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Dicke model
Saturation-induced bistability

light field â collective spin Ŝ ≡
∑
j

ŝj

with ŝ = 1
2
ˆ⃗σAtoms treated as non-interacting spins

no near field terms, only radiative coupling

coupled spin description ⇒ Dicke model

Linear terms Ĥ ∝ Ŝx,y,z only perform rotations: eıαŜz Ŝ e−ıαŜz

⇒ a coherent spin state always remains a coherent spin state

⇒ no entanglement can be generated by linear spin operators in the Hamiltonian

Spin-squeezing requires non-linear terms: eıζŜ
2
z Ŝ e−ıζŜ2

z
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light field â collective spin Ŝ ≡
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⇒ a coherent spin state always remains a coherent spin state

⇒ no entanglement can be generated by linear spin operators in the Hamiltonian

Spin-squeezing requires non-linear terms: eıζŜ
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with ŝ = 1
2
ˆ⃗σAtoms treated as non-interacting spins

no near field terms, only radiative coupling

coupled spin description ⇒ Dicke model
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Why bad cavities?
Saturation-induced bistability

light field â collective spin Ŝ ≡
∑
j

ŝj

with ŝ = 1
2
ˆ⃗σ

resonant Dicke model Hamiltonian (linear) Ĥ = −ıη(â − â†) + g(Ŝ+â + â†Ŝ−)

Bad-cavity limit: κ ≫ Γ =⇒ adiabatic slaving of cavity dynamics =⇒ eliminate â from Hamiltonian

approximated Hamiltonian (non-linear) Ĥ ≃ Uc Ŝ+Ŝ−

≃ Uc Ŝ2
z

dissipation (non-linear) Lρ̂ = κc(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ−)

=⇒ non-linearity can generate entanglement

=⇒ spin squeezing and superradiant lasing

[Norcia, Lewis-Swan, Cline, Bihui Zhu, Rey, Thompson, Science 361, 259 (2018)]

[Salvi, Poli, Vuletić, Tino, PRL 120, 033601 (2018)]

[Haonan Liu, Jäger, Touzard, Shankar, Holland, Nicholson, PRL 125, 253602 (2020)]

[Rivero, de França, Pessoa, Teixeira, Slama, Courteille, New J. Phys. 25, 093053 (2023)]
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∑
j

ŝj
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[Haonan Liu, Jäger, Touzard, Shankar, Holland, Nicholson, PRL 125, 253602 (2020)]

[Rivero, de França, Pessoa, Teixeira, Slama, Courteille, New J. Phys. 25, 093053 (2023)]



Why bad cavities?
Saturation-induced bistability
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z

dissipation (non-linear) Lρ̂ = κc(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ−)
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Storyboard for an experiment
Saturation-induced bistability

1) set up an experiment in the ’bad’ cavity parameter regime (κ → ∞)

2) take atoms with narrow transitions (Γ → 0) and cool them

3) put them into a ’bad’ cavity and prove that they are interacting =⇒ check normal-mode spectra

4) verify non-linearity ’on-resonance’ (∆c = 0)

[Rivero, de França, Pessoa, Teixeira, Slama, Courteille, New J. Phys. 25, 093053 (2023)]
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Experimental procedure & state of the art
Saturation-induced bistability

experimental control

trapping atoms in the blue MOT: N = 106 T = 5mKcooling atoms in the red MOTcooling atoms in the red MOT: N = 2 · 105 T = 1µKtransferring atoms to the ring cavity mode via magnetic field ramp
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Normal mode splitting
Saturation-induced bistability

scanning laser frequency which pumps the cavity

Γ ≪ κ ≪ g
√
N ≡ ∆nm

[Rivero, Beli, Armijo, da Silva, Kessler, Shiozaki, Teixeira, Courteille, Appl. Phys. B 128, 44 (2022)]

