FCM0114 Eletromagnetismo

Nome:

1. Expansão de Taylor em 3D

Considere a função,

$$f(\mathbf{x}) = \frac{1}{|\mathbf{d} - \mathbf{x}|} \ .$$

Calcule a expansão de Taylor desta função em coordenadas cartesianas em x na posição x=0 (em todas as três coordenadas espaciais) até segunda ordem inclusive.

2. Tensor de Levi-Civita

Prove as seguintes relações para o símbolo de Kronecker e o tensor de Levi-Civita por distinção dos casos nos índices,

- a. $\epsilon_{ijk}\delta_{ij}=0$,
- b. $\epsilon_{ijk}\epsilon_{ijk} = 6$,
- c. $\epsilon_{ijk}\epsilon_{ijn}=2\delta_{kn}$,
- d. $\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} \delta_{jn}\delta_{km}$.

3. Tensor de Levi-Civita

Sejam dados os vetores ${\bf A},\,{\bf B},\,{\bf C}$ e ${\bf D}\in\mathbb{R}^3.$ Usando o símbolo de Kronecker e o tensor de Levi-Civita

- a. mostre $\{\mathbf{A} \times \mathbf{B}\}_i = \epsilon_{ijk} A_j B_k;$
- b. prove a relação, $(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} = (\mathbf{B} \times \mathbf{C}) \cdot \mathbf{A} = (\mathbf{C} \times \mathbf{A}) \cdot \mathbf{B}$; c. usando a formulas de (b) derive as seguintes regras de cálculo:
 - i. $(\mathbf{A} \times \mathbf{B})^2 = \mathbf{A}^2 \mathbf{B}^2 (\mathbf{A} \cdot \mathbf{B})^2$
 - ii. $(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$;

d. prove que:

i.
$$(\mathbf{A} \times \mathbf{B}) \cdot [(\mathbf{B} \times \mathbf{C}) \times (\mathbf{C} \times \mathbf{A})] = [\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})]^2$$

ii.
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0$$
.

4. Tensor de Levi-Civita e tautologias vetoriais

Use a notação ϵ para mostrar as seguintes identidades:

a.
$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$
,

b.
$$\nabla \times (\nabla \Phi) = 0$$
,

c.
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$
.

Aqui, Φ é um qualquer campo escalar e **A** um qualquer campo vetorial.

5. Integral de caminho e trabalho

Seja dado um campo **E** dependendo de z da maneira seguinte **E** = $E_0 z \hat{\mathbf{e}}_z$. A carga q seja movimentada numa trajetória em forma de espiral $\mathbf{r}(t)$ com o raio R

$$\mathbf{r}(t) = \begin{pmatrix} R\cos t \\ R\sin t \\ \frac{h}{6\pi}t \end{pmatrix}$$

entre z=0 até z=h. Faz um esquema de $\mathbf{r}(t)$. Calcule o trabalho gasto na carga explicitamente pela integral de linha $W=q\int\mathbf{E}\cdot d\mathbf{r}$. Como podemos calcular o trabalho mas facilmente?

6. Integral de caminho e trabalho

Calcule a integral de caminho do campo $\Phi = x^2 \hat{\mathbf{e}}_x + 2yz \hat{\mathbf{e}}_y + y^2 \hat{\mathbf{e}}_z$ à partir da origem até o ponto (1,1,1) para três caminhos diferentes:

- a. Para o caminho $(0,0,0) \longrightarrow (1,0,0) \longrightarrow (1,1,0) \longrightarrow (1,1,1);$
- b. para o caminho $(0,0,0) \longrightarrow (0,0,1) \longrightarrow (0,1,1) \longrightarrow (1,1,1)$;
- c. em linha reta.

7. Parametrização de curvas

O movimento de um ponto de massa é dado em coordenadas cartesianas pelo vetor $\mathbf{r}(t) = (\rho \cos \phi(t), \rho \sin \phi(t), z_0)$ com $\rho = vt$ e $\phi = \omega t + \phi_0$. Qual é a figura geométrica tracejada pelo movimento? Exprime a velocidade $\dot{\mathbf{r}}(t)$ e a aceleração $\ddot{\mathbf{r}}(t)$ em coordenadas cartesianas. Calcule $|\mathbf{r}(t)|^2$, $|\dot{\mathbf{r}}(t)|^2$, $|\dot$

8. Integrais de superfície

Dado seja o campo vetorial $\mathbf{A} = zy\hat{\mathbf{e}}_x + y^3\sin^2 x\hat{\mathbf{e}}_y + xy^2e^z\hat{\mathbf{e}}_z$. Calcule as integrais $\int \mathbf{A} \cdot d\mathbf{F}$ sobre o triângulo $(0,0,0) \to (0,3,0) \to (0,0,3) \to (0,0,0)$, e sobre o retângulo $(2,2,0) \to (2,4,0) \to (4,4,0) \to (4,2,0) \to (2,2,0)$.