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The optical Bloch equations describe the interaction of the density matrix with an electromagnetic
field over time. In this work, the optical equations of Bloch for a two-level atom will be calculated
using the density operator. First, we obtain the Bloch equations for a two-level atom without
taking into account spontaneous emission and we will interpret its solutions. The decay constant
will be calculated using the Weisskopf−Wigner theorem which is the usual theory for the study of
spontaneous emission. Once the decay constant is obtained, we will calculate the optical equations
of Bloch with spontaneous emission for a two-level atom, obtain their solutions and analyze the
graph of these solutions.

I. INTRODUCTION

In no chemical interaction study, we are interested in
examining what happens when a two-year atom interacts
with a light source. If we only consider the phenomenon
of absorption of a monochromatic light, a Schrödinger
equation, which describes a temporal evolution of the
state of any system, seriously enough [1]. However, in the
face of more complex phenomena, such as simultaneous
relaxation and excitation of an atom, a more adequate
mathematical formalism that also considers spontaneous
emission and any other process in the physical descrip-
tion of the temporal evolution of the interactive temporal
phenomenon with a light source will be necessary.

As spontaneous spontaneous emission leaves the atom
in a superposition of many states, the wave function that
is usually used to describe the situation is replaced by
a set of wave functions that only allows obtaining the
probability of finding the system in a given state.

In this way, we will use the mathematical formalism of
the operator density or density matrix, whose temporal
evolution of the elements of this matrix is described by
the Bloch equations and not by the Schrödinger equation.

This work is focused on the derivation and interpreta-
tion of Bloch’s equations.

II. DENSITY OPERATOR

Let’s consider a particle enssemble, where a fraction
p1 is in the state |ψ1〉, a fraction p2 is in the state |ψ2〉,
etc .... a mixed enssemble that cannot be described by a
single wave function and for that reason, we will use the
density operator for this purpose. The density operator
is given by:

ρ̂ =
∑
i

Pi|ψi〉〈ψi| (1)

where |ψi〉 is a complete set of orthonormal states and
pi is the probability of finding the state |ψi〉 in the en-
semble. For the case where we have pi = 1, the density
operator will be written as:

ρ̂ = |ψi〉〈ψi| (2)

which sets up a pure enssemble. The elements of the ρ̂
array are given by:

〈ψi|ρ̂|ψi〉 (3)

To obtain the density density matrix we will expand
the eigenvectors | ψi〉 on an orthonormal basis

|ψi〉 =
∑
n

C(i)
n | n〉 (4)

where we define:

C(i)
n = 〈n|ψi〉 (5)

By substituting (4) and (5) in (3) and using the com-
pleteness relation

∑
n |n〉〈n| = I, we can determine the

matrix representation of ρ̂ na base {|n〉 }:

ρ =
∑
i

∑
n,m

PiC
(i)
n C(i)

m
∗| n〉〈 m| (6)

and the matrix elements of the density operator are:

ρnm =
∑
i

PiC
(i)
n C(i)

m
∗ = ρmn (7)

where ρ̂ is an Hermitian operator.
The diagonal elements are given by:

ρ̂nm =
∑
i

Pi|C(i)
n |2 (8)

Thus, we have |C(i)
n |2 is a positive number that gives the

probability of finding in a measure the state |n〉 and ρ̂nn
represents the average probability of finding the state |n〉
[2] e. For this reason, r̂honn is called the state popula-
tion | n〉.

For elements outside the matrix diagonal,
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ρ̂nm =
∑
i

PiC
(i)
n C(i)

m
∗

(9)

where C
(i)
n C

(i)
m
∗ expresses the effects of interference be-

tween the states | n〉 and | m〉 [2] and ρ̂nm elements
are called coherence between states. The sum of the
diagonal terms is given by the dash that is defined as
Tr[ρ̂] =

∑
n〈n|ρ̂|n〉 and from the dash we can calculate

the expected value of an observable 〈A〉 = Tr[ρ̂A].