[Rivero, de França, Pessoa, Teixeira, Slama, Courteille, New J. Phys. 25, 093053 (2023)]
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Normal mode splitting ≡ 1D photonic band gap
Saturation-induced bistability

avoided crossing + instable feature

∆ca ≡ ∆a − ∆c

∆c =
Ng2∆a

∆2
a + Γ2/4

∆c =
Ng2∆a

∆2
a + Γ2/4 + Ω2

η/4

adiabatic elimination only near ∆a = 0
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Steady state behavior within mean field
Toward spin squeezing

bistability curve for ∆a = 0 = ∆c and ⟨Ŝ±Ŝz⟩ = ⟨Ŝ±⟩⟨Ŝz⟩ and d
dt â = 0 = d

dt Ŝ

cavity transmission atomic inversion

normalized cavity pump rate

cooperativity ΥN =
Ng2

κΓ
=

Nκc

Γ
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collective decay
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[Rivero, de França, Pessoa, Teixeira, Slama, Courteille, New J. Phys. 25, 093053 (2023)]

[Leppenen and Shahmoon, arXiv:2404.02134]
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Beyond mean field without spontaneous emission
Toward spin squeezing

driven-dissipative steady state density matrix in Dicke basis

corresponding coherent spin state
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Dicke phase transition
Toward spin squeezing

non-linearity provided by collective dissipation + pumping rather than Hamiltonian evolution

˙̂ρ = ı[ρ̂, Ĥad] + Lρ̂ with Ĥad = ıηg
κ Ŝx and Lρ̂ = g2

κ (2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ−)

dissipative spin-squeezing and light squeezing
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Ŝ
2 ϑ
,ϕ
/
S

projection on Bloch sphere

1/2

ΔŜ2
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(ΔŜ2
ϑΔŜ2
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Impact of spontaneous emission
Toward spin squeezing

spontaneous emission recovers steady state excitation
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[Song, Rey, Thompson et al., SciAdv2025,11,eadu5799]
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Coherently radiating spin-squeezed states
Toward spin squeezing

âφ,ϱ = ĉ − ı g
κ Ŝϱ,φ

∆â2
φ,ϱ − 1

4 = g2

κ2 (∆Ŝ2
ϱ,φ + 1

2 ⟨Ŝz⟩)

[Wang, Wu et al., New J. Phys. 16, 063039 (2014)]

[Somech, Leppenen, Shahmoon, et al., PRA 108, 0203725 (2023) & PRX Quantum 5, 010349 (2024) & arXiv:2404.02134]

[Song, Rey, Thompson et al., Science Adv. 11, eadu5799 (2025)]



Pulsed spin-squeezing witness
Toward spin squeezing

rotation pulse for squeezing axis works, but only for times short compared to κc = g2

κ ≈ (2π) 20Hz



Quintessence
Toward spin squeezing

Done:

• bistability observed on resonance with a ’bad cavity’ ! =⇒ non-linearity

• large atomic saturation achieved on resonance! =⇒ dynamics intrinsically ’quantum’

non-linearity + quantumness =⇒ implementation of new ideas on squeezing or superradiant lasing?

To do:

understand role of quantum fluctuations in the phase transition

find optical spin-squeezing witnesses

generate inversion > 50% (e.g. via optical pumping) for light amplification

[Meiser et al., PRL 102, 163601 (2009)]

[Debnath, Zhang, Mølmer, PRA 98, 063837 (2018)]

[Rosario, Santos, Piovella, Kaiser, Cidrim, R. Bachelard, PRL 133, 050203 (2024)]

[recent work of groups of Vuletic, Schleier-Smith, Thompson, Rey, ...]
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Conclusion
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non-linearity provided by collective dissipation + pumping rather than Hamiltonian evolution

Ŝ−|ss⟩ ≃ α|ss⟩ & [Ŝ−, Ĥeff] = 0 ⇔ 0 = d
dt ρ̂ = d

dt |ss⟩⟨ss|

P -, Wigner, and Q-function of CSS and CRSS

light scattered by a collective spin: â† = â†
0 + GŜ−

[Wang, Wu et al., New J. Phys. 16, 063039 (2014)]
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Quantum Fisher information
Details

the classical (or shot-noise) limit. A sub shot-noise-limited phase sensitivity with δφ δφ<
min
cl is

achievable provided that > ¯F n4B (see figure 1(a)), which has also been shown to be a
nonclassical criterion of ρ̂

B
for the single-mode linear interferometer [42].

The atoms in the ground state ρ̂ = ∣ ∣g gTr ( )
A B can also be used as a probe of a Ramsey

interferometer. First, an external π 2-pulse is required to rotate the atomic spin about the Ĵy axis.

