zero by the Gibbs-Duhem equation (2.62). Hence,∑

j

Njd∆X̄
mix
j = 0 , (2.68)

which is the Gibbs-Duhem equation applied to the mixing process. With this we
deduce from (2.66),

d∆Xmix =
∑
j

∆X̄mix
j dNj . (2.69)
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2.2.2.2 Partial molal properties from total properties

Obviously, all relationships derived in the previous section can be normalized to the
total number of particles (or moles) Ntot. We just need to replace all extensive state
functions E,S, V,H, F,G by molar quantities, X → X̃, and particle numbers (or
partial moles) by fractions Nj → ηj ≡ Nj/Ntot, with

∑
j ηj = 1.

Let us consider a binary system and rewrite Eq. (2.65) for normalized quantities,

∆X̃mix = η1∆X̄
mix
1 + η2∆X̄

mix
2 . (2.70)

Also from (2.69),

d∆X̃mix = ∆X̄mix
1 dη1 +∆X̄mix

2 dη2 with dη1 = −dη2 , (2.71)

which gives,

d∆X̃mix

dη2
= ∆X̄mix

1 −∆X̄mix
2 . (2.72)

Isolating the terms X̄mix
1 and X̄mix

2 from the system of equations (2.70) and (2.72),

∆X̄mix
j = ∆X̃mix + (1− ηj)

d∆X̃mix

dηj
with j = 1, 2 . (2.73)

Thus, knowing the the total change of the molal quantity ∆X̃mix and molar fractions
ηj of the components, we can compute the partial changes ∆X̃mix

j for all components.

Example 22 (Partial molal enthalpies upon mixing a binary solution): In
this example we calculate the partial molal enthalpies upon mixing a binary solu-
tion for a model enthalpy given by ∆Hmix = aη1η2 and satisfying limη1→0 ∆Hmix =
0. Using η1 + η2 = 1 the enthalpy can be rewritten,

∆Hmix = a(η1 − η2
1) = a(η2 − η2

2) .

Evaluating,

d∆H̄mix

dηj
= a(1− 2ηj) ,

we get,

∆H̄mix
1 = ∆Hmix + (1− η1)

d∆H̄mix

dη1
= aη2

2 ,

and finally,

∆H̄mix
j = aη2

i ̸=j .

A consistency check yields,

∆Hmix = ∆H̄mix
1 η1 +∆H̄mix

2 η2 .
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2.2.2.3 Partial molal properties of one component from those of others

The partial molal version of the Gibbs-Duhem relation for the mixing process (2.68)
is, ∑

j

ηjd∆X̄
mix
j = 0 , (2.74)

or restricting to two species,

d∆X̄mix
1 = −η2

η1
d∆X̄mix

2 . (2.75)

Now, limη2→0 X̄
sol
2 = X̄0

2 , since there is nothing to mix. Hence, limη2→0 ∆X̄
mix
2 = 0.

This condition provides a starting point when integrating the last expression,

∆X̄mix
1 = −

∫ ∆X̄mix
2

0

η2
η1
d∆X̄mix

2 = −
∫ η2

0

η2
η1

d∆X̄mix
2

dη2
dη2 . (2.76)

Example 23 (Partial molal enthalpies upon mixing a binary solution): As-
sume that we have a partial molal enthalpy of component 2 depending on the
square of the abundance of the other component 1,

∆Hmix
2 = aη2

1 .

Then, the above recipe yields,

∆H̄mix
1 = −

∫ η2

0

η2
η1

d∆H̄mix
2

dη2
dη2 = −

∫ η2

0

η2
η1

da(1− η2)
2

dη2
dη2 = aη2

2 .

2.2.2.4 Relationships among partial molal properties

As seen in Sec. 2.2.2, application of the operator,(
∂

∂Nj

)
T,P,Nk ̸=j

(2.77)

to any total property X yields the corresponding molal property. Applying this
operator to the definitions, laws, coefficient relations, and Maxwell equations, we
obtain the corresponding molal expressions. For example, the counterpart of the
relation H = E + PV is,

H̄j ≡
(
∂H

∂Nj

)
T,P,Nk ̸=j

=

(
∂E

∂Nj

)
T,P,Nk ̸=j

+ P

(
∂V

∂Nj

)
T,P,Nk ̸=j

≡ Ēj + PV̄j , (2.78)

and analogously for all other equations. For a solution with various components, we
can simply substitute any extensive variable X for each component j,

X −→ X̄j . (2.79)
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2.2.3 Chemical potential in solutions

We have seen above that, initially introduced for unary systems in Sec. 1.3.2, the
concept of chemical potential can be extended to multicomponent systems. We will
show below that, if the chemical potential is known as a function of temperature,
pressure and composition, then all of the partial molal properties of the system may
be computed. The thermodynamic state of a system with J components depends on
J + 2 variables,

E = E(T, P,N1, ..., NJ) =⇒ dE = TdS − PdV +

J∑
j=1

µjdNj (2.80)

with

µj ≡
(
∂E

∂Nj

)
S,V,Nk ̸=j

. (2.81)

Comparing the expression (2.80) with the first law, we identify,

δArev =

J∑
j=1

µjdNj (2.82)

as an additional non-mechanical work. We simply need to substitute,

µdN −→
J∑

j=1

µjdNj (2.83)

in (1.161) to obtain the corresponding expression for multicomponent systems.
Although the chemical potential can be expressed as partial derivatives of various

state energies,

µj =

(
∂E

∂Nj

)
S,V,Nk ̸=j

=

(
∂H

∂Nj

)
S,P,Nk ̸=j

=

(
∂F

∂Nj

)
T,V,Nk ̸=j

=

(
∂G

∂Nj

)
T,P,Nk ̸=j

= Ḡj ,

(2.84)
only the last one is a partial molal property, distinguished by the fact that the intensive
properties temperature and pressure are held constant, e.g. µj ̸= Ēj . If energies other
than the Gibbs free energy are to be expressed as partial molal properties, they need
to be related to the Gibbs energy using the expressions (1.160),

Ḡj = µj

S̄j = −
(

∂Ḡj

∂T

)
P,Nk

= −
(

∂µj

∂T

)
P,Nk

V̄j =
(

∂Ḡj

∂P

)
T,Nk

=
(

∂µj

∂P

)
T,Nk

H̄j = Ḡj + T S̄j = µj − T
(

∂µj

∂T

)
P,Nk

F̄j = Ḡj − PV̄j = µj − P
(

∂µj

∂T

)
T,Nk

Ēj = Ḡj + T S̄j − PV̄j = µj − T
(

∂µj

∂T

)
P,Nk

− P
(

∂µj

∂T

)
T,Nk

(2.85)
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The linearity of the expressions allows us to extend them to changes of states,
∆µj = µj − µ0

j . For example, for a binary system, the Gibbs-Duhem formula (2.74)
applied to Gibbs free energy, X −→ G, reads,

η1d∆Ḡ1 + η2d∆Ḡ2 = η1d∆µ1 + η2d∆µ2 = 0 , (2.86)

and the integrated version,

∆µ1 = −
∫ η2

0

η2
η1

d∆µ2

dη2
dη2 . (2.87)

Thus, if ∆µ2 is known as a function of composition at any temperature and pressure,
we can also calculate ∆µ1 and all other partial molar state functions according to
(2.85), as well as the total properties according to (2.70).

2.2.3.1 Activity in ideal gas solutions

In experiments, instead of the chemical potential, the activity of a component aj or
the activity coefficient γj are frequently measured,

aj ≡ e∆µj/kBT ≡ ηjγj . (2.88)

When a mixture is produced by combining ideal gases initially stored in different
volumes at the same temperature and pressure, as illustrated in Fig. 2.5, every species
by itself generates a smaller partial pressure in the total volume, corresponding to its
abundance. Summed up, however, they reproduce the initial pressure. This is called
Dalton’s law,

Pj ≡ ηjP such that P =
∑
j

Pj . (2.89)

Now, we focus on the change experienced by an individual component j during
the mixing process, which corresponds to an isothermal expansion of the component,
(T0, P0) −→ (T0, Pj = ηjP0). The corresponding change in chemical potential is,

dµj = dḠj = −S̄jdT + V̄jdP
dT=0−→ V̄jdP , (2.90)

since temperature does not change. The partial molal volume can be evaluated from,

V̄j =

(
∂V

∂Nj

)
T,P,Nk ̸=j

(2.91)

ideal−→

(
∂NkBT

P

∂Nj

)
T,P,Nk ̸=j

=

(
∂
∑

k
NkkBT

P

∂Nj

)
T,P,Nk ̸=j

=
kBT

P
,

assuming ideal gases. With this we can now proceed to integrate the chemical
potential change (2.90),

∆Ḡj = ∆µj = µj − µ0
j =

∫ Pj

P0

V̄jdPT = kBT ln
Pj

P0
= kBT ln ηj . (2.92)
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Comparing with the chemical potential obtained from the definition (2.88),

∆µj = kBT ln aj , (2.93)

we see that, for ideal gas solutions the abundance and the activity are identical, which
is to say the activity coefficient is γj = 1. Based on the expressions (2.85), we can
also calculate the dependence of other partial molal properties on the abundances,

partial molal property total property

∆Ḡj = kBT ln ηj ∆G̃mix = kBT
∑
ηj ln ηj

∆S̄j = −
(

∂∆Ḡj

∂T

)
P,Nk

= −kB ln ηj ∆S̃mix = −kB
∑
ηj ln ηj

∆V̄j =
(

∂∆Ḡj

∂P

)
T,Nk

= 0 ∆Ṽ mix = 0

∆H̄j = ∆Ḡj + T∆S̄j = 0 ∆H̃mix = 0

∆F̄j = ∆Ḡj − P∆V̄j = kBT ln ηj ∆F̃mix = kBT
∑
ηj ln ηj

∆Ēj = ∆Ḡj + T∆S̄j − P∆V̄j = 0 ∆Ẽmix = 0

(2.94)

The dependencies are plotted in Fig. 2.6(a,b) for a two-component system. We notice
that (i) the curves are symmetric with respect to ηj ↔ 1 − ηj ; (ii) their slopes are
vertical for ηj −→ 0, 1; (iii) ∆Smix

j is temperature-independent.
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Figure 2.6: (code) Dependence of state functions on composition and temperature in the

range between 300K and 1700K. (a) The entropy for an ideal gas and a regular solution

are identical. (b) Gibbs free and Helmholtz free energy for an ideal gas solution and (c) for

a regular solution.

The results (2.94) obtained for an ideal solution are extremely useful to benchmark
deviations observed in real solutions.

2.2.3.2 Fugacity in real solutions

For real solutions for which the ideal gas equation does not hold, the partial molal vol-
ume cannot be determined from Eq. (2.91), but must be experimentally determined.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_IdealRealSolution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_IdealRealSolution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_IdealRealSolution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_IdealRealSolution.m
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It is often interesting to define a ’deviation volume’,

Vj ≡ V̄j −
kBT

P
. (2.95)

In analogy to (2.92), the chemical potential change can then be written,

∆µj =

∫ Pj

P0

V̄jdP =

∫ Pj

P0

(
kBT

P
+Vj

)
dP (2.96)

= kBT ln
Pj

P0
+

∫ Pj

P0

VjdP ≡ kBT ln
fj
P0

.

The last equality of (2.96) defines the fugacity of a component of a mixture,

fj = Pj exp

(
1

kBT

∫ Pj

P0

VjdP

)
. (2.97)

As the deviation from ideal gas behavior, measured by Vj diminishes, the fugacity
of component j approaches its partial pressure. Measurement of the fugacity of one
component over a range of temperature, pressure, and composition is sufficient to
describe the behavior of real gas mixtures completely in that range.

2.2.3.3 Activity in real solutions

Remembering that the chemical potential can also be expressed in terms of activity
via Eq. (2.92), we see that activity and fugacity are intrinsically related,

fj = P0aj . (2.98)

From (2.92),

∆Ḡj = kBT ln aj = kBT ln ηjγj = ∆Ḡid +∆Ḡxs (2.99)

with ∆Ḡid ≡ kBT ln ηj and ∆Ḡxs ≡ kBT ln γj .

The activity coefficient γj = γj(T, P, ηj) quantifies the deviation from ideal solution
behavior; if γj > 1 then the component j ’acts’ as if its abundance were more than
expected from a supposed ideal gas behavior.

Using the expressions for the thermodynamic potentials of the first column of
Tab. (2.93), we can also express the other partial molal properties (PMP) in terms of
activity or activity coefficient,

PMP as a function of activity activity coefficient

∆Ḡj/kBT = ln aj = ln(γjηj)

∆S̄j/kB = − ln aj − T
(

∂ ln aj

∂T

)
P,Nk

= − ln(γjηj)− T
(

∂ ln γj

∂T

)
P,Nk

∆V̄j/kBT =
(

∂ ln aj

∂P

)
T,Nk

=
(

∂ ln γj

∂P

)
T,Nk

∆H̄j/kBT = −T
(

∂ ln aj

∂T

)
P,Nk

= −T
(

∂ ln γj

∂T

)
P,Nk

∆F̄j/kBT = ln aj − P
(

∂ ln aj

∂P

)
T,Nk

= ln(γjηj)− P
(

∂ ln γj

∂P

)
T,Nk

∆Ēj/kBT = −T
(

∂ ln aj

∂T

)
P,Nk

− P
(

∂ ln aj

∂P

)
T,Nk

= −T
(

∂ ln γj

∂T

)
P,Nk

− P
(

∂ ln γj

∂P

)
T,Nk

(2.100)
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2.2.4 Models of real solutions

The ideal solution assumption disregards any features emanating from properties of
the microscopic constituents. Hence, at same temperature and composition all ideal
solutions are equal. More sophisticated models are required to remove this degeneracy.

2.2.4.1 Regular and non-regular solutions

One real solution model is the regular solutionsmodel. It is based on two assumptions:

1. The mixing entropy is that of an ideal solution:

∆S̃mix,rl = ∆S̃mix,id = −Rg

∑
j

ηj ln ηj . (2.101)

2. The solution enthalpy is a function of composition, and not zero as in ideal
solutions,

∆H̃mix,rl = ∆H̃mix,xs(ηj) . (2.102)

Because, the excess mixing entropy vanishes ∆S̃mix,xs ≡ ∆S̃mix,rl −∆S̃mix,id = 0,
the excess Gibbs free energy G̃ = H̃−T S̃ becomes equal to the excess mixing enthalpy,

∆G̃mix,xs = (∆H̃mix,rl − T∆S̃mix,rl)− (∆H̃mix,id − T∆S̃mix,id) (2.103)

= ∆H̃mix,xs .

Thus, in regular solutions, because the entropy of mixing is defined to be zero,
the excess Gibbs energy is equal to the enthalpy of mixing, which is a function of
composition, but not temperature. Since the temperature derivative of the excess
Gibbs energy is equal to minus the excess entropy of mixing, Sj = (∂Gj/∂P )T,Nj

, the
temperature derivative of ∆Ḡmix,xs and hence ∆H̄mix must be zero.

For the components j, we have from Eq. (2.99),

∆Ḡmix,xs = kBT ln γj =⇒ γj = e∆H̄mix,xs
j /kBT . (2.104)

Since, all properties of a solution can be calculated from a known activity coeffi-
cient γj , the regular solution model focuses upon the heat of mixing as a function of
composition.

Example 24 (Real solution model with a single adjustable parameter): Let
us suppose the heat of mixing for a binary solution can be described by the sim-
ple formula,

∆H̄mix
j = ∆Ḡmix,xs

j = a0η1η2 .

Then,

∆Ḡmix =
∑
j

ηj(∆Ḡmix,id +∆Ḡmix,xs)

= kBT (η1 ln η1 + η2 ln η2) + a0η1η2 .

The behavior is shown in Fig. 2.6(c).

A solution is called ’non-regular’ when the coefficients of the solution model ad-
ditionally depend on temperature, for example,

∆H̄mix
j = [a1(T )η1 + a2(T )η2]

2 . (2.105)
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2.2.4.2 Atomistic model for real solutions

In Sec. 1.2.7 we have seen, that the behavior of real gases can be somewhat different
from that of an ideal gas and how to incorporate this in a heuristic model. The
justification of the van der Waals equation (1.127) was the existence of interparticle
forces capable of storing energy depending on the mean interparticle distance [see
Fig. 1.6(a)].

The interparticle forces obviously depend on the colliding partners, the interaction
energy V11 ruling a collision between two particles of type j = 1 will be different from
V22 and V12. Hence, in multi-component systems the corrections to the real solution
model must depend on the fractions η1 and η2.

In a random mixture, the probability for collisions between identical and between
different particles scales as,

pjj = η2j and p12 = 2η1η2 . (2.106)

The presence of collisions different particles motivates the ansatz for the mixing en-
tropy made in example 20,

∆Hmix = aη1η2 . (2.107)

Do the Excs. 2.2.6.1 to 2.2.6.4.

2.2.5 Osmotic pressure

Osmosis is a physical process in which any solvent moves across a selectively semi-
permeable membrane (permeable to the solvent, but not the solute) separating two
solutions of different concentrations, as depicted in Fig. 2.7. Osmosis can be made to
do exert work.

Figure 2.7: Osmosis occurs when two solutions containing different concentrations of solute
are separated by a selectively permeable membrane. Solvent molecules pass preferentially
through the membrane from the low-concentration solution to the solution with higher solute
concentration. The transfer of solvent molecules will continue until osmotic equilibrium is
attained. (a) Pressure balance without solute and (b) with solute.

Without solute [situation shown in Fig. 2.7(a)] the chemical potential of the solvent
(index ’v’) in the compartment left to the membrane (subscript ’1’) and on the right
(subscript ’0’) are equal,

µ1
v(P

1) = µ0
v(P

0) where P 1 = P 0 (2.108)
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are the pressures in both compartment.
Having introduced a solute (index ’s’) into the left compartment [situation shown

in Fig. 2.7(b)], the chemical potential in the left compartment must still be the same,
as it is forced to equilibrate with the one in the right compartment which remains
unchanged 3. However, the introduction of the solute reduces the molar fraction of the
solvent from ηv = 1 to a value ηv ∈ [0, 1]. This also reduces the chemical potential
which, according to Eq. (2.88) or Fig. 2.6(b) now also depends on ηv. In order to
maintain the chemical potential balanced, the system reacts by increasing the pressure
P (l) in the left compartment. We can therefore write the chemical potential of the
solvent in equilibrium on both sides of the membrane,

µ1
v(ηv, P

0 +∆P ) = µ1
v(1, P

0) = µ0
v(P

0) . (2.109)

The difference in pressure ∆P of the two compartments is the osmotic pressure exerted
by the solute.

In order to find the osmotic pressure, we consider equilibrium between a solu-
tion containing solute and pure solvent, as described by Eq. (2.109). Exploiting the
definition (2.88) of the activity coefficient γv, we can write the left hand side as,

µ1
v(ηv, P

0 +∆P ) = µ1
v(1, P

0 +∆P ) + kBT ln(γvηv) . (2.110)

The product γvηv is also known as the activity of the solvent, which for water is the
water activity aaq = γaqηaq = 1. The pressure change is given by,

µ1
v(1, P +∆P ) = µ0

v(1, P
0) +

∫ P+∆P

P

Ṽ (P ′)dP ′ , (2.111)

in analogy to (2.96). In order to fulfill the equilibrium condition (2.109), the chemical
potential change (2.111) induced by reduction of the molar fraction γv must compen-
sate the chemical potential change (2.112) induced by osmotic pressure,∫ P+∆P

P

Ṽ (P ′)dP ′ equil.
= −kBT ln(γvηv) . (2.112)

If the liquid is incompressible, the molar volume is constant, Ṽ (P ′) ≡ Ṽ , and the
integral becomes Ṽ∆P . Thus, we get,

∆P = −kBT
Ṽ

ln(γvηv) . (2.113)

Generally, the activity coefficient is a function of concentration and temperature.
However, dilute mixtures (characterized by ηs ≪ 1 and Ns ≪ Nv) are often well
described as ideal solutions, for which γv ≃ 1,

∆P = −kBT
Ṽ

ln γvηv
γv≃1
≃ −kBT

Ṽ
ln ηv = −kBT

Ṽ
ln(1− ηs) (2.114)

ηs≪1
≃ kBT

Ṽ
ηs =

kBT

Ṽ

Ns

Ns +Nv

Ns≪Ns≃ kBT

Ṽ

Ns

Nv
=
kBT

V
Ns = kBTns .

3Note that the solvent is the only component free to flow toward equilibrium.
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In the third line, we defined the density ns ≡ Ns/V .

For aqueous solutions of salts, ionization must be taken into account. In such
cases, the osmotic pressure can be generalized to the van’t Hoff law,

∆P = ivHRgT c , (2.115)

ivH van’t Hoff factor (the number of particles the solute dissociates into; for example,
ivH = 2 for NaCl, since it dissociates into Na+ and Cl– . c is the molarity of the solute
(in mol/L). Do the Exc. 2.2.6.5.

2.2.6 Exercises

2.2.6.1 Ex: Partial pressures

A closed cylindrical reservoir with the base area S = 10 cm2 is kept at a constant
temperature T = 27 ◦C. It is divided in two volumes by an airtight mobile disk with
the mass m = 10 kg. The upper volume VO2

contains ηO2
= 1mol of oxygen, the

lower volume VN2 contains the same amount of nitrogen. Due to its weight the disc
finds an equilibrium position when the lower volume is VN2 = 10L.
a. What are the masses mO2

and mN2
of the gases?

b. What are the pressures PO2
and PN2

?
c. What is the upper volume VO2

?
d. What are the densities nO2 and nN2?
e. Now the disc has a hole, so that the gases can mix and the disc falls to the bottom
of the reservoir. What is the final pressure of the mixture?

2.2.6.2 Ex: Gibbs-Duhem integration

For an ideal solution, it is known that for component 2,

∆Ḡ2 = RgT ln η2 .

Use the Gibbs-Duhem integration (2.76) to derive the corresponding relation for com-
ponent 1.

2.2.6.3 Ex: Oxygen concentration in a metal

Titanium metal is capable of dissolving up to 30 atomic percent oxygen, a feature that
is interesting for the realization of ultra high vacuum sublimation pumps. Consider
a solid solution in the system Ti + O containing an atom fraction, ηO = 0.12. The
molar volume of this alloy is ṼTi+O = 10.68 cm3/mol. Calculate:
a. The weight percent of O in the solution.
b. The molar concentration (mol/cm3) of O in the solution.
c. The mass concentration (g/cm3) of O in the solution.
d. Use these calculations to deduce general expressions for weight percent, molar and
mass concentrations of a component in a binary solution in terms of the atom fraction,
η2, the molar volume Ṽ1+2, and the molecular weights of the elements involved.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_MultiSystem01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_MultiSystem02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_MultiSystem03.pdf
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2.2.6.4 Ex: Gibbs-Duhem rule

Given that the volume change upon mixing of a solution obeys the relation Ṽ mix =
aη1η

2
2 ,

a. derive expressions for the partial molal volumes of each of the components as
functions of composition;
b. demonstrate that your result is correct by using it to compute Ṽ mix and showing
that the equation above is recovered.

2.2.6.5 Ex: Osmotic pressure of a NaCl solution

Calculate the osmotic pressure in a 1mol/L solution of NaCl at 25 ◦.

2.3 Multi-component, heterogeneous, non-reacting
systems

2.3.1 Equilibrium conditions

Expressions for multi-component systems require addition of terms describing particle
exchange,

∑
j µjdNj . For example, the combined first and second law for homoge-

neous multi-component reads,

dE = TdS − PdV +

J∑
j=1

µjdNj . (2.116)

Now, we assume that each component exists in Γ different phases. Each phase viewed
as a system exchanges heat, work, and matter with the other phases and with the
reservoir,

dEγ = T γdSγ − P γdV γ +

J∑
j=1

µγ
j dN

γ
j , (2.117)

for all phases γ = α, β, .... For the extensive properties V, S,E,H, F,G the value for
the property of the system is the sum of the parts,

Xsyst =

Γ∑
γ=1

Xγ . (2.118)

When the system is taken through an arbitrary change of state, then the change of
Xsyst is simply the sum of the changes that each phase experiences,

dXsyst = d

(
Γ∑

γ=1

Xγ

)
=

Γ∑
γ=1

dXγ . (2.119)

As an example, let us regard a change in internal energy,

dEsyst =

Γ∑
γ=1

T γdSγ − P γdV γ +

J∑
j=1

µγ
j dN

γ
j

 . (2.120)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_MultiSystem04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_MultiSystem05.pdf
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Figure 2.8: Heat work, and particle exchange in a micro structure with 3 components and
two phases.

To find the equilibrium conditions, we need to express the entropy. We solve the
Eq. (2.117) for dSγ and sum up the entropies for all phases,

dSsyst =

Γ∑
γ=1

dSγ =

Γ∑
γ=1

 1

T γ
dEγ +

P γ

T γ
dV γ − 1

T γ

J∑
j=1

µγ
j dN

γ
j

 . (2.121)

The condition for equilibrium is Ssyst = maximal. Eq. (2.121) contains Γ× (2+J)
variables, but their number is reduced if the system is isolated from the reservoir,
dEsyst = dV syst = dN syst = 0. Let us suppose there are only two phases γ = α, β.
Then the isolation assumption reads,

dEα = −dEβ , dV α = −dV β , dNα = −dNβ , (2.122)

and the expression (2.121) becomes,

dSsyst,iso =

(
1

Tα
− 1

T β

)
dEα +

(
Pα

Tα
− P β

T β

)
dV α −

J∑
j=1

(
µα
j

Tα
−
µβ
j

T β

)
dNα

j

!
= 0 . (2.123)

From this follows,

Tα = T β thermal equilibrium

Pα = P β mechanical equilibrium

µα
j = µβ

j , ∀j ≤ J chemical equilibrium

(2.124)

This rule can be easily generalized to more than two phases by pairwise comparison
of the phases. We immediately see that,

Tα = T β = . . . = TΓ thermal equilibrium

Pα = P β = . . . = PΓ mechanical equilibrium

µα
j = µβ

j = . . . = µΓ
j , ∀j ≤ J chemical equilibrium

(2.125)

These equations form the basis for the construction and calculation of multi-component
multi-phase phase diagrams.
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2.3.1.1 The Gibbs phase rule

An interesting question is, how many independent variables are needed to completely
describe a composite system. This number f is called the number of macroscopic
thermodynamic degrees of freedom.

The system (2.125) consists of (Γ−1)× (2+J) equations and contains Γ× (2+J)
variables. However, the Gibbs-Duhem equation (2.54) imposes additional constraints
relating the chemical potentials between the components for all Γ allotropic phases 4.
Hence,

f = Γ× (2 + J) − (Γ− 1)× (2 + J) − Γ , (2.126)

that is,

f = J + 2− Γ . (2.127)

The rule assumes the components do not react with each other. The number of
degrees of freedom is the number of independent intensive variables, i.e. the largest
number of thermodynamic parameters such as temperature or pressure that can be
varied simultaneously and arbitrarily without determining one another.

2.3.2 Structure of phase diagrams

Phase diagrams are graphical representations of the domains of stability of the vari-
ous classes of structures (one, two, or more phases) that a system may have mostly
in (T, P, ηj)-space. A unary system (J = 1) with Γ coexisting phases has, according
to the Gibbs phase rule, f = 3 − Γ degrees of freedom. From the fact that f de-
creases with the number of phases we deduce, that single-phase regions require the
largest amount of variables for their specification. Consequently, the graphical space
in which the phase diagram is constructed must have J+1 independent coordinates to
allow for a representation of the full range of behavior of the single-phase regions. A
unary system thus can be plotted in a (P, T )-diagram, while a binary system already
requires a three-dimensional space, e.g. (T, P, η2). As printed pages only have two di-
mensions, one has to resort to sections across multi-phase diagrams or to projections.
Sections provide quantitative information, while projections illustrate better general
relationships. Do the Exc. 2.3.3.1 and 2.3.3.2.

Example 25 (Phase diagrams): According to the Gibbs phase rule, a unary

homogeneous system has f = 2 degrees of freedom. A unary heterogeneous

system with two (or more) phases (f ≤ 2) is characterized by phase boundaries

(or triple points), which can be conveniently represented in a plane PT -diagram.

2.3.3 Exercises

2.3.3.1 Ex: Volume change in a multi-phase multi-component system

Use Eq. (2.119) to write out a general expression for the change of volume of a three-
phase two-component system including all 12 terms.

4This comes down to removing particle number Nj as an independent variable.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_PhaseSystem01.pdf
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2.3.3.2 Ex: Phase diagram of water

Sketch the phase diagram for pure water in (P, V ) space. Be careful to incorporate
the observation that solid water shrinks upon conversion to the liquid state. Discuss
complications in the structure of the diagram that derive from this fact.

2.4 Continuous, non-uniform systems exposed to
external forces

When we discussed thermodynamic equilibrium in Secs. 1.3 and 2.1, we tacitly as-
sumed that the intensive properties within a phase are uniform, i.e. a single tempera-
ture, pressure, or composition can be assigned to a particular phase α, and the same
holds for the chemical potential and all partial molal properties. On the other hand,
those properties can vary from phase to phase.

In the presence of external force fields the situation is different. Equilibrated sys-
tems may then exhibit temperature, pressure, or composition profiles. One example
is the atmosphere on Earth, whose vertical temperature and pressure profile is de-
scribed by the barometric formula studied in Excs. 1.1.4.3 and 1.1.4.3; an atomic gas
confined in a harmonic trapping potential develops a radial density profile studied in
Excs. 4.1.7.14 to 4.1.7.16; mixtures submitted to centrifuges may experience a sepa-
ration of their components; and an electrostatic field will separate components with
different charges.