A. Time evolution of density operator

Now, we will express the temporal dependence of the
density operator in terms of time-dependent quantum
states:

|ψi(t)〉 = U(t, t0)|ψi(0)〉 (10)

where the time evolution operator is given by:

U(t, t0) = e−iĤ(t−t0)/~ (11)

Applying the time evolution operator to the density
operator, we can write:

ρ̂(t) = U(t, t0)ρ̂U†(t, t0) (12)

Deriving the two sides of equation (12) in relation to
time, we have:

dρ̂(t)

dt
=
i

~
[ρ̂(t), Ĥ] (13)

where equation (13) is called the Liouville equation.
The Liouville equation describes the evolution in time of
the density operator, which in turn describes the distri-
bution of a set of quantum states subject to the Hamil-
tonian Ĥ.

The Hamiltonian Ĥ, can be written in a time depen-
dent part and a time independent part

Ĥ(t) = Ĥ0 + V̂ (t) (14)

where V (t) is the interaction potential of the dipolar
transition with the classical oscillating electric field and
that describes the time-dependent part, and H0 is the
Hamiltonian that describes the atomic structure. We can
write the equation of (13) in the interaction representa-
tion, just performing the transformation

ρ̃ = eiĤ(t−t0)/~ρ̂S(t0)e−iĤ(t−t0)/~ (15)

Repeating the process used to obtain equation (13), we
have:

dρ̃(t)

dt
=
i

~
[ρ̃(t), V̂ (t)] (16)

where the temporal evolution of the density opera-
tor, in the interaction representation, depends only on
the temporal part of the Hamiltonian Ĥ. The interac-
tion representation is recommended for systems whose
Hamiltonian has a time dependent and a time indepen-
dent part.

III. BLOCH EQUATIONS

Now, we will make the deduction of Bloch’s optical
equations by examining the temporal dependence of the
elements of the density operator matrix. So, let’s analyze
the matrix elements starting with the Liouville equation:

〈m|dρ̂(t)

dt
|n〉 =

i

~
〈m|[ρ̂(t), Ĥ]|n〉 =

i

~
〈m|[ρ̂(t), Ĥ0 + V̂ (t)]|n〉

=
i

~
(En − Em)〈m|ρ̂(t)|n〉+

i

~
〈m|[ρ̂(t), V̂ (t)]|n〉

=
i

~
(En − Em)〈m|ρ̂(t)|n〉+

i

~
∑
k

[〈m|ρ̂(t)|k〉〈k|V̂ (t)|n〉−

〈m|V̂ (t)|k〉〈k|ρ̂(t)|n〉]
(17)

Using the completeness relation
∑
n |n〉〈n| = I again

on the right side of the second term of equation (17),
this equation can be rewritten as:

˙̂ρnm =
i

~
(En−Em)ρ̂nm(t)+

i

~
∑
k

[ρ̂mk(t)V̂kn(t)−V̂mk(t)ρ̂kn(t)]

(18)
these are Bloch optical equations. The Bloch equations
are coupled deferential equations that relate the elements
of the density operator matrix, in addition to being very
useful for describing a two-level system when that sys-
tem interacts with radiation. In this first approach to
the Bloch equations, the spontaneous issue term was not
included, which will be dealt with later.

IV. BLOCH EQUATIONS FOR TWO LEVEL
ATOMS

In this section we will apply the formalism of Bloch’s
equations to the particle case of the two-level atom cou-
pled to a field without the spontaneous emission term.
Considering the fundamental states |1〉 and excited |2〉
we will calculate the matrix elements using equation (18).
Let’s consider the elements outside the diagonal: abel
sec: rabi-oscillations

〈1|V̂ |2〉 = 〈2|V̂ |1〉 (19)
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Energy variations will be given by:

Enm = En − Em = (n−m)~ω0 (20)

Thus, we have:

ρ̇11 =
i

~
(ρ̂12V̂21 − V̂12ρ̂21)