Next, a phase shift φ ω τ= 0 is accumulated during free evolution under the Hamiltonian ω Ĵz0 .

New J. Phys. 16 (2014) 063039 T-L Wang et al
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Figure 1. Scaled quantum Fisher information of the bosonic field ¯F n/(4 )B (a) and that of
the atoms F NA (b) as a function of the coupling strength λ for a finite number of atoms
N = 2, 6, 10, and 20, as indicated by the arrow. Horizontal dotted lines: the classical (or
shot-noise) limit for the field mode = ¯F n4B (with mean number of bosons n̄) and that of
the atoms =F NA . Dashed lines: analytical results of the QFI in the thermodynamic
limit (i.e., = ∞N ). For each state ρ̂

A B,
, the derivative of the QFI has a singularity at the

critical point λcr. Other parameter: the critical coupling λ ωω≡ =2 1 2cr 0 on resonant
condition ω ω= = 10 .

defined if the reduced variance of Ĵy is smaller than the classical limit N 4 [43–49]. As shown in

figure 3(b), one can see that the squeezing parameter ξ Δ= Ĵ N4( )y
2 2 is minimized around λcr.

From the solid lines of figure 1, we also note that as the coupling λ λ≫ cr, the QFI of the
field → ¯F n4B , while for the atoms →F 0A . This behavior can be understood by examining the
ground state of the finite-N Dicke Hamiltonian with λ → ∞ [50–52]. In this ultra-strong
coupling regime, the number of bosons λ¯ ∝ → ∞n 2 and hence the dominant term of the Dicke

Hamiltonian is given by ω λˆ = ˆ ˆ + ˆ + ˆ ˆ† †
H b b b b J N2 ( ) x0 . Minimizing the energy of Ĥ0 with

respect to a product of coherent states α∣ ⊗ ∣ j m, x, one can obtain the atomic state

ρ̂ = ∣ + 〉 〈 + ∣ + ∣ − 〉 〈 − ∣j j j j j j j j( , , , , )/2
A xx xx , where ∣ ± 〉j j, x, being eigenvectors of Ĵx,

New J. Phys. 16 (2014) 063039 T-L Wang et al
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Figure 3. Degree of quadrature squeezing for the field mode Δ ˆ
πX4 ( )2

2 (a), and that of

spin squeezing for the atoms ξ2 (b) against the coupling strength λ for the number of
atoms N = 2, 6, 10, and 20, as indicated by the arrow. Dashed lines: analytical results in
the thermodynamic limit (i.e., = ∞N ). The local minimum of the reduced variances
indicates quadrature squeezing of ρ̂

AB
at the critical point λ = 0.5cr (on resonance, as

figure 1).

where we have used Im 〈 ˆ 〉 ≡ 〈 ˆ ˆ + ˆ ˆ 〉 =+J J J J J 0x y y x

2
. It is easy to find the optimal squeezing angle

ϕ = 0
op

or π 2 [45], and the left panel of figure 2(b) suggests ϕ π= 2
op

, corresponding to spin

squeezing and anti-squeezing in the Ĵy and the Ĵx axes, respectively. A spin squeezed state is

New J. Phys. 16 (2014) 063039 T-L Wang et al

7

Figure 2. Quasi-probability distributions θ ϕQ ( , )A (left panel) and α( )QB (right panel)
of the ground state of the Dicke Hamiltonian with N = 20 and the atom-field coupling
strength λ = 0 (a), 0.54 (b), and 1 (c). The axes on the Bloch sphere (top view from the
south pole) are given by = 〈 ˆ 〉J Jx y z x y z, , , , , while for that of the field mode, α = 〈 ˆ 〉XRe 0 and

α = 〈 ˆ 〉πXIm /2 . The expectation values are taken with respect to the coherent states θ ϕ,
and α , respectively. Other parameters: the critical coupling λ = 1 2cr , the same as in
figure 1. The density of QA is normalized by its maximal value [44, 45], i.e., =Q 1A,max

(a), 0.557 (b), and 0.5 (c).

[Wang, Wu et al., New J. Phys. 16, 063039 (2014)]
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