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The Goos-Hänchen shift
Anna Cristina Cavallari Inacio
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: The Goos-Hänchen shift is an optical
phenomenon, first observed by Fritz Goos and Hilda
Hänchen in 1947, that happens when linearly polar-
ized light is totally internally reflected, suffering a
small lateral shift. Since then the topic has been
well studied by the scientific community, with sev-
eral theoretical explanations, experiments and ap-
plications being developed over the years. This work
aims to discuss one way to derive the mathematical
expression of the shift through conservation of en-
ergy based on the work of René Renard. The work
also aims to discuss one of the methods to direct
measure the Goos-Hänchen shift developed by Fa-
bien Bretenaker in 1992.

1.1 Introduction

Isaac Newton predicts in his work a lateral shift of
a light beam when totally reflected from an interface
to an optically thin media [1], however it was only
observed many years later in 1947 by Fritz Goos and
Hilda Hänchen. They developed the first experi-
ments demonstrating the existence of the shift when
linearly polarized light is totally internally reflected
[2]. Since then the Goos-Hänchen effect has been
a consistent object of research, guided either by a
theoretical interest in understanding the physics of
this phenomenon or experimental interest of finding
new ways to measure or new applications. Some of
the theories developed to explain this phenomena
are the stationary-phase approach by Artmann and
von Fragstein [3, 4], the imposition of energy conser-
vation by Renard [5], both unified by Lotsch [6] in
his work, time-delayed scattering processes by Chiu
and Quinn [7], and angular spectrum approach de-
veloped by Brekhovskikh [8] and later by McGuirk
and Carniglia [9]. With this studies, it was possible
to understand the shift for others polarization, like
the Imbert-Fedorov [10, 11] effect in which the shift

occurs for circularly and elliptically polarized light
beam. Recently, research has been carried out on
the Goos-Hänchen shift in a context of nanophoton-
ics and biological applications, for example sensitive
detection of biological molecules through the linear
relation of the Goos-Hänchen shift measured and
the concentration of target molecules [12]. There
is also research about the generation of giant Goos-
Hänchen shift using surface plasmon resonance tech-
niques, allowing biological applications and the ob-
servations of important processes in the quantum
information area [13].

This work aims to derive the Goos-Hänchen shift
for a total internal reflection at a plane interface
by the point of view of the conservation of energy,
based on the work of Rémi Renard published in 1964
[5]. It also aims to discuss an experimental system
for measuring the shift.

1.2 Goos-Hänchen shift for a
planar surface

Considering two different non-absorbing medi-
ums, the first one have a refractive index n1 and the
other one is a medium of refractive index n2, smaller
than n1. Here we are going to study the case where
a infinite plane wave is totally reflected from a plane
interface between the two mediums, suffering a shift
denominated d, as shown in Fig. 1.1. For the con-
dition of total reflection be fulfilled, we assume the
incident angle is greater than the critical angle.

The Fresnel-Maxwell treatment shows that there
is an evanescent wave in the medium of index n2 for
the shift occur. This type of wave does not carry
a time-averaged flux of energy across a plane par-
allel to the plane separating the two medias, which
means it exists without dissipating energy. How-
ever, there is a time-averaged flux of energy carried

1



Figure 1.1: Illustration of the Goos-Hänchen shift
for a finite plane wave. W is the incident plane
wave. Φ1 and Φ2 are two fluxes of energy. The
spacing d is the Goos-Hänchen shift. Source: R.
Renard, 1964

by the evanescent wave across a plane that is per-
pendicular both to the plane separating the two me-
dias and the plane of incidence. For escaping the
contradiction this situation brings, we must con-
sider a finite wave, in which energy is transferred
from one side of the beam to the other [14] result-
ing in what is equivalent to the translation that pro-
duces the Goos-Hänchen shift.

There are two cases for linear polarization that
are important to study. One that has the electric
field perpendicular to the plane of incidence, also
know as electrical transversal mode (TE), and one
that has the electric field parallel to the plane of in-
cidence, known as magnetic transverse mode (TM).

1.2.1 Case A: electric vector perpen-
dicular to the plane of inci-
dence

It is defined in literature [15] that the magnitude
of the magnetic vector of the evanescent wave at the
level of the plane separation between the two media
and that the magnitude of the magnetic vector for
the incident wave are

M2
2 =

64π2D2
1

K1µ1
.
cos2 θi(2 sin

2 θ1 −Kµ)

µ2 cos2 θi + sin2 θi −Kµ
(1.1)

M1 =
4π√
K1µ1

D1 (1.2)

The time-average flux of energy across a plane
surface perpendicular to x̂, of width L in the direc-
tion of ŷ (see Fig. 1.2) is [16]

Φ2 =
L

32π2

(
µ2

K2

)1/2
1− γ22
1 + γ22

λ2
γ2
M2

2 (1.3)

Figure 1.2: Illustration of the system of axes used
in calculating the shift for a light beam of width
L, incident at angle θi. I is the incident wave, R
the reflected wave. S is the surface of separation be-
tween the two media and P is the plane of incidence.
Source: R. Renard, 1964

where γ2 is the damping factor of the evanescence
wave defined by γ22 = 1 − n2/ sin2 θi, with n2 =
n22/n

2
1 = K2µ2/K1µ1 = Kµ and λ2 = λvacuum/n2.

Using the Poynting vector it is possible to cal-
culate the time average flux of energy of the plane
wave, across a surface of area Ld, with dTE being
the Goos-Hänchen shift, perpendicular to the direc-
tion of propagation of the wave.

Φ1 =
LdTE

8π

(
µ1

K1

)1/2

M2
1 (1.4)

According to the principle of conservation of en-
ergy the two fluxes of energy must be equal. Taking
Φ1 = Φ2 we can evaluate dTE

dTE =
1

π

µ sin θi cos
2 θi

µ2 cos2 θi + sin2 θi − n2
λ1√

sin2 θi − n2

(1.5)
We can reduce the Eq. (1.5) if we consider that

the observation of the shift is near the critical an-
gle of total reflection, so that sin θi ≃ n. We can
also say that µ = 1, since for most glasses that is
practically true. This way we have the expression

dTE ≃ sin θi
π

λ1√
sin2 θi − n2

(1.6)

The Eq. (1.6) is the same expression derived by
Artmann and von Fragstein [3, 4].

1.2.2 Case B: electric vector parallel
to the plane of incidence

It is a know result in literature [15] that for Case
b, which the electric vector is parallel to the plane
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of incidence, the result is analogous to Case a, only
needing to permute µ and K. Thus, the Goos-
Hänchen shift for Case b is

dTM =
1

π

K sin θi cos
2 θi

K2 cos2 θi + sin2 θi − n2
λ1√

sin2 θi − n2

(1.7)
Using the same approximation for sin θi ≃ n as

before and using that n2 = K for glasses in Eq. 1.7,
we get the expression

dTM ≃ sin θi
πn2

λ1√
sin2 θi − n2

(1.8)

The Eq. 1.8 is the same expression for the shift
derived by Artmann and von Fragstein [3, 4].

Renard [5] discuss in his work that when the angle
of incidence is π/2 the shifts dTE and dTM must be
zero because in this case the incident and reflected
beams are co-linear. For the expressions 1.8 and
1.6, derived by Artmann and von Fragstein [3, 4],
this result does not happen when the angle tends
to π/2, showing that, although at first, these ex-
pressions seem strictly correct, they are limited to
some specific cases. Is important to say that the
Renard’s derivation is also limited, in his own work
it is discussed that there are some divergences be-
tween the experimental results obtained by Goos
and Hänchen [2] and those obtained theoretically
by his equations. Till this day the Goos-Hänchen
shift is studied for different limits and situations, for
example absorbing medias, metallic reflection and
negative Goos-Häncchen shift, and new expression
for describing the shift are still being discussed by
the scientific community.

1.3 Measuring the Goos-
Hänchen shift

There are many measurements of the Goos-
Hänchen shift that were achieved along of the years.
Goos and Hänchen [2] were the first to measure
in 1947, they compared the total reflection from a
prism with the reflection from a silver stripe de-
posited on the back of the prism. To be able to
measure the effect, since it is very small, they mul-
tiple the relative shift between the two reflections
using an waveguide. This experiment was latter re-
fine to a better resolution and to distinguish the
difference between the shifts of the TE and TM po-
larization [17]. In 1972, Imbert [10] was able to
observe a lateral shift for light circularly polarized
foreseen by Fedorov [11] in 1955, coining the name

Figure 1.3: Experimental setup.
Source:Brekhovskikh, 1960

Imbert-Fedorov shift. In 1977, Cowan and Anicin
[18] did an experiment to observe the Goos-Hänchen
shift for microwave radiation using a paraffin prism
and single reflection of the beam. In 1992, Brete-
naker measured the shift for both polarization using
a single reflection and a He-Ne cavity field. Latter
in 2008, Schwefel [19] used a method very similar
to the the one Goos and Hänchen used, but with
a glass half-cylinder and a ´partially coherent LED
light source to measure the effect for a single reflec-
tion for TE and TM polarization for all angles of
incidence.

In this work we are going to discuss the experi-
ment set up by Bretenaker in 1992. This experimen-
tal method uses the high sensitivity of the eigen-
states of a quasi-isotropic laser to small perturba-
tions to measure the Goos-Hänchen effect for angles
of incidence both below and above the critical angle
[13]. A HeNe laser is oscillating at λ0 = 3.39µm.
The cavity is built with a plane mirror and a spher-
ical mirror and it contains a silica prism responsible
for the total reflection for angles of incidence above
the critical angle θc = 45, 212. The reflection on the
prism leads to the spatially separation of TE and
TM eigenstates. For measuring the Goos-Hänchen
shift, is necessary to have a knife edge inside the
cavity. Because of the spatial separation between
the two eigenstates, the diffraction losses due to this
knife edge are different for TE and TM, which leads
to a modulation of the total intensity of the laser
when the linear polarization rotates. This we have
that the polarization effect is transformed into an
intensity effect. The knife edge is controlled by a
piezoelectric transducer.The experimental appara-
tus is shown in Fig. 1.3

The results obtained by this experiment, as shown
in Fig 1.4, are consistent with the values obtained
by calculations with the Artmann’s formulas previ-
ously showed and discussed in this work.
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Figure 1.4: Difference between the TE and TM
Goos-Hänchen shifts vs the angle of incidence. Solid
line represents theory; dotted line represents the
Artmann’s formulas and the points the experimen-
tal measurements. Source: Brekhovskikh, 1960

1.4 Conclusion

Since the Goos-Hanchen shift was first observed
in 1947, a lot has been discovered about this phe-
nomenon. Although it has been developed a lot
of theories that explain the shift for different situ-
ations and the respective experiments able to ob-
serve it, exploring several limits, medias and po-
larization, there still a lot to be discovered about
this effect and its applications. We hope that in
the next years the researchers being conducted in
the moment, like using the shift to detect biologi-
cal molecules and the studies about the generation
of a giant Goos-Hänchen shift, present good results
and can be increasingly refined with the help of new
technologies.
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Emission of radiation by a charged
particle in gravity
Bruno Trebbi
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: Born’s 1909 paper initiated a debate
among physicists about whether relativistic uni-
formly accelerated charges radiate. The solution
needs to be theoretical, as experimental validation
is challenging due to the Larmor formula. The an-
swer is related to questions about the Equivalence
Principle, motion of free-falling bodies, radiation’s
absoluteness, and energy conservation. This mono-
graph seeks to elucidate these fundamental inquiries
with the restriction that we assume charges in grav-
itational fields following geodesic paths.

2.1 Introduction

2.1.1 Contextualization and History
of the problem

After an article published in 1909 by Max born,
named "The Theorie des starren Elektrons in der
Kinematik des Relativitätsprinzips" [1], where he
derived the electromagnetic fields of a relativistic
uniformly accelerated charge, important physicists
such as Pauli (known for Pauli’s Exclusion Princi-
ple), and von Laue (known for X-ray diffraction),
concluded that such charges could not radiate [5].
Others, such as Schott and Milner, argued that the
charge would radiate [5].

This problem has persisted for decades, and re-
cent contributions to its resolution (including refer-
ences [2, 3, 4]) date back to the last decade. This
not only underscores the contentious nature of the
problem but also highlights that its underlying com-
plexities are not as straightforward as they may ini-
tially appear.

Usually, when such theoretical problems appear
impossible to solve, experimentalists appears with
a experimental apparatus that will end the con-

troversy, but this problem, in specific, requires
unpractical precision in the measurement of radi-
ated power, because, as stated by Larmor formula,
showed in equation (2.1), where P is the power radi-
ated by the accelerated particle, with electric charge
q is and velocity v⃗:

P =
2q2⟨ ˙⃗v, ˙⃗v⟩
3c3(4πϵ0)

, (2.1)

in Earth’s gravitational field, where ⟨ ˙⃗v, ˙⃗v⟩ ≈ 102m2

s4 ,
one electron would radiate P ≈ 5.5 · 10−52W [2].
This shows that we would need a very high number
of electrons, and a way to isolate them from in-
duced charges, so that the electrostatic force would
be much weaker than the gravitational. This means
that the problem need to be done theoretically, as
the experiment by itself is almost impossible.

It’s really important to understand that this
problem isn’t just a casual curiosity. It’s connected
to some fascinating questions [2], like whether Ein-
stein’s Equivalence Principle holds true, whether a
chargeless object falls faster, if radiation is absolute,
if a stationary charge in a gravity field emits radia-
tion, and whether the law of energy conservation is
legit.

In this monograph, these questions will be an-
swered, and to start, we need to clarify what is Ein-
stein’s Equivalence Principle.

2.1.2 The equivalence principle
Let’s begin with a Gedankenexperiment: imagine

you are traveling across the stars in a spaceship with
no windows. Because you have been traveling for so
much time, you don’t know where you are, nor if
there are any astronomical body close to you. In
your pocket, there is an accelerometer, which can
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measure your proper acceleration. One day, you
wake up and do a daily check, but this time, you
see that your accelerometer is measuring a nonzero
constant acceleration. Because there is no windows,
you don’t know if you at rest w.r.t. an unknown
planet or if your engines suddenly turned on (they
don’t make noise).

This conclusion is self-evident, as it aligns with
classical mechanics. In classical mechanics, New-
ton’s Second Law dictates that the sum of external
forces acting on an object equates to the product of
its mass and acceleration. Moreover, experimental
verification has consistently shown the equivalence
of inertial and gravitational mass, which makes it
easy to conclude that the astronaut won’t be able
to say whether it is being accelerated by its engine
with acceleration −a⃗, or whether it is at rest in
a planet’s gravitational field (here assumed to be
uniform and homogeneous), with acceleration a⃗, as
seen in figure (2.1):

Figure 2.1: In the case (a), we see the spaceship
is accelerating with acceleration −a⃗ in free space,
whereas in case (b), the spaceship is at rest w.r.t.
a unknown planet with acceleration a⃗, the astronaut
would only be able to differ the situation if he look
through the window.

This is the so called equivalence principle in clas-
sical mechanics. Albert Einstein extended this prin-
ciple, formulating the so called strong Einstein’s
Equivalence Principle, which is one of the most im-
portant concept in the General Relativity Theory
[2]:

The motion of a small test body due to
gravity depends only on its initial conditions
and not on its constitution and the outcome
of any local experiment in a freely falling lab-
oratory is independent of the velocity of the
laboratory and its location in spacetime.

This means, not only that locally, the effects of
gravity are indistinguishable from the effects of ac-
celeration, but also, that every law of nature is the
same in free falling particles (those which are falling
in homogeneous gravitational fields), which includes

the laws of electromagnetism.
With that in mind, we can now identify the ap-

parent paradox.

2.2 The apparent physical
paradox

According to Einstein’s Equivalence Principle, a
particle at rest in a homogeneous gravitational field
of acceleration g⃗ is equivalent to the same charged
particle accelerated with acceleration −g⃗, whereas
a free falling charged particle in the same homo-
geneous gravitational field is equivalent to a non-
accelerating particle, therefore, if Einstein’s Equiv-
alence Principle is true, a free falling charge doesn’t
radiate, but a particle at rest does[1].

Now, in the reference frame of the resting par-
ticle, the free falling particle is accelerated, so it
should radiate, what happened to Larmor formula?
And also, in the reference frame of an observer also
at rest close to the charged particle it cannot ra-
diate, because it has no acceleration, and if it ra-
diated, the energy wouldn’t be conserved, as it has
the same height, so it didn’t change its potential en-
ergy. It seems like Einsteins Equivalence Principle
is incompatible with Larmor formula.

The solution of this "paradox" came with
Rohrlich [5] and Fulton and is as follows:

1. For a comoving reference frame with re-
spect to the free falling charge:

(a) The free falling charge does not radiate,
(b) The rest charge does radiate,

2. For a reference frame at rest with respect
to the rest charge:

(a) The free falling charge does radiate,
(b) The rest charge does not radiate,

In the end there is no paradox, because, as will be
shown in the latter sections, there is an event hori-
zon called Rindler-Horizon that makes it impossible
for an observer at rest, with respect to the rest or
free falling charge, to detect any radiation due to

1This is not correct, because I assume the motion of the
charge in a gravitational field is a geodesic beforehand, there-
fore it should be a inertial frame, whereas the charge at rest
would be a uniformly accelerating reference frame. In real-
ity, a charge and its field interacting with a gravitational field
does not necessarily follows a geodesic, because it would be
moving under the DeWitt-Brehme radiation reaction force
[6] and, therefore, would probably radiate. But this would
be impossible for me to calculate at my level of knowledge
considering the short time I have to finish this.
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the charge he sees at rest. For that, the observer
will see a electrostatic field. Of course we still have
to say some words about the conservation of energy,
but this will be done latter. So basically, there will
only be radiation when the charge is accelerating
with respect to the observer.

For now, lets review the mathematics of an accel-
erating reference frame in special relativity in order
to obtain the solution above.

2.3 Can Special Relativity
Handle Acceleration?

If you interacted enough in a physics department,
you probably heard at least one time: "Special rel-
ativity can’t handle acceleration, for that you need
to use general relativity". This sentence is wrong,
because although special relativity is incompatible
with gravity, it is possible to treat accelerated par-
ticles.

Differently from classical mechanics, where a uni-
formly accelerated particle follows a parabola in the
spacetime diagram, in special relativity it would
mean that eventually, the body would have speed
greater than light, which is impossible. Therefore,
it is intuitive that the curve an uniformly acceler-
ated body will have in the spacetime diagram, will
have asymptotes, where we should get v → c when
t → ∞, as we can see in figure (2.2) It happens
that this curve is also a conic, more specifically, an
hyperbole, as we are going to show in the next sub-
section.

2.3.1 Hyperbolic Motion
To proof that the motion is hyperbolic, it will be

interesting to follow three steps:

1. First, we proof that the 4-velocity is normal-
ized, i.e. uµuµ = c2 [2];

2. Second, we proof that the first item implies
that the 4-acceleration is perpendicular to the
4-velocity, i.e. uµaµ = 0;

3. Third, and last, we impose that the norm of the
4-acceleration is a constant, i.e. aµaµ = −α2.

Lemma 2.3.1. The four velocity of a particle is
normalized to c2 [3] .

2Remember that uµuµ =
∑3

µ=0 uµuµ

3Some textbooks use c = 1, that’s why some say the 4-
velocity is normalized. Mathematically, a unit speed curve –
which is one that has the first derivative norm equals to one
– has some advantages, especially when finding the Frenet-
Serret formulas, see [8]

Figure 2.2: In classical mechanics, there is no max-
imum possible speed, therefore, the slope of the
spacetime trajectory can increase as much as you
wish, whereas in special relativity, the maximum
speed possible is the speed of light in vacuum, c,
so the trajectory should have an maximum slope
(mathematically, we say that t(z) = c zc is an asymp-
tote of our trajectory curve).

Proof. By definition, the 4-velocity is the derivative
of the 4-position in relation to the proper time τ :

uµ =
dxµ

dt

dt

dτ
. (2.2)

The covariant 4-velocity can be obtained using
the metric of spacetime, which in this case is the
Minkowski metric:

uµ = gµνu
ν = ηµν

dxν

dt

dt

dτ
. (2.3)

The squared norm of the 4-velocity is given by the
calculation bellow:

uµuµ = gνµu
µ = ηνµ

dxν

dt

dxµ

dt

(
dt

dτ

)2

, (2.4)

where we remember that the proper time is, by def-
inition

γdτ = dt⇒ dt

dτ
= γ. (2.5)

With this, one can simply calculate

uµuµ = c2
(
1− β2

x − β2
y − β2

z

)
γ2 (2.6)

Notice that
(
1− β2

x − β2
y − β2

z

)
= γ−2, therefore,

uµuµ = c2, (2.7)

which concludes the demonstration.
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Corollary 2.3.1.1. The 4-acceleration is perpen-
dicular to the 4-velocity.

Proof. As a consequence of lemma (2.3.1), we have
that the derivative of uµuµ = 0, because it is a
constant, but, we also have that:

d

dτ
(uµu

µ) =
duµ
dτ

uµ + uµ
duµ

dτ
= 0. (2.8)

Because the Minkowski metric is constant, we have,

duµ
dτ

uµ =
dgµνu

ν

dτ
uµ ⇒ duµ

dτ
uµ = ηµν

duν

dτ
uµ. (2.9)

Going back to the product rule,

d

dτ
(uµu

µ) = ηµν
duν

dτ
uµ + uµ

duµ

dτ
. (2.10)

Factorizing the metric,

d

dτ
(uµu

µ) = ηµν

(
duν

dτ
uµ + uν

duµ

dτ

)
. (2.11)

Changing the dummy indices, we get,

d

dτ
(uµu

µ) = 2ηµν
duν

dτ
uµ = 0. (2.12)

Identifying the 4-acceleration – which is the deriva-
tive of the 4-velocity with respect to the proper
time,

2ηµν
duν

dτ
uµ = 2ηµνa

νuµ = 0. (2.13)

To end, we just need to identify the scalar product,
which is zero

2ηµνa
νuµ = 2aµu

µ = 0 ⇔ aµu
µ = 0. (2.14)

Therefore, the 4-velocity is perpendicular to the 4-
acceleration.

With this, in order to get the hyperbolic motion,
we are going to assume that the particle is moving in
a uniformly accelerated motion in the x3 direction,
so that u1 = u2 = 0 = a1 = a2.

Because this acceleration is constant,

aµa
µ = −α2 ⇔ −a0a0 + a3a

3 = −α2, (2.15)

But, from lemma (2.3.1) and corollary (2.3.1.1),


u0u

0 − u3u
3 = c2

a0u
0 − a3u

3 = 0

−α2 = a0a
0 − a3a

3

⇒

{
c2a0 = α2u3

c2a3 = α2u0
.