ρ̇22 =
i

~
(ρ̂21V̂12 − V̂21ρ̂12) = −ρ̇11

ρ̇12 = iω0ρ̂12 +
i

~
V̂12(ρ̂11 − ρ̂22)

ρ̇21 = −iω0ρ̂21 +
i

~
V̂21(ρ̂22 − ρ̂11) = ρ̇∗12

(21)

remembering that the line must be unitary and the
terms outside the diagonal are complex

ρ̇11 + ρ̇22 = 1, ρ̇21 = ρ̇∗12 (22)

Equations (21) are Bloch equations written in
Schrödinger’s representation. These equations can be
calculated in the interaction representation Equations
(21) are the Bloch equations written in Schrödinger’s
representation. These equations can be calculated on the
interaction representation

dρ̃22

dt
=
i

~
(ρ̃21Ṽ12 − Ṽ21ρ̃12),

dρ̃12

dt
=
i

~
V̂12(ρ̃11 − ρ̃22)

(23)

We can also calculate the equations of Bloch in the rep-
resentation of interaction is through substitution ρ̂12 =
ρ̃12e

iω0t. The interaction representation simplifies coher-
ences by removing their temporal dependency.

The treatment of the system can be simplified by con-
sidering the spinning wave approximation (RWA), for
which terms that fluctuate rapidly with the frequency ∆
= ω + ω0 are neglected, and we only consider the terms
that oscillate slowly with frequency ∆ = ω − ω0. In this
way, we can rewrite the elements of coherence and the
potentials of interaction, respectively, as ρ̂12 = ρ̃12e

−iωt

, ρ̂12 = ρ̃12e
iωt, V12 =

~
2

Ωeiωt e V21 =
~
2

Ωe−iωt where Ω

is the frequency of the light. Making these substitutions
in equations (21), we can rewrite the equations of Bloch,
for a two-level atom, in the matrix form


ρ̇11

ρ̇22
˙̃ρ12
˙̃ρ21

 =
i

2

 0 0 Ω −Ω
0 0 −Ω Ω
Ω −Ω −2∆ 0
−Ω Ω 0 2∆


ρ11

ρ22

ρ̃12

ρ̃21

 (24)

To solve this system, we need to diagonalize the 4 x 4
matrix present in equation (24) to calculate its eigenval-
ues, given by:

det(M − λ) = λ2(∆2 + Ω2) + λ4 = 0 (25)

λ1 = 0, λ2 = −iG, λ1 = iG (26)

where M is the 4 x 4 matrix and G =
√

∆2 + Ω2 is
the generalized Rabbi frequency. Using ansatz ρij(t) =
ρij(0)eλt, where λ is the eigenvalue of the M matrix, the
solution generated will be given by:

ρ22(t) = ρ
(1)
22 (t) + ρ

(2)
22 (t)eiGt + ρ

(3)
22 (t)e−iGt

ρ̃12(t) = ρ̃
(1)
12 (t) + ρ̃

(2)
12 (t)eiGt + ρ̃

(3)
12 (t)e−iGt

(27)

Let’s assume that the atom is in the ground state when
the radiation field is connected at time t = 0. Thus, the

coefficients ρ
(i)
22 and ρ̃

(i)
12 , which are calculated using the

relations of the array elements discussed previously, are:

ρ
(1)
22 (0) =

|Ω|2

2G2
, ρ

(2)
22 (0) = −|Ω|

2

4G2
, ρ

(3)
22 (0) = −|Ω|

2

2G2

ρ̃
(1)
12 (0) =

Ω∆

2G2
, ρ̃

(2)
12 (0) = − (G−∆)

4G2
, ρ̃

(3)
12 (0) =

(G+ ∆)

4G2

(28)

Replacing equations (28) in (32) and using the trigono-
metric properties cos(x) = 1 − 2sin2(x/2) e sin(x) =
2sin(x/2)cos(x/2), we have the time evolution of the
populations, which are given by:

ρ22(t) =
|Ω|2

2G2
sin2(

GT

2
)

ρ12(t) =
|Ω|2

2G2
sin2(

GT

2
)[∆sin2(

GT

2
) + iGcos(

GT

2
)]