To handle thermodynamic properties in such locally homogeneous but globally
non-uniform systems, we need to introduce the concept of densities of extensive ther-
modynamic quantities, e.g. the energy density, which are scalar fields, i.e. local inten-
sive properties associated with each point of the system in space.

2.4.1 Thermodynamic densities

For each extensive property of a system, X ∈ {S, V,E, F,H,G,Nj}, we may define a
corresponding local density,

x(r) ≡ δX

δV
, (2.128)

where the V is a volume element near the point located at the coordinates r. Here,
we use the symbol δ for spatial differentials to distinguish them from thermodynamic
state changes denoted by the symbol d. Then, x(r)δV is the total value of the exten-
sive property X in the volume element and,

X =

∫
V

x(r)δV (2.129)

in the whole system. Changes of this property along a thermodynamic process are
expressed as usual,

dXV =

∫
V

dx(r)δV , (2.130)

where we assume that these changes do not modify the volume.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_PhaseSystem02.pdf
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Let us now calculate the differential of the energy density using the prescription
(2.128) for a thermodynamic process. Since the process does not change the volume
element, we can write,

de(r) =
δdEV

δV
=

δ

δV

TdSV − PdVV +
∑
j

µjdNjV

 (2.131)

= T
dδSV

δV
+
∑
j

µj
dδNjV

δV
= Tds(r) +

∑
j

µjdnj(r) ,

where s is the entropy density and nj the molar density of the component j. That
is, we can derive local versions for all thermodynamic relationships.

2.4.2 Equilibrium conditions

2.4.2.1 Without external force field

Integrating Eq. (2.131) we get, resolved by entropy

dS =

∫
V

 1

T
de− 1

T

∑
j

µjdnj

 δV . (2.132)

If during the thermodynamic process the system is isolated against energy and particle
exchange,

0 = dE =

∫
V

de(r)δV and 0 = dNj =

∫
V

dnj(r)δV . (2.133)

Equilibrium is reached when the entropy is maximum, and a necessary condition for
that is,

dS −
∑
j

kBαjdNj − kBβdE = 0 (2.134)

for any value of the Lagrange multipliers αj and β. Substituting (2.132) and (2.133),

0 =

∫
V

 1

T
de(r)− 1

T

∑
j

µjdnj(r)

 δV − kBβ
∫
V

de(r)δV −
∑
j

kBαj

∫
V

dnj(r)δV ,

(2.135)
which implies,

0 =

(
1

T
− kBβ

)
de(r)−

∑
j

(µj

T
+ kBαj

)
dnj(r) . (2.136)

We conclude,

β =
1

kBT
, αj = −

µj

kBT
. (2.137)

Since αj and β are constants, this means that temperature and chemical potential
cannot depend on position,

∇T = 0 = ∇µj . (2.138)
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To derive the condition for mechanical equilibrium, we apply the operator (2.55)
on the Gibbs-Duhem relation (2.54) resolved by one of the species j, that is,(

∂

∂Nj

)
P,T,Nk ̸=j

applied to Njdµj = −SdT + V dP −
∑
k ̸=j

Nkdµk , (2.139)

and obtain the partial molal equation,

dµj = −S̄jdT + V̄jdP −
∑
k ̸=j

Nk

(
∂dµk

∂Nj

)
P,T,Nk ̸=j

. (2.140)

We now interpret the differential forms as gradients, d→ dr → ∇,

∇µj = −S̄j∇T + V̄j∇P −
∑
k ̸=j

Nk

(
∂∇µk

∂Nj

)
P,T,Nk ̸=j

. (2.141)

As we already found the equilibrium conditions ∇T = 0 = ∇µj , we get,

V̄j∇P =
∑
k ̸=j

Nk

(
∂∇µk

∂Nj

)
P,T,Nk ̸=j

. (2.142)

Multiplying both sides with ηj and summing over all components, and exploiting the
fact that summation over all partial molal volumes produces the total molar volume,∑

j ηj V̄j = Ṽ ,

Ṽ∇P =
∑
j

ηj
∑
k ̸=j

Nk

(
∂∇µk

∂Nj

)
P,T,Nk ̸=j

. (2.143)

The right-hand side can be shown to vanish using the Gibbs-Duhem equation (2.62).
Hence,

∇P = 0 . (2.144)

The results (2.138) and (2.144) were expected and only tell us that there is nothing
wrong with the density formalism.

2.4.2.2 With external force field

Let us now study the impact of time invariant external forces. The time invariance
is obviously necessary to allow the system to reach a steady state. If the force is
conservative, it can be derived from a potential,

F(r) = −∇Φ(r) . (2.145)

The work executed by this force, δWext = dWext = F · dr, then does not depend on
the path taken between start and end point,

Wext =

∫ r2

r1

F · dr = −
∫ r2

r1

∇Φ(r) · dr = −
∫ Φ(r2)

Φ(r1)

δΦ(r) = Φ(r1)− Φ(r2) . (2.146)
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Forces act on masses Mj , or charges Qj carried by particles. The mass contained in
a volume element δV is,

δm =
∑
j

MjnjδV . (2.147)

The total potential energy is the sum of the potential energies to which the mass
elements δm are subject,

Epot =

∫
V

δΦ(r)

δV
δV =

∫
V

δΦ(r)

δm
δm(r) =

∫
V

δΦ(r)

δm

∑
j

MjnjδV . (2.148)

Including the internal energy the total energy differential is then,

dEtot = dE + dEpot =

∫
V

de(r)δV +

∫
V

δΦ(r)

δm

∑
j

MjdnjδV . (2.149)

Repeating the entropy maximization procedure (2.135), we now get,

0 = dS − kBβdEtot −
∑
j

kBαjdNj (2.150)

=

∫
V

 1

T
de(r)− 1

T

∑
j

µjdnj(r)

 δV

− kBβ

∫
V

de(r) +

∫
V

δΦ(r)

δm

∑
j

Mjdnj(r)

 δV −
∑
j

kBαj

∫
V

dnj(r)δV ,

which implies,

0 =

(
1

T
− kBβ

)
de(r)−

∑
j

(
µj

T
+ kBβ

δΦ(r)

δm
Mj + kBαj

)
dnj(r) . (2.151)

We conclude,

T =
1

kBβ
,

µj

T
+ kBβ

δΦ(r)

δm
Mj + kBαj = 0 . (2.152)

Since αj and β are constants,

∇T = 0 = ∇
(
µj +Mj

δΦ(r)

δm

)
. (2.153)

To derive the condition for mechanical equilibrium, we use again the expres-
sion (2.141), but now inserting the equilibrium conditions (2.153), we obtain an equa-
tion generalizing (2.142),

V̄j∇P = −∇
(
Mj

δΦ(r)

δm

)
+
∑
k ̸=j

Nk

(
∂∇µk

∂Nj

)
P,T,Nk ̸=j

. (2.154)
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Again, multiplying both sides with ηj , summing over all components, and exploiting
the Gibbs-Duhem equation (2.62),

Ṽ∇P = −∇

∑
j

ηjMj
δΦ(r)

δm

 , (2.155)

or,

∇P = −M
Ṽ

δ∇Φ(r)
δm

. (2.156)

In particular, for an ideal gas,

∇P ideal−→ −MP

kBT

δ∇Φ(r)
δm

= − M̃P

RgT

δ∇Φ(r)
δm

, (2.157)

with the solution,

P = P0 exp

(
− M̃

RgT

δΦ(r)

δm

)
, (2.158)

which can easily be verified by inserting (2.158) in (2.157).
Because external force fields primarily affect the mechanical degrees of freedom

of a system, the pressure develops a gradient, while the temperature (which is the
thermal degree of freedom) remains unchanged. The chemical degrees of freedom
(i.e. the chemical potentials of each species) only vary, because the different masses
(or charges) of the constituents respond differently to external forces 5. Solve the
Excs. 2.4.3.1 to 2.4.3.3.

Example 26 (Earth gravitation): Here, we consider a system in the Earth’s
gravitational field, whose force is described by,

F(r) = −∇(mgz) = −mgêz . (2.159)

The force can be derived from a potential,

Φ(r) = mgz or
δΦ(r)

δm
= gz . (2.160)

The conditions for equilibrium are,

∇T = 0 and ∇µj = −∇
(
Mj

δΦ(r)

δm

)
= −Mjgêz , (2.161)

and,

∇P = −M

Ṽ

δ∇Φ(r)
δm

= −M

Ṽ
gêz . (2.162)

Hence, for an ideal gas,

dP = −M

Ṽ
gdz

ideal−→ − M̃g

RgT
Pdz . (2.163)

5Note that the atmosphere on Earth exhibits a vertical gradient, but this is because the atmo-
sphere, heated on one side by the Earth and cooled on the other by the universe, cannot be considered
a closed system.
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This is a first-order differential equation in P with the solution,

P = P0e
−M̃gz/RgT , (2.164)

where M̃ is the molar mass.

Example 27 (Centrifugal field): Here, we consider system rotating at con-
stant angular velocity ω about the z-axis and thus subject to radial acceleration,

a = ω2ρ . (2.165)

The centrifugal force can be derived from a potential,

Φ(r) = −m

2
ω2(x2 + y2) . (2.166)

The conditions for equilibrium are ∇T = 0 and,

∇µj = −∇
(
Mj

δΦ(r)

δm

)
= Mjω

2ρêρ , (2.167)

and,

∇P = −M

Ṽ

δ∇Φ(r)
δm

=
M

Ṽ
ω2ρêρ . (2.168)

Hence, for an ideal gas,

dP =
M

Ṽ
ω2ρ dρ

ideal−→ M̃P

RgT
ω2ρ dz , (2.169)

or
dP

P
=

M̃ω2

RgT
ρ dρ , (2.170)

with the solution,

P = P0e
M̃ω2ρ2/2RgT . (2.171)

2.4.2.3 With electrostatic field

In electrostatics the Lorentz force is,

F(r) = qE⃗(r) with E⃗(r) = −∇Φel(r) , (2.172)

where Φel is the electrostatic potential. In thermodynamics,

F(r) = −∇Φ(r) = −q∇Φel(r) =⇒ Φel(r) =
δΦ(r)

δq
. (2.173)

The mass and the charge elements are, respectively,

δmj =MjnjδV and δQj = enjδV . (2.174)

Conditions for equilibrium are,

∇T = 0 and ∇µj = −∇
(
Mj

Ṽ

δΦ(r)

δm

)
= −Mj

V
∇ δ

δm

∫
Φel(r)δq . (2.175)
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The quantity

µj +
Mj

Ṽ

δ

δm

∫
Φel(r)δq (2.176)

is also called electrochemical potential, and in thermodynamic equilibrium it should be
homogeneous, i.e. its gradient should vanish. For mechanical equilibrium we request,

∇P = −M
Ṽ

δ∇Φ(r)
δm

= −M
Ṽ
∇ δ

δm

∫
Φel(r)δq . (2.177)

Example 28 (Electrostatic field): Given an electrostatic field that decays
exponentially with the distance from a surface toward its interior, we want to
describe the variation of composition of the components with position when
it comes to equilibrium. Let ηj(∞) be the composition well away from the
surface corresponding to the chemical potential µj(∞). Since at equilibrium
the electrochemical potential (2.176) is constant,

µj +
Mj

Ṽ

δ

δm

∫
Φel(r)δq = const = µj(∞) . (2.178)

Negatively charged components exhibit a chemical potential distribution that

mimics the electric field function with µj and ηj high near the surface and

decaying down to ηj(∞). The distribution for positively charged components is

opposite.

2.4.3 Exercises

2.4.3.1 Ex: Pressure in a harmonically trapped ideal gas

Calculate the local pressure in a harmonically trapped ideal gas in thermodynamic
equilibrium.

2.4.3.2 Ex: Atmosphere of a planet

Assume the atmosphere of planet X to be composed of a binary mixture of hydrogen
and nitrogen. Derive an expression for the variation of composition with altitude
treating the elements as ideal gases. Assuming that the planet has a gravitational
acceleration of g = 10m/s2, a temperature of T = 800K, and a H2 abundance on
the planetary surface of ηH2 = 0.35, calculate the atmosphere composition at 100 km
above the surface.

2.4.3.3 Ex: Centrifuges

Consider a dilute solution of 85Rb and 87Rb whose natural abundances are 72.17% :
27.83%. Placed in a centrifuge at a temperature of T = 300K, how fast should it
rotate in order to reach ratio of 10% : 90% near the outside radius ρ = 1m.

2.5 Reacting systems

Matter consists of molecules and molecules are composed of atoms chosen out of a
small number of species. Being the elementary building blocks, the atoms cannot mu-
tate into atoms of another species. However, they may associate to a large variety of

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_ExternSystem01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_ExternSystem02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_ExternSystem03.pdf
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molecules in a multitude of geometric and energetic configurations in a process called
chemical reaction. The molecules are represented by chemical formulas describing
succinctly the numbers of atoms, e.g. CO2 for carbon dioxide, and a chemical reac-
tion is represented by an equation comparing the number of atoms before and after
an association or dissociation, e.g.,

2H2 +O2 −−→ 2H2O . (2.179)

As already formulated by Lavoisier, the number of atoms in a closed system is always
conserved.

A system that consists of K elements and J chemical components, some of which
are molecules, has

R = J −K (2.180)

independent reactions. For example, for a system containing H2, O2, and H2O we
have J = 3 and K = 2, so that R = 1. Such systems are called univariant reacting
systems. Now assume that we have also H2O2 in the system. Then, we expect two
independent chemical reactions,

2H2 +O2 −−→ 2H2O (2.181)

H2 +O2 −−→ H2O2 .

Other reactions that may be formulated, e.g.,

2H2O+O2 −−→ 2H2O2 (2.182)

are linear combinations of (2.181). Systems with R > 1 are called bivariant, respec-
tively, multivariant.

In the next section we will first focus on the gas phase, where the components
unambiguously exist as molecules. In solids, which are characterized by the existence
of multiple bonds between molecules, this is more complicated. Also, we will first
treat univariant systems before progressively generalizing to multivariant systems.

2.5.1 Univariant chemical reactions in the gas phase

Let us study again the univariant system composed of H2, O2, and H2O. The objective
is to derive conditions for thermodynamic equilibrium. From the combined first and
second law of thermodynamics we derive the entropy for the multi-component system,

dS =
1

T
dE +

P

T
dV − 1

T

∑
j

µjdNj (2.183)

=
1

T
dE +

P

T
dV − 1

T
[µH2dNH2 + µO2dNO2 + µH2OdNH2O] .

As usual, for a closed isolated system, we ask for the entropy to be at maximum, under
the constraint that the internal energy and the volume cannot change, dE = 0 = dV .
On the other hand, the third isolation constraint dNj = 0 does not hold any more,
since the components may transform into one another. The total number of atoms of
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one species, however, does not change. Hence, from the chemical reaction (2.179), we
obtain the constraint,

2dNH2
= dNO2

= −2dNH2O . (2.184)

Inserting all the constraints into Eq. (2.183) we get,

dSiso = − 1

T

[
−µH2

− 1
2µO2

+ µH2O

]
dNH2O ≡ −

A

T
dNH2O . (2.185)

The linear combination of chemical potentials in brackets is called affinity for the
reaction (2.179). If temperature, pressure, and composition of the gas mixture are
known, then the chemical potential of the components and hence the affinity can be
computed.

The affinity can be positive or negative, depending on the chemical potentials of
the reactants and products. The third law of thermodynamics, however, requests
that for any process dSiso > 0, so that in Eq. (2.185) the affinity and dNH2O must
have opposite signs. In other words, the affinity decides in which direction a chemical
reaction will take place. A state of equilibrium is reached, when dSiso = 0, which
implies A = 0. The chemical reaction comes to a halt, when the sum of the chemical
potentials of the reactants and products are equal, and this condition may require an
excess of reactants or products, as illustrated in Fig. 2.9.

Figure 2.9: (a) Direction of a chemical reaction as a function of affinity. (b) The equilibrium
of a chemical reaction may be on the left or right side.

In order to induce chemical reactions, the first thing to do is to mix the compo-
nents, i.e. make a solution. As stated earlier, what is usually reported in experimental
studies of solutions are the activities of the components. In order to express the affin-
ity in terms of activities of the components, we stress Eq. (2.92) saying,

µj = µ0
j +RgT ln aj = G̃0

j +RgT ln aj , (2.186)

where G̃0
j is the molar Gibbs free energy of component j, when it is in its reference

state. Let us now consider an arbitrary chemical reaction,

pP + qQ −−→ xX+ yY , (2.187)

for which,

A = µproduct − µreactants = xµX + yµY − pµP − qµQ (2.188)

= xG̃0
X + yG̃0

Y + pG̃0
P + qG̃0

Q +RgT [x ln aX + y ln aY − p ln aP − q ln aQ]

≡ ∆G0 +RgT ln
axXa

y
Y

apPa
q
Q

,
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where the abbreviation ∆G0 comprises the four Gibbs free energy terms and describes
the change in Gibbs free energy upon complete conversion of p moles of P and q moles
of Q in their standard states into x moles of X and y moles of Y in their standard
states. The quotient in the logarithm is called the ratio of activities for the reaction,

Q ≡
axXa

y
Y

apPa
q
Q

. (2.189)

As already mentioned, a reaction will go on until the system reaches equilibrium,

A = 0 = ∆G0 +RgT lnQeq . (2.190)

Example 29 (Synthesis of water): Let us consider a gas mixture composed of
ηH2 = 0.01mol, ηO2 = 0.03mol, and ηH2O = 0.96mol at atmospheric pressure.
At 700 ◦C the reaction (2.179) liberates the Gibbs free energy ∆G0 = −440 kJ.
The equilibrium constant can be calculated from (2.190),

Qeq = e−∆G0/RgT ≈ 4.2× 1023 .

The large value of Qeq means that the equilibrium is far on the side of the
products, in this case H2O.
A gas mixture may be considered an ideal solution, so that the activities of their
components are given by their molar fractions,

Q =
a2
H2O

a2
2H2

aO2

=
η2
H2O

η2
2H2

ηO2

≈ 3.1× 105 .

Although this value is also very large, it is still much smaller than in equilibrium,

Q/Qeq ≈ 7.2× 10−19. Hence, in the reaction process, the 0.01mol of hydrogen

will be completely used up. However, there is an excess of oxygen in the system,

as only 0.005mol are used. Hence, the final composition will be ηH2 ≈ 0,

ηO2 = 0.025mol, and ηH2O = 0.97mol. Note also that the total number of

moles is reduced to ηH2 + ηO2 + ηH2O = 0.995mol.

2.5.2 Multi-variant chemical reactions in the gas phase

The general strategy for determining the equilibrium composition in a multi-variant
reacting system makes use of the independent conditions for chemical equilibrium and
conservation laws for the number of atoms of every involved element. For a single-
phase system with J components and K different atomic elements, Akj denotes the
number of atoms of a given species k bound in a molecule representing the j-th
component of the mixture. For example, if k = H and j = H2O then Akj = 2.

The strategy can be summarized in the following sequence of calculations:

1. Identify the types j of molecules involved and their numbers N in
j (or moles or

molar fractions) before a chemical reaction is initiated.

2. Determine the chemical structure of each type of molecules j in terms of numbers
of atoms Akj of each element k.
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3. Calculate the total number of atoms of each atomic element in the system from,

Ak =

J∑
j=1

AkjN
in
j ∀ k = 1, ...,K . (2.191)

4. The numbers of atoms per species Akj and the chemical composition of the
mixture Nj change when the atoms reorganize into different molecules through
chemical reactions (labeled r = 1, ..., R). Thus, in parallel, we need to identify
all R possible chemical reactions transforming a group of molecules {jr} into a
group {j′r}, and vice versa, with jr, j

′
r = 1, ..., J labeling the types of molecules.

5. The numbers of molecules are controlled by equilibrium conditions associated to
every possible chemical reaction. As stated in Eq. (2.180), there are R = J −K
independent reactions in this system, and each reaction has its equilibrium
condition,

∆G0
r = −RgT lnQeq

r = −NAkBT ln

∏
j′r
aeqj′r∏

jr
aeqjr

(2.192)

ideal−→ −NAkBT ln

∏
j′r
ηeqj′r∏

jr
ηeqjr

= −NAkBT ln

∏
j′r
N eq

j′r∏
jr
N eq

jr

∀ r = 1, ..., R ,

for an ideal solution 6. Thus, each of the equilibrium constants Qeq
r ruling

a chemical reaction r is related to the composition of the system through a
non-linear equation.

6. The number of atoms Ak of a given atomic element is conserved and does not
change with time during the reaction process. Hence, the K equations (2.191)
also hold after chemical equilibrium is reached. Together with R equations
(2.192) we obtain a sufficient set of K +R = J equations,∑J

j=1 AkjN
eq
j = Ak ∀ k = 1, ...,K∑

j′r
lnN eq

j′r
−
∑

jr
lnN eq

jr
= −∆G0

r

RgT
∀ r = 1, ..., R

(2.193)

for the J unknown values N eq
j . Note that, while the first equations are linear

in the values N eq
j , the second equations are non-linear.

Note, that the equilibrium composition of the mixture depends on the initial
composition that the system had while it was still isolated, but only via the numbers
of atoms of all involved atomic elements, no matter how these were distributed among
the molecular components before these were mixed. The task is to express the final
composition N eq

j as a function of the Ak and the Qeq
r . Do the Exc. 2.5.3.1 and 2.5.3.2.

Example 30 (Chemical equilibrium of a gas mixture): A gas mixture has
the following initial composition,

molecular component H2 O2 H2O CO CO2 CH4

initial molar fraction ηin
j 0.05 0.05 0.15 0.25 0.40 0.10

(2.194)

6In this notation, the product have to be taken over all individual molecules of a reaction. For
instance, the two water molecules of the reaction (2.179) are represented by different jr.
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and the goal is to find the equilibrium composition at 600 ◦C.
We start setting up the equations (2.191),

AC

AO

AH

 =

0 0 0 1 1 1

0 2 1 1 2 0

2 0 2 0 0 4




NH2

NO2

NH2O

NCO

NCO2

NCH4


, (2.195)

which hold at any time before and after the reactions. Therefore, before the
reaction, we have,

AC = (1ηin
CO + 1ηin

CO2
+ 1ηin

CH4
)N in

tot = 0.75N in
tot

AO = (2ηin
O2

+ 1ηin
H2O + 1ηin

CO + 2ηin
CO2

)N in
tot = 1.30N in

tot

AH = (2ηin
H2

+ 2ηin
H2O + 4ηin

CH4
)N in

tot = 0.80N in
tot

(2.196)

with N in
j = ηin

j N in
tot and the total number of molecules,

N in
tot = N in

H2
+N in

O2
+N in

H2O +N in
CO +N in

CO2
+N in

CH4
. (2.197)

After the reaction, we have,

AC = (1ηeq
CO + 1ηeq

CO2
+ 1ηeq

CH4
)Neq

tot
!
= 0.75N in

tot

AO = (2ηeq
O2

+ 1ηeq
H2O

+ 1ηeq
CO + 2ηeq

CO2
)Neq

tot
!
= 1.30N in

tot

AH = (2ηeq
H2

+ 2ηeq
H2O

+ 4ηeq
CH4

)Neq
tot

!
= 0.80N in

tot

(2.198)

with Neq
j = ηeq

j Neq
tot and a different total number of molecules,

Neq
tot = Neq

H2
+Neq

O2
+Neq

H2O
+Neq

CO +Neq
CO2

+Neq
CH4

. (2.199)

The equations now read,

ηeq
H2

+ ηeq
O2

+ ηeq
H2O

+ ηeq
CO + ηeq

CO2
+ ηeq

CH4
= 1 (2.200)

ηeq
CO + ηeq

CO2
+ ηeq

CH4
= 0.75

N in
tot

Neq
tot

2ηeq
O2

+ ηeq
H2O

+ ηeq
CO + 2ηeq

CO2
= 1.30

N in
tot

Neq
tot

2ηeq
H2

+ 2ηeq
H2O

+ 4ηeq
CH4

= 0.80
N in

tot

Neq
tot

.

Now, with J = 6 and K = 3 we have R = J −K = 3 independent reactions,

2H2 +O2 ←−→ 2H2O (i)

2CO +O2 ←−→ 2CO2 (ii)

CH4 + 2O2 ←−→ 2H2O+CO2 (iii)

. (2.201)

The standard free energy for these reactions at the specified temperature are,

∆G0
i = −404.2 kJ , ∆G0

ii = −414.5 kJ , ∆G0
iii = −797.9 kJ . (2.202)



2.6. CLASSIFICATION OF THERMODYNAMIC PHASE TRANSITIONS 109

The corresponding equilibrium constants, assuming an ideal gas mixture so that
the activities are equal to the molar fractions, are,

(ηeq
H2O

)2

(ηeq
H2

)2ηeq
O2

= Qeq
i ,

(ηeq
CO2

)2

(ηeq
CO)

2ηeq
O2

= Qeq
ii ,

(ηeq
H2O

)2ηeq
CO2

ηeq
CH4

(ηeq
O2

)2
= Qeq

iii . (2.203)

With (2.200) and (2.203) there are thus seven equations for the six unknown
equilibrium molar fractions and the ratio of total numbers of molecules before
and after the reactions N in

tot/N
eq
tot, that can be solved numerically. A MATLAB

code which is available here, yields,

molecular component H2 O2 H2O CO CO2 CH4

final molar fraction ηeq
j 0.136 1.6× 10−24 0.144 0.231 0.445 0.052

(2.204)

2.5.3 Exercises

2.5.3.1 Ex: Final composition of an ideal gas mixture

An ideal gas at 1000K has the following composition,

molecular component CO CO2 O2

initial molar fraction ηinj 0.50 0.38 0.12

a. Compute the affinity for the reaction,

CO + 1
2 O2 ←−→ CO2 .

b. Calculate the molecular composition after the reaction.

2.5.3.2 Ex: Hydrogen concentration in a metal

The concentration of hydrogen cH, which is dissolved in a metal in the form of H
atoms, depends on the pressure P of the H2 gas around the metal.
a. How are the chemical potentials µH and µH2

related?
b. Express the chemical potential in terms of its partial pressure in the gas phase.
c. Describing the hydrogen dissolved in the metal as an ideal solution, express the
chemical potential in terms of its concentration.
d. Finally, determine the relationship between concentration and pressure.

2.6 Classification of thermodynamic phase transi-
tions

The old Ehrenfest classification [29] calls a phase transition of nth order if the deriva-
tive ∂nµ/∂Tn is discontinuous. Thus BEC of a trapped ideal gas is a first-order phase
transition, because the chemical potential suddenly changes its slope at Tc.

The modern Landau classification distinguishes two types of phase transitions in
homogeneous systems: First-order phase transitions exhibit a discontinuity in the

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Systems_MultivariantChemical.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_ReactiSystem01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/ThermoDynamics/Sol_TD_Systems_ReactiSystem02.pdf
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order parameter, while for continuous phase transitions the order parameter does not
make jumps.

First order phase transitions are characterized by 1. equilibrium between phases
(liquid-gas, liquid-solid), 2. discontinuous entropy, therefore latent heat, 3. at least one
derivative of a thermodynamic potential is discontinuous. The two phases coexist
at the transition point. E.g. at T = 0 ◦C in a closed system water and ice coexist.

Continuous phase transitions are characterized by 1. no equilibrium, 2. no latent
heat, but often discontinuous heat capacity, 3. first order derivatives are all continuous,
but second order is discontinuous. There is no phase coexistence at the critical
point. E.g. at T = Tc there no condensate; only below Tc.

2.6.1 Solid-liquid-vapor

In the case of the liquid-vapor transition the two phases are only quantitatively dis-
tinct, but have the same symmetry. Therefore, a discontinuity of the thermodynamic
potentials is required to reveal the phase transition.

In the case of the solid-liquid transition the two phases are qualitatively distinct
due to different symmetries. We do not need a discontinuity to distinguish the phases.
Landau’s theory holds for this class of transitions. It establishes a relationship between
symmetry considerations and physical characteristics by introducing the notion of the
order parameter and free energy.

2.6.2 Bose-Einstein condensation

Is the observed Bose-Einstein condensation in trapped gases really a phase transition?
A homogeneous gas has strong fluctuations near Tc that can heavily be influenced by
interactions, which could result in phase domains. In contrast, a trapped gas is quite
robust near Tc due to the modification of the density of states for small energies by
the trapping potential, which make the interaction less important (see stabilization
of attractive gases). However, Tc is not precisely defined and far from Tc interactions
become very important (Thomas-Fermi limit).

The dynamics of phase transition is rules by a competition between internal energy
which tries to minimize itself and entropy which tries to maximize itself.

2.7 Materials

2.7.1 Electrons in solids

2.7.1.1 Types of solids

In contrast to a gas, which in most cases consists of isolated particles, the interparti-
cle interaction plays a dominant role in crystals. Solids, or more specifically crystals,
are classified according to the predominant type of binding. 1. Molecular binding
is responsible for the solidification of binary gases like O2. Here, fluctuating dipole
moments inducing dipole moments in neighboring molecules lead to van der Waals
attractive forces on the order of Ebind ≃ 10−2 eV going like r−7. 2. Ionic binding
gives rise to periodic structures alternating positive and negative charges, as in NaCl.
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3. Covalent binding is directional. This directionality determines the crystalline struc-
ture, such as in graphite and diamonds. In those three binding types there are no
free electrons and hence no conductance. However, covalently bound crystals can
sometimes be semiconductors or transparent. 4. Metallic binding is a limit of cova-
lent binding, in which the valence electrons, which shared by all atoms, overrule the
repulsion between the ions. The ionic lattice is immersed in a gas of free electrons.
The ions have filled shells and are spherically symmetric. The electrons can easily
absorb light, which makes the crystal opaque. The type of binding is studied via
X-ray diffraction, via the dielectric properties, etc..