(2.16)

This gives us two coupled differential equation:
du0

dτ
=
α

c
u3

du3

dτ
=
α

c
u0

⇔ d2u3

dτ2
=
α2

c2
u3. (2.17)

The solution of this ODE, with the restrictions, is
given by 

u0 = c cosh
(α
c
τ
)

u3 = c sinh
(α
c
τ
) . (2.18)

This gives a hyperbole in spacetime, as expected.

2.3.2 Rindler Horizon

Because the particle is accelerating constantly,
following an hyperbolic motion, an artificial[4] event
horizon is created in a region of spacetime – the
Rindler Horizon – the light beams passing by this
region will never interfere with the particle, it ap-
pears for the particle as a dark region, because the
light beams never reach it, as shown if figure (2.3).

For an observer at rest, it is clear in figure (2.3)
that the distance from the particle and its Rindler
horizon is increasing, but for the accelerated parti-
cle, due to length contraction, the distance is con-
stant. To show that, one can find the 4-position and
calculate its contraction:

r0 =

∫
dτc cosh

(α
c
τ
)
=
c2

α
sinh

(α
c
τ
)
, (2.19)

and also,

r3 =

∫
dτc sinh

(α
c
τ
)
=
c2

α
cosh

(α
c
τ
)
. (2.20)

Therefore,

rµr
µ =

c4

α2

[
sinh2

(α
c
τ
)
− cosh2

(α
c
τ
)]

= − c4

α2

(2.21)
This seems useless, but notice that a light beam

is always at the same distance from the particle
(Rindler distance), which means that the speed of
light for non inertial reference frames is different
from c, i.e. zero for uniformly accelerated charges.
Now we are ready to do the calculation and see if
the observer will detect any radiation.

4I’m calling it artificial, because, differently from the black
holes event horizon, if the acceleration is turned off, the light
beams can reach the particle once again, so the event horizon
remains only while the particle is accelerated.
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Figure 2.3: We see a uniformly accelerated particle
with a hyperbolic motion in spacetime. Observe
that the light beam emitted at the points A and B
reach the particle, whereas the light beam emitted
by C will never reach it. It’s visually easy to see the
Rindler Horizon. We call the distance d the Rindler
distance, which is the distance from the particle and
the Rindler horizon.

2.4 The radiation seen by the
Minkowski reference frame

To start, we are going to see what an comoving
observer with the free falling charge will see when
looking to the charge at rest (remember that every-
thing passes as if the charge is uniformly acceler-
ated, also, remember that the observer at rest with
respect to the charge at rest will have the same con-
clusion when doing the analysis of the free falling
charge).

For those, we use the Minkowski metric ds2 =
ηνµdx

µdxν and solve the Maxwell equations accord-
ing to [7] :∂µFνξ + ∂νFξµ + ∂ξFµν = 0

1√
G
∂µ

(√
GFµν

)
=

4π

c
Jν , (2.22)

where G is the determinant of Gµν = ηµν , and the
current density Jν is given by [7]:

Jν = ec

∫
dτuνδ(4)(x− r(τ)) (2.23)

The solution can be found using Green function

as done in [7, 3]:

Fµν = e

[
1

uξ(xξ − rξ)

d

dτ

(
(xµ − rµ)uν − (xν − rν)uµ

uξ(xξ − rξ)

)]
τ=τret

,

(2.24)
where τret is the retarded time, xµ is an event of
spacetime and rµ is the 4-position of the accelerated
particle (already calculated).

The retarded time, between an event xµ

and rµ is a light-like interval, i.e. (xµ −
rµ)(x

µ − rµ) = 0, [5] therefore, considering an
event xµ = (ct, x, y, z), we have xµ − rµ =(
ct− c2

α sinh
(
α
c τret

)
, x, y, z − c2

α cosh
(
α
c τret

))
and

with that the retarded time is well defined as fol-
lows:

(xµ − rµ)(x
µ − rµ) = 0 ⇔

z cosh
(
α
c τret

)
− ct sinh

(
α
c τret

)
= α

2

(
x2+y2+z2

c2 − t2 + c2

g2

)
.

(2.25)
With this, it is easy to show that, because
uµ (xµ − rµ) = u0 (x0 − r0)− u3 (x3 − r3), then,

uµ (xµ − rµ) = c
(
ct cosh

(α
c
τ
)
− z sinh

(α
c
τ
))

,

(2.26)
and with this, we can calculate the electromagnetic
fields. I’ll show the example of Bx, and then write
the answer for the others.

Bx = −F 23 =

[
−e

uξ(xξ − rξ)

d

dτ

(
(x2 − r2)u3 − (x3 − r3)u2

uξ(xξ − rξ)

)]
τ=τret

(2.27)
In the denominator, we see equation (2.26) which

I’ll call ζ. Now we remember that r2 = 0 = u2,
therefore,

Bx =

−eyc

ζ

d

dτ

 sinh
(α
c
τ
)

ζ


τ=τret

(2.28)

=

 −eycαt(
ct cosh

(α
c
τret

)
− z sinh

(α
c
τret

))
 .

Calculating the others, we see Bz = 0, By = −x
yBx,

Ex = x
yEy and, finally,

Ey =
eEz

α

(
x2 + y2

c2
− t2

)2

− c4

α2

(2.29)

The radiation field can be further extracted by tak-
ing terms that drop as 1/R.

5In our choice of metric (+ − − −), a space-like interval
has ∆S < 0, a timelike interval has ∆S > 0 and a light-like
interval has ∆S = 0.
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2.5 Radiation seen by the co-
moving reference frame

According to an accelerated observer w.r.t. a
charge, the coordinates of an inertial observer is
given by: 

t =

√
2ξ

α
sinh

(α
c
τ
)

z =

√
c
2ξ

α
cosh

(α
c
τ
) . (2.30)

Therefore, we can write the metric as

ds2 = 2αRdτ2 − dx2 − dy2 − c2

2αR
dR2. (2.31)

With that, we can calculate the fields, remembering
that they transform as given by equation (2.32)

F ′µν

=
∂x′

µ

∂xζ
∂x′

ν

∂xη
F ζη. (2.32)

So, we just need to calculate some partial derivatives
and get the fields

∂τ

∂t
=

z

2ξ
;
∂ξ

∂t
= −αt

∂τ

∂z
=

−t
2ξ

;
∂ξ

∂z
=
zα

c2

. (2.33)

Calculating the magnetic field components, we
get B′

z = 0 and also, according to [3],

F ′13 =
y

x
F ′23 =

eα

c2ζ3

(
1

c

∂ξ

∂t
+ ct

∂ξ

∂z

)
= 0, (2.34)

so, Bx = By = Bz = 0. For the electric fields, one
can calculate by the same technique and get, as we
see in [3],

∂0F
′01 = ∂0F

′02 = ∂0F
′03 = 0. (2.35)

This results show that no radiation is observed in
this reference frame, as is expected.

2.6 What about the energy?
For the observer at rest in respect to the emitting

charge, the free falling observer that detect radia-
tion would be taking energy out of nowhere, to solve
this problem, [2] argued that it should deaccelerate
to conserve energy, and everything passes as if the
kinetic energy was converted to electromagnetic en-
ergy. In the end the gravitational field loses energy

and this energy is converted to electromagnetic radi-
ation. Although this apparently solves the problem,
the fact that we are treating radiation classically,
can’t explain the conservation of energy in the case
that the charge is not detected, for that a proper
quantum electrodynamics treatment would be nec-
essary.

2.7 Conclusions
The debate about whether relativistic uniformly

accelerated charges emit radiation has a incredible
history and deals with fundamental physics ques-
tions. As we saw, there is no paradox and the Equiv-
alence Principle’s validity is once again proofed, us-
ing the concept of a Rindler horizon to explain why
charged particles seemingly do not radiate while ac-
celerating, when seen by observers at rest in relation
to it. Despite of this success, the conservation of en-
ergy still appears to be in doubt, probably because
we are using classical model of radiation instead of
the QED model. Remember that all of this discus-
sion is only possible if we assume that charges move
along geodesic paths in the gravitational field, which
is not true.
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Magnetic monopoles
Diego França de Oliveira
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: The supposed existence of magnetic
monopoles will be assessed, from three different
perspectives. First, from a theoretical perspective,
quantum and electrodynamics theory will be dis-
cussed, exploring how magnetic monopoles could
exist and their relation to the quantization of
charge. A little will be discussed about the Higgs
field and the Grand Unified Theories, as some of
the monopoles most interesting characteristics come
only by that means. Second, the journey of looking
for monopoles will be explored, including some of
the experiments that try to detect them, and it will
be shown why, even if monopoles do exist, we may
never see one. Lastly, one of the current attempts
to create magnetic monopoles in the LHC particle
accelerator will be shown.

3.1 Introduction

In the theory of electrodynamics, Maxwell’s equa-
tions for the electric and magnetic fields have a clear
symmetry. However, due to the existence of electric
charges and the absence of their magnetic counter-
parts, this symmetry is completely lost in their pres-
ence. Suppose magnetic monopoles were real and
acted in correspondence with electric monopoles,
bringing back the symmetry. Maxwell’s equations,
in the gaussian unit system, would have the form:

∇ · E⃗ = 4πρe ; ∇× E⃗ =
1

c

∂B⃗

∂t
+

4π

c
j⃗m (3.1)

∇ · B⃗ = 4πρm ; ∇× B⃗ =
1

c

∂E⃗

∂t
+

4π

c
j⃗e

In these equations, E⃗ and B⃗ are the electric and
magnetic fields as usual, while ρ and j are the
density of charge and density of current, which
can be either of electric (ρe, j⃗e) or magnetic charge
(ρm, j⃗m).

In this work, the Gaussian unit system will be
primarily used, as it is the system utilized in most of
the original articles used as reference. Many of the
concepts revolving around the theme of magnetic
monopoles go beyond the electrodynamics course
description and were made as simplified as possible
for didactic purposes. Most of the references used
are from the original papers and can be consulted
if one wishes to delve deeper into the formalism of
such theories.

Let’s try and predict if such monopoles could exist
and how should they be.

3.2 Predicting monopoles

3.2.1 Dirac’s quantization condition

Electromagnetic forces can be described in terms
of scalar and vector potentials Φ and A⃗, instead of
the electric and magnetic fields E⃗ and B⃗. However,
the definition of B⃗ as the curl of a vector field, gives

∇ · B⃗ = ∇ ·
(
∇× A⃗

)
= 0 (3.2)

which is precisely the absence of monopoles pre-
dicted in Maxwell’s equations. Therefore, if the
magnetic field is represented by the vector potential
through Equation 3.2, then its field lines can never
have start or end points. This appears to show that
one cannot describe magnetic monopoles using the
vector potential, which is particularly important in
quantum mechanics theory, were particles are gen-
erally described in terms of their wave function ψ.
When one describes an electrically charged particle
in quantum mechanics, the complex phase ϕ of the
wave function ψ depends on the vector potential A⃗.
Moving in space causes the complex phase to change
at a rate determined by the vector potential compo-
nent parallel to the motion, which may be written
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as

∇ϕ =
qA⃗

ℏc
(3.3)

So, if the representation by a vector potential
prohibits the existence of magnetic monopoles and
quantum theory requires vector field representa-
tions, it seems that quantum theory requires the
absence of magnetic monopoles. It was in 1931 that
Paul Dirac showed a counterargument[1].

Assuming a very long coil with a flowing current,
there will be a magnetic field that passes within
the coil and expands at its extremities. The flux of
the magnetic field inside the coils is given by the
integral.

ΦB =

∫
B⃗ · dS⃗ (3.4)

If the length of the solenoid is much greater than
its width, the shape of the magnetic field around
the end of the solenoid looks exactly like that of a
magnetic monopole with magnetic charge g, with
B = g

r2 r̂, so ΦB = 4πg. A vector field that is able
to describe this magnetic field is

A⃗ = g
1− cos(θ)

r sin(θ)
φ̂ (3.5)

A⃗ is described in spherical coordinates, where θ
is the angle with respect to the direction of the
solenoid. One can see that the field contains a dis-
continuity at θ = 0, the direction of the solenoid.
This is known as the Dirac string. Figure 3.6 illus-
trates the situation.

Figure 3.1: Representation of the magnetic field gener-
ated at the end of a infinite solenoid.

For this condition to really approach magnetic
monopole behavior, it is necessary that the solenoid
be undetectable. As the vector potential affects the
wave function phase, as seen in equation 3.3, the
solenoid generates a signal that can be detected.
But there is a condition under which the solenoid
can not be detected.

Assuming an electric charge traveling from point
A to point B and passing through the vector field

produced by the solenoid, the phase divergence cre-
ated by the vector potential is dependent on the
path of the particle. That is, if one were to measure
the phase shift from point A to point B, it would
be possible to know the path the particle traveled,
revealing the presence of the vector potential and
the solenoid that produces it. Figure 3.2 represents
the situation.

Figure 3.2: Aharonov-Bohm thought experiment, ex-
plaining the travel for a electric charge from A to B,
passing through paths X and Y around the Dirac string.

Integrating equation (3.3) it is possible to quan-
tify the phase shift θXn

caused by a given path Xn.

θXn
= q

∫
A−→Xn−→B

A⃗ · dr (3.6)

A closed path going from A to B via Xn and re-
turning to A via Xm would give a value determined
by equation (3.7), which would be non-zero as long
as n ̸= m. The Stokes theorem can be applied, al-
lowing for substitution of equation (3.4).

∆θ = θXn
− θXm

= q

∮
C

A⃗ · dr⃗ (3.7)

∆θ = q

∫
B⃗ · dS⃗ = qΦ =

q4πg

ℏc
(3.8)

The complex wave function’s phase θ makes its
value indistinguishable from 2π addition. In this
manner, Xm and Xn, two distinct pathways, would
be indistinguishable if

4πqg

ℏc
= n2π ;

2qg

ℏc
∈ Z (3.9)

It means that, in order for the magnetic monopole
to be allowed, the electric charge must be quantized.
In fact, any theory that assumes charge quantisation
allows for the magnetic monopoles existence, as is
the case of quantum mechanics. As a direct con-
sequence of it, if the magnetic monopole exists, it
would also come with a quantified magnetic charge
of basic unit g = ℏc

2e . This quantization is not exclu-
sive for the Dirac string condition, and come natu-
rally from the gauge symmetry, which will be shown
ahead.
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3.2.2 Gauge invariance

The Dirac string condition and the quantization
of charge came from the hypothetical situation of
the infinite solenoid. However, it is possible to
show that the quantization condition is still present
if you try to remove the Dirac string, as Cheng
Yang developed in 1975 [2]. First, it is impossi-
ble to choose an A⃗ such that it has no singularities
around the sphere, which is a direct consequence of
equation (3.2). Therefore, the only way to remove
the string is to pick different A⃗ for different regions
around the monopole. Let’s assume a vector poten-
tial for the superior side of the sphere surrounding
the monopole and another potential for the inferior
side of the sphere.

A⃗sup = g
1− cos(θ)

r sin(θ)
φ̂ ; 0 ≤ θ ≤ π

2

A⃗inf = −g 1 + cos(θ)

r sin(θ)
φ̂ ;

π

2
≤ θ ≤ π

(3.10)

Defined this way, the vector potential contains no
singularities and produces a magnetic field B⃗ = gr

|r|3
at any point in space, which means we successfully
avoided the Dirac string while still constructing a
magnetic monopole. As a boundary condition in
this situation, it is necessary that at the intersec-
tion of the potentials at the equator, θ = π

2 , the
vector fields describe the same physics. For this to
be true, let us assume that the potentials obey the
electrodynamics gauge symmetry.

∇χ = A⃗sup − A⃗inf

∇χ =
2g

r sin(θ)
−→ χ = 2gφ

(3.11)

The same transformation χ must also be valid
under the quantum mechanics gauge symmetry

exp

(
ieχ(ϕ = 0)

ℏc

)
= exp

(
ieχ(ϕ = 2π)

ℏc

)
exp

(
ie2g(ϕ = 0)

ℏc

)
= exp

(
ie2g(ϕ = 2π)

ℏc

) (3.12)

This leads to the same quantization condition in
equation (3.9). In fact, the gauge simmetry present
in electrodynamics and quantum mechanics theory
expects the quantization of charge. In fact, gauge
symmetry plays a central role in various fields of
physics, so it is possible that other theories that
have such symmetries would also expect the quan-
tization of charge. Next, let’s dive into more gener-
alized gauge theories.

3.2.3 ’t Hooft-Polyakov monopole

By the 1970s, an effort was made by the physics
community to develop a theory that would si-
multaneously describe electrodynamics, the weak
force and the strong force, which would eventu-
ally become our current Standard Model of parti-
cle physics. These unifying theories would consider
that, at high energies, the different forces can be
described as one. Figure 3.3 shows the scales of
energies involved. These unified theories have as a
guiding principle the gauge symmetries present in
electrodynamics. Although the gauge transforma-
tions involved are more complicated, the structure
of these theories is very similar to Maxwell’s theory.

Figure 3.3: Representa-
tion of the energies a which
the fundamental forces can
be described by unified
theories

The gauge sim-
metry present in
Maxwell’s theory is
a U(1) symmetry,
as the weak force
theory holds a SU(2)
symmetry. To de-
scribe a theory that
would predict both,
an electroweak force
theory, it is reason-
able to assume the
symmetry of such a
theory would be a
combination of these,
U(1) x SU(2), which
was explored by
Glashow, Weinberg,
and Salam, granting
them the Nobel Prize
in 1979. At high
energies, the theories would be one and the same;
at lower energies, something must be responsible
for breaking the symmetry and splitting the two
forces. This role was given to the Higgs field.

In the context of this work, the Higgs field can
be understood as a continuous field that, in unified
theories, is presented with three degrees of freedom,
acting like a vector field. The length of the vec-
tor is the only thing that carries physical meaning,
but once the length is set, the symmetries allow for
smooth changes in the direction. The electroweak
gauge symmetry theory was good enough to be able
to predict the existence of novel particles, like the
W and Z bosons, discovered in the 1980s, and the
Higgs boson, which was granted the Nobel prize in
physics in 2013. With such success, it later pro-
gressed to enclose the strong force description as a
Grand Unified Theory (GUT), and here is where
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the monopole comes into play.

As a distinct characteristic, the modulus of the
Higgs field vector is non-zero at any point in a
vacuum. In GUTs, the Higgs field usually varies
smoothly across space, but it is possible to find it
in a "hedgehog" configuration, where the vectors
point in different directions from a point in space.
This point cannot be removed by smooth transfor-
mations under the symmetry rules, making them
topological defects in space. Figure 3.4 shows a
representation of the Higgs field, which contains a
defect at the origin.

Figure 3.4: "Hedge-
hog" configuration of the
higgs fields, presenting a
topological defect at the
origin, where the field
value is zero.

As the Higgs field
is always non-zero in
the vacuum, this zero-
valued topological de-
fect could only be due
to the presence of a
particle. The parti-
cle, as theory predicts,
would have two distinct
characteristics: First,
as the energy of this
defect should be very
high, the particle at
this point would be
massive. Second, it
is possible to calculate
the magnetic field gen-
erated by this defect, which turns out to be

B⃗ =
gr⃗

|r⃗|3
; (3.13)

This is exactly the field generated by a quantified
magnetic charge located at the origin. Therefore,
the Grand Unified Theories not only allow for the
magnetic monopole, they also expect it. This was
first observed by Gerard ’t Hooft and Alexander
Polyakov in the 1970s [4]. The massive magnetic
monopole predicted by GUTs would have energy of
around 1015GeV. The implications of such high en-
ergies will be better discussed in Section 4.3.2.

Once again, the gauge symmetry, now applied for
more complex theories, allows for the existence of
magnetic monopoles. If such particles really exist
somewhere in the universe one may be able to find
them, so lets start looking.

3.3 Looking for monopoles

3.3.1 Monopoles detection experi-
ments

If the magnetic monopole is a particle predicted
by GUTs, one may be able to detect it experimen-
tally. In fact, unlike neutrinos, leptons, and other
subatomic particles, it should be relatively easy to
detect a magnetic monopole as it responds to elec-
tromagnetic interactions. Still, by the end of the
1980s, no one had ever encountered a sign of a mag-
netic monopole in our world. In 1982, Blas Cabrera
prepared an experiment aiming to detect magnetic
monopoles as astroparticles [5].

A particle with magnetic charge g, moving with
a velocity v along the z-axis, passing through a coil
of radius R and self-inductance L, would generate
a current in such a coil. If the coil is made out of
superconductive material and thus has zero resis-
tance, the current would not dissipate. It is pos-
sible to calculate, integrating equation (3.1) along
the area of the coil, the current induced by such a
particle. Considering that the particle crosses the
coil at t = 0 and applying the Stokes theorem

∫
E⃗ · d⃗l = 1

c

∫
∂Φm

∂t
· dA⃗+

4π

c

∫
j⃗m · dA⃗

ΦB = 2πg[1− 2Θ(t) +
vt√

(vt)2 +R2
]∫

j⃗m · dA⃗ = gδ(t)

(3.14)

The first term is equal to LdI
dt . The flux of a mag-

netic field is calculated considering a magnetic field
in the form of equation 3.13, with Θ(t) being the
Heaviside function. Integrating in time, knowing
that the delta function Θ(t) is the time derivative
of the Heaviside function ∆(t).

I(t) =
2πg

L

(
1 +

vt√
(vt)2 +R2

)

)
(3.15)

The equation may not be intuitive, but it has
a clear meaning. For t −→ −∞, long before any
magnetic charge passes through the ring, I = 0. For
t −→ ∞, long after the monopole passes through the
loop, I = 4πg. Interestingly, the value of the current
generated does not depend on the radius of the loop
and is clearly quantized. A passing monopole would
return a distinguishable signal in quanta of 4πg.

An detector was prepared at Stanford University
using a four-turn, 5-cm-diameter loop coil made out
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of superconducting material, put inside a protective
shield, with its axis disposed vertically. From this
configuration, the current expected to be generated
by a passing monopole would be I = 8πg. The
experiment was calibrated and set for 145 days, with
the current in the coil being monitored constantly.
On February 14, 1982, a large event was recorded,
consisting of the current expected by the passage of
a magnetic charge within 5% error.

Figure 3.5: Current generated in a coil by a supposed
magnetic manopole.