(29)

where we already made the transformation ρ̃12 −→ ρ12.
In figure 1, in the graph on the left, we have the time

evolution of the population ρ22 as a function of time, for
fixed values of Ω and ∆. At t = 0 the atom is found in
the ground state |2〉. For t > 0, we observe population
inversions, where the probabilities of finding the atom
in the state |2〉 and fundamental |1〉 fluctuate over time.
The graph on the right in figure 1, the time is kept fixed
at t = π/2 as well as the frequency Ω and we vary the
frequency Delta. As seen in the graph, for Ω = 1 and
Ω = 3 the populations are equally distributed in the fun-
damental state and in the excited state, in Ω = 2 and
Ω = 4 we have the populations fully distributed in the
excited and fundamental states, respectively.

V. WEISSKOPF-WIGNER THEORY

The spontaneous emission of an atom in free space
is due to fluctuations in the vacuum. Let’s consider a
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FIG. 1: Time evolution of the population ρ22 (left) and as a
function of Ω (right).

two-level atom interacting with a finite number of field
modes. Each field mode is characterized by its respective
k wave vector. The standard theory of spontaneous emis-
sion is the Weisskopf-Wigner [3] theory. We will write the
Hamiltonian including the interaction of the atom with
the incident radiation and also with the modes of the
electromagnetic vacuum.

Ĥ = ~gk0
(σ̂−e−iωat + σ̂+eiωat)(âk

†
0e

(iω0t−ik0.r)

+âk0e
(−iω0t+ik0.r)) +

∑
k

~gk(σ̂−e−iωat + σ̂+eiωat)

(â†ke
(iωkt−ik.r) + âke

(−iωkt+ik.r))

(30)

where k0, ωk0 and gk0 are the incident radiation wave-
form, frequency and coupling force, respectively, while k,
ωk and gk are, respectively, the wave vector, frequency
and coupling force of the electromagnetic vacuum modes.
The operators σ̂−, σ̂+, â† and â are operators of, respec-
tively, dexcitation, electron excitation, photon creation
and annihilation.

Applying the spinning wave approximation to the
Hamiltonian (30), we have:

Ĥ =
~
2

Ω0[σ̂+â†0k0e
i∆0t + h.c.] + ~

∑
k

[gkσ̂â
†
ke
i∆kt + h.c.]

(31)
where we have already introduced the abbreviations
∆0 = ω0 − ωa e ∆k = ωk − ωa e Ω0 = 2

√
n0gk0 is the

frequency of Rabi’s interaction.
Since we don’t have a stable system, the expanded and

written wave function as

|ψ(t)〉 = α(t)|0〉a|0〉k + β(t)|1〉a|0〉k +
∑
k

γk(t)|0〉a|1〉k

(32)

Inserting the Hamiltonian (31) and the wave function
(32) in the Schrödinger equation, we obtain the temporal
evolution of the amplitudes α(t), β(t) and γk(t)

∂

∂t
|ψ(t)〉 = − i

~
Ĥ|ψ(t)〉 (33)

Applying the initial conditions α(0) = 1, β(0) = 0 and
γk(0) = 0 to the solutions of equation (33) we obtain the
evolution time to β(t)

β̇(t) = −iΩ0

2
α(t)e−i∆0t−

∑
k

g2
k

∫ t

0

ei∆k(t′−t)β(t′)dt′

(34)
For times t′ << t, the integrant oscillates very quickly

so that there is no significant contribution to the value
of the integral. The dominant contribution comes from
the times t′ ≈ t. Therefore, we must evaluate beta(t′)
in the current t and for this reason, β(t′) must be moved
out of the integral. This process, in which atomic decay
becomes an out-of-memory process, is called the Markov
approximation. Rewriting equation (34), we have:

β̇(t) = −iΩ0

2
α(t)e−i∆0t− β(t)

∑
k

g2
k

∫ t

0

ei∆k(t′−t)dt′

(35)
Solving equation (35), we have:

β̇(t) = −iΩ0

2
α(t)− Γ

2
β(t) (36)

where we derive the term Γ which is the decay constant.
Therefore, from the Weisskopf −Wigner theory we de-
rive the decay constant Γ that will be used to obtain the
equations of Bloch with spontaneous emission. For that,
we need to rewrite the equation of (13) with an additional
term, which will now be called the master equation.

dρ̂(t)

dt
=
i

~
[ρ̂(t), Ĥ] +

Γ

2
(2σ̂ρ̂σ̂+ − σ̂+σ̂ρ̂− ρ̂σ̂+σ̂) (37)

VI. BLOCH EQUATIONS WITH
SPONTANEOUS EMISSION

Now we are in a position to obtain the optical equa-
tions of Bloch with the spontaneous emission term. From
equations (36) and (37) we can write equations (21) in-
cluding the decay term

ρ̇11 =
i

~
(ρ̂12V̂21 − V̂12ρ̂21) + Γρ̂11

ρ̇22 =
i

~
(ρ̂21V̂12 − V̂21ρ̂12) + Γρ̂22

ρ̇12 = iω0ρ̂12 +
i

~
V̂12(ρ̂11 − ρ̂22) + Γρ̂12

ρ̇21 = −iω0ρ̂21 +
i

~
V̂21(ρ̂22 − ρ̂11) + Γρ̂21

(38)

Equations (38) can be written in matrix form


ρ̇11

ρ̇22
˙̃ρ12
˙̃ρ21

 =
1

2

−2Γ 0 iΩ −iΩ
2Γ 0 −iΩ iΩ
iΩ −iΩ −2(i∆− λ) 0
−iΩ iΩ 0 2(i∆− λ)


ρ11

ρ22

ρ̃12

ρ̃21


(39)
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The spontaneous emission introduced by the Γ decay
constant allows the system to reach a steady state. Sta-
tionary solutions can be obtained by making time deriva-
tives ρ̇ij equal to zero. Thus, we have:

ρ22(0) =
1

4

|Ω|2

∆2 +
1

2
|Ω|2 +

Γ2

4

ρ12(0) =
ei∆t

2

Ω(∆− iΓ/2)

∆2 +
1

2
|Ω|2 +

Γ2

4

(40)

as populations and coherences depend on the frequency
Ω and the decay constant Γ, we can define an effective
width, given by:

Γef = 2

√
1

2
|Ω|2 +

Γ2

4
(41)

The decay constant can also be written on Γ = 2γ.
The behavior of the ρ22 porpulation as a function of γ

is shown in figure-2. As we increase the γ decay constant,
the graph line widens. The effective width Γef depends
on the frequency which in turn depends on the applied
electric field Ω = d12.E0/~. This whole process is called
power extension.

FIG. 2: Population graph ρ22 (vertical axis) as a function of
the frequency ∆ (horizontal axis) in steady state.

VII. CONCLUSION

In this work, we determine Bloch’s optical equations
from the density operator. To calculate the Bloch equa-
tions, we obtain the temporal evolution of the elements
of the matrix of the density operator in a {|n〉}basis .

Soon after, we calculate the Bloch equations for the
particular case of a two-level atom, without the dissipa-
tion term, and conclude that populations oscillate their
probabilities of being found in fundamental states and
excited over time, to fixed values of Ω and ∆. Keeping
the time fixed at t = π/2 as well as the frequency Ω and
we vary the frequency ∆, noting that the populations can
be equally distributed between fundamental and exited
states or be fully distributed or in ground state or excited
state, depending on the values of Ω.

The decay term, responsible for spontaneous emission,
was determined using the Weisskopf − Wigner the-
ory, from which we obtain the master equation. From
the master equation, it was possible to calculate Bloch’s
equations with spontaneous emission for a two-level atom
and from them, we obtain stationary solutions for popu-
lations and for coherences. From the population graph,
we observe that the width of the curve depends on the
decay term, whereas the widening by power depends on
the applied electric field.
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