2.7.1.2 Band model

The number of orbitals in the isolated atoms forming the crystal gives the number
of states available to the free electron gas. The exchange interaction of the fermionic
electrons lifts the degenerescence (generalization of the H2 molecule) and gives rise to
a band structure. The electronic localization determines the width of the band: very
delocalized electrons move in large bands. The interatomic distance also influences
the band width. The closer the atoms the stronger the interaction, the larger the
bands.

Bands connecting to different orbital may finally overlap. Note that the ml degen-
eracy is lifted because spherical symmetry is broken by the crystal [E(3s) ̸= E(3p)].

2.7.1.3 Electrical conductance

Electrons can only move in presence of a sufficient number of unpopulated states,
even under the influence of an external force. If no states are available the crystals
becomes isolating. Overlapping filled and empty bands reserve many states and allow
for good conductance.

If the Fermi energy EF lies between a completely filled conducting band and an
empty valence band. The crystal is isolating. However, at T > 0, if the forbidden
band is narrow as in the case of semiconductors (for Si ∆E ≃ 1 eV), the gap may be
bridged by thermal excitations.

The electrons collide with crystal impurities, defects and phonons. While the
velocity of the electrons is about v̄ ≃ 107 cm/s, the short mean free path λ limits the
drift velocity to vd ≃ 10−2 cm/s. The Lorentz force eE/m accelerates the electrons
between successive collisions occurring at a rate v̄/λ, such that

j

ne
= vd =

eE

m
× λ

v̄
, (2.205)

where j is the current density and ne the charge density. The fact that v̄ and λ do
not depends on the electric field is known as Ohm’s law. The mobility µ ≡ vd/E
allows to write the electrical conductance as

ρ−1 = n−e−µ− + n+e+µ+ . (2.206)

The value and sign of the Hall coefficient 1/ne can be measured by the Hall effect. It
is positive if the conductance occurs primarily through holes and negative if it occurs
through electrons.
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2.7.1.4 Semiconductors

There is an intrinsic temperature-dependent conductivity (for Si ρ(600K)/ρ(300K) ≈
109). Extrinsic conductivity can be induced by photoexcitation or doping. E.g. Ar/Ga
in a Ge crystal has one weakly bound electron more/less than required to fit into the
lattice. This generates discrete energy levels slightly below the conducting/above the
valence band, min(Ec)− En, Ep −max(Ev) ≃ 0.01 eV.

The Fermi energy EF is the energy, where half of the electrons are below that.
In an isolator is between max(Ev) and min(Ec). In the presence of doping EF is
shifted by the additional amount of electrons/holes toward En, Ep. If n and p-doped
materials are combined, electrons drift from the n to the p region, such as to minimize
energy and obtain a uniform EF across the hole crystal.

Thermally excited electrons may drift and recombine with holes. The junction
is maintained by a steady flux in a dynamic equilibrium. An external voltage can
higher/lower the barrier, because the potential drops mostly near the junction, where
the resistance is highest. In this case the thermal current is not equilibrated, the
diode either blocks or opens. The electrons move to try to rectify EF.

A transistor is a series of junctions in npn of pnp configuration. The base-emitter
current can be used to switch a collector-emitter current by injecting electrons. A
tunnel diode acts like a normal diode except that when the bands come closer together
within the junction (at low voltages in conduction polarization), electrons may pass
by tunneling from the conducting into the valence band. This flow gradually stops
when EF is leveled (for zero voltage). Tunneling currents react much faster than
thermal drift currents.

2.7.2 Plasmas

2.7.2.1 Debye length

Consider a mixture of charges + and −, that is, a plasma. Energy seeks to be
minimized by local compensation of charge imbalance. However, thermal motion
spoils perfect homogeneity. That is, if on the one hand, looking at large scales, the
environment seems neutral and homogeneous, at small scales there may be charge
imbalances producing potential sites with exponentially decreasing ranges,

1

λD
=

1

λD−
+

1

λD+
=
ne2

ε0

(
1

kBT+
+

1

kBT−

)
. (2.207)

The Debye length naturally enters the thermodynamic description of large sys-
tems of mobile charges. We consider a system of 2 different species of charges q±
and n±(r) at locations r. According to the so-called primitive model, these charges
are distributed in a continuous medium characterized only by its relative static per-
mittivity, εr. This distribution of charges through the medium generates an electric
potential Φ(r) that satisfies the Poisson equation:

ε∇2Φ(r) = −q+n+(r)− q−n−(r)− ρE(r) , (2.208)

where ε ≡ εrε0, ε0 is the dielectric constant, and ρE is the charge density outside the
medium (logically, not spatially).



2.7. MATERIALS 113

The mobile charges do not only generate Φ(r), but also are moved according to the
associated Coulomb force, −q±∇Φ(r). Assuming the system to be in thermodynamic
equilibrium with a heat reservoir at an absolute temperature T , the concentrations
of discrete charges, n±(r), can be considered as thermodynamic averages (ensem-
ble average) and the associated electrical potential as a thermodynamic mean field.
With these assumptions, the concentration of species j is described by the Boltzmann
distribution,

n±(r) = n0±e
−q±Φ(r)/kBT , (2.209)

where n0j is the mean field concentration of the charge species j.
Identifying the instantaneous concentrations and the potentials in the Poisson

equation with their mean-field counterparts in the Boltzmann distribution, we obtain
the Poisson-Boltzmann equation:

ε∇2Φ(r) = −q+n0+e−q+Φ(r)/kBT − q−n0−e−q−Φ(r)/kBT − ρE(r) . (2.210)

Solutions of this nonlinear equation are known for simple systems. Solutions for more
general systems can be obtained in the high-temperature (or low-coupling) limit,
qjΦ(r)≪ kBT , by Taylor expansion of the exponential,

e−q±Φ(r)/kBT ≈ 1− q±Φ(r)

kBT
. (2.211)

This approximation gives the linearized Poisson-Boltzmann equation,

ε∇2Φ(r) =

(
n0+q

2
+

kBT
+
n0−q

2
−

kBT

)
Φ(r)− n0+q+ − n0−q− − ρe(r) (2.212)

also known as Debye-Hückel equation. The second term on the right side disappears
for electrically neutral systems. The term in parentheses divided by ε, has the unit
1/m2. By a dimensional analysis, it leads to a definition of a characteristic length
scale,

λD =

(
εkBT

n0+q
2
+ + n0−q

2
−

)1/2

(2.213)

usually called Debye-Hückel length. Being the only characteristic length scale of the
Debye-Hückel equation, λD defines the scale of variations in the potential and the
concentrations of the charged species. All charged species contribute to the Debye-
Hückel length in the same manner regardless of the charge signal. For an electrically
neutral system, the Poisson equation is,

∇2Φ(r) = λ−2
D Φ(r)− ρe(r)

ε
. (2.214)

To illustrate the Debye shielding, the potential produced by an external point-like
charge ρe = Qδ(r) is,

Φ(r) =
Q

4πεr
e−r/λD . (2.215)

The bare Coulomb potential is exponentially shielded by the medium over a distance
corresponding to the Debye length.
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The length of Debye-Hückel can be expressed in terms of the length of Bjerrum
λB as,

λD =

4πλB

N∑
j=1

n0j z
2
j

−1/2

, (2.216)

where zj = qj/e.

2.7.2.2 Typical values

In plasmas in space, where the electron density is small, the Debye’s length can reach
macroscopic values.

system density electronic temp. magn.field Debye length

ne (m−3) T (K) B(T) λD(m)

solar core 1032 107 - 10−11

Tokamak 1020 108 10 10−4

gas discharge 1016 104 - 10−4

ionosphere 1012 103 10−5 10−3

magnetosphere 107 107 10−8 102

solar wind 106 105 10−9 10

interstellar medium 105 104 10−10 10

intergalactic medium 1 106 - 105

2.7.2.3 Length of Debye in a plasma

In a plasma, the background medium may be treated as the vacuum (εr = 1), and
the length of Debye is,

λD =

√
ε0kB/q2e

ne/Te +
∑

j z
2
jnj/Tj

, (2.217)

where T± are the temperatures of the electrons and ions, n− is the density of the
electrons and n+ that of the atomic species j, with positive ionic charge z+qe. The
ion term is often neglected, giving,

λD =

√
ε0kBTe
neq2e

, (2.218)

although this is valid only, when the mobility of ions is negligible on the time scale of
the process.

2.7.3 Exercises

2.8 Further reading

H.M. Nussenzveig, Edgar Blucher (2014), Curso de Fisica Basica: Fluidos, Vibrações
e Ondas, Calor - vol 2 [ISBN]

http://isbnsearch.org/isbn/978-8-521-20801-2


Chapter 3

Appendices to
’Thermodynamics’

3.1 Data tables

3.1.1 Material data

The following table shows the specific latent heats (SLH) and change of phase tem-
peratures (at standard pressure) of some common fluids and gases:
Substance SLH of fusion melting point SLH of vaporization boiling point

(kJ/kg) (◦C) (kJ/kg) (◦C)

ethyl alcohol 108 −114 855 78.3

ammonia 332.17 −77.74 1369 −33.34
carbon dioxide 184 −78 574 −78.46
helium 21 −268.93
hydrogen 58 −259 455 −253
lead 23.0 327.5 871 1750

strontium 0.72 777 12.6 1377

methane 59 −182.6 511 −161.6
oxygen 13.9 −219 213 −183
silicon 1790 1414 12800 3265

water 334 0 2264.705 100

The specific latent heat of condensation of water in the temperature range from
−25 ◦C to 40 ◦C is approximated by the following empirical cubic function. For subli-
mation and deposition from and into ice, the specific latent heat is almost constant in
the temperature range from −40 ◦C to 0 ◦C and can be approximated by the following
empirical quadratic function:

Lwater(T ) ≃
[
2500.8− 2.36 T

◦C + 0.0016
(

T
◦C

)2 − 0.00006
(

T
◦C

)3]
J/g (3.1)

Lice(T ) ≃
[
2834.1− 0.29 T

◦C − 0.004
(

T
◦C

)2]
J/g .

3.1.2 Vacuum technology
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Figure 3.1: (code) Specific latent heat of fusions and condensation of water.
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Fig. 9.13: Saturation vapor pressure of major metals used in vacuum technology

Fig. 9.14: Vapor pressure of nonmetallic sealing materials (the vapor pressure curve for fluoro 
rubber lies between the curves for silicone rubber and Teflon).
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Fig. 9.15: Saturation vapor pressure p
s
 of various substances relevant for cryogenic technology in 

a temperaturerange of T = 2 – 80 K.

p critical point
P melting point

Rough vacuum
1 to approx. 103 mbar
102 to approx. 105 Pa

Medium vacuum
10–3 to 1 mbar
10–1 to 102 Pa

High vacuum
10–7 to 10–3 mbar
10–5 to 10–1 Pa

Ultrahigh vacuum
<10–7 mbar
<10–5 Pa

Fig. 9.16: Common working ranges of vacuum pumps
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Piston vacuum pump

Diaphragm vacuum pump

 Liquid-ring vacuum pump

Multiple-vane rotary vacuum pump

Trochoide vacuum pump

Rotary plunger vacuum pump

 Roots vacuum pump

Turbine vacuum pump

Gaseous-ring vacuum pump

Liquid jet vacuum pump

Diffusion ejector pump

Turbomolecular pump

  Diffusion pump

  Adsorption pump

  submilation pump

  Sputter-ion pump

 Cryopump

 

Vapor jet vacuum pump

Sliding-vane rotary vacuum pump

10310–14

p in mbar →
Working range for special model or special operating data Normal working range

Figure 3.2: Types of vacuum pumps, their typical pumping speed and operational pressure
range [35].

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/ThermoDynamics/TD_Appendix_SpecificHeatWater.m
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Ultrahigh vacuum
<10–7 mbar
<10–5 Pa

High vacuum
10–7 to 10–3 mbar
10–5 to 10–1 Pa

Medium vacuum
10–3 to 1 mbar
10–1 to 102 Pa

Rough vacuum
1 to approx. 103 mbar
102 to approx. 105 Pa

Fig. 9.16a:   Measurement ranges of common vacuum gauges
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Pressure balance

Bourdon vacuum gauge
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 Cold-cathode ionization vacuum gauge

Penning ionization vacuum gauge

 Hot-cathode ionization vacuum gauge

10310–14

p in mbar →

Working range for special models or special operating data

Diaphragm vacuum gauge

Capacitance diaphragm vacuum gauge

Piezoelectric vacuum gauge

U-tube vacuum gauge

Thermocouple vacuum gauge

Bimetallic vacuum gauge

Thermistor vacuum gauge

Magnetron gauge

Triode ionization vacuum gauge for medium vacuum

Triode ionization vacuum gauge for high vacuum

Bayard-Alpert ionization vacuum gauge

Bayard-Alpert ionization vacuum gauge with modulator

Extractor vacuum gauge

  Partial pressure vacuum gauge

 

The customary limits are indicated in the diagram.

Spring element vacuum gauge

Figure 3.3: Types of vacuum gauges and their operational pressure range [35].
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Preface

All thermodynamic quantities studied in Chp. 1 (extensive or intensive) are quasi-
continuous, i.e. macroscopic. The laws of thermodynamics found to rule the behavior
of large systems were discovered empirically via experimental observations. The na-
ture of the laws is thus phenomenological, i.e. not derived from first principles. Until
now we totally neglected the fact that matter (gases, fluid, or solids) is composed
of microscopic elementary particles (atoms or molecules). Instead, the properties of
matter have been resumed in material parameters, such as heat capacity and com-
pressibility. Nevertheless, it already became clear that the behavior of a system is
somehow related to the properties of the particles that compose it. E.g. the degrees
of freedom of a molecule that can be excited have an influence on the heat capacity
of a gas composed of these molecules; the Joule-Thomson effect is due to intermolec-
ular forces; and what we experience as heat, is actually an outward manifestation of
molecular and atomic motion, as we already pointed out in Sec. 1.1.2. Tracing back
macroscopic properties and phenomena to microscopic models bears a formidable po-
tential of deepening our level of understanding thermodynamic systems. It may even
provide insight into the physical meaning of mysterious or elusive phenomenological
concepts such as entropy production. Last not least, it may allow for a derivation of
material parameters from first principles.

An atomistic description acknowledges the fact that matter is quantized into small
portions called molecules 1. Each molecule is understood as a (not necessarily rigid)
body characterized by its center-of-mass coordinates, but also its rotations or internal
vibrations. With typically 1023 atoms in just one liter of air the task of describing
the microstate by all its coordinates is hopeless. The mathematical discipline that
provides the tools capable of handling such big numbers is statistics, and the primary
tool supplied for the purpose is the concept of the distribution function. The idea is
to lump atoms having similar properties together to classes, e.g. energy levels. The
distribution function then simply reports the number of particles in each class, which
dramatically reduces the amount of information. The task of statistical thermodynam-
ics is now the description of a thermodynamic state in terms of a distribution function
called macrostate. The formulation of statistical thermodynamics by Boltzmann and
Gibbs provided a solid microscopic foundation of phenomenological thermodynamics.

In chapter 4 we develop the foundations of statistical mechanics and establish
the link to phenomenological thermodynamics with special attention to the role the
quantum statistical nature of the particles under study.

1The ’quantization’ of matter is not to be understood in the quantum mechanical sense. Nev-
ertheless, the particles themselves are generally microscopic and, under certain circumstances, may
behave following rules dictated by quantum mechanics. This can lead to macroscopically observable
phenomena studied in the area of quantum statistics, as we will learn in Chp. 4.2.
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Chapter 4

Statistical thermodynamics

We will begin this chapter with a calculation of the Boltzmann distribution of mi-
crostates over the macrostates in Sec. 4.1 and introduce the concept of partition func-
tion, from which all macroscopic state functions may be computed. As applications
of this algorithm we will revisit the ideal gas and the Einstein model of a crystalline
solid.

4.1 Microstates, macrostates, and entropy

4.1.1 Probabilities of microstates and the partition function

We consider a unary thermodynamic system composed of a very large number N of
identical (albeit distinguishable) particles, each one sufficiently specified by a set of
numbers (coordinates and internal quantum numbers). The list combining the sets
of all particles completely describes the microstate of the system. It changes if a
single number of just one particle is changed. The microstate also changes when we
just exchange two particles, although the physics of the system cannot change if the
particles are identical. Clearly, the macrostate of a system is invariant upon particle
exchange.

On the other hand, the number of macrostates we attribute to a system depends on
the information we want to gather. For example, we could split the volume occupied
by a gas into two parts, V1 and V2, and call macrostate the situation when a specific
number N1 of particles is in volume V1, no matter which particles. Or we could
classify the particles by their velocities and prepare a histogram. Any distribution of
the particles over the possible velocity classes leading to the exact same histogram
would then belong to the same macrostate.

In general, the microstates outnumber the macrostates by many orders of mag-
nitude such that, when a system evolves along a thermodynamic process, it moves
through a large number of microstates. And since, a priori, all microstates have the
same probability, the likeliness of a macrostate is just the number of microstates it
encompasses. Let 1, 2, .., j, .., r denote the possible single-particle states that the sys-
tem has to offer, nj the number of particles being in the single-particle state j, and
{n1, n2, .., nj , .., nr} the actual macrostate. The number of microstates contributing
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to the same macrostate is easily found by combinatorial analysis,

W{nj} =
N !

n1!n2!...nr!
= N !

r∏
j=1

1

nj !
, (4.1)

with the total number of particles N = n1 + n2 + ... + nr. The total number of
possible microstates is obviously rN . Hence, the probability to encounter the system
in a particular macrostate is 1,

P{nj} =
W{nj}

rN
= N !

r∏
j=1

1

nj !rnj
. (4.2)

Figure 4.1: Illustration of micro- and macrostates with identical indistinguishable particles:
(a-c) Distribution of 12 particles over 2 boxes. (d-f) Distribution of 13 particles over 4 energy
levels. All schemes show different microstates, but only the schemes (a) and (b), respectively,
(d) and (e) correspond to same macrostates.

Of all possible macrostates, there will be one containing the largest number of
microstates, and the probability to encounter the system in this macrostate is highest.
Examination of P{nj} for a variety of macrostates {nj} reveals that the probability
distribution is sharply peaked, and that macrostates deviating only slightly are already
very unlikely. The most probable state is now interpreted as the state of equilibrium,
and this hypothesis forms the basis for connecting phenomenological thermodynamics
to an atomistic statistical description.

The equilibrium condition for highest probability in the statistical description
is similar to the request for highest entropy in phenomenological thermodynamics,
which suggests that both concepts are connected. But while the entropy is additive
(the entropies of subsystems sum up to a global entropy), the number of macrostates
is multiplicative. This led Boltzmann to his famous hypothesis,

S = kB lnW . (4.3)

Do the Excs. 4.1.7.1 to 4.1.7.7.

1For r = 2 we just obtain the binomial distribution, P{nj} =
(N
nj

) (
1
r

)nj
(
1− 1

r

)N−nj , obviously

satisfying
∑N

nj=0 P{nj} = 1.
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4.1.2 Equilibrium in statistical thermodynamics

Evaluating Eq. (4.3) involves computation of large factorials, which is a challenging
numerical task. Fortunately, large factorials can be very well approximated by Stir-
ling’s formula,

lnn! ≃ n lnn− n . (4.4)

With this formula we can simplify Eq. (4.3),

S = kB ln
N !∏r

j=1 nj !
≃ kB(N lnN −N)− kB

r∑
j=1

(nj lnnj − nj) (4.5)

= kBN lnN − kB
r∑

j=1

nj lnnj = −kB
r∑

j=1

nj ln
nj
N

.

This expression allows to compute the entropy of any macrostate of the system.
To find the equilibrium macrostate {n1, n2, .., nj , .., nr}eq in the atomistic descrip-

tion, we have to maximize the entropy (4.5). That is, we have to evaluate the to-
tal differential of entropy in the direction of changes {dn1, dn2, .., dnj , .., dnr} of the
macrostate under the constraint N =

∑r
j=1 nj ,

dS =

r∑
j=1

(
∂S

∂nj

)
dnj+

(
∂S

∂N

)
dN = −kB

r∑
j=1

(
1 + ln

nj
N

)
dnj+kB

r∑
j=1

nj
N
dN , (4.6)

yielding,

dS = −kB
r∑

j=1

ln
nj
N

dnj . (4.7)

Application of the equilibrium criterion requires isolation from the environment,
which sets constraints to the entropy evaluation in terms of particle and energy ex-
change,

N =

r∑
j=1

nj and E =

r∑
j=1

εjnj , (4.8)

or equivalently 2,

dN =

r∑
j=1

dnj = 0 and dE =

r∑
j=1

εjdnj = 0 . (4.9)

Here, εj is the energy of the single-particle state j occupied with nj particles.
The maximum of the entropy function (4.5) under the constraints (4.9) can be

found using the technique of Lagrange multipliers, which consists in solving the equa-
tion

0 = dS − αkB dN − βkB dE = kB

r∑
j=1

(
− ln

nj
N
− α− βεj

)
dnj (4.10)

2Note that dεj = 0, if the energy levels do not vary along a thermodynamic process, only their
population with particles.
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for arbitrary factors α and β. This implies,

nj
N

= e−αe−βεj , (4.11)

for j = 1, 2, ..., r. The Lagrange multiplier α can readily be eliminated using the
normalization constraint (4.8)(i),

1 =

r∑
j=1

nj
N

= e−α
r∑

j=1

e−βεj , (4.12)

leaving us with,

nj
N

=
e−βεj∑r
j=1 e

−βεj
. (4.13)

The denominator is called the canonical partition function,

Ξcn ≡
r∑

j=1

e−βεj = eα . (4.14)

To determine the Lagrange multiplier β, we compare the expressions obtained for
the entropy variations in statistical and phenomenological thermodynamics. Solving
(4.10) by dS and substituting α taken from (4.14) we get,

dS = −kB
r∑

j=1

ln
e−βεj

Ξcn
dnj = kB

r∑
j=1

(βεj + lnΞcn) dnj = kBβ dE + kB ln Ξcn dN .

(4.15)
And from (1.157) we get,

dS =
1

T
dE +

P

T
dV − µ

T
dN , (4.16)

where µ is the chemical potential per atom and dV = 0, since we assumed in this
derivation, that every atom has access to the whole volume of the system. A compar-
ison of the expressions (4.15) and (4.16) then yields,

β =
1

kBT
and α = −βµ = lnΞcn . (4.17)

Substitution into (4.13) and (4.14) finally yields,

nj
N

=
1

Ξcn
e−εj/kBT with Ξcn =

r∑
j=1

e−εj/kBT . (4.18)
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This expression is known as Boltzmann distribution 3,4,5.

4.1.3 Thermodynamic potentials in canonical ensembles

We wish now to express all state functions of the system in terms of the partition
function (4.14). To this end we begin calculating the Helmholtz free energy using the
expressions for the total energy (4.8)(ii) and the entropy (4.5),

F = E − TS =

r∑
j=1

njεj + kBT

r∑
j=1

nj ln
e−βεj

Ξcn
= −kBT ln Ξcn . (4.19)

Hence, Ξcn = e−βF and,
nj
N

= eβ(F−εj) (4.20)

confirming the role of the free energy (1.66) for normalization of the canonical prob-
ability distribution.

The entropy function can now be expressed by the coefficient relation (1.77)(ii),

S = −
(
∂F

∂T

)
V

= kB ln Ξcn + kBT

(
∂ ln Ξcn

∂T

)
V

, (4.21)

the internal energy becomes,

E = F + TS = kBT
2

(
∂ ln Ξcn

∂T

)
V

, (4.22)

and the heat capacity (1.75)(ii),

CV =

(
∂E

∂T

)
V

= 2kBT

(
∂ ln Ξcn

∂T

)
V

+ kBT
2

(
∂2 ln Ξcn

∂T 2

)
V

. (4.23)

Note that for now we always consider fixed volumes, dV = 0. To compute the
remaining thermodynamic potentials, V , H, G, and CP , we would need to generalize

3We obtained the Boltzmann distribution from a microcanonical derivation, but since the Boltz-
mann distribution holds for any ensemble of classical particles, we can use it to derive the distribution
function for canonical ensembles.

4A system of non-interacting particles can be separated into independent parts. If such a system is
described by a canonical ensemble, then each part can be seen as a system unto itself and described
by a canonical ensemble having the same temperature as the whole. In this way, the canonical
ensemble provides exactly the Maxwell-Boltzmann statistics for systems of any number of particles.
In comparison, the justification of the Boltzmann distribution from the microcanonical ensemble
only applies for systems with a large number of particles, that is, in the thermodynamic limit. The
Boltzmann distribution itself is one of the most important tools in applying statistical mechanics to
real systems, as it dramatically simplifies the study of systems that can be separated into independent
parts (e.g. particles in a gas, electromagnetic modes in a cavity, etc.).

5In a system of strongly interacting particles, it is usually not possible to find a way to separate
the system into independent subsystems as done in the Boltzmann distribution. In these systems it
is necessary to resort to using the full expression of the canonical ensemble in order to describe the
thermodynamics of the system when it is thermostatted to a heat bath. The Ising model, which is
a widely discussed toy model for the phenomena of ferromagnetism, is one of the simplest models
showing a phase transition.



128 CHAPTER 4. STATISTICAL THERMODYNAMICS

the partition function to include pressure dependence. We will show this in Sec. 4.1.6
at the example of an ideal gas.

In summary, the state of thermodynamic equilibrium is characterized by the fact
the particles are distributed over the available energy levels according to the expo-
nential function (4.11). Once the energy levels are known for a system, the partition
function and all the thermodynamic potentials can be calculated. We will now study
the algorithm at three examples.

4.1.4 Two-level systems

Let us consider a system consisting of only two allowed energy levels εj = 0, ε, that is,
we set the energy of the ground state to zero. This system is relevant for atomic system
in equilibrium with radiation fields driving electronic transitions between excitation
levels. The Boltzmann partition function and the population (4.18) then become,

Ξcn =

r∑
j=1

e−βεj = 1 + e−βε , (4.24)

n1
N

=
1

Ξcn
=

1

1 + e−βε
,

n2
N

=
e−βε

Ξcn
=

e−βε

1 + e−βε
. (4.25)

In particular, the ratio between populations of consecutive levels is, n2/n1 = e−βε.
At low temperature, kBT ≪ ε, the excited state population is negligibly small, while
at high temperature, kBT ≫ ε, both energy levels have almost the same population.
Do the Exc. 4.1.7.8.

With the partition function it is easy to evaluate the potentials,

F = −NkBT ln Ξcn = −NkBT ln(1 + e−βε) (4.26)

S = NkB ln Ξcn +NkBT

(
∂ ln Ξcn

∂T

)
V

= NkB ln(1 + e−βε) +
Nε

T

e−βε

1 + e−βε

E = NkBT
2

(
∂ ln Ξcn

∂T

)
V

= Nε
e−βε

1 + e−βε

CV = 2NkBT

(
∂ ln Ξcn

∂T

)
V

+NkBT
2

(
∂2 ln Ξcn

∂T 2

)
V

=
Nε2

kBT 2

e−βε

(1 + e−βε)2
.

4.1.5 Einstein-Debye model of solids

According to the equipartition theorem, every atom has three degrees of freedom
due to its translational motion. Describing a solid simply as a conjunction of N
atoms bound by a common potential, we expect the total energy and the specific heat
following the Dulong-Petit law,

E = 3NkBT resp. CV =

(
∂E

∂T

)
V

= 3NkB , (4.27)

for all solids regardless of temperature.
It was observed, however, that the specific heat of solids decreases like CV ∝ T 3

as T approaches zero. Einstein proposed an alternative model treating the N atoms
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as three-dimensional harmonic oscillators vibrating in a lattice. Indeed, many solids
are crystalline, which means that they arrange in a periodic structure, in the simplest
case a cubic lattice, where each atom has six neighbors arranged along Cartesian
coordinates, as illustrated in Fig. 4.2. The interatomic bonds are described by springs
storing energies like a quantized 3D harmonic oscillator,

εj = (j + 3
2 )ℏω . (4.28)

The normal-mode frequency ω is related to the spring constant of the atomic bond
and the atomic mass.

Figure 4.2: Einstein’s model of a solid.

The energy spectrum (4.28) completely defines the model. The partition function
is,

Ξcn =

r∑
j=1

e−βεj = e−3βℏω/2
r∑

j=1

e−βℏωj ≃ e−3βℏω/2
∞∑
j=0

e−βℏωj =
e−3βℏω/2

1− e−βℏω . (4.29)

The discrete energies nℏω are identified with quasi-particles called phonons. The
quantum nature of atoms does not matter, they just provide the medium supporting
the phonons.

With the partition function it is easy to evaluate the potentials,

F = −NkBT ln Ξcn =
3Nℏω

2
+ 3NkBT ln

(
1− e−βℏω) (4.30)

S = NkB ln Ξcn +NkBT

(
∂ ln Ξcn

∂T

)
V

= −3NkB ln
(
1− e−βℏω)+ 3Nℏω

T

1

eβℏω − 1

E = NkBT
2

(
∂ ln Ξcn

∂T

)
V

=
3Nℏω

2

eβℏω + 1

eβℏω − 1

CV = 2NkBT

(
∂ ln Ξcn

∂T

)
V

+NkBT
2

(
∂2 ln Ξcn

∂T 2

)
V

= −3NkB
(

ℏω
kBT

)2
eβℏω

(eβℏω − 1)2
.

4.1.5.1 Debye model

In his model Einstein applied Planck’s law on the distribution of energy in electromag-
netic radiation, which treats radiation as a gas of photons, to the energy distribution
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of atomic vibrations in a solid, treating them as a gas of phonons in a box (the box be-
ing the solid). Most of the steps of the calculation are identical, as both are examples
of a massless bosonic gas with linear dispersion relation.

Following the Bose-Einstein statistics, we must replace in (4.27),

kBT −→
ℏω

eℏω/kBT − 1
, (4.31)

yielding,

E =
3Nℏω
eβℏω − 1

resp. CV = 3NkB

(
ℏω
kBT

)2
eℏω/kBT

(eℏω/kBT − 1)2
, (4.32)

in accordance with (4.30).

Still, the disappearance of the specific heat at low temperatures,

CV ≃
3N(ℏω)2

kBT 2
e−ℏω/(kBT ) , (4.33)

which is related to the finite localization energy of harmonic oscillators, does not
describe experimental observations very well, and the model had to be refined by
Debye, later on.

While Einstein assumed monochromatic lattice vibrations, Debye’s approach was
to allow a spectrum of vibrational frequencies. With the density-of-states,

ρ(ν)dν =
4πV

v3
ν2dν , (4.34)

where v is the velocity of sound propagation and ω = 2πν, the formula is totally
equivalent to the density-of-states for photons in a cavity. Assuming that there is an
upper bound νm for the vibrational frequencies, we normalize as 3N0 =

∫ νm

0
ρ(ν)dν.

The energy now is 6,

E =

∫ νm

0

ℏω
eℏω/kBT − 1

4πV

v3
νdν = 9NkB

T 4

θ3

∫ θ/T

0

x3dx

ex − 1
. (4.35)

The Debye temperature θ = hνm/kB is characteristic for the metal. The derivative is
then,

CV = 9NkB

[
4

(
T

θ

)3 ∫ θ/T

0

x3dx

ex − 1
− θ

T

1

eθ/T − 1

]
. (4.36)

At low temperatures this formula reproduces the Debye law,

CV ≃ 9NkB

[
4

(
T

θ

)3 ∫ ∞

0

x3dx

ex − 1
− θ

Teθ/T

]
=

12π4

5
NkB (T/θ)

3
. (4.37)

6The fact that the electron gas also has a heat capacity is neglected.
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4.1.6 Maxwell-Boltzmann distribution of ideal gases

Here we consider a gas composed of identical monoatomic particles enclosed in a box
of volume V =

∫
V
d3r. The energy of every atom is just its kinetic energy associated

with its flight through space,

ε =
m

2
v2 =

m

2
v2x +

m

2
v2y +

m

2
v2z . (4.38)

Since the phase space of atomic motion is continuous, the partition function is now
calculated as an integral,

Ξcn =

∫
R3

∫
R3

e−βεd3rd3v (4.39)

= V

∫ ∞

0

4πv2e−βmv2/2dv = V

(
2πkBT

m

)3/2

.

We will see later how to generalize the procedure in the presence of an inhomogeneous
trapping potential U(r). Insertion of the kinetic energy (4.38) generates the well-
known Maxwell-Boltzmann distribution,

n(ε)

N
=

1

Ξcn
e−βmv2/2 , (4.40)

which will be studied in Excs. 4.1.7.9 to 4.1.7.16.
The potentials are easily calculated,

F = −NkBT ln Ξcn = −NkBT
(
lnV +

3

2
ln

2πkBT

m

)
(4.41)

S = NkB ln Ξcn +NkBT

(
∂ ln Ξcn

∂T

)
V

= NkB

(
lnV +

3

2
+

3

2
ln

2πkBT

m

)
E = NkBT

2

(
∂ ln Ξcn

∂T

)
V

=
3

2
NkBT

CV = 2NkBT

(
∂ ln Ξcn

∂T

)
V

+NkBT
2

(
∂2 ln Ξcn

∂T 2

)
V

=
3

2
NkB .

Furthermore,

P = −
(
∂F

∂V

)
T

=
NkBT

V
. (4.42)

4.1.6.1 Inclusion of vibrational and rotational degrees of freedom

If the gas under consideration is composed of molecules, energy may be stored in
rotations of the molecules about some axis passing through their center of mass.
The atoms composing the molecules may vibrate against each other. And finally,
the motion of electrons within the molecules contribute to the internal energy of a
gas. The development of models accounting for these energy contributions allows
to compute heat capacities which, compared to experimental measurements, provide
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insight in the molecular structure, as we have seen at the example of the Einstein-
Debye model.

In the case of ideal molecular gases, the treatment of vibrational and rotational
degrees of freedom is similar to that of the translational degrees of freedom as long
as the corresponding energies can be brought into the form bα

2 v
2
α, where α labels

the degree of freedom, vα is the velocity of the respective motion, and bα the mass or
inertial moment. The partition function then needs to be calculated with the complete
spectrum (see [12], p.155),

E =
∑
α

bα
2 v

2
α . (4.43)

4.1.7 Exercises

4.1.7.1 Ex: Probabilities

In a game, 5 ideal dices are rolled.
a. What is the probability that exactly two of these dices show the number one?
b. What is the probability that at least one dice shows the number one?

4.1.7.2 Ex: Probabilities

With what probability have out of
a. 1000 random numbers between 1 and 100 exactly five the value 50;
b. 100 two people on birthday January 1st.

4.1.7.3 Ex: Probabilities

What is the probability that you inhale at least one molecule that Julius Caesar
exhaled during his last breath (Tu quoque, Brute, fili mi!)? Assume a breathing
volume of 1 liter and an atmosphere height of approximately h = 10 km. Assume the
density of the atmosphere is approximately homogeneous.

4.1.7.4 Ex: Idiots roulette

A Bavarian, a Swabian and an East Frisian play Russian roulette together, each
according to their own rules. The Bavarian inserts two cartridges into the drum of a
six-shot revolver, sets the drum in a rapid rotation, aims at his own head and pulls
the trigger once. The Swabian puts a cartridge in the revolver and pulls the trigger
twice, the East Frisian puts a cartridge in the revolver, pulls the trigger once, turns
the drum a second time and pulls the trigger again. What is the chance of survival
of the three crazy people?

4.1.7.5 Ex: Students roulette

A student writes a multiple choice test in physics. It consists of 18 tasks. For each
task, only one of the four proposed solutions is correct. Since he does not understand
much about the topic, he trusts his luck and checks the possible solutions by chance.
What is the probability that the student meets the minimum requirement of 8 correct
answers?

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs05.pdf
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4.1.7.6 Ex: Slot machine

A slot machine consists of three concentric rings. Each ring is evenly divided into
10 sections and the sections in each ring are labeled with letters from ’a’ to ’j’. By
pressing the start button, the three rings start to rotate independently. If the lock
button is pressed, the rings brake independently of one another and three letters
appear side by side in the viewing window. With three ’a’ you win, with two ’a’ there
is a free spin.
a. Calculate the probability for one free spin per game.
b. What is the probability of getting exactly 3 free spins in 10 games?
c. What is the probability of winning at least once in 10 games?

4.1.7.7 Ex: Binomial distribution

Two drunks stagger on the x-axis. Starting from the origin, they take a step to the
right or to the left with the same probability. The steps take place synchronously,
and the steps of both people are the same and constant. Determine the probability
that they will meet again after N steps.

4.1.7.8 Ex: Simple model for a solid

Consider a system of N atomic particles at a temperature T . The individual atoms
can only be in one of two states. Either in state |0⟩ at the energy ε0 = 0 or in state
|1⟩ at energy ε1 = ε. Apart from this energy εi the atoms have no kinetic or other
energies.
a. Choosing the Boltzmann distribution, determine the population ni, that is, the
probability that a certain atom is in state |i⟩. How should the normalization be
chosen?
b. Determine the statistical mean ε̄ for the energy of one atom. Which value results
for kBT = ε? What is the expression for the total energy E of N atoms?
c. Calculate the population n1(Tj) to find a certain atom at the energy ε for four
different temperatures: kBTj = 0.1 × jε for j = 1, 2, 3, 4. Also calculate the energy
per atom E(Tj)/N of the entire system at these temperatures.
d. Find an expression for the heat capacity C of this N -atom system. Note: For this
system, the total energy is identical to the thermal energy.
e. Calculate the heat capacities Cj especially for the temperatures Tj from subtask
(c). What does the result have to do with ’freezing degrees of freedom’?

4.1.7.9 Ex: Velocity distribution

The Maxwellian velocity distribution or Boltzmann distribution of a one-dimensional
ideal gas of identical particles of mass m at temperature T is,

f(v)dv =

√
m

2πkBT
e−mv2/2kBT dv .

This gives the average kinetic energy for each molecule of ⟨Ekin⟩ = 1
2kBT . According

to the equipartition theorem, Maxwell’s velocity distribution of a three-dimensional
gas is given by f(vx)dvx f(vy)dvy f(vz)dvz.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_ProbabilityCalcs07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_SolidModel01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute01.pdf
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a. Write down the velocity distribution explicitly and determine the average kinetic
energy of a molecule in the three-dimensional gas at temperature T .
Determine the average absolute velocity ⟨v⟩ = ⟨|v|⟩ and compare ⟨v⟩2 with ⟨v2⟩ for
the three-dimensional case.
c. What is the number of particles F (v)dv with an absolute velocity v = |v| in the
range v and v + dv.
d. Consider a gas made of rubidium atoms (m = 87u) and sketch F (v) for tempera-
tures between 100K and 300K.
e. Consider the rubidium gas at room temperature (T = 300K). What is the propor-
tion of molecules whose average velocity ⟨v⟩ is greater than 1000m/s?

4.1.7.10 Ex: Maxwell-Boltzmann distribution

Calculate the number of particles in an ideal homogeneous gas having velocities slower
than 2vrms.

4.1.7.11 Ex: Maxwell-Boltzmann distribution

Using the Maxwell-Boltzmann distribution f(v) and the following formulas, calculate

the velocities v̄ ≡
∫∞
0
vf(v)v2dv and vrms ≡

√
v2:∫ ∞

0

xne−x2

dx = 1
2Γ(

n+1
2 ) =

{
(2k−1)!!

√
π

2k+1 for n = 2k
k!
2 for n = 2k + 1

.

4.1.7.12 Ex: Mean velocity in a gas

The average velocity of the molecule in an ideal gas is 500m/s. If the gas maintains
the same temperature and the molecular masses are doubled, what will be the new
average velocity?

4.1.7.13 Ex: Evaporation

a. A three-dimensional homogeneous gas consisting of N = 108 rubidium atoms (mass
m = 87u) has the temperature T = 100µK. How many atoms are faster on average
than v1 = 10 cm/s?
b. Now suppose that all atoms with a velocity v > v1 were suddenly removed. After
some time, a new thermal equilibrium is established due to collisions. What is the
temperature of the gas now?

4.1.7.14 Ex: Trapped gases

The density distribution of a rubidium gas in a three-dimensional harmonic potential
can be expressed by,

n(r)d3r = n0e
−U(r)/kBT d3r ,

where U(r) = m
2 ω

2r2. Numerical values: m = 87u and ω = 2π · 50Hz.
a. Determine the size of the gas cloud (1/

√
e full width of the distribution) at a given

temperature T = 100µK.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute04.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute06.pdf
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b. Determine the maximum density n0 of the gas when N =
∫
n(r)d3r = 108 is the

total number of atoms.
c. The effective volume is defined by Veff = N/n0. How many atoms are in the effective
volume?

4.1.7.15 Ex: Trapped gases

Calculate the internal energy and heat capacity of an ideal gas stored in a harmonic
trap by explicit tracing over the density operator ρ = e−βε−βU , and compare the
result with a free gas.

4.1.7.16 Ex: Trapped gases

An ultracold gas made of 108 rubidium atoms (mass number 87) is trapped in a
three-dimensional potential of the form U(r) = m

2 ω
2r2 with the oscillation frequen-

cies ω/2π = 100Hz.
a. Assume the spatial distribution function for the atoms to be n(r) = n0e

−U(r)/kBT .
What is its width at 1/

√
e of the maximum height? How does the width of the dis-

tribution function change when the number of atoms is doubled?
b. The trap potential is suddenly switched off. The atoms are robbed of their poten-
tial energy, while their kinetic energy leads to the ballistic expansion of the cloud.
20ms after switching off the trapping potential, a 1/

√
e width of r̄a = 0.2mm is ex-

perimentally measured for the distribution of the expanded atomic cloud. What was
the temperature of the atomic cloud in the trap?
Help: Assume that the final size of the atomic cloud is much larger than the size of
the trap. Neglect collisions between the atoms.

4.2 Quantum statistics

Considering a closed isolated system in a fixed volume (NV E-ensemble where E,N, V =
const) we have derived in Sec. 4.1.1 the partition function for microcanonical ensem-
bles, from which we obtained in Sec. 4.1.2 the Boltzmann distribution function.

The combinatorial derivation of the number of microstates contributing to the
same macrostate (4.1) was based on the observation, that all particles constitut-
ing the system were identical, but distinguishable. The expression (4.1) is just the
multinomial coefficient, i.e. the number of ways of arranging N items into r boxes,
the j-th box holding nj items, ignoring the permutation of items in each box. The
problem, however, is that quantum mechanics postulates that identical particles are
indistinguishable, and this has an impact on the numbers of states available upon
permutation. Consequently, the partition function (4.1) needs to be corrected.

The problems ultimately results from the fact that phase space is quantized. If this
weren’t the case, the cells’ size could be chosen so small that they admit at most one
particle. Then quantum statistics would not apply, the system would be classical 7.

7The problem with undistinguishability is that it is not a classical concept and thus cannot be
mapped immediately to classical computers, which will always need to know in which of its bits the
information on what particle is stored. Bluring this information requires some trick, which is rather
easy to implement in the symmetrization and more cumbersome in the case of (anti-)symmetrization.
On the other hand, undistinguishability can be mapped to quantum computers.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute07.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_MaxwellDistribute08.pdf
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4.2.1 Wavefunction symmetrization and detailed balance

We learn in quantum mechanics, that (anti-)symmetrization of the total wavefunction
of a multiparticle system leads to Bose-enhancement (Pauli blocking). Consider a
product state of two particles 1 and 2, Ψo = ψα(1)ψβ(2), and symmetrize it to

Ψs,a = 1√
2
[ψα(1)ψβ(2)± ψα(2)ψβ(1)] . (4.44)

Now assume that the single particle wavefunctions do completely overlap,

α = β =⇒ |Ψo,s,a|2 = (s+ 1) |ψα(1)|2|ψβ(2)|2 , (4.45)

where s = 0 for Boltzmann particles (called boltzons here for simplicity), s = 1
for bosons, and s = −1 for fermions. Generalized to arbitrary numbers of par-
ticles we state: If n bosons (fermions) are in state Ψ, the probability for another
bosons (fermions) to joint this state is 1 + sn times the probability without (anti-
) symmetrization.

An intuitive derivation of the quantum statistical distribution function is based on
the postulate of detailed balance. Let us consider the most fundamental process in
physics, which is the collision between two particles initially in states 1 and 4 ending
up in two other states 2 and 3 [see Fig. 4.3(a)]. All four states j are initially occupied
with populations nj . The detailed balance postulate claims that equality of the rates
R14→23 for two particles to change their states and the rate for the inverse process
R23→14 is a sufficient condition for thermal equilibrium. Using the bosonic enhance-
ment (fermionic suppression) factor derived above, the postulate can be formulated,

R14→23 = |M14,23|2n1n4(1 + sn2)(1 + sn3) = (4.46)

R23→14 = |M14,23|2n2n3(1 + sn1)(1 + sn4) ,

where M14,23 is the matrix element of the collision process. Hence,

n1
1 + sn1

n4
1 + sn4

=
n2

1 + sn2

n3
1 + sn3

. (4.47)

Energy conservation requires,

ε1 + ε4 = ε2 + ε3 . (4.48)

In a canonical ensemble in thermal equilibrium the population distribution among
the levels must be a unique function of their energies,

nj = f(εj) . (4.49)

To satisfy Eqs. (4.47) and (4.48) f must have the functional form,

f(εj) =
1

Ceβεj − s
, (4.50)

where C is an arbitrary constant introduced to satisfy some normalization constraints.
This can be verified easily by plugging the formula (4.50) into the Eq. (4.47).
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Figure 4.3: (a) Detailed balance entails thermal equilibrium. (b) Subdivision of energy levels
j in subboxes gj . Red circles are fermions and green particles bosons.

4.2.2 Microcanonical ensembles of indistinguishable particles

4.2.2.1 Boltzons

In order to hold for indistinguishable particles, the partition function (4.1) must be
generalized allowing for the possibility that there is more than one way to put nj
particles into the box j. If the j-th box has a ’degeneracy’, that is, it has gj ’sub-
boxes’ with the same energy εj , such that any way of filling the j-th box where the
number in the sub-boxes is changed is a distinct way of filling the box, then in order to
get the right number of macrostates, the number of ways of filling the j-th box must
be increased by the number of ways of distributing the nj objects in the gj sub-boxes.
The number of ways of placing nj distinguishable objects in gj sub-boxes is g

nj

j , since
any particle can go into any of the gj boxes. Thus the number of ways W{nj} that
a total of N particles can be classified into energy levels according to their energies,
while each level j having gj distinct states such that the j-th level accommodates nj
particles is,

W{nj} = N !

r∏
j=1

g
nj

j

nj !
. (4.51)

In analogy to the procedure outlined in Sec. 4.1.2 we derive the Boltzmann distri-
bution by first taking the logarithm from (4.52) and then simplifying it using Stirling’s
formula (5.1),

lnW = lnN ! +
∑
j

[nj ln gj − lnnj !] ≃ lnN ! +
∑
j

[nj ln
gj
nj

+ nj ] , (4.52)

then calculating the differential,

d lnW =
∑
j

(
∂ lnW

∂nj

)
dnj =

∑
j

ln
gj
nj
dnj . (4.53)

introducing Lagrange multipliers α and β and minimizing the functional,

f({nj}) ≡ lnW + α(N −
∑
j

nj) + β(E −
∑
j

εjnj) . (4.54)

Relating the condition,

0 = df(nj) = d lnW − α
∑
j

dnj − β
∑
j

εjdnj =
∑
j

(
ln
gj
nj
− α− βεj

)
dnj (4.55)
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via the Boltzmann hypothesis (4.16) to entropy,

dS =
1

T
dE +

P

T
dV − µ

T
dN = kBβ dE + kBαdN = kB d lnW , (4.56)

we identify the Lagrange multipliers,

β =
1

kBT
and α = − µ

kBT
, (4.57)

and finally obtain the Boltzmann distribution by setting the parenthesis in (4.55) to
zero,

nj =
gj

eβ(εj−µ)
. (4.58)

This is basically the same result as the Boltzmann distribution derived in (4.18) except
for the appearance of the degeneracy factor gj .

4.2.2.2 Bosons

Boltzmann’s fundamental equation (4.3) relates the thermodynamic entropy S to
the logarithm of the number of microstates W{nj}. It was pointed out by Gibbs
however, that the above expression (4.51) does not yield an extensive entropy, and
is therefore faulty 8. This problem is known as the Gibbs paradox. The problem is
that the particles considered by the above equation are not indistinguishable. In other
words, for two particles (i and j) in two energy sublevels the population represented
by [i, j] is considered distinct from the population [j, i], while for indistinguishable
particles, they are not. Indeed, bosons have anti-symmetric wavefunctions, fermions
have symmetric ones. Boltzons have all wavefunctions as eigenfunctions. In the limit
of high temperatures all particles behave like boltzons.

Let us a system with a given one-particle energy spectrum εj . Now, every en-
ergy level labeled by j and containing nj particles is discretized into a number of gj
subboxes degenerate with respect to energy (i.e. all having the same energy εj), but
distinguished by some other quantum number [see Fig. 4.3(b)].

For bosons, each level gj can hold arbitrarily many of the nj particles. If we carry
out the argument for indistinguishable particles, we are led to the expression for the

8This can be seen as follows: Consider two identical systems, r′ = r and g′
j′ = gj , with atom

numbers N =
∑

j nj and N ′ =
∑

j n
′
j . The partition function for boltzons is not multiplicative,

(N +N ′)!
r∏

j=1

g
nj

j

nj !
̸= N !

r∏
j=1

g
nj

j

nj !
×N ′!

r∏
j=1

g
n′
j

j

n′
j !

while for fermions it is. To see this we set n′
j′ ≡ nr+j for j′ = r + j and j = 1, ..., r. Then,

2r∏
j=1

(gj
nj

)
=

r∏
j=1

(gj
nj

)
×

r∏
j=1

(gj
n′
j

)
.

The same argument holds for bosons. A critical discussion of the above statements can be read in
[30].
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Figure 4.4: Distribution of nj bosons (green), fermions (red), and boltzon (blue) over gj

boxes the number of possibilities being, respectively,
(
nj+gj−1

nj

)
,
(
gj
nj

)
, and

N !g
nj
j

nj !
.

partition function for bosons 9,

W{nj} =

r∏
j=1

(
nj + gj − 1

nj

)
. (4.59)

Analogously to (4.52) we calculate the logarithm using Stirling’s formula,

lnW =
∑
j

[ln(nj + gj − 1)!− lnnj !− ln(gj − 1)!] (4.60)

≃
∑
j

[
nj ln

gj − 1 + nj
nj

+ (gj − 1) ln
gj − 1 + nj
gj − 1

]
,

the differential,

d lnW =
∑
j

(
∂ lnW

∂nj

)
dnj =

∑
j

ln
nj + gj − 1

nj
dnj , (4.61)

and obtain the condition,

0 = df(nj) = d lnW − α
∑
j

dnj − β
∑
j

εjdnj (4.62)

=
∑
j

ln
nj + gj − 1

nj
− α

∑
j

−β
∑
j

εj

 dnj

with the same Lagrange multipliers. This yields the Bose-Einstein distribution,

nj =
gj − 1

eβ(εj−µ) − 1
. (4.63)

9Note that this partition function converges toward the one for boltzons for gj ≫ nj ≫ 1, which
can be seen by simplifying it using the Stirling formula.



140 CHAPTER 4. STATISTICAL THERMODYNAMICS

The Boltzmann distribution follows from this Bose-Einstein distribution for temper-
atures well above absolute zero, implying that gj ≫ 1. The Boltzmann distribution
also requires low density, implying that gj ≫ nj . Under these conditions, we may use
Stirling’s approximation (5.1) for the factorial: N ! ≈ NNe−N .

4.2.2.3 Fermions

For fermions, each level gj can hold at most one of the nj particles, which implies
that necessarily gj > nj [see Fig. 4.3(b)]. Let us consider a single energy level j. The
first of the nj particles has the choice between gj boxes. Since no box can be filled
with more than one particle, the second particle has only gj − 1 boxes at its disposal,
and so on until all particles have been assigned. This corresponds to gj !/nj ! possible
choices. However, we still need to respect the indistinguishability requirement. The
overcounting can be removed by dividing by (gj−nj)!. The procedure is now repeated
with all energy levels j, which leads to the partition function for fermions,

W{nj} =

r∏
j=1

(
gj
nj

)
. (4.64)

Again we calculate the logarithm using Stirling’s formula,

lnW =
∑
j

[ln gj !− lnnj !− ln(gj − nj)!] (4.65)

≃
∑
j

[
nj ln

gj − nj
nj

− gj ln
gj − nj
gj

]
,

the differential,

d lnW =
∑
j

(
∂ lnW

∂nj

)
dnj =

∑
j

ln
gj − nj
nj

dnj . (4.66)

and obtain the condition,

0 = df(nj) = d lnW − α
∑
j

dnj − β
∑
j

εjdnj (4.67)

=

r∑
j=1

(
ln
gj − nj
nj

− α− βεj
)
dnj ,

with the same Lagrange multipliers. This yields the Fermi-Dirac distribution for
gj ≫ 1,

nj =
gj

eβ(εj−µ) + 1
. (4.68)

Do the Exc. 4.2.6.1.
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4.2.2.4 Thermodynamic potentials for bosons and fermions

Using the abbreviation s = +1 for bosons, s = −1 for fermions, and s = 0 for boltzons
the distribution function can be expressed as,

nj =
gj

eβ(εj−µ) − s
. (4.69)

The chemical potential µ is fixed by the boundary conditions,

N =
r∑

j=1

nj and E =

r∑
j=1

εjnj , (4.70)
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Figure 4.5: (code) Quantum statistical weight (4.50) for fermions (red dash-dotted line),

bosons (green dashed line), and boltzons (black solid line). (a) Weight nj as a function of

level energy εj for two different temperatures (solid and dash-dotted lines). (b) Weight nj

as a function of temperature for various level energy εj (solid, dash-dotted, and dashed).

With this, knowing the energy spectrum εi and the distribution of states gj of
the system, we are able to calculate all thermodynamic potentials. E.g. the entropy
reads,

S = kB lnW{nj} = kB
∑
j

[
nj ln

(
s+

gj
nj

)
+ sgj ln

(
1 + s

nj
gj

)]
(4.71)

= kB
∑
j

[
sgjβ(εj − µ)
1− se−β(εj−µ)

+ sgj ln
(
eβ(εj−µ) − s

)]
.

The Bose-Einstein and the Fermi-Dirac distribution both have many applications
in quantum mechanics, e.g. for the explanation of the blackbody radiation, the heat
capacity of metals, the laser, the Bose-Einstein condensation, and much more. In fact,
these distributions must be used whenever quantum statistical effects are important.
Prominent examples of systems where a quantum statistical treatment is crucial are
electrons in metals and ultracold quantum gases. We will discuss the latter in Secs. 4.3
and 4.4.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBose.m
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4.2.3 Density-of-states in a trapping potential

An important boundary condition for the discussion of the quantum statistics of
gases is that the atoms are often confined in trapping potentials. Suspended in space
far from massive walls, they escape the perturbative influence of the environment.
This however implies, that the system becomes inhomogeneous, which means that
the number of states available to the atoms varies in space. In order to prepare
subsequent evaluations of thermodynamic potentials, let us first characterize this
spatial dependence by introducing the concept of the density-of-states.

In three dimensions the Hamiltonian of a trapped atoms is,

Ĥ = − ℏ2

2m
∇2 + U(r) . (4.72)

As the wavefunction is localized, the spectrum of possible energies organizes into
discrete levels, and the atoms are allocated in populations of these levels. Such mul-
tidimensional systems are often degenerate, which means that the same total energy
can be realized with different sets of quantum numbers 10. The way an atomic cloud
accommodates itself inside a trapping potential is governed by the density of available
states. We now introduce the density-of-states η(ϵ) for an arbitrary potential via,∫

η(ε)dε ≡ 1

(2π)3

∫
d3rd3k =

(2m)3/2

(2π)2ℏ3

∫
d3r

∫
dε
√
ε− U(r) , (4.73)

with the substitution k =
√

2m
ℏ2 [ε− U(r)].

As an example, let us consider a box potential of volume V . In this case, the
expression (4.72) simply yields,

η(ε) =
(2m)3/2

(2π)2ℏ3

∫
V

d3r
√
ε =

(2m)3/2

(2π)2ℏ3
V
√
ε (box potential) . (4.74)

In the following we derive the density-of-states for the case of an harmonic oscillator
potential. More general potentials are discussed in the Excs. 4.2.6.2 and 4.2.6.3.

Figure 4.6: Artists’s view of phase space cells in a trapping potential in two dimensions.

10This can be checked easily with separable potentials, such as the rectangular 3D box potential or
the 3D harmonic oscillator, where the same energy E = Ex +Ey +Ez can be reached with different
combinations of Ex, Ey , and Ez .
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Example 31 (Density-of-states for a cylindrical harmonic oscillator
potential): Let us consider a cylindrical harmonic oscillator,

U(r) =
m

2
ω2
rr

2 +
m

2
ω2
zz

2 where r2 = x2 + y2 , (4.75)

which can also be given in the form,

U(r) =
m

2
ω2
rρ

2 where ρ2 = x2 + y2 + λ2z2 with λ =
ωz

ωr
. (4.76)

We also define the mean oscillation frequency,

ω̄ = (ω2
rωz)

1/3 = λ1/3ωr . (4.77)

The single-particle levels of this Hamiltonian are,

εnxnynz = ℏωxnx + ℏωyny + ℏωznz , (4.78)

where the coefficients nj with j = x, y, z are integer numbers. For the cylindrical
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Figure 4.7: (code) (a) The figure shows two dimensions of a Ioffe-Pritchard type magnetic

trapping potential (characterized by being approximately linear at large distances from the

center and harmonic near the center). (b) Harmonic approximation (most experimentally

feasible potentials are approximately harmonic near the center). (c) One-dimensional cut

through the potential of (a,b). (d) Density-of-states for a harmonic (dotted line) and a

Ioffe-Pritchard type potential (solid line).

harmonic trap defined in (4.74), we find with a little help from Dr. Bronstein
[6],

η(ε) =
(2m)3/2

(2π)2ℏ3

∫
d3r

√
ε− m

2
ω2
rρ2 (4.79)

=
1

(2π)2
8ε2

(ℏω̄)3

∫ 1

−1

dx̃

∫ √1−x̃2

−
√

1−x̃2

dỹ

∫ √1−x̃2−ỹ2

−
√

1−x̃2−ỹ2

dz̃
√

1− x̃2 − ỹ2 − z̃2 .

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_IoffePotential.m
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The resolution of the integral gives,

η(ε) =
ε2

2(ℏω̄)3
(harmonic potential) . (4.80)

4.2.3.1 Application to the microcanonical partition function

Let us now come back to the distribution functions for ideal quantum gases introduced
in Sec. 4.2.2. In the thermodynamic limit, N → ∞, the distribution of states is
assumed so dense, that it can be expressed by a continuous density,

εj −→ ε = εr,p

gj −→ η(ε)

1

eβ(εj−µ)−s
−→ 1

eβ(ε−µ)−s
≡ wT,µ(ε)

nj =
gj

eβ(εj−µ)−s
−→ η(ε)wT,µ(ε)∑

j gj −→
∫
η(ε)dε = 1

(2π)3

∫
d3rd3k

N =
∑

j nj −→
∫
η(ε)wT,µ(ε)dε

E =
∑

j εjnj −→
∫
εη(ε)wT,µ(ε)dε

(4.81)

where s = 0 stands for the ’Boltzmann’, s = −1 for the ’Bose-Einstein’, and s = +1
for the ’Fermi-Dirac’ distributions derived in (4.58), (4.63), and (4.68). We also
introduced the symbol wT,µ to denote the statistical distribution function,

wT,µ(r,p)d
3rd3p = η(ε)wT,µ(ε)dε . (4.82)

In the following sections we will calculate all system variables based on the expressions
(4.91) in the thermodynamic limit.

4.2.4 Grand canonical ensembles of ideal quantum gases

Let us now derive the statistics for physical conditions satisfied by a grand canonical
ensemble, which is a good model for many systems in which the particle number is
not conserved. A deeper discussion of the relation to the canonical ensemble and the
role of the chemical potential will be provided in the last part of this section.

Supposing that the particles of a system do not interact, it is possible to compute a
series of single-particle stationary states, each of which represents a separable part that
can be included into the total quantum state of the system. Let us call these single-
particle stationary states ’orbitals’ in order to avoid confusion with the total many-
body state. Every orbital represents a smallest possible cell in quantized phase space
and has a distinct set of quantum numbers and may be occupied by several particles
or be empty. In this sense, each orbital forms a separate grand canonical ensemble by
itself, one so simple that its statistics can be immediately derived. Focusing on just
one orbital labeled j, the total energy for a microstate of N particles in this orbital
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will be E = Nεj , where εj is the characteristic energy level of that orbital. The grand
potential for the orbital is given by 11,

Ω = −kBT ln Ξgc with Ξgc =
∑

microstates

eβ(µN−E) , (4.83)

which is required for the microstates’ probabilities to add up to 1, similarly to the
procedure for canonical ensemble in (4.20).

In quantum mechanics the orbitals are understood as the eigenstates |ψm⟩ of a
single-particle Hamiltonian,

ĥm =
p̂2
m

2m
+ Vtrap(r̂m) , (4.84)

with m = 1, . . . , N , whose spectrum is εm = ⟨ψm|ĥm|ψm⟩. That is, every single
particle is completely characterized by the quantum number m 12. A microstate |Ψk⟩
is now identified as an eigenstate of the total many-particle Hamiltonian,

Ĥ =

N∑
m=1

ĥm with |Ψk⟩ =
N∏

m=1

|ψm⟩k . (4.85)

The request that the particles do not interact makes the system separable. The
density operator and the grand canonical partition function are [10],

ρ̂ =
e−β(Ĥ−µN̂)

Ξgc
and Ξgc = e−βΩ = Tr e−β(Ĥ−µN̂) , (4.86)

obviously satisfying Tr ρ̂ = 1. For the grand canonical ensemble the basis states of
the total Hamiltonian Ĥ are all microstates composed of many particles, and the
operators N̂ and ρ̂ can be expressed in the same basis.

We now migrate from the single-particle product state basis {|Ψk⟩} to a Fock state
basis assigning a given number of particles nj to every possible energy level εj , where
j = 1, . . . ,∞, as illustrated in Fig. 4.8,

|Ψk⟩ −→ |n1, n2, . . . , nj , . . .⟩ . (4.87)

I.e. we replace the distribution of microstates by a distribution of populations {nj}
among the energy levels. Since the energy and particle numbers are separately con-
served, the corresponding operators commute,

[Ĥ, N̂ ] = 0 , (4.88)

and therefore it is possible to find a complete basis of simultaneous eigenstates,

Ĥ| . . . nj . . .⟩ = E| . . . nj . . .⟩ with N̂ | . . . nj . . .⟩ = N | . . . nj . . .⟩ (4.89)

11In case of multi-species ensembles, the potentials add up like µ1N1 + µ2N2 + ....
12In practice, a set of several quantum numbers may be required.
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with,

E =

∞∑
j=0

εjnj and N =

∞∑
j=0

nj . (4.90)

This means that the number of particles is a conserved quantity and that Ĥ and N̂
can be simultaneously diagonalized.

We can now evaluate the partition function (4.86),

Ξgc =
∑

k∈{microstates}

⟨Ψk|e−β(Ĥ−µN̂)|Ψk⟩ (4.91)

=
∑
{nj}

⟨. . . nj . . . |e−β(Ĥ−µN̂)| . . . nj . . .⟩ =
∑
{nj}

e−β(E−µN) .

The density operator in this new basis is,

ρ̂ =
∑
{nj}

| . . . nj . . .⟩e−β(E−µN)⟨. . . nj . . . |∑
{nj} e

−β(E−µN)
. (4.92)

Figure 4.8: (a) Ensemble of N particles with different positions and velocities. (b) Distri-
bution of the particles over the spectrum of allowed energies.

Using the conditions (4.90), the partition function becomes,

Ξgc =
∑

n1,n2,...

⟨. . . nj . . . |e−β(Ĥ−µN̂)| . . . nj . . .⟩ (4.93)

=
∑
n1

⟨n1|e−β(n1ĥ1−n1µ)|n1⟩
∑
n2

⟨n2|e−β(n2ĥ2−n2µ)|n2⟩ × . . . ≡
∞∏
j=1

Ξj ,

where in the last step we defined a partial partition sum,

Ξj ≡
∑
nj

e−β(εjnj−µnj) , (4.94)

accounting for all possible populations of a particular energy level εj . Analogously,
the density operator becomes,

ρ̂ =
e−β(Ĥ−µN̂)

Ξgc
=

1

Ξgc
e
−β

(∑
{nj}

(εj−µ)n̂j

)
(4.95)

=
1

Ξgc
e−β(ε1−µ)n̂1e−β(ε2−µ)n̂2 × . . . =

∞∏
j=1

ρ̂j .
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Note, that breaking down the exponential of a sum of operators, e−
∑

n̂j , into a prod-
uct of exponentials of that operators,

∏
e−n̂j , is only possible because the operators

commute, [n̂k, n̂j ] = 0, which is only the case for non-interacting particles. In the last
step we defined,

ρ̂j ≡
e−β(εj−µ)n̂j

Ξj
= |nj⟩

e−β(εj−µ)

Ξj
⟨nj | . (4.96)

The problem with this expression is, that the global wavefunction |Ψ⟩ has not
yet been (anti-)symmetrized according the particles’ bosonic or fermionic nature.
For bosons, nj may be any non-negative integer and each value of nj counts as
one microstate due to the indistinguishability of particles. For fermions, the Pauli
exclusion principle allows only two microstates for the orbital (occupation of 0 or 1),
giving a two-term series 13, The partial partition sum (4.94) can thus be evaluated,

Ξj =


∑∞

nj=0 e
−β(njεj−njµ) = 1

1−e−β(εj−µ) for bosons∑1
nj=0 e

−β(njεj−njµ) = 1 + e−β(εj−µ) for fermions
(4.97)

Hence,

Ξgc =

∞∏
j=1

(1− se−β(εj−µ))−s , (4.98)

where s = 1 for bosons and s = −1 the lower for fermions.
The grand canonical potential per microstate becomes,

Ωj = −kBT ln Ξj = skBT ln(1− se−β(εj−µ)) . (4.99)

Considering again the entire system, the total Landau grand potential is found by
adding up the Ωj for all orbitals,

Ω =

∞∑
j=1

Ωj . (4.100)

In any case the value 14

nj = −
∂Ωj

∂µ
=

1

eβ(εj−µ) − s
≡ wT,µ(εj) (4.101)

13Here, we introduce the statistics of indistinguishable particles ad hoc. The same result is obtained
automatically introducing field operators satisfying bosonic or fermionic commutation rules. Indeed,
we can rewrite the Hamiltonian and the number operator of any non-interacting system like [45],

Ĥ =
∑
{nj}

εj â
†
j âj and N̂ =

∑
{nj}

â†j âj ,

where â†j and âj are the particle creation and annihilation operators introduced in the occupation
number representation.

14Note the absence of the degeneracy factor gj in comparison to the formula (4.69), which is
simply due to the fact that here we only consider a potential with non-degenerate eigenstates. The
degeneracy factor gj can, however, simply added ad hoc.
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gives the thermodynamic average number of particles on the orbital: the Fermi-Dirac
distribution for fermions, and the Bose-Einstein distribution for bosons.

The problem is completely analogous to Planck’s treatment of blackbody radia-
tion, where the Bose-Einstein distribution function followed as a corollary from the
Boltzmann statistics in thermal equilibrium and Planck’s quantization hypothesis,
E = Nεj .

4.2.4.1 Grand potential and ensemble averages

Evaluating partial derivatives of the function Ω(µ, V, T ), looking up the relations
(1.161), we find for the averages of numbers of particles, the Gibbs entropy, the
average pressure, and the average energy,

1 = Tr ρ̂

N = ⟨N̂⟩ = Tr ρ̂N̂ = −
(
∂Ω

∂µ

)
T,V

S = kBTr ρ̂ ln ρ̂ = −
(
∂Ω

∂T

)
µ,V

P = −
(
∂Ω

∂V

)
T,µ

E = ⟨Ĥ⟩ = Tr ρ̂Ĥ = TS + µN +Ω

. (4.102)

We will derive Eq. (4.102)(iii) in Exc. 4.2.6.4.

Example 32 (Calculation of ensemble averages): Thermodynamic fluc-
tuations can be calculated via the variances in energy and particle numbers.
Starting from,

−βΩ = lnΞgc = lnTr e−β(Ĥ−µN̂) (4.103)

it is easy to show, that,

∂Ξgc

∂µ
= βTr N̂e−β(Ĥ−µN̂) = βΞgc⟨N̂⟩ (4.104)

−β ∂Ω

∂µ
=

Tr N̂e−β(Ĥ−µN̂)

Ξgc
= β⟨N̂⟩

−∂2Ω

∂µ2
=

Ξgc
∂
∂µ

Tr N̂e−β(Ĥ−µN̂) − Tr N̂e−β(Ĥ−µN̂) ∂
∂µ

Ξgc

Ξ2
gc

= β(⟨N̂2⟩ − ⟨N̂⟩2) .

Hence, the particle number fluctuations are,

∆N̂ = ⟨N̂2⟩ − ⟨N̂⟩2 = − 1

β

∂2Ω

∂µ2
= kBT

∂⟨N̂⟩
∂µ

. (4.105)

Similarly,

(∆Ĥ)2 = ⟨Ĥ2⟩ − ⟨Ĥ⟩2 = kBT
2 ∂⟨Ĥ⟩

∂T
+ kBTµ

∂⟨Ĥ⟩
∂µ

, (4.106)

as will be verified in Exc. 4.2.6.5.
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If different species are present, it is interesting to calculate correlations in fluctu-
ations [34]. The covariances of particle numbers and energy are then,

⟨N1N2⟩ − ⟨N1⟩⟨N2⟩ = kBT
∂⟨N̂2⟩
∂µ1

= kBT
∂⟨N̂1⟩
∂µ2

(4.107)

⟨N̂1Ĥ⟩ − ⟨N̂1⟩⟨Ĥ⟩ = kBT
∂⟨Ĥ⟩
∂µ1

.

From the above expressions, it can be seen that the function Ω has the exact
differential,

dΩ = −S dT − ⟨N̂⟩dµ− P dV . (4.108)

Substituting the relationship (4.102)(v) for E into the exact differential of Ω, an equa-
tion similar to the first law of thermodynamics is found, except that some quantities
only appear as averages,

d⟨Ĥ⟩ = T dS + µd⟨N̂⟩ − P dV . (4.109)

4.2.4.2 Meaning of chemical potential

The key behind second quantization is to remove the restriction that the number of
particles is fixed. Instead, the theory is built around the idea of Fock space, where the
number of particles is not fixed. This is highly advantageous when dealing with many-
body systems. This same idea, when extended to finite temperatures, is what we call
the grand canonical ensemble. What we want is to consider some finite temperature

density matrix ρ̂ ∼ e−βĤ , where the number of particles is not fixed, but can fluctuate
[34].

However, letting it fluctuate arbitrarily would make no physical sense. Instead, the
basic idea of the grand canonical ensemble is to impose that the number of particles
in the system is only fixed on average. That is, we impose that,

⟨N̂⟩ = N . (4.110)

In some systems, the number of particles does indeed fluctuate. This happens, for
instance, in chemical solutions: if we look at a certain region of a liquid, the number
of molecules there is constantly fluctuating due to molecules moving in and out from
other regions. Of course, in many other systems, the number of particles is fixed.
However, even in these cases, pretending it can fluctuate may still give good answers
for large N (thermodynamic limit). The reason is that, as we have seen above, the
variance of N̂ scales as,

∆N̂ ∝
√
N , (4.111)

which is small. Hence, when N is large, the grand canonical ensemble will give
accurate answers, even if the number of particles is not actually allowed to fluctuate.
This is the idea behind ensemble equivalence: we are allowed to use an ensemble
where the number of particles fluctuates, even though it actually doesn’t, because in
the thermodynamic limit the fluctuations are small.

Because of [Ĥ, N̂ ] = 0 the eigenvalues of N̂ are good quantum numbers alongside

the eigenvalues of Ĥ. We can now arrange the common eigenvectors of E and N in
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such a way as to sort the eigenvalue sets (N,E) by total atom numbers, such that

Ĥ is divided in sectors with well-defined N . In other words, Ĥ is block diagonal,
and there are no terms connecting sectors with different N . The eigenvalues E are
thus labeled by two indices E(N,m), where m labels the quantum states within each
sector,

Ĥ =



E(N1, 1)

E(N1, 2)

. . .

E(N2, 1)

E(N2, 2)

. . .

. . .


. (4.112)

Suppose now that the system is in thermal equilibrium with exactly N particles,
which corresponds to a canonical ensemble. As resumed in Tab. 1.4, the conditions
for equilibrium are then obtained minimizing the Helmholtz free energy, dF = 0, and
the corresponding canonical density operator and partition function are,

ρ̂cn =
e−βĤ

Ξcn(N)
, Ξcn(N) =

∑
m∈sector

e−βE(N,m) , F = −kBT ln Ξcn(N) .

(4.113)

This is a constrained sum, since we are only summing over that sector that has
exactly N particles. This constraint makes it notoriously difficult to compute the
sum in practice solving a Schrödinger equation with Ĥ.

Instead, in the grand canonical ensemble we allow the number of particles to
fluctuate but only fix them on average (4.110). To accomplish this we had to intro-
duce a new parameter µ, called the chemical potential, so that the grand canonical
equilibrium state is transformed to,

ρgc =
e−β(Ĥ−µN̂)

Ξgc
, Ξgc = Tr e−β(Ĥ−µN̂) , Ω = −kBT ln Ξgc . (4.114)

Apparently, the chemical potential enters by shifting the Hamiltonian,

Ĥ → Ĥ − µN̂ . (4.115)

As resumed in Tab. 1.4, in grand canonical ensembles the conditions for equilibrium
are obtained minimizing the Landau energy, dΩ = d(F − µN) = 0. To obtain the
energy spectrum in the case of fluctuating particle numbers, we need to solve a many-
body Schrödinger equation (such as the Gross-Pitaevski equation) with the Hamilto-
nian substituted by Ω̂ = Ĥ − µN̂ [15].

The logic behind µ is twofold. When the number of particles is allowed to fluctuate,
the value of µ is fixed externally (like the temperature). As a consequence the number
of particles ⟨N̂⟩ = N(µ, T ) is interpreted as a function of µ and T . Conversely, if the
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number of particles N is fixed, then µ = µ(N,T ) is to be interpreted as a function of
N and T , which is to be determined as the solution of the implicit equation,

⟨N̂⟩ = Tr N̂e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
= N . (4.116)

Relevant cases in which the number of particles is not conserved are:

• Chemical reactions can convert one type of molecule to another; if reactions
occur then the Ni must be defined such that they do not change during the
chemical reaction.

• In high energy particle physics, ordinary particles can be spawned out of pure
energy, if a corresponding antiparticle is created. Then, neither the number of
particles nor antiparticles are conserved, only their difference.

• In a system composed of multiple compartments that share energy but do not
share particles it is possible to set the chemical potentials separately for each
compartment, for example, when a capacitor composed of two isolated conduc-
tors is charged by applying a difference in electron chemical potential.

• In some slow quasi-equilibrium situations it is possible to have distinct popula-
tions of the same kind of particle in the same location, which are each equili-
brated internally but not with each other.

• The grand canonical ensemble is particularly useful for developing the thermo-
dynamics of large ideal trapped quantum gases. While the phenomenon of BEC
can be derived in any ensemble (in Sec. 4.2.2 we derived the bosonic partition
function from the detailed balanced assumption using combinatorial arguments),
when the dynamics of a condensate is the subject under study, it is often useful
to consider it as a separate system being in thermal and chemical equilibrium
with a reservoir. The role of a reservoir is played by the thermal cloud, which
always coexists with the condensate and which exchanges particles and energy
with it.

In order for a particle number to have an associated chemical potential, it must
be conserved during the internal dynamics of the system, and only able to change
when the system exchanges particles with an external reservoir. If the particles can
be created out of energy during the dynamics of the system, then an associated µN
term must not appear in the probability expression for the grand canonical ensemble,
i.e. we require µ = 0 for that kind of particle. Such is the case for photons in a black
cavity, which can be annihilated or created due to absorption and emission on the
cavity walls (see Exc. 4.2.6.6) 15.

15Note that photons in a highly reflective cavity can be conserved and caused to have a non-zero
chemical potential µ.
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4.2.4.3 Comparison of canonical and grand canonical ensembles

The canonical ensemble is used to represent the possible microstates of a mechanical
system in thermal equilibrium with a heat bath at a fixed temperature. The system
can exchange energy with the heat bath, so that the states of the system will differ
in total energy. The principal thermodynamic variable of the canonical ensemble,
determining the probability distribution of states, is the absolute temperature T .
The ensemble typically also depends on mechanical variables, such as the number of
particles N in the system and the system’s volume V , each of which influence the
nature of the system’s internal states.

The canonical ensemble assigns a probability Pcn(E) to each distinct microstate
given by the following exponential,

Pcn(E) = eβ(F−E) = 1
Ξcn

e−E/(kBT ) with Ξcn = e−F/(kBT ) , (4.117)

where E is the total energy of the microstate and Ξcn the canonical partition function.
In quantum mechanics the density operator and partition function are,

ρ̂cn = eβ(F−Ĥ) = e−βĤ

Ξcn
= 1

Ξcn

∑
k |ψk⟩eβ(F−Ek)⟨ψk|

Ξcn = Tr e−βĤ = e−βF =
∑

k e
−βEk

. (4.118)

The Helmholtz free energy F is constant for the ensemble. However, the prob-
abilities and F will vary if different N,V, T are selected. The free energy F serves
two roles: first, it provides a normalization factor for the probability distribution (the
probabilities, over the complete set of microstates, must add up to one); second, many
important ensemble averages can be directly calculated from the function F (N,V, T ).

The canonical ensemble is the ensemble that describes the possible states of a
system that is in thermal equilibrium with a heat bath. It applies to systems of
any size; while it is necessary to assume that the heat bath is very large (i.e. take a
macroscopic limit), the system itself may be small or large.

The condition that the system is mechanically isolated is necessary in order to
ensure it does not exchange energy with any external object besides the heat bath. In
general, it is desirable to apply the canonical ensemble to systems that are in direct
contact with the heat bath, since it is that contact that ensures the equilibrium.
In practical situations, the use of the canonical ensemble is usually justified either
(1) by assuming that the contact is mechanically weak, or (2) by incorporating a
suitable part of the heat bath connection into the system under analysis, so that the
connection’s mechanical influence on the system is modeled within the system.

When the total energy is fixed but the internal state of the system is otherwise
unknown, the appropriate description is not the canonical ensemble but the micro-
canonical ensemble. For systems where the particle number is variable (due to contact
with a particle reservoir), the correct description is the grand canonical ensemble.

The grand canonical ensemble is used to represent the possible microstates of a
system of particles that are in thermal and chemical equilibrium with a reservoir.
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The system is said to be open in the sense that the system can exchange energy and
particles with a reservoir, so that various possible states of the system can differ in
both their total energy and total number of particles. The system’s volume, shape,
and other external coordinates are kept the same in all possible states of the system.

The thermodynamic variables of the grand canonical ensemble are chemical po-
tential µ and absolute temperature T . The ensemble is also dependent on mechanical
variables such as volume V which influence the nature of the system’s internal states.
As each of these is assumed to be constant in the grand canonical ensemble, it is
sometimes called the µV T ensemble.

The grand canonical ensemble assigns a probability Pgc(E) to each distinct mi-
crostate given by the following exponential 16,

Pgc = eβ(Ω+µN−E) = 1
Ξgc

eβ(µN−E) with Ξgc = e−βΩ , (4.119)

where N is the number of particles in the microstate and E is the total energy of the
microstate.

The quantum mechanics the density operator and partition function are,

ρ̂gc = eβ(Ω+µN̂−Ĥ) = e−β(Ĥ−µN̂)

Ξgc
= 1

Ξgc

∑
k |ψk⟩eβ(Ω+µnk−Ek)⟨ψk|

Ξgc = Tr e−β(Ĥ−µN̂) = e−βΩ =
∑

k e
β(µnk−Ek)

. (4.120)

The grand potential Ω is constant for the ensemble. However, the probabilities
and Ω will vary if different µ, V, T are selected. The grand potential Ω serves two roles:
to provide a normalization factor for the probability distribution (the probabilities,
over the complete set of microstates, must add up to one); second, many important
ensemble averages can be directly calculated from the function Ω(µ, V, T ).

The grand canonical ensemble is the ensemble that describes the possible states
of an isolated system that is in thermal and chemical equilibrium with a reservoir.
The grand canonical ensemble applies to systems of any size, small or large; it is
only necessary to assume that the reservoir with which it is in contact is much larger
(i.e. to take the macroscopic limit).

The condition that the system is isolated is necessary in order to ensure it has well-
defined thermodynamic quantities and evolution. In practice, however, it is desirable
to apply the grand canonical ensemble to describe systems that are in direct contact
with the reservoir, since it is that contact that ensures the equilibrium. The use of
the grand canonical ensemble in these cases is usually justified either (1) by assuming
that the contact is weak, or (2) by incorporating a part of the reservoir connection
into the system under analysis, so that the connection’s influence on the region of
interest is correctly modeled. Alternatively, theoretical approaches can be used to
model the influence of the connection, yielding an open statistical ensemble.

Another case in which the grand canonical ensemble appears is when considering
a system that is large and thermodynamic (a system that is ’in equilibrium with

16In the case where more than one kind of particle is allowed to vary in number, the probability
expression generalizes to Pgc = eβ(Ω+µ1N1+µ2N2+...−E), where µj is the chemical potential for the
j-th kind of particles, Nj the number of that kind of particle in the microstate.
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itself’). Even if the exact conditions of the system do not actually allow for variations
in energy or particle number, the grand canonical ensemble can be used to simplify
calculations of some thermodynamic properties. The reason for this is that various
thermodynamic ensembles (microcanonical, canonical) become equivalent in some
aspects to the grand canonical ensemble, once the system is very large. Of course,
for small systems, the different ensembles are no longer equivalent even in the mean.
As a result, the grand canonical ensemble can be highly inaccurate when applied to
small systems of fixed particle number, such as atomic nuclei 17.

Grand ensembles are apt for use when describing systems such as electrons in a
conductor or photons in a cavity, where the shape is fixed but the energy and number
of particles can easily fluctuate due to contact with a reservoir (e.g. an electrical
ground or a dark surface, in these cases). The grand canonical ensemble provides a
natural setting for an exact derivation of the Fermi-Dirac statistics or Bose-Einstein
statistics for a system of non-interacting quantum particles.

4.2.5 Thermodynamic limit and Riemann’s zeta function

The partition functions (4.59) resp. (4.64) for microcanonical and (4.98) for grand
canonical ensembles are evaluated over discrete distributions of microstates. Also, in
Sec. 4.2.3 we argued that, in view of the huge number of microstates, it is desirable
to introduce continuous distribution functions,∑

r,p

. . . −→ h−3

∫
d3rd3p . . . −→ h−3

∫
dεη(ε) . . . , (4.121)

which, for confined ensembles, can even be simplified using the concept of density-of-
states η(ε). As long as we are deep in the thermodynamic limit, N →∞, we expect to
obtain reliable results. Let us now do this exercise for an ideal quantum gas confined
in a box potential of volume V , whose density-of-states is given by (4.74).

We begin with the request that the chemical potential satisfies the normalization
condition,

N =

∫
wT,µ(ε)η(ε)dε =

V
√
2m

(2π)2ℏ3

∫ ∞

0

√
εdε

eβ(ε−µ) ∓ 1
. (4.122)

Introducing the thermal de Broglie wavelength,

λth ≡

√
2πℏ2
mkBT

, (4.123)

and defining the fugacity,

Z ≡ eβµ , (4.124)

and we may also write,

N =
V

λ3th

∫ ∞

0

√
xdx

Z−1ex ∓ 1
. (4.125)

17Note that even in the thermodynamic limit, in the presence of long range interactions, the
ensembles may not be equivalent.
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At this point, to simplify the notation, we introduce the Bose function and its
integral representation,

g+ξ (Z) =

∞∑
t=1

Zt

tξ
=

1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex − 1
≡ gξ(Z) , (4.126)

where Γ(η) denotes the Gamma function. Analogically, we can define the Fermi
function via 18,

g−ξ (Z) =

∞∑
t=1

− (−Z)t

tξ
=

1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex + 1
≡ fξ(Z) . (4.127)

For classical particles,

g0ξ (Z) =
1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex + 0
= Z , (4.128)

because the integral just defined the Gamma function. That is, interestingly the
classical function corresponding to the Bose or Fermi function is an identity for all
orders of ξ. A particular value is the Riemann zeta-function defined as,

ζ(ξ) = g+ξ (1) . (4.129)
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Figure 4.9: (code) (a) Bose and Fermi functions for box potentials (g3/2 and f3/2) and

for harmonic potentials (g3 and f3). Note that the Bose function is only defined between

Z ∈ [0, 1]. Also shown is the Boltzmann limit (4.128). (b) Riemann function.

Note that for Z−1ex ≫ 0 all denominators in the expressions (4.126) or (4.128)
converge to the classical limit, which is to say, that for highly excited atoms, ε−µ≫
kBT , all quantum statistical effects disappear.

With all these definitions we can now rewrite the expression (4.125),

N =
V

λ3th
g
(s)
3/2(Z) , (4.130)

18When the context is clear, we will use the shorter notations gξ and fξ for Bose and Fermi
functions, respectively.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseFermiFunction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseFermiFunction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseFermiFunction.m
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where s = + for bosons, s = − for fermions, and s = 0 for boltzons. Apparently, we
can identify the Bose/Fermi function as the thermal phase space density of an ideal
gas,

ρth ≡
N

V
λ3th = g

(s)
3/2(Z) . (4.131)

In a similar way we could now derive analytic expressions for all other thermodynamic
potentials. We will, however, see in the next Sec. 4.3, that for ideal bosonic gases the
result (4.130) must be corrected. The reason is rooted in a momentous quality of the
Bose function, which is that it diverges for Z > 1, which limits the chemical potential
to negative values.

4.2.6 Exercises

4.2.6.1 Ex: Quantum statistics

n particles are distributed over g > n different cells with the same probability. Cal-
culate the probabilities
a. that there is exactly one particle in each one of the first n cells;
b. that there is no cell with more than one particle.
Use the three different assumptions that:
i. the particles are boltzons, i.e. they are identifiable and arbitrarily many particles
can be assigned to each cell;
ii. the particles are bosons, i.e. they are NOT identifiable and arbitrarily many par-
ticles can be assigned to each cell;
iii. the particles are fermions, i.e. they are NOT identifiable and only a single particle
may be assigned to each cell.

4.2.6.2 Ex: Density-of-states for non-harmonic potentials

Calculate the density-of-states for non-harmonic potentials, Ĥ = ℏ2k2

2m +
∣∣ x
2x̄

∣∣p+∣∣∣ y
2ȳ

∣∣∣l+∣∣ z
2z̄

∣∣q using Ref. [1]. Apply the result to a quadrupolar potential.

4.2.6.3 Ex: Electron gas model

A simple model for the behavior of electrons in a metal is the Fermi gas model. In this
model the electrons move in a square well potential, a mean-field approach accounts
globally for the periodic lattice of ions and the influence of all other electrons. The
density-of-states and the electron density are the same as for blackbody radiation,

ρ(ε)dε =
V (2m3)1/2

π2ℏ3
√
εdε ,

n(ε)ρ(ε)dε =
1

e(ε−εF)/kBT + 1
ρ(ε)dε .

Calculate the maximum energy at T = 0.

4.2.6.4 Ex: Entropy in the grand canonical ensemble

Derive the relationship S = kBTr ρ̂ ln ρ̂.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats04.pdf
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4.2.6.5 Ex: Energy fluctuation in grand canonical ensembles

Derive the expression (4.106).

4.2.6.6 Ex: Black-body radiation

Derive the thermodynamics of the phenomenon of black-body radiation.
a. Which is the appropriate thermodynamic ensemble, and why?
b. For a single mode of a cavity, calculate the partition function, the density operator,
the total energy, and the Helmholtz free energy.
c. Generalize the results for an arbitrary black-body.
d. Introducing the density-of-states, calculate the energy density in the cavity as a
function of temperature.

4.3 Condensation of an ideal Bose gas

The clearest manifestation of quantum statistical effects is probably the phenomenon
of Bose-Einstein condensation (BEC) predicted by Bose and Einstein in 1926 [4].
With the achievement of BEC in a dilute gas of atomic rubidium in 1995, Cornell et
al. [8] confirmed the theory. Quantum degeneracy in Fermi gases was also observed
a bit later [13, 40]. In this and the subsequent section, we will present a quantum
statistical theory of ideal quantum gases for the cases of bosons, respectively, fermions.
Clearly, the theory is unable to grasp many phenomena observed in BECs and linked
to interatomic interactions, such as superfluidity. These will be discussed elsewhere 19.

4.3.1 Condensation of a gas confined in a box potential

At very low temperatures approaching T = 0, according to the Bose-Einstein distri-
bution (4.101), we expect the atoms to pile up in the lowest energy state εj=0 = 0 of
the trap,

n0
ε0→0−→ wT,µ(0) =

1

e−βµ − 1
=

1

1/Z − 1
= N , (4.132)

where we used the definition of the fugacity (4.124). In the thermodynamic limit,

Z =
1

1 + 1/N

N→∞−→ 1 , (4.133)

we find that the fugacity approaches unity. Thus, Z = 1 is the condition for a
macroscopic ground state population.

Let us now calculate the ground state population at finite temperatures. For
a free gas with energy spectrum, ε = p2/2m, we derived the density-of-states η(ε)
in (4.74) 20. Using the occupation number wT,µ(ε) for the Bose-Einstein distribu-
tion (4.101) in the thermodynamic limit, we express the total number of atoms as we

19See script on Quantum Mechanics applied to Atomic and Molecular Physics, Quantum and
Atom Optics (2025).

20We must, however, keep in mind that the state density approach is an approximation not valid
for experiments with a limited number of atoms.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats06.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_QuantumStats05.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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already did in Eq. (4.130),

N =

∫ ∞

0

wT,µ(ε)η(ε)dε =
V

λ3th
g3/2(Z) . (4.134)

The problem with the expression (4.134) now is, that the thermal de Broglie wave-
length diverges for T → 0, while the phase space density g3/2(Z) is bounded be-
tween g3/2(0) = 0 and g3/2(1) ≈ 2.612, which we realize after a quick inspection of
Fig. 4.9(a). Hence, according to this formula, even taking the largest possible value

of the fugacity, Z
T→0−→ 1, the number of atoms in the lowest energy state tends to 0,

N =
V

λ3th
g3/2(Z) <

(
mkBT

2πℏ2

)3/2

V g3/2(1)
T→0−→ 0 . (4.135)

This is obviously in contrast to the expectation of a large ground state population for
T → 0.

The reason is, that in the process of converting the sum to an integral (4.121),
the density-of-states disappears as we approach the ground state, thus removing the
ground state from the spectrum of energies that can be occupied. Einstein’s idea to
resolve the problem, was to explicitly maintain a discrete term accounting for the
ground state population Nc and to add it to the expression (4.134),

N = Nc +
V

λ3th
g3/2(Z) . (4.136)

4.3.1.1 Critical temperature and condensed fraction

We can use Eq. (4.136) to calculate the critical temperature Tc for Bose-Einstein
condensation. Above the phase transition, T > Tc, the population is distributed over
all states, each individual state being weakly populated; in particular, practically no
atoms are condensed, Nc = 0. The critical temperature Tc is the lowest temperature
where there are still no condensed atoms.

Below the critical temperature, T < Tc, the chemical potential is fixed by µ = 0,
and the fugacity reaches its maximum value, Z = 1. Above and at the critical tem-
perature all atoms occupy excited states. Being a fixed parameter the total number
of atoms N does not depend on temperature,

N =
V

λ3th
g3/2(Z) =

V

λ3c
g3/2(1) for T ≥ Tc , (4.137)

with g3/2(1) = 2.612. The first part of Eq. (4.137) holds for T ≥ Tc and provides a
mean of determining Z from temperature and total atom number. The second part
of Eq. (4.137) holds at T = Tc. Resolving it by Tc we obtain,

kBTc =
2πℏ2

m

(
N

V g3/2(1)

)2/3

. (4.138)

Below the critical temperature we need to add an additional term Nc. Resolving the
full expression (4.136) by the fraction Nc/N of atoms condensed in the ground state
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and substituting N from (4.137), we obtain,

Nc

N
= 1− V

Nλ3th
g3/2(Z) = 1− λ3c

λ3th

g3/2(Z)

g3/2(1)
=

{
1− λ3

c

λ3
th

for T ≤ Tc
0 for T ≥ Tc

(4.139)

In summary we have,

Nc

N
= 1−

(
min(T, T

(3/2)
c )

T
(3/2)
c

)3/2

with kBT
(3/2)
c =

2πℏ2

m

(
N

V g3/2(1)

)2/3

.

(4.140)
The superscript (3/2) denotes the box potential shape of the trapping potential 21.
The abrupt occurrence of a finite occupation in a single quantum state at temperature

below T
(3/2)
c indicates a spontaneous change in the system and a thermodynamic

phase transition. Solve Exc. 4.3.4.1.

0 0.5 1 1.5
T/Tc

0

0.5

1

N
c/
N

Figure 4.10: (code) Condensed fraction for an ideal Bose gas as a function of reduced

temperature for a (blue) in a box potential and (green) in a harmonic trap. Red circles

denote experimentally measured data points [25]. The red dashed line is a fit to the data.

The cyan dash-dotted line is a theoretical curve taking into account finite size effects and

interatomic interactions.

4.3.1.2 Thermodynamic potentials in a grand canonical ensemble

In order to calculate the density-of-states, state equation, mean values in the grand
canonical ensemble, we start from the definitions of the partition sum Ξgc in Eq. (4.98)
using the upper signs for bosons, the grand canonical potential Ω, the fugacity Z, the
density operator ρ̂, and the trace,

Ξgc ≡
∏∞

j=1
(1∓ Ze−βεj )∓1 and Ω ≡ −kBT ln Ξgc and Z ≡ eβµ

and ρ̂ ≡ e−β(ĤN−µN̂)

Ξgc
and Tr . . . ≡

∑
j

⟨ψj | . . . |ψj⟩ . (4.141)

21See Exc. 4.3.4.3 for an explanation of the notation.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_CondensedFraction.m
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The parameters µ, V, T are held fixed. As we have seen, for large systems in the
thermodynamic limit, the sum can be replaced by an integral, which, in turn, may
be expressed by the Riemann zeta-function (see Secs. 4.2.5 and 5.1.2). The thermo-
dynamic potentials and their expressions are summarized in the following table 22.

Table 4.1: Thermodynamic potentials for an ideal Bose gas (upper signs) or Fermi
gas (lower signs) trapped in a box potential.

Tr ρ̂ ln Ξgc

∑∞
j=1 limN→∞

Ω − 1
β
ln Ξgc

∑
j

ln(1∓Ze
−βεj )

±β

µ 1
β
lnZ

1 Tr ρ̂

nj −
(

∂Ωj

∂µ

)
T,V

wT,µ − 1
β

∂
∂εj

ln Ξgc
1

e
βεj /Z∓1

N −
(

∂Ω
∂µ

)
T,V

Tr N̂ ρ̂ Z ∂
∂Z

ln Ξgc

∑
j nj

V
λ3
th
g±3/2+

{
1

1/Z−1

}
S/kB −

(
∂Ω

kB∂T

)
µ,V

Tr ρ̂ ln ρ̂ ln Ξgc ±
∑

j ln
nje

βεj

Z
5V
2λ3

th
g±5/2

P −
(
∂Ω
∂V

)
T,µ

1
βV

ln Ξgc
1

βλ3
th
g±5/2

E TS + µN +Ω Tr Ĥρ̂ − ∂
∂β

ln Ξgc

∑
j njεj

3kBTV

2λ3
th

g±5/2 ≃
3PV
2

CV

(
∂E
∂T

)
N,V

15V
4λ3

th
g±5/2

With the particle number N we calibrate the chemical potential µ at a given
temperature T via,

N =
V

λ3th
g3/2(Z) =⇒ Z = g−1

3/2

(
λ3thN/V

)
, (4.142)

and knowing Z we can determine all thermodynamic potentials of the table 4.1.
The internal energy with fixed volume is proportional to the pressure. Note that
limN→∞ S = 0 and limN→∞ CV = 0. Do the Exc. 4.3.4.2.

The Bose-Einstein phase transition occurs at some critical temperature Tc. At
high temperature T > Tc the ground state population vanishes. At low temperature
T < Tc , we have to substitute in the above equations Z by 1. Since g3/2 is limited
for Z = 0, .., 1 the population balance must be equilibrated by an additional term
describing the ground state population:

N

V
λ3th =

{
g+3/2(1) + λ3th

Nc

V for T ≤ Tc
g+3/2(Z) for T ≥ Tc

P

kBT
λ3th =

{
g+5/2(1) for T ≤ Tc
g+5/2(Z) for T ≥ Tc

(4.143)

22The red terms in {} brackets only hold for bosons, because the integrals diverge otherwise.
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In the thermal Bose-gas phase, T ≥ Tc, we get from (4.143) the state equation,

PV

NkBT
=
g+5/2(Z)

g+3/2(Z)

T→∞−→ 1 . (4.144)

In the classical limit, obtained by noticing g0ξ (Z) = Z, follows the well-known classical
ideal gas equation. In the Bose-condensate phase, T ≤ Tc, using the definition of the
critical temperature, we recover from (4.143) the equation of state (4.140).
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Figure 4.11: Ultracold 87Rb gas at various temperatures (a,b) T > Tc, (c,d) T ≃ Tc, and
(e,f) T < Tc measured in experiment [25]. The figures (a,c,e) are two-dimensional false color
images of the momentum distribution. The figures (b,d,f) are cuts through the images.

4.3.2 Condensation of a harmonically confined gas

The critical temperature Tc can be significantly altered, when the atoms are confined
to a spatially inhomogeneous potential. The critical temperature depends on the
general shape and the tightness of the potential. Let us consider N particles of
an ideal Bose gas distributed over several quantum states of an arbitrary potential.
The occupation number wT,µ(ε) of particles at an energy level ε is still given by
(4.101), the ground state energy is defined as zero. In the thermodynamic limit,
the relation between the chemical potential and the total number of particles is still
given by Eq. (4.142), with an adequate density-of-states η(ε). The state density for
an arbitrary confinement potential U(r) can be found by generalizing the calculation
of the free gas case. The phase space volume between the energy surfaces ε and ε+dε
is proportional to the number of states in this energy range. However, the external
potential limits the space available for the gas. For a harmonic potential (4.76) with
the mean secular frequency ω̄ the density-of-states η(ε) has already been calculated



162 CHAPTER 4. STATISTICAL THERMODYNAMICS

in Eq. (4.80). With this, we can analogically to (4.142) and (4.140), calculate,

N = Nc +

∫ ∞

0

wT,µ(ε)η(ε)dε (4.145)

= Nc +
1

2(ℏω̄)3

∫ ∞

0

ε2dε

eβ(ε−µ) − 1
= Nc +

(
kBT

ℏω̄

)3

g3(Z) .

In the same way as for a potential well we find for a harmonic potential,

Nth =

(
kBT

ℏω̄

)3

g3(1) = N

(
T

T
(3)
c

)3

, (4.146)

with g3(1) = 1.202. Since Nc +Nth = N , the number of particles in the ground state
is,

Nc

N
= 1−

(
min(T, T

(3)
c )

T
(3)
c

)3

with kBT
(3)
c = ℏω̄

(
N

g3(1)

)1/3

. (4.147)

The superscript (3) indicates the harmonic shape of the trap.
Fig. 4.10 traces the condensed fractionNc/N measured as a function of the reduced

temperature T/T
(3)
c . Experiments [25, 17] confirm Bose’s ideal gas theory in the ther-

modynamic limit. A particularity of inhomogeneous trapping potentials is, that the
condensed and the normal phase separate in position and in momentum space, simply
because the condensed atoms occupy only the ground state, whose spatial extend is
small and where the atoms have low velocity, while thermal atoms are distributed
over all energy levels. Fig. 4.11 shows a measurement of velocity distributions of a
cloud of atoms close to the critical temperature.

We note that smaller trapping volumes (or tighter potentials) increase the critical
temperature Tc, thus allowing for quantum degeneracy at higher temperatures, which
can be advantageous in experimentation. Also, at a given temperature, a strongly
confining potential reduces the total minimum number of atoms required to reach
condensation.

4.3.2.1 Energy and heat capacity

When the number of atoms is limited, N < ∞, we expect a slightly reduced critical
temperature [22]. In addition, the repulsive interatomic interaction reduces the critical
temperature [1]. As the effects are small, they are difficult to observe in experiments.
However, measurements of other thermodynamic quantities such as energy and heat
capacity [13, 17] showed significant deviations from the ideal gas behavior due to
interaction effects.

The heat capacity quantifies the system’s ability to secure its energy. In conven-
tional systems, the heat capacity is typically either specified at constant volume or
at constant pressure. With this specification heat capacities are extensive state vari-
ables. When crossing a phase transition, the temperature-dependent heat capacity
measures the degree of change in the system above and below the critical temperature
and provides valuable information about the general type of phase transition.
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Figure 4.12: (code) Calculation of thermodynamic potentials as a function of temperature

for a Bose gas (green lines) and a classical Boltzmann gas (black lines) of 500000 88Sr atoms

trapped in a harmonic potential with secular frequency ωho/2π = 416Hz. (a) Chemical

potential, (b) energy, (c) heat capacity per particle, and (d) total heat capacity. The critical

temperature is Tc = 1.7µK.

Using (4.82) and (4.126), the total energy per particle is given by,

E

N
=

∫
εwT,µ(r,p)d

3rd3p∫
wT,µ(r,p)d3rd3p

=

∫
εη(ε)(eβ(ε−µ) − 1)−1dε∫
η(ε)(eβ(ε−µ) − 1)−1dε

= 3kBT
g4(Z)

g3(Z)
. (4.148)

For a confined gas, volume and temperature are interdependent, and the concept of
pressure is somewhat vague. In this case, we can not refer to the heat capacity at
constant volume or pressure. However, one can define the heat capacity for a fixed
number of particles,

C(T ) =

(
∂E(T )

∂T

)
N

. (4.149)

Fig. 4.12 shows the temperature dependence of some thermodynamic potentials for a
harmonically trapped ultracold Bose gas. The discontinuity of the heat capacity at
the critical temperature is known as λ-point. It interesting to note the rapid decrease
of the heat capacity with temperature below Tc, which is absolutely not predicted by
classical statistics. This obviously has important consequences for situations in which
a Bose condensate of one species is to be used for sympathetic cooling of a gas of
another species.

Calculating the second moments of the distributions obtained for the same density
by time-of-flight of absorption images, we obtain the kinetic energy,

Ekin =

∫
p2

2m
n(p)d3p . (4.150)

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseThermPotentialsHarm.m
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseThermPotentialsHarm.m
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For confined ideal gases, the virial theorem ensures Ekin+Epot = 2Ekin. For real gases,
the repulsive energy of the mean field adds to this energy, E = Ekin + Epot + Eself.
The sudden extinction of the trapping potential before time-of-flight takes away the
potential energy Epot non-adiabatically. The kinetic energy and the self-energy of
the condensate are fully converted into kinetic energy during ballistic expansion. It
is this energy, p2/2m = Ekin + Eself, which is sometimes called release energy, which
is measured after ballistic expansion 23. Fig. 4.13(right) shows a measurement of the
release energy. Solve the Exc. 4.3.4.3.
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Figure 4.13: Measurement of the release energy [17].

4.3.2.2 Micro- and grand canonical Bose-condensates

The decision which thermodynamic ensemble to use for a theoretical model depends
on the experimental situation. The question is particularly interesting in the context
of Bose-Einstein condensation: Here it is related to the question which state better
describes a BEC: A Fock state characterized by a fixed atom number or a Glauber
state, where the atom number is fluctuating.

The condensates experimentally produced in alkali gases consist of relatively small
atom numbers between 1000 to 107, so that the validity of the thermodynamic approx-
imation and the use of the density-of-states approach has been questioned [22]. Also,
the decision whether to use the grand canonical, the canonical or the microcanoni-
cal ensemble for calculating the thermodynamic quantities noticeably influences the
results. Herzog and Olshanii [26] have shown that for small atom numbers on the
order of 100 the canonical and grand canonical statistics lead to predictions on the
condensed fraction that differ by up to 10% (see Fig. 4.10). On the other hand, they
give the same results if the particle numbers are large. Which canonical statistics
is more appropriate is not a trivial question and depends on the experimental setup
and in particular on the time scale of the measurements. If we look at the sample

23It is interesting to measure the heat capacity of a partially condensed cloud near the critical
point and analyze the discontinuity, because it contains important information about interatomic
interactions and finite-size effects ([9], Sec. 3.4). In addition, the classification of Bose-Einstein con-
densation as a phase transition depends very much on the behavior of the thermodynamic potential
near the critical point [33, 29].
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for short times, the number of condensed atoms will be fixed, and we can assume a
canonical ensemble. For longer times, however, the atom number may be an equi-
librium parameter depending on the contact of the sample with a reservoir, and the
grand canonical statistics is better suited.

4.3.3 Density and momentum distribution for a Bose gas

Bose-Einstein condensates consist of atoms sharing a single quantum state. In in-
homogeneous potentials, the condensate and the thermal fraction form spatially sep-
arated clouds, concentrated around the center of the potential and therefore very
dense. For this reason, interatomic interaction effects generally dominate the density
and momentum distribution of the condensed fraction. However, the non-condensed
(or normal, or thermal) fraction is also subject to modifications due to the bosonic na-
ture of the atoms. Since the density of the normal fraction is generally much smaller,
these modifications are weak. In this section, we will only discuss these effects briefly,
but we note that the calculations are analogous to the calculations for fermionic gases
presented in Sec. 4.4.4.

For an ideal Bose gas the density and momentum distributions are expressed by
Bose functions g3/2(Z) [9]. For example, as will be derived in Exc. 4.3.4.4, the density
and momentum distributions are,

n(x) =
1

λ3th
g3/2(e

−β[U(x)−µ])

n(k) =
a6ho
λ3th

g3/2(e
β(µ−p2/2m))

(bosonic distribution functions) (4.151)

In the classical limit, we can calibrate the chemical potential by Eq. (4.142) for a
box potential or by (4.145) for a harmonic potential,

g3/2(e
βµ)→ c3/2(e

βµ) = eβµ =

{ N
V λ

3
th (for a box potential)

c3(e
βµ) = N

(
ℏω̄
kBT

)3
(for a harmonic potential)

(4.152)
Hence, we obtain for the classical density distribution,

n(x) =
1

λ3th
c3/2(e

−β[U(x)−µ]) =
eβµ

λ3th
e−βU(x) (4.153)

=


N
V

∣∣
x∈V

(for a box potential)

N
√

mω̄2

2πkBT

3

e−βmω̄2x2/2 (for a harmonic potential)

Similarly, the momentum density distribution is given by,

n(k) =
a6ho
λ3th

c3/2(e
β(µ−p2/2m)) =

a6hoe
βµ

λ3th
e−βp2/2m (4.154)

=


N
V a

6
ho

∣∣
x∈V

e−βp2/2m (for a box potential)

Nℏ3
√

1
2πmkBT

3

e−βp2/2m (for a harmonic potential)
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where we used the spatial extend of the ground state of the harmonic oscillator
aho =

√
ℏ/mω. We see that we recover the Maxwell-Boltzmann velocity distribution,

as seen in Fig. 4.14,

n(v) = n(k)
m3

ℏ3
= N

√
m

2πkBT

3

e−βmv2/2 . (4.155)
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Figure 4.14: (code) (a) Density and (b) momentum distribution of a Bose gas (red) and a

Boltzmann gas (green) at T = 1.1Tc (solid line) and at T = 2Tc (dotted line).

4.3.3.1 Ballistic expansion

To describe the density distribution of an ultracold Bose-gas after a time-of-flight we
replace in the second Eq. (4.151): k = mr/ℏtToF. We obtain the density distribution,

nToF(r, tToF) =

(
m

ℏtToF

)3

n(k = mr/ℏtToF) =
(

m

ℏtToF

)3
a6ho
λ3th

g3/2(e
(µ−mr2/2t2ToF)/kBT )

T→∞−→
(

m

ℏtToF

)3

Nℏ3
√

1

2πmkBT

3

e−mr2/2t2ToFkBT =
N

(2π)3/2r3rms

e−r2/2r2rms , (4.156)

where we defined,

rrms ≡
√
kBT

m
tToF . (4.157)

This distribution does not directly depend on the potential U(r), that is, the expansion
is isotropic. In Exc. 4.3.4.4(b) we determine the time-of-flight density distribution of
an ultracold Bose gas. For very long flight times (usually several 10ms) the density
resembles a Gaussian distribution [9]. Note however, that in interacting non-ideal
gases the chemical potential does depend on the potential.

In a time-of-flight experiment, any deviation observed between the results (4.156)
and (4.157) points towards an impact of quantum statistics. However, absorption
images only record column densities, i.e. projections of the time-of-flight distribution
on a plane, which tends to smear out the non-Gaussian features.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseDistributions.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_BoseDistributions.m


4.3. CONDENSATION OF AN IDEAL BOSE GAS 167

4.3.3.2 Adiabatic compression

Adiabaticity of a process means reversibility, while the atom number is unchanged
N = const and, hence, constant entropy S = const. According to Eq. (4.7) this
implies an unchanged population distribution nj = const and, consequently, energy
distribution βεj/T = const. Therefore we get βµ, βE = const, and the phase space
density keeps unchanged, e.g. for a box potential N

V λ
3
th = const. The process of

adiabatically compressing a harmonic trap therefore changes the temperature like
T ′ = Tω′/ω. This is valid above and below the transition point.

Example 33 (Heat capacity measurement): For an ideal Bose gas trapped
in a harmonic potential the temperature dependence of the heat capacity at
the threshold to condensation can easily be obtained as follows. The condensed
fraction determines the chemical potential through,

N = N0 +

(
kBT

ℏω

)3

g3(Z) , (4.158)

where Z(T ) = eµ/kBT for a grand canonical ensemble. The condensed fraction
vanishes above the critical temperature, the chemical potential vanishes below
the critical temperature. (kBT/ℏω)3 = 2π(aho/λth)

3 denotes the normalized
volume of a phase space cell. Knowing Z(T ) from equation (4.158), we can
calculate the total energy, the heat capacity and all the other thermodynamic
potentials:

CN = 12kB

(
kBT

ℏω

)3

g4(Z)− 9kBN
g3(Z)

g2(Z)
. (4.159)

For an interacting Bose-gas we expect that the Eqs. (4.158) and (4.159) are

not scrupulously obeyed. Indeed, the abrupt discontinuous change in the heat

capacity at the phase transition to BEC, expected for ideal gases, is smeared

out by atomic collisions [1].

For measuring the heat capacity of a gas we measure its temperature before

and after a controlled experimental cycle including an adiabatic and a sudden

variation, which transfers a quantifiable amount of energy to the system, as

illustrated in Fig. 4.15. The measured heat capacity can then be compared to

the theoretical model given by Eq. (4.159).

Figure 4.15: Population variation during a slow adiabatic compression followed by a sudden
non-adiabatic decompression.

4.3.4 Exercises

4.3.4.1 Ex: Monoatomic gas as a canonical ensemble

Consider a classical monoatomic gas made up of N non-interacting atoms of mass m
confined in a container of volume V , at temperature T . The Hamiltonian correspond-

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal01.pdf
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ing to an atom is given by Ĥ = (p̂2x + p̂2y + p̂2z)/2m.
a. Show that the atomic canonical partition function is ξ = V/λ3th, where λth is the
thermal de Broglie wavelength defined in Eq. (4.123).
b. Using ξ of the previous item, obtain the system’s partition function Ξcn and the
Helmholtz free energy F . Also obtain the free energy per atom f = F/N in the
thermodynamic limit N −→∞, V −→∞, such that v = N/V fixed.
c. Obtain internal energy E and the gas pressure p.
d. Calculate the chemical potential and entropy per atom in the thermodynamic limit,
thus deriving the so-called Sackur-Tetrode formula.

4.3.4.2 Ex: Thermodynamic quantities for a Bose gas trapped in a box

Derive all expressions for the entropy and the pressure of Tab. 4.1.

4.3.4.3 Ex: Generalization for arbitrary potentials in reduced dimen-
sions

The calculation of the thermodynamic potentials can be generalized to arbitrary trap-
ping potentials and dimensions [4, 16, 11, 2, 46, 18, 3, 22, 26, 32, 31, 38, 33, 37, 17].
To do so, we consider a generic power law potential confining an ideal Bose gas in α
dimensions,

U(r) =
∑α

i=1

∣∣∣∣xiai
∣∣∣∣ti ,

and define a parameter describing the confinement power of the potential,

ξ =
α

2
+
∑α

i=1

1

ti
.

For example, for a three-dimensional potential, α = 3. Now, for a 3D harmonic
potential, ξ = 3, and for 3D box potential, ξ = 3/2.
a. Calculate the density-of-states η using the equation (4.72) employing Bose functions
(4.126).
b. Prove the following expressions:

(bosonic potentials)

Nc

N
= 1−

(
min(T, Tc)

Tc

)ξ

E

NkBT
= ξ

gξ+1(Z)

gξ(Z)

(
min(T, Tc)

Tc

)ξ

S

NkB
= ξ

gξ+1(Z)

gξ(Z)
− βµ

C

NkB
= ξ(ξ + 1)

gξ+1(Z)

gξ(Z)

(
min(T, Tc)

Tc

)ξ

− ξ2 gξ(Z)

gη−1(Z)

max(T − Tc, 0)
T − Tc

CT>Tc

NkB
= ξ(ξ + 1)

gξ+1(Z)

gξ(Z)
− ξ2 gξ(Z)

gξ−1(Z)
,

CT<Tc

NkB
= ξ(η + 1)

gξ+1(1)

gξ(1)
∆CTc

NkB
=

CT−
c
− CT+

c

NkB
= ξ2

gξ(1)

gξ−1(1)

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal02.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal03.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal03.pdf
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4.3.4.4 Ex: Time-of-flight distribution of a Bose-gas

a. Derive the formulae (4.151) describing the density and momentum distribution of
an ultracold Bose-gas.
b. Calculate the time-of-flight distribution of a Bose-gas as a function of temperature
(i) analytically for a harmonic potential and (ii) numerically for an arbitrary potential.

4.4 Quantum degeneracy of an ideal Fermi gas

Atoms are fermions or bosons, depending on whether their spin is integer or semi-
integer. For example, 87Rb atoms with their total integer spin of F are bosons, while
40K atoms having a half-integer spin are fermions. At high phase space densities,
atoms have to figure out how they will organize their coexistence. Bosons encourage
each other to occupy the same phase space cell, in contrast to the reluctant fermions,
which prefer to follow Pauli’s exclusion principle. The different behavior is described
by different quantum statistics that determine how the phase space (i.e., the available
energy levels) has to be filled by the atoms. The Bose-Einstein distribution is valid for
bosons, the distribution of Fermi-Dirac for fermions and both asymptotically approach
the Boltzmann distribution at high temperatures. We have seen that bosons undergo
a phase transition and condense in the ground state when the temperature is reduced
below a critical threshold. On the other hand, the fermions organize their phase
space, so that their energy levels are arranged like a ladder. The impact of fermionic
quantum statistics on a cold cloud of atoms were observed experimentally by DeMarco
and Jin [13, 40]. They cooled a two-components Fermi gas of 7×105 potassium atoms
down to 300 nK, which corresponded to 60% of the atoms populating energy levels
below the Fermi energy. The measured density distribution was found to deviate from
the one expected for an ideal Boltzmann gas 24.

4.4.1 Chemical potential and Fermi radius for a harmonic trap

The phase space density for a degenerate Fermi gas in the thermodynamic limit has
been derived in (4.127). We consider a cylindrically symmetric harmonic potential, as
defined in (4.75), for which the density-of-states η(ε) has been calculated in (4.80). In
the same way as for a Bose gas, the chemical potential of the Fermi gas must satisfy
the normalization condition,

N =

∫
wT,µ(ε)η(ε)dε =

1

2(ℏω̄)3

∫ ∞

0

ε2dε

eβ(ε−µ) + 1
=

(
kBT

ℏω̄

)3

f3(Z) . (4.160)

For low temperatures, βµ≫ 1, we can use the Sommerfeld expansion of the Fermi
function, which in first order gives fξ(e

x) ≃ xξ/Γ(ξ + 1), where x is a placeholder for
βµ, Γ is the Γ-function, and ξ = 3 for a harmonic potential. From this we immediately
obtain the chemical potential at zero temperature defined as the Fermi energy,

EF ≡ µ(T = 0) = ℏω̄(6N)1/3 , (4.161)

24We note that meanwhile ultracold two-components Fermi gas have been demonstrated to form
bosonic Cooper-pairs, similarly to the phenomena known as superconductivity in some metals and
as superfluidity of the fermionic 3He.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Statistics_BoseIdeal04.pdf
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and from that the momentum of free particles and the Fermi radius,

KF ≡
√

2mEF

ℏ2
and rF ≡

√
2EF

mω2
r

, zF =

√
2EF

mω2
z

. (4.162)

At low but non-zero temperatures, ε − µ ≪ kBT , we use the second order of the
Sommerfeld expansion,

fξ(e
x) ≃ xξ

Γ(ξ + 1)

(
1 +

π2ξ(ξ − 1)

6x2
+ ...

)
, (4.163)

and obtain for the chemical potential the equation, 0 = µ3+(πkBT )
2µ−E3

F. The ap-
proximate solution of this equation, neglecting higher-order terms such as 4π6k6BT

6 ≪
27E6

F, is

µ = EF

[
1− π2

3

(
kBT

EF

)2
]
. (4.164)

For highly excited atoms, ε−µ≫ kBT , the Fermi function approaches the identity,

fξ(Z)
Z→0−→ Z (see Fig. 4.9), so that,

N =

(
kBT

ℏω̄

)3

eβµ =

(
kBT

ℏω̄

)3

(1 + βµ+ ...) , (4.165)

µ = kBT lnZ ≃ kBT lnN

[(
ℏω̄
kBT

)3
]
= kBT ln

1

6

(
EF

kBT

)3

,

where in the last step we substituted the definition of the Fermi energy. This means
that highly excited fermions behave like a Boltzmann gas, which satisfies an ideal gas
equation similar to that of classical particles in a box potential,

N =

(
kBT

ℏω̄

)3

. (Boltzmann) . (4.166)

Fig. 4.16(a) shows calculations of the chemical potential for an ideal Fermi gas
along with the chemical potentials of a Boltzmann gas and a Bose gas.

4.4.2 Energy

Using (4.82), the total energy per particle, E/N ≡ N−1
∫
εwTµd

3xd3k, is given by,

E

N
=

∫
εwT,µ(x,k)d

3xd3k∫
wT,µ(x,k)d3xd3k

=

∫
εη(ε)

(
eβ(ε−µ) + 1

)−1
dε∫

η(ε)
(
eβ(ε−µ) + 1

)−1
dε

= 3kBT
f4(Z)

f3(Z)
, (4.167)

in analogy to the expression (4.148) holding for a Bose gas. Again using the Sommer-
feld approximation, we see that for low temperatures, T → 0, the energy is limited
by [see Fig. 4.16(b)],

E =
3

β(βℏω̄)3
f4(e

βµ) =
3µ4

4E3
F

(
1 +

2π2

(βµ)2
+ ...

)
T→0−→ 3

4
EF . (Fermi) (4.168)
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Hence, the total energy per fermion does not vanish for T → 0. The reason is that
the atoms are forced to adopt states in the outermost regions of the harmonic trap.

For comparison, in the limit of high temperatures, T →∞, a classical gas has the
energy per particle,

E =
3

β(βℏω̄)3
f4

(
f−1
3

(
(βEF)

3

6

))
≃ 3NkBT . (Boltzmann) (4.169)

which is seen by taking the high temperature limit fη(Z)
Z→0−→ Z and extrapolating

to all Z. This implies, E1/EF
T→∞−→ 3kBT/EF.

And for bosons we have,

E = 3NkBT
g4(Z)

g3(Z)

(
min(T, Tc)

Tc

)3

≃ 2.7NkBT

(
T

Tc

)3

. (Bose) (4.170)

Hence, the total energy per boson decreases very rapidly for T → 0. The reason
is that the atoms are bosonically encouraged to pile up in the inner region of the
harmonic trap.

4.4.3 Entropy and heat capacity

The entropy per particle S1 = −
(
∂Ω
∂T

)
µ
can be calculated analogously to the Bose gas

(see for example Excs. 4.3.4.2 and 4.3.4.3),

S1 = 4kB
f4(Z)

f3(Z)
− µ

T
=

4E1

3T
− µ

T
. (4.171)

The heat capacity per particle C1 =
(
∂E1

∂T

)
N

is easily calculated using Zf ′η(Z) =
fη−1(Z),

C1 = 3kB
f4(Z)

f3(Z)
− 3µ

T

(
1− f4(Z)f2(Z)

f3(Z)2

)
=
E1

T
− 3µ

T

(
1− f4(Z)f2(Z)

f3(Z)2

)
. (4.172)

For fermions well below the Fermi temperature, T → 0, using the Sommerfeld
approximation, we calculate,

C1
T→0−→ 3π2

2

kBT

TF
. (Fermi) (4.173)

For high temperature T

C1 ≈ 3kB . (Boltzmann) (4.174)
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Figure 4.16: (code) Calculation of thermodynamic potentials for Bose (red), Fermi (green),

and Boltzmann gases as a function of temperature for a given harmonic trapping potential.

The gases are assumed to have same mass, same atom number N = 200000, and same

trap frequencies ωho/2π = 200Hz. (a) Chemical potential, (b) energy, (c) heat capacity per

particle, and (d) total heat capacity. The dotted magenta line in (a) shows the chemical

potential calculated from the Sommerfeld approximation.

4.4.4 Density and momentum distribution for a Fermi gas

4.4.4.1 Spatial distribution

The density distribution is,

n(x) =

∫
wT,µ(x,k)d

3k =
1

(2π)2

∫
2k2dk

eβ[ℏ2k2/2m+U(x)−µ] + 1
(4.175)

=
1

(2π)2

(
2m

ℏ2

)3/2 ∫ √
εdε

eβ[ε+U(x)−µ] + 1
=

1

(2π)2

(
2m

βℏ2

)3/2

Γ(3/2)f3/2(e
−β[U(x)−µ]) ,

such that,

n(x) = λ−3
th f3/2(e

−β[U(x)−µ]) (Fermi) . (4.176)

At low temperatures, T → 0, we can apply the Sommerfeld expansion [7], which to
first order gives µ→ EF,

n(x) ≈ 1

(2π)2
Γ(3/2)

Γ(5/2)

(
2m

ℏ2
[µ− U(x)]

)3/2

(4.177)

=
1

(2π)2
2

3

(
2m

ℏ2

)3/2 (
EF −

m

2
ω2
rρ

2
)3/2

=
8λ

π2

N

R3
F

(
1− ρ2

R2
F

)3/2

.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiThermPotentialsHarm.m


4.4. QUANTUM DEGENERACY OF AN IDEAL FERMI GAS 173

At high temperatures, T →∞, we should recover the Boltzmann gas situation,

n(x) = λ−3
th f3/2(e

−β[U(x)−µ]) (4.178)

≈ λ−3
th N (βℏω̄)3 e−βU(x) =

(
mβω̄2

2π

)3/2

Ne−βm(ω2
xx

2+ω2
yy

2+ω2
zz

2)/2 .

It is easy to check that
∫
n(x)d3x = N . Introducing the peak density n0, we obtain,

n(x) = n0e
−mω2ρ2/2kBT (Boltzmann) . (4.179)

The rms-radius of the distribution is σj =
√
kBT/mω2

j , which seems contrary to the

above results, m
2 ω

2
j

〈
x2j
〉
= kBT . In comparison,

n(x) = λ−3
th g3/2

[
eβ(µ−U(x))

]
(Bose gas above Tc) . (4.180)

where λth =
√

2πℏ2/mkBT and aho =
√
ℏ/mω̄.

4.4.4.2 Momentum distribution

The momentum distribution is,

ñ(k) =

∫
wT,µ(x,k)d

3x =
1

(2π)2

∫
rdrdz

eβ[ε(k)+mω2
rρ

2/2−µ] + 1
(4.181)

=
1

(2π)3

∫
4πρ2dρ

eβ[ε+mω2
rρ

2/2−µ] + 1

=
1

(2π)2

(
2

βmω2
r

)3/2 ∫ √
tdt

eβ[ε+t−µ] + 1
=

1

(2π)2

(
2

βmω2
r

)3/2

Γ(3/2)f3/2(e
β(µ−ε)) ,

such that,

ñ(k) = λ−3
th a

6
hof3/2(e

β(µ−ε)) (Fermi) . (4.182)

At low temperatures, T → 0,

ñ(k) ≈ 1

(2π)2

(
2

βmω2
r

)3/2
Γ(3/2)

Γ(5/2)
(β [µ− ε])3/2 (4.183)

≈ 1

(2π)2

(
2

mω2
r

)3/2
2

3

(
EF −

ℏ2k2

2m

)3/2

=
8

π2

N

K3
F

(
1− k2

K2
F

)3/2

.

This can easily be integrated by dimensions,

ñT→0(kz) =

∫ ∞

−∞

∫ ∞

−∞
ñcl(k)dkxdky =

8

π2

N

K3
F

∫ ∫
|k|≤KF

(
1− k2

K2
F

)3/2

dkxdky

(4.184)

=
8

π2

N

K3
F

∫ 2π

0

∫ √K2
F−k2

z

0

(
1− k2z

K2
F

−
k2ρ
K2

F

)3/2

kρdkρdϕ =
16

5π

N

KF

(
1− k2z

K2
F

)5/2

.
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It is easy to check
∫∞
−∞ ñT→0dkz = N , with Maple.

At high temperatures, T →∞, we should recover the Boltzmann gas situation,

ñ(k) ≈
(

ℏ2ω̄2

2πmω2
r

)3/2

Ne−βε (Boltzmann) . (4.185)

Since ε is the kinetic energy, the rms-radius
√
k2 of this distribution is βℏ2⟨k2⟩ = m.

In comparison,

ñ(k) = λ−3
th a

6
ho g3/2

[
eβ(µ−p2/2m)

]
(Bose gas above Tc) . (4.186)

Example 34 (Integrated momentum distribution of a Fermi gas): To
integrate the momentum distribution of finite temperature Fermi gas by dimen-
sions,

ñ(kz) =
1

(2π)3

(
2

βmω̃2
ho

)3/2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

4πr̃2dr̃

eβε−βµ+r̃2 + 1
dkydkx (4.187)

=
1

(2π)3

(
2

βmω̃2
ho

)3/2

2π

∫ ∞

0

∫ ∞

0

4πr̃2dr̃

eβℏ
2k2

z/2m+βℏ2k2
ρ/2m−βµ+r̃2 + 1

kρdkρ

=
1

π

(
2

βmω̃2
ho

)3/2
2m

βℏ2

∫ ∞

0

∫ ∞

0

k̃ρdk̃ρ

eβℏ
2k2

z/2m−βµ+r̃2+k̃2
ρ + 1

r̃2dr̃

=
1

π

(
2

βmω̃2
ho

)3/2
2m

βℏ2
1

2

∫ ∞

0

r̃2 ln
1

1 + e−βℏ2k2
z/2m+βµ−r̃2−k2

ρ

∣∣∣∣∞
0

dr̃

=
2

π (βℏω̃ho)
2

(
2

βmω̃2
ho

)1/2 ∫ ∞

0

r̃2 ln
(
1 + eβµ−βℏ2k2

z/2m−r̃2
)
dr̃ .

4.4.4.3 Time-of-flight distribution

To describe time-of-flight images we substitute k = mr/ℏt. We obtain the density
distribution from a convolution,

nToF(x, t) =
1

(2π)3

∫
d3x0d

3k
δ3(x− x0 − pt/m)

eβ(ε(x0,p)−µ) + 1
(4.188)

=
1

(2π)3

∫
d3k

eβ(ε(x+pt/m,p)−µ) + 1

=
1

(2π)3

∫
dkxdkydkz

eβΣj[ℏ2k2
j/2m+ 1

2mω2
j (xj+ℏkjt/m)2]/Z + 1

where j = x, y, z . .

We rewrite the exponent,

ℏ2k2j/2m+ 1
2mω

2
j (xj + ℏkjt/m)

2
= ℏ2k2j/2m(1 + ω2

j t
2) + ω2

j txjℏkj + 1
2mω

2
jx

2
j

=

√ℏ2k2j
2m

(1 + ω2
j t

2) +
ω2
j txj
√
2m

2
√
1 + ω2

j t
2

2

+
mω2

jx
2
j

2(1 + ω2
j t

2)

= ξj +
m

2
ω̌2
jx

2
j . (4.189)
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where we defined ω̌i ≡ ωi(1+ω
2
i t

2)−1/2. With the substitution dξj = dkj

√
2ℏ2

m ξj
(
1 + ω2

j t
2
)

we obtain

nToF(x, t) =
1

(2π)3

(
mkBT

2ℏ2

)3/2
1∏

i (1 + ω2
i t

2)

∫
β3/2 (ξxξyξz)

−1/2
dξxdξydξz

eβΣj[ξj+m
2 ω̌2

jx
2
j ]/Z + 1

=
1

23π3/2

1

λ3th

ω̃3

ω̄3

∫
β3/2ξ−3/24πξ2dξ

eβΣj[ξ+m
2 ω̌2

jx
2
j ]/Z + 1

, (4.190)

where ω̄ ≡ (ωxωyωz)
1/3 and ω̌ ≡ (ω̌xω̌yω̌z)

1/3
.

nToF(x, t) =
1

λ3th

ω̌3

ω̄3
f3/2

(
eβµ−

1
2βmΣj ω̌

2
jx

2
j

)
. (4.191)

For long times-of-flight t≫ ω−1,

nToF(x, t) =
1

λ3th

1

ω̄2t2
f3/2

(
eβ(µ−mx2/2t2)

)
=
(m
ℏt

)3
ñ(mx/t) . (4.192)
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Figure 4.17: (code) Time-of-flight velocity distributions after TToF = 2ms of (red) a Li

Fermi gas at T = 0 with vanishing initial spatial distribution [7] and (black) a thermal gas

at T = TF.

At low temperatures,

nToF(x, t) =
(m
ℏt

)3 N

K3
F

8

π2

(
1− (mx/ℏt)2

K2
F

)3/2

(4.193)

=
(m
ℏt

)3 R3
F

6π2λ

1−( RFmx/ℏt
(48Nλ)

1/3

)2
3/2

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiDistributionTof.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiDistributionTof.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiDistributionTof.m
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At high temperatures,

nToF(x, t) =
1

λ3th

1

ω̄2t2
f3/2(e

β(µ−mx2/2t2)) (4.194)

≈ 1

λ3th

1

ω̄2t2
eβ(µ−mx2/2t2)

≈
(
mkBT

2πℏ2

)3/2
1

ω̄2t2
N

(
ℏω̄
kBT

)3

e−βmx2/2t2 ≈ N ω̄

t2

(
m

2πkBT

)3/2

e−βmx2/2t2 .

A rms-width is,〈
r2ToF

〉
=

∫
r2nToF(x, t)d

3x (4.195)

=
1

λ3th

ω̌3

ω̄3

∫
r2f3/2

(
eβµ−

1
2βmΣj ω̌

2
jx

2
j

)
d3x

=
2

mω̌2
rN

∫
εg(ε)dε

eβ(ε−µ) + 1
=
kBT

mω̌2
r

g4(Z)

g3(Z)
.

This shows that the width of the flight-of-time distribution can simply be obtained
from the spatial distribution by substituting ω → ω/

√
1 + ω2t2. Of course this does

not hold for condensed gases Bose.

Example 35 (Equipartition theorem): We find for harmonic traps,

Epot,1 =

∫
U(x)wT,µ(x,k)d

3xd3k∫
wT,µ(x,k)d3xd3k

=
1

(2π)3N2

∫
mω2r2d3xd3k

eβ[ℏ
2k2/2m+mω2r2/2−µ] + 1

=
16

πNβ4 (ℏω)3

∫
u4v2dudv

eu2+v2/Z + 1
(4.196)

=
1

(2π)3N2m

∫
ℏ2k2d3xd3k

eβ[ℏ
2k2/2m+mω2r2/2−µ] + 1

=

∫
ℏ2k2wT,µ(x,k)d

3xd3k

2m
∫
wT,µ(x,k)d3xd3k

= Ekin,1 .

This confirms the equipartition theorem for confined particles, which postulates,

E = Ekin + Epot = 2Ekin . (4.197)

In flight time, however, Epot suddenly vanishes.

4.4.4.4 Calibrating the number of atoms

Experimentally, to calibrate N , we can use either the measured value of ⟨k2⟩ at T = 0,
which gives µ = EF = 4E/3 and consequently,

N =
32

3

(
ℏ2⟨k2⟩
6mℏω̄

)3

. (4.198)

Or we determine the temperature Tg where the Boltzmann gas turns into a Fermi gas
3µ/4 = 3kBTg,

N =
32

3

(
kBTg
ℏω̄

)3

. (4.199)
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4.4.5 Density and momentum distribution for anharmonic po-
tentials

4.4.5.1 Width of momentum distribution for anharmonic potentials

If the potential is non-harmonic, the widths of Fermi distributions must in general
be calculated numerically. I.e. first η(ε) is determined by integrating for every value
of ε the root

√
ε− U(x) over the entire volume, where U(x) < ε, i.e. in the case of

cylindrical symmetry,

η(ε) =
(2m)3/2

2πℏ3

∫ √
ε− U(r, z)rdrdz . (4.200)

Second the chemical potential must also be calculated numerically from

N =
∫
η(ϵ)

(
eβ(ε−µ) + 1

)−1
dε by minimizing the function,

o(Z) =

∣∣∣∣βN − ∫ η(x/β)dx

ex/Z + 1

∣∣∣∣ . (4.201)

Finally, the rms-momentum width of a degenerate Fermi-gas is calculated from,

⟨k2⟩
k2F

=
E1

EF
=

1

NEF

∫
εη(ε)dε

eβ(ε−µ) + 1
. (4.202)

It is important to note that the temperature cannot be obtained from ℏ2
〈
k2
〉
/2m =

3NkBT any more. Rather for a given ⟨k2⟩ the parameter β in the integral (4.200)
must be fitted to satisfy the equation.

Alternatively, we may assume a polynomial potential for which the density-of-
states can be described by η(ε) ∝ εn. Then,

⟨k2⟩
k2F

=
1

EF

∫
εη(ε)

(
eβ(ε−µ) + 1

)−1
dε∫

η(ε)
(
eβ(ε−µ) + 1

)−1
dε

=
T

TF

(n+ 1)fn+2(Z)

fn+1(Z)
, (4.203)

For a harmonic potential we recover the energy formula,

⟨k2⟩
k2F

=
3T

TF

f4(Z)

f3(Z)
, (4.204)

and for hot clouds the classical limit holds,

⟨k2⟩
k2F

=
n+ 1

βEF
. (4.205)

Must for a single dimension the value be divided by three? ℏ2⟨k2j ⟩ = 2mkBTf4(Z)/f3(Z)

setting ε = ℏ2k2/m.
For a harmonic potential η(ε) ∝ ε2 and for a linear potential η(ε) ∝ ε7/2. Inter-

mediate values are possible for non isotropic traps, which are linear in some directions
and harmonic in others, e.g. for a radially quadrupolar and axially harmonic trap, we
expect η(ε) ∝ ε3 and thus E = 4NkBT . In general, we may have more complicated
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situations, where the trap becomes non-harmonic beyond a certain distance from the
origin. In those cases, the density-of-states may be approximated by series,

η(ε) ∝ ε2 + κε3 , (4.206)

where η is a small parameter, so that,

⟨k2⟩
k2F

=
1

EF

∫
(ε3 + κε4)(eβ(ε−µ) + 1)−1dε∫
(ε2 + κε3)(eβ(ε−µ) + 1)−1dε

=
T

TF

3f4(Z) + 12κf5(Z)
f3(Z) + 3κf4(Z)

, (4.207)

which in the classical limit gives rise to energies E = 3..4NkBT depending on the
value of κ.

Such effects must be considered when the time-of-flight method is used for temper-
atures measurements. For example, if we underestimate η(ε) by assuming a harmonic
potential at all ε, although the potential is quadrupolar at large ε ≫ kBT , we get a
wrong estimate for the temperature Twrng = E/3NkB instead of Tcorr = E/4NkB.

4.4.5.2 Width of the density distribution for anharmonic potentials

The result also permits to calculate the rms spatial width,∑3

j=1

m

2
ω2
j ⟨x2j ⟩ = 3kBT

f4(Z)

f3(Z)
. (4.208)

Let us for simplicity assume ωi = ωj . So in the classical limit,

⟨x2j ⟩
R2

F

=
⟨x2⟩
3R2

F

=
E1

3EF
=

1..1.3T

TF
. (4.209)

If the potential is non-harmonic, the widths of Fermi distributions must in general be
calculated numerically. We may use the same results for the density-of-states and the
chemical potential as for the momentum width calculations. Then,

⟨x2j ⟩
R2

F

=
E1

3EF
=

1

3EF

∫
εη(ε)

(
eβ(ε−µ) + 1

)−1
dε∫

η(ε)
(
eβ(ε−µ) + 1

)−1
dε

. (4.210)

4.4.5.3 Momentum distribution for a classical gas

For high temperatures, T →∞, we should recover the ideal Boltzmann gas situation,
f3/2 → id,

ñT→∞(k) =
1

(2π)3

∫
4πρ2dρ

eβ[ε+mω2
hoρ

2/2−µ]
=

1

2π2
e−β(ε−µ)

∫
e−βmω2

hoρ
2/2ρ2dρ (4.211)

=

(
1

2πβmω2
ho

)3/2

e−β(ε−µ) = λ−3
th a

6
ho e

β(µ−ε) .

Since the chemical potential satisfies the normalization,
∫
ñT→∞(k)d3k = 1,

ñT→∞(k) =

(
1

2πβmω2
ho

)3/2

N

(
ℏωho

kBT

)3

e−βε = N

√
ℏ2

2πmkBT

3

e−ℏ2k2/2mkBT .

(4.212)
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This is easy to integrate by dimensions, so that,

ñT→∞(kz) =

∫ ∞

−∞

∫ ∞

−∞
ñT→∞(k)dkxdky = N

√
ℏ2

2πmkBT
e−ℏ2k2

z/2mkBT . (4.213)

The rms-width of this distribution is,

∆kz =

√
mkBT

ℏ
. (4.214)

4.4.6 Signatures for quantum degeneracy of a Fermi gas

Whether an atom is a fermion or a boson uniquely depends on its total spin. Halfinte-
ger spin particles are fermions, integer spin particles are bosons. E.g. Rb atoms have
in the ground state J = 1/2, I = 7/2, integer F , and are therefore bosons. Ca+ ions
have J = 1/2 and no hyperfine structure so that F is half-integer, and are therefore
fermions. 6Li has half-integer F and is a boson.

For a composite particle the quantum statistical nature may depend on the inter-
action strength of the partners. For weak interaction, e.g. Feshbach the total spins of
the partners will couple to a total total spin, which determines the nature of the com-
posite particle. A fermion pairing with a fermion or a boson pairing with a boson will
be bosons. A fermion pairing with a boson will be a fermion. Composite trimers may
be either bosonic or fermionic depending on the coupling scheme [43, 5, 19, 20, 27, 42].

4.4.6.1 Optical density of a Fermi gas

With the local density of a Fermi gas,

nloc =
k3F
3π2

(4.215)

the optical density is at T = 0,∫
σndy =

8σ

π2

N

R3
F

∫ RF

−RF

(
1− x2 + y2

R2
F

− z2

Z2
F

)3/2

dy (4.216)

=
8σ

π2

N

R3
F

(
1− x2

R2
F

− z2

Z2
F

)3/2 ∫ RF

−RF

(
1− y2

R2
F − x2 −R2

Fz
2/Z2

F

)3/2

dy .

Writing a = RF/
√
R2

F − x2 −R2
Fz

2/Z2
F,∫

σndy =
8σ

π2

N

R2
Fa

4

∫ a

−a

(1− ỹ2)3/2dỹ (4.217)

=
2σ

π2

N

R2
Fa

4

(
9a
√
1− a2 − 2a3

√
1− a2 + 3arcsin a

)
.

In the center, a = 1, ∫
σndy =

3Nσ

πR2
F

=
9mω2

rN

k2LEF
, (4.218)

such that for EF ≃ 1µK we expect nloc ≃ 4× 1012 cm−3.
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Figure 4.18: (code) (a) Radial momentum distribution and (b) distribution of momentum

classes in the direction of kz for a Fermi gas at T/TF = 0.2µK (red solid), a classical gas

(black), and a Fermi gas at T = 0 (red dash-dotted).

4.4.6.2 ’Pauli blocking’ of sympathetic cooling

For a harmonic trap U = µB = mω2r2 the rms-radius of a thermal cloud,

rrms =

√
2kBT

mω2
r

=

√
kBT

µ∂2rB
, (4.219)

is independent on the atomic mass. This means that a Li and a Rb cloud in the same
harmonic trap at the same temperature have the same radius. This ensures good
overlap. E.g. at T = 10µK assuming the Rb secular frequencies ωr ≃ 2π × 300Hz
and ωz ≃ 2π×30Hz, we expect rrms = 16µm and zrms = 160µm. However below the
temperature 0.5TF, which is TF ≃ 1µK for NF = 104, the quantum pressure stops
the reduction of the fermion cloud while cooling. This evtl. reduces the overlap with
the boson cloud, disconnects the two clouds and stops the evaporative cooling. On
the other hand, the interaction energy of the boson cloud also increases its size, when
the Rb cloud approaches the critical temperature Tc ≃ 0.6µK for NB = 106.

The Pauli blocking of sympathetic cooling is a signature for the advent of quantum
statistics [14, 21, 41]. It is due to a reduced mobility (or better reduced available phase
space upon collisions) of the atoms and not to be confused with the prohibition of
s-wave collisions due to the Pauli exlusion principle. Furthermore, elastic collisions
are suppressed [13], because atoms cannot be scattered into occupied trap levels [28,
44, 23, 24].

4.4.6.3 Superfluid suppression of sympathetic cooling

The fermions inside the bosonic cloud can be regarded as impurities. If they travel too
slow, v < c, and if the condensed fraction is too large, the motion will be frictionless
and thermalization stops. If they travel fast, quasiparticles are excited, which can
be removed by evaporation. With the typical velocity of sound in the BEC c =
ℏ
√
16πna/2mB ≈ 2mm/s, or m

2 c
2 ≈ kB × 20 nK, we see that this is no real danger.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBraggDistribution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBraggDistribution.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/StatisticalPhysics/SP_Statistics_FermiBraggDistribution.m
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4.4.6.4 Component separation

If the interspecies interaction h is stronger than the inter-bosonic interaction, the
components may separate [39]. Otherwise a small fermionic cloud stays inside the
BEC.

4.4.6.5 Excess energy modifies 2nd moment

Independent on any model, just look deviation from Gaussian (interaction energy
plays no role for the fermions). Also calculate the 2nd moment E =

∫
Ekin(k)n(k)dk,

where n(k) is measured in time-of-flight and Ekin = ℏ2k2/2m.

4.4.6.6 Modification of light scattering

The unavailability of final momentum states inhibits scattering in a similar way as the
Lamb-Dicke effect. Forward scattering is suppressed, because all small momentum
states are occupied. Furthermore, spontaneous emission is suppressed like in photonic
band gaps. However, here it is rather an atomic momentum band gap. Could it be
that because scattering is suppressed, in-situ images of fermions are hampered?

A condition for this effect to play a role is krec ≪ kF. For Li the temperature
must be kBTF = ℏ2k2F/2m = ℏω̄(6N)1/3 ≫ ℏ2k2L/2m ≈ kB × 3µK. I.e. we need quite
large Fermi gases.

4.4.6.7 Hole heating

Loss processes that remove particles from an atom trap leave holes behind in the
single particle distribution if the trapped gas is a degenerate fermion system. The
appearance of holes increases the temperature, because of an increase in the energy
share per particle if cold particles are removed. Heating is significant if the initial
temperature is well below the Fermi temperature. Heating increases the temperature
to T > TF/4 after half of the systems lifetime, regardless of the initial temperature.
The hole heating has important consequences for the prospect of observing Cooper
pairing in atom traps.

4.4.7 Fermi gas in reduced dimensions

In n dimensions with the energy ε = aps + brt [36] we have to generalize the results
of the last chapter,

N = g
Γ
(
n
s + 1

)
Γ
(
n
t + 1

)
(2ℏ)nan/sbn/tΓ

(
n
2 + 1

)2 (kBT )n/s+n/tfn/s+n/t(z) . (4.220)

This gives for a harmonic trap where ε = 1
2mp

2+m
2 ω

2r2 and with the spin degeneracy
factor g = 1,

N =

(
kBT

ℏω

)n

fn(z) . (4.221)

The Fermi energy again follows from Sommerfeld’s expansion,

EF = (n!N)1/nℏω . (4.222)
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We now assume a 1D potential V = m
2 ω

2
zr

2 embedded in a 3D trap. A true 1D
situation arises when the atoms occupy all low-lying axial levels with the lowest radial
vibrational quantum number, i.e. EF ≪ ℏωr which gives,

N ≪ ωr

ωz
. (4.223)

Such quantum degenerate 1D fermion gases realize the so-called Luttinger liquid. One
of the hallmarks of Luttinger liquids is spin-charge separation.

Example 36 (Estimations for 1D): Let us consider a Fermi gas in a very

elongated microtrap: ωr =
√

87
7
2π × 1.4 kHz and ωz =

√
87
7
2π × 15Hz for Rb.

With NLi = 105 the Fermi temperature is as high as TF ≃ 5µK. However we
need N ≪ 100 to see 1D features.
Assume ε = 1

2m
p2 + m2

4
b4r4,

N =
1

(ℏb)n
Γ
(
n
4
+ 1
)

Γ
(
n
2
+ 1
) (kBT )3n/4f3n/4(z)

EF ≈ (ℏb)4/3
(
N

Γ
(
n
2
+ 1
)
Γ( 3n

4
+ 1)

Γ
(
n
4
+ 1
) )4/3n

.

In 1D,

N =
1.02

ℏb
(kBT )

3/4f3/4(z)

EF ≈ 0.87(Nℏb)4/3 .

4.4.7.1 Fermi degeneracy

A completely analogous treatment to the Bose-gas yield for the case of fermion

E =
3

2
kBTN

(
1 + 2−5/2nλ3th

)
+ ... . (4.224)

Bosonic 4He has a very different behavior than fermionic 3He. It stays gaseous at
very low temperatures and becomes a Fermi gas before becoming fluid. Fermi gases
have a higher pressure then classically predicted.

Electrons in a solid are characterized by a high density and a low mass. Hence,
nλ3th ≈ 103. The interelectronic repulsion is canceled by atomic attraction, so that
they may be considered an ideal gas. For the density-of-states we get the same formula
as for bosons in a box multiplied with the factor 2 to account for the spin degree of
freedom. Thus, from

N =

∫ EF

0

ρfFDdε , (4.225)

we derive the Fermi energy EF = h2

8m (3N/πV )(2/3). The free electron gas is deep
in the Fermi regime, the classical statistics may only be used at temperatures above
T > 105 K. Hence the energy is temperature-independent and the heat capacity
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vanishes, i.e. the electron gas does not contribute to the heat capacity of a metal. It
is only at very low temperatures of a few K, when the heat capacity of the atomic
lattice drops due to the underlying bosonic statistics, that the electrons contribute.

Now, make the metallic box potential having a finite depth. An electron can then
leave the metal, if it surmounts the exit work W = −Vmin−EF ≃ 10 eV, which is the
difference between the potential depth and the Fermi energy. At high temperatures,
the tail of the Fermi-Dirac distribution can leak into the unbound regime, which gives
rise to thermoionic emission. This feature explains the existence of contact potentials:
Metals with different W and EF brought into contact exchange charges until their
Fermi level is at same height.

4.4.8 Exercises

4.4.8.1 Ex: Li Fermi gas

Programs on Li Fermi gases.

4.5 Further reading

4.5.1 on quantum statistics

R. DeHoff, Thermodynamics in Material Science [ISBN]

H.B. Callen, Thermodynamics [ISBN]

C. Kittel, Introduction to Solid State Physics [ISBN]

A.R. West, Basic Solid State Chemistry [ISBN]

D. Mc Quarry, Statistical Thermodynamics [ISBN]

J. Walraven, Quantum gases [http]

G.T. Landi, Grand canonical ensemble [http]

4.5.2 on ideal quantum gases

V.S. Bagnato et al., Bose-Einstein Condensation in an External Potential [DOI]

D.A. Butts et al., Trapped Fermi gases [DOI]

R.J. Dodd et al., Two-gas description of dilute Bose-Einstein condensates at finite
temperature [DOI]
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Chapter 5

Appendices to ’Statistical
Physics’

5.1 Quantities and formulas in statistical physics

5.1.1 Statistical formulas

Stirling’s formula is,

lnn! = n lnn− n+O(lnn) or n! ≃
√
2πnnne−n . (5.1)

Note that O(lnn) = lnn+ln 2π
2 ln 2 +O( 1n ).

5.1.2 Polylogarithm

The polylogarithm (or Joncquière’s function) is a function defined as,

Liη(Z) ≡
∞∑
t=1

Zt

tη
=

1

Γ(η)

∫ ∞

0

xη−1dx

Z−1ex − 1
. (5.2)

It serves to express the Bose and Fermi functions used in quantum statistics,

g(±)
η (Z) = ±Liη(±Z) . (5.3)

The upper sign holds for bosons, the lower for fermions.

5.1.2.1 Riemann zeta-function

The definition of the Riemann zeta-function is,

gξ(1) = ζ(ξ) . (5.4)

5.1.2.2 Bose/Fermi function

According to (5.3) the Bose-Fermi functions are given by,

g±ξ (Z) =
1

Γ(ξ)

∫ ∞

0

xξ−1dx

Z−1ex ∓ 1
=

∞∑
ℓ=0

(±Z)ℓ

ℓξ
, (5.5)

185
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where the second equation represents an expansion. The derivative satisfies a useful
relationship,

∂g±ξ (Z)

∂Z
=

∞∑
ℓ=0

∂

∂Z

(±Z)ℓ

ℓξ
=

∞∑
ℓ=1

±(±Z)ℓ−1

ℓξ−1
=

1

Z

∞∑
ℓ=1

(±Z)ℓ

ℓξ−1
=
g±ξ−1(Z)

Z
. (5.6)

The relationship can also be derive via partial integration exploiting,

d

dx

−Z
Z−1ex + 1

=
ex

(ex/Z ∓ 1)2
. (5.7)

We calculate,

∂g±ξ (Z)

∂Z
=

1

Γ(ξ)

∫ ∞

0

−xξ−1 ∂
∂Z (Z−1ex ∓ 1)

(Z−1ex ∓ 1)2
dx =

1

Z2Γ(ξ)

∫ ∞

0

xξ−1 ex

(Z−1ex ∓ 1)2
dx

(5.8)

=
xξ−1ex

(ex/Z ∓ 1)2

∣∣∣∣∞
0

− 1

Z2Γ(ξ)

∫ ∞

0

(ξ − 1)xξ−2 −Z
Z−1ex ∓ 1

dx

= 0 +
1

ZΓ(ξ − 1)

∫ ∞

0

xξ−2

Z−1ex ∓ 1
dx =

g±ξ−1(Z)

Z
.

5.1.2.3 Sommerfeld expansion

Another useful relationship is the Sommerfeld expansion, which holds for Fermi func-
tions,∫ ∞

0

η(x)dx

ex−y + 1
=

∫ y

0

η(x)dx+

∫ ∞

0

η(y + x)ξ−1dx

ex + 1
−
∫ x

0

η(y − x)ξ−1dx

ex + 1
(5.9)

≈
∫ y

0

η(x)dx+ π2

6 η
′(x) + ...

holds for z ≫ 1 and yields,

fξ(e
y) ≈ xξ

Γ(ξ + 1)

(
1 +

π2ξ(ξ − 1)

6x2
+

7π4ξ(ξ − 1)(ξ − 2)(ξ − 3)

360x4
+ ...

)
. (5.10)

For small z both functions converge towards,

cξ(z) =
1

Γ(ξ)

∫ ∞

0

xξ−1dx

z−1ex
= cξ−1(z) = z . (5.11)

5.2 Special topic: Microcanonical ensembles

The microcanonical ensemble is used to represents the possible microstates of a me-
chanical system whose total energy E is exactly specified. The system is assumed
to be isolated in the sense that it cannot exchange energy or particles with its envi-
ronment, so that the energy of the system does not change with time. The primary
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macroscopic variables of the microcanonical ensemble are the total number of parti-
cles N in the system, the system’s volume V , as well as the total energy E in the
system.

In the microcanonical ensemble an equal probability ρmc(E) is assigned to every
microstate whose energy falls within a range centered at E. All other microstates are
given a probability of zero. Since the probabilities must add up to 1, the probability
is the inverse of the number of microstates W within the range of energy,

ρmc =W−1 . (5.12)

The range of energy ∆E is then reduced in width until it is infinitesimally narrow,
still centered at E. The microcanonical ensemble is obtained in the limit of this
process. For a given mechanical system (fixed N , V ) and a given range of energy,
the uniform distribution of probability ρmc over microstates maximizes the ensemble
average −⟨ln ρmc⟩.

5.2.1 Density of states

We consider an isolated system with N particles and energy E in a volume V . By
definition, such a system exchanges neither particles nor energy with the surround-
ings. The assumption, that thermal equilibrium implies that the distribution function
ρmc(q, p) of the system is a function of its energy 1,

ρmc(r, p) = ρ(H(r, p)) ,
d

dt
ρmc(r, p) =

∂ρ

∂H
Ė ≡ 0 , (5.13)

leads to to a constant ρmc(r, p), which is manifestly consistent with the ergodic hy-
pothesis and the postulate of a priori equal probabilities, i.e. a uniform distribution
of microstates.

Now, we consider a small but finite energy shell [E,E +∆E] close to the energy
surface. The microcanonical ensemble is then defined by,

ρmc(r, p) =
1

W (E, V,N)
f(H(r,p)−E

∆E ) with f(x) = θ( 12 − |x|) . (5.14)

In this expression,

W (E, V,N) =

∫
2|H(r,p)−E|<∆E

d3Nrd3Np (5.15)

∆E→0−→
∫
δ(E −H(r, p))∆Ed3Nrd3Np ≡ η(E)∆E

is the phase space volume occupied by the microcanonical ensemble, that is, the
volume of the shell bounded by the two energy surfaces with energies E and E+∆E.
The dependence on the spatial volume V comes from the limits of the integration
over dri,

η(E) ≡
∫
δ(E −H(r, p))d3Nrd3Np . (5.16)

1See e.g. Lecture by C. Gros.

https://itp.uni-frankfurt.de/~gros/Vorlesungen/TD/8_Microcanonical_ensemble.pdf
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5.2.2 Entropy

The expectation value of a classical observable O(q, p) can be obtained by averaging
over the probability density ρ(q, p) of the microcanonical ensemble,

⟨O⟩ =
∫
ρmc(r, p)O(r, p)d3Nrd3Np =

1

W (E, V,N)

∫
2|H(r,p)−E|<∆E

O(r, p)d3Nrd3Np .

(5.17)
The entropy can, however, not be obtained as an average of a classical observable. It
is instead a function of the overall number of available states.

The entropy is, according to Boltzmann’s postulate , proportional to the loga-
rithm of the number of available states included in the phase space volume W ,

S = kB ln
W (E, V,N)

W0(N)
. (5.18)

Note that the normalization constant W0(N) introduced above cancels the dimen-
sions of W (E, V,N). Also, the number of particles N being one of the fundamental
thermodynamic variables, the functional dependence of W0(N) on N is important.
Let us now discuss the ramification of this postulate.

5.2.2.1 Incompleteness of classical statistics

Importantly,W0(N) cannot correctly be derived within classical statistics. In quantum
statistics we will derive later,

W0(N) = h3NN ! . (5.19)

We consider this value also for classical statistics, noting that the factor h3N defines
the reference measure in phase space and that N ! is the counting factor for states
obtained by permuting particles supposed to be indistinguishable. Even though one
may be in a range of temperature and density where the motion of molecules can be
treated to a very good approximation by classical mechanics, one cannot go so far
as to disregard the essential indistinguishability of the molecules; one cannot observe
and label individual atomic particles as though they were macroscopic billiard balls.

We will discuss later the Gibbs paradox, which arises when one regards the con-
stituent particles as distinguishable. In this case there would be no factor N ! in
W0(N).

5.2.2.2 Entropy as an expectation value

We rewrite the definition (5.18) of the entropy as,

S = −kB
∫
2|H(r,p)−E|<∆E

ρmc(r, p) ln[W0(N)ρmc(r, p)]d
3Nrd3Np , (5.20)

where we have used that ρmc(q, p) =W (E, V,N)−1 within the energy shell and that∫
ρmc(r, p)d

3Nrd3Np =
1

W (E, V,N)

∫
2|H(r,p)−E|<∆E

d3Nrd3Np = 1 . (5.21)
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We hence have 2,

S = −kB ln⟨W0(N)ρ(r, p)⟩ . (5.22)

5.2.2.3 Thermodynamic consistency of the entropy definition

Since we have introduced the entropy definition in an ad-hoc way, we need to convince
ourselves that it describes the thermodynamic entropy as a state function. The en-
tropy must therefore fulfill the requirements of (1) additivity, (2) consistency with the
definition of the temperature, (3) consistency with the second law of thermodynamics,
and (4) adiabatic invariance.

(1) Additivity, Gibbs’ paradox. The classical Hamiltonian H(r, p) = Hkin(p) +
Hint(r) is the sum of the kinetic energy and of the particle-particle interaction.
The condition,

E < Hkin(p) +Hint(r) < E +∆E (5.23)

limiting the available phase space volume W (E, V,N) on the energy shell, as
defined by (5.15) could then be fulfilled by a range of combinations of Hkin(p)
and Hint(r).

The law of large numbers, which we will discuss in Sec. 5.2.5, implies however
that both the kinetic and the interaction energies take well defined values for
large particle numbers N .

The interaction between particles involves only pairs of particles, with the re-
maining N − 2 ≃ N particles moving freely within the available volume V .
This consideration suggest together with an equivalent argument for the kinetic
energy that the phase space volume of the energy shell scales like∫

E<H(r,p)<E+∆E

d3Nrd3Np =W (E, V,N) ∼ V NwN (E/N, V/N) . (5.24)

We will verify this relation in Sec. 5.2.5 for the classical ideal gas. This assump-
tion may not hold in the presence of long range interactions.

Using scaling relation (5.24) for the volume of the energy shell and the assump-
tion that W0(N) = h3NN ! we then find that the entropy defined by (5.18) is
extensive,

S = kB ln
V NwN (E, V,N)

h3NN !
= kBN

(
ln
V

N

w

h3
+ 1

)
≡ kBN s(E/N, V/N) ,

(5.25)
where we have used the Stirling formula (5.1). The extensivity of the entropy
result in (5.25) from the fact that V N/N ! ≃ (V/N)N . Without the factor N ! in
W0(N), which is however not justifiable within classical statistics, the entropy
would not be extensive. This is the Gibbs paradox.

2The entropy coincides hence with Shannon’s information-theoretical definition of the entropy,
apart from the factors kB and W0(N).
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Two subsystems with particle numbers N1 and N2 have identical thermody-
namic properties, if their intensive variables are the same, via temperature T ,
pressure P , particle density N/V , and energy density E/N [see illustration in
Fig. 5.1(a)]. It then follows directly from (5.25) that,

S(E, V,N) = kB(N1 +N2)s(E/N, V/N) = S(E1, V1, N1) + S(E2, V2, N2) .
(5.26)

That is, in the case of identical thermodynamic states the entropy is additive.

Figure 5.1: (a) Two subsystems sharing the same volume. (b) Two subsystems in thermal
contact.

Two systems defined by E1, V1, N1 and respectively E2, V2, N2 in thermal con-
tact may allow energy such that the total energy E = E1 + E2 is constant [see
illustration in Fig. 5.1(b)]. For the argument of the entropy we have then,

W (E, V,N)

W0(N)
=
∑
E1

W (E1, V1, N1)

W0(N1)

W (E − E1, V2, N2)

W0(N2)
. (5.27)

The law of large numbers tells us that the right-hand-side is sharply peaked
at its maximum value E1 = Emax and that the width of the peak has a width
scaling with

√
Emax. We hence have,

S(Emax) < S(E,N, V ) < kB ln
√
Emax + S(Emax) , (5.28)

where the first inequality is due to the fact that a single term is smaller than
the sum of positive terms. The second inequality in (5.28) results when when
one replaces the sum on the r.h.s. of (5.27) by the product of the width

√
Emax

of the peak and its height. We have defined in (5.28)

S(Emax) = kB ln
W (Emax, V1, N1)

W0(N1)

W (E − Emax, V2, N2)

Γ0(N2)
, (5.29)

from which follows that the entropy for two systems in thermal contact is addi-
tive S(E, V,N) = S(E1, V1, N1)+S(E2, V2, N2). Note that the entropy S(Emax)
is extensive and that the term ∼ ln(Emax) in (5.28) is hence negligible in the
thermodynamic limit N →∞.

(2) Consistency with the definition of the temperature. Two systems with
entropies S1 = S(E1, V1, N1) and S2 = S(E2, V2, N2) in thermal contact may
exchange energy in the form of heat, with the total entropy,

0 = dS =
∂S1

∂E1
dE1 +

∂S2

∂E2
dE1 , dE1 = −dE2 , (5.30)
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becoming stationary at equilibrium. Note that the total energy E1 + E2 is
constant. The equilibrium condition (5.30) implies that there exists a quantity
T , denoted temperature, such that

∂S1

∂E1
=

1

T
=
∂S2

∂E2
. (5.31)

The possibility to define the temperature, as above, is hence a direct consequence
of the conservation of the total energy. From the microcanonical definition of
the entropy one only needs that the entropy is a function only of the internal
energy, via the volume Γ(E, V,N) of the energy shell, and not of the underlying
microscopic equation of motion.

(3) Consistency with the second law of thermodynamics. The statistical
entropy defined by (5.18) need to satisfy the second law of thermodynamics
saying that, ’if an isolated system undergoes a process between two states at
equilibrium, the entropy of the final state cannot be smaller than that of the
initial state.’

Both the energy E and the number of particle N stay constant during a free
expansion, defined by the absence of external heat transfer,

δQ = 0 . (5.32)

According to (5.24), the phase space volume W (E, V,N) of the energy shell
increases when the volume increases from Vi to Vf. Since according to (5.18) the
entropy increases with the phase space volume, while the normalization factor
W0(N) remains constant, we have 3,

S(E, Vf, N) > S(E, Vi, N) . (5.33)

(4) Thickness of the energy shell. The definition of the entropy (5.18) involves
the volume in state space W (E, V,N) of a shell of width ∆E centered around
the energy E. It seems therefore that the entropy S = S∆E(E, V,N) depends
on an unspecified parameter ∆E. The question then arises whether the entropy
then not uniquely specified.

For small ∆E we may use the approximation

W (E, V,N) ≃ η(E)∆E , (5.34)

where η(E) is the density of states, as defined previously in (5.16). In order to
decide whether a given ∆E is small or large, we compare it to some reference
energy ∆E0. One may take e.g. ∆E0 ∼ kBT , which corresponds in order of
magnitude to the thermal energy of an individual particle.

The entropy involves the logarithm of W (E, V,N),

ln
W (E, V,N)

W0
= ln

η(E)∆E∆E0

W0∆E0
= ln

η(E)∆E0

W0︸ ︷︷ ︸
∝N

+ ln(∆E/∆E0) , (5.35)

3Dynamical constraints (viz bouncing from the wall) are mitigated when the volume is increased.
The second law is equivalent to saying that the entropy rises when dynamical constraints are elimi-
nated.
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where we have taken care that the arguments of the logarithms are dimension-
less. The key insight resulting from this representation is that the exact value
of both ∆E and ∆E0 is irrelevant in the thermodynamic limit N →∞ as long
as 4,

| ln(∆E/∆E0)| ≪ N . (5.36)

We may also consider the limit of large ∆E to the extend that we may substitute
the phase space volume W (E, V,N) of the energy shell by the phase space
volume of the sphere ,

Φ(E) ≡
∑
E

W (E) =

∫ E

0

η(E)dE . (5.37)

Now, the volume and surface of a phase space sphere with radius R of dimension
3N scale respectively like R3N and R3N−1 (see Eq. (5.48) below). This scaling
leads to,

lnΦ(E) ∼ lnR3N = 3N lnR (5.38)

lnW (E, V,N) ∼ lnR3N−1∆ = (3N − 1) lnR+ ln∆ ∼ 3N lnR ∼ 3N lnR .
(5.39)

Hence,

lnW (E, V,N) ≃ lnΦ(E) , (5.40)

where we have disregarded the normalization factorW0, did not perform here an
analysis of the units involved, and neglected in particular the reference energy
∆0.

5.2.3 Calculating with the microcanonical ensemble

In order to perform calculations in statistical physics one proceeds through the fol-
lowing steps:

1. Formulation of the Hamilton function H(r, p) = H(r1, ..., r3N , p1, ..., p3N , z),
where z is some external parameter, e.g. volume V . H(r, p) specifies the micro-
scopic interactions.

2. Determination of the phase space W (E, V,N) and calculation of the density of
states,

ρ(E, V,N) =

∫
d3Nr

∫
d3Npδ(E −H(r, p)) . (5.41)

3. Calculation of the entropy from the volume Φ(E) of the energy sphere via

S(E, V,N) = kB ln
Φ(E)

W0
. (5.42)

4In quantum statistics this condition is ensured by energy quantization.
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4. Calculation of P , T , and µ,

1

T
=

(
∂S

∂E

)
V,N

, − µ

T
=

(
∂S

∂N

)
E,V

,
P

T
=

(
∂S

∂V

)
E,N

. (5.43)

5. Calculation of the internal energy,

E = ⟨H⟩ = E(S, V,N) . (5.44)

6. Calculation of other thermodynamic potentials and their derivatives by appli-
cation of the Legendre transformation,

F (T, V,N) = E − TS (5.45)

H(S, P,N) = E + PV G(T, P,N) = E + PV − TS .

7. One can calculate other quantities than the thermodynamic potentials, for in-
stance, probability distribution functions of certain properties of the system,
e.g., momenta/velocity distribution functions. If the phase space density of a
system of N particles is given by,

ρmc(r, p) = ρmc(r1, ..., rN ,p1, ...,pN ) , (5.46)

then the probability of finding particle i with momentum p is,

ρi,mc(p) = ⟨δ(p− pi)⟩ (5.47)

=

∫
d3q1...d

3qNd
3p1...d

3pNρmc(r1, ..., rN ,p1, ...,pi, ...,pN )δ(p− pi) .

Example 37 (Hyperspheres): Let us calculate for later purposes the volume,

Ωn(R) =

∫
∑n

i=1 x2
i<R2

dnx = RnΩn(1) (5.48)

of a hypersphere of n dimensions and radius R. We notice that the volume
Ωn(1) of the sphere with unity radius enters the determinant of the Jacobian
when transforming Euclidean to spherical coordinates via,

dnx = dx1...dxn = Ωn(1)nR
n−1dR . (5.49)

This transformation is valid if the integrand depends exclusively on the radius
R.
In order to evaluate (5.48) we make use of the fact that we can rewrite the
Gaussian integral, ∫

R3

e−(x2
1+...+x2

N )dx1...dxn = πn/2 (5.50)

as

πn/2 =

∫ ∞

0

e−R2

Ωn(1)nR
n−1dR (5.51)

= nΩn(1)

∫ ∞

0

e−yy(n−1)/2 dy

2
√
y
= n

2
Ωn(1)

∫ ∞

0

e−yyn/2−1dy ,
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where we have used
∑

i x
2
i = R2 ≡ y and 2RdR = dy. With the definition,

Γ(z) =

∫ ∞

0

xz−1e−xdx , (5.52)

of the Γ-function, comparing (5.50) and (5.50) we obtain,

Ωn(1) =
πn/2

(n/2)Γ(n/2)
. (5.53)

Note that we evaluated the volume of a hypersphere for formally dimensionless

variables xi.

5.2.4 Classical ideal gas

We consider now the steps given in the last section in order to analyze an ideal gas
of N particles in a volume V , defined by the Hamilton function,

H(r, p) =

N∑
i=1

p2
i

2m
, (5.54)

where m is the mass of the particles.
We will make use of (5.40), namely that the volume W (E, V,N) of the energy

shell E < H < E +∆E can be replaced by the volume of the energy sphere,

Φ(E) =
x

∑N
i=1 p2

i≤2mE

d3Nrd3Np = V N

∫
∑N

i=1 p2
i≤2mE

d3Nr = V NW3N (
√
2mE) ,

(5.55)
when it comes to calculating the entropy in the thermodynamic limit. We have
identified the last integral in (5.55) as the volume of a 3N -dimensional sphere with
radius

√
2mE. Using (5.48) and (5.51),

W3N (
√
2mE) =

√
2mE

3N
W3N (1) with W3N (1) =

π3N/2

(3N/2)Γ(3N/2)
, (5.56)

we obtain,

Φ(E) = V NW3N (1)
√
2mE

3N
. (5.57)

5.2.4.1 Entropy

Using (5.57) we find,

S(E, V,N) = kB ln
Φ(E)

h3NN !
= kB ln

V NW3N (1)
√
2mE

3N

h3NN !
(5.58)

for the entropy of a classical gas. It is easy to check, that the argument of the
logarithm is dimensionless as it should be.

For large N ≫ 1, one may use the Stirling formula (5.1), to expand the Γ-function
for integer argument as,

ln Γ(N) = ln(N − 1)! ≃ (N − 1) ln(N − 1)− (N − 1) ≃ N lnN −N , (5.59)
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in order to simplify the expression for S(E, V,N). Using (8.19) we perform the fol-
lowing algebraic transformations to W3N (1),

lnW3N (1) = ln
π3N/2

(3N/2)Γ(3N/2)
= 3N

2 lnπ −
[
3N
2 ln 3N

2 −
3N
2

]
(5.60)

= N
[(

2π
3N

)3/2
+ 3

2 +O( lnN
N )

]
.

We insert this expression in Eq. (5.58) and obtain,

S = kBN

ln B(2mE)3/2

h3
+ ln

(
2π

3N

)
+

3

2
− (lnN − 1)︸ ︷︷ ︸

lnN !/N

 . (5.61)

Rewriting (5.61) as,

S = BN

{
ln

[(
4πmE

3h2N

V

N

)3/2
]
+

5

2

}
, (5.62)

we obtain the Sackur-Tetrode equation.
Now we can differentiate the Sackur-Tetrode equation to obtain the caloric equa-

tion of state (??) for the ideal gas,

1

T
=

(
∂S

∂E

)
V,N

= NkB
3

2

1

E
, E = 3

2NkBT , (5.63)

as well as the thermal equation of state for the ideal gas,

P

T
=

(
∂S

∂V

)
E,T

=
kBN

V
, PV = NkBT . (5.64)

Example 38 (’Classical’ Sackur-Tetrode equation): Note that, if we hadn’t
considered the factor N ! when working out the entropy, then one would obtain,

Sclassical = kBN

{
ln

[(
4πmE

3h2N
V

)3/2
]
+

3

2

}
, (5.65)

With this definition, the entropy is non-additive, i.e.,

S(E, V,N) ̸= Ns(E
N
, V
N
) , (5.66)

as mentioned previously. This was realized by Gibbs paradox, who introduced

the factorN ! and attributed it to the fact that the particles are indistinguishable.

5.2.5 Quantum statistics

The quantum mechanics the microcanonical density operator and partition function
are given by,

ρ̂mc = 1
Ξmc

∑
k |ψk⟩f(E−εk

∆E )⟨ψk|

Ξmc =
∑

k f(
E−εk
∆E ) with f(x) = θ( 12 − |x|)

. (5.67)
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5.2.5.1 Applicability

Because of its connection with the elementary assumptions of equilibrium statistical
mechanics (particularly the postulate of a priori equal probabilities), the microcanoni-
cal ensemble is an important conceptual building block in the theory and is sometimes
considered to be the fundamental distribution of equilibrium statistical mechanics. It
is also useful in some numerical applications, such as molecular dynamics. On the
other hand, most nontrivial systems are mathematically cumbersome to describe in
the microcanonical ensemble, and there are also ambiguities regarding the definitions
of entropy and temperature. For these reasons, other ensembles are often preferred
for theoretical calculations.

The applicability of the microcanonical ensemble to real-world systems depends
on the importance of energy fluctuations, which may result from interactions between
the system and its environment as well as uncontrolled factors in preparing the sys-
tem. Generally, fluctuations are negligible if a system is macroscopically large, or if it
is manufactured with precisely known energy and thereafter maintained in near iso-
lation from its environment. In such cases the microcanonical ensemble is applicable.
Otherwise, different ensembles are more appropriate, such as the canonical ensemble
(fluctuating energy) or the grand canonical ensemble (fluctuating energy and particle
number).

5.2.5.2 Phase transitions and thermodynamic analogies

Under their strict definition, phase transitions correspond to non-analytic behavior in
the thermodynamic potential or its derivatives. Using this definition, phase transitions
in the microcanonical ensemble can occur in systems of any size. This contrasts with
the canonical and grand canonical ensembles, for which phase transitions can occur
only in the thermodynamic limit– i.e. in systems with infinitely many degrees of
freedom. Roughly speaking, the reservoirs defining the canonical or grand canonical
ensembles introduce fluctuations that ’smooth out’ any non-analytic behavior in the
free energy of finite systems. This smoothing effect is usually negligible in macroscopic
systems, which are sufficiently large that the free energy can approximate non-analytic
behavior exceedingly well. However, the technical difference in ensembles may be
important in the theoretical analysis of small systems.

The volume entropy Svol and associated temperature Tvol form a close analogy to
thermodynamic entropy and temperature. It is possible to show exactly that,

dE = TvoldSvol − ⟨P ⟩dV , (5.68)

where ⟨P ⟩ is the ensemble average pressure, as expected for the first law of thermo-
dynamics. A similar equation can be found for the surface entropy and its associated
temperature Tsur, however the ’pressure’ in this equation is a complicated quantity
unrelated to the average pressure.

The microcanonical Tvol and Tsur are not entirely satisfactory in their analogy to
temperature. Outside of the thermodynamic limit, a number of artefacts occur.

• Nontrivial result of combining two systems: Two systems, each described by
an independent microcanonical ensemble, can be brought into thermal contact
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and be allowed to equilibriate into a combined system also described by a mi-
crocanonical ensemble. Unfortunately, the energy flow between the two systems
cannot be predicted based on the initial T ’s. Even when the initial T ’s are
equal, there may be energy transferred. Moreover, the T of the combination is
different from the initial values. This contradicts the intuition that temperature
should be an intensive quantity, and that two equal-temperature systems should
be unaffected by being brought into thermal contact.

• Strange behavior for few-particle systems: Many results, such as the micro-
canonical equipartition theorem acquire a one- or two-degree of freedom offset
when written in terms of Tsur. For a small systems this offset is significant, and
so if we make Ssur the analogue of entropy, several exceptions need to be made
for systems with only one or two degrees of freedom.

• Spurious negative temperatures: A negative Tsur occurs whenever the density
of states decreases with energy. In some systems the density of states is not
monotonic in energy, and so Tsur can change sign multiple times as the energy
is increased. The preferred solution to these problems is to avoid using the
microcanonical ensemble. In many realistic cases a system is thermostatted to
a heat bath so that the energy is not precisely known. Then, a more accurate
description is the canonical ensemble or grand canonical ensemble, both of which
have complete correspondence to thermodynamics.

5.2.6 Exercises

5.2.6.1 Ex: Ideal gas in a uniform gravitational field in the microcanon-
ical description

Calculate the microcanonical phase space volume, the velocity distribution, and the
kinetic temperature explicitly for an ideal gas in a uniform gravitational field.

https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Appendix_MicroGassystem01.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/StatisticalPhysics/Sol_SP_Appendix_MicroGassystem01.pdf
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