This result was shocking in the field of physics,
and other scientists tried to replicate it, preparing
their own detection experiment. The most notable
of then was made by the Monopoles, Astrophysics,
and Cosmic Rays Observatin (MACRO), based in
Italy from 1989 to 2000, with an area of detection
of 10000 m2. The MACRO experiment was unable
to find any monopoles as of the time it was active.
In fact, not a single time after Cabrera was someone
able to detect a signal that resembled a monopole
astroparticle, which led to the discrepancy of the ex-
periment. Scientists now begin to wonder: if there
are monopoles roaming in the universe, what are
the odds we come upon one?

3.3.2 Astrophysical bounds
If the monopoles are present in our universe, they

would surely produce astrophysical effects, as Cabr-
era first tried to observe. Aside from that, any mag-
netic charge would be accelerated by a magnetic
field, creating a magnetic current. Following the
group of equations (3.1), the Lorentz force law over
a magnetic charge moving with momentum pm and
interacting with fields E⃗ and B⃗ would take a differ-
ent form. Also, let’s remember the definition of the
poynting vector (S⃗) and the fields energy density
(u) in CGS units.

dpm
dt

=

∫
V

(ρmB⃗ − j⃗m
c

× E⃗)dV

S⃗ =
c

4π
E⃗ × B⃗;u =

E2 +B2

8π

(3.16)

From here, is easy to derive the poynting theorem,
which takes the form.

∇ · S⃗ +
∂u

∂t
= −j⃗e · E⃗ − j⃗m · B⃗ (3.17)

The Poynting theorem shows clear that, just
like electric current, magnetic current should also
"drain" energy from the fields, which is expected as
a consequence of conservation of energy. This way,
if the flux of magnetic particles were too large, all
the magnetic field would have dissipated in space.
However, observations show that there is a mag-
netic field of roughly 3µG in our galaxy, from which
we can conclude that the monopole flux cannot be
very high around here. From this condition, Eu-
gene Parker estimated in 1982 the maximum flux for
GUTs monopoles to be F ≤ 10−15cm−2s−1sr−1 [6].
The unit sr, or steradiant, is the three-dimensional
analog of the radian, with a value of 4πsr for a full
sphere. The average number N of particles hitting
a section of solid angle Ω of sphere of radius R per
unit of time is given by

N

t
= ΩRF (3.18)

For a detector the size of MACRO in the surface
of the earth, that would be around 1.5 · 10−18s−1,
around 1 monopole every 20 billion years. As-
trophysical bounds related to the flux of magnetic
monopoles are still very optimistic. The true limi-
tations come into play when we consider the energy
it takes to form a GUTs monopole in the first place.

As the mass of the GUT magnetic monopoles was
expected to be very high (E ≈ 1015GeV), a very en-
ergetic event would be needed to form them. The
only possible way a GUT monopole could have been
formed would be shortly after the Big Bang, as it is
the only event in the history of the universe to reach
such high energies. However, if the monopoles were
formed in the big bang, they would have recollapsed
all the matter through their gravitational attrac-
tion. This is known as the "monopole problem",
and Alan Guth proposes in the 1980s the cosmic
inflation theory as possible solution.

The theory states that, just after the big bang,
the universe started expanding exponentially, reach-
ing apparent velocities much higher than the speed
of light. This means that the density of monopoles
in the current observable universe would be ridicu-
lously low, so low that we probably will never be
able to see one. If the monopoles cannot be found,
we might as well try to make one ourselves.
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3.4 Making monopoles

3.4.1 Particle accelerators

It was stated before that the monopoles predicted
by the GUT were supposed to be massive, with
energies around 1015GeV. As the GUT is a high-
energy theory, it predicts monopoles at such a level.
However, the possibility remains that monopoles
could exist with energies much lower than this, the
so-called intermediate mass monopoles (IMM). If
the energy of such monopoles were to be around
100GeV, in the order of the electroweak theory en-
ergies, it would be possible to produce them in par-
ticle accelerators.

The Large Hadron Collider (LHC), the world’s
largest particle accelerator, is able to reach collision
energies of 13 TeV. It currently holds 7 experiments,
one of which is the Monopole and Exotics Detector
at the LHC (MoEDAL)[7]. This system consists
of a series of plate detectors disposed around the
collision point. The plate detectors are designed to
detect the track of ionizing particles and trap them.

Figure 3.6: At left, MoEDAL detection architecture,
consisting of a series of detection plates surrounding the
area of collision. At right, depiction of the detection
plate, consisting of aluminum and polymer sheets

When a pair of protons collide with such high en-
ergies, fundamental particles can be created by the
Schwinger effect. The special thing about IMM’s is
that they would be very stable compared to other el-
ementary particles produced while also been highly
ionizing. MoEDAL’s detection mechanism consists
of a stack of polymer sheets that would be pene-
trated by IMM’s, leaving a ionizing track that can
be exposed chemically. Aluminum sheets are put at
the start and end of the track to act as traps, as the
monopoles are expected to bind strongly to this ma-
terial. The sheets are analyzed by superconducting
coils, allowing for the detection and quantization of
the longing current that would be generated by the
passing monopoles. The MoEDAL experiment is
functioning since 2011 but has not yet been able to
find magnetic charges. The search goes on.

3.5 Conclusion
In 1931, based on quantum mechanics and elec-

trodynamics theory, Dirac predicted the existence
of a never seen particle: the magnetic monopole.
This is the same physisics who would win the Nobel
prize of 1933, for the prediction of the antimmater.
It has been 92 years and the search is far from over.

The search for magnetic monopoles walked side
by side with the development of the 20th century
physics. They emerged from quantum mechan-
ics and electrodynamics, walked their way through
topology, gauge field theories and the Grand Unified
Theories. The search for them went from astrophys-
ical observations to cosmological predictions. We
have no idea if such particles do exist, but we are
certain that, even if they do, we may never come
upon then. Current research explores the possibility
of the formation of intermediate mass monopoles,
through particles accelerator experiments, the main
one being MoEDAL. In the next decades, as the
physics theory develops itself, we hope to see the
monopole problem being solved.
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Abstract: The effects of superconductivity were
observed by Heike Kamerlingh Onnes in 1911 when
he cooled mercury to a temperature below 4.2 K
using liquid helium. Superconductors exhibit zero
electrical resistance below a critical temperature,
and the Meissner effect ensures that the magnetic
field is expelled from their interior. This effect
was phenomenologically introduced into Maxwell’s
equations by the London brothers, but its physi-
cal origin was only explained in 1957 by physicists
John Bardeen, Leon Cooper, and Robert Schrief-
fer through the BCS theory. Superconductors have
important applications such as Magnetic Levita-
tion Transport (Maglev) and in magnetic resonance
imaging (MRI).

5.1 Introduction

One of the main issues in the early 1900s was
the question of what happens to the resistivity of a
metal as its temperature approaches absolute zero.
In 1908, Kamerlingh Onnes successfully liquefied
helium at 4.2 K, marking the beginning of a new
chapter in physics. In 1911, Heike Kamerlingh
Onnes successfully refrigerated mercury to critical
temperatures below 4.2 K, estimating the resistance
to be 10−55 Ohm (practically zero, considering ex-
perimental error). This value is 10−12 times the
resistance of mercury under normal conditions [1].

Heike Kamerlingh Onnes provided an initial def-
inition of a superconductor as one in which elec-
trical resistance tends to zero when cooled below
a critical temperature (Tc). Because of this discov-
ery, Kamerlingh Onnes won the Nobel Prize in 1913.
Figure 5.1 illustrates the experimental setup used in
the experiment, consisting of a cryostat where liquid
helium, among other cryogenic fluids, is introduced

and a plot of resistance (ohms) versus temperature
(K) for mercury from the first experiment to detect
superconductivity.

Figure 5.1: A: The bottom of the cryostat, where Heike
Kamerlingh Onnes and his coworkers conducted the exper-
iment that initially revealed superconductivity. The colors
represent different cryogenic fluids within the intricate de-
war [1]. B: A plot of resistance (ohms) versus temperature
(K) for mercury from the 1911 experiment shows the super-
conducting transition at 4.20 K [1].

More robust theories were developed to explain
the phenomenon and complemented the initial defi-
nition, and various other superconductor materials,
in addition to mercury, were also discovered such
as the niobium–titanium alloy. Applications involv-
ing superconductors face the challenge of requiring
extremely low temperatures to achieve the super-
conducting state. Nevertheless, there are numer-
ous applications utilizing superconducting materi-
als, including Nuclear Magnetic Resonance Imaging
(MRI) used as a diagnostic method and Magnetic
Levitation Transport (Maglev).
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5.2 Superconductor features
and Meissner effect

Once a continuous electric current is established
in a superconductor, it remains without the use of
any energy source, as long as the temperature re-
mains below the critical temperature. Given that
the superconductor has no measurable electrical re-
sistance, it operates like an ideal conductor with
infinite conductivity or zero resistivity, and super-
conductors do not lose energy in the form of heat
through the Joule effect. Nevertheless, this condi-
tion can change with the increase in temperature
above Tc, where the material leaves the supercon-
ducting state.

Walther Meissner and Robert Ochsenfeld discov-
ered another crucial characteristic in 1933. When a
magnetic field is applied to a superconducting ma-
terial at a temperature T above its critical tempera-
ture, the magnetic field penetrates the material, re-
sulting in an internal magnetic field. As the temper-
ature is lowered below the critical temperature, it
enters the superconducting state. In this state, the
material behaves like a perfect diamagnet, expelling
the magnetic field. This phenomenon is recognized
as the Meissner Effect and serves as a distinctive
feature that sets superconductors apart from per-
fect conductors. Figure 5.2 illustrates the behavior
of the superconductor when subjected to a magnetic
field in two situations: above Tc and below Tc.

Figure 5.2: A: The
magnetic field lines pen-
etrate the superconduct-
ing material when it is
above the critical tem-
perature. B: When the
temperature drops below
the critical temperature,
the field lines are then
expelled from the super-
conductor. Figure pro-
duced by the author.

For any given tem-
perature, there exists a
critical magnetic field
Hc that can be applied
without compromis-
ing the material’s
superconducting prop-
erties.There are two
types of superconduc-
tor materials. Type
I superconductors are
predominantly com-
posed of metals and
metallic alloys, with
critical temperatures
reaching extremely low
values on the order
of 10 K. Furthermore,
the material undergoes
a transition to the
normal state when the
magnetic field reaches
a critical value, Hc.

Figure 5.3A shows

the behavior of the type I superconductor consid-
ering the magnetic field H as a function of tem-
perature, and Figure 5.3B shows the relationship
between the magnetic field H and temperature for
different type I superconductors.

Figure 5.3: A - Behavior of the type I superconductor con-
sidering the magnetic field (H) as a function of temperature.
Below the critical magnetic field, the material remains in the
superconducting state, while above it transitions to a normal
state. B - Relationship between the magnetic field (H) and
temperature for different type I superconductors.

Type II superconductors are composed of metal-
lic alloys and other materials, such as ceramics.
Their critical temperatures are higher, but still fall
within the range of low temperatures on the order
of 100 K.Type II superconductors are characterized
by exhibiting two critical magnetic fields: the first
is Hc1, and the second is Hc2. Below the critical
field Hc1, they behave like a type I superconductor,
while above the critical field Hc2, they behave like
a normal material without superconductivity. Be-
tween Hc1 and Hc2, there is a partial penetration of
magnetic flux, forming superconducting regions and
regions in the normal state that allow magnetic field
penetration. This behavior of type II superconduc-
tors is not yet fully explained by existing theories.
Figure 5.4A shows the behavior of type II super-
conductors considering the magnetic field H as a
function of temperature, and Figure 5.4B shows the
vortex state with normal cores surrounded by su-
perconducting regions.

Figure 5.4: A - Behavior of the type II superconductor con-
sidering the magnetic field H as a function of temperature.
Below the first critical magnetic field, Hc1, the material re-
mains in the superconducting state; above the second critical
magnetic field, Hc2, it transitions to a normal state. Between
the fieldsHc1 and Hc2, there exists a mixture of states. B -
Vortex with normal cores surrounded by superconducting re-
gions observed in type II superconductors.

If any diamagnetic material, other than a super-
conductor, is in a region where there is a constant
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Figure 5.5: A: A magnetic field penetrates a superconduc-
tor at a temperature T above the critical temperature. The
superconductor is then brought into the zero-resistance state
when the temperature is lowered below Tc, and the magnetic
field is expelled from the interior of the superconductor. B:
A magnetic field penetrates a perfect diamagnet in a situa-
tion where the electrical resistance is not zero. After some
mechanism is used to lower the electrical resistance, the mag-
netic field is not expelled and continues within the material.
Figure produced by the author.

magnetic field, and it is somehow possible to reduce
its electrical resistance to zero without changing the
magnetic field, the field will remain inside the ma-
terial.This happens because, according to Faraday’s
law, a variable magnetic field is necessary to induce
the currents used to cancel the magnetic field inside
the sample. The existence of the Meissner effect
implies that it is possible to induce currents in a
superconductor even if the applied magnetic field
is constant; for this, it is sufficient to reduce the
temperature to a value lower than the critical tem-
perature and consequently reduce the resistance to
zero. In a superconductor, it doesn’t matter the
order in which the magnetic field is applied before
or after the temperature and resistance reduction.
Figure 5.4 depicts a comparison between what hap-
pens with an ideal diamagnetic and a superconduc-
tor when brought to a condition in which resistance
is reduced to zero [2]. For this reason, although the
expulsion of the internal magnetic field is related to
diamagnetism, it cannot serve as an explanation for
the Meissner effect. This phenomenon is not ad-
dressed by Faraday’s law, and a new theory should
be developed to explain it.

5.3 London equations

In 1935, brothers Fritz and Heinz London de-
veloped a phenomenological explanation capable of

elucidating the Meissner effect based on observa-
tions of the superconductors behavior. They incor-
porated specific conditions for superconductors into
a description based on Maxwell’s equations.

When normal conduction electrons move, they
are subject to the resistance of the material, and
their motion can be described by equation (5.1).

m
dv⃗

dt
= eε⃗− v⃗

Γ
(5.1)

Where Γ is the resistance. If the electron in ques-
tion moves without any resistance, then the motion
can be described by equation (5.2)

m
dv⃗

dt
= eε⃗ (5.2)

We can write the current density as 5.3.

j⃗ = ensv⃗ (5.3)

Substituting (5.3) into the equation of motion
(5.2), we then find (5.4) which is the first London
equation.

∂J⃗

∂t
=
nse

2

m
ε⃗ (5.4)

Equation (5.4), results in the eletrical field (5.5)

ε⃗ =
m

e2ns

dJ⃗

dt
(5.5)

Substituting equation (5.5) into Faraday’s law
(∇× ε⃗ = −∂B⃗

∂t ), we find the relationship described
in (5.6)

∂

∂t

(
∇× J⃗ +

e2ns
m

B⃗

)
= 0 (5.6)

From the equation, we see that the term in paren-
theses needs to be constant, and we will assume that
this constant is zero we found (5.7) which is the sec-
ond London equation

∇× J⃗ = −e
2ns
m

B⃗ (5.7)

Using Ampère’s law (▽× B⃗ = µ0J⃗), after apply-
ing some identities, we find equation 5.8

∇2B⃗ =
1

λ2L
B⃗ (5.8)

The solution to the differential equation (5.8) in-
dicates that the magnetic field B⃗ must be exponen-
tially attenuated within the superconductor, such
that it is appreciable only up to a distance λL from
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the surface of the superconductor. Where λL repre-
sents the London penetration depth, and its value
is given by λL =

√
m

µ0e2ns
. Analyzing the values of

λL components, it is possible to estimate its value
to be between 100 and 1000 Angstrom.

Furthermore, applying the curl operator to (5.7)
and applying some identities, we arrive at equation
(5.9)

∇2J⃗ =
1

λ2L
J⃗ (5.9)

Just like for the magnetic field inside the super-
conductor, equation (5.9) indicates that the super-
conducting current should be situated near the sur-
face, penetrating only the distance allowed by the
London penetration depth. Thus, we can conclude
that the superconducting current density is indeed
volumetric, but, similar to the magnetic field, it ex-
ponentially decays within the sample, being appre-
ciable only in a very small volume within the super-
conductor.

To conclude that the term in parentheses from
equation (5.6) was equal to zero, the London Broth-
ers supposed that a part of electrons in the system
move without losses (superconductor electrons),
while another part comprises normal electrons [5].
This assumption is similar to the two-fluid model
of liquid helium by Gorter and Casimir [4]. Under
these conditions, the free energy of the system is
given by equation (5.10).

F = Fn + Fs + Fmag (5.10)

where Fn is the free energy of normal electrons, Fs

is the contribution of superfluid electrons, and Fmag

is the energy of the magnetic field. Using Ampère’s
equation for the magnetic field, it is possible to ex-
press the free energy solely in terms of integrals of
the magnetic field 5.11, and the energy of normal
electrons doesn’t depend on this field.

F = Fn +
1

8π

∫ [
B⃗2 +

m

nse2
(▽× B⃗2)

]
dr (5.11)

When we minimize the free energy with respect to
the magnetic field, we obtain exactly the expression
(5.8). The London theory establishes a connection
between superfluid electrons moving without losses
and the Meissner effect. The two-fluid model is com-
posed of bosons, they are particles with integer spin
which impose no restrictions on the occupation of
energy levels, allowing us to place as many bosons as
we want in each quantum energy level. According to

the two-fluid model, at low temperatures, a macro-
scopic number of bosons tends to occupy the lowest
energy level, forming a condensate where there is
no thermal agitation, while the others occupy other
energy states, behaving like a normal fluid. How-
ever, electrons are fermions that have half-integer
spin and obey Pauli’s Exclusion Principle. Only
one fermion can be allocated to each quantum en-
ergy level. Thus, how can the behavior of electrons
be compared to the two-fluid model?

The ideas introduced by the London brothers
explained phenomenologically the existence of the
Meissner effect but still failed to provide a physical
mechanism capable of explaining why superconduc-
tivity was possible.

5.4 BCS theory

In 1957, physicists John Bardeen, Leon Cooper,
and Robert Schrieffer introduced a theoretical
model that agreed with experimental observations
in superconductors. This model became known as
the BCS Theory, named after the initials of the au-
thors, and earned them the Nobel Prize in Physics
in 1972. In this work, the BCS theory will be ad-
dressed in a more qualitative manner. A detailed
theoretical description based on quantum field the-
ory can be found in reference [7].

The BCS theory is based on the formation of
Cooper pairs, proposed by Leon Cooper in 1956,
suggesting a bound state between two electrons.
Electrons naturally repel each other due to Coulom-
bic repulsion, as they have charges of the same sign.
Cooper’s theory proposed that electrons can attract
each other through the ions in the crystalline struc-
ture inside a metal.

Cooper pairs are formed at low temperatures,
where the ions thermal agitation are lower. To un-
derstand this process, let’s consider that it is actu-
ally formed by two steps. In the first step, consider
an electron in the material moving in a region with
positive ions. There is an attractive interaction be-
tween them that creates a deformation propagating
through the lattice, which can be associated with
the emission of a phonon. This deformation in-
creases the concentration of positive charges in a
particular region; it can happen that a second elec-
tron passes near this region and is attracted by the
phonon emitted by the first. Figure 5.6 shows a
schematic illustrating the interaction, which can be
considered as an attractive interaction between the
electrons since both intermediate interactions were
positive. The two electrons then form a bound state
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Figure 5.6: An electron moving in a region of positive ions
interacts, creating a deformation that propagates through the
lattice and can be associated with the emission of a phonon.
This increases the concentration of positive charges in a spe-
cific region, and a second electron can be attracted by the
phonon emitted by the first. The figure illustrates the prop-
agation of the electron, the concentration of positive charges
in a specific region, and the formation of the Cooper pair.

called a Cooper pair.
Cooper pairs behave like bosons, as the sum of

electron spins results in an integer value. Thus,
more than one Cooper pair can occupy the same
energy state. Cooper pairs have lower energy than
fermions, and at low temperatures, they occupy the
lowest energy state, forming a Cooper pair conden-
sate. This theory aligns with the idea proposed by
the London brothers to explain superconductivity
through the two-fluid model.

However, the presence of direct Coulomb repul-
sion diminishes the effectiveness of the attraction
between electrons, rendering it relatively weak. The
energy distribution in a superconductor has a for-
bidden energy range around the Fermi energy, given
by Eg, similar to superconductors that have an en-
ergy gap between the conduction and valence bands.
The value of Eg at a given temperature is equal to
the Cooper pair binding energy for that tempera-
ture.

Figure 5.7 shows the experimental results for en-
ergy gap values Eg as a function of temperature T
for some superconducting elements, while the con-
tinuous curve depicts the same behavior predicted
by the BCS theory. For temperatures on the order
of the critical temperatures of superconductors, the
value of Eg is much larger than the thermal energy
available to the atoms. Thus, Cooper pairs persist
despite the weak binding.

The structure formed by Cooper pairs is ex-
tremely ordered, so that when they move, this or-
dering is maintained, and the superconductor re-
mains free from interactions responsible for the ap-
pearance of electrical resistance. This ordered mo-
tion also suggests that the electrons participating
in the supercurrent are good charge conductors but
do not conduct heat, as heat is generated by the
disordered motion of electrons.

Figure 5.7: energy gap values Eg as a function of temper-
ature T for some superconducting elements,

5.5 Applications of supercon-
ductivity

Applications involving superconductors face the
challenge of requiring extremely low temperatures
to achieve the superconducting state. Nevertheless,
there are numerous applications utilizing supercon-
ducting materials. In this section, two of them will
be commented on.

5.5.1 Magnetic Resonance Imaging
(MRI)

Magnetic Resonance Imaging is one of the appli-
cations of Nuclear Magnetic Resonance and is used
in various fields, including industry, agriculture, ma-
terial science, and, most notably, in medicine as an
important diagnostic method. Magnetic resonance
techniques use a static and homogeneous magnet
combined with a series of radiofrequency pulses to
excite the samples and process the signals. In the
case of imaging, the signals are spatially encoded by
the use of linear gradient fields. Figure 5.8A shows
a magnetic resonance image of a brain and Figure
5.8B shows magnetic resonance imaging equipment.

Figure 5.8: Magnetic resonance image of a brain [3]. B:
Magnetic resonance imaging equipment.

An ultrastable magnetic field is employed to pro-
vide high-resolution images without artifacts. The
magnetic field is generated by a constant current in
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a coil made of superconducting material wire that
forms the magnet. The wire must be immersed in a
bath of liquid helium to keep it in a superconduct-
ing state. To reduce the boil-off of liquid helium, it
is enclosed in a vacuum jacket filled with materials
that limit radiative losses. This setup is surrounded
by an additional jacket filled with liquid nitrogen
and another vacuum jacket to isolate it as much as
possible from the room-temperature environment as
we can see in the Figure 5.9. The central bore of
the magnet, which houses the sample probe, is at
room temperature.

Figure 5.9: Cooling scheme of a superconducting magnet
used in Magnetic Resonance Imaging equipment. The liquid
helium is enclosed in a vacuum jacket filled with materials
that limit radiative losses. This setup is surrounded by an
additional jacket filled with liquid nitrogen and another vac-
uum jacket to isolate it as much as possible from the room-
temperature environment. Figure produced by the author.

5.5.2 Magnetic Levitation Transport
(Maglev)

A manifestation of the Meissner effect is magnetic
levitation. When a magnet is placed near a super-
conductor in its superconducting state, the mag-
netic fields generated by the magnet are expelled
from the interior of the superconductor. This re-
sults in a magnetic repulsion, causing the magnet to
levitate above the superconductor. This magnetic
interaction creates a repulsive force that balances
the weight of the magnet, allowing it to levitate over
the superconductor.

Magnetic levitation is an interesting phenomenon
and has practical applications in technologies such
as magnetic levitation trains (Maglev). A mag-
netic levitation train, or Maglev (Magnetic Levi-
tation Transport), is similar to a train that travels
on an elevated track above the ground through the
use of superconductors. Due to its high production
cost, there is currently only one commercial line,
the Shanghai Transrapid 5.10. This line covers a
distance of 30 km to Pudong International Airport
in just 8 minutes and can be seen in the figure. Con-

struction began in March 2001, and it commenced
operations on January 1, 2004.

Figure 5.10: Transrapid de Xangai.

5.6 Conclusion
After observations of the effects of superconduc-

tors, it was necessary for some theories to be devel-
oped before physicists John Bardeen, Leon Cooper,
and Robert Schrieffer formulated the BCS theory
capable of explaining the underlying physical prin-
ciples of superconductivity. They were awarded the
Nobel Prize in Physics in 1972 for this theory, which
has numerous applications. However, the BCS the-
ory can only perfectly explain the behavior of type
I superconductors; it does not encompass type II
superconductors.
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Abstract: In this work, we provide a brief intro-
duction to the fundamental concepts of electrody-
namics classical, in order to investigate and analyze
in a comprehensive way the effects resulting from
the reaction radiation. Initially, we use solutions
of the Maxwell’s equations to describe the fields
generated by point loads, resulting in the Lienard-
Wiechert fields. A next, we go deeper into the de-
scription of the radiation emitted by punctual loads
at low speeds, covering the non-relativistic context.
In this context, we derived the Larmor formula,
which quantifies the radiation power. Using the the-
oretical tools developed in the previous sections, we
expand our analysis for simple oscillating systems,
determining the Abraham-Lorentz force exerted on
the source loads.

6.1 Introduction

Classical electrodynamics is a fundamental
branch of physics that describes electromagnetic in-
teractions among charged particles and the electric
and magnetic fields surrounding them. Since the pi-
oneering works of Michael Faraday and James Clerk
Maxwell in the 19th century, electromagnetic theory
has played a central role in understanding natural
phenomena. Over the years, advancements in clas-
sical electrodynamics have led to the formulation of
Maxwell’s laws, which unified electricity and mag-
netism into a consistent set of differential equations.
These laws laid the groundwork for understanding
electromagnetic waves and made it possible to ex-
plain the propagation of light and other forms of
electromagnetic radiation.

In this work, we present an exploration of the fun-
damental concepts of classical electrodynamics with
a special emphasis on the effects of radiation reac-
tion. Initially, we introduce the basic principles of
electromagnetic theory, including the formulation of

Maxwell’s laws and the application of gauge trans-
formations to the electromagnetic field. Next, we
address the fields generated by point charges, using
the solution of the wave equation in electromagnetic
potentials, known as Lienard-Wiechert fields. We
explore how these fields behave and interact with
charged particles.

An issue of interest is the emission of radiation
by moving point charges. We investigate the non-
relativistic case, where particle velocities are low
compared to the speed of light, allowing for the
derivation of the Larmor formula for emitted radi-
ation power. Additionally, we analyze the effects
of radiation reaction on the particles themselves,
leading to the formulation of the Abraham-Lorentz
force.

Subsequently, we broaden our discussion to en-
compass a more realistic context by introducing the
electron model from Lorentz’s theory. We rederive
the Abraham-Lorentz force, now free from acceler-
ation divergence terms. We deduce the covariant
version of Maxwell’s equations and the Larmor for-
mula, subsequently analyzing the relativistic effects
on the radiation reaction emitted by charged parti-
cles in accelerated motion. We compare the results
obtained with those from classical electrodynamics
(non-relativistic context).
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6.2 Dynamics of electrical
charges

The Maxwell’s equations in the International Sys-
tem of Units (SI) are:

∇ ·E =
ρ

ε0
, (6.1)

∇ ·B = 0, (6.2)

∇×E = −∂B
∂t
, (6.3)

∇×B = µ0J+ µ0ε0
∂E

∂t
. (6.4)

which, together with the strength of Lorentz,

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
(6.5)

They fully describe the dynamics of the electromag-
netic field and its interaction with particles. How-
ever, solving this set of equations is not a trivial
process, because at least we need to know the den-
sities of charge ρ and current J⃗ .

6.2.1 The Liénard–Wiechert poten-
tials

The scalar and vector potentials are a way of
describing the electromagnetic field generated by
charge densities and arbitrary currents. However,
in order to describe the effects of radiation, fields
generated by point charges, the so-called potentials
and fields of radiation will be studied. Liénard-
Wiechert. The Liénard–Wiechert powers describe,
in a relativistically correct manner, the classical
effects of the electromagnetic field generated by
charges in arbitrary motion. Starting from the
Lorenz Gauge, the Potential retarded calls are given
by:

ϕ (r⃗, t) =
1

4πϵ0

∫
d3r′

∫
dt′

(ρ⃗q (t) , t
′)

|r⃗ − r⃗q (t) |

δ

(
t′ −

[
t− |r⃗ − r⃗q (t

′)

c

])
(6.6)

A⃗ (r⃗, t) =
1

4πϵ0

∫
d3r′

∫
dt′

(
J⃗q (t) , t

′
)

|r⃗ − r⃗q (t) |

δ

(
t′ −

[
t− |r⃗ − r⃗q (t

′)

c

])
(6.7)

It is worth noting that both potentials, which are
evaluated at time t, are given in terms of the integral

of the sources evaluated at the delay time, tR =
t − |r⃗ − r⃗q(t

′)| /c which in turn is the time before
t. For a point particle, the densities of charges and
current can be related to the charge q by middle of
the Dirac delta distribution,

ρ (r⃗q(t), t
′) = qδ3 (r⃗ − r⃗q(t

′)) (6.8)

J⃗ (r⃗q, t
′)) = qv⃗ (t′) δ3 (r⃗q (t)− r⃗q (t

′)) (6.9)

which, when substituted in EQs 3 and 4, result in
the Liénard-Wiechert potentials :

ϕ (r⃗, t) =
q

4πϵ0

1∣∣∣R⃗ (tR)− β⃗ (tR) · R⃗ (tR)
∣∣∣ (6.10)

A⃗ (r⃗, t) =
µ0

4π

qv⃗ (tR)∣∣∣R⃗ (tR)− β⃗ (tR) · R⃗ (tR)
∣∣∣ (6.11)

where β⃗ = v⃗
c .

From the potentials, it is possible to find the re-
spective electric and magnetic fields. It is worth
remembering that

E⃗(r⃗, t) =
q

4πε0

{
(R⃗(tR)− |R⃗(tR)|β⃗(tR))(1− |β⃗(tR)|2)

[|R⃗tR | − R⃗(tR) · β⃗(tR)3

. +
R⃗(tR)× (R⃗(tR)− |R⃗(tR)|β⃗(tR)× α⃗(tR)

c[
|R⃗tR | − R⃗(tR) · β⃗(tR)

]3


(6.12)

B⃗ (r⃗, t) =
1

c

[
R̂ (tR)× E⃗ (r⃗, t)

]
(6.13)

The electric field described by Eq.(7.12) has two
contributions, the first term depends only on the
velocity β⃗ (tR) of the particle, while the second also
exhibits dependence on the acceleration of the par-
ticle, α⃗ (tR). For this reason, the factor that is pro-
portional to β⃗ (tR), is known as the electric field
of velocity or Coulomb field, and the second term,
proportional to α⃗ (tR) , is known as the electric field
of radiation. Similarly, the magnetic field also has
such characteristics. Finally, it is important to note
that the Liénard-Wiechert fields are linked to each
other, as can be seen in Eq.(7.13).

6.3 Radiation of an accelerated
charge

When it comes to electromagnetic radiation, it
can be generated by various types of charge and cur-
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rent distribution. distribution of charges and cur-
rents, however, we will only be interested in the ra-
diation emitted by the simplest form of distribution,
i.e. by point charges. As we discussed earlier, the
fields generated by point charges are the so-called
Liénard-Wiechert fields.
As we are interested in the radiation emitted at
points very far from the source, the velocity depen-
dent term, proportional to 1/R2, cancels out faster
cancel out faster than the acceleration fields, pro-
portional to 1/R, when R → ∞. In this limit, the
electric field will be expressed by:

E⃗(r⃗, t) ≈ E⃗a(r⃗, t) =

q

4πϵ0

R⃗(tR)× (R⃗(tR)− |R⃗(tR)|β⃗(tR))× α⃗(tR)
c

[
∣∣∣R⃗tR

∣∣∣− R⃗(tR) · β⃗(tR)]3

(6.14)

Remembering that the flow of energy (per unit area)
carried by the electromagnetic wave is given by the
Poynting vector,

S⃗ =
1

µ0
E⃗ × B⃗ =

1

µ0
E⃗ ×

[
R̂× E⃗ (r⃗, t)

c

]
(6.15)

where, using the bla bla vector identity a⃗× (⃗b× c⃗) =
(⃗b · ⃗c))⃗a− (⃗a · c⃗)⃗b, we rewrite Eq.(7.15):

S⃗ =
1

µ0c

{∣∣∣E⃗∣∣∣2 R̂−
(
R̂ · E⃗

)
E⃗

}
(6.16)

To determine the power emitted (P ) by the charge
in motion, we need to integrate the Poynting vector
over a surface σ. In this case, the most appropriate
surface is a spherical shell centered at the position
of the charge (evaluated at the retardation time),
i.e., a sphere with a radius R = c(t − tR). In gen-
eral, the electric field can have contributions from
both the velocity and acceleration fields. However,
by analyzing Eq.(7.16), we will see that the Poynt-
ing vector has terms proportional to 1

R4 (velocity
field multiplied by itself), 1

R3 (velocity field multi-
plied by the acceleration field), and 1

R2 (accelera-
tion field multiplied by itself). However, the area of
the sphere to be considered is proportional to the
square of the radius, i.e., A ∝ R2, so in the limit as
R → ∞, the only term that will have a significant
contribution is the term generated by the accelera-
tion field (∝ 1

R2 ).
As the accelerating electric field is perpendicular to
the versor R̂, Eq.(7.16) reduces to:

S⃗ =
1

µ0c

∣∣∣E⃗a

∣∣∣2 R̂ (6.17)

Consequently, the power passing through the sphere
at time t will be:

dP (t)

dA
= S⃗ · R̂ (6.18)

If we consider that the unit area can be given by
dA = R2dΩ, the radiated power assumes:

dP (t)

dΩ
= R2

[
S⃗ · R̂

]
=

R2

µ0c

∣∣∣E⃗a

∣∣∣2 (6.19)

We can see that the power is not the same as that
emitted at tR , which can be obtained using the
chain rule:

P (tR) =
dW

dtR
=

dW

dt

∂t

∂tR
→ P (tR) = P (t)

∂t

∂tR
(6.20)

in such a way that we will have

P (t) =
P (tR

1− R̂ · β⃗
(6.21)

Integrating with respect to the surface, we obtain
the total power emitted:

P (tR) =

∮
dΩ

R2

µ0c

[
1− R̂ · β⃗

] ∣∣∣E⃗a

∣∣∣2 (6.22)

Next, we will see the power radiated by point load
at low and high velocities (relativistic context).

6.3.1 Radiation emitted at low veloc-
ities

This case consists of considering a charge q mov-
ing in such a way that its speed is very low compared
to the speed of light. compared to the speed of light.
In this case, we can consider the limit where β⃗ → 0
in the Eq.(7.14),

lim
β⃗→0

E⃗a(r⃗, t) =
q

4πϵ0c2

(
R̂ · a⃗

)
R̂− a⃗∣∣∣R⃗∣∣∣ (6.23)

whose quadratic norm is,∣∣∣E⃗a

∣∣∣2 =
q2 |⃗a|2

16π2ϵ20c
4
∣∣∣R⃗∣∣∣2 sin2 θ (6.24)

The Poynting vector then becomes,

S⃗ =

 µ0q
2 |⃗a|2

16π2c
∣∣∣R⃗∣∣∣2 sin2 θ

 R̂ (6.25)
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It is worth noting that there is no emission of radi-
ation parallel to the acceleration of the charge, and
the maximum emission is obtained in the perpen-
dicular plane. In possession of the Poyting vector,
the radiated power per unit angle Solid is given by:

dP

dΩ
=
µ0q

2 |⃗a|2

16π2c
sin2 θ (6.26)

Therefore, the radiated power is:

P =
µ0q

2

6πc
|⃗a|2 (6.27)

This is known as the Larmor formula for the radia-
tion emitted by the particle. It is worth noting that
in this the direction of the velocity in relation to the
direction of the acceleration does not matter.
For the general case where the particle’s velocity
and acceleration have any orientation, the electric
field is given by the relation Eq.(7.14),

E⃗a(r⃗, t) =
q

4πϵ0

R⃗(tR)× (R⃗(tR)− |R⃗(tR)|β⃗(tR))× α⃗(tR)
c

[
∣∣∣R⃗tR

∣∣∣− R⃗(tR) · β⃗(tR)]3

(6.28)

whose squared norm |E⃗a|2,

∣∣∣E⃗a

∣∣∣2 =

∣∣∣R̂×
[(
R̂− β⃗

)
× a⃗
]∣∣∣2∣∣∣R⃗∣∣∣2 [1− R̂ · β⃗

]6 (6.29)

The radiated power per unit of solid angle, is given
by the expression,

dP

dΩ
=

µ0q
2

16π2c

∣∣∣R̂×
[(
R̂− β⃗

)
× a⃗
]∣∣∣2[

1− R̂ · β⃗
]5 (6.30)

Integrating the above expression under the solid an-
gle Ω,

P =
µ0q

2γ6

6πc

[
|⃗a|2 −

(
v⃗ × a⃗

c

)2
]

(6.31)

where γ = 1/
√
1− β2 is the Lorentz factor. The

Eq.(7.31) is Liénard’s generalization of for Larmor’s
formula, which is reobtained by making |β⃗| → 0.

6.4 Radiation reaction
When a particle of mass m charged with a charge

q undergoes the action of a resulting force not zero,
it acquires an acceleration and consequently a vari-
ation in its kinetic energy. The external force, dur-
ing the displacement of the particle, performs work

and by the work-energy theorem its value should be
equal to the variation of kinetic energy. Meanwhile,
we know what accelerated charges emit radiation,
thus not all work performed is converted into ki-
netic energy. Part of the energy becomes radiation,
and it makes it look as if the resulting force in the
particle was smaller of what she is. So there’s a force
exerted by radiation on the charge that generated
it, and that’s what we call it a radiation reaction.

6.4.1 Radiation reaction based on
conservation of energy

Let’s determine an expression for the radiation re-
action based on applying the law of of conservation
of energy to an accelerated charge. For simplicity’s
sake, let’s consider a non relativistic particle, i.e.
β << 1. With this, we can use Larmor’s formula
(Eq.(7.27)). This is the average power emitted, in
the form of radiation, by the charge that has an
acceleration a. We can think that this power cor-
responds to the time rate at which the charge loses
energy because of the force exerted by the radiation,

P = −F⃗rad · v⃗ (6.32)

the negative sign indicates that power is being re-
moved from the particle and v represents its veloc-
ity. Replacing Eq.(7.27) in Eq.(7.32),

F⃗rad · v⃗ = −µ0q
2

6πc
|⃗a|2 (6.33)

It is important to note that this equation is not com-
plete, as the charge also has velocity fields, which
have an associated energy. However, the energy gen-
erated by the velocity fields does not "detach" from
the charge, as is the case with radiation fields. To
determine the energy lost by the charge, both the
radiation and the velocity fields must be taken into
account.

However, if we consider a cyclical movement over
a short time interval [t1, t2] so that the energy as-
sociated with the velocity fields will be the same at
both instants. Thus, on average, the Eq.(7.33) is
valid. Therefore, integrating over this interval:∫ t2

t1

dtF⃗rad · v⃗ = −
∫ t2

t1

dt
µ0q

2

6πc
|⃗a|2 (6.34)

which can be rewritten as:∫ t2

t1

dt

[
F⃗rad −

µ0q
2

6πc
˙⃗a

]
· v⃗ = 0 (6.35)
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since this relationship must be valid for any v⃗, we
have identified the so-called Abraham-Lorentz force
for radiation reaction:

F⃗rad =
µ0q

2

6πc
˙⃗a (6.36)

Note that this force was established considering the
simplest situation. Therefore, it only applies if we
restrict ourselves to a cyclical movement in which
velocity and your temporal derivate are equal at the
beginning and end of the cycle.
It is interesting to consider a situation in which
there is no external force acting on the particle, ex-
cept for radiation. In this scenario, using Newton’s
second law:

F⃗rad =
µ0q

2

6πc
˙⃗a = ma⃗ (6.37)

or even,

da⃗

dt
=

6πmc

µ0q2
a⃗ (6.38)

whose solution to this differential equation can be
easily obtained,

a⃗(t) = a⃗0 exp

{[
6πmc

µ0q2
t

]}
(6.39)

if we define the time constant τrad by:

τrad =
µ0q

2

6πmc
(6.40)

let’s rewrite the solution as follows,

a⃗(t) = a⃗0 exp

{[
t

τrad

]}
(6.41)

We note that the typical τrad time is generally very
small. It is also noted that the acceleration in-
creases exponentially over time and how this result
was obtained from the Larmor formula, the energy
conservation is respected. Such a consequence is
physically inacceptable, because this solution indi-
cates the existence of forces associated with infi-
nite energy. This inconsistency can be solved by
a⃗0 = 0, but the only valid solution will be trivial,
i.e. F⃗rad = 0.

6.5 Conclusion

The research carried out in this paper revealed
that it is possible to express Maxwell’s equations
in electromagnetic potential terms. In this context,

the Lorenz caliber option provided a deeper analy-
sis. It has been shown that these potentials obey
a wave equation non-homogeneous, whose solution
was achieved by the Green method. The introduc-
tion of the concept of time delay allowed to deter-
mine the Lienard-Wiechert potential as well as the
corresponding fields. With these results in hand,
we examined the ability of the Lienard-Wiechert
fields to describe the radiation emitted by point
charges, culminating in the derivation of the Lar-
mor formula. Use this formula allowed the descrip-
tion of the radiation power associated with the force
known as the force of Abraham-Lorentz. It was
therefore noted that the force of Abraham-Lorentz,
for the simple case, is given in terms of an exponen-
tial acceleration, without however violating energy
conservation. Tal the consequence is physically un-
acceptable, as this solution indicates the existence
of forces associated with infinite energy. One way
to try to bypass this problem, initially proposed
by Dirac, was using the model of a charged, rigid
spherical particle (similar to the electron model)
proposed by Lorentz), taking into account not only
the acceleration fields, but also the terms associated
with the field near the source (ou campo de veloci-
dades). The procedure consists of make a multipo-
lar approximation to the Lienard-Wiechert fields,
enabling the calculation of the force is felt by the
load elements infinitely close to the source load. We
saw that such strength also it presents the same in-
consistent solution of exponential acceleration.
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Mie scattering and the first and second
rainbow
Luis Augusto Pereira
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: Have you ever looked at the sky in a
rainy day and asked yourself "What is that bright
colored arc in the sky?". It may seems to be a sim-
ple problem easily solved by geometrical optics, but
that is not the true. Over the centuries many scien-
tists tried to give a complete quantitative explana-
tion of the rainbow and a satisfactory one has been
developed only in the past century. Here is pre-
sented part of history and theory behind the rain-
bow.

7.1 Introduction

The rainbow is a beautiful natural phenom-
ena which always captivated the attention of hu-
mankind, throughout history this phenomena has
appeared in several arts and myths, besides many
scientists developed theories to explain those color-
ful arcs at the sky [1, 2, 3].

Figure 7.1: Picture of a rainbow

After a rain it is possible to see a bright arc in the
sky, as shown in figure 7.1, called primary rainbow,
at its inner side the sky seems more illuminated.
Above outer side, higher in sky, we see a fainter arc
with reversed colors sequence, called secondary rain-
bow. Between theses two arcs the sky is darker, that

region is called Alexander’s dark band, due to the
Greek philosopher Alexander of Aphrodisias, who
first described it in about A.D. 200 [1]. Another
feature sometimes seen at the inner side of primary
rainbow is faint bands pinks and greens alternately,
called supernumerary arcs.

Aristotle is the first one known to try rationally
explain the appearance of rainbow [1]. He believed
that it was caused by an unusual reflection of sun-
light from clouds at a fixed angle, giving rise to a
circular cone of "rainbows rays". That explanation
it is not true, but he was right about the shape and
perceived that the rainbow is not material object in
the sky, but a set of directions where the light is
strongly scattered into the eyes of the observer.

In 1266, Roger Bacon measured the angle formed
by the rainbow rays, he measured an angle about 42
degrees for the primary rainbow and the secondary
about 8 degrees higher. Nowadays, theses angles
are measured in opposite direction so that the an-
gle measured is the total deflection in the path of
sunlight, which gives about 180 minus 42 degrees,
that is 138, to primary rainbow and 130 degrees to
secondary rainbow. Past few years, Theodoric of
Freiberg, rejected the Aristotle’s idea of the rain-
bow results from a collective reflection of raindrop
clouds, but instead each drop produces a rainbow.
He made an experiment using a flask filled with wa-
ter to simulate a raindrop and proved his hypothe-
sis, although his discoveries remained unknown un-
til Descartes rediscovered Theodoric ideas, indepen-
dently, by the same method. Utilizing the laws of
reflection and refraction Descartes was able to ex-
plain the existence of the rainbow [1].

31



Figure 7.2: schematic draw of Descartes’s experiment: a
person looking at the two rainbows produced by a flask filler
with water.

The explanation about how the rainbow occurs
was that the sunlight is refracted into the water
drop and inside the drop it is reflected backwards,
so in order to see a rainbow an observer must be
somewhere between the sun and the water drop.

The colors was explained by Newton in his exper-
iment of light dispersion in prism, showing that the
white light is composed by a mixture of colors.

Figure 7.3: Newton using a prism to decompose light.

7.2 The rainbow

7.2.1 The first rainbow

As the rainbow is caused by the water droplets
suspended in the air, to understand how it occurs
we need to understand what happens when the light
hits the droplet, here considered as a perfect sphere,
at a angle α. In such situation the ray of light that
comes at the water droplet surface is partially re-
flected and partially refracted, at a angle β, pen-
etrating the medium. Inside the droplet, the re-
fracted ray follow its path until it hits another sur-
face of the sphere where, again, it will be partially
reflected, staying inside the water, and partially re-
fracted, coming back to the air. This process goes
on until the intensity of the ray vanishes.

Figure 7.4: Path of ray of light trough a droplet. The class
3 ray, once reflected ray, is the responsible for the rainbow.
The class 4 ray, twice reflected ray, is the responsible for the
secondary rainbow. The impact parameter is the distance of
incident ray to center of droplet. Source: Nussenzveig, H. M.
[1].

The relation between the angle of incidence and
refraction is given by the Law of Snell

n1 sinα = n2 sinβ (7.1)

where n1 ≈ 1 and n2 = 1.33 are the refractive in-
dices of the air and the water, respectively. We are
interested in the ray of light that produces the pri-
mary rainbow, so we shall see the deflection in the
path of this ray

Figure 7.5: Path of ray once reflected. Source: produced
by the author.

by geometry the green angles must sum 360◦, so

2(180− 2β) + 2α+ 180−D(α) = 360 (7.2)

D(α) = 180− 4β + 2α (7.3)

By equation (8.1) β = arcsin (sin (α)/1.33).
Hence

D(α) = 180− 4 arcsin (sin (α)/1.33) + 2α (7.4)
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Figure 7.6: Paths of various rays trough a water drop at
different angles. Source: Adam, J. A. [4]

If we analyze the plot of this function we shall see
a minimum, where around this point the deflection
barely changes, which means there is a certain angle
at around it there is a concentration of the rays,
that fact is represented in figure 7.6. To find the
minimum we can derivative the expression

d

dα
D(α) = 2− 3 cosα√

1− ( 3 sinα
4 )2

= 0 (7.5)

After manipulating this equation one can obtain
the following result sinα =

√
20
27 , which leads to

α = 59.4◦. Hence, D(α) = 138◦, that means in
such situation when we look at the drop at 42◦ we
see a concentration of ray lights.

But because of Newton’s study on optics we know
the sunlight is a mixture of colored rays and each
color have your own refractive index this means that
each one will follow its own path through the drop,
resulting in the concentration of each color at de-
fined angles, giving rise to a rainbow. Assuming
that the light spectrum ranges from blue to red, it
is sufficient to evaluate only theses two deflection
angles to understand the primary rainbow. As for
red light nr ≈ 1.33 and for blue light nb ≈ 1.34,
we get as rainbow angles 42◦ and 40◦, respectively.
That is why we see the primary rainbow at the sky
and because no light is reflected higher than 42◦

the sky is darker above red arc and as there is no
concentration lower than 40◦ the sky is filled with
white light.

7.2.2 The second rainbow

To understand the formation of second rainbow
we need to analyze the deflection in the path of a
ray twice reflected as shown in figure 7.4.

Figure 7.7: Paths of a ray twice reflected. Source: pro-
duced by the author

As in the previous case, we need to evaluate D(α)
but this time it is counterclockwise.

D(α) = 2α− 6β + 360◦ (7.6)

Again, to find its minimum we derive the expres-
sion,

d

dα
D(α) = 0 (7.7)

after some calculations we obtain

cos(α) =

√
n22 − 1

8
(7.8)

where n2 is the refractive index of red light at wa-
ter. Hence, we obtain a minimum angle α = 71.8◦

where happens the concentration, which means the
deflection angle is D(α) = 231◦ and rainbow angle
equals to 51◦. For blue light, the calculations leads
to an angle equals to 54◦, that is, now the rainbow
has the colors reversed and there is a minimum an-
gle where we can see the light instead a maximum
as in the case of primary rainbow, confirming the
dark zone of Alexander’s dark band. The fact ray
light loses intensinty through the path explain why
secondary rainbow is fainter.

Figure 7.8: Behavior of deflection rays as we change the
impact parameter, the behavior is the same when used inci-
dent angle as parameter. Source: Nussenzveig, H. M. [1].
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7.3 Beyond the geometrical op-
tics

7.4 Conclusion
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The free-electron laser
Marcelo da Silva Cruz
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: The topic of this paper is the free-
electron laser (FEL), a brief theoretical review and
its applications and variations. The FEL uses a
wiggler to accelerate the electrons in the cavity,
they produces a very short and intense light pulses.
Furthermore, the FEL is monochromatic and ad-
justable in a wide energy range, the light produced
is polarised (spin polarised). During the interac-
tion between the electrons and an incident beam,
the beam will be modulated in energy. The result
is a spatial modulation, which allows the emitted
radiation to be coherent.

8.1 Introduction

8.1.1 A new kind of laser

The invention of the free-electron lasers, also
know as FELs, is an important chapter in the his-
tory of science, technology and and mankind it-
self [1]. It was invented by the physicist John M.
J. Madey using the technology developed by Hans
Motz and his colleagues pioneered the development
of technology by constructing an undulator [2] and
experimentally demonstrated by his group at Stan-
ford University in the 1970s [3]. The creation of a
FEL requires the use of radiation caused by beams
of relativistic electrons subjected to the movement
of a periodic transverse magnetic field. Incoher-
ent synchrotron light sources also utilize undulators.
The process of lasing occurs as a result of the radi-
ation and wiggler coming together to create a beat
wave. This beat wave, also known as a pondero-
motive wave, is essentially an interference pattern
that moves at a slower pace than the speed of light
and can be synchronized with the electron. Fur-
thermore, in the figure 8.1 we can see how the FEL
works in a schematic example.

In comparison with a usual laser, instead of rely-

Figure 8.1: Schematic illustration of the interaction
between the electron beam and the wiggler in an
FEL with a planar wiggler [4]. Source: Freund H.
P., Neil G. R., Proc. IEEE 87, 782 (1999).

ing on stimulated emission from atomic or molecular
sources, it utilizes relativistic electrons as the am-
plifying medium. It’s need to be contemplate the
fact of scattering process of virtual photons using
the radiation emitted in the +ẑ direction and can
be improve on due the stimulated emission in the
presence of a magnetic field [1], showed in the fig-
ure 8.2 and in the figure 8.3.

The stimulated emission occurs due the presence
of the creation operator a∗ in the Hamiltonian of in-
teraction, and can be explicated by the initial state.
Besides, the transition rate and his factor

√
n+ 1

in the matrix element is the number of photons had
been stimulated in the process per unit volume [1].
The absorption in electron absorbs one of the high
energy photons λf =

λq

2γ2 , with λq as the wiggler (or

undulator) wavelength and γ =
√
1− ν2

c2 , and radi-
ates a low energy photon into the equivalent plane
wave [1]. For n ≫ 1, the absorption and emission
rates become nearly equal. The only distinction be-
tween the two rates for large n is in terms of kine-
matics. Both processes draw from the same popu-
lation of electrons [1].
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Figure 8.2: Example of radiation by a relativis-
tic electron beam in a periodic transverse magnetic
field [1]. Source: Madey M. J., Schwettman H.
A. and Fairbank W. M., 1973 A free electron laser
IEEE Trans. Nucl. Sci. NS-20980.

Figure 8.3: Example of lineshape for stimulated
emission and absorption. [1]. Source: Madey M.
J., Schwettman H. A. and Fairbank W. M., 1973
A free electron laser IEEE Trans. Nucl. Sci. NS-
20980.

8.2 Theoretical revision

The atomic theory for lasers was modeled by
Maxwell’s equations for electrical field, in addition,
the Schrödinger equation was required to describe
the atom. Still in the meantime these equations is
coupled via the polarization vector to FEL treat-
ment and the vector potential A⃗, the Boltzmann
equation for electrons density f was considered too.
The vector potential submit the electron pondero-
motive potential on the electrons and the Boltz-
mann equation is inherited in the case that is neces-
sary to determine the electron distribution function
and hence the radiating current [1].

In the work published by [5] and [6] they replaces
the static magnetic field of period λq, by an electro-
magnetic field of wavelength λi:

λi = (1 + β)λq ≃ 2λq (8.1)

where

β ≡ 1− 1

γ2
(8.2)

And the motion of the electron distribution
f(x, P⃗ , t) by the collisionless relativistic Boltzmann
equation is given by equation 8.3:

df

dt
=
∂f

∂t
+ ẋi

∂f

∂ẋi
+ Ṗi

∂f

∂Ṗi

= 0 (8.3)

where P⃗ as the canonical momentum and x the
position. All the number of electrons N(t) is:

N(t) =

∫
xd3t

∫
f(x, P⃗ , t)d3 (8.4)

Figure 8.4: The number of incident electrons are
shown stationary with respect to the growing po-
tential. The phase of the growing potential is cal-
culated by θ = (ωs − ωi)t− (ki − ks)ẑ [1].

Furthermore, we have the Boltzmann equation
and his relation with the coupled by a transverse
current J⃗t to the vector potential in equation 8.5:

∇2A⃗− 1

c2
∂2A⃗

∂t2
= µ0J⃗⊥ (8.5)

with A⃗ as the vector potential, and

J⃗⊥(x, P⃗ , t) ≡ e
∫
d3P v⃗⊥f(x, P⃗ , t) (8.6)

We have e as the electron charge and v⃗⊥ being the
transverse component of the electron velocity. Now,
we can factorize the electron distribution using a
Heaviside function u(x) for circular beam and two-
dimensional delta-function δ2:

f(x, P⃗ , t) = [u(r)− u(r − a)]δ2(P⃗t)h(z, pz, t) (8.7)

So, the Boltzmann equation can be reduced in
this form:

∂h

∂t
+

pz
mγ

∂h

∂z
=

e2

mγ

∂ 1
2A

2
t

∂z
(8.8)

additionally the Maxwell equation takes form:
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(
∂2

∂z2
− 1

c2
∂2

∂t2

)
A⃗t =

e2κ

mcϵ0
A⃗t

∫ ∞

−∞

h(z, pz, t)

γ
dpz

and κ = a2

b2 as the filling factor with b as the
radius of the cavity.

Figure 8.5: Gain versus electron velocity, that is the
‘detuning’ parameter µ = ∆ω( 1

vs
− 1

vz
) [1].

Besides, the potential A⃗2
t occurs on the right-hand

side of the equation 8.8 in source of the pondero-
motive potential driving the electrons. And this is
given by:

A∗
iAse

−i(ωs−ωi)t−(ki+ks)z (8.9)

the incident field by the wiggler can be seen by
the electrons and this implies that ωi = cki and
ki =

2π
2λw

, λw is the wiggler period.
So, now we have the phase velocity of the poten-

tial, and the Boltzmann equation yields:

vp =
ωs − ωi

ks + ki
=

∆ω

k
(8.10)

and

ks ≃ 4γ2s

with

γs =
1√

1− v2
s

c2

(8.11)

The electrons in FEL enter in a initial condition
with equal velocity to the resonant velocity of po-
tential, vs, and are therefore almost stationary com-
pared the bunching velocities. To get the gain, its
need to consider vz ≥ vs and when vz ≤ vs, we have
the Landau damping as the dominant phenomenon,
and the electrons can absorb energy from the field.

In the next section of this work, will be discuss
about the first experiment in Stanford University.

8.3 The Stanford experiment

Figure 8.6: Experimental Setup. The electron beam
is magnetically deflected around an optical element
on the axis of the helical magnet. Source: Madey,
John; Scully, Marlan O.; Sprangle, Phillip. (Copy-
righted by the American Physical Society 1976.) [1].

The experiment consists in a magnetic field of
5.2 mT formed by a superconducting spiral with
a period of 3.2 cm. The beam and infrared field
extend along the axis. Infrared light from a CO2

laser with transverse excitation and an atmospheric
beam waist of 3.3 mm excited the mode of a 10.2
mm copper tube. The gain was measured at optical
powers of 1.4 × 105Wcm−2. In the figure 8.7 they
utilized a right-circular polarization, and the gain
was vanished for the left-circular [1].

8.3.1 The coupled wave of FEL

The coupled wave is known as the FEL mecha-
nism and your interaction mechanism can be seen
in coupling of 3 waves, one electromagnetic and
two electron beam (ponderomotive) waves, which
are also electromagnetic. The wave propagates in
the same direction as the electron beam and has a
phase velocity that almost corresponds to the elec-
tron beam velocity vz ≤ c. The FEL has a num-
ber of similarities with wave radiation travelling in
a generating mechanism. There is a unmodulated
or unbunched electron beam propagating through a
wiggler field which radiates incoherent synchrotron
radiation.

The Gain corresponds to a positive signal. The
instantaneous peak gain reached 7 on each trial.
The spiral field amplitude is 2.4 kG, and the instan-
taneous peak electron current is 70 mA. The elec-
tron energy passes through a small range of nearly
24 MeV. The full energy width (half width of wave-
length) of point 1

e in (a) is 0.4 %. The power density
of the 10.6µm radiation in (b) is 1.4 × 105Wcm−2

[1].
The FEL dispersion relationship reveals different
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Figure 8.7: (a) Spontaneous power at 10.6 µm as
a function of electron energy. (b) Amplitude and
phase of applied modulation of 10.6 µm optical ra-
diation from a CO2 laser. Source: Madey, John;
Scully, Marlan O.; Sprangle, Phillip. (Copyrighted
by the American Physical Society 1976) [1].

operating states. The dispersion relationship can be
viewed as the space and time Fourier transform of
the wave equation 8.5 [1]. Furthermore, dispersion
relation indicates the relationship between the fre-
quency and wavenumbers of the waves generated in
the FEL interaction and is given by:

(
k − ω

c

)(
k + k2 −

ω

vz

)2

= −K3
c (8.12)

and we have k = 2π
λ as the radiation wavenumber,

ω the frquency and:

K3
c =

(π
2

)(
γ−3ω

2
b

c2

)
a2w
λw

K3
c is the coupling coefficient, and ω2

b is pro-
portional to the electron beam density, and a2w
the wiggler field amplitude. The strongest cou-
pling between the three waves occur when the three
wavenumbers are nearly matched.

8.3.2 Low-gain

We consider here the case of an FEL amplifier
which is seeded by an external laser and energy con-
servation tells us that the light wave gains energy if
the electron loses energy [12].

In low gain mode, the gain per channel is much
less than unit; this is the system first proposed by
Madey et al [1]. In this mechanism, the coupling
coefficient is small, with three waves excited by an
electron beam. Waves have a constant amplitude,

Figure 8.8: Example of Low Gain mode for FEL.
Source: Schmüser, Peter, et al. [12].

the first one decreases slightly and the third one in-
creases slightly as a function of propagation distance
[1].

8.3.3 High-gain

In this case, the coupling coefficient is maximum,
and solving the dispersion relation equation ω =
(1 + vz

c )γ
2 gives wavenumber shifts dominate due

to Plasma waves, therefore no plasma waves are ex-
cited. Here, Radiation initially increases exponen-
tially in space until electrons are trapped in plasmo-
dynamic waves [1]. The production of Free Electron
Laser (FEL) light is achieved through the higher
harmonics of external seed radiation, employing the
High-Gain Harmonic Generation (HGHG) process.
[12].

Figure 8.9: Principle of the high-gain harmonic gen-
eration process. The top graph shows the experi-
mental setup. Source: Schmüser, Peter, et al. [12].

The Fourier expansion of ρ(ζ) contains higher
harmonics with angular frequencies ωn = nω1 and
wavelengths λn = λ1

n .The longitudinal phase space
distributions are displayed in the bottom graphs
(courtesy of D. Xiang, apud the author of this pa-
per). The energy distribution in the bunch is plot-
ted as a function of ζ

λ1
. a) Downstream of the
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Figure 8.10: A single-shot spectrum was acquired
at the Deep Ultraviolet Free-Electron Laser (DUV
FEL) using a 30MW seed beam. The gray line rep-
resents the spectrum of a single-shot Self-Amplified
Spontaneous Emission (SASE) far below satura-
tion, measured in the absence of the seed beam.
Source:[12].

modulator, b) downstream of the magnetic chicane.
Graph c) shows the microbunching: charge density
as a function of ζ

λ1
.

The initial experimental findings regarding high-
gain harmonic generation in the ultraviolet were
achieved using the deep ultraviolet free-electron
laser at Brookhaven National Laboratory [13].

A Ti:Sa laser was employed to generate the seed
beam with a wavelength λ1 of 800 nm, facilitat-
ing the production of third-harmonic radiation at
266 nm. The results, as depicted in Figure 8.10,
validated the anticipated outcomes for HGHG FEL
operation, including a stable wavelength spectrum,
narrow bandwidth, and minimal pulse-energy fluc-
tuations.

8.4 Modern applications

The FEL have been operated from the microwave
to the vacuum ultraviolet regions, the future for
this application is the field of high energy light and
shorter wavelengths [4]. Almost 20 yeas ago, there
is a record average power of 1.7kW and has been
produced at wavelength of 3µm [5].

There is some interesting applications in the Con-
densed Matter like, using the FEL in IR range: Sur-
face science with Catalysis, Adsorption, Selective
excitation of surface layer or adsorbed molecule.
Semiconductor with High Tc SC bandgap, Car-
rier dynamics and electron gas dynamics at metal-

insulator junction. Superconductors an Magnetic
properties [9].

In the field of Chemisry, the FEL has aplications
in IR range: Molecular Vibrational Excitation, Re-
action Dynamics, Photochemistry, Molecular Cluste
(Van der Waals - molecule), Eletronic Excitations
(UV range), Raman Spectroscopy (UV range) and
Crossed Photon-Molecular Beams (UV range) [9]

At Biology field, the FEL is applicated in Mi-
croscopy, Halography, Cellular Dynamics (1−3nm)
and DNA sequencing (0.1− 1nm) [9].

In Military applications, the Thomas Jefferson
National Accelerator Facility Lab manages a high-
average-power, sub-picosecond free-electron laser in
the kilowatt class, spanning the mid-infrared spec-
tral range. On July 21, 2004, a milestone of 10
kilowatts in continuous wave (cw) operation was
reached. Future plans include extending the Free-
Electron Laser (FEL) capabilities to cover 250nm in
the ultraviolet (UV) range. Additionally, the short
electron pulses generate hundreds of watts of broad-
band terahertz (THz) light, accessible to researchers
in a dedicated user laboratory [14].

In medicine, they can use FEL in Surgery (3µm
and Photoheray-selective absorption in pigment el-
ements (0.7− 1µm) [9].

8.4.1 Optical guidance

Optical guidance of radiation is crucial for a high
performance in FEL amplifier. Operate FEL to
high gain Amplifiers with interaction lengths much
larger than diffraction length (Rayleigh) requires
optical guidance radiation. This is especially true
for FEL amplifiers operate in the IR, optical or X-
ray range and fold FEL radiation length ratio Inter-
action length (swing length). In the X-ray region,
e.g. For example, the E-fold length of a radiation
can be hundreds of meter. This is what happens
when there is no visual guidance get out of it before
it gets reinforced [1].

8.4.2 Generation of radiation

The terahertz (THz) frequency range occupies a
position between the radio and infrared bands, en-
compassing both photonic and electronic method-
ologies across the expansive electromagnetic spec-
trum. Recent technological progress in THz science
has led to an extension of this frequency window,
now incorporating a portion of the infrared (IR)
spectrum. The updated "Terahertz Science and
Technology Roadmap" has expanded upon the pre-
vious definition of the THz band (0.1–10 THz), now
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defining its frequency range up to 30 THz [11].
Accelerator-based sources produce coherent high-

field terahertz (THz) radiation through ultra-short
relativistic electron bunches. Utilizing linear ac-
celerators, electron bunches are generated to emit
fully coherent (super-radiant) THz radiation, with
the intensity directly proportional to the number
of electrons emitting radiation in phase. The at-
tainment of super-radiant and high-field THz emis-
sion in these sources necessitates ultra-short elec-
tron bunches or density modulation at THz frequen-
cies [11].

8.5 Conclusion
In conclusion, FEL is a new type of laser that

promises great advances in modern science. Its con-
struction requires a considerable investment and it
was only possible to create it from complete theo-
ries of Electromagnetism, Relativity, Quantum Me-
chanics and Atomic Physics. The possibility of cre-
ating electron beams accelerated by magnetic un-
dulators is fascinating and capable of producing an
intense beam of coherent light with high intensity
and power. Its applications range from condensed
matter physics to biology, medicine, military and
chemistry. It possible to use the FEL in UV and
IR band, with low and high harmonic generations,
furthermore, the terahertz frequency range can be
studied using a FEL with very applied technologies
in photonics and eletronics devices.

Bibliografia
[1] Madey, John; Scully, Marlan O.; Sprangle,

Phillip. The free electron laser: conceptual his-
tory. Physica Scripta, v. 91, n. 8, p. 083003,
2016.

[2] Motz, Hans. Applications of the radiation
from fast electron beams. Journal of Applied
Physics, v. 22, n. 5, p. 527-535, 1951.

[3] Huang, Zhirong; Kim, Kwang-Je. Review of x-
ray free-electron laser theory. Physical Review
Special Topics-Accelerators and Beams, v. 10,
n. 3, p. 034801, 2007.

[4] Patrick G. O’Shea, Henry P. Freund; Free-
Electron Lasers: Status and Applications. Sci-
ence 292, 1853-1858 (2001).

[5] G. R. Neil et al., Sustained Kilowatt Lasing in
a Free-Electron Laser with Same-Cell Energy
Recovery. Phys. Rev. Lett. 84, 662 (2000)

[6] Weizsäcker C. F., Ausstrahlung bei Stößen sehr
schneller elektronen Z. Phys. 88 612, 1934.

[7] Williams E. J., Nature of the high energy parti-
cles of penetrating radiation and status of ion-
ization and radiation formulae, Phys. Rev. 45
729, 1934.

[8] Kroll N. M. and McMullin W. A. ; 1978
Stimulated emission from relativistic electrons
passing through a spatially periodic transverse
magnetic field Phys. Rev. A 17 300

[9] Pellegrini, C. "Free electron lasers: Develop-
ment and applications." Part. Accel. 33 (1990):
159-170.

[10] Pellegrini, C.. "The history of X-ray free-
electron lasers." The European Physical Jour-
nal H 37.5 (2012): 659-708.

[11] Koral, C., Mazaheri, Z., Papari, G. P., An-
dreone, A., Drebot, I., Giove, D., ... & Ser-
afini, L. (2022). Multi-pass free electron laser
assisted spectral and imaging applications in
the terahertz/far-IR range using the future su-
perconducting electron source BriXSinO. Fron-
tiers in Physics, 10, 127.

[12] Schmüser, Peter, et al. "Free-electron lasers
in the ultraviolet and X-ray regime." Springer
Tracts in Modern Physics 258 (2014).

[13] L.-H. Yu et al., First ultraviolet high-gain
harmonic-generation free-electron laser. Phys.
Rev. Lett. 91, 074801 (2003)

[14] Jefferson Lab FEL; Archived from the original:
https://www.jlab.org/FEL

40



9

Bremsstrahlung
Nathan Barbola Marucci
Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

Abstract: Bremsstrahlung radiation, or brak-
ing radiation, is emitted by a charged particle un-
dergoing acceleration and can be classified into
two types: external Bremsstrahlung and internal
Bremsstrahlung. External Bremsstrahlung occurs,
for example, when charged particles are scattered by
an atomic nucleus, while internal Bremsstrahlung
originates within the atom and is associated with
processes involving changes in nuclear charge. This
monograph will discuss these two types of processes.
In the case of scattering due to the Coulomb poten-
tial, it will be demonstrated that semiclassical ar-
guments can lead to the correct results predicted by
quantum mechanics. Furthermore, because X-rays
are closely related to Bremsstrahlung and have var-
ious interesting applications—from medical physics
to astrophysics—their generation and spectrum will
be explored.

9.1 Introduction

In 1895, W.C. Rontgen[1], by discharging a large
induction coil in a vacuum tube surrounded by
black paper, observed that when approaching an-
other piece of paper covered on one side with bar-
ium platinocyanide, it fluoresced. This illumination
occurred regardless of whether the painted side or
the other side was facing the tube. The fluorescence
was so intense that it could be observed from a dis-
tance of up to 2 meters. Thus, Rontgen noted the
presence of an "agent" capable of penetrating black
cardboards that were otherwise quite opaque to ul-
traviolet light or sunlight. He continued his inves-
tigations into how other substances could be pene-
trated by this "agent" and discovered, for example,
that if a hand was placed between the tube and the
fluorescent screen, a dark image of the bones would
form (Figure 9.1). For simplicity, Rontgen named
this "agent" X-rays.

Figure 9.1: Photograph of the bones of a live per-
son’s finger

The X-ray spectrum can be separated into two
components (Figure 9.2): a characteristic line spec-
trum and a continuous spectrum. It was only 18
years after the discovery of X-rays that Sommer-
feld, with Rontgen’s approval, proposed the name
bremsstrahlung (braking radiation) for the contin-
uous spectrum.

9.2 Radiation emitted by a
point charge

As we know from the classical theory of electro-
dynamics, the electric and magnetic fields generated
by a point particle of charge e moving with velocity
βc are given by[2]:

B = [n×E]ret

E = e

[
n− β

γ(1− β · n)3R2

]
ret

+
e

c

[
n× (n− β)× β̇

(1− β · n)3R

]
ret

(9.1)
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Figure 9.2: X-ray Spectrum

In the above equation, n is the unit vector pointing
from the particle’s position to the observation point
where the field is calculated; γ ≡ 1/

√
1− β2 is the

Lorentz factor; and the subscript "ret" serves to re-
mind us that the quantity in square brackets should
be evaluated at the retarded time, tr, such that:

tr = t−R(tr)/c (9.2)

In the expression for the electric field in Equa-
tion 9.1, the first term is called the velocity field and
is independent of acceleration. The second term is
called the acceleration field since it depends linearly
on β̇. The velocity field, as it decreases with R−2,
is essentially a static field; whereas the acceleration
field, decreasing with R−1, is responsible for the ra-
diation emitted by the particle.

Indeed, consider a particle moving near the origin
of our coordinate system and a sphere of radius R
centered at the same (Figure 9.3). The radiated
power, Prad, by the particle is given by:

Prad = lim
R→∞

∮
S · da (9.3)

where the Poynting vector, S, is given by:

S =
c

4π
E×B =

c

4π
E× (n×E) =

c

4π
|E|2n (9.4)

Thus, as the area of the sphere grows with 4πR2,
in order for the radiated power to remain constant
when taking the limit as R tends to infinity, we must
impose that S scales with R−2, and this only occurs
due to the presence of the acceleration field, Ea, in
Equation 9.1.

Figure 9.3: Sphere over which we are calculating
the flux.

9.2.1 Distribution in Frequency and
Angle of Energy Radiated by
Accelerated Charges

Thus, the energy flux per unit time carried by
radiation is given by:

P =

∫
c

4π
|Ea|2R2dΩ (9.5)

It follows, therefore, that the radiated power per
solid angle is:

dP

dΩ
= |A(t)|2 where A(t) =

( c

4π

)1/2
REa

(9.6)
The total energy radiated per solid angle is ob-

tained by integrating Equation 9.6 over time:

dW

dΩ
=

∫ ∞

−∞
|A(t)|2dt (9.7)

Now, according to Parseval’s theorem, we must
have:

dW

dΩ
=

∫ ∞

−∞
|A(ω)|2dω (9.8)

where we introduced the Fourier transform, A(ω),
of A(t), such that:

A(ω) =
1√
2π

∫ ∞

−∞
A(t)eiωtdt

A(t) =
1√
2π

∫ ∞

−∞
A(ω)e−iωtdω

(9.9)

Since negative frequencies have no physical mean-
ing, it is customary to integrate Equation 9.8 only
over positive frequencies, so that:

dW

dΩ
=

∫ ∞

0

d2I

dωdΩ
dω (9.10)

The integrand of Equation 9.10 is nothing more
than the energy radiated per unit solid angle and
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per frequency interval. Thus, we must have:

d2I

dωdΩ
= |A(ω)|2 + |A(−ω)|2 (9.11)

And, since A(t) is real, it is easy to see from Equa-
tion 9.9 that A(ω) = A(−ω), so that:

d2I

dωdΩ
= 2|A(ω)|2 (9.12)

Therefore, let:

A(ω) =

(
e2

8π2c

)1/2 ∫ ∞

−∞

[
n× (n− β)× β̇

(1− β · n)3

]
ret

eiωtdt

(9.13)
It is interesting to make the variable change from t
to tr, obtaining the result:

A(ω) =

(
e2

8π2c

)1/2 ∫ ∞

−∞

n× (n− β)× β̇

(1− β · n)2

eiω[tr+R(tr)/c]dtr

(9.14)

Since the observation point is assumed to be far
from the charge, the unit vector n is practically con-
stant over time, so that:

R(tr) ≈ x− n · r(tr) (9.15)

Where x is the distance from the observation point
to the origin O, and r is the position vector of the
particle (Figure 9.4). Thus, up to an overall phase
factor, we will have:

A(ω) =

(
e2

8π2c

)1/2 ∫ ∞

−∞

n× (n− β)× β̇

(1− β · n)2
eiω(t−n·r/c)dt

(9.16)
In the above equation, for simplicity, we swapped
the dummy variable tr for t.

Moreover, it is easy to see that:

n× (n− β)× β̇

(1− β · n)2
=

d

dt

[
n× (n× β)

1− β · n

]
(9.17)

Therefore,

d2I

dωdΩ
=

e2

4π2c

∣∣∣∣∫ ∞

−∞
eiω(t−n·r/c) d

dt

[
n× (n× β)

1− β · n

]
dt

∣∣∣∣2
(9.18)

9.3 Bremsstrahlung in
Coulomb Collisions

As discussed in section 9.2, for a charged parti-
cle, such as an electron, to emit radiation, it needs

Figure 9.4: Diagram with the vectors of interest.

to be accelerated. This acceleration can occur, for
example, in the case of scattering by an atomic nu-
cleus due to the Coulomb potential, as illustrated
in Figure 9.7.

Considering a particle with charge ze1 scattered
by a nucleus with charge Ze, the differential cross-
section, in cgs units, are related to the scattering
angle θ by:

dσ

dΩ
=

(
2zZe2

pv

)2
1

(2 sin(θ/2))4
(9.19)

Furthermore, the momentum transfer Q ≡
|p′ − p| is given by:

Q2 = 2p2(1− cos θ) = 4p2 sin2
θ

2
(9.20)

To obtain the Bremsstrahlung cross-section, it is
interesting to make some simplifications in Equa-
tion 9.18. First, let’s consider the low-frequency
limit where ω → 0. Doing so, the complex expo-
nential in Equation 9.18 tends toward 1, and we
obtain:

lim
ω→0

d2I

dωdΩ
=
z2e2

4π2c

∣∣∣∣n× (n× β′)

1− n · β′ − n× (n× β)

1− n · β

∣∣∣∣2
(9.21)

where cβ′ and cβ are the final and initial velocities
of the particle, respectively.

Now, we are interested in the non-relativistic
limit, where β << 1, allowing us to approximate
1− n · β ≈ 1 in the denominator of Equation 9.21:

lim
ω→0

d2I

dωdΩ
=
z2e2

4π2c
|n× (n× β′)− n× (n× β)|2

(9.22)

1In this case, it is sufficient to replace e from the results
of the previous section with ze.
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Figure 9.5: Frequency Spectrum of radiation emit-
ted in a collision of duration τ with velocity change
∆β [2].

Rearranging the expression above, we get:

lim
ω→0

d2I

dωdΩ
=
z2e2

4π2c

{
|∆β|2 − (n ·∆β)2

}
(9.23)

where ∆β ≡ β′ − β.
Since n = sin θ cosϕx̂+ sin θ sinψŷ+ cos θẑ, inte-

grating with respect to the solid angle yields:

lim
ω→0

dI

dω
=

2z2e2|∆β|2

3πc
(9.24)

In the high-frequency limit as ω → ∞, the
complex exponential in Equation 9.18 oscillates very
rapidly, making the result very small (close to zero),
and the radiated energy is negligible (Figure 9.5).
Therefore,

dI

dω
=

{
2z2e2|∆β|2

3πc , Low frequencies
0, High frequencies

(9.25)

At this point, it is interesting to introduce the
differential radiation cross-section given by:

d2χ

dωdQ
=

dI

dω

dσ

dQ
(9.26)

Using Equation 9.19, Equation 9.20, the fact that
dΩ = sin θdϕdθ = QdϕdQ/p2, and integrating with
respect to the azimuthal angle dϕ, we have:

dσ

dQ
= 8π

(
zZe2

βc

)
1

Q3
(9.27)

Therefore, from Equation 9.24 and Equation 9.27,
we obtain:

d2χ

dωdQ
=

16

3

Z2e2

c

(
z2e2

mc2

)2
1

β

1

Q
(9.28)

Integrating over dQ, we arrive at:

dχ

dω
=

16

3

Z2e2

c

(
z2e2

mc2

)2
1

β2
ln

(
Qmax

Qmin

)
(9.29)

Now, introducing a semi-classical argument that
takes into account the quantization of electromag-
netic energy to include the photon, we should have:

E = E′ + ℏω (9.30)

where E = p/2m and E′ = p′/2m are the energies
of the incident particle before and after the collision.

Thus, from the definition of momentum transfer
and Equation 9.30, we should have:

Qmax

Qmin
=
p+ p′

p− p′
=

(√
E −

√
E − ℏω

)2
ℏω

(9.31)

Finally, inserting Equation 9.31 into Equa-
tion 9.29, we obtain:

dχsc

dω
=

16

3

Z2e2

c

(
z2e2

mc2

)2
1

β2
ln


(√

E −
√
E − ℏω

)2
ℏω


(9.32)

where the subscript sc serves to remind us that this
expression was obtained through semi-classical ar-
guments.

The result in Equation 9.32 is precisely the result
obtained by quantum mechanics in the Born ap-
proximation, first derived by Bethe and Heitler in
1934. Moreover, the argument of the logarithm in
Equation 9.32 equals unity when ℏω = E, ensuring
the conservation of energy requirement is properly
satisfied.

It is interesting to note that the radiation cross-
section depends on properties of the particles in-
volved in the collision, such as Z2z4/m2, show-
ing that radiation emission is more significant for
electrons in materials with a high atomic number.
In fact, a proton (mp = 1.007u) of the same en-
ergy and incident on the same material will pro-
duce less bremsstrahlung than an electron (me =
0.0005485u) by a factor of:

m2
p/m

2
e = 1.0072/0.00054852 = 3.37× 106 (9.33)

9.4 X-rays
The phenomenon of electron scattering can be

utilized for the production of X-rays, as we will dis-
cuss in this section.

9.4.1 Generation of X-rays

X-rays are generated in a low-pressure tube that
contains a filament (cathode) and a metal target

44



Figure 9.6: X-ray tube illustration

(anode). By heating the filament with a current
passing through it, electrons are emitted. These
electrons are accelerated by the potential difference
V between the cathode and the anode, as illus-
trated in Figure 9.6. When they strike the an-
ode, these electrons emit Bremsstrahlung radiation,
whose spectrum is displayed in Figure 9.2.

9.4.2 X-ray Spectrum

Continuous Spectrum (Bremsstrahlung)

Classically, the continuous spectrum in Figure 9.2
should asymptotically approach zero as the fre-
quency ν of the emitted photon tends to infinity.
However, in practice, a maximum cutoff frequency,
νmax, is observed (as described by Equation 9.32).
This cutoff frequency corresponds to the situation
where all the kinetic energy of the electron is con-
verted into photon energy. Classical electromag-
netic theory, however, does not account for this phe-
nomenon, leading to incorrect predictions of the X-
ray spectrum.

Thus, let E be the kinetic energy of the incident
electron; then we should have:

E = hνmax ⇒ νmax =
eV

h
(9.34)

The Equation 9.34, which relates the potential
difference to the maximum frequency of the emitted
photon, is called the Duane-Hunt Law.

In this context, Bremsstrahlung radiation can be
considered the inverse of the photoelectric effect. In
the photoelectric effect, radiation is used to eject
an electron, while in Bremsstrahlung, electrons are
used to emit a photon.

Figure 9.7: Interaction of the incident electron with
the atom [5]

Characteristic or Discrete Spectrum

Additionally, as we can see in Figure 9.2, besides
the Bremsstrahlung spectrum (continuous), the X-
ray spectrum has characteristic lines specific to the
anode material.

These characteristic lines of the anode material
occur when the incident electron ejects an electron
from an inner atomic shell (Figure 9.7). Thus,
an outer electron will occupy the ejected electron’s
shell, emitting a photon of light.

9.5 Bremsstrahlung in Nuclear
Decay

Bremsstrahlung radiation emission also occurs
during the transformation of the nucleus in the
beta decay process or in electron capture. That is,
a continuous spectrum of X-rays originates within
an atom undergoing transformation and can be at-
tributed to the sudden change in nuclear charge
when a beta particle is emitted or when an orbital
electron is captured.

In this case, it is called inner or internal
Bremsstrahlung, because it originates from the nu-
cleus, the inner part of the atom, as opposed to
external bremsstrahlung, which occurs when a par-
ticle from the outside approaches the nucleus and is
deflected by it (section 9.3).

In the case of beta decay, emission occurs due to
the acceleration that the beta particle undergoes to
leave the nucleus shortly after its "birth".

In the electron capture decay process, the quan-
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tum of energy not carried away by the neutrino is
emitted as internal bremsstrahlung. Thus, in elec-
tron capture decay, internal bremsstrahlung may
possess energies between zero and the maximum,
or transition energy of a radionuclide. The upper
limit of the internal bremsstrahlung can be used to
determine the transition energy of a nuclide in elec-
tron capture decay. Some examples of radionuclides
that decay by electron capture are as follows:

55
26Fe →55

25 Mn + ν + hν(0.23MeV)
37
18Ar →37

17 Cl + ν + hν(0.81MeV)
(9.35)

9.6 Conclusion

Apart from the interest in the nature of the pro-
cess itself, bremsstrahlung appears in various fields
of physics: atomic and nuclear physics, solid-state
physics, particle physics, astrophysics, and so on.
Moreover, it is an important tool in many areas of
experimental research, with a wide range of techni-
cal applications.

The bremsstrahlung process is generally consid-
ered to be well understood. However, the compar-
isons between experiment and theory have for the
most part been made for cases where only the emit-
ted photons are considered, disregarding the accel-
erated outgoing particles. Thus the results are nec-
essarily integrated over all particles scattering an-
gles, whereby important features are lost and the
check of the theory is not as strong as it could be.
When, on the other hand, the bremsstrahlung pho-
tons are detected in coincidence with the accelerated
particles scattered into a fixed direction, informa-
tion on the elementary process of bremsstrahlung
can be obtained and a more stringent check of the
theoretical work becomes possible.
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Cherenkov radiation
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Abstract: Cherenkov Radiation was detected first
by the Russian physicist Pavel Cherenkov. It’s a ra-
diation emitted by a particle that moves through a
medium with its velocity higher than the speed of
light in this medium and emits a blue light. Some
of these effect it’s visible in nuclear reactors. This
radiation it have been useful to understand some
mysteries in the field of astrophysics, using in detec-
tors to help scientist to discover the origin of cosmic
rays. Here, it will be show a brief historical context,
a mathematical description, and some applications
of these wonderful phenomenon.

10.1 Introduction

Let’s begin with some historical facts about it.
First, in 1900, Marie and Pierre Curie saw these ef-
fect in their experiments with radium, but it was
first detected experimentally by the russian physi-
cist Pavel Cherenkov [1], who was under the super-
vision of Sergei Vavilov, in 1934, he noticed a very
weak visible radiation from a pure liquids under the
influence of γ-rays. But a theory was developed just
in 1937 for two physicist Igor Tamm and Ilya Frank,
who shared the 1958 Nobel prize for their discovery.
Cherenkov discover two other features by which the
effect, the light has a unique polarization and direc-
tional properties. Since 1945 , there have been great
strides in the field. The creation of photomultiplier,
the most sensitive detector known for the study of
faint pulses of light, has been largely responsible
for the more recent developments. At the same
time the advent of nuclear physics with the con-
struction of the nuclear reactors all over the world,
producing high energies particles that could be pro-
duce Cherenkov radiation, the creation of detectors
with Cherenkov radiation, enabling to distinguish
between different types of particles and to measure
directly their velocities[2], when these particles for

example strikes the atmosphere and the telescopes
detect the Cherenkov light produced by the shower
or their interaction with some water tanks in the
ground.

10.2 Theory

When a charged particle moves at a uniform ve-
locity in a dielectric medium, the associated elec-
tromagnetic field close to the particle polarizes the
medium along its track, so that the electrons at-
tached to the atoms follow the wave-form of the
pulse as the particle goes by. It can be compare
when a jet breaks the sound barrier (See Figure
10.1). It’s important to mention that in this pro-

Figure 10.1: Jet breaks the sound barrier [6]

cess the atoms are not excited by the electron and
neither are the removed from their bound states,
there is not ionization. There is a fundamental re-
lation between the velocity of the particle, and the
refractive index of the current medium, and the an-
gle at which the light is emitted. This is know as
the Cherenkov relation [3]:

cos θc =
1

βn
(10.1)

where βn = vn/c, e n is the refraction index of
the medium. It can be seen in the Figure 10.2 and
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in the Figure 10.3 the propagation of a high-energy
particle.

Figure 10.2: Spherical waves emitted at previous
positions of the particle(small open circles)[3]

Figure 10.3: A schematic of Cherenkov Radiation
[7]

For example in the water, where the index is
n = 1.33, the Cherenkov relation maximum (10.1)
will be θ = 41◦ and the velocity to emit Cherenkov
radiation will be v = 2.3× 108m/s. So, the velocity
is close to the speed of light, it’s important to use
special relativity, to obtain the velocity of the parti-
cle. Begin, with the momentum conservation as in
[10]

P 2 = P 2
0 + P 2

c − 2P0Pc cos θc (10.2)

Now, using the energy conservation,

(P 2
0 c

2 +m2
0c

4)1/2 = (P 2c2 +m2
0c

4) + hν (10.3)

where the where v = c/(nλ). Solving for the cos θc
we find that

cos θc =
(P 2

c +m2
0c

4)1/2 + (n2 − 1)hν

2P0cn
(10.4)

now, with the (10.1) it’s possible to find the velocity
of the particle

v =
P0c

2

(P 2
c +m2

0c
4)1/2

(10.5)

So, with these results the scientists are able
to find the velocity of the relativistics particles,
passing through the water for example, and this
will be useful to the fields of particle physics and
astrophysics to detect them.

10.2.1 Potentials and conditions for
the emission

Now, let’s find the potentials following the [3] and
[11]. Using the Líenard-Wiechert potentials , it will
find an appropriate to potentials for the Cherenkov
radiation:

ϕ(r, t) =
1

4πϵ

[
q

R− βn · R

]
ret

(10.6)

and for potential vector

A(r, t) =
µ

4π

[
qv

R− βn · R

]
ret

(10.7)

The interesting feature of these equations is that
the equation which determines the retarded time,
which it’s

tret − t =
R(tret)

cn
(10.8)

and it will have two solutions, one will be inside
the Mach cone and no solutions when it lies outside
the cone. See the showing an observer inside the
Mach cone of a charge moving at constant velocity.
The moving charge enters the volume enclosed by
the shell. Noting that in Figure 10.4 the square of
Rret = |R + v(t − tret)| is a quadratic equation for
t− tret with the following solutions

Figure 10.4: The present time position and retarded
time position of a charge moving with constant
velocity[3]

t− tret =
−v · R ±

√
(v · R)2 − (v2 − c2n)R

2

v2 − c2n
≥ 0

(10.9)
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So, if v > cn, the positivity condition on the right
side of the (10.9) imposes two conditions, the first is:

v ·R < 0 (10.10)

and
(v ·R)2 > (v2 − c2n)R

2 (10.11)

By Cherenkov relation, the left and right sides of
the two conditions, imply that solutions to (10.9)
exist if

θ >
π

2

sin θ ≤ sin θc =
1

βn

(10.12)

The conditions in (10.12) define the volume inside
the Mach cone.

So, there will be no fields in front of the par-
ticle, so the potentials will exist only inside the
Cherenkov’s cone, the values of (R− βn · R)

R−βn ·R = ∓ 1

cn
[(R ·v)2−(v2−c2)R2]1/2 (10.13)

The potentials are only useful inside the
Cherenkov cone, in cone edge there will be a sin-
gularity and outside they don’t exist.

10.2.2 Radiated Energy
Using the Maxwell’s equations:

E = −∇ϕ− ∂A
∂t

B = ∇× A
(10.14)

and the potentials (10.6), (10.7), the eletric field
and the magnetic field can be computed. In most
cases is interesting to find the radiation spectral, for
that is convenient to use the fourier transformation
and find E(ω) from E(t). The energy that is radi-
ated for unity of area and frequency can be obtained
in the reference [3] and [11]:

d2Urad

dωdA
=
ecn
π

|E(ω)|2 (10.15)

After some calculations following the reference [3],
it’s find a final result,

d2Urad

dωdA
=
µq2

4π

(
1− c2

v2n2

)
ω (10.16)

As from the equation (10.16), the Cherenkov ra-
diation appears blue to the naked eye because is an
increasing function of frequency, i.e the Cherenkov
light is blue because n does not vary much in the vis-
ible part of the spectrum, on the other hand, there

will be no Cherenkov emission at frequencies be-
yond the near-ultraviolet because n < 1 there and
it is not possible to satisfy the Cherenkov relation
with a real angle, and that is confirmed through
experiment. In Figure 10.5, it can been seen a con-
tinous spectrum of the Cherenkov radiation,

Figure 10.5: Continuous spectrum, and most of the
light is produced predominantly in the blue, violet,
and ultraviolet region of the electromagnetic spec-
trum [9]

10.3 Applications
Some applications to the Cherenkov radiation

could be in:

• Nuclear Reactors: The Cherenkov radiation
is used to detect high-energy particles charged,
for example when a reactor pool is opened
the scientist can identify the beta particles,
and characterize the remaining radioactivity of
spent fuel rods, this phenomenon helps to ver-
ify how much the fuel remains in the reactor
for nuclear safety [4]. In Figure 10.7 it’s shown
the effect of Cherenkov radiation in a nuclear
reactor, it’s easy to see a blue light.

• Astrophysics Experiments: When a high-
energy particles come from the some astrophys-
ical source, they interact with the Earth’s at-
mosphere and produce and shower of parti-
cles, some of them are electron-positron pair
with relativistic velocities in Figure 10.6 . The
Cherenkov radiation emitted in the atmosphere
by these particles is used to find the direc-
tion and the energy of the cosmic ray or the
gamma ray produced in the source, by exper-
iments such as VERITAS, H.E.S.S, MAGIC,
Cherenkov Telescope Array(CTA) that you will
be discuss in the next section, some of them
as Pierre Auger observatory is in the ground
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where the particles interact with water in tanks
on the ground and produce Cherenkov light,
water Cherenkov detectors scattered across
3000 km2 on Pampa Amarilla in Argentina
have collected high-quality data to allow for
precise measurements of UHECR in Figure.

Figure 10.6: An illustration of the applications of
Cherenkov light in the detection of high-energy cos-
mic rays and neutrinos [8]

Figure 10.7: Cherenkov radiation glowing in the
core of the Advanced Test Reactor at Idaho Na-
tional Laboratory.[5]

10.3.1 CTAO

It will discuss shortly about the new interna-
tional collaboration CTA , it will be the largest
ground-based gamma-ray observatory and the most
advanced. There will be three classes of telescopes
Figure 10.8 which will cover the energy range (20

GeV to 300 TeV). So the cameras will detect the
flash of light produced by the interaction of these
high-energy particles. There will be two array sites,
one in the northern hemisphere to see the northern
sky and other in the southern hemisphere to see the
southern sky. The technology present in the CTAO
will use 3500 highly-reflective mirrors facets to fo-
cus light into the telescopes cameras that contains
photomultiplier tubes and silicon photomultipliers
to provide a ultra-fast-light- sensitive pixels [13].

Figure 10.8: Three sizes of CTA telescopes. [13]

10.4 Conclusion
The use of Cherenkov light has played an im-

portant role in many areas since the medicals [12]
uses until in detectors of high-energy astroparticle
physics. Being formulated by using special relativ-
ity theory. It supposes that its applications it will
continue to be important, for the advance of the
physics, and for the new discovers, helping answer
some fundamental questions.
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Kerr Effect
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Abstract: The Kerr Effect, uncovered by John
Kerr in the late 19th century, manifests as induced
birefringence and a modification of the local refrac-
tive index in a material under the influence of an
electric field. This discovery led to the exploration
of two distinct phenomena: the Magneto-optic Kerr
Effect (MOKE) and the Optical Kerr Effect, the lat-
ter being the focus of this study. This work provides
an overview of the historical development of the the-
ory, offers a comprehensive theoretical treatment,
and introduces various experimental techniques for
characterizing this interaction in materials. Addi-
tionally, practical applications of this phenomenon
are discussed, highlighting its potential technologi-
cal implications.

11.1 Introduction

In the history of optical science, fundamental
questions emerged, centered around the nature of
light and the comprehension and manipulation of its
interaction with matter. One of the most crucial do-
mains of optics focuses on studying the propagation
of light in matter, especially in condensed matter,
offering vast possibilities for applications through
precise control of this phenomenon. Initially, it is es-
sential to understand how electrically charged parti-
cles or macroscopic clusters of these particles inter-
act with light, examining influential characteristics
such as absorption, dispersion, refraction, and po-
larization. The advent of Maxwell’s electromagnetic
theory represented a significant milestone, enabling
the description of light interactions based on the
macroscopic properties of materials.

In the 19th century, Michael Faraday devoted
himself to studying the propagation of polarized
light in isotropic dielectric media under magnetic
fields. In his 1845 article [1], Faraday observed the
rotation of the polarization plane along the propa-

gation of the medium, a phenomenon known as op-
tical activity. Thirty years later, inspired by Fara-
day’s insights, John Kerr undertook investigations
to understand the behavior of light propagation in
transparent and optically isotropic media when sub-
jected to intense electrostatic forces, aiming to nul-
lify the isotropy of solid [2] and liquid [3] media
under the influence of light. Kerr succeeded in con-
ducting these experiments on dielectric solids and
liquids, which Faraday had failed to replicate in his
tests with electrolytes and dielectrics. This effect
came to be known as the Kerr Electro-optic Effect.

The Kerr Electro-optic Effect induces changes in
the local refractive index in a medium, altered by
electronic, thermal, and molecular orientation inter-
actions under the influence of an electromagnetic
field along the propagation of light, resulting in
the induction of local birefringence in the material.
The effect was observed by applying an electric field
generated by a direct current (DC) voltage source,
known as the DC Kerr Effect. In 1956, Buckingham
[4] became the first to adapt this effect to alternat-
ing current (AC) sources and proposed using the
electric field of light to induce the Kerr effect, known
as the AC Kerr Effect. Thirteen years later, with
the advent of pulsed lasers, Duguay and Hansen
were able to observe the Kerr Effect produced by the
electromagnetic field of the incident light itself us-
ing picosecond pulses from a mode-locked glass laser
in 1969 [5], as this type of laser technology already
provided high intensities. The temporal and spatial
variation of the medium’s refractive index caused by
the light itself led to nonlinear optical effects such
as self-focusing (Kerr lens) [6], self-phase modula-
tion [7], modulational instability [8], supercontin-
uum generation [9], and four-wave mixing [10].
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11.2 Third-order nonlinear
processes

To study the processes occurring during the prop-
agation of light through a material, it is necessary to
employ Maxwell’s electromagnetic theory. For sim-
ple materials, the response of bound charges to the
electric field can be described by a dieletric polar-
ization density, denoted as P, which is linearly de-
pendent on the electric field, denoted as E, through
the expression: P = χε0E, where χ represents the
electric susceptibility, and ε0 is the vacuum eletri-
cal permittivity. For isotropic media, χ is a scalar
quantity, preserving the same value for any direc-
tion of E. For nonisotropic media, χ is expressed
as a tensor, and the polarization dependence can be
expressible as:

Px

Py

Pz

 = ε0

χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

Ex

Ey

Ez

 . (11.1)

For complex materials, the polarization exhibits
a nonlinear dependence on the electric field. Con-
sequently, the polarization expression can be char-
acterized through a Taylor series expansion:

P = ε0χ
(1)E+ε0χ

(2)EE+ε0χ
(3)EEE+ · · ·, (11.2)

where the coefficients χ(n) signify the n-th-order
susceptibilities inherent to the material, encapsulat-
ing not only the polarization-dependent character-
istics of the parametric interaction but also reflects
the symmetries or their absence inherent in the ma-
terial. The first term is the linear dependence, and
the incorporation of the other terms is frequently
referred to as introducing n-th-order nonlinearity.

Expanding the (11.2), the i-th component of the
polarization will be:

P̂i =ε0

3∑
j=1

χ
(1)
ij Êj + ε0

3∑
j=1

3∑
k=1

χ
(2)
ijkÊjÊk

+ ε0

3∑
j=1

3∑
k=1

3∑
l=1

χ
(3)
ijklÊjÊkÊl + · · ·,

(11.3)

with (i, j, k, l = x, y, z). To investigate third-order
nonlinear processes, the analysis will be specifically
focused on the third term.

11.2.1 Symmetry effects
From the (11.3), the most general susceptibil-

ity, for process involving the interaction of waves

of four linked different frequencies, has the form
χijkl ≡ χ

(3)
ijkl(ω4 = ω1 + ω2 + ω3) it is possible to

realize the potential to 34 = 81 separate nonlinear
coefficients, since i, j, k, l can each be x, y or z for a
lossless medium of the most general triclinic symme-
try. For structurally isotropic medium, with no in-
trinsic axes, only 21 coefficients are non-zero: when
all indices are identical, χ1 ≡ χiiii, and when two
pairs of indices are the same, namely χ2 ≡ χjjkk,
χ3 ≡ χjkjk and χ4 ≡ χjkkj with j ̸= k. This sym-
metry imposes the further constraint that:

χ1 = χ2 + χ3 + χ4, (11.4)

resulting in the 21 non-zero coefficients [11]:

1: xxxx = yyyy = zzzz,

2: xxyy = yyzz = zzxx = yyxx = zzyy = xxzz,

3: xyxy = yzyz = zxzx = yxyx = zyzy = xzxz,

4: xyyx = yzzy = zxxz = yxxy = zyyz = xzzx.

(11.5)

Furthermore, for collinear beams, selecting one
axis along the direction of beam propagation allows
the reduction of non-zero coefficients to 8 by dis-
regarding those associated with the chosen axis. If
all beams are plane-polarized in the same direction,
choosing the x-axis as the polarization direction re-
sults in the χ1 = χxxxx coefficient only. Additional
insights into medium symmetries can be found in
[11].

11.3 The DC Kerr Effect

Examining the DC Kerr Effect caused by a
strong DC field that alters the refractive index of
a medium, the absence of incident beams leads to
frequencies ω = 0 + 0 + ω, as shown in Fig. 11.1.

Figure 11.1: A strong DC field modifies a light prop-
agation through a Kerr medium [12].

By selecting a y-polarized field, the coeffi-
cients are χK

1 ≡ χK
yyyy(ω; 0, 0, ω) and χK

4 ≡
χK
xyyx(ω; 0, 0, ω), the corresponding polarization re-

sponses unfold as follows:
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P̂x(ω) = 3ε0χ
K
4 E

2
y(0)Êx(ω),

P̂y(ω) = 3ε0χ
K
1 E

2
y(0)Êx(ω).

(11.6)

This leads to a difference of the refractive index
for parallel and and perpendicular polarized light,
n∥ and n⊥ respectively, given by

n∥−n⊥ ∼=
3(χK

1 − χK
4 )E2

y(0)

2n
=

3χK
2 E

2
y(0)

n
, (11.7)

where χK
2 and χK

3 are identical, indicating that the
difference is χK

1 −χK
4 = 2χK

2 , as derived from (11.4).
Expressing this difference as

∆n ≡ n∥ − n⊥ = λ0KE
2(0), (11.8)

where λ0 represents the vacuum wavelength, defin-
ing K = 3χK

2 /(λ0n) as the Kerr constant of the
medium.

11.4 The Optical Kerr Effect
Examining the Optical Kerr Effect caused by a

strong wave, the presence of a wave at frequency ω2

and intensity I(ω2) leads to a modification in the
refractive index of a probe wave at ω1, leading to
ω1 = ω2 − ω2 + ω1, as shown in Fig. 11.2.

Figure 11.2: A strong beam of light influencing
the propagation of a probe beam through a Kerr
medium [12].

By selecting the waves with same polarisa-
tion, the only coefficient will be χOK

xxxx ≡
χOK
xxxx(ω1;ω2,−ω2, ω1), and the corresponding po-

larization responses unfold as follows:

P̂x =
3

2
ε0χ

OK
xxxx

∣∣∣Êx(ω2)
∣∣∣2 Êx(ω1), (11.9)

leading to a difference of the refractive index of the
probe wave given by

∆nx ∼=
3χOK

xxxxI(ω2)

2n(ω1)n(ω2)cε0
, (11.10)

where c is the speed of light in vacuum.
If the strong wave is y-polarized, the only coeffi-

cient will be χOK
xyyx ≡ χOK

xyyx(ω1;ω2,−ω2, ω1), mak-
ing the refractive index difference weaker.

11.4.1 Intensity-dependent refrac-
tive index

When a single beam has an intense intensity
I ≡ I(ω, r, t) and modifies its own refractive index,
ω = ω1 = ω2, there’s a self-action effect known as
intensity-dependent refractive index. For a plane-
polarised light, the polarisation is given by

P̂x(ω) =
3

4
ε0χ1

∣∣∣Êx(ω)
∣∣∣2 Êx(ω), (11.11)

implying in a refractive index in the form

n(I) = n0 +

(
3χ1

4n20cε0

)
I = n0 + n2I, (11.12)

where n0 is the linear refractive index for ω and
defining n2 as the nonlinear refractive index.

A more detailed analysis of circularly and ellipti-
cally polarized light, encompassing additional coef-
ficients, can be found in references [11, 12].

11.4.2 Refractive nolinearities types
For the case of isotropic medium under a po-

larised laser with irradiance I (considered to be the
same for linear and circular polarizations), where
the frequencies are χijkl(ω = ω + ω − ω), the non-
linear polarization derived from (11.2) is

P = 6ε0χ1122 (E ·E∗)E+ 3ε0χ1221 (E ·E)E∗.
(11.13)

It is possible to introduce the coefficients A ≡
6χxxyy and B ≡ 6χxyyx. Rewritten the (11.13), the
nonlinear polarization is given by

P = ε0A (E ·E∗)E+
1

2
ε0B (E ·E)E∗. (11.14)

The ratios between theses two coefficients is dif-
ferent for each type of nonlinearities processes of the
medium: the pure nonresonant electronic (B/A =
1), orientational (B/A = 6), and thermal (B/A =
0). Changing the (11.12) for these coefficients, the
change on the refractive index is given by

∆nlinear =
I

4n20ε0c

(
A+

1

2
B

)
, (11.15)

for linear polarization, and

∆ncircular =
I

4n20ε0c
A, (11.16)
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for circular polarization. The ratios between
∆nlinear/∆ncircular = 1 + B/(2A) = 3/2, 4 and 1
for pure eletronic, molecular orientational, and ther-
mal nonlinearities, respectively [12].

Figure 11.3: Diagrams of (a) a one-photon-resonant
contribution by A, and (b) two-photon-resonant
processes involving both coefficients A and B [12].

The distinct physical characteristics of the con-
tributions from the two coefficients to the nonlinear
polarization stem from a one-photon-resonant con-
tribution by A, and two-photon-resonant processes
involving both coefficients A and B (under certain
conditions, exclusively contributed by B), shown in
Fig. 11.3.

11.5 Nonlinear optical charac-
terization

Due to the nonlinear response of light-matter in-
teraction to a strong electric field in certain materi-
als, which influences measurements and enables the
exploration of these effects, it becomes imperative
to determine the sign and magnitude of n2. Differ-
ent materials has intrinsic characteristics, leading
to diverse responses under distinct conditions. This
necessitates the application of various techniques to
measure their respective nonlinear coefficients.

11.5.1 Nonlinear Interferometry
An technique developed by [13] involves an inter-

ferometric method. In this approach, the material
under investigation is positioned in one arm of an
interferometer, and an intense pulsed laser beam is
directed through the sample. This setup enables
the measurement of the nonlinear phase change of
the beam, providing a means to quantify n2 from
the obtained data. The use of this method for mea-
suring the optical nonlinearity of gases [15] is illus-
trated in Fig. 11.4. This process induces changes in
the refractive index, resulting in both a phase de-
lay and a displacement of the fringe pattern at the
interferometer output.

Figure 11.4: (a) Simplified experimental setup di-
agram of an interferometric n2 measurement tech-
nique and (b) an example interferogram [15].

This method has variations, encompassing both
absolute and relative measurements for n2 [14]. In
the case of relative measurements, a known non-
linear sample is introduced into one arm of the in-
terferometer. The most recent variation, developed
by [16], is tailored for measurements in the infrared
spectral range, as depicted in Fig. 11.5.

Figure 11.5: Experimental setup diagram of an in-
terferometric n2 measurement technique in the in-
frared spectral range[16].

While this approach was widely employed in the
initial characterization of n2, newer methods have
since been developed, yielding superior results and
simple apparatus.

11.5.2 Z-scan
The Z-scan technique, developed by [17], has

proven to be highly sensitive and features a straight-
forward experimental setup and analysis, making
it particularly effective for measuring n2. This
method relies on the conversion of phase distortion
to amplitude distortion as a pulsed beam propagates
through a Kerr medium, applicable over a broad
wavelength range and accommodating various types
of nonlinearity. To measure amplitude distortion, a
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Gaussian laser beam is employed in a tight-focus
limiting geometry, and the transmittance T (z, t) of
the medium through a finite aperture placed in the
far field is recorded as a function of the sample po-
sition z, as shown in Fig. 11.6.

Figure 11.6: Simple Z-scan experimental apparatus
[17].

The Fig. 11.7 shows an example of Z-scan mea-
surements of a CS2 cell. The transmittance dis-
tortion curve represents the nonlinear response of
the material, where a less flattened curve indicates
more intense nonlinearities in the medium. The
peak-to-valley configuration of the Z-scan curve sig-
nifies either a positive (self-focusing) or negative
(self-defocusing) nonlinearity. This is determined
by measuring the difference between the normal-
ized peak and valley transmittances, denoted as
∆Tp−v ≡ Tp − Tv.

Figure 11.7: Measured Z-scan of a 1-mm-thick CS2

cell [17].

Presently, this technique stands as the most
widely employed method for characterizing n2, al-
though it may exhibit some limitations in measur-
ing specific complex media comprehensively. Nu-
merous variations of this technique have been de-
veloped, ranging from studies on the dynamics of
third-order optical nonlinearities [18] to enhanced
sensitivity measurements utilizing Gaussian-Bessel

beams [19]. Additionally, some adaptations aim to
mitigate or overlook certain nonlinear effects, such
as thermal contributions.

11.5.3 Discrimination of nonlineari-
ties types

A novel variation of the Z-scan method enables
the discrimination of thermal, molecular orienta-
tion, and pure electronic refractive nonlinearities
[20]. This approach involves varying the repetition
rate to observe the thermal contribution, with the
thermal effect being more pronounced at higher rep-
etition rates of the pulsed laser, as shown in Fig.
11.8. Additionally, by leveraging the distinct de-
pendencies on linear and circular polarization, as
detailed in subsection 11.4.2, this method allows for
the discrimination of various nonlinear effects, as
shown in Fig. 11.9.

Figure 11.8: Experimental setup diagram of a
single-beam polarization-resolved Z-scan [20].

Figure 11.9: Z-scan signals obtained for pure CS2

with linear (square) and circular (circle) polariza-
tion for three laser repetition rates [20].
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11.5.4 Other techniques

Several methodologies, extending beyond non-
linear interferometry and z-scan, have been devel-
oped to measure third-order nonlinearities in con-
densed matter. The wave mixing technique em-
ploys two or more distinct incident waves to ob-
tain relative measurements of n2. Cross-phase mod-
ulation (XPM) relies on the phase change in the
probe induced by the cross-phase modulation effect
with the pump. The nonlinear chirped interferom-
etry technique is based on a frequency-degenerate
pump-probe experiment with interferometric detec-
tion. The dispersive-scan (D-scan) technique serves
as a temporal analog of the top-hat Z-scan. Also
several specialized methodologies have been devised
to address specific experimental conditions and re-
quirements.

11.6 Kerr Effect application

Following the characterization of nonlinear pro-
cesses in a Kerr medium, the derived insights can
be leveraged to develop new technologies or method-
ologies. While only two applications are highlighted
here, it is noteworthy that numerous other applica-
tions exist. Interested readers are encouraged to
explore additional applications by referring to the
references provided in the introduction.

11.6.1 Kerr-lens Modelocking

Notably, Kerr lensing stands out as a significant
application, wherein a short optical pulse propagat-
ing through a nonlinear medium induces an opti-
cal phase delay that is most prominent along the
beam axis, where the optical intensity is highest,
and diminishes progressively away from the axis.
Utilizing Kerr lensing, the generation of ultrashort
pulses through the Kerr-lens Modelocking (KLM)
technique has been achieved [21, 22]. The non-
uniform intensity distribution in a Gaussian beam
induces a local refractive index change, causing the
medium to behave as a lens for high-intensity light.
In this scenario, the cavity is engineered to be unsta-
ble for continuous-wave operation but stable for the
pulsed configuration, characterized by a distinct fo-
cus. This method ensures that, when the cavity is in
the correct configuration, pulsed operation predom-
inates over continuous-wave operation, as depicted
in Fig. 11.10.

The exceptionally rapid nonlinear response facili-
tates the generation of pulses lasting only a few fem-
toseconds, making it the most effective technique

Figure 11.10: Kerr-lens modelocking principle
Commons Wikimedia - CC BY-SA 3.0

for producing ultrashort pulses close to the Fourier-
transform limit achievable within the gain medium.

11.6.2 Kerr Effect on Bose–Einstein
Condensates

A novel and intriguing exploration of the Kerr Ef-
fect delves into Bose-Einstein Condensates (BEC),
where the absorption and emission processes within
a BEC induce Kerr Effects [23]. In this context,
nonlocal optical Kerr nonlinearities with control-
lable nonlocality were generated through matter-
wave superradiance in a Rydberg-dressed BEC,
leveraging the strong and long-range interactions
between Rydberg atoms. Specifically, for Strontium
atoms, a remarkable increase in n2 by 15 orders of
magnitude compared to conventional nonlinear op-
tical materials was achieved, leading to the charac-
terization of this phenomenon as a "Giant nonlocal
Kerr nonlinearity" [24].

11.7 Conclusion

Over the span of nearly two centuries since John
Kerr first discovered the effect that bears his name,
significant advancements have occurred in the theo-
retical analysis of third-order nonlinear processes.
More recently, a plenty of technologies has been
developed for the characterization of Kerr me-
dia, alongside new methodologies targeting vari-
ous types of nonlinearities, driven by advancements
in pulsed laser technology. Furthermore, the ap-
plications stemming from the Kerr effect serve as
the foundation for the leading femtosecond lasers
used in present times and various other photon-
ics technologies. Despite these remarkable develop-
ments, gaps persist in both theoretical understand-
ing and experimental exploration of nonlinear pro-
cesses. Active research projects are currently un-
derway to address these gaps and contribute to the
evolving landscape of nonlinear optics.
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The Drude model
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Abstract: Metals play a significant role in our
society due to their electrical and thermal conduc-
tivity properties. They are widely used in various
industries, from electronics to construction. To un-
derstand how electricity is conducted in metals, sci-
entists have developed theoretical models, such as
the Drude model. This model, proposed in the early
20th century, describes electrons in metals as free
particles that move randomly and collide with pos-
itive ions. The model is used as a useful simplifica-
tion in many contexts to describe the electrical con-
ductivity of metals. However, the Drude model has
its limitations. The aim of this work is to provide a
literature review on the electrical properties of met-
als based on the Drude model. Through this analy-
sis, we aim to provide a comprehensive resource that
can serve as a foundation for future research and an
introduction to the study of electrical conduction
models.

12.1 Introduction

Paul Karl Ludwig Drude was a German physicist
who began his career in the same year that physicist
Heinrich Hertz published his experiments on James
Clerk Maxwell’s electromagnetic theory. In 1900,
Drude wrote an important book titled "Lehrbuch
der Optik," where he integrated Maxwell’s theory
with optics. In the same year, he published his the-
ory on the conduction of heat and electricity in met-
als in the book "Zur Elektronentheorie der Metalle."

Drude’s free electron model proposes a classical
explanation for metallic conductivity, using Ther-
modynamics and Newtonian Mechanics to explain
the properties of this material. Drude was born in
1863 and took over the Prussian Academy of Sci-
ences in 1906, the same year he inexplicably com-
mitted suicide at the peak of his career, leaving be-
hind a wife and four children [2].

Figure 12.1: Paul Karl Ludwig Drude, a German
physicist who lived between the years 1863 and
1906.

wiki: Paul Drude (1863 - 1906).

12.2 Basic Assumptions of the
Drude Model

In Drude’s model of metallic conduction, each
atom in the crystalline lattice of a metal contributes
one or more electrons from the valence layer, re-
ferred to as conduction electrons or free electrons.
The Drude atom consists of a nucleus, containing
protons and neutrons, and two types of electrons:
the so-called nucleus electrons, located in the in-
nermost electronic layers and tightly bound to the
nucleus, and the conduction electrons.

The model assumes that during the formation of
a metallic structure where atoms come together, va-
lence electrons separate from the nucleus and move
freely through the metal, as illustrated in Figure
12.2. The ions, in turn, remain stationary, arranged
in a crystalline lattice [3].

In this context, Drude applied the kinetic theory
of gases to explain the electrical and thermal con-
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Figure 12.2: Free electrons moving through the
metal.

Adapted by the author (2023).

duction of metals. The kinetic theory was the first
successful microscopic model of matter. This "gas"
of electrons can have a volumetric density thousands
of times greater than an ideal gas under normal
conditions and has at least two types of particles1,
whereas an ideal gas has only one.

To verify this, it is possible to calculate the den-
sity (n) of the electron gas, that is, the quantity
of free electrons (N) per unit volume (V ), in the
following way:

n =
N

V
= Na

Zρm
A

. (12.1)

In this expression, Na = 6.02 × 1023 mol−1

is Avogadro’s constant, Z is the number of
electrons in the valence layer of the metallic
atom, ρm is the mass density of the metal, and
A is the atomic mass of the element [?]. To
calculate the density of the electron gas in gold
(1s22s22p63s23p64s23d104p65s24d105p66s14f145d10),
for example, which has Z = 1 electron in the va-
lence layer, density ρm = 19.3 g/cm³, and A = 197,
the density of the free electron gas in gold is:

nouro = 5, 8997 · 1022 cm−3

.
For comparison purposes, the density of molecules

in the air under normal conditions of pressure and
temperature (NTP) is on the order of 2.5 × 1019

cm−3, which is roughly a thousand times smaller
than the density of free electrons in gold.

In general, the electronic density of conduction in
metallic elements is on the order of 1022 electrons
per cm3 under conditions of room temperature and

1In the kinetic theory of gases, all gas particles are as-
sumed to be spherical, solid, and identical, colliding with
each other elastically. In Drude’s model, the gas of electrons
has two different types of "particles": the fixed ions and the
free electrons [4].

atmospheric pressure at sea level. For the model to
be consistent, Drude made some basic assumptions:

1. The model considers the approximation of the
free electron, which neglects electromagnetic
interactions between electrons and ions, and
the independent electron approximation, where
the interaction between electrons is neglected.
The electron-ion interaction is not completely
ignored, as the model assumes that electrons
are confined within the metal due to attraction
with the ions. The total energy of the system
is purely kinetic, and potential energy is disre-
garded [4]. In the absence of an external elec-
tromagnetic field, electrons move randomly in
a straight and uniform manner between colli-
sions with the lattice. In the presence of an
external field, their trajectory slightly curves,
and they must obey Newton’s laws of motion.
In all cases, additional internal fields are ig-
nored, meaning electrons move independently
of each other [1].

2. Collisions are instantaneous events that
abruptly change the velocity of electrons.
Unlike an ideal gas, only collisions between
free electrons and ions are considered, while
collisions between gas particles are ignored.
However, it is known that in reality, there is
a scattering phenomenon among electrons,
but the detailed understanding of this phe-
nomenon is not necessary to comprehend
metallic conduction both qualitatively and
quantitatively [3]. Figure 12.3 provides a
simplified representation of Drude’s theory.
Although incorrect in a strict sense due to
the scattering that occurs among electrons in
the crystalline lattice, these scatterings do not
significantly influence the results obtained by
the model.

Figure 12.3: Free electron moving within a crys-
talline structure and eventually colliding with sta-
tionary ions, illustrated by the filled circles.

Adapted
by the author (2023).

3. The average time between two consecutive col-
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lisions of an electron is called τ , also known
as the relaxation time or mean free time. The
probability of an electron undergoing a collision
in an infinitesimal time dt is dt/τ . This time is
used in the Drude model as a phenomenological
quantity and depends on various factors, such
as the electron density, the density of atoms in
the lattice, the sample temperature, and the
presence of impurities. In the Drude model,
the relaxation time is assumed to be constant,
regardless of the position or velocity of the elec-
trons [3].

4. Collisions are responsible for maintaining ther-
modynamic equilibrium. After each collision,
the electron takes on a random direction and
velocity that does not depend on the velocity
prior to the collision but is directly related to
the temperature of the location where the colli-
sion occurred [3]. This is the only way electrons
can maintain thermal equilibrium with their
surroundings when considering the approxima-
tions of the free and independent electron [4].

The Drude model postulates that an average
charge carrier experiences the influence of a "resis-
tance force" , γ. When subjected to an external
electric field E, the following differential equation is
satisfied:

m
d

dt
⟨v⃗⟩ = qE⃗ − γ⟨v⃗⟩

Here, ⟨v⃗⟩ represents the average velocity, m is the
effective mass, and q is the electric charge of the
charge carrier.

The steady-state solution
d

dt
⟨v⃗⟩ = 0 of this differ-

ential equation is:

⟨v⃗⟩ = qτ

m
E⃗ = µE⃗

where:
τ =

m

γ
is the mean free time of a charge carrier,

and µ is the electric mobility. Introducing the den-
sity of the charge carrier gas n (particles per unit
volume), the average velocity can be related to an
electric current:

J⃗ = nq⟨v⃗⟩

It can be demonstrated that the material adheres
to Ohm’s law with a DC electrical conductivity σ0.

J⃗ =
nq2τ

m
E⃗ = σ0E⃗

The Drude model also enables the prediction of
current in response to a time-varying electric field
with an angular frequency ω. In this case:

σ(ω) =
σ0

1 + iωτ

It is assumed that:

E(t) = Re(E0e
iωt)

J(t) = Re(σ(ω)E0e
iωt)

In alternative conventions, i is replaced by -i in
all equations. The imaginary part signifies that the
current lags behind the electric field because elec-
trons require approximately a time τ to accelerate
in response to a change in the applied electric field.
While the Drude model was initially applied to elec-
trons, it can also be extended to holes, representing
positive charge carriers in semiconductors.

12.3 A Mechanical Analogy for
the Drude Model

The motion of electrons in a metallic conductor
under the influence of an applied electric field can
be analogously compared to the motion of a solid
sphere rolling downhill on an inclined plane and
changing direction due to collisions with obstacles.
The gravitational potential difference between the
top and bottom of the slope is equivalent to the elec-
tric potential difference in the Drude model, while
the obstacles on the plane are analogous to the ions
distributed within the conductor.

Figure 12.4: Esfera maciça rolando sobre um plano
inclinado e colidindo com obstáculos.

Adapted
by the author (2023).
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Just as the sphere is affected by the slope of the
plane and collisions with obstacles, electrons are in-
fluenced by the electric field and interactions with
the conductor’s material. This mechanical analogy
aids in understanding the behavior of electrons in
a metallic conductor according to the Drude free
electron model [5].

In a model like this, the sphere lacks an intrinsic
vibrational motion (analogous to thermal agitation)
that would be responsible for a nonzero net electric
current in the electrical context. To induce this ag-
itation in the model, it is possible, as suggested by
[5], to couple a vibratory motor to the system.

12.4 Theory of Conduction in
Metals

As mentioned earlier, the movement of electrons
within the crystalline lattice in the absence of an
external electric field is considered random, as illus-
trated in Figure 12.5.

Figure 12.5: Random motion of an electron in a
metallic crystal without an external electric field,
moving rectilinearly between collisions. The parti-
cle appears to move around an average position.

FINAL INÍCIO

Colisão com
os íons do cristal

Movimento em torno
de um ponto fixo

Adapted from Young e Freedman [1].

When an electric field E⃗ is applied within a metal,
the conduction electrons are dragged by the electric
force F⃗ = −eE⃗, resulting in a drift velocity v⃗d op-
posite to the field, as shown in Figure 12.7. In a
given time dt, the electrons will traverse an addi-
tional distance v⃗ddt compared to what they would
cover in the absence of an electric field, as illustrated
in Figure 12.5.

The flow of electrons traveling from one region
to another generates an electric current (I) within

Figure 12.6: Random motion of an electron in a
metallic crystal with an external electric field E⃗.
The trajectory of electrons is slightly curved, result-
ing in a net displacement due to the electric force
exerted on the particles.
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Adapted from Young e Freedman [1].

the conductor2. The intensity of an electric current
is the amount of electric charge (Q) that crosses a
cross-sectional area (A) of a conductor in a certain
time (t):

I =
dQ

dt
(12.2)

For a more general case, the current can be writ-
ten as the scalar product between current density
(J) and the cross-sectional area (A), where θ is the
angle formed between them:

I = J⃗ · A⃗ = J ·A · cos θ (12.3)

12.4.1 Conductivity and Electrical
Resistivity

In this section, we will introduce the concepts of
electrical conductivity and resistivity, which are the
focus in modeling electrical conduction as proposed
in the Drude model.

Considering the example of a cylindrical conduc-
tor, within a time interval dt, electrons cover a dis-
tance vddt. All electrons within this distance from
an area A will traverse it, and these electrons are
involved in a cylinder of volume Avddt. Taking into

2In common metals such as copper and aluminum, elec-
trons naturally move within the material. However, this
movement does not imply an effective flow of charges since
free electrons move randomly within the material, with no
fixed direction of displacement; hence, there is no electric
current [1].
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account that it contains n electrons per unit volume,
and each of them has a charge of −e, the charge dQ
flowing in this conductor will be nevdAdt. There-
fore, the current intensity can also be described as:

I = −neAva. (12.4)

Figure 12.7: Random motion of an electron in a
metallic crystal with an external electric field E⃗.
The trajectory of electrons is slightly curved, result-
ing in a net displacement due to the electric force
exerted on the particles.

Adapted from Young e Freedman [1].

From this, it is possible to write the current den-
sity (J), defined as the current flow per unit area of
the cross-sectional area:

J⃗ =
I

A
v̂a = −nev⃗a. (12.5)

The electric current density J⃗ is influenced by the
applied field E⃗ and the characteristics of the mate-
rial itself. For certain materials, such as metals,
at certain temperatures, the ratio |E⃗|/|J⃗ | is nearly
constant. The relationship between these two prop-
erties is described by Ohm’s Law. The proportion-
ality constant is the resistivity (ρ), which expresses
the difficulty with which a current is induced by an
electric field in a conductor.

E⃗ = ρJ⃗. (12.6)

It is important to emphasize that resistivity does
not depend on the geometric structure of the con-
ductor but is intrinsically linked to the material
from which it is made. The inverse of resistivity
is electrical conductivity (σ = |J⃗ |/|E⃗|), a property
that expresses the ease with which a material con-
ducts electricity. The higher the current density
induced by a fixed electric field, the higher the con-
ductivity of that material. Metals and metal alloys
are the best conductors due to their low resistivities,
which can be up to 1022 times smaller than those of
insulating materials like amber and glass.

12.5 Aplication

12.6 Hall Effect
In this section, we will explore the phenomenon

known as the Hall Effect. The Hall Effect was a fun-
damental discovery in physics that reveals the rela-
tionship between electric currents, magnetic fields,
and the generation of a potential difference perpen-
dicular to both. This phenomenon can be used to
develop various practical applications, from mag-
netic sensors to advanced electronic devices.

In this chapter, it will be used to validate the
assumptions adopted by Drude in his model of elec-
trical conduction in metals.

12.6.1 Electric charges in motion un-
der the action of an external
magnetic force

When analyzing electric charges in motion, it is
important to consider the existence of external mag-
netic fields (generated by a permanent magnet) or
even the magnetic field generated by the charges
themselves. In any of these situations, a magnetic
field B⃗ exerts a force on a charge q perpendicular to
its velocity v⃗, causing a deviation in its trajectory
[6]. The Lorentz force (Equation 12.7) determines
the superposition of an electric force and a magnetic
force exerted on a moving charge:

F⃗ = q (E⃗ + v⃗ × B⃗). (12.7)

The Lorentz force was the basis for understand-
ing J. J. Thomson’s cathode ray experiment, which
led to the discovery of the electron in 1897. In this
experiment, Thomson adjusted the parameters of
his apparatus so that the electric field was perpen-
dicular to the magnetic field, making FE = FB and
causing the electron beam to follow a straight tra-
jectory. Thus, the velocity of the electrons could be
calculated using the relationship:

eE = evB ⇒ v =
E

B
. (12.8)

12.6.2 Effect of an external magnetic
field on an electric current

When these charges are trapped in a metal con-
ductor, the Hall Effect, discovered in 1879 by the
American physicist Edwin Hall, is an excellent way
to analyze the effects of a magnetic field on an elec-
tric current. Hall wondered if this force would be
applied throughout the length of the wire or only
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on the moving charges; today we know that in met-
als, these charges are electrons. If the second option
were true, Hall argued that the electrons would be
attracted to one side of the wire, and consequently,
an additional resistance to the current flow would
be noticed.

Although he did not notice this resistance in his
experiments, Hall believed that even if a perma-
nent magnet could not divert the electrons signifi-
cantly enough to alter the resistance of a conductor,
it would cause a potential difference within it. This
voltage effect, now called Hall voltage, was observed
by Hall in his experiments and confirmed his thesis
about the magnetic effect on free electrons.

The Hall experiment (Figure 12.8) involves apply-
ing an electric field Ex to a wire extending in the x
direction, inducing the passage of a current density
Jx. A magnetic field H⃗ in the +z direction exerts
a magnetic force FH in the +y direction. Thus, the
force experienced by an electron can be determined
by the Lorentz force:

FH = −eva ×H. (12.9)

Due to the force FH , the electrons will undergo a
deviation in the trajectory in the −y direction (the
drift velocity of the electrons is opposite to the di-
rection of the electric current). Consequently, the
electrons will collide with the sides of the wire at
some point, accumulating in such a way as to gen-
erate an electric field in the +y direction.

This accumulation will occur until the electric
field E⃗y increases to the point of producing a force
of magnitude eEy equal and opposite to the force
of magnitude evaH. Thus, the Hall field will be in
equilibrium. After this point, the moving charges
no longer undergo deviations caused by transverse
forces that can deflect their trajectory [7].

Figure 12.8: Schematic view of the Hall effect ex-
periment.

Ashcroft, N.W. and Mermin, N.D. (1976).

From this, the ratio between the field Ex and the

current density Jx is defined as a quantity called
magnetoresistance:

ρ(H) =
Ex

Jx
. (12.10)

Another important quantity when it comes to the
Hall effect is the Hall coefficient (RH), which mea-
sures the intensity of Ey, as it balances the Lorentz
force:

RH =
Ey

JxH
. (12.11)

When the Hall field is oriented in the −y direc-
tion as in Figure 12.8, the Hall coefficient must be
negative; thus, the charge carriers have a negative
sign. If the charges are positive, the direction of
movement would be opposite, in the −x direction,
and therefore, the Hall field would be oriented in the
+y direction. Thus, the Hall experiment makes it
possible to discover the sign of the charge carrier of
electricity in a given material just by observing the
lateral polarity of the conductor. An unusual fact
is that some metals have a positive Hall coefficient,
indicating that the charge carriers have a positive
charge. The Drude model cannot explain this phe-
nomenon, as the explanation for it only emerged
with the quantum theory of solids.

To find the magnetoresistance and the Hall coef-
ficient, it is necessary to calculate the components
Ex and Ey of the electric field and the components
of the density Jx and Jy. The force acting on each
electron will be

f = −e
(
E⃗ + v⃗a × H⃗

)
. (12.12)

This is the average force felt by the electrons since
the velocity of each of them is variable. Therefore,
in this case, the average velocity p/m must be used.

dp⃗

dt
= −e

(
E⃗ +

p⃗

m
× H⃗

)
− p⃗

τ
. (12.13)

In the steady state, the electric current does not
vary with time, which implies that the components
px and py of the electron momentum also do not
vary with time. This means that the momentum of
the electrons in the x and y directions is constant
over time (ṗx = ṗy = 0), even in the presence of
electric and magnetic fields. Therefore:

0 = −eE⃗ − ep⃗× H⃗

m
− p⃗

τ
. (12.14)

The trajectory of an electric charge in a medium
with a constant magnetic field is curvilinear, with a
radius r = mv/eH. In this case, we usually define
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the angular frequency ωc = v/r. Using this defini-
tion in the situation we are dealing with leads to:

ωc =
eH

m
. (12.15)

Analyzing Equation 12.14, the x component pro-
vides:

0 = −eEx − ωcPy −
px
τ

⇒ eEx = −ωcpy −
px
τ
.

(12.16)
Similarly, the y component gives us:

0 = −eEy+ωcPx−
py
τ

⇒ eEy = ωcpx−
py
τ
. (12.17)

By multiplying Equation 12.16 by −neτ/m, it is
possible to introduce the terms of conductivity ρ
and current density J (Equation 12.5):

σ0Ex = ωcτJy + Jx. (12.18)

Analogously, we have that:

σ0Ey = −ωcτJx + Jy. (12.19)

Note that these equations can be written in the
form:

(
Ex

Ey

)
=

1

σ0

(
1 ωcτ

−ωcτ 1

)(
Jx
Jy

)
. (12.20)

And now, the resistivity ρ of the material becomes
dependent on the direction, with the electric cur-
rent flowing in one direction influencing the electric
current flowing in an orthogonal direction.

To find the Ey component of the Hall field, the
condition that there is no transverse current, i.e., a
current in the y direction, is determined. By defin-
ing Jy as zero in the second equation, we find:

Ey = −
(
ωcτ

σ0

)
Jx. (12.21)

By Equation 12.15, we have:

Ey = −
(
H

ne

)
Jx. (12.22)

Thus, the Hall coefficient can be described as:

RH =
d

dH

(
E

J

)
= − 1

ne
. (12.23)

This result shows that the Hall coefficient does
not depend on material properties but only on the
density of conduction electrons, which can indicate

whether the assumption of the Drude Model that
metallic conduction occurs through valence elec-
trons is valid. However, there is a difficulty in ob-
taining the density n when measuring the Hall co-
efficient in experiments. Contrary to expectations,
these coefficients generally depend on the applied
magnetic field, temperature, and sample prepara-
tion conditions.

Under ideal conditions, the observed Hall coeffi-
cients stabilize and show consistent behavior as they
approach a specific limit value that is independent
of variations in the applied magnetic field. This
limit value represents a reference point or an intrin-
sic property of the material, which can be used to
obtain more precise information about the electron
density of a material.

12.7 Conclusion

In summary, while the Drude model served as
a crucial milestone in the initial understanding of
electron behavior in metals, it has significant limi-
tations. The model is effective in providing a simpli-
fied description of some electrical phenomena, such
as electrical conductivity, but falls short by not
considering crucial aspects such as crystal struc-
ture, interactions between electrons and ions, and
more complex electronic properties. Experimental
discrepancies, particularly regarding interionic dis-
tance at low temperatures, highlight the model’s
shortcomings. Additionally, the Drude model fails
to explain the positive Hall coefficient observed in
some metals, underscoring its inadequacy in more
complex scenarios.

The evolution towards the quantum theory of
solids, which incorporates the wave nature of elec-
trons and energy bands in materials, overcomes
these limitations. The quantum theory of solids
offers a more comprehensive explanation for elec-
trical phenomena, especially in metals with specific
characteristics, where Hall coefficients exhibit no-
table dependencies on magnetic fields. This anoma-
lous deviation necessitates a deeper understanding
of quantum effects and the electronic structure of
solids, providing a more robust foundation for the
study and comprehension of electrical phenomena
in materials.